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Abstract

Histopathological examination, crucial in diagnosing diseases such as cancer, traditionally
relies on time- and resource-consuming, poorly standardized chemical staining for tissue
visualization. This thesis presents a novel digital alternative using generative neural
networks and a point light source (PLS) microscope to transform unstained skin tissue
images into their stained counterparts. This approach utilizes PLS microscopy’s unique
illumination angles, providing more structural information about a sample and thereby
enhancing a neural network’s ability to produce accurate, virtually stained images.

Two matched datasets, each containing paired unstained and chemically stained tissue
images, were used for supervised training of several networks. One dataset comprised
healthy tissue, while the other, in addition to healthy tissue, included basal and squa-
mous cell carcinomas. Given the limited scope of this master’s thesis, which constrained
data acquisition, these datasets were relatively small, potentially impacting the general-
izability of the model. The project explored the virtual staining capabilities of UNet and
DenseUNet architectures, focusing on network depth and input channels. Variations in
activation functions, upsampling blocks, and attention gates were tested, alongside the
development of Relativistic Generative Adversarial Network (RGAN) models.

Quantitative evaluation using standard metrics and qualitative assessment by pathologists
and other medical professionals demonstrated the potential of PLS microscopy in virtual
staining. The final model, based on RGAN, achieved superior staining accuracy with a
structural similarity (SSIM) score of 0.799, significantly outperforming traditional bright
field imaging (SSIM 0.631). However, the limited diversity and size of the datasets may
have inflated these scores and highlight the need for caution in interpreting the results.
The pathologists and medical professionals found virtually stained images indistinguish-
able from their chemically stained counterparts, with average stain quality ratings of 6.40
out of 10 for virtual images, which did not differ significantly from the rating of 6.41 for
chemically stained ones. The pathologists and medical professionals were also able to
classify 95.83% of all images as healthy or containing cancerous tissue correctly.

In conclusion, virtual staining using PLS microscopy holds considerable promise, offering a
more standardized and sustainable approach compared to chemical staining. This method
has the potential to speed up diagnosis and facilitate further analysis using image analysis
algorithms. Future research could expand this technique beyond skin tissues, enhancing
its applicability across a broader range of histopathological examinations.
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1 Introduction

In 2023, only 38% of Swedes diagnosed with cancer began treatment within the regulated
timeframe, a delay significantly impacted by the lengthy process of histopathological di-
agnosis, as reported by the Regional Cancer Centers in Sweden (RCC) [1]. This challenge
is compounded by a critical shortage of pathologists and laboratory personnel [2], leading
to prolonged waiting times for pathology reports and hence, anxious periods for patients
awaiting diagnosis [3]. Moreover, the necessity of sending samples to specialists for anal-
ysis often adds to these delays, further prolonging the diagnostic process.

Central to this delay in arriving at a diagnosis is the process of histopathological exam-
ination, the microscopic examination of tissue to study the manifestation of disease [4].
It combines histology, the study of microscopic structures of tissue, with pathology, the
study of diseases. Traditionally, histopathologic examination consists of several steps:
tissue removal via biopsy, surgery or autopsy, followed by fixation to prevent autolysis,
embedding, sectioning, fixation to glass microscopy slides, and staining to prepare the
tissue for microscopic analysis.

Staining, where chemicals bind to specific cellular or tissue structures, is a critical step in
diagnosis of disease, permitting a detailed examination of cellular architecture or patho-
logical state [5]. One prevalent method for staining is by the use of Hematoxylin and
Eosin (H&E). The preservation of tissue structure and its permeability is paramount for
reliable staining [6], and factors such as tissue fixation type and duration, tissue thick-
ness, temperature, and target accessibility can influence the efficacy of staining [7]. Given
this complexity, histopathology laboratories typically adhere to standardized fixation and
staining protocols, ensuring minimal artifacts, reduced background interference, and fewer
false positives. However, the entire process, especially the staining step, can be error-prone
and time-consuming [8]. Staining is also poorly standardized between labs according to
Fredrik Pontén, MD, professor at Uppsala University and pathologist with over 35 years
of experience using H&E stained samples for diagnosis. Fredrik Pontén has no affiliation
with CellaVision. It entails the use of hazardous chemicals, globally generating waste
which needs >1 million liters of water annually to handle [8], and additionally, staining
risks damaging the sample, a risk mitigated by removing larger samples from the patients
[8, 9]. Staining is often irreversible, preventing the tissue from being used in other anal-
yses, which further exacerbates the need for larger tissue removal and additional biopsies
[10].

In response to the challenges faced in the traditional pathological workflow, the developing
field of digital pathology has emerged as a promising solution. According to [11], digital
pathology encompasses the acquisition and sharing of pathological data. Digital pathology
devices normally include the salient parts of a classic microscope attached to a camera
system, enabling images of physical glass microscopy slides to be captured to form a
digital slide in the form of a set of images. Various methods of image analysis and machine
learning methods can then be utilized to interpret or enhance the digital slide. According
to Pontén, standardized images are crucial for the effective application and analysis of
the aforementioned methods. A significant advancement within digital pathology is the
concept of virtual staining, which aims to replace chemical staining with an image-to-
image translation to create a digitally stained slide.
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The possibility of generating virtual stained H&E images from unlabeled and unstained
images using deep learning was first demonstrated by [12]. A comprehensive overview of
recent advancements within the field is provided by [8], where unlabeled auto-florescent
images and bright-field images are the most widely used inputs to the networks.

Virtual staining reduces the need for large samples, laboratory personnel, and chemicals
[10]. It also eliminates the waiting time associated with traditional staining, making the
process more efficient and sustainable [8]. The workflows of traditional and virtual staining
are illustrated in Figure 1. With virtual staining, a digital image of stained tissues, which
is easily distributed for consultation, is produced. Moreover, the digitized image facilitates
analysis through algorithms [13] and supports computer-assisted diagnosis (CAD) and
prognosis prediction [7].

Figure 1: Illustration of the difference between traditional (1) and virtual (2) staining
workflows inspired by [8]. Steps (a-b) are the same for both. (a) removal of tissue by
biopsy or surgery. (b) fixation, embedding, sectioning and mounting tissue on a glass
slide. (1c) traditional histological staining process. (1d) microscopic investigation of
stained tissue. (2c) image collection using PLS microscope. (2d) artificial staining with
a neural network. (2e) digital images of virtually stained tissue ready for histological
analysis.

Despite the progress in virtual staining, there remains unexplored potential aimed to be
addressed in this project. The aim of this project has been to explore the feasibility of
virtually H&E staining skin tissue using generative neural networks provided with a pre-
viously untried input, Point-Light Source (PLS) images. In this project, multiple network
architectures and training methods have been explored to accurately transform digital
slides of unstained skin tissue into virtually H&E stained digital slides. The networks
were trained using supervised learning with a paired stained-unstained dataset consist-
ing of 132 890 and 367 372 unstained-H&E stained image pairs respectively. A recent
study by [10] utilizing bright-field images as network input, compared the proficiency of
virtual H&E staining of multiple tissues by an unsupervised versus a supervised network,
and found that the supervised produced more accurate and realistic images, serving as
inspiration for our choice.
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The input to the network comprised unstained images captured using a PLS microscope.
This type of microscope, which substitutes the traditional halogen lamp with a pro-
grammable light-emitting diode (LED) array, generates what is known as a PLS stack. A
PLS stack consists of multiple images, each taken with a different LED, providing varied
illumination angles. Compared to images from conventional microscopes, a PLS stack
offers enhanced structural details about the sample, even allowing for a synthetic increase
in magnification [14]. This additional detail and information is particularly beneficial for
virtual staining, where a key challenge is the absence of certain information in unstained
tissue images that should be present in stained ones. We hypothesize that the PLS mi-
croscope effectively can bridge this information gap, thereby enabling a neural network to
accurately infer the required features from an unstained image to produce high-quality,
virtually stained images. Utilization of PLS images has previously been investigated by
Joel Wulff, who demonstrated promising results in virtual staining of white blood cells by
training a Relativistic Generative Adversarial Network on 30,000 examples of such cells
[15]. This project aims to extend insight from the aforementioned project into the diverse
realm of pathology and explore the usefulness of PLS images for virtual staining of whole
skin tissue slides.

Previous virtual staining projects, as investigated by [8], evaluate model proficiency us-
ing standard evaluation metrics, such as mean squared error, structural similarity index
(SSIM) and peak-signal-to-noise ratio. Half of the virtual stain studies investigated also
employ pathologist assessment of the images. In this project, we employ both of these
approaches.

The results of this project were evaluated using standard quantitative metrics, SSIM and
Laplacian focus scores, with the addition complex wavelet SSIM (CW-SSIM), which does
not seem to have been explored in previous works, and the popular metric for evaluating
generative networks, Frechet Inception Distance [16]. The quality of the generated vir-
tually stained images and their usefulness were also evaluated in a questionnaire sent to
a group of pathologists and other medical professionals. To evaluate the importance of
the extra structural information provided by the PLS images, our final model was also
trained using only traditional microscope images as input. With this evaluation process
we aim to present an answer to the questions:

Which of the attempted neural networks, trained with PLS images as input, demonstrate
optimal performance in the task of virtually H&E staining skin tissue? Does training
a neural network with PLS images as input, rather than traditional microscopy images
only, enhance virtual staining performance? Additionally, to what extent do the generated
images retain valuable pathological information?
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2 Background

This background section aims to provide the reader with the necessary knowledge to
fully grasp the scope of the project. H&E staining will be introduced, accompanied
by an overview of the basic histology of both healthy and cancerous skin tissue. An
explanation of the optics in a PLS microscope will be provided, followed by an introduction
to the image analysis methods employed in this project. The connection between artificial
intelligence and neural networks will be presented, including a detailed discussion on how
to train these networks, as well as an overview of various network architectures. Lastly,
the metrics used to assess the performance of the networks trained will be introduced and
explained.

2.1 Hematoxylin and Eosin Staining

For detailed visualization of cellular and tissue structures, samples are routinely stained
using Hematoxylin and Eosin (H&E).

H&E staining is a cornerstone in tissue analysis [17]. Despite advancements in pathology,
the chemical composition of this stain, along with its staining protocol, has endured
for over a century. This can be attributed to its compatibility with a wide range of
fixatives and its ability to distinctly highlight a vast spectrum of cytoplasmic, nuclear,
and extracellular matrix features.

In the H&E staining process, Hematein — an oxidized form of hematoxylin — is com-
plexed with a mordant, typically a metal cation such as aluminum alum [18]. This forms
a cationic dye complex. Given its positive charge, it preferentially binds to negatively
charged, basophilic cell components like nucleic acids in the nucleus and ribosomes. These
structures subsequently manifest a blue or purple hue, the exact shade decided by the
mordant. Conversely, Eosin, being anionic, serves as an acidic dye. Its negative charge fa-
cilitates binding to positively charged (acidophilic) tissue components, such as the amino
groups in cytoplasmic proteins and collagen fibers within the extracellular matrix, stain-
ing these structures in various shades of pink. It is noteworthy to mention that, being an
ionic stain, H&E does not stain neutrally charged components.

2.2 Skin Tissue

2.2.1 Normal Skin Histology

In Figure 2 some typical elements found in normal skin tissue are shown. Throughout
these images the purple dark spots are cell nuclei, which play an important role in telling
healthy tissue from sick tissue. In (a), the epithelium, the outermost layer of the skin
which acts as a barrier to protect the body from the outside environment is depicted [19].
Image (b) shows connective tissue, the main component of the dermis, situated below the
epidermis with the job of sustaining the epidermis. Some structures helping with this are
(c) sweat glands, which help with temperature regulation, and (d) sebaceous glands, that
keep the skin hydrated. (e) is an image of inflamed tissue. Inflammation is characterized
by an increased number of nuclei in a concentrated area. Finally, (f) depicts fat tissue,
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which also helps with temperature regulation of the body. In the skin, the layer of fat is
called the subcutis and is found right beneath the dermis.

Figure 2: Some typical tissue types, stained by H&E, found in human skin.

2.2.2 Basal and Squamous Cell Carcinoma

Basal cell carcinoma is a type of cancer which originates in the basal cells [20]. Basal cells
are located at the bottom of the epidermis and responsible for generating new skin cells
as older cells die off. Over time, as skin cells age, they migrate towards the skin’s surface
and transform into flattened squamous cells. In Figure 3 a basal cell carcinoma can be
seen to the left in the image, it is the darker purple area with high concentration of cell
nuclei. Squamous cell carcinoma, another common form of skin cancer, arises from these
matured skin cells. In Figure 3 the areas which are a heavier pink colour and with rather
large nuclei along the edges are a squamous cell carcinoma. The squamous cell carcinoma
is sometimes described as having a rose-like appearance. Both carcinomas generally begin
close to the surface of the skin, in the epidermis.
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Figure 3: Basal cell carcinoma (left), squamous cell carcinoma (right).

2.3 Point-Light-Source Illumination Microscopy

A traditional microscope, as explained by [21], uses a halogen lamp to illuminate the
sample from below, seen to the left in Figure 4. The residual of the incident light which is
not absorbed by the sample and falls within the maximum normal illumination angle θNA

is captured by the objective. The numerical aperture (NA), a critical factor decided by the
objective lens, correlates directly to the microscope’s resolution. NA can be understood
as the ability of the lens to gather light and resolve fine specimen detail at a fixed object
distance, calculated as

NA = n sin θNA (1)

where n denotes the refractive index of the lens and θNA the maximum half angle of the
cone of light which may enter the objective from a point on the glass slide with the sample
tissue on it. The area which can be seen through the objective is called the field of view
(FOV). In digital microscopes, the objective is connected to a camera with a set number
of pixels per image of one such FOV. For a larger NA, the area on the slide constituting
an entire FOV is smaller, meaning the magnification is greater and therefore, the picture
taken is of higher resolution.

In a PLS microscope, the traditional light source is replaced with a programmable LED
array. By lighting one LED at a time, images can be obtained with a specified angle
and direction of the incident light. This means that the array setup generates spatial
information about the refracted light that reaches the objective. During a PLS scan of
a tissue sample, a set of images are taken from a range of incident angles and directions
and concatenated to form a so called a PLS stack.

As illustrated to the right in Figure 4, if the sample is illuminated outside of θNA, no
incident light reach the objective, and only light which has refracted and scattered in the
sample to be within θNA can be observed. This results in a comparatively dark image
referred to as a dark-field image (DF). Images where most of the light absorbed by the
objective is the residual of the incident light can in contrast be referred to as bright-field
(BF) images and BF images are those captured by traditional microscopy. Naturally,
the way in which the light refracts in the sample has connections to its thickness and
composition. A PLS microscope aims to increase retrieval of this type of information. The
LED array is designed in such a way that some of the LED’s illuminate the sample from
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Figure 4: Traditional microscope with a light source designed so that most of the incident
light is captured by the objective as it is scattered within θNA (left). PLS microscope
designed so that most individual LED:s when illuminated do not yield any incident light
within θNA, instead producing dark-field (DF) images (visualized with orange arrows and
orange shaded area) (right). The possibility to take a classic bright-field (BF) image is
possible through the LED:s at the centre of the PLS array (visualized with the yellow
arrows).

outside of θNA, and therefore create DF-images. In Figure 5, three examples of images
produced by a PLS microscope are shown, the middle image is particularly interesting as
some incident light has reached the objective but also some scattered light, meaning it is
taken at an angle at the border between BF and DF.

Figure 5: Image of sample with traditional BF illumination (left), sample illuminated
by one LED, resulting in some incident light and some scattered captured reaching the
objective (middle), sample illuminated by a different LED can also result in only scattered
light being captured, producing a DF-image (right).

The information in a PLS stack compared to that in a BF image has been shown to
provide more structural information to such an extent that the numerical aperture of
an objective can be synthetically increased [14]. The aim of using PLS microscopy in
this project is based on the hypothesis that this information can bridge the gap between
the information present in an unstained tissue sample and a stained one as illustrated in
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Figure 6.

Figure 6: The overlap of information in S, and in UBF (left). A larger overlap of infor-
mation between UPLS, and S (right). UBF indicates an unstained BF image, UPLS an
unstained PLS stack and S, a stained image.

2.4 Image Analysis Methods

2.4.1 Template Matching

Template matching is a method of finding the location of the closest match of a smaller
image, a template, in a larger image. This can be done by a variety of methods, but in its
most basic form, the methods consists of moving the template over the larger image and
by some metric measure their similarity. Once the similarity of the template has been
measured for all possible positions in the larger image, the location with the best metric
value is chosen as the matched location.

One method of template matching is to make use of the cross-correlation coefficient [22].
Denoting the template, T (x, y) and the image, I(x, y), placed at coordinate (x, y), this
method calculates the similarity coefficient, R(x, y), as the element-wise product of the
normalized template and image as

R(x, y) =
∑

x′y′

(T ′(x′, y′) · I ′(x+ x′, y + y′)). (2)

T ′(x′, y′) is the normalized template at coordinates (x′, y′) and I ′(x + x′, y + y′) is the
image normalized at (x+ x′, y + y′). The normalized values are calculated as

T ′(x′, y′) = T (x′, y′)− 1

w · h
∑

x′′y′′

T (x′′, y′′) (3)

I ′(x+ x′, y + y′) = I(x+ x′, x+ y′)− 1

w · h
∑

x′′y′′

I(x+ x′′, y + y′′), (4)

where w and h denote the width and height of the template. By calculating R(x, y) for
all possible placements of the template and finding location where the cross-correlation is
maximized, the template can be matched to the larger image.
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2.4.2 CIE-L*a*b Colorspace

Developed by the Commission of International Illumination, the CIE-L*a*b colorspace
aims to create a colorspace where a step in any direction is percieved by the human eye
as an equally large shift in color [23]. The CIE-L*a*b colorspace is divided into three
channels:

• L* - for lightness which ranges from white to black.

• a* - describes the chromatic axis ranging from green to red.

• b* - describes the chromatic axis ranging from blue to yellow.

Figure 7: The CIE-L*a*b colorspace visualized by the color of the axes.

2.4.3 Post Processing

Altering Saturation in CIE-L*a*b Colorspace
One use of the CIE-L*a*b colorspace is simplifying saturation alteration. In the CIE-
L*a*b colorspace, the color saturation can be described as the distance from the origin,
radially from the L*-axis [23]. To alter the saturation one can therefore perform the
translation shown in Equations 5 and 6,

xc = x− na∗,b∗, (5)

xs = (xc · s) + na∗,b∗. (6)

The saturation factor is denoted s, if it is larger than one it will increase saturation and
if it is lower than one it will decrease it. To center the pixel values to form xc, a neutral
value of the a* and b* axes respectively na∗,b∗ is chosen. It is often chosen as 128 which
is the central value if the possible pixel values are in the range [0, 255]. The subtraction
of na∗,b∗ before applying the saturation factor, to form the saturated image xs, ensures
no bias is introduced in the saturation process by centering the image’s pixels around a
neutral value.

Unsharp Mask Technique
The unsharp mask technique is a way of sharpening an image by utilizing a blurred mask
of the image, as visualized in Figure 8 [24]. Step one applies a blurring filter, for example
a Gaussian blur, to an image to create an unsharp mask by subtracting the blurred image
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from the original. To sharpen the original image, as shown in step two in Figure 8, one
can then add the blurred mask to the original image. The method is effectively a high-
pass filter which selectively increase contrast along the edges of an image. The results
of this technique can be controlled by changing the kernel size of the blurring filter. A
larger kernel will result in a more blurred mask and increasing the change to the image.
However, if the kernel is too large, halo artifacts, where areas around sharp edges appear
to be glowing, can appear.

Figure 8: Visualization of the unsharp mask technique. Step 1 consists of subtracting a
blurred version of the original to create a mask. This mask is added to the original image
in step 2 to sharpen it.

2.5 Artificial Intelligence

Throughout history, the enigma of the mind has fascinated humans, and many attempts
have been made to understand ”how one thinks”. Pioneers, from Greek philosophers
to 20th century intellectuals, have tried to dissect how we, who in the purest physical
sense are bundles of atoms, are capable of complex and analytic thinking [25]. What
is it that enables us and other living organisms to perceive, analyze, and interact with
our surroundings? From this curiosity, artificial intelligence (AI) has emerged, aiming to
understand the essence of intelligence and to create intelligent beings.

In his influential 1950 paper Computing Machinery and Intelligence, Alan Turing posed
the question, ”Can machines think?” [26]. This question initiated a cascade of AI research,
leading to multiple definitions of AI being explored [27], especially in the period following
the Second World War, culminating with the term’s formal introduction in 1956. John
McCarthy defined AI as ”the science and engineering of making intelligent machines,
especially intelligent computer programs” [28], emphasizing the computational aspect of
goal achievement observed in humans, animals, and certain machines. Stuart Russell
and Peter Norvig further refined this concept in their textbook Artificial Intelligence:
A Modern Approach [25]. They describe AI as multidimensional and classify systems
as AI based on whether they think and act, either humanly or rationally. The human
aspect focuses on the simulation of human behaviors and thought processes, while the
rational aspect concentrates on optimal decision-making, judged against a measure of ideal
performance [25]. According to Russell and Norvig, artificial systems can be considered
intelligent if they exhibit rational thinking when performing logical and analytical tasks,
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mirror human thought processes, act rational by performing goal-oriented actions, or act
in a way that is indistinguishable from humans [25].

While McCarthy’s definition of AI is concerned with the construction of intelligent ma-
chines, Russell and Norvig empathize the diversity of approaches one could take when
developing AI. Together, these two definitions provide a holistic understanding of the AI
landscape, which in its simplest form is a field which uses computer science and large
datasets of information to solve intellectual problems.

2.5.1 Machine Learning

Machine learning (ML) is a branch of artificial intelligence which falls under the acting
rational Russell and Norvig branch. In ML one tries to create systems that act to achieve a
best outcome, or when the outcome is unknown, the best expected outcome. ML models
adjust to and find patterns in data, learn from it, and make predictions and decisions
without being explicitly told to do so. Rather than being pre-programmed with specific
instructions, machine learning models adapt, evolve, and improve as they are exposed to
more data. ML models consist of algorithms written to mimic the way humans learn and
to gradually improve their accuracy in performing the task at hand with training.

An algorithm capable of learning is defined by Goodfellow et al. as one that is

”able to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E” [29].

The term experience, E, in this context refers to the data or information the algorithm
encounters and learns from over time [29].

To assess the capability of a machine learning algorithm, its performance, P, is measured
quantitatively using metrics specific to the task T at hand [30]. For instance, if the
model’s objective is to classify objects into categories like cats or dogs, its performance
can be gauged by the number of objects it classifies correctly. On the other hand, if the
model is designed to generate images, performance could be evaluated using the mean-
squared-error between pixel values of the generated image and the true, ground truth,
image.

ML models can learn in three different ways; supervised, unsupervised or by reinforcement
learning, depending on the training data available and the order and method by which this
data is received and in what data is used to evaluate the learning algorithm [31]. According
to [30], supervised learning involves models learning from labeled data. It uses a dataset
where input variables are paired with their corresponding correct outputs and trained
to learn the mappings between inputs and outputs. Supervised learning is often used
for classification or regression tasks. In unsupervised learning, models identify structures
and patterns in unlabelled data. The model attempts to find hidden relationships and
groupings in the inputs, which can be used for exploratory data analysis and clustering
tasks.
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A crucial aspect of training machine learning models is ensuring that they generalize
well, meaning they perform well when presented with previously unseen data [29]. Con-
sequently, it is common practice to evaluate a model’s performance on a test set that’s
distinct from the training data. Available data is typically partitioned into three distinct
segments: a training set, a validation set to monitor model performance during train-
ing and make changes accordingly, and a test set composed of previously unseen data
[32]. It is customary to allocate approximately 10-20% of the data for validation and
testing respectively, with the remaining data assigned to the training set [32].

2.5.2 Deep Learning and Artificial Neural Networks

One major challenge in AI is solving tasks that humans perform intuitively but find hard
to formally articulate, such as distinguishing cats from dogs or understanding speech
[29]. Deep learning, an extension of machine learning, has emerged as a powerful tool for
these kinds of problems. Taking inspiration from biology and the way human brains are
structured and function, using neural firing patterns for communication, artificial neural
networks (ANNs) have been developed to model and understand complex patterns in
data [33]. The networks typically consist of multiple layers through which data passes, a
concept which together with their biological inspiration has given rise to their name deep
neural networks.

These networks allow computers to learn from experience, build complex concepts from
simpler ones, and to create a hierarchy of learned ideas [34]. This means that rather
than requiring programmers to specify the knowledge needed explicitly, the network can
learn and refine its understanding autonomously from data. In the following sections, the
fundamental components of deep learning will be explored.

As explained by [35], artificial neurons (ANs) serve as the foundational elements of ANNs,
mirroring the functional aspects of neurons in the human brain. In both ANNs and the
human brain, neurons receive multiple inputs, process them using a transfer function,
and produce an output value. This processing involves evaluating received inputs against
certain weights and thresholds. If the cumulative output value surpasses a specified
threshold after the application of the transfer function, the neuron activates or ”fires.” In
ANNs, this means transmitting data to the subsequent layer, while in the human brain, it
involves sending electrical signals to neighboring neurons. Conversely, if the output value
is below the threshold, the neuron remains inactive, and no data is transmitted.

The components of a biological neuron and a basic AN are displayed in Figure 9. Inputs,
x1, x2, ..., xn, represent the values the AN processes. Weights, w1, w2, w3, ..., wn, are ad-
justable parameters of the neuron which determine the significance of their corresponding
input. The bias, b, is another adjustable parameter, providing an offset to the neuron’s
output. The summation function calculates the combined value of the weighted inputs
and the bias, expressed mathematically as Σn

i=1(xiwi) + b. The activation function, f ,
resembling the firing threshold of biological neurons, applies a mathematical operation to
the summation output to produce the neuron’s final output, youtput.

ANs can be combined into layers, to form neural networks. Typically a neural network
consists of an input layer, multiple hidden layers, and an output layer [36]. The input
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Figure 9: A biological neuron (left) and an artificial neuron (right) illustrated with in-
spiration from [35]. As described by [35], a biological neuron receive inputs through its
dendrites and the signal is carried towards the cell body where it gets processed. If the
signal is above the neurons signaling threshold, the signal is transmitted through the axon
to other neurons connecting to it via a synapse at the axon terminals. An artificial neuron
functions in a similar fashion by receiving and summing n inputs, x1, x2, ..., xn, to produce
youtput which is transmitted to other ANs.

layer receives an input and passes it to the subsequent layers, a process known as feed-
forwarding of the data. Hidden layers, situated between the input and output layers,
perform most of the computation and are responsible for feature extraction and transfor-
mation of the input into something the output layer can use. The output layer produces
the final prediction based on the processed data from the preceding layers.

The architecture of a neural network, specifically the number of layers and the number
of neurons within each layer can be adjusted to the task at hand. The complexity of the
problem often dictates the depth of the network. For more intricate problems, deeper
networks, meaning more layers and neurons, might be required to capture the subtle
patterns and relationships in the data [37].

2.6 Training of a Neural Network

Training is the process by which neural networks learn from data to achieve their objec-
tives. The weights and biases of neurons, which are iteratively adjusted to minimize the
difference between the network’s outputs and the expected outcomes, are central to this
training. This difference is quantified by a loss function and the overarching objective of
training a neural network is to minimize this loss. After calculating the loss, it is back-
propagated through the network, allowing for computation of the gradient of the loss
function concerning all neuronal weights and biases. The computed gradient holds both
the direction and magnitude of changes needed to minimize the loss. Leveraging these
gradients, gradient descent optimization algorithms, explained in section 2.6.5, adjust the
weights and biases, and guide the network towards better performance by making refine-
ments in the most beneficial direction. The above mentioned steps are then repeated for
another set of inputs.

When training a neural network, selecting the appropriate training hyperparameters is
crucial. These are settings or configurations established prior to training, which dictate
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how the model learns. Unlike model weights and biases, hyperparameters are not learned
from the data but are essential for tuning and optimizing the model’s performance. These
settings often depend on the task at hand, and there is rarely a one size fits all approach
in choosing them, therefore the model developer must play around to find the best one
[38]. Commonly tuned training hyperparameters are learning rate, batch size and network
architecture. Learning rate is a parameter which get passed to the optimizing algorithm
and determines the step size in each iteration towards minimizing the loss function. If
the learning rate is too large, there is a risk for overshooting the loss function minima,
and have the model not converging. Batch size indicates the number of separate inputs
the model is allowed to process before the model-weights are updated.

During training it is important to ensure that the model neither underfits (fails to capture
the underlying patterns) nor overfits (captures noise and is too biased to the training data)
[29]. If not, the model will be unable to handle previously unseen data. To control the
likelihood of a model underfitting or overfitting to data, its capacity can be altered. The
capacity of a neural network can be thought of as the ability of the network to fit a variety
of functions to the data. An illustration of this can be seen in Figure 10. If a model is of
low capacity, it may struggle to find a function which fits the training data, and if it is of
high capacity it may remember features of the training data which are not useful when
trying to fit the test data. ML models generally perform best when their capacity is on
par with the complexity of the task. The more complex the task, the higher capacity the
model must have. To control the capacity, one can decide the model’s hypothesis space,
which is the set of functions the model is allowed to choose from to solve a given problem.
The larger the hypothesis space, the more functions it entails and the higher capacity the
model is said to have. Overfitting can be observed during training as a decrease in loss on
training data simultaneous to an increase in loss on the validation data, as visualized in
Figure 11, indicative of the models proficiency on familiar versus new data being different.

Figure 10: An illustration highlighting the how models of capacity fit to data inspired
by [29]. Low capacity (left) tend to lead to underfitting, missing key data patterns,
while high capacity (right) risks overfitting, being biased towards training data and losing
generalizability. Appropriate capacity is seen in the image in the center.
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Figure 11: Illustration of training and validation loss behaviour as a network becomes
overfitted to the training data inspired by [39]. After the early stopping mark, the training
loss continues to decrease while validation loss increases, indicative of the model getting
worse at adapting to unseen data.

Furthermore, the importance of a high-quality and large enough dataset must also be
highlighted. A sufficiently large dataset ensures that the model is exposed to a wide
range of scenarios, which is crucial for it to learn and generalize effectively [40]. The
diversity within the dataset is as important as its size; it needs to be representative of
the real-world scenarios the model will encounter. This diversity helps mitigating biases
and improves the model’s ability to perform well on new, unseen data [41]. The quality of
the data also plays an important role. Data should be clean, well-labeled, and free from
errors and biases as much as possible. Poor quality data can lead to a model learning
incorrect patterns, which can severely worsen its performance on real-world tasks [40].

While training, it is also necessary to avoid the parameter gradient from becoming too
large or too small. A large gradient parameter update could propel the parameters into
a region of the loss landscape where the objective function is larger, thereby undoing
much of the progress that had been made in reaching the current solution [30]. Moreover,
if the gradient descent parameter becomes excessively large, it can exceed its numerical
precision, a scenario that would cause the learning process to fail. When gradients become
too large for the network to handle, this is known as gradient explosion. Gradient explosion
can lead to instability in training and prevent the network from converging to a suitable
solution. To avoid this, one may utilize gradient clipping, a technique involving a gradient
threshold value. If the gradient exceeds this threshold, it is scaled down to a suitable range
[42]. Gradient clipping not only prevents gradient explosion but also stabilizes training by
controlling weight updates and aids in model convergence by avoiding extreme updates.
However, the gradient clipping threshold is a hyperparameter that must be tuned.

Small gradients can also be problematic as they may lead to a situation known as vanishing
gradients, where the weights are not sufficiently updated. At worst, the gradients can
become so small that learning halts. Vanishing gradients can be combated by careful
consideration of the activation functions used, a topic which will be discussed in Section
2.6.1.
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2.6.1 Activation Functions

An activation function is in its simplest form a function which decides how a node in
a neural network should be activated or if it should be activated at all [43]. In its im-
plementation, an activation function often sums a number of input signals and based on
these signals generates an output signal to be sent to the next layer of the neural network.
Furthermore an activation function adds non-linearity to a neural network. This is vital
because without non-linearity the layers of a neural network could be collapsed into a
single layer. Meaning that no matter how intricate its structure it could mathematically
be simplified to a linear regression model.

One commonly used activation function is the Rectified Linear Unit (ReLU) function
which is defined as f(x) = max(0, x). The ReLU function is close to a linear function but
allows for back-propagation that deactivates nodes with negative output from the linear
transformations as

f ′(x) =

{
0, x < 0

1, otherwise.
(7)

This characteristic combined with its simplicity makes the ReLU function both a valid
activation function and a computationally efficient choice.

A potential issue with the ReLU function is the so called dying ReLU problem. This refers
to the case where ReLU activated neurons only output the value 0 regardless of the input
values, for example by learning a large negative bias term for its weights, meaning the
node is dead. Once the network is in this position it cannot recover because the gradient
of the ReLU function at zero is also zero.

Adapted to solve the dying ReLU problem, the Leaky ReLU function, defined as f(x) =
max(αx, x), typically using α = 0.01, can effectively back-propagate negative output
values as well. This will prevent nodes from becoming inactivated. The derivative of the
Leaky ReLU becomes

f ′(x) =

{
α, x < 0

1, otherwise.
(8)

2.6.2 Upsampling

Upsampling is an operation which expands the size of an input. Its aim is to increase the
spatial resolution of a low-resolution feature map, generating a higher-resolution output
[44]. When processing images, upsampling means to increase the size of the image. Below,
four upsampling blocks will be introduced.

A Deconv block applies a 2D transposed convolution of the input followed by a ReLU
activation. In a transposed convolution, the effects of traditional convolution is reversed,
and the dimensions of the output is increased instead of reduced. An example of a
transposed convolution of a 2x2 input (purple), padded with a 2x2 border of zeros, with
a 3x3 kernel (grey) yielding a 4x4 output (pink) when using a stride of one can be seen
in Figure 12 [45]. The values in the kernel are learned during training.
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Figure 12: Transposed convolution of a 2x2 input (purple), padded with a 2x2 border of
zeros, with a 3x3 kernel (grey) produces a 4x4 output (pink). Image inspired by [45].

An Upsample block applies a 2D nearest neighbor upsampling to an input followed by a
2D convolution and a ReLU activation [46].

According to [47], Pixelshuffle blocks apply a 2D convolution to the input, which increases
its depth. It is followed by ReLU activation and a Pixelshuffle layer which rearrange the
elements of the tensor from (∗, C · r2, H,W ) to a tensor of size (∗, C,H · r,W × r). Here,
∗ denotes the number of elements in the tensor, C · r2 denotes the numbers of channels
before upsampling, H and W denote the height and width of the tensor respectively.
After upsampling, the number of channels is reduced by r2, and height and width are
both multiplied with a factor r. This increases spatial resolution while decreasing depth,
illustrated in Figure 13. Pixelshuffle is an operation typically applied in super-resolution
models to perform sub-pixel resolution convolutions with a stride of 1/r [47].

Figure 13: An example of input (left) upsampled with the Pixelshuffle method. C · r2
denotes the numbers of channels before upsampling, and after upsampling the number of
channels is reduced to C. Image inspired by [48].
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As described by [49], the Pixelshuffle Blur block is identical to the Pixelshuffle block
with the addition of padding and blurring of the features using an average pooling layer.
Blurring the output is suggested to help avoiding checker board patterns in generated
images.

2.6.3 Batch Normalization

As networks become deeper and consist of multiple interconnected layers, training be-
comes challenging. One problem is that gradients, which dictate parameter adjustments,
operate under the assumption that other layers remain static. Yet, in practice, all layers
undergo simultaneous updates. This results in each layer having to navigate a constantly
shifting loss function landscape, which lengthens and complicates the training process [30].
Batch normalization is a technique to overcome these challenges. By normalizing the out-
puts of each layer, they will maintain steady means and standard deviations, making the
training process more efficient and stable [50].

Batch normalisation is typically applied before a layers activation function [50]. Given a
batch B of size m, and the activation from a neuron for the i-th data-point in the batch
xi, the mean, µB, and variance, σB, of the batch’s activations can be calculated as

µB =
1

m

m∑

i=1

(xi) (9)

σ2
B =

1

m

m∑

i=1

(xi − µB)
2. (10)

These values are then used to normalize the activations

x̂i =
xi − µB√
σ2
B + ϵ

(11)

using ϵ, a small number (typically 10−5) to avoid division by zero. Lastly, x̂i is scaled by
γ and shifted by β to yield the normalized output

yi = γx̂i + β (12)

which gets passed to the activation function. The hyperparameters γ and β, which adjust
the standard deviation and bias of the normalization respectively, are learned via gradient
descent during training.

2.6.4 Augmentation

Augmenting data is a way to artificially increase the amount of data by altering the
original data slightly to enable a machine learning model to extract more information
from it. Examples of augmentations include but are not limited to rotations, random
cropping and applying filters to the data. When considering what augmentations to use
for a specific application it can be beneficial to consider in what way the input data could
have been altered but still valid. When, for example, trying to generate images of cells a
rotational augmentation could make sense, since the model should be able to recognize a
cell in all orientations.
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2.6.5 Optimization Algorithms

Deep learning optimizing algorithms adjust the model parameters (weights and biases)
during training with the aim of improving model performance, P. Improvements in P are
measured using an external test set, which remains hidden during training, and training
is therefore focused on the minimization of a loss function, L. The loss, L, is calculated on
training data with the expectation that the minimization of L correlates with a refinement
in P.

Optimization via Gradient Descent
Machine learning optimization algorithms mainly operate on the principles of gradient
descent. It is an iterative methodology which minimizes the loss function by continuously
adjusting model parameters in the direction of the steepest descent of the gradient [51].
Consider a loss function represented as L(x) = y and its derivative with respect to y
denoted as dL

dy
. The derivative, indicating the slope of L(x) at x, holds information about

how a change in x will result in a change in y. A consequence of this is that by taking
small steps in x, opposite to the direction of the derivative, the value of L(x) can be
reduced.

For functions with multiple inputs, one instead studies partial derivatives [51]. In such
instances, each partial derivative holds information about the loss function’s sensitivity to
variations in individual parameters. The ensemble of these partial derivatives constitutes
the gradient, a vector that points in the direction of the greatest increase of a function
and has a magnitude equal to the steepest slope at a particular point. To optimize such
a loss function, strategic steps are taken in the direction opposite to the gradient. This
process steers the optimization towards function minima.

The problem of optimizing a neural network is generally non-convex and may have mul-
tiple local minima, which may result in problems if the optimization algorithms find a
local minima with large loss and struggles to move away from it [52]. However, for suf-
ficiently large neural networks, most local minima possess a relatively low loss function
value. Researchers also argue that identifying a point within the parameter space that
harbors a low (albeit not minimal) loss function value could suffice for effective neural
network optimization.

Adaptive Moment Estimation (Adam)
Adaptive Moment Estimation (Adam) [53] is an optimization algorithm primarily used
for training deep learning models published by Kingma and Ba in 2015. It is a stochastic
gradient optimization algorithm, which means that a single training batch is randomly
chosen to calculate the gradients and update the model parameters from, introducing
randomness into the process, hence the name ”stochastic” [54]. Adam combines insights
from the AdaGrad and RMSProp optimization algortihms, and is efficient in problems
with large dataset [53]. Unlike traditional stochastic gradient descent which utilizes a
single learning rate for all weight updates, Adam dynamically adjusts learning rates for
each parameter. This property proves beneficial when dealing with sparse gradients,
common in fields like computer vision and natural language processing.

Adam synthesizes ideas from both algorithms and estimates the first and second moments
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of the gradients, yielding the a rule for updating x as

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

xt+1 = xt −
η√
v̂t + ϵ

m̂t. (13)

The variables mt and vt denotes the first- and second-moment vectors at time step t. The
exponential decay rate for the moments, β1 and β2, are typically set to 0.9 and 0.999
respectively and gt denotes the gradient at time step t. The m̂t and v̂t terms are bias-
corrected estimates of the moments to account for their initialization at zero. This bias
correction ensures that these estimates are unbiased during the initial time steps. The ϵ
term, often set to 10−7 ensures numerical stability. [55]

2.6.6 Loss Functions

The loss function is a vital part of a neural network. It is a function which measures
the difference between the output of the network and the ground truth. It is directly
responsible for fitting the output of the neural network to the training data [56]. The
goal of the neural network is to minimize the loss function. For optimal performance it is
therefore important that an increase in the networks loss function reflects a decrease in
the quality of the output and vice versa. It is possible to combine several loss functions
into one by means of summation. This also enables weighting of the different components
of the loss function. Below are descriptions of the loss functions implemented during this
project.

Mean Square Error
The mean square error (MSE), also referred to as ℓ2, is defined as

MSE(Ŷ , Y ) =
1

N

N∑

i=1

(ŷi − yi)
2 (14)

where Ŷ is the generated image and Y is the ground truth, N is the number of pixels and
ŷi and yi are the pixel values in the generated image and ground truth image respectively
[57].

Perceptual Loss
A perceptual loss function is designed to capture semantic information which is not based
on pixel-wise differences in an image but rather high level features extracted from pre-
trained convolutional neural network, as explained by [58]. An illustration of extraction of
these high level features can be found in Figure 14. By using different data for pre-training,
different network structures or different intermediate layers to extract information from
leads to a large number of perceptual losses to choose between.
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Figure 14: Diagram of how a perceptual loss is retrieved. Y represents the ground truth
image and Ŷ is the image generated by the generator G(X, θg) with input image X and
weights θg. Shown to the left are a summary of the convolutional layers of the VGG-
network from which various perceptual losses Lp,j can be extracted.

Impressive results were shown by Johnson, Alahi and Fei-Fei [58] of both style-transfer
and super-resolution using VGG-networks pretrained on the ImageNet dataset, which
containes images of eveyday objects. Their perceptual loss function was designed as
follows

Lp,j = ||ϕj(Ŷ )− ϕj(Y )|| (15)

where Ŷ and Y denote the generated image and ground truth image respectively, ϕj is the
feature map from the j-th convolutional layer in the pre-trained network and the norm
used was a ℓ1-norm.

Fourier Loss
The Fourier transform is commonly used to analyze frequency content of signals. The
frequency content of an image can be useful to identify textures and patterns in an image.
In [59], it was proposed that the Fourier transform can be used to detect high frequency
differences in an image which can not be found in the spatial domain. Utilizing the
two-dimensional discrete Fourier transform, the complex components of an image can be
found as

F(x)u,v = Xu,v =
1

HW

H−1∑

h=0

W−1∑

w=0

xh,we
i2π(u h

H
+v w

W
)[59]. (16)

Using this, the amplitude of the transform can be calculated as

|F(x)u,v| = |Xu,v| =
√
R(Xu,v)2 + I(Xu,v)2, (17)

from which a simplified version of the Fourier loss function LF can be constructed as

LF =
2

UV

U/2−1∑

u=0

V−1∑

v=0

∣∣∣|Ŷ |u,v − |Y |u,v
∣∣∣. (18)

2.7 Generative Neural Networks

As mentioned above, the architecture of a neural network is dependent upon the task it
should perform. Networks can be designed to perform image-to-image translation tasks,
such as virtual staining. For these kinds of tasks it is common to use convolutional neural
networks.
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2.7.1 Convolutional Neural Network

Convolutional neural networks (CNNs) are specialized neural networks adept at processing
data with a known grid-like topology, such as 2D images composed of pixel grids or audio
signals [60]. The defining characteristic of CNNs is their use of convolution, a specialized
type of linear operation, instead of general matrix multiplication in at least one of their
layers [61].

Convolution of two functions f and g is a mathematical operation defined as

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ (19)

in one dimension. The discrete version, often used in computer vision is defined as

(f ∗ g)(n) =
∞∑

m=−∞
f [m] · g[n−m], (20)

with f often being refereed to as the input, g the kernel and the output as a feature
map [60]. For multidimensional convolution, such as with images, the equation expands
to a multiple summation over the dimensions.

The kernel can be thought of as a feature extractor which get flipped and slid over the
signal, computing the sum of a point-wise multiplication at each position [61]. Sliding is
done in discrete steps the size of which are denoted stride. Figure 15 illustrates performing
this operation on a matrix of pixels. The kernel is a two-dimensional array of weights
representing parts of the image. Kernels vary in size depending on the application and
the desired size of the receptive field. Commonly, 3x3 matrices are used. If the kernel
does not fit the input image, one resorts to padding. Padding sets all elements outside
of the input matrix to zero to producing an output of correct size. When the kernel is
swept across the entire image a feature map highlighting certain features of the image is
produced. The kernel-weights are fixed as it moves over the image but adjusted in the
backpropagation during training.

Figure 15: Illustration adapted from [61] showing a convolutional operation where each
of the kernel weights are multiplied with their respective pixel-value in the input image
and summed to form the first element of the output matrix.
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When CNNs are used for image-to-image translation tasks, such as virtual staining, con-
volutional and pooling layers are connected to extract hierarchical features from input
images [61]. The deeper the layer, the more complex and high-level are the features ex-
tracted [61]. For instance, early layers might detect edges and colors, while deeper layers
might detect shapes or more complex patterns [30]. An illustration of this concept can
be seen in Figure 16.

Figure 16: Hierarchical feature extraction from an image of an orange cat with a red scarf
in front of a vacuum cleaner. In early layer, low level features such as edges and corners
are extracted, while the deeper layer extract high level features, such as object parts. The
information is then used for classification. Image inspired by [34].

Pooling, or downsampling, layers perform dimensionality reduction, which reduces the
number of parameters in the input [61]. The pooling operation, similar to convolution,
is swept across an input, but it does not contain any weights. Instead, it applies an
aggregation function to the values within the receptive field to populate the output array.
There are two primary types of pooling: max pooling, which selects the pixel with the
maximum value, and Average pooling, which calculates the average value within the
receptive field. Although pooling layers result in the loss of some information, they may
offer benefits like reduced computational complexity, improved efficiency, and limited risk
of overfitting.

2.7.2 UNet

A UNet is a CNN developed for biomedical image segmentation tasks, introduced by
[62] in 2015. The network is known for its effectiveness in segmenting complex images
where the location of the target object within the image is not known in advance. It was
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developed in response to the need for more efficient and accurate segmentation of cellular
structures in medical images. The architecture of UNet is characterized by its U-shaped
structure shown in Figure 17, which consists of two main parts, a contractive and an
expansive path.

The contracting path of the network, as explained by [62], captures the context in the
input image, and is therefore often referred to as the encoder. It consists of a series
of blocks, each comprising convolutional and max pooling layers that reduce the spatial
dimensions of the image while increasing the depth, i.e. the number of feature channels.
Each convolution layer is followed by an activation function.

According to [62], the expansive path enables precise localization by the use of trans-
posed convolutions. Referred to as the decoder, it reconstructs the segmented image
from the encoded features obtained after the contracting path. The spatial dimensions
are progressively increased while the depth is reduced, leading to a segmented output.
Each decoder-block is composed of an upsampling layer, a convolutional layer (known as
up-convolution), a concatenation of the cropped feature map from the contracting path,
followed by two convolutional layers with activation functions. The upsampling layer in-
creases the spatial dimensions (height and width) of the feature map, bringing it closer to
the original input size [44]. The up-convolution decreases the number of feature channels.
The concatenation, known as skip connections, helps the network with precise segmen-
tation by combining low-level, high-resolution features from the contracting path with
high-level, abstract features from the expansive path, thus avoiding the loss of spatial
information during downsampling. The final layer of the decoder path is a convolutional
layer, mapping the feature vector to the desired number of classes.

Figure 17: The architecture of a UNet is U-shaped and consists of a contractive (left)
and an expansive path (right). The contractive path consists of four blocks of two 3x3
convolution layers each followed by ReLU activation. The output from these blocks are
maxpooled (pink vertical downwards arrows). The expansive path consists of four blocks
composed of an upsampling operation (pink vertical upwards arrows), a concatenation
of the features from the contractive path, known as a skip connection (white horizontal
arrow), and two 3x3 convolutions followed by ReLU activations. Image adapted from [62].
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2.7.3 Dense UNet

The Dense UNet combines the ideas and structural elements of the UNet and a Dense
Convolutional Network (DenseNet). It was introduced by [63] for in vivo cellular image
segmentation. The architecture is similar to a UNet with a contracting and a expansive
path, but the blocks are replaced with Dense Blocks, following a DenseNet strategy. The
strategy includes all layers within a Dense Block receiving the concatenated feature maps
from all previous layers within the same block. This is visually explained in Figure 18. A
Dense Block is composed of four densely connected layers (DCLs). Each DCL in the block
follows a specific seven-layer structure: it begins with batch normalization, followed by a
1x1 convolution, and then a ReLU activation function. This sequence is repeated with
another batch normalization, a 3x3 convolution, and another ReLU activation. The final
layer in each DCL is a dropout layer, incorporated to prevent overfitting. The design of
a Dense Block is believed to aid in segmentation tasks by letting deep layers have access
to the more basic feature information captured by earlier layers. This setup gives the
deeper layers access to a mixture of simple and complex features, enabling the network
to process a broad spectrum of information simultaneously. As a result, the network can
make decisions based on a detailed understanding of both low-level and high-level data.
It is also believed that the Dense Block architecture minimize the occurrence of vanishing
gradients.

Figure 18: Visualisation of the basic structure of a Dense Block within a Dense UNet.
DCL denotes a densely connected block consisting of batch normalizations, activations,
convolutions and drop out layers. Image adapted from [63].

2.7.4 Attention UNet

An Attention UNet is an enhanced version of the standard UNet architecture, incorpo-
rating attention gate mechanisms to improve its performance in image segmentation [64].

The architecture presented by [64] integrates attention gates into the UNet framework, just
before the concatenation of the skip connections. These gates are designed to enable the
network to selectively concentrate on the most relevant features of the input images during
training. Essentially, the model learns to identify and highlight features that are crucial for
its specific segmentation task, while actively suppressing less relevant ones. This approach,
as explained by [65], helps in reducing the computational resources expended on processing
irrelevant activations, thereby enhancing the efficiency of the model. Additionally, this
targeted processing provides the network with better generalization power, as it becomes
proficient in distinguishing and prioritizing the most informative aspects of the input data,
a skill beneficial for biomedical image segmentation, where the ability to accurately focus
on relevant features within complex images is crucial.
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The mathematical representation of an attention gate is shown below, in Equation 21. The
input feature map is denoted X, G is a gating function containing contextual information
about what features to focus on. The transforms ϕx and ϕg are applied to X and G. The
feature map and the gating signal are combined, passed through a non-linear activation
function, δ, and linearly transformed by ϕ. Lastly a sigmoid function, σ, is applied to
output an attention coefficient map, A as

A = σ(ϕ(δ(ϕx(X) + ϕg(G)))). (21)

The calculated attention coefficient map is then used to gate the feature map,

Y = AX,

to yield the gated output Y . In Figure 19, an attention gate is visualized.

Figure 19: Visual illustration of an attention gate which can be added to the skip connec-
tion in a UNet to create an Attention UNet. The variable G denotes a gating function, X
an input feature map and ϕx. The gating function and the input feature map are trans-
formed by ϕg and summed, ReLU activated and transformed by ϕ. A sigmoid function is
then applied to form A, an attention coefficient map. The coefficient map is used to gate
the feature map to produce a gated output Y . Image adapted from [64].

2.8 Generative Adversarial Network

Generative Adversarial Networks (GANs) are ANNs developed by [66] in 2014 as a means
to improve generative models. A GAN consists of two neural networks trained simultane-
ously, a generator, G, and a discriminator, D. The generator is designed to produce data
which mimics real data, thus increasing the likelihood that generated data is perceived as
real. In contrast, the discriminator is trained to effectively classify data as real or gener-
ated by G. The two networks are trained simultaneously but with different aims. G tries
to minimize log(1−D(G(z, θg))). The function D(G(z, θg)) represents the discriminator’s
assessment of whether the generated data is real, with z denoting the generator input and
θg the generator weights. A discriminator output of 1 suggests that the data is real, while
0 indicate it being generated. Therefore, a minimization of the expression means that
the discriminator classifies the generated images as real. D, on the other hand, aims to
maximize its classifying accuracy by maximizing log(D(x, θd)) and log(1 −D(G(z, θg))),
with x denoting real data sampled from the distribution pdata(x). This minmax game has
the following value function

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x, θd)] + Ez∼pz(z)[log(1−D(G(z, θg)))]. (22)
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The competition between the networks and their opposite aims is what makes GANs
adversarial, which was nicely explained by [66]:

”The generative model can be thought of as analogous to a team of counter-
feiters, trying to produce fake currency and use it without detection, while the
discriminative model is analogous to the police, trying to detect the counterfeit
currency.”

Training a generator alongside a discriminator encourages the generator to produce more
realistic outputs. This aspect has made the GAN architecture particularly useful for
tasks like virtual staining, where GANs excel in generating images that are perceptually
more realistic and higher in resolution [8, 10]. In supervised virtual staining tasks, the
generator is trained to minimize its adversarial loss in addition to eventual other loss
functions. This approach helps to prevent micro-scale hallucinations and ensures that the
generated images closely correspond to their ground truths [8]. A basic illustration of a
GAN is shown in Figure 20. The generator G(z, θg), receiving input z and having weights
θg, attempts to produce data mimicking real data. The discriminator Dx=Y,Ŷ (x, θd), where
x denotes either real data or generated data and θd the discriminator weight outputs the
probability of the images passed to it being real, i.e. from pdata, using a loss function.
The results of this evaluation is then backpropagated to the generator and discriminator
respectively, and the two networks are updating their weights according to their different
aims.

Figure 20: Basic structure of a GAN. The generator G(z, θg), with input z and weights θg,

produces a generated image Ŷ . The ground truth image Y , drawn from the distribution
pdata, and the generated image Ŷ , from the distribution pmodel, are evaluated by the
discriminatorDx=Y,Ŷ (x, θd), where θd denote the discriminator weights. The discriminator
outputs a probability that the image sent to it was a real image from pdata, through a loss
function which is then backpropagated to the generator and discriminator respectively.
Inspired by [15].

2.8.1 Training of a Generative Adversarial Network

When training GANs, Equation 22 is split into two loss functions, one for the generator,
LG, and one for the discriminator, LD, which they try to minimize during training.

LG = −Ez∼pz(z)

[
logD(G(z, θg))

]
, (23)

LD = −Ex∼pdata(x)

[
logD(x, θd)

]
− Ez∼pz(z)

[
log(1−D(G(z, θg)))

]
. (24)
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In code, these loss functions are easily implemented as binary cross entrop (BCE) losses,
which, as explained by [67], is a commonly used loss function for binary classifications
tasks. The BCE loss quantifies the difference between a true label and the predicted
probability, and is defined as

BCE(y, p(y)) = − 1

N

N∑

i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)) (25)

where y is the true labels and p(y) the predicted labels.

GANs implemented using the above loss function are commonly referred to as standard-
GANs or SGANs. Training a GAN in the ”standard” way has been found to be unstable
and not converging [68], as well as prone to mode collapse and problematic gradients
[69]. Mode collapse is a phenomena where the generator produces the same output over
and over, often due to it having found a way to fool the discriminator and then over-
optimizing towards these outputs. If the discriminator is not able to learn that these
generated outputs are fake, the GAN may stay stuck in a cycle where only one kind of
outputs are generated and the modes collapsed [69]. When training GANs, vanishing
or saturated gradients can occur if the discriminator has become too effective and easily
distinguishes between real and generated data. This will make the gradients very small
and the network will struggle to improve [68].

To combat these challenges, the relativistic GAN loss was introduced by [68] in 2018. In
a relativistic GAN (RGAN), the discriminator instead estimates the probability that the
real data is more realistic than the generated data. The loss functions are instead written
as

LRSGAN
G = −Ez∼pz(z),x∼pdata(x)

[
log(σ(D(G(z, θg))−D(x, θd)))

]
, (26)

LRSGAN
D =− Ex∼pdata(x) [log (σ(D(G(z, θg))−D(x, θd)))]

− Ez∼pz(z) [log (1− σ(D(G(z, θg))−D(x, θd)))] , (27)

where σ denotes a sigmoid function.

There are many ways to introduce a discriminator to the process of training a generator.
The discriminator can be allowed to learn and influence training from the beginning
but one can also allow the generator to reach its peak potential and then introduce the
discriminator. If the discriminator is introduced at the beginning of training, the difference
between the generated images and the ground truth will be large, making the job easier
for the discriminator [70]. This may lead to the discriminator quickly becoming proficient
in recognizing all generated images as fakes, which in turn will lead to vanishing gradients.
In summary it can be a delicate process to ensure that the generator and discriminator
are balanced, and to ensure that the generator benefits from the discriminator’s feedback
without getting lost in its loss landscape.
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2.8.2 Convolutional Discriminator

The Convolutional Discriminator used in this project is constructed from a series of batch-
normalized convolutional layers activated with ReLU. The discriminator processes an
image and produces a single scalar classification output, indicative of whether the input
image is generated or real. By applying a sigmoid function to the output number, one
can determine the network’s probability of the image being real or fake.

2.8.3 Patch-GAN Discriminator

A Patch-GAN Discriminator is a version of a Convolutional Discriminator [71]. Unlike a
standard Convolutional Discriminator, the Patch-GAN discriminator studies NxN patches
of the input image individually and outputs a two-dimensional matrix with a classification
score for each patch, and therefore only penalizes structural differences on the scale of
the image patches. Implementation of this type of discriminator in competition with a
UNet generator has been shown by [71] to be effective at, among other things, colorizing
images.

2.8.4 UNet Discriminator

The UNet Discriminator is based on a UNet structure, see 2.7.2, and the specific archi-
tecture was introduced in [72]. They concluded that this discriminator had increased
performance on small details in real-life images and also reduced the occurrence of arti-
facts.

2.9 Evaluation Metrics for Generative Machine Learning Mod-
els

In machine learning, the training process is iterative, involving continuous assessment and
refinement of the model’s performance until satisfactory results are achieved. Quantitative
measurements, commonly referred to as evaluation metrics, are essential for evaluating a
model’s effectiveness and performance. This section addresses the mathematical expres-
sions for the various metrics employed in this project.

2.9.1 Laplacian Sharpness

Laplacian Sharpness is a metric used to evaluate the sharpness or level of focus in an
image. It makes use of the Laplacian operator, ∆, a second order differential operator
providing information about the rate at which a function is changing. In the context
of image processing, it is useful for edge detection and to identify objects and certain
patterns. By studying Laplacian operator’s variance over an image one can deduce the
sharpness of an image, since a high variance typically corresponds to an image with sharp
edges, indicating a sharper image.

The Laplacian operator is defined as the divergence (∇·) of the gradient (∇f) of a function
f(x, y). In a two-dimensional space, the Laplacian of a function is defined as the sum of
the second partial derivatives with respect to x and y as

∆f =
∂2f

∂x2
+
∂2f

∂y2
(28)
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By analyzing and comparing the variance, σ2, of the Laplacian between generated and
ground truth images, one can determine the relative sharpness, identifying whether the
generated image, Ŷ , is sharper or more blurred compared to the ground truth image, Y .
This computation of the relative Laplacian Sharpness (LS) between a generated image Ŷ
and a ground truth image Y is shown in Equation 29. A negative value indicates that the
generated image is less sharp than the ground truth image.

LS = σ2
∆Ŷ

− σ2
∆Y . (29)

2.9.2 Structural Similarity Index

The structural similarity index (SSIM) is a metric to measure the similarity between two
images where the value 1 indicates perfect correlation, 0 indicates no correlation, and -1
indicates perfect anti-correlation [73]. It is a perception-based metric developed to provide
a more accurate and meaningful assessment of image quality aligned with human visual
perception. By considering changes in structural information, luminance, and contrast,
which are crucial elements in how humans perceive visual quality [73], SSIM is a widely
used metric [74].

Structural information, central to SSIM, refers to the idea that pixels within an image
have strong inter-dependencies, especially when spatially close [73]. These dependencies
form patterns that carry significant information about the structure of objects in the visual
scene, such as edges, textures, and shapes. By assessing this structural information, SSIM
effectively captures the essence of an image as perceived by the human eye.

In addition to structure, SSIM evaluates the luminance, which measures the average
brightness, and the contrast, which assesses the difference in brightness between objects
and their surroundings. These elements are crucial as our visual system is highly sensitive
to variations in brightness and contrast, using them to extract detailed information from
our environment. The formula for SSIM is

SSIM(Ŷ , Y ) =
(2µŶ µY + c1)(2σŶ Y + c2)

(µ2
Ŷ
+ µ2

Y + c1)(σ2
Ŷ
+ σ2

Y + c2)
, (30)

where Ŷ and Y denote the images being compared, µY and µŶ denote the luminance,

σ2
Ŷ

and σ2
Y the variance of Ŷ and Y respectively, and σŶ Y the covariance of Ŷ and Y .

The constants c1 and c2 are included to prevent division by zero and provide numerical
stability.

SSIM performs comparisons on a local basis, therefore, spatial shifts between the images
significantly affect the outcome [75]. Misaligned images can have vastly different local
pixel values even if their contents are the same, resulting in a lower SSIM score. Another
aspect to consider when using SSIM is that it focuses on contrast and luminance, it may
have trouble catching color distortions.
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2.9.3 Complex Wavelet Structural Similarity Index

The complex wavelet structural similarity index (CW-SSIM) is, according to [75], an
extension of the traditional SSIM into the complex wavelet domain. This adaptation is
designed to handle scenarios involving image scaling, translation, and rotation. Unlike
SSIM, which requires precise pixel-level alignment, CW-SSIM takes advantage of the
Complex Wavelet Transform (CWT) to provide more accurate similarity scores even when
images are not perfectly aligned. Similar to SSIM, the maximum value, 1, of CW-SSIM
indicates a perfect structural match.

Wavelet transforms can, according to [76] be used to decompose signals into sets of
wavelets, which are wave-like oscillations located in time. A wavelet ψ(t) has zero mean,∫∞
−∞ ψ(t) dt = 0, and finite energy,

∫∞
−∞ |ψ(t)|2 dt <∞. By applying wavelet transforms to

signals one can deduce information about its time, location, and frequency [76]. Neurons
in the primary visual cortex apply wavelet transform to extract information from our
surroundings, and similarly to how ANNs are based on mimicking biological phenomena,
so does CW-SSIM [75].

As explained by [75], CWT enhances the standard wavelet transform by using complex-
valued wavelets, enabling the capture of both amplitude and phase information from an
image. This capability makes CWT effective in preserving the structural and textural
integrity of images under various geometric transformations. CW-SSIM operates on the
principle that small geometric distortions in images result in consistent phase shifts in
the local wavelet coefficients, without significantly altering the structural content of the
image. This focus on phase rather than amplitude information enables CW-SSIM to be
more tolerant of misalignment and distortions.

According to [75], the mathematical formulation of CW-SSIM is

CW-SSIM(cx, cy) =
2|∑N

i=1 cx,ic
∗
y,i|+K

∑N
i=1 |cx,i|2 +

∑N
i=1 |cy,i|2 +K

, (31)

where cx = {cx,i|i = 1, ..., N} and cy = {cy,i|i = 1, ..., N} are the local complex wavelet
coefficients of images x and y respectively, c∗ denotes the complex conjugate of c, N is the
total number of coefficients considered, and K is a small positive constant for numerical
stability.

2.9.4 Fréchet Inception Distance

The Fréchet inception distance (FID) is a metric which evaluates the distance between
feature distributions of real and generated images to assess how ”real” the generated
images are [77]. The technique can be used to evaluate the quality of images produced by
generative models, such as GANs, where traditional metrics often fall short. This metric
is able to both detect if generated images are of lower quality, for example containing
noise and blur, and if the generated images are not realistic, such as portraying a person
with too many fingers or a dog and cat hybrid.
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The generated and the real images are both passed through a pre-trained image classifica-
tion network to extract their features. The distribution of features are multidimensional
Gaussian, and the squared Fréchet distance between the two distributions, N (µŶ ,ΣŶ )
and N (µY ,ΣY ), from the generated and the real image respectively, can be calculated as

dF ((N (µŶ ,ΣŶ ),N (µY ,ΣY )) = ∥µŶ − µY ∥22 + tr
(
ΣŶ + ΣY − 2(ΣŶΣY )

1
2

)
. (32)

A FID distance of 0 indicates that the generated images are indistinguishable from real
images. The larger the score, the less realistic the image is.
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3 Methods

3.1 Data Collection

The data collected for this project consisted of a PLS stack of images of unstained skin
tissue and bright-field images of the same tissue stained with H&E. All images were
taken using a version of CellaVision’s DC-1 machine with 10x magnification and field-of-
view (FOV) images of size 1920x1200. A 3-dimensional coordinate system was used to
maneuver with the DC-1 . The z-coordinate denotes the depth along the optical axis,
while the x- and y-coordinates facilitate movement within the plane parallel to the slide,
allowing navigation across its area.

The data is divided into two datasets, summarised in Tables 1 and 4. Unless otherwise
specified, the method of data collection remained the same for both datasets. The second
dataset was gathered to enhance variability in terms of patients, pathology, and biopsies.
All tissue used was approximately 4µm thick cuts from a paraffin embedded section of
human skin and was fixated on glass microscopy slides, hereafter referred to simply as
slides.

The slides of the first dataset had consecutive cuts of tissue from the same biopsy for
each patient. There were three patients in the dataset and 10-19 slides from each patient
was used. Each cut had an approximate cross-section area of 0.3 cm2. The consecutive
cuts and small area of the cuts meant that the variation in the data collected from each
patient was limited. Furthermore, the small number of patients also limited variation. All
skin used in the first dataset was healthy skin tissue containing melanin. No information
about the patients’ ages was available.

Table 1: Summary of first dataset.

Number of Slides Number of FOV Images
Patient 1 10 170
Patient 2 14 296
Patient 3 19 319

The second dataset consisted of slides from 11 patients that were not part of the first
dataset. Consecutive cuts from the same biopsy were also used for the second dataset.
However, only two slides from each patient was used. The second dataset contained tissue
from 11 different patients with an average tissue cross-section area of 3 cm2. Out of the
patients, six were deemed healthy, three were diagnosed with basal cell carcinoma and
two with squamous cell carcinoma.
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Table 2: Summary of second dataset.

Age Pathology Number Number of
of Slides FOV Images

Patient 1 73 Normal 2 117
Patient 2 55 Normal 2 108
Patient 3 66 Normal 2 88
Patient 4 73 Basal Cell Carcinoma 3 93
Patient 5 - Normal 1 13
Patient 6 55 Normal 2 89
Patient 7 69 Basal Cell Carcinoma 2 287
Patient 8 44 Squamous Cell Carcinoma 2 248
Patient 9 67 Normal 2 67
Patient 10 75 Basal Cell Carcinoma 2 130
Patient 11 62 Squamous Cell Carcinoma 2 224

3.1.1 Unstained PLS scan

An attempt was made to take images of the paraffin embedded tissue directly but it was
soon discovered that the paraffin both created dark outlines along the edges of the tissue
and was not reliably even to take focused images. It was therefore decided that the tissue
should be deparaffinized and protected by a cover slip. This both reduced the appearance
of shadows along the edges and improved the ability to focus well on the tissue in an
entire FOV with one z-coordinate setting.

Due to the very pale appearance of the unstained tissue compared to the background
of the slide it was challenging to find a quantitative focus metric that worked well to
automatically find the best focus for a FOV. Among other things a Laplace focus score
was evaluated but unsuccessfully. Instead the z-coordinate for each slide was qualitatively
selected by examining the produced images. The area of the slide that the sample occupied
was then identified, and images were captured in a rectangular region enclosing this defined
xy-area.

Once the 3D-coordinates for the scan were determined, a PLS scan was done. The LED’s
chosen were from a typical configuration to artificially increase NA in the field of pathol-
ogy. This included one image with normal BF illumination, three with both BF and
DF illumination and 20 fully BF. All but the BF only image were taken with singular
LED’s from the PLS array. In choosing the light calibration for each of the LEDs, the
objective was to minimize over-exposed areas while maximizing the illumination of the
most transparent areas which do not scatter as much light.

3.1.2 H&E Staining

For the first dataset, the H&E staining was done in-house at CellaVision, using the stain-
ing protocol found in Appendix A.1.1. Several protocols for staining were attempted but
the intensity of the stain’s colors remained a problem. This meant that the stain used
for the first dataset was pale compared to the ideal H&E stain. The reason for this is
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believed to be an imbalance between the strength of the hematoxylin and eosin’s staining
efficiency. In discussion with a biomedical scientist and pathologist we got the feedback
that this stain was non-ideal for a pathologist due to the low contrast but that all essential
structures for an analysis in 10x magnification were visible although paler than the norm.
With this information in mind we moved ahead with the first dataset to be able to begin
training the ANNs, with the hopes of improving stain quality with a second round of data
collection.

The second dataset was instead H&E stained at the Department of Clinical Pathology
and Cytology at Blekinge hospital. Their lab has extensive experience with H&E staining
and were able to efficiently and consistently stain the samples with better color vibrancy
and contrast. The staining protocol used can be found in Appendix A.1.2.

3.1.3 Stained Scan

Starting at the z-coordinate used for the slide when unstained, some fine tuning was done
to produce optimally focused images once the slide was stained. It was found that the
precision of CellaVision’s DC-1 was such that no calibration was necessary to take images
of the near exact same area of the slide. Only BF images were collected of the slides once
H&E stained to be used as ground truth.

3.2 Data Processing

Template matching was selected as the method of matching the images of unstained and
stained tissue to each other. Although the stained and unstained images were rather
different, many of the contours were the same between the two. This allowed for pixel-
wise precision of the matching of many image pairs. No visible rotation was observed
and the magnification remained constant between the scans, so no scale transformation
was deemed necessary. The method of template matching used was cross-correlation.
Both images were converted to gray scale for the template match. The stained image
was cropped by a set number of pixels on each side and then matched to its unstained
counterpart. For most images it was found to be sufficient with a crop of 10 pixels on
each side, however some images needed a larger crop (maximum 50 pixels) to match the
images. Visual confirmation was used to check that a satisfactory template matching had
been achieved.

Using a threshold for the images’ Laplace variance, empty FOV images were eliminated if
their variance was below the threshold, which was found through visual inspection. Then,
the images in the first dataset were divided into 64x64 sections. This was done to make
the training of the neural network more efficient. During the division process, each 64x64
image was also eliminated from the dataset if their Laplace variance was too low. A low
Laplace variance was used to identify images which contained no tissue, these images were
deemed irrelevant for the network to learn from at this stage.

For the second dataset, the images were instead cropped into 128x128 and 256x256 sec-
tions and a random crop of the images to 64x64 was instead applied during the training of
the model. This will be explained in greater detail in a later section. Furthermore, images
of slide-background were collected using the same method used in section 3.1 to remove
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empty areas but instead flipping the threshold to only keep images with low Laplace
variance.

3.2.1 Data Partitioning

For the first dataset, images used for training, validation and test data were chosen with
equal distribution from each of the three patients. For each of the patients 70% was
allocated to the training data and 15% of the data was allocated to validation and test
data respectively. In total 156 341 64x64 images were processed and used to train, validate
and test the networks.

Table 3: Summary of first dataset after data processing.

Number of Number of Partition
Slides 64x64 images

Patient 1 10 36 656 70% Train, 15% Val,
15% Test

Patient 2 14 58 137 70% Train, 15% Val,
15% Test

Patient 3 19 61 548 70% Train, 15% Val,
15% Test

For the second data set the partitioning of data was stratified based on patient. To ensure
that the test data represented a fully external evaluation, three patients were specifically
allocated to this partition, including one healthy patient and one patient for each of the
respective carcinoma types available in the dataset.

To maintain representation of each type of carcinoma in the validation set, the decision
was made to distribute the data from three patients evenly between the training and
validation datasets. Given that the full dataset only included two patients with squamous
cell carcinoma, this approach was considered the most suitable. The data from these
patients were divided in such a way that there was little to no overlap in the area of tissue
included in each partition, this is similar to what was done in [10]. The remaining five
patients were entirely allocated to the training dataset. A total of 134 818 128x128 images
were collected which corresponds to 539 272 unique 64x64 images. For easier comparison
with the amount of data from the first dataset, the number included in Table 4 is the
unique 64x64 images. As can be calculated from the values in Table 4, 32% of data went
to the test set and 68% remained for training and validation.
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Table 4: Summary of second dataset after data processing.

Age Pathology Number Number of Partition
of Slides 64x64 images

Patient 1 73 Normal 2 37 524 Train
Patient 2 55 Normal 2 26 864 Train
Patient 3 66 Normal 2 26 836 Train
Patient 4 73 Basal Cell 3 40 592 Train

Carcinoma
Patient 5 - Normal 1 2344 Train
Patient 6 55 Normal 2 38 868 50% Train,

50% Val
Patient 7 69 Basal Cell 2 98 272 50% Train,

Carcinoma 50% Val
Patient 8 44 Squamous Cell 2 96 036 50% Train,

Carcinoma 50% Val
Patient 9 67 Normal 2 28 224 Test
Patient 10 75 Basal Cell 2 52 224 Test

Carcinoma
Patient 11 62 Squamous Cell 2 91 488 Test

Carcinoma

3.2.2 Augmentations

Different augmentations were experimented with throughout the process in an attempt
to find a version that would increase the information extraction from the input data and
benefit the generalization of the model.

Random rotational augmentation was implemented by randomly rotating each input
image-stack by n · 90◦ with n ∈ {0, 1, 2, 3}.

A random crop augmentation was implemented by randomly generating the (x, y)-coordinate
for the upper left corner to crop a smaller image which was used as input to the network.
With the first dataset only one random crop augmentation was attempted 48x48 from
64x64. The augmentation was however utilized throughout the experiments with the sec-
ond dataset where all versions of trained networks used at least a 64x64 random crop
from 128x128 images. Other random crop augmentations were also explored and in the
network specifications for the more complex models it will be specified if a different crop
was used.

In the second dataset, images with little or no tissue present, i.e. images of background,
were added to increase the models performance in generating images with empty corners
and sharp edges. Doing this separately from the initial data processing enabled control
over how many background images were included in the training dataset. No background
images were added to the validation or test dataset.
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3.3 Training of the Generative Network

The following sections are dedicated to the experimental task of designing and training
an optimal neural network for virtual H&E staining of skin tissue. These sections aim to
provide a comprehensive understanding of the methodologies employed.

The experiments were characterized by continuous adaptations and enhancements build-
ing upon the outcomes of each successive step. During this process, many structural
changes and choices of parameters were evaluated and the solution found to work best in
one step of the methodology was built upon in the next. Decision-making regarding net-
work modifications was guided by maximizing CW-SSIM, minimizing the validation loss
and training time. CW-SSIM was chosen over SSIM as the main evaluation metric due to
its robustness to pixelwise disalignment. Laplace focus was an evaluation metric used at
the end of experiments but it was not monitored during the training of the models, this
was due to the fact that the Fourier loss was tarcking the same type of performance. The
validation loss was also monitored during training for signs of overfitting. Visual inspec-
tion of the produced images also became an important tool for evaluating performance
changes in specific regions of larger images.

The timeline of the project significantly influenced the training duration for the mod-
els. Prioritizing the exploration of various architectures and settings was deemed more
beneficial for the project than dedicating extended periods to training a more complex
network. Given a longer project timeline, this compromise of opting for shorter training
times across multiple models could have been avoided. In each subsequent section, the
specific network employed in the respective steps will be clearly identified.

All networks were evaluated and developed with PLS images as input. However, the
networks were flexible in that the number of input channels could be adapted while keeping
the remaining network and filters the same. In this way, all networks architectures in this
thesis could also easily be used with only a BF image as input.

3.3.1 Architecture of the Generative Network

To limit the number of parameters needing tuning in the experiments, some parameters
were fixed throughout the project. The number of blocks of the networks was fixed to
four, and an Adam optimizer was used for all experiments. It was observed early on that
all initial networks struggled with instability, and to counteract this, batch normalization
and gradient clipping was added.

In the first experiment, six models, UNet-X and Dense UNet-X with X ∈ {64, 96, 128}
denoting the number of input channels in the first block, were trained and evaluated. The
number of input channel experiments were performed to explore if an increase in input
channels could help the network retain relevant information from the PLS stack. For
all six experiments, an MSE loss function, Deconv blocks for upsampling, and ReLU
activation functions were used. The learning rate was fixed at 0.001.

The UNet blocks consisted of two convolutional layers, each followed by a ReLU activa-
tion function. The convolutional layers used a kernel of size three, a stride of one and had
a border of zero padding of width one. The max pooling layers at the end of each block
used kernel size two and stride two and had no padding.
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In the Dense UNet experiments, each block consisted of four dense layers. For each layer
in the block, the output from all previous layers within the same block were concatenated
to form the input. This input was then convolved with a kernel of size three, stride one
and zero padding of width one. The convolved input was then ReLU activated and passed
through a max pooling layer, with kernel size two and stride two, before being passed to
the subsequent block.

Training time, evaluation scores, particularly CW-SSIM, and overfitting tendencies, were
considered for these models. Based on this assessment, the UNet-96 model was deemed
the most effective and was subsequently selected for further experiments.

3.3.2 Loss Functions

Experiments involving different loss functions, their weightings, and linear combinations
of these elements were performed on the first dataset. In the initial experiments described
above, the loss function only consisted of an MSE-function. To enhance the perceptual
similarity of the generated images to the ground truth, particularly in a way that resonates
with human visual perception, a perceptual loss was added. The features used to calculate
the perceptual loss were extracted from the deep ′conv4−1′ layer of the VGG-19 network.
To further improve the quality and structural similarity of the generated images, a Fourier
loss was integrated into the training regiment.

To enhance the contrast of the cell nuclei in our images, we developed a weighted MSE loss
specifically focused on the nuclei. This was done by thresholding the images to identify
areas believed to contain cell nuclei and then applying the MSE loss to these identified
regions. Our goal was to more heavily penalize errors in the cell nuclei areas. However,
upon visual inspection, it became apparent that this technique led to a decrease in overall
image quality, and the nuclei appearing blurred and smudged. Consequently, we decided
to discontinue this approach and instead limit our loss functions to the standard MSE,
Fourier, and Perceptual 4-1 losses.

Experiments with different weightings of the loss functions were performed. It was found
that a 1, 5, 5 weighting of MSE, Perceptual and Fourier respectively, yielded the best
results and this weighting was kept for the remainder of the experiments.

3.3.3 Activation Functions, Upsampling Blocks and Attention Gates

All experiments until this point, used ReLU activation. No apparent issues arose from this
choice but to ensure that dying ReLU was not impairing the results in any undiscovered
way, a leaky ReLU activation function, with α = 0.1 was applied in future experiments
instead.

Four distinct types of upsampling blocks: Deconv, Upsample, PixelShuffle, and PixelShuf-
fle Blur were assessed by training separate models.

At this stage, the generated images lacked some small details. To try to alleviate the
problem, attention gates were added to the skip-connections of the networks moving
forward.
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It is worth mentioning that at this point in the project the second dataset was ready for
use. The best network from this section was therefore trained on both the first dataset
and second dataset. The models past this point were only trained on the second dataset.
It was found that the model performing the best on the first dataset also performed
satisfactorily on the second, and therefore little backtracking in the methods so far was
done with the second dataset. The one noteworthy difference is the augmentation used,
which has been previously covered in Section 3.2.2.

This part of the project culminated in a generator namedUNet-96-MSEpf-Pixelshuffle-
Attention.

3.3.4 Addition of a Discriminator

Initially a multitude of experiments were conducted with the typical SGAN loss function.
It was found difficult with this type of generator and discriminator interaction to find a
discriminator architecture and training method that was both stable and did not lead to
either mode collapse or vanishing gradients. The choice was therefore made to implement
an RGAN instead, and to introduce the discriminator to the network from the point where
our best generator had trained to reach its highest CW-SSIM score before overfitting to
the training data.

Three types of discriminator architectures were attempted: a Convolutional discrimina-
tor, a Patch-GAN discriminator, and a UNet discriminator. Among these, the UNet
discriminator performed the best. The Conv discriminator comprised an initial con-
volutional layer with a 4x4 kernel (stride two, padding one), followed by Leaky ReLU
activation. This was followed by four blocks, each including a convolutional layer with
a 4x4 kernel (stride two, padding one), a batch normalization layer, and Leaky ReLU
activation. The Conv discriminator concluded with a final convolutional layer with a
2x2 kernel (stride of one, zero padding). The Patch-GAN discriminator began with a
convolutional layer with a 4x4 kernel (stride two, padding one) followed by Leaky ReLU
activation. This was followed by two blocks, each consisting of a convolutional layer with
4x4 kernels (stride two, padding one) and Leaky ReLU activations, ending with a 4x4
convolution (stride one, padding one) and Leaky ReLU activation. The UNet discrimi-
nator started with a convolutional layer with a 3x3 kernel (stride one, padding one) and
Leaky ReLU activation. Its contracting path included three blocks of convolutional layers
with 4x4 kernels (stride two, padding one) activated by Leaky ReLU, and its expansive
path comprised three blocks of convolutional layers with 3x3 kernels (stride one, padding
one). The upsampled features were then processed by two additional convolutional layers
with 3x3 kernels (stride one, padding one), and Leaky ReLU activations, before reaching
the final output layer, a convolutional layer with a 3x3 kernel (stride one, padding one).
All Leaky ReLU activations used in the discriminators had a slope of 0.2.

Fine-tuning experiments were then performed on the UNet-Disc-RGAN where the
learning rate of both the generator and discriminator was lowered, for the generator to
lrG = 10−4 and lrD = 10−5 for the discriminator. A larger random crop of the input
images, from 512x512 to 128x128 was tried, and lastly, a model was trained where the
images were converted to the CIE-L*a*b color space. The discriminator was allowed
access only to the L*-channel and the generator’s MSE loss was calculated on the a*- and
b*-channels.
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Table 5: Settings for the GAN experiments. Learning rates of the discriminator and the
generator are denoted lrD and lrG respectively.

Discriminator Random crop Color space Learning rate
Conv-Disc- Convolutional 64x64 from RGB lrD = lrG = 10−3

RGAN 128x128
Patch-GAN- PatchGAN 64x64 from RGB lrD = lrG = 10−3

Disc-RGAN 128x128
UNet-Disc- UNet 64x64 from RGB lrD = lrG = 10−3

RGAN 128x128
VS-RGAN UNet 128x128 from CIE-L*a*b lrD = 10−5

512x512 lrG = 10−4

3.4 Evaluation of Generated Images

The evaluation of images generated by the different networks involved both quantitative
metrics and a qualitative assessment through a questionnaire administered to patholo-
gists and other trained professionals. The quantitative evaluation was performed on the
validation and test data. For the qualitative assessment, large scale images 1816x1096
were generated from the test data patients only.

3.4.1 Quantitative Evaluation

CW-SSIM, SSIM and Laplace Sharpness were used to assess the images generated by all
models, and evaluation of the FID between the set of generated and ground truth images
was calculated for images generated by the best Generator-only network, named UNet-
96-MSEpf-Pixelshuffle-Attention, and the four GANs in Table 5. For UNet-96-
MSEpf-Pixelshuffle-Attention, the complete evaluation was performed for networks
trained on PLS images and BF images respectively, for all other networks the evalua-
tion was only performed on networks trained using PLS images. Detailed mathematical
explanations of these metrics can be found in Section 2.9.

To ensure the reliability of the evaluation metrics, we tested what score they provided
when passed various image pairs: two identical images, two vastly different images, an
unaligned unstained image and its stained counterpart, and a sharp image alongside its
blurred version. These tests confirmed the metrics’ proficiency.

For examination of the model’s ability to generate specific tissue structures, single-image
comparisons were performed. Additionally, color histograms were created to analyze the
model’s proficiency in accurately replicating colors throughout the entire test dataset
compared to their corresponding ground truth.

3.5 Post-processing

All metric scores where calculated on unprocessed generated images compared to unpro-
cessed ground truth images. To enhance the appearance of the images and make them
more vibrant in the report a saturation enhancement with saturation factor s = 1.5 was
performed. Further the images shown in the report were sharpened using the unsharp
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mask technique. The technique was applied on the images converted to the CIE-L*a*b
colorspace and only applied to the L*-channel. The unsharp mask was created with a
Gaussian blur filter with kernel size 15.

3.5.1 Qualitative Evaluation

For the questionnaire, the images in the test dataset were annotated and categorized as:

• HH - Images of healthy tissue from a healthy patient

• HS - Images of healthy tissue from patients with carcinoma

• Sq - Images containing Squamous Cell Carcinoma

• Ba - Images containing Basal Cell Carcinoma

Annotation was done by us with the help of Veronika Jenei, Scientific and Medical Affairs
Manager at CellaVision, for full FOV images. All images in the second dataset’s external
test dataset that were deemed possible to clearly categorize were fed to the VS-RGAN
network. From each class, the three best and three worst images, according to their
CW-SSIM score, were chosen for the questionnaire.

The questionnaire was made to include 50% virtually stained images and 50% chemically
stained images. 50% of the images in each of these categories were of healthy tissue, 25%
depicted squamous cell carcinoma 25% depicted basal cell carcinoma. An illustration
of the image distribution in the questionnaire is shown in Figure 21. All images in the
questionnaire were post-processed, by the method explained in Section 2.4.3.

Figure 21: Illustration of the distribution of images in the questionnaire.

Two versions of the questionnaire were made with identical questions. However, the
images that were generated in version one were replaced with the ground truth images in
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version two, and vice versa. An equal number of each questionnaire was then sent out to
the participants.

The questions asked for each of the images were the following:

1. How would you rate the quality of the stain in this image? (scale 1-10)

2. Do you see any cancerous tissue in this image?

3. Would you feel comfortable using images of similar quality as the image above to
help you make a diagnosis?

An example of all unique questions asked is available in Appendix A.2.
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4 Results

4.1 Data Collection

Figure 22 shows an example of damaged tissue which has been moved in the staining
process (see the upper left corner). From the input image it is clear that the generated
image recreates the shape of the tissue well but that the tissue has shifted in the ground
truth image. It was noted that both the CW-SSIM and SSIM score were negatively
impacted by such disalignment between the images.

Figure 22: Example of tissue moving as a result of the staining process. The generative
network used was VS-RGAN and the image got CW-SSIM score 0.5634 and SSIM score
0.348. Image from the second dataset’s external test data.

Figure 23 shows an example of a ground truth and generated image before and after post-
processing. The colors in the post-processed images are more saturated and the sharpness
of edges in the image are somewhat increased but no halo artifacts are visible.
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Figure 23: Example of the difference in image appearance before and after post-processing.

For the interested reader, a full PLS stack can be found in Appendix A.3

4.2 Training of the Generative Network

4.2.1 Architecture of the Generative Network

To find the optimal network architecture for the task of virtually staining skin tissue, six
different architectures were trained and their performance evaluated. Data used came
from the first dataset. Table 6 and 7 hold the mean evaluation scores for each model on
the validation and test datasets respectively.

Table 6: Quantitative evaluation scores. Models trained on the first dataset’s training
data and evaluated on the first dataset’s validation data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-64 24 0.88 0.865 -0.00157

(±0.03) (±0.04) (±0.0004)
UNet-96 17 0.891 0.865 -0.00154

(±0.03) (±0.04) (±0.0004)
UNet-128 20 0.894 0.865 -0.00115

(±0.03) (±0.04) (±0.0004)
Dense UNet-64 80 0.888 0.864 -0.00155

(±0.03) (±0.04) (±0.0004)
Dense UNet-96 70 0.891 0.865 -0.00159

(±0.03) ±0.04) (±0.0005)
Dense UNet-128 65 0.893 0.863 -0.00156

(±0.03) (±0.04) (±0.0005)
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Table 7: Quantitative evaluation scores. Models trained on the first dataset’s training
data and evaluated on the first dataset’s external test data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-64 24 0.862 0.852 -0.00153

(±0.04) (±0.07) (±0.0005)
UNet-96 17 0.868 0.847 -0.00146

(±0.04) (±0.08) (±0.0005)
UNet-128 20 0.875 0.854 -0.00121

(±0.04) (±0.07) (±0.0004)
Dense UNet-64 80 0.863 0.847 -0.00151

(±0.04) (±0.07) (±0.0005)
Dense UNet-96 70 0.866 0.847 -0.00153

(±0.04) (±0.08) (±0.0005)
Dense UNet-128 65 0.869 0.849 -0.00150

(±0.04) (±0.07) (±0.0005)

The architecture study reveals that the models perform worse on the test data than on the
validation data. It is apparent that the UNet architecture reaches its best performance
after about 20 training epochs, while the Dense UNet does so after about 70 training
epochs. All models produce images which are less sharp than their ground truth ones,
as seen from the Laplace scores all being negative. The results also show that a larger
number of input channels in the first convolutional block yields higher CW-SSIM and
SSIM scores. In addition, it was observed during training that the more features in the
input layer, the longer time a training epoch takes. Training the Dense UNet models
took about twice as long per epoch as training of their UNet counterpart.

Based on the evaluation scores provided in Tables 6 and 7 and training times, it was
decided to move forward with the UNet-96 model.

4.2.2 Evaluation of Loss Functions

The evaluation scores of the best performing models with the addition of perceptual (p)
and later a Fourier (f) loss function are found in Table 8 and 9.

Table 8: Quantitative evaluation scores. Models trained on the first dataset’s training
data and evaluated on the first dataset’s validation data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-96 17 0.891 0.865 -0.00154

(±0.03) (±0.04) (±0.0005)
UNet-96-MSEp 20 0.899 0.866 -0.00100

(±0.04) (±0.04) (±0.0004)
UNet-96-MSEpf 25 0.904 0.868 -0.00065

(±0.03) (±0.04) (±0.0003)
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Table 9: Quantitative evaluation scores. Models trained on the first dataset’s training
data and evaluated on the first dataset’s external test data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-96 17 0.868 0.847 -0.00146

(±0.04) (±0.08) (±0.0005)
UNet-96-MSEp 20 0.880 0.850 -0.00107

(±0.04) (±0.08) (±0.0004)
UNet-96-MSEpf 25 0.882 0.850 -0.00075

(±0.04) (±0.08) (±0.0003)

The addition of both the perceptual and the fourier loss improved the metric scores.
UNet-96-MSEpf, trained with an MSE, a perceptual and a Fourier loss, performed the
best overall and was chosen as the model to move forward with.

4.2.3 Upsampling Blocks and Attention Gates

The UNet-96-MSEpf was fine-tuned by testing a variety of upsampling blocks. Little
improvement according to the quantitative metrics was found by this change, and further-
more, the PixleShuffle Blur block was not found to reduce checkerboard patterns in empty
areas. The choice was made to continue with PixelShuffle upsampling blocks. Attention
gates were found to aid performance, making the best model trained on the first dataset
the UNet-96-MSEpf-Pixelshuffle-Attention.

The evaluation scores of UNet-96-MSEpf-Pixelshuffle-Attention trained on the first
and second dataset respectively are shown in Table 10 and 11.

Table 10: Quantitative evaluation scores. UNet-96-MSEpf-Pixelshuffle-Attention
trained on either the first or second dataset’s training data and evaluated on the first or
second dataset’s validation data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-96-MSEpf-Pixelshuffle- 35 0.907 0.873 -0.00054
Attention First Dataset (±0.03) (±0.06) (±0.0003)
UNet-96-MSEpf-Pixelshuffle- 450 0.851 0.780 -0.00111
Attention Second Dataset (±0.04) (±0.07) (±0.0004)

Table 11: Quantitative evaluation scores. UNet-96-MSEpf-Pixelshuffle-Attention
trained on either the first or second dataset’s training data and evaluated on the first or
second dataset’s external test data.

Model Best Epoch CW-SSIM SSIM Laplace
UNet-96-MSEpf-Pixelshuffle- 35 0.888 0.869 -0.00051
Attention First Dataset (±0.04) (±0.05) (±0.0005)
UNet-96-MSEpf-Pixelshuffle- 450 0.831 0.799 -0.00095
Attention Second Dataset (±0.05) (±0.05) (±0.0007)
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UNet-96-MSEpf-Pixelshuffle-Attention’s ability to generate images of different tis-
sue types found in the first dataset is shown in Figure 24. One problem with these
generated images, especially seen in 24(a) and (c) is that the contrast between the nuclei
and the tissue surrounding it in the darker areas of the epithelium and along the sweat
gland, to the lower right in 24(c), is poor. In 24(b) there is also some cell nuclei, the
darker spots seen in the ground truth image, missing in the generated image. Finally, the
focus in 24(d) is also significantly poorer than in the ground truth.

Figure 24: UNet-96-MSEpf-Pixelshuffle-Attention trained on the first dataset’s abil-
ity to generating different tissue types. (a) depict epidermis, (b) connective tissue, (c)
sweat glands and (d) fat tissue. Images from the first dataset’s external test data.

A problem seen occasionally in the first dataset but more prominently with the intro-
duction of the second dataset was the appearance of background artifacts. The most
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prominent such was in the form of a purple cast artifact on empty areas of the images.
An example of this can be seen in Figure 25.

Figure 25: Purple background artifacts generated by UNet-96-MSEpf-Pixelshuffle-
Attention trained on the first dataset. The same phenomena was seen for images gen-
erated by the same model trained on the second dataset as well. Image from the first
dataset’s validation data.

The purple cast artifact was resolved by including images of empty areas of the slides in
the training data of the second dataset. As can be seen in the empty areas of Figure 26
and 29(f), no purple cast is visible.

Another artifact observed throughout the project was a patchwork pattern, most promi-
nent in empty areas of the images, as shown in Figure 26. A resolution to this artifact was
attempted with changing upsampling methods, especially PixelShuffle Blur upsampling
was believed to have the ability to resolve this, but no change was observed. The inclusion
of a discriminator did not alleviate the problem either.

Figure 26: Patchwork artifact in empty areas of an image generated by VS-RGAN
trained on the second dataset. Images from the second dataset’s external test data.
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4.2.4 Bright-Field versus PLS

By training theUNet-96-MSEpf-Pixelshuffle-Attentionmodel exclusively on Bright-
Field (BF) images and comparing the evaluation scores and quality of the generated
images to those produced by the model trained on PLS stacks, the additional information
contained in the PLS stacks was confirmed. Tables 12 and 13 highlight these differences,
and it should be noted that there is a statistically significant improvement when using
PLS image stacks as inputs.

Table 12: Quantitative evaluation scores. BF trained on BF images only from the second
dataset’s training data and evaluated on the second dataset’s validation data. PLS
trained with the normal PLS stack from the second dataset’s training data and evaluated
on the second dataset’s validation data. For both BF and PLS, the model architecture
used was UNet-96-MSEpf-Pixelshuffle-Attention.

Model Best Epoch CW-SSIM SSIM Laplace FID
BF 110 0.721 0.692 -0.00157 1.343

(±0.06) (±0.03) (±0.0002)
PLS 450 0.851 0.780 -0.00111 0.650

(±0.04) (±0.05) (±0.0004)

Table 13: Quantitative evaluation scores. BF trained on BF images only from the second
dataset’s training data and evaluated on the second dataset’s external test data. PLS
trained with the normal PLS stack from the second dataset’s training data and evaluated
on the second dataset’s external test data. For both BF and PLS, the model architecture
used was UNet-96-MSEpf-Pixelshuffle-Attention.

Model Best Epoch CW-SSIM SSIM Laplace FID
BF 110 0.704 0.631 -0.00198 1.626

(±0.06) (±0.05) (±0.003)
PLS 450 0.851 0.780 -0.00095 0.858

(±0.04) (±0.05) (±0.0007)

Figure 27 shows a comparison between images generated byUNet-96-MSEpf-Pixelshuffle-
Attention trained with PLS stacks versus those generated using only BF images as in-
puts. ∆CW-SSIM denotes the difference in CW-SSIM score between the PLS and the BF
image. A small |∆CW-SSIM| difference between the two sets of generated images indi-
cate high similarity between the two sets, and the smallest difference is found in images
of connective tissue. The difference increases when the models are tasked with generat-
ing more complex structures, such as connective tissue with nuclei, which the BF model
cannot capture, resulting in a larger CW-SSIM difference. The two sets of images on
the bottom half of the figure are from samples containing squamous cell carcinomas, and
these structures are not accurately replicated by the BF model.
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Figure 27: Comparison of test images generated by UNet-96-MSEpf-Pixelshuffle-
Attention when trained on PLS image stacks versus solely on BF images. The expression
∆CW-SSIM represents the difference in CW-SSIM score between the PLS and BF images.
The range of ∆CW-SSIM shown is intended to reflect the difference within one standard
deviation of the CW-SSIM scores. The two top images depict connective tissue, the
bottom two middle and the bottom depict different areas of a squamous carcinoma. The
images chosen were the ones closest to the ∆CW-SSIM 0.050, 0.100, 0.150 and 0.200
respectively. Images from the second dataset’s external test data.

Figure 28 illustrates an additional flaw of theUNet-96-MSEpf-Pixelshuffle-Attention
trained on BF images only, it does not have the capacity to generate large images to the
same extent as the PLS version of the model. The BF model fails to capture nuclei, glands
and the epithelium in the bottom left corner.
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Figure 28: Comparison of full FOV test images generated by UNet-96-MSEpf-
Pixelshuffle-Attention when trained on PLS image stacks versus solely on BF images.
Image from the second dataset’s external test data. Larger versions of these images can
be found in Appendix A.4.

4.2.5 Addition of a Discriminator

The scores from evaluating the three RGAN models along with the UNet-96-MSEpf-
Pixelshuffle-Attention network’s performance on the second dataset is shown in Table
14 and Table 15 respectively.

From the results, primarily by studying the FID score, it can be deduced that the addition
of a discriminator improves the quality of the generated images. The UNet discriminator
architecture generates the best focused and highest quality images, and was therefore
further fine tuned by changing the learning rates used during training. This yielded
the projects best model, which was a RGAN with a UNet-96-MSEpf-Pixelshuffle-
Attention generator and a UNet discriminator. This model is coined VS-RGAN to
highlight its effectiveness in virtual staining tasks.

Table 14: Quantitative evaluation scores. Models trained on the second dataset’s training
data and evaluated on the second dataset’s validation data.

Model Best Epoch CW-SSIM SSIM Laplace FID
UNet-96-MSEpf- 450 0.851 0.780 -0.00111 0.650
Pixelshuffle-Attention (±0.04) (±0.07) (±0.0004)
Conv-Disc-RGAN 58 0.847 0.780 -0.00034 0.310

(±0.03) (±0.07) (±0.0004)
PatchGAN-Disc- 12 0.855 0.792 -0.00069 0.499
RGAN (±0.03) (±0.07) (±0.0004)
UNet-Disc-RGAN 6 0.856 0.793 -0.00042 0.423

(±0.03) (±0.07) (±0.0004)
VS-RGAN 54 0.860 0.782 -0.00091 0.403

(±0.04) (±0.07) (±0.0004)
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Table 15: Quantitative evaluation scores. Models trained on the second dataset’s training
data and evaluated on the second dataset’s external test data.

Model Best Epoch CW-SSIM SSIM Laplace FID
UNet-96-MSEpf- 450 0.831 0.799 -0.00095 0.858
Pixelshuffle-Attention (±0.04) (±0.05) (±0.0007)
Conv-Disc-RGAN 58 0.823 0.798 -0.00041 0.767

(±0.05) (±0.06) (±0.0006)
PatchGAN-Disc- 12 0.834 0.812 -0.00073 0.703
RGAN (±0.03) (±0.07) (±0.0005)
UNet-Disc-RGAN 6 0.834 0.807 -0.00040 0.656

(±0.03) (±0.07) (±0.0004)
VS-RGAN 54 0.836 0.799 -0.00076 0.683

(±0.05) (±0.05) (±0.0004)

4.2.6 Image Comparison

Throughout the project, the generated images were inspected visually to control that the
metrics seemed to correlate with human perception of the images. In Figure 29, a selection
of images showing different structural elements in skin tissue are shown for comparison
of the final models of this project. Six different tissue types are depicted. The model
only trained on BF images struggles to accurately generate virtually stained images. It
does not capture as many nuclei and fails in capturing fat tissue. It also produces less
sharp images. From visual inspection it is challenging to tell the UNet-96-MSEpf-
Pixelshuffle-Attention PLS and the VS-RGAN apart. Close inspection may show
the VS-RGAN improving focus and nuclei definition somewhat, but the difference is
very small.
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Figure 29: Images of different tissue types generated by UNet-96-MSEpf-Pixelshuffle-
Attention BF, UNet-96-MSEpf-Pixelshuffle-Attention PLS and the VS-RGAN
from the same input image. The BF model is fed only a BF image, and the two other
models were fed a 72 channel PLS stack. (a) depict epidermis, (b) connective tissue, (c)
sweat glands, (d) sebaceous glands, (e) inflammation and (f) fat tissue. Images from the
second dataset’s external test data.

By instead studying the model’s abilities to replicate cancerous tissue, differences are
more obvious. Figure 30 shows how the BF model struggles with both carcinoma types,
especially to generate squamous cell carcinomas. VS-RGAN is better than UNet-96-
MSEpf-Pixelshuffle-Attention in capturing nuclei inside of the tumour. Regardless of
model, generated images of basal cell carcinoma lack some contrast found in the ground
truth image, and the squamous cell images have a more purple tone than the ground truth
image.
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Figure 30: Images of different carcinoma types generated by UNet-96-MSEpf-
Pixelshuffle-Attention BF, UNet-96-MSEpf-Pixelshuffle-Attention PLS and the
VS-RGAN from the same input image. The BF model is fed only a BF image, and the
two other models were fed a 72 channel PLS stack. (a) depict basal cell carcinoma, (b)
squamous cell carcinoma. Images from the second dataset’s external test data.

In Figure 31, an example of a full FOV generated with the VS-RGAN network on test
data from the second dataset is seen. The generated image lacks somewhat in contrast
within the connective tissue but in general preserves all salient details. With closer in-
spection it can be seen that the folds along the epithelium are less sharp in the generated
image.

Figure 31: Full FOV image of healthy tissue, ground truth (left) and generated by the
VS-RGAN (right). Image from the second dataset’s external test data. Larger versions
of these images can be found in Appendix A.5.

4.3 Results from Qualitative Questionnaire

The qualitative questionnaire was answered by seven participants with different profes-
sional backgrounds, including medical doctor, consultant, pathologist and personnel from
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Table 16: Confusion matrix for the cancer identification in virtually stained images.

True diagnosis
Positive Negative Total

Expert response
Positive 30 0 30
Negative 3 39 42
Total 33 39 72

Table 17: Confusion matrix for the cancer identification in chemically stained images.

True diagnosis
Positive Negative Total

Expert response
Positive 30 0 30
Negative 3 39 42
Total 33 39 72

Lund University Bio Imaging Centre (LUBIC). Four of the participants answered version
1 of the questionnaire and three answered version 2. The participant from LUBIC de-
clined to answer the questions about pathological states as they had no experience in the
field. This meant that for this question we received three answers for each version of the
questionnaire.

Table 16 and 17 represent confusion matrices for classification between cancerous and
non-cancerous tissue. The matrices are identical for the virtually stained images and
the chemically stained images, which is also presented in Table 18. For both the real and
generated images, the three incorrectly classified images were of squamous cell carcinoma.
From these confusion matrices the observant reader may notice that there were 11 images
with cancerous tissue and 13 without. This was a flaw in our questionnaire design. In
private discussion with Fredrik Pontén it was discovered that one image included was
incorrectly annotated by us as a basal cell carcinoma, in fact was entirely healthy. What
we had believed was a carcinoma was in fact a hair follicle. We therefor retroactively
changed this annotation to healthy tissue, and the results for the corrected questionnaire
is what is shown throughout the results of this section.

Table 18 presents the results from the qualitative evaluation questionnaire. The quality
of stain is rated 6.40 and 6.41 out of 10 for the virtually and chemically stained images
respectively. The recognized usefulness of the images were 63.2% for virtually stained
images and 62.8% for chemically stained images.

Table 18: Qualitative evaluation questionnaire results. The classification accuracy in-
cludes true negative and true positive diagnoses.

Stain quality Usefulness (%) Classification
(out of 10) accuracy (%)

Virtually Stained 6.40 (±1.04) 63.2(±21.5) 95.83 (±11.7)
Chemically Stained 6.41 (±1.18) 62.8 (±28.1) 95.83 (±16.2)

From comments provided by the participants it was made clear that the magnification of
the images was seen as a negative for the overall quality and usefulness of the images.
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Furthermore, some images were criticized for tissue being folded or containing damaged
tissue.

4.3.1 Discussion with Pathologist Fredrik Pontén

Upon completion of the evaluation questionnaire, a discussion was had with Fredrik
Pontén about his thoughts on the results of the project and the potential benefits of
virtual staining in the future. The main points from this discussion were as follows.

Pontén deemed all large scale images we showed to be useful to a pathologist in that all
relevant structures were distinguishable and tumor tissue could be identifiable as such
in the images containing it. Some shifts in staining compared to the ground truth were
shown to him, similar to what is shown in Figure 30(b). In his opinion, this difference
looked like a slight stain variation but it did not make the diagnosis unclear or the image
obviously appear generated.

Pontén emphasized the benefit of standardization of staining through virtual stain for
image analysis methods. Pathologists are trained to adapt to variations in staining, but
international studies using images from different labs struggle to apply image analysis
methods due to poor standardization across labs and countries. When asked, he said
that cost and efficiency would likely be improved with virtual staining but that he had
no knowledge of the specifics of the size of those reductions. Further exploration of this
would be needed.

It was also pointed out by Pontén during this discussion that this virtual staining method
would likely not be applicable to some other histological stains which rely more heavily
on chemical reactions within tissue to generate color contrast. Pontén does not think it
is possible from illumination of unstained tissue alone to differentiate for example fluids
with varying pH levels.
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5 Discussion

5.1 General Reflections

We find the achieved results quite impressive. One strength, which we did not initially
realize the importance of, was the ability of our models to generate significantly larger
images, such as the one shown in Figure 31. These are much larger than those the VS-
RGAN was trained on, and yet no visible artifacts or detriment in metric scores were
observed. Pathology professionals typically work with full FOV images, allowing them
to observe various structures and the context surrounding potential abnormalities. The
ability to train the networks on smaller images while still being able to generate complete
FOV images without complications enabled us to retain these advantages while enhancing
the efficiency of our neural network training process. This is because training on smaller
images yields less trainable parameters which decreases the time-consumption of each
training epoch.

From the first functional UNet trained in this project the generated images yielded im-
pressive metric scores, although by visual inspection, some issues were revealed. Because
of this, the main part of this project focused on fine-tuning the model by various means
of structural changes to the network or changes to training parameters. By visual inspec-
tion we believe the quality of the generated images have increased, however only a few
statistically significant improvements in quantitative evaluation scores were noted. De-
spite the challenges in achieving statistically significant improvements between different
models trained using PLS, a key result of this project was that both UNet-96-MSEpf-
Pixelshuffle-Attention and VS-RGAN trained using PLS images outperformed the
model trained on BF images in all evaluation scores, in a statistically significant way.

Based on the results we are satisfied that our method of choosing the best epoch worked
well as there was no significant difference in metrics between the validation and test data.
This is a strong indication of our model being well generalized and not overfitted. During
the project we did not observe any visual indications of overfitting or decrease in overall
quality of the images when switching to the external test set. Because of the improved
choices made in partitioning the data, these results are especially convincing for the second
dataset. This will be covered in the next section.

5.2 Data Collection and Data Processing

Images with damaged tissue or dirt were manually removed, as were images not possible
to align with template matching. Although checks were performed to eliminate these
types of problems, some inevitably remained in the data used, which may have lowered
the metrics scores and increased the standard deviation. Especially, poorly template
matched images having slipped through the checks proved detrimental to metric scores
such as SSIM, due to it being sensitive to translations, but even metrics more robust to
such changes, as CW-SSIM, were negatively impacted. When working with large datasets,
it is very hard to ensure that all examples are of high quality, and if there had been more
time we would have liked to better ensure the quality of the data, which is a science in
itself. An especially difficult task was working with images where relatively small changes
were observed such as that shown in Figure 22. We chose to let these types of images
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remain during data processing to preserve data but found that even small changes of
this kind were detrimental to evaluation scores, especially SSIM but also the more robust
CW-SSIM.

A limitation of our experiments that was not realized until we received answers from the
questionnaire was that the quality of the tissue sections was varying. Areas of broken
and folded tissue was pointed out to us, and to some extent we believe this affected the
model’s performance. In Figure 29 (c) and 31 (along the epithelium) these types of areas
are shown. It can be seen that these areas lack some cell nuclei and sharpness.

The first dataset exhibited reduced contrast with respect to crucial structural elements,
and both datasets encountered challenges with uniform staining. Notably, the generated
stain appeared to represent an even average of the stain variations seen in each of the
datasets. This observation underscores the difficulty in achieving consistent staining,
even within a singular laboratory setting, and speaks to the benefits of virtual staining
in ensuring color consistency. The second dataset provided essential improvements to the
relevance and credibility of the networks trained. Beside the pale stain, the first dataset
was significantly lacking in both variation of patients and in unique areas of tissue. The
first dataset also entirely lacked certain structures commonly found in skin tissue (see
Figure 24 and Figure 29, showing the identified tissue types in each dataset) which further
limited how general a model trained on this dataset could become.

The biopsies in the first dataset were significantly smaller than those in the second dataset,
and although a larger number of slides were available from each biopsy, the slides were
all from the same cross section of consecutive cuts of tissue. This meant the content of
each slide was very similar to all other slides from the same patient. One benefit of this
was that there was a natural introduction of rotational augmentation as most slides were
fixated to the glass slide in different orientation. This could have increased the amount
of information the models were able to extract from each biopsy.

In the second dataset, each biopsy was significantly larger and each biopsy was also more
significantly different from the others. This meant that not only were structures unseen in
the first dataset introduced with this dataset, but more often than not, several examples
of each structure was present within one biopsy and between biopsies. The addition of
cancerous tissue also opened up for the possibility to investigate the model’s ability to
generate images useful for pathologists in making important, even life-saving diagnoses.
With this, it also became highly relevant that the models did not generate images that
would lead to false positive or negative diagnosis. The qualitative questionnaire, which
will be discussed in more detail later, was introduced to assess this.

The method of partitioning was another aspect which was improved upon between the
first and second data collections. In the first dataset, images from all patients was present
in all partitions, which with the limited variation described above, likely skewed results
to be more positive than they would have been for a truly external validation and test
set. The choice to divide the data in this way was made because it was believed to be
too limiting to train the network on only one patient and loose almost 60% of the data
to validation and testing. In hindsight, a better alternative would probably have been to
at least use the tissue from one patient as an external test set.
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In the second dataset the increased number of patients available meant that the test set
could be made external from the training and validation data. Partitioning the patient
biopsies included in both training and validation by tissue meant that these partitions
were differentiated, although not by patient. A limitation with this partitioning was
that because the cancer patient biopsies were significantly larger than those from healthy
patients 32% of the second dataset became test data, while only 68% remained for training
and validation. We deemed this loss of training data necessary for the validity of the
results but it was a frustrating decision which further highlights the difficulty in acquiring
enough diverse data. Partitioning by tissue would have been a good choice for the first
dataset as well but would have been difficult due to the rotation and limited area of each
slide in that dataset.

The first dataset, although it had significant limitations, did provide a stable basis for the
continued experiments with the second dataset. Visual examination of the images pro-
duced when training the UNet-96-MSEpf-Pixelshuffle-Attention model using the
second dataset showed high fidelity to the ground truth images and few noticeable arti-
facts.

The drop in metric scores, when switching between the datasets, especially in SSIM and
CW-SSIM scores was, at first, concerning. It is however relevant to consider that all metric
scores are calculated based on the ground truth images. A dataset with significantly lower
color contrasts, variation of tissue and separation between the training, validation and test
data scoring higher quantitative metrics is not surprising. The validity of these metric
scores, and thereby model generalizability, is only as good as the ground truth, and in
the case of the first dataset the ground truth was lacking.

It was decided that both the ground truth and generated images shown in the report
should be post-processed to enhance color saturation and sharpen the appearance of edges.
This choice was made because the raw ground truth images were somewhat lacking in
these aspects. We did not calculate the metric scores based on the post-processed images
because we wanted the scores to solely focus on the performance of the neural networks.
In Figure 23 an example of both a ground truth and generated image, before and after
post-processing, is shown. In our opinion, and support from a brief discussion of the post-
processing with Fredrik Pontén we concluded that the changes make the images appear
more pleasant but does not alter the ability to diagnose or identify different structures in
the tissue.

5.2.1 Augmentations

The introduction of a rotational augmentation was found to be a detriment to the quality
and metric scores of the images. One plausible explanation for this lies in the nature
of PLS microscopy. Each image taken with individual LED:s contain information about
both angle and direction of the light which may be learned by the network. Random
alterations in direction may therefore result in information loss, potentially impacting the
effectiveness of this augmentation technique.

Random crop augmentation on the other hand did yield positive results. This success
can be attributed to the variation offered by different crop areas, contributing valuable
contextual information to the network, which may have been especially significant as
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the training data was comprised of small images. Visual inspection indicated that this
fine-tuning aided the network in capturing smoother transitions between tissue types, as
observed in the full-sized images.

An alteration of the data, although not an augmentation in the pure sense, was the
inclusion of some images containing only empty areas in the second dataset. This was,
as mentioned in section 3.2, done to aid the network in generating areas with a lot of
background which before had a purple cast, seen in Figure 25. We hypothesized that the
model struggled due to not having been exposed to these areas, which were removed by
the Laplace variance threshold (see Section 3.2), in earlier training of the network. As
the artifacts disappeared with this inclusion this hypothesis seemed to be accurate. The
network was then able to generate thin tissue, background, and fat tissue, an example of
which can be seen in Figure 29 (f).

5.3 Training of the Generative Network

Improvements, albeit modest, in average CW-SSIM and Laplace focus scores were seen
when increasing the number of input channels of the UNet, while SSIM remained con-
stant. We opted to continue with 96 input channels, as training a network with 128 input
channels was significantly more time consuming and computationally costly. The choice of
96 channels represented a compromise, serving as a middle ground between computational
efficiency and performance. Notably, 96 channels meant that the PLS stack, consisting
of 72 channels, was not immediately compressed by the network, which we hypothesized
would be helpful to the model’s performance.

The Dense UNets tested did not show any discernible improvement except for the ver-
sion with 128 input channels. These models did not only need a higher number of epochs
to reach their peak performance, but due to the complexity of the network architecture,
each epoch took significantly longer than the normal UNets as well. This was what
ultimately made us decide to continue with the simpler UNet architecture. By visual in-
spection and metric scores, the UNets’ capacity seemed on par with the virtual staining
task which made the less efficient, more complex Dense UNet an unnecessary evolution.
We do not want to rule out that for a more complex virtual staining task, for example
working with a multitude of different tissues, a Dense UNet would prove superior.

5.3.1 Loss Functions

The choice of the MSE loss function for the initial experiments was motivated by its
simplicity and effectiveness in quantifying differences between two images at the pixel
level. While MSE is effective in reducing the overall error, it tends to smooth out image
details. This was found to result in a loss of sharpness and textural features in the
generated images. Recognizing these problems as inherent problems with the MSE loss
function lead to the continued search for a combination of loss functions to better preserve
sharpness and high-frequency details in the images.

To address these shortcomings, we incorporated additional loss functions, each chosen
for their specific abilities and we tried to combine them in a way to complement and
counterbalance the weaknesses of the others.
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A Fourier loss was added to match the frequency content of generated images with that
present in the real ones. Its inclusion aimed to enhance image sharpness and focus,
particularly emphasizing the appearance of high-frequency components like cell nuclei.
The loss proved effective, and was therefore kept.

The lack of cell nuclei and poor color contrast in the images also motivated the inclusion
of a perceptual loss function. Perceptual loss, known for its effectiveness in enhancing
perceptual similarity in image translation tasks, was anticipated to address these issues.
While a known pitfall of perceptual loss is the potential for generating hallucinations or
artifacts, our models did not exhibit these behaviours, and the average evaluation scores
improved with this addition. Worth noting is that our perceptual loss was based on the
VGG19 network, trained on the ImageNet dataset. The ImageNet dataset is not focused
on medical images, but rather everyday objects such as animals and landscapes. We did
not explore it in this project, but do believe that a similar network trained on pathology-
specific images, particularly H&E stained images, would have improved the perceptual
loss function when used for virtual staining tasks.

As can be seen in the images in Figure 24 generated by theUNet-96-MSEpf-Pixelshuffle-
Attention, they still lack some contrast, especially between the tissue and the nuclei.
To make the model focus on this lack of contrast we experimented with a weighted MSE
approach where a mask of the cell nuclei was created and the loss on the nuclei pixels
was weighted five times larger than the rest of the pixels. This experiment highlighted
that intuitive loss functions, believed to promote a wanted behavior, not always trans-
late effectively to neural networks, as this attempt led to more issues than progress. It
underscores that although neural networks often generate results that align with human
intuition, they do not possess the ability to interpret underlying intentions with the loss
functions chosen. There is not a straight-forward way to tell a network ”focus more on
preserving cell nuclei”, and the network can often find another approach to minimize a
loss function than what was intended by the user.

The selection of loss functions was fully in the hands of us as model designers. While our
chosen functions (MSE, Fourier, and Perceptual loss) and their weighting seemed to aid
the model, it is possible that other, perhaps more effective, loss functions exist for this
particular task.

5.3.2 Activation Functions, Upsampling and Attention Gates

The proficiency of the model at this stage of the project was already promising, providing
a solid foundation for further refinements.

To enhance the robustness of the model, the activation function was changed from ReLU
to Leaky ReLU to safeguarding against potential vanishing gradients. However, the lack
of noticeable improvement in evaluation scores indicated that dying ReLU was not a sig-
nificant issue for our network. Given that the training time remained unaffected, we opted
to continue using Leaky ReLU. Its presence, though not dramatically transformative, of-
fered protection against possible mode collapse — a valuable feature, particularly in light
of our plans to shift to a more complex dataset later.

62



In our exploration of upsampling methods, Pixelshuffle emerged as the best choice. It did
not slow down training, and theoretically, Pixelshuffle is believed to enhance resolution,
aligning well with our objectives. Despite not showing significant improvements in evalu-
ation scores, it was retained for potential benefits. The advanced Pixelshuffle Blur variant
was discarded due to its impact on training speed and failure to reduce the patchwork
artifact in empty areas, which was one of the key reasons for its potential use.

The integration of attention gates was motivated by the need to capture finer details,
such as cell nuclei, and to enhance the sharpness of common and peripheral structures
such as connective and fat tissue. Attention gates theoretically help the model focus on
important features while suppressing less relevant ones, and our results, showing some
improvement with this inclusion, aligned with theory. This addition did not significantly
alter the training time, thus being considered a valuable addition to the model.

In conclusion, while none of the alterations discussed above led to statistically significant
improvements in performance, they contributed to the overall robustness and functionality
of the model. In terms of evaluation scores, the generator seemed to have plateaued
in terms of performance. In an effort to break through this plateau, we introduced a
discriminator as a final enhancement.

5.3.3 Addition of a Discriminator

In our exploration of GANs with SGAN loss, we anticipated challenges in keeping the loss
stable and enhancing generator performance, a complexity presented in prior research.
This instability stems from issues like volatile and vanishing gradients, which we also
encountered. In our experiments, the discriminator dominated the training process. It
rapidly differentiated between generated and real images, resulting in its loss approaching
zero after just a few epochs. This imbalance led to the GAN generator loss dominating
the generator’s loss function, meaning the input from the remaining loss functions was
essentially ignored. This degraded the image quality rather than improving it, which is
logical since the GAN generator loss does not focus on preserving image content, as long
as generated images appear real.

Due to these challenges, we decided to employ a RGAN loss instead. Given its recognition
as a ”state-of-the-art” approach in current GAN research, this transition was deemed
a logical step. We implemented three distinct discriminator models within the RGAN
framework. As outlined in Section 4.2.5, the UNet discriminator emerged as the most
effective. In comparing the quantitative metrics of our GANs with theUNet-96-MSEpf-
Pixelshuffle-Attention model, we observed no statistically significant enhancements in
CW-SSIM, SSIM, or Laplace scores. However, the improvement in the Frechet Incep-
tion Distance (FID) was notable. An improvement in the FID score is expected when
integrating a discriminator into training of a generator. This stems from the discrimina-
tor’s role in analyzing and discerning features to differentiate between real and generated
images, and the generator in response leveraging this analysis to enhance its capability
in producing more authentic-looking images. The FID, which evaluates the similarity
in feature distributions between sets of real and generated images, consequently reflects
these advancements in image authenticity.
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The process of training a GAN and balancing the capabilities of the generator and discrim-
inator proved to be a challenging task. Identifying the respective strengths and weaknesses
of each network and determining how to modify them for optimal results was challenging.
We experimented with various configurations, altering the size of the discriminator and
the learning rates of the networks. A particularly effective adjustment was moderating
the learning rate of the discriminator, preventing its loss from quickly becoming close to
zero and thereby averting a stop in the GAN’s learning process. Additionally, providing
the GAN with larger images as inputs appeared to enhance the realism of the generated
images. This improvement might be attributed to the GAN’s increased capacity to detect
subtle discrepancies, such as inadequate color transitions between different tissue struc-
tures only visible when studying larger images, which the generator previously struggled
to discern.

5.3.4 Evaluation of the Generated Images

Comparison by Visual Inspection
As mentioned, the variation of the first dataset was very limited, with the sweat gland
shown in Figure 24(c) being one of circa five glands present in the entire dataset. Upon
comparing the staining of the ground truth images in Figure 24 and 29, it is clear that the
color contrasts are smaller, and that the stain overall is darker and more blueish in the first
dataset. This may have impacted the models’ performance since the contrasts between
background structures and cell nuclei for example are vitally important for analysis. Since
the ground truth had lower contrast in the first dataset, it is possible that the loss functions
and quantitative metrics did not react as strongly to even poorer contrasts in the generated
images, as this change could be relatively small.

From Figure 29, a number of observations can be made. The first of which being that the
images generated by the network trained on only BF images are lacking in color contrast
and have patchy areas, easily noted in the images of epidermis and sebaceous glands. The
BF model also incorrectly generates the fat tissue as an empty area. The BF model does
however, to some extent, manage to capture the structure of the tissue. It performs quite
well on the connective tissue, which makes up a relatively large component all skin tissue
on a slide. Although it lacks in focus and nuclei definition, the generated images of sweat
glands and inflammation show some promise, although, they are significantly worse than
the same image generated by the two models trained with PLS images as input. When
attempting to generate full FOV images using the BF model, as seen in Figure 28, its
struggles become more apparent. The BF model is not able to generate any cell nuclei
not already visible in the unstained image, and it is also unable to accurately generate
epithelium. By also taking into account the BF models ability to generate carcinoma
structures, as seen in Figure 30, the images generated by this model would likely be
useless for a pathologist, since none of the vital structures are appropriately generated.

It is difficult from the images in Figure 29 to make a compelling case for the benefits of
including a discriminator at the end of the training process. If one inspects the images
depicting epidermis and inflammation closely, some improvement of nuclei definition and
focus can be seen. However, it is unlikely that such a small difference would be imperative
to a pathologist examining the images. In our discussions with Fredrik Pontén it was made
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clear that the presence or non-presence of a few nuclei, as seen when comparing the images
in Figure 29, would likely not raise a concern or change a diagnosis made by a pathologist.

In Figure 30, a more compelling case can be made for the VS-RGAN. It is clear that
the BF model struggles with color contrast in the inflamed connective tissue surrounding
the basal cell carcinoma. It also entirely miss-calculates a large section of the squamous
cell carcinoma as empty. For the squamous cell carcinoma, both UNet-96-MSEpf-
Pixelshuffle-Attention PLS and VS-RGAN perform similarly. The generated stain
is in both instances darker and more purple than the ground truth, however the nuclei
definition and overall appearance of the tumor is well captured. For the basal cell car-
cinoma, the UNet-96-MSEpf-Pixelshuffle-Attention PLS seems to misinterpret the
middle of the tumor as connective tissue, while the VS-RGAN captures almost all of
the tumor correctly. This example may be indicative of the benefits of the inclusion of
a discriminator network, although further exploration would be needed to confirm that
this improvement is due to the discriminator and not a random fluctuation in model
performance on a specific area.

Quantitative Results
To evaluate the quality of the generated images, we chose a set of quantitative metrics with
the aspiration of covering a wide array of image quality aspects. SSIM was chosen due
to its widespread use as a metric for assessing the quality of generated images, including
virtually stained ones as have been shown in previous studies. Being aware of potential
problems with alignment between the unstained-stained image pair, we also included CW-
SSIM. This choice was made based on its reduced sensitivity to pixel-wise differences and
was a recommendation from the Computational Imaging team at CellaVision. Since the
Fourier transform, yielding frequency content of an image, was used as a loss function, we
opted for Laplace scores to asses image sharpness and focus. Lastly, FID was chosen to
provide perceptual insight not captured by the other, more perceptually low-level metrics.

There is a possibility of evaluation biases, and of the scores not fully reflecting the models
abilities. Since the first functional network, we have observed a consistent trend where
all networks excel at generating connective tissue and other common structures. This
has lead us to believe that the representation of smaller or less common structures, such
as nuclei, glands, and tumors, might be underrepresented in our metric scores. If a
continuation of this work was to be done, we would recommend the input data to be
annotated by tissue type and pathological state. Such annotations would hopefully lead
to easier identification of areas the model struggles with, by making this easier to measure
quantitatively, which could lead to more significant changes between model alterations.
This approach would in addition allow for tailoring of the training data. By identifying
areas where the model’s performance is weaker, we could enrich the training dataset with
more examples of a specific annotation.

The project highlights the limitations of SSIM, and its sensitivity to local differences. In
Figure 22 the SSIM score is 0.348 and the CW-SSIM score is 0.563, which indicates that
SSIM is more sensitive to small differences than CW-SSIM. We believe that this might
be one of the reasons for the larger standard deviation seen in SSIM scores throughout,
and makes a good case for the importance of data cleansing. We would have liked to
filter out the 20% of the unstained-stained image pairs with lowest SSIM score, and then
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gone through them to see if there are structures which have moved or disappeared in
the staining step. Because the model only gets to look at the unstained image, it will
naturally match the structures location in that, leading to lower evaluation scored when
compared to the chemically stained image if structures have shifted.

Studying the generated images in Figure 27, it is apparent that although the metric scores
are similar, with a small, although statistically significant improvement, when going from
BF to PLS images as input, the perceptual difference is large. None of the metrics, except
for perhaps FID, capture the big perceptual differences noted by the human eye in these
images, providing some critique to our method. Our chosen metric to guide training, CW-
SSIM, capture structural differences very well, but it would have been beneficial to also
study color generation capabilities. A convincing color metric was not found during the
extent of this project. We would have liked to have digged deeper into the investigation
of literature on this subject specifically, because in the articles on virtual staining read,
these metrics were often completely absent. Ideally a metric which could identify color
differences in a localized manner with some consideration for perceptual shift would have
been utilized.

Qualitative Questionnaire
For all questions of the questionnaire the results did not differ significantly between the
generated and ground truth images. This lends itself to the idea that the participants
could not tell the difference between generated and ground truth images. Two partic-
ipants raised that there were other aspects such as section context and quality which
was lacking that impacted their ability to properly evaluate the images. Furthermore
two other participants raised the concern that the resolution of the images was too low
to discern the internal structure of the cells. Both of these issues may have skewed the
results to be lower. To us this highlighted the difficulty in constructing a questionnaire
where the intended meaning of each question is understood by the participants. In being
careful to not unfairly skew the participants responses in our favor, and also not deter
them with a too verbose introduction, some known limitations of the project were left
out. Although the extent to which this impacted results can not be known we did ob-
serve a trend that damaged tissue sections were rated lower on stain quality, and that
overall the participants that requested higher resolution scored the staining quality lower
throughout.

The most promising results from the questionnaire was the cancer classification accuracy
which was very high. This indicates that the virtual staining was sufficient for accurate
diagnosis to the same extent as the traditional staining. Furthermore there were no false
positives which alleviates the fear that the generative network may hallucinate carcinomas
where none are present in reality. All false negatives, concerning cancerous tissue, from the
questionnaire were on images of squamous cell carcinoma potentially indicates a limitation
of the model. The identification process of the squamous cell carcinomas may also have
been more difficult due to the fact that they often covered an entire FOV image, which
made it impossible for the participants to study the edges of the tumor.
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5.4 Comparison to Previous Virtual Staining Works

The inspiration for utilizing PLS microscopy for virtual staining comes from the work
by [15]. We designed our networks based on the insights from [8], who highlight GANs
as a prevalent framework in virtual staining due to their robust representation capabili-
ties. This approach aligns with the successful applications seen in [10]. The method of
partitioning tissue slides in halves for the training and test datasets, as adopted in [10],
inspired our data partitioning strategy. Additionally, we followed a similar methodology
for evaluation of the generated images, utilizing both quantitative metrics and pathologist
assessments, as done in some of the studies discussed in [8].

Recent virtual staining studies, as mentioned in Section 1, typically use BF or autofluores-
cent images. The study by [78], using BF images as input for a GAN, achieved an SSIM
score of 0.58. When compared to our SSIM scores – 0.799 for VS-RGAN and 0.631 for
UNet-96-MSEpf-Pixelshuffle-Attention BF – our networks seem more proficient.
However, [78]’s network is a multi-stain network capable of producing H&E, Picrosirius
Red (PSR), and Elastin van Gieson (EVG) stains, and therefore trained with a somewhat
different objective than ours. Their model was trained on 33 351 H&E, 35 964 PSR, and
36 228 EVG 512x512 unstained-stained image pairs and tested against 12 048, 12 488,
and 10 469 such image pairs. Our model is trained on 132 890 and 367 372 unique 64x64
image pairs and tested on 23 451 and 171 936 unique image pairs contained in the first
and second datasets respectively, we note that our dataset is much smaller than theirs,
because their images are of larger size than ours. Therefore, our higher evaluation scores
might not accurately represent our model’s true capabilities, and direct comparison is
made difficult by the fact that the similarities in variation and image content between
their and our dataset is not clear. As previously discussed, expanding our dataset would
help in generating more accurate metric scores.

The generator used in [78] was trained with an adversarial loss combined with an MSE
loss, and presents results consistent with our findings. We noted that the use of only
an MSE loss smooths image content, generating images lacking in nuclei contrast and
sharpness. By visually inspecting [78]’s generated H&E images, this seems to be the case
in those images as well. We believe this reduction in detail to likely have contributed to the
the three pathologists in their study deeming the quality of virtually stained images lower
than that of chemically stained ones. Their pathologist evaluation approach is similar
to ours, and our results, which show no discernible difference in stain quality between
virtually and chemically stained images, might stem from our integration of other loss
functions as well.

The study by [10] compares the proficiency of an unsupervised approach, using a Cycle-
GAN, with a supervised pix2pix model trained using pixel-wise ground truth, in H&E
staining of prostate, liver, testis, and kidney tissue. They show that the supervised ap-
proach yields better results, supporting our use of supervised learning. No quantitative
evaluation is done on the images generated by the supervised method, but visual inspec-
tion reveals some of the same issues noted in our images. Some nuclei are lost, and the
images lack somewhat in sharpness. The images provided, being in 20x and 40x magnifi-
cation and of different tissues than those investigated in this project, make a comparison
challenging. The fact that they managed to build a model capable of staining different tis-
sues, with a network architecture similar to ours, piques our interest in testing our model
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on different tissues. This study utilized 85 000 256x256 images to train the networks, a
larger dataset than ours. In machine learning, the size of the dataset plays a significant
role, and we believe that with even more data, our results would improve.

We are cautiously optimistic that we have created a well generalized and impressively
proficient network for virtual H&E staining of skin tissue. Upon comparison to previous
research we note the need for a larger and more diverse dataset. Inspired by these articles,
future research should aim to expand dataset scope and explore the model’s applicability
to a broader range of tissues and staining types.
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6 Conclusions

The project showed promising results for virtual staining of skin tissue using PLS images
as input to a neural network. The highest performing model is coined VS-RGAN, but
this network was not statistically superior to the best generator-only network, UNet-96-
MSEpf-Pixelshuffle-Attention, or the other RGANs explored according to quantitative
metrics. However, visual inspection did show some local improvements. We are therefore
unable to certainly determine the optimal neural network trained for this task; rather, we
have found several variations of similar caliber. We would therefore suggest to use the
model of smallest computational complexity.

The similarity in metric scores between the validation and test data evaluations through-
out the project indicates that the models are well-generalized and not overfitted to the
training data. In the first dataset, the variation of patient and tissue was limited both
within and between data partitions, limiting the value of these results. However, the
same trend was seen with the second dataset, which was significantly more diverse and
the partitions were more well-differentiated, giving more convincing evidence that the
final models of the project were indeed well-generalized.

A UNet-96-MSEpf-Pixelshuffle-Attention trained on only traditional BF images
struggled with color definition, structure identification, and focus. When trained with
PLS images, this model performed significantly better based on all assessed quantita-
tive metrics, and by visual inspection, the improvement was evident. VS-RGAN scored
0.836, 0.799, -0.00076, and 0.683 on CW-SSIM, SSIM, Laplace, and FID, respectively,
while the best BF model scored 0.704, 0.631, -0.00198, and 1.626. It is therefore con-
cluded that utilizing PLS stacks as input to neural networks, be that a generator-only
network or an RGAN, is beneficial for the task of virtually staining skin tissue.

The seven professionals presented with the qualitative questionnaire deemed the stain
quality and usefulness of the generated images as high as their chemically stained coun-
terparts. The questionnaire also showed that the generated images could be correctly
diagnosed as healthy or containing cancerous tissue with 95.83% accuracy. It can there-
fore also be concluded that the tissue virtually stained using a VS-RGAN with a PLS
stack as input was not significantly different in stain quality or usefulness compared to
their chemically stained counterparts. Furthermore, the ability to correctly diagnose can-
cerous tissue was not negatively impacted by the virtual staining process.

Architecture experiments, changing the number of input channels, loss functions, up-
sampling methods, etc., did not generally show statistically significant improvements,
although visual inspection confirmed improvements in specific and relevant areas. This
led us to conclude that it would be beneficial to the method to annotate relevant tissue
sections and measure metrics in these areas specifically. Challenges with data limitation
and variation were identified in the first dataset and alleviated to some extent by the in-
troduction of the second. Partitioning of the second dataset was also improved to ensure
the metric scores reflected the generalizability of the model more accurately. The small
difference between the metric scores of the validation and test data indicates that the
model is well generalized.

69



Although our study would benefit from further development and an extension of the
dataset, it provides evidence of an impressively capable virtual staining network. It
therefore adds to the feasibility of virtual staining using PLS microscopy, and expands
the concept to the field of pathology and generation of large scale images. The results are
promising for virtual staining’s possible application as a standardized, fast, cheap, and
more sustainable alternative to chemical staining.
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7 Future work

One weakness which was identified by several of the experts in the qualitative question-
naire was the low resolution of the images. To pinpoint a number of pathological states,
it is necessary to inspect the internal structure of cells, which requires working in 20-40x
magnification. We believe that increasing the magnification of the images used in this
project, either by using a different objective or by artificially increasing the NA, would
be a fascinating continuation of this project.

Expanding the project to include other types of tissue and, in general, more data would be
a relevant next step to assess the applicability and generalizability of a single network for
virtually staining a range of tissues. Furthermore we believe that working with tissue that
has been annotated with for example origin of the tissue, age of the patient and structural
elements would be beneficial. With annotations, we believe that evaluating the strengths
and weaknesses of the networks could be measured more accurately with the quantitative
metrics which showed poor differentiation in our work despite observed improvements.
These metrics could then hopefully guide training parameters and structural changes to
the network, or even data collection to try and include more of structures that the network
performs poorly on.

This project does not include an ablation study of the LEDs used. Although improvement
was seen with the addition of the PLS stack it is therefore unclear what components of
the stack were most vital. We suggest that this is studied further to make the data
collection process more efficient and to further understand which illumination angles are
of importance and possibly the physics behind why that is. The choice of exposure levels
was also not experimented with in this project. Although avoiding overexposure is a
sound choice some observations were made where thinner areas of tissue may have been
underexposed in the PLS stack which may have been a detriment to the results. We
would therefore encourage exploration of a range of exposure levels and experimentation
with data collection in general to enable more even exposure levels throughout a tissue
sample.

A further use of the virtual staining is the standardization of staining which could increase
the applicability of other machine learning and image analysis methods. An interesting
aspect of this is to integrate the virtual staining process in a network which has the end
goal to pre-classify different pathological states, such as carcinomas.
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A Appendix

A.1 H&E staining protocols

A.1.1 In-house staining at CellaVision

Figure 32: Staining protocol used at CellaVision.
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2. HTX-Erytrosin 
 
Syfte  
Översiktsfärgning. På en bra översiktsfärgning ställs kravet att det ger en klar avgränsning mellan 
kärnor och cytoplasma samt tydligt visualisera olika kärn- och vävnadsstrukturer. Storsnittsvarianten 
står längre tid i ugn och går inte till montering. 
 
Miljöaspekter  
Arbetsmiljö 
Säkerhetsdatablad för respektive kemikalie, se kemikaliehanteringssystemet KLARA. 
Allt arbete med xylen ska ske i skyddsventilerat utrymme. 
 
Avfall 
Isopropanol hälls i utslagsvask i färgrummet. Färglösningar och xylen får ej hällas ut i avlopp. 
Uppmärkta uppsamlingsdunkar till kemikalier finns i spritrummet se anvisning Kemikalier för 
destruktion 18-334. Resterande lösningar får hällas ut i avloppet. 
 
Förberedande behandling 
Formaldehydfixerat och paraffininbäddat material, snittat med standardmikrotominställning. 
 
Kontroller 
Kontrolglas finns försnittade och körs vid byte av färglösningar 1 gång/vecka. Glas märks med datum 
och sparas i 2 månader vid mikroskopet vid utlämningen. Anteckna på Loggblad kontrollglas 18-640. 
 
Apparatur/Tillbehör 
Sakura Tissue-Tek Prisma Plus 
 

Utförande - HTX-Erytrosin och Stor HTX 
 

Utförande Tider 
1 Ugn 60º C 15 min (Stor 20 min) 
2 Xylen 2 min 
3 Xylen 2 min 
4 Isopropanol 2 min 
5 Isopropanol 2 min 
6 Wash Station rinnande kranvatten 1 min 
7 Harris Htx 6 min 
8 Wash Station rinnande kranvatten 2 min 
9 HCl-dest 0,1 % 2 min 
10 Wash Station rinnande kranvatten 4 min (Stor 2 min) 
11 Erytrosin 0,4 % 6 min 
12 Wash Station rinnande kranvatten 1 min 
13 Isopropanol 1 min 
14 Isopropanol 1 min 
15 Isopropanol 1 min 
16 Xylen 1:30 min 
17 Xylen 1:30 min 
18 Montering i maskin (Stor slutstation Iso)  
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Lösningar 

HCl-dest 0,1 % 2 ml HCl + 2000 ml dest. vatten 
Erytrosin 0,4 % 8 g erytrosin + 2000 ml dest. vatten 

 
Bakgrund/Princip 
Hematoxylin är ett av de viktigaste kärnfärgämnena inom histologisk diagnostik. Lösningen måste 
”mogna” och därför tillsätts oxidationsmedel natriumjodat för att påskynda processen. 
Oxidationsprodukten kallas hematein som är ett surt färgämne, som ger svaga, ospecifika, brunaktiga 
färgningsresultat. Genom betmedelstillsats får man en komplex förening - ett färglack. Det positivt 
laddade hemateinkomplexet förenar sig med nukleinsyrans fosforgrupper i kromatinet och färgar 
cellkärnorna i olika nyanser. Hematoxylin enligt Harris innehåller kalialun (kalium-aluminium-sulfat) 
som betmedel som ger olika blå nyanser. För cytoplasma - eller motfärgning används surt erytrosin B 
som är en anjonfärg. Den färgar basiska eller acidofila vävnadskomponenter som cytoplasma, 
acidofila granula, muskel, kollagen bindväv och erytrocyter och ger en rosaröd ärg.  

 
Resultat 
Kärnor - blå 
Cytoplasma - röd-rosa 

 
Referenser  
Modifierad Theory and Practice of Histological Techniques, Bancroft, J, Gamble, M, Fifth edition 
2002 
Kemikaliehanteringssystemet KLARA 
  



A.2 Evaluation Questionnaire

Figure 33: Evaluation questionnaire, introductory page.
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Figure 34: Evaluation questionnaire, questions asked for all included images.
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Figure 35: Evaluation questionnaire, final free form questions.
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A.3 Full PLS stack

Figure 36: Example of the full PLS stack used throughout the project. Each image shown
is an RGB-image, meaning it has three color channels, making the total number of input
channels 72 for a full PLS stack.
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A.4 Bright-Field versus PLS

Figure 37: Full sized version of the ground truth image in Figure 28.

Figure 38: Full sized version of the image in Figure 28 generated by UNet-96-MSEpf-
Pixelshuffle-Attention trained on PLS image stacks.
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Figure 39: Full sized version of the image in Figure 28 generated by UNet-96-MSEpf-
Pixelshuffle-Attention trained on BF images.

A.5 Image Comparison

Figure 40: Full sized version of the ground truth image in Figure 31.
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Figure 41: Full sized version of the image in Figure 31 generated by VS-RGAN.
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