
MASTER’S THESIS 2024

Locally Generated Unique
Identifiers for Geospatial Data
Tim Jangenfeldt

ISSN 1650-2884
LU-CS-EX: 2024-11

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-11

Locally Generated Unique Identifiers for
Geospatial Data

Lokalt Genererade Unika Identifierare för
Geospatial Data

Tim Jangenfeldt

Locally Generated Unique Identifiers for
Geospatial Data

(Constructing a Hash Function for Collision Free IDs on Road

Segments in OpenStreetMap)

Tim Jangenfeldt
ti8752ja-s@student.lu.se

February 26, 2024

Master’s thesis work carried out at Apple Inc..

Supervisors: Patrick Cording, pcording@apple.com
Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:ti8752ja-s@student.lu.se
mailto:pcording@apple.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

This thesis tackles challenges in geospatial data identification within digital
mapping applications, focusing on roads in OpenStreetMap. Traditional meth-
ods for generating unique IDs face limitations, prompting the exploration of
functional ID generation using hashing algorithms. The Geohash portion of the
hash, crucial for representing the geospatial position, undergoes extensive opti-
mizations, including an elevation representation with zero bit cost. The resulting
hashing function demonstrates zero collisions globally in the OpenStreetMap
dataset using 71 bits. Various other optimization attempts are detailed, as well
as an expanded 115 bit version exhibiting collision free IDs for all possible fu-
ture roads. The study contributes insights into geospatial hashing for efficient
and collision-free feature identification, offering practical implications for large-
scale mapping applications.

Keywords: Geospatial Hashing, Collision-Free IDs, Geohash Optimization, Road Rep-
resentation, OpenStreetMap, Mapping.

2

Acknowledgements

I extend my sincere gratitude to my supervisor at Apple, Patrick Cording, and Vladimir
Smida for introducing me to this challenging problem and offering unwavering support
throughout the entire thesis process. Patrick, your boundless enthusiasm for problem-solving
in the geospatial domain has been truly infectious, serving as an engineering beacon to aspire
to.

I am also thankful to Jonas Skeppstedt for serving as the university supervisor and to
Flavius Gruian for examining the thesis.

Lastly I would like to express my appreciation to Sophia Bladh, who endured my endless
ramblings about road IDs in OpenStreetMap.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Motivation . 8
1.3 Scope & Limitations . 8
1.4 Problem Definition . 9
1.5 Previous Work . 9

1.5.1 Geohash (2008) . 9
1.5.2 Vukovic’s Hilbert Geohash (2016) 9
1.5.3 Guo et al.’s Adapted Hilbert Geohash (2019) 10
1.5.4 Tectonic Plate Motion and Global Datasets 10
1.5.5 Locality Sensitive Hashing for Polygons (2017) 10

1.6 Disposition . 11

2 Theoretical Background 13
2.1 Hashing . 13

2.1.1 Universally Unique Identifiers . 14
2.1.2 Geohash . 14
2.1.3 Locality Sensitive Hashing (LSH) 17

2.2 Haversine Formula . 18

3 Methodology 19
3.1 Tools . 19

3.1.1 OpenStreetMap . 19
3.1.2 OSM Tags . 20
3.1.3 Scala . 20
3.1.4 Apache Spark . 21

3.2 Work Process . 21

4 Algorithm Implementation 23
4.1 Preprocessing . 23

5

CONTENTS

4.2 Creation of the Core Hashing Function . 23
4.2.1 Geohash . 23
4.2.2 Intersection Collisions . 24
4.2.3 Length Collisions . 25
4.2.4 Elevation Collisions . 26
4.2.5 Composition of Geohash, Angle, Length, and Elevation 27

4.3 Optimizations for Collision-Free Complete Hash (CFCH) 27
4.3.1 Angle Optimisations . 27
4.3.2 Length Optimizations . 29
4.3.3 Elevation Optimisations . 31
4.3.4 Geohash Improvements . 33

4.4 Runtime Analysis . 35

5 Discussion 37
5.1 Evaluation of Results . 37

5.1.1 Explorations of Further Improvements 39
5.1.2 Geohash Optimization Challenges 40
5.1.3 Churn Issues . 41
5.1.4 Usage in Validation of Duplicate Roads 41

5.2 Answering the Problem Statement . 43
5.2.1 Research Question One . 43
5.2.2 Research Question Two . 43

5.3 Future Work . 43
5.3.1 Expansion to Other Feature Types 43
5.3.2 Choice of Point to Run Geohash On 44
5.3.3 Resolution of Small Changes in Feature Properties 44
5.3.4 Handling of Full Dataspace in Geohash Optimisation 45

6 Conclusion 47

References 49

Appendix A Source code 55

6

Chapter 1

Introduction

This chapter serves as a means to introduce the reader to the subject. A broad background
and motivation, as well as previous research, will be presented, as well as the disposition of
the thesis. We will also introduce our research questions and the limitations we decided upon.

1.1 Background
In today’s digital landscape, maps play an essential role in countless applications, from navi-
gation and location-based services to urban planning and environmental monitoring. These
maps are composed of various geographic elements, such as landmarks, roads, and buildings,
which are collectively referred to as features. Unique identification of data is paramount for
any database or collection [1].

Traditional methods for generating unique IDs, such as Universally Unique IDs (UUIDs)
or a centralized service have been widely used across various domains. However, when it
comes to geospatial data within maps, generating unique IDs can present challenges, espe-
cially when entities are derived from other entities, leading to requirements for idempotent
data processing. UUIDs also take up a large key space (128 bits) [19] and will produce a
new ID every time it is used. For geospatial data, functional IDs that are created based on
properties of the features in a deterministic way would be beneficial, as such IDs could store
information about the feature while also being generated in a local manner without overhead
considerations.

To implement geospatial data into an ID, a natural approach would be to use some kind
of hashing algorithm. Geohash [12] is one notable technique that combines these areas,
designed to encode coordinates into a string of letters and digits. This allows for efficient
indexing and retrieval of geospatial data based on location. This technique comes with two
main limitations. The first is handling complex geometries. Complex geometries in maps can
include irregularly shaped areas, intricate coastlines, and multi-polygon representations of
geographic entities. This means that they are too complex to be represented by one Geohash,

7

1. Introduction

as these only represent a fixed spatial bounding box [20]. Another caveat is the high risk of
collisions due to Geohash only using coordinates, which are not specific enough for a digital
map’s features where properties like elevation need to be taken into account.

For all ID-related problems, it is critical to minimize collisions, as they can lead to data
integrity issues when making the IDs non-unique [28]. Inaccurate identification can result in
incorrect data analysis, misinterpretation of spatial relationships, and hinder core function-
ality. Therefore, developing ID generation algorithms with minimized collision probabilities
is essential to ensure reliability and accuracy.

Apple Maps is one of the world’s largest digital mapping applications. The organization
has an interest in investigating ways of making ID generation within the map more functional
and useful.

1.2 Motivation
As outlined in the preceding section, the proposed algorithm serves as a viable substitute
for the conventionally centralized ID service or UUID within the context of large-scale map-
ping applications. The enormity of data inherent in these applications, often collaboratively
maintained in a distributed fashion, renders a centralized service susceptible to reliability is-
sues. In a global system, the introduction of potential latency problems to the central server
becomes a notable constraint, especially in scenarios like streaming pipelines where requests
are sequentially dispatched. A decentralized system, wherein IDs can be generated locally,
eliminates this dependency, mitigating the risks associated with downtime and constraining
latency based on the algorithm’s efficiency.

In contrast, UUIDs, while leveraging their considerable size as a strength, also bear a sig-
nificant size downside. Their extensive length serves to markedly diminish the likelihood of
collisions through techniques like timestamps [19]. Nevertheless, it is crucial to acknowledge
that the probability of a collision, while sufficiently low for almost every practical use case, is
not absolute zero. The algorithm under investigation in this thesis aims to surpass this colli-
sion rate while concurrently reducing the size of each ID, enhancing manageability on a mass
storage scale. This endeavor seeks to strike a balance, outperforming established collision
rates while optimizing the storage footprint for practical implementation.

1.3 Scope & Limitations
Given the expansive scope of possible feature types within a mapping application, it be-
came imperative to narrow our focus to a more manageable subset of data. Consequently, we
chose to confine ourselves to a specific dataset extractable from the complete OpenStreetMap
(OSM) data by matching the Highway tag [35] on OSM ways. This subset encompasses all
paths from point A to B, including various road types. These range from major highways like
motorways and trunks to local roads such as residential and unclassified streets. The dataset
also includes special road types like service roads and tracks, as well as paths dedicated to
pedestrians (footway) and bicycles (cycleway). Public transportation features like dedicated
bus lanes (busway) are also considered. Designations for specific purposes, such as equestrian
paths (bridleway) and staircases or steps (steps), are incorporated.

8

1.4 Problem Definition

For simplicity, we will refer to these ways as roads. As of February 2024, there are roughly
ten billion features in OSM [27], where one billion of these are ways. There were 224 million
ways matching the Highway tag, meaning we limit ourselves to 2,2% of the overall data, and
22,4% of the ways.

To create a perfect or near-perfect hash function, the source domain must be known [10],
and manipulations of the domain need to be made to reduce the probability of collisions.
Consequently, there can be no guarantee that the resulting function will perform equally
well in any given future world. Therefore, we predicate that the hash function is considered
perfect if it can hash all roads in the world with zero collisions, while also not utilizing any
random elements.

1.4 Problem Definition
In the context of the background and scope, we have formulated the following research ques-
tions:

1. What is the minimum ID bit width computed as perfect hashes in the available data?

2. How is the solution impacted by new data being added in the future?

Due to the limitation of a perfect hash being possible only for the current known dataset,
as stated in Scope & Limitations, RQ#1 has the constraint that the function will only be perfect
for the data extract used in the thesis, a snapshot of all data in OSM, taken at October 30th,
2023. Nevertheless, it is interesting to explore ways to ensure the function performs well as
more road data is added, which is what we will investigate when attempting to answer RQ#2.

1.5 Previous Work
1.5.1 Geohash (2008)
Introduced by Gustavo Niemeyer [12], Geohash has become a fundamental geospatial data
hashing algorithm extensively utilized in diverse applications. The Geohash algorithm, which
will be described in more detail in the Theoretical Background, Section 2.1.2 operates by
iteratively partitioning the global space into smaller bounding boxes, enabling the efficient
encoding of two-dimensional coordinates into a single string of characters. This hierarchical
structuring of data facilitates varying levels of precision, allowing for the representation of
both large and small geographic regions. Notably, the implementation of Z-level curves, also
known as Morton curves, enables efficient spatial indexing and proximity-based searches.

An example of an existing implementation of Geohash in OpenStreetMap are the short
links [35], providing concise identifiers for specific map locations.

1.5.2 Vukovic’s Hilbert Geohash (2016)
In 2016, Vukovic proposed an innovative adaptation of the Geohash algorithm, known as
Hilbert Geohash [34]. This novel approach integrated the Hilbert space-filling curve to en-
hance the precision and efficiency of spatial indexing. Vukovic’s work aimed to address the

9

1. Introduction

limitations of the traditional Geohash algorithm by leveraging the spatial locality-preserving
properties of the Hilbert curve. As detailed in the theoretical background (Section 2.1.2),
the incorporation of the Hilbert curve ensures that nearby points in the two-dimensional
space are accurately represented along the one-dimensional curve. This adaptation not only
improves the accuracy of proximity searches and location-based queries but also offers an
effective solution for spatial data indexing, particularly in scenarios where the conventional
Geohash method falls short.

The property of increased spatial preservation means that Hilbert Geohash will be rele-
vant in our project whenever we investigate tiles in conjunction, to increase accuracy.

1.5.3 Guo et al.’s Adapted Hilbert Geohash (2019)
In 2019, Guo, Xiong, Wu, Chen, and Jing introduced an enhanced version of the Hilbert
Geohash algorithm, termed the Adapted Hilbert Geohash (AHG) [14]. Their research, as
discussed in the theoretical background (Section 2.1.2), focused on refining the representa-
tion of complex spatial geometries within the Geohash framework. The AHG method ad-
dressed the challenges associated with encoding non-point spatial objects by introducing an
adaptive coding level calculation based on the Minimum Bounding Rectangle (MBR) of the
objects. The utilization of the Hilbert space-filling curve, as demonstrated by Guo et al.,
effectively captured the spatial position and size characteristics of 2D spatial objects with
enhanced precision. Notably, the AHG algorithm demonstrated improved spatial encoding
efficiency, allowing for accurate representation of complex geometries while minimizing data
size requirements.

1.5.4 Tectonic Plate Motion and Global Datasets
The study on the effect of tectonic plate motion on georeferenced long-term global datasets
[23] conducted by Mocnik and Westerholt in 2020, sheds light on the dynamic nature of
geographic coordinates in the context of global datasets, such as those utilized in Open-
StreetMap and other geographic databases. The research highlights how tectonic plate mo-
tion introduces a level of complexity, leading to an increasing mismatch between the actual
physical locations and the associated coordinates within these datasets. The manuscript pro-
poses strategies for systematic updates of coordinate values to mitigate the effects of tectonic
plate motion on long-term datasets, aiming to preserve the accuracy and relevance of global
coordinates over time. While this research presents a valid issue that is very interesting and
relevant to the thesis, the solution lies beyond the scope and will be discussed further in the
Future Work chapter.

1.5.5 Locality Sensitive Hashing for Polygons (2017)
Investigations into the usage of Locality Sensitive Hashing (LSH) for polygons were con-
ducted by Gudmundsson and Pagh in 2017 [13]. In their paper, they attempt to utilize LSH,
and in particular MinHash, described in detail in the Theoretical Background chapter to hash
similar polygons to the same hash.

10

1.6 Disposition

It would be of interest to investigate if this could be extended to roads in the geospatial
domain by applying a tiling scheme to the road- and applying MinHash to group similar
roads together, as we could then distinguish between these similarities with some delimiter
without needing many bits to do so. The investigation of this is described in the Discussion
chapter.

1.6 Disposition
This section outlines the structure of the thesis, presenting key chapters and their respective
contributions.

• Introduction The introduction sets the stage for the thesis, establishing the problem
statement, research questions, and objectives. It provides a brief overview of subse-
quent chapters and their roles in addressing the project’s challenges.

• Theoretical Background Gives an introduction to the main fields of study the thesis
is based on, primarily hashing and the Geohash algorithm.

• Methodology The methodology chapter outlines the design and implementation strat-
egy. It details the rationale behind choosing Scala with Apache Spark, the use of cloud
computing for large datasets, and the acquisition and preprocessing of data extracts
from various regions.

• Algorithm Implementation This chapter delves into the details of the Geohash-based
algorithm implementation. It discusses key components, such as considerations for
angle, length, and elevation requirements, and provides a thorough explanation of the
algorithm’s functionality.

• Discussion The discussion chapter interprets the results and examines the successes
and challenges encountered during the investigation process. It analyzes the implica-
tions of the proposed Geohashing algorithm in handling complexities of OpenStreetMap
data and provides insights into potential applications and future research directions.

11

1. Introduction

12

Chapter 2

Theoretical Background

This chapter will introduce the relevant technical background in the field. The main relevant
theory relates to hashing, with most focus being on the Geohash method.

2.1 Hashing
Hashing serves as a fundamental concept in computer science, offering a versatile mechanism
for mapping data of varying sizes into a fixed-length representation known as a hash code
or hash value. At its core, hashing involves the use of deterministic mathematical functions
that consistently produce the same hash value for a given input. This deterministic nature is
crucial for ensuring data integrity and consistency [5], as it guarantees that identical inputs
will always result in identical hash values. To illustrate a hash function, one could use a
concept utilized in this thesis; the modulo operator. An example of such a hash function
could be H(i) = i%17 + 4, i ⊂ N. No matter which number is entered, a number different
from the input is generated, and the result will always be constant for that input. This result
is called the hash code of the input.

In addition to being deterministic, hash functions also strive for uniformity, aiming to
distribute hash values evenly across the potential output space. In an ideal scenario, each
unique input should map to a distinct hash value, minimizing collisions where different in-
puts yield the same hash value. Achieving this property defines a hash function as a perfect
hash function. In the mentioned simple function, input 1 and 18 would both map to the same
output; 1. These inputs cause a collision, and the function cannot be considered perfect.

Perfect hash functions are crucial when collision avoidance is vital, such as in our geospa-
tial data mapping application. Unlike general-purpose hash functions, which may introduce
collisions due to the arbitrary nature of their outputs, a perfect hash function guarantees no
collisions for a specific set of inputs. However, achieving perfection often requires knowl-
edge about the input space [10], and perfect hashing might be challenging for dynamic or
unpredictable datasets.

13

2. Theoretical Background

Randomness in hash functions, often discussed in the context of a random oracle model, in-
troduces an element of unpredictability. A random oracle is a hypothetical black-box model
where the hash function responds to each distinct input with a truly random output. The
output is always the same for a unique input, meaning the function is still deterministic.
While practical implementations of hash functions cannot be truly random oracles, the con-
cept serves as a useful theoretical framework for discussing the desirable properties of hash
functions, particularly their resistance to collision attacks.

Efficiency is a practical concern when working with large datasets. Ideally, hash functions
should be computationally efficient to ensure that the hashing process does not introduce sig-
nificant computational overhead. Striking a balance between uniformity, determinism, and
efficiency is essential when designing hashing algorithms, especially in applications where
minimizing collisions is a priority.

Hashing finds extensive use in unique identifier generation, with one application being
the Universal Unique Identifier.

2.1.1 Universally Unique Identifiers
Universally Unique Identifiers, commonly known as UUIDs [19], are standardized identifiers
used across all kinds of systems to ensure the uniqueness of entities. A UUID is a 128-bit
value, typically represented as a sequence of hexadecimal characters and they offer several
key properties that make them invaluable in various applications.

The primary purpose of UUIDs is to guarantee global uniqueness. UUID generation al-
gorithms are designed to minimize the likelihood of collisions, ensuring that each generated
UUID is highly unlikely to match any other UUID globally. This property is essential in
distributed systems where different nodes need to generate identifiers independently.

Many UUID generation techniques incorporate elements of randomness. Randomness
contributes to enhanced uniqueness, as it reduces the risk of predictable UUID patterns that
could be exploited by malicious actors. In our ID generating use case, the concern for mali-
cious actors does not exist, and as UUID implementation is based on the timestamp it was
produced [19], the same UUID is not produced for a given input. This origins in the fact
that the concept of an input is missing from UUID.

UUIDs find applications in a wide range of use cases. Their versatility and uniqueness
make them a preferred choice for creating identifiers that need to be both globally unique and
resistant to collision. In the context of this thesis, UUIDs represent a significant benchmark
for the uniqueness and collision resistance required in geospatial data identification, and will
be used as a benchmark for the thesis.

2.1.2 Geohash
The Geohash algorithm [12] is a way of hashing geospatial data. It encodes two-dimensional
coordinates into a one-dimensional string of characters by continuously bisecting the global
space, making each added bit target a smaller bounding box of the space. The initial steps of
this bisection of the global space are illustrated in Figure 2.1. This bisection is done on the
latitude and longitude separately, and the bits are then interleaved giving the bit sequence
result. Figure 2.2 shows this step-by-step process of zooming into the correct point.

14

2.1 Hashing

Figure 2.1: Illustration of the first two iterations of Geohash on the
global space. Image by Ian Rees (2015) [30].

A notable result of this is the property of hierarchical structure, as Geohash provides
varying levels of precision based on the length of the generated code. Longer Geohashes rep-
resent smaller geographic areas with greater accuracy, while shorter Geohashes cover larger
regions with reduced precision. This flexibility allows users to balance accuracy and data size
according to their specific needs. This also allows for efficient indexing, enabling systems to
quickly locate and retrieve geographic data within a specified range [20].

Figure 2.2: Bisection of the latitude space for a point located at
30.42◦. Image by user Alibabatech (2018) [2].

Thanks to the hierarchical structure, Geohash has the property that two geographically
close points will share the same Geohash prefix. For each matching character in the Geohash,
the closer the two points are. For this reason, Geohash is commonly used in a spatial indexing
context, for example, to do a proximity search. The opposite will however not always be true;
two geographically close points will not always share a prefix. Geohash uses Z-level curves
(also known as Morton curves) [26]. This means that the grids in the Geohash are related in a
Z-like pattern, see Figure 2.3. As can be seen in the figure, points A and B are geographically
fairly close, but the same cannot be said for their grid’s Geohash representation.

In the context of generating IDs, this is no issue for single-point features and Geohash
encoding can be applied directly to the coordinates. For linear or polygonal objects that can
be represented by their minimum bounding rectangle (MBR), things become a bit more com-
plicated. A typical approach involves encoding corners of the MBR. However, in scenarios
where the MBR of an object intersects a Geohash grid border, the resulting length of the
matching prefix might be insufficient for effective object localization. In Figure 2.3 A and
B have no common prefixes. A real-world example of this occurs for coordinates that are on
either side of the equator and prime meridian. In an attempt to improve upon these issues
caused by Z-level curves, one could use another space-filling curve to construct the Geohash
algorithm. One of the proposed ways for this is to use Hilbert space-filling curve.

15

2. Theoretical Background

Figure 2.3: Second order Z-level curve relationship for 4-bit Geo-
hash. Modified image based on one created by Vukovic [34]

Hilbert Geohash
Hilbert Geohash is an adaptation of the Geohash algorithm proposed by Vukovic [34] in
2016. Unlike the standard Geohash, the Hilbert Geohash algorithm incorporates the use of
the Hilbert space-filling curve, a type of continuous fractal space-filling curve that preserves
the spatial locality of the encoded data points. The Hilbert curve improves the probability
the two-dimensional space are mapped to nearby points along the one-dimensional curve
[18], thus addressing some of the limitations posed by the Z-level curves used in the original
Geohash algorithm.

The Hilbert curve is a space-filling curve that recursively traverses a square in a way that
preserves locality better than other commonly used alternatives. By following the Hilbert
curve, the algorithm effectively reduces the distortion observed in the Z-level curves, ensuring
that points nearby are represented by similar codes along the curve.

Through the integration of the Hilbert curve, the Hilbert Geohash algorithm aims to
enhance the accuracy of spatial indexing. The algorithm has shown to be more efficient in
proximity searches and location-based queries [24], particularly in the previously mentioned
scenarios, where traditional Geohash methods may fall short. Figure 2.4 illustrates the ap-
plication of the Hilbert curve in the Hilbert Geohash algorithm.

Hilbert Geohash still experiences issues with representing complex geometries in the
same way the traditional Geohash does. To account for this an adaptation was researched
by Ning Guo, Wei Xiong, Ye Wu, Luo Chen, and Ning Jing in 2019 [14], where they proposed
the Adapted Hilbert Geohash (AHG). It begins by calculating the encoding precision level
based on the size of the MBR of the spatial object. This adaptation ensures that the grid size
at this level is not less than the spatial extent of the MBR. Then Hilbert Geohashing is used
on the centroid of the MBR. For a more detailed explanation see the flowchart Guo et al.
provided in their paper. The resulting AHG code accurately reflects the spatial position of

16

2.1 Hashing

Figure 2.4: Third order Hilbert curve relationship for 4-bit Geohash.
Modified image based on one created by Vukovic [34]

the object with adaptive precision, where the code length indicates the approximate size of
the object.

In the paper, Guo et al. demonstrate the algorithm using the case of Lake Superior, the
world’s largest freshwater lake. The AHG method calculates the adaptive coding level to
be five based on the size of the MBR. This corresponds to a binary code length of 10 bits.
Utilizing the centroid point of the MBR as the encoding input and employing the Hilbert
space-filling curve for traversing the 5-level grids, the resulting AHG code for Lake Superior
is 0110000000. Notably, the precision of this code level corresponds to an approximate loca-
tion error of 625 kilometers, aligning with the size of the lake. This example highlights the
AHG method’s ability to effectively capture both the location and size characteristics of 2D
spatial objects, with the very interesting side effect of using a smaller data size to do so. If
we are able to encode a rough estimation of the road using AHG, it would be interesting to
investigate if the remaining bits can be used to resolve potential collisions, totaling to less
overall bits.

2.1.3 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) [29] is a technique used in computer science and data
mining for approximate similarity search in high-dimensional spaces. The main idea behind
LSH is to hash similar items to the same "buckets" with high probability, enabling the iden-
tification of potentially similar items efficiently. This approach is particularly useful when
traditional exact search methods become computationally expensive or infeasible due to the
dimensionality of the data.

17

2. Theoretical Background

Minhash and Jaccard Similarity
One of the foundational concepts in LSH is a min-wise independent permutation locality-
sensitive hashing scheme (Minhash), which is commonly applied to estimate Jaccard similar-
ity between sets. The Jaccard similarity coefficient measures the similarity between two sets
by calculating the ratio of the size of their intersection to the size of their union. It is defined
as:

J(A, B) =
|A ∩ B|
|A ∪ B|

For our thesis, Minhash was investigated as a means to identify similar roads using few
bits. This proved to not be fruitful, with implementation attempts and reasons why being
discussed in Section 5.1.1.

2.2 Haversine Formula
A widely used technique in Geographical Information Systems (GIS), particularly in naviga-
tion, is the Haversine formula, designed to compute great-circle distances on spheres such as
our planet [7]. The formula is expressed in Equation 2.1.

a = sin2
(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
λ2 − λ1

2

)
c = 2 · atan2

(√
a,
√

1 − a
)

d = R · c

(2.1)

where:

• d is the distance between the two points,

• R is the radius of the sphere (e.g., Earth’s radius),

• ϕ1, ϕ2 are the latitudes of the two points in radians,

• λ1, λ2 are the longitudes of the two points in radians,

• atan2 is the arctangent function with two arguments, yielding the angle whose tangent
is the quotient of the two specified numbers.

In this thesis, we utilized the Haversine formula to compute accurate length analysis on
the roads in our dataset.

18

Chapter 3

Methodology

This chapter serves as a means to describe tools and the workflow for the thesis. We will also
describe the relevant dataset and its structure.

3.1 Tools
3.1.1 OpenStreetMap
OpenStreetMap is an open-source mapping platform, offering a vast repository of geographic
data contributed by a global community of mappers [15]. OSM’s collaborative model allows
individuals worldwide to contribute geographical information, making it a comprehensive
and continuously evolving dataset [16].

A downside to projects with collaborative freedom is that the data cannot always be relied
upon, as it is subject to bad data coming from user error, intentional or not. To prevent this,
a requirement would be some kind of governing body enforcing data correctness. There is
research into the detection of such errors, with an example being the work done by Svenonius
of Detecting Anomalies in OpenStreetMap Changesets using Machine Learning [33]. There is no
implementation of this built into OSM itself, but there exists different user directed data
cleanup and verification projects.

OSM’s comprehensive dataset and open-access nature have made it a valuable resource
for various research domains [25]. The features in OSM belong to one of three buckets; nodes,
ways, and relations.

Nodes
Nodes in OSM represent individual point features on a map as a specific latitude and longi-
tude coordinate pair with seven digits of decimal precision. These nodes serve as the basic
building blocks for defining more complex geographical structures and are often used to

19

3. Methodology

represent landmarks, businesses, or specific locations of interest. They can also contain addi-
tional metadata, such as the name of a location or its descriptive tags containing contextual
information associated with the geographic points.

Ways
Ways are sequences of nodes that form linear features, such as roads, rivers, and boundaries.
Ways can be either open, forming a polyline, or closed, defining an area or a polygon. This
flexibility enables the representation of diverse geographical entities, ranging from highways
and footpaths to administrative boundaries and water bodies.

Relations
Relations in OSM are utilized to describe the connections and associations between multiple
nodes and ways. They are handy for representing complex and non-hierarchical relationships,
such as routes and multi-polygon features. Relations enable the creation of more intricate
and sophisticated geographical structures within the OSM data model. For instance, they
can define the spatial arrangement of multiple interconnected features, like a network of
interconnected roads forming a specific transportation route [16].

3.1.2 OSM Tags
Apart from its fundamental elements, OSM data is enriched with an extensive tagging system
that provides a detailed and comprehensive description of geographic features. The tagging
system in OSM entails key-value pairs that are assigned to specific map elements, providing
additional context and descriptive information about the features. These tags can range from
simple attributes like names, addresses, and classifications to more intricate characteristics
such as specific amenities, geographical properties, or functional attributes of the mapped
entities.

3.1.3 Scala
Scala [32] is a statically typed programming language that combines object-oriented and
functional programming concepts. It was designed by Martin Odersky to be concise, elegant,
and compatible with Java, Scala has gained widespread adoption in the industry, especially
in the context of big data processing [22]. Its key features include strong static typing, type
inference, pattern matching, and a strong focus on immutability.

Scala’s functional programming capabilities enable developers to write highly modular,
reusable, and composable code [6]. Its support for higher-order functions, immutable data
structures, and powerful collection libraries aid in the creation of complex data pipelines and
processing workflows. Furthermore, Scala’s seamless integration with Java libraries allows
developers to leverage the vast ecosystem of existing Java tools and frameworks.

For the thesis, Scala was chosen for the implementation. The reason behind this is that
we can easily leverage the capabilities of Apache Spark for distributed processing.

20

3.2 Work Process

3.1.4 Apache Spark
Apache Spark is an open-source, distributed computing system that provides an efficient
and flexible framework for large-scale data processing. Offering in-memory data processing
capabilities, Spark enables the rapid execution of complex analytic tasks on large data sets
[31].

Key components of Apache Spark include its resilient distributed data set (RDD) abstrac-
tion, which allows data to be stored in memory across a cluster of machines, and its high-level
APIs in languages such as Scala, Java, Python, and R [11]. Spark’s rich set of libraries for SQL,
streaming data, machine learning, and graph processing makes it a comprehensive solution
for a wide range of big data use cases.

Cloud Computing for Data Processing
The integration of Apache Spark with cloud computing services has revolutionized the pro-
cessing of vast volumes of data. With the capability to distribute processing across a cluster
of machines in the cloud, Spark can efficiently handle the scale and complexity of datasets,
enabling organizations to perform data-intensive operations [3]. By leveraging cloud com-
puting resources, organizations can harness the scalability and elasticity of cloud infrastruc-
ture to execute complex data analysis, including tasks like data cleaning, transformation, and
machine learning at scale.

3.2 Work Process
Scala, coupled with Apache Spark, was selected as the programming language for the imple-
mentation phase. This choice was driven by the need for cloud computing support, especially
crucial for handling the extensive datasets provided by OSM. We will need to process all 224
million roads in the world, and keep their hashed ID in memory in order to compute colli-
sions, something that is a difficult task without utilizing distributed processing. The reason
behind choosing the Scala version of Apache Spark over python, java and R was that we
were most comfortable and experienced with it. The focus could thus be shifted to learning
Spark-specific implementation details, without getting caught up on syntax and conventions.

We opted to collect smaller data extracts for individual countries, regions, and cities.
This way we could run tests faster for purposes where a global run was not needed. That way,
we could target specific areas displaying weak points of our algorithm, and iterate in a faster
manner. Data extracts were obtained from https://download.bbbike.org/osm/ and
http://download.geofabrik.de/. Refer to Table 3.1 for an overview of the downloaded
extracts, all in the .osm.pbf (protocol buffer binary format).

The implementation of the hashing function was motivated by addressing the research
questions. To answer these questions, we divided this implementation into two steps. Step
one aims to create a function with zero global collisions, while step two optimizes this result
to achieve the smallest size possible. After these two steps, we should be able to address RQ#1
and provide us with the tools to analyze the result and its impact on handling new features
added in the future, to address RQ#2.

In order to apply to the limitations discussed in Section 1.3, we also conducted a prepro-
cessing step, where these limitations were applied to extract the 224 million roads from the

21

https://download.bbbike.org/osm/
http://download.geofabrik.de/

3. Methodology

larger 10 billion feature dataset.
In constructing the hashing function, the overarching approach was to begin with adding

a property associated with the road, compute the hash, and visualize the roads whose hash
code collide in OSM’s web API. We could then decide upon what caused the collision, modify
our property, or add a new one, and keep iterating. This was repeated until we reached zero
collisions on the global dataset, and the process was then restarted with the goal of optimizing
the size of our properties. Our metric of success was that that no more optimization was
possible, while still having zero global collisions.

Table 3.1: Dataset size and region for the OSM extracts.

Region Size
Malmö 20MB
San Francisco 22MB
Stockholm 33MB
Copenhagen 35MB
Luxembourg 39MB
Madrid 42MB
Switzerland 423MB
Sweden 654MB
Spain 1.1GB
Japan 1.8GB
Germany 3.9GB
USA 9.3GB
Asia 12.3GB
Europe 27.5GB
Global 71GB

22

Chapter 4

Algorithm Implementation

This chapter focuses on the implementation related to the road dataset. We present our
method of preprocessing and go through our implementation and optimization details. See
Appendix A for the source code corresponding to the sections.

4.1 Preprocessing
In the preprocessing step, roads were extracted from the raw data using the Highway tag on
the OSM type way subset. Highways containing the area tag were filtered out, as represent
an area surrounded by a road, such as a square [35]. We also filtered out roads that exist but
only have one node, as the osm wiki documentation [35] state that these roads are corrupted
data. The node references of these ways were then inner-joined from the Node subset to
obtain their coordinates, with the order they appeared in the node references preserved. This
preservation is necessary, as a road is a composition of road segments between two nodes. If
this order is not preserved, the road is transformed into a different shape. Lastly, we also
included the tags of the ways.

The processing of this data was carried out using the osm4scala library [4]. This library
was specifically designed to parse .osm.pbf files into a Spark data frame, simplifying the com-
plexity of this process into the succinct code extract .read. f ormat(” f ile.osm.pb f ”), while
harnessing Spark’s parallelization capabilities.

4.2 Creation of the Core Hashing Function
4.2.1 Geohash
Given the prevalent focus on Geohash in previous research, it serves as a natural baseline
for our hashing function. The Geohash implementation employs a recursive binary search

23

4. Algorithm Implementation

method, with the coordinate range for the entire world: longitude ∈ (−180, 180) and latitude
∈ (−90, 90).

As mentioned in Section 2.1.2, the input for Geohash is a coordinate, meaning one lat-
itude and one longitude value. Due to the definition of a way in OSM being that it is a
composition of many such nodes, a decision needed to be made on which coordinate point
should be used for the Geohash. We decided to use the middle point of the road, mean-
ing the average latitude and longitude values of all nodes. As coordinate points in OSM are
represented as 32-bit floating point numbers with seven-digit precision, we cannot describe
the coordinate in more detail than exists. Thus, the maximum precision for our Geohash
becomes 64 bits.

When testing this on our small datasets, it could be observed that employing Geohash at
max precision, we as expected only get collisions that are nearby spatially. These collisions
generally fell into one of three buckets; an intersection case (Figure 4.1), a length case (Figure
4.2) as well as an elevation case (Figure 4.3). These collisions served as the direction of what
needed to be implemented next.

Figure 4.1: Observed intersection collision for high precision Geo-
hash.

4.2.2 Intersection Collisions
In cases where roads intersect in an X-pattern such as in Figure 4.1, the middle points are
often the same coordinate, leading to collisions for the Geohash. This was observed to occur
when the only distinguishable difference between the two roads was the angle of the vec-
tor. To account for these collisions, the angle of the road vector is thus needed in the hash
function. This angle was calculated between the start- and end-point of the vector, using the

24

4.2 Creation of the Core Hashing Function

Scala math library function atan2. The resulting angle was then encoded into a binary repre-
sentation using a modulo operation with the number of desired bits B on the form 2B. The
reason behind this choice was that if these collisions can occur for any two angles, we cannot
perform better than random. As we do not want random elements in our hash function we
investigated optimizations for this encoding, described in Section 4.3.1, but utilizing modulo
with ten bits was seen as sufficient for step one. At ten bits no collisions remained globally,
so we chose this number to represent angle.

Figure 4.2: Observed length collision for high precision Geohash.

4.2.3 Length Collisions

Figure 4.2 highlights instances in the data where the Geohashed midpoint and the previously
mentioned angle addition result in collisions. To address such cases, another metric becomes
necessary. The observed discrepancy in the lengths of colliding roads necessitates the inclu-
sion of length information in our hash. To incorporate length into the hash, the road’s nodes
are divided into distinct road segments. The start and end nodes of these segments are then
utilized in the Haversine function presented in Section 2.2. The resulting lengths are summed
up, and this total length is encoded into the hash using a modulo operation on the form 2B,
akin to the procedure described in the preceding section. Once again, replacing this modulo
operation was left for an optimization once we reached zero collisions globally, described in
Section 4.3.2. As in the angle case, ten bits was sufficient to resolve all global collisions.

25

4. Algorithm Implementation

Figure 4.3: Observed elevation collision for high precision Geohash.

4.2.4 Elevation Collisions
Another collision category that emerged was elevation collisions, exemplified in Figure 4.3.
This scenario depicts two roads at Lund University, sharing identical hash values for mid-
point, angle, and length. The sole distinguishing factor between these roads lies in their
elevation, represented by the OSM tags layer and level.

Layer Tag
The layer tag signifies elevation concerning other ways. If the tag is absent, the implicit value
is zero [35]. The typical range of layer values spans from -5 to 5, represented by whole integers.
For instance, a bridge positioned above a road would possess a tag with a value of one, while
the road itself would have no such tag. Conversely, a tunnel situated below a road might carry
a value of -1, with a subsequent tunnel underneath bearing the value -2.

Level Tag
Primarily utilized for indoor features [35], the level tag designates the floor level within a
building. In the context of way features, this tag finds application in stairs or indoor corri-
dors, similar to those depicted in Figure 4.3. A corridor in the basement of a building, for
instance, could have a level tag with a value of -1, along with the ground floor marked as
zero. The level tag may also denote an elevation span, using the syntax a; b, indicative of an
ascent from level a to level b. While fractional values such as 0.5 or 1.5 are subject to ongoing
discussions [35], the permissible range for this tag remains unclear.

26

4.3 Optimizations for Collision-Free Complete Hash (CFCH)

Encoding Elevation
Considering the layer tag, a four-bit representation effectively encompasses the range −5 ≤
layer ≤ 5, justified by 24 > (5 − (−5) + 1). Conversely, determining an optimal range for
the level tag presented challenges due to ambiguous documentation. Notably, discussions
regarding the utilization of fractional values further complicated this matter [35]. In the
absence of precise guidelines, empirical testing on the entire global dataset was conducted,
assuming the correctness of the available data. The decision was made to hash only the "from"
value in cases where the level tag denoted a range. Moreover, a prioritization strategy favored
level over layer when both tags coexisted.

Empirical results from testing revealed that encoding values within the range −3.0 ≤
level ≤ 3.0 with a step of 0.1, along with 3.5 ≤ level ≤ 10 with a step of 0.5, encompassed
the existing collisions where the level tag was decisive. This range amounted to 72 distinct
values, necessitating seven bits for their comprehensive representation.

4.2.5 Composition of Geohash, Angle, Length, and
Elevation

Combining the four previously introduced hash components—Geohash, Angle, Length, and
Elevation—we conducted a performance benchmark using the planet.osm.pbf dataset extract,
containing 224 million roads. Utilizing maximal precision, with 64 bits for Geohash, ten
bits for Angle, ten bits for Length, and seven bits for Elevation, initial observations revealed
numerous collisions. In-depth analysis, facilitated by OpenStreetMap’s web API, confirmed
that these collisions were exclusively attributed to inaccuracies or errors in the dataset. This
pervasive issue, stemming from the open-source nature of the data, will be elaborated upon
in Chapter 5.

Upon filtering out collisions stemming from erroneous data, the revised hash—referred
to as the Collision-Free Complete Hash (CFCH) achieved zero collisions globally using 91 bits.
This achievement sets the stage for further enhancements, aiming to answer the research
questions posed and refine CFCH into a definitive perfect hash function.

4.3 Optimizations for Collision-Free Complete
Hash (CFCH)

This section is dedicated to exploring strategies aimed at reducing the size of CFCH while
maintaining optimal collision resistance.

4.3.1 Angle Optimisations
The initial step in optimizing the size of any hash is to explore the removal of bits and analyze
its impact on collision resistance. In the angle implementation detailed in Section 4.2.2,
collisions were essentially random as long as the angles were not the exact same, resulting
in collision probability performing as well as random chance. The performance for random

27

4. Algorithm Implementation

collisions is described as given k randomly generated hashes, with N number of ways of describing
each hash, what is the probability that two hashes will collide.

This problem is well-documented in literature, more commonly known as the Birthday
Problem [21], where N is equal to the days in a year (commonly set to 365), and k is the number
of people in your dataset. The formula to compute this collision probability can be seen in
Equation 4.1. For cases where N and k are large (which is often the case in hash collision
scenarios), and using the fact that 1 − x ≈ e−x as x → 0, the formula can be approximated
to k2

2N .

P(collision) = 1 −
k−1∏
i=0

(
1 −

i
N

)
(4.1)

To surpass random performance, assumptions about the dataset the function will run on
would need to be made and utilized in some manner. The resulting hash function would then
perform better, as long as these trends are present in the dataset. As stated in Section 1.3, we
have to make the assumption that these trends will remain in order to consider our function
perfect or near-perfect.

Examining the intersection cases that necessitate an angle hash revealed a key character-
istic; the angle between vectors in an intersection has a lower bound, denoted as angle_lower.
If we split the angle space 0 ≤ angle ≤ 2 · π into buckets and hash the bucket index, then
two roads can only collide if their angle is sufficiently small. If bucket size < angle_lower,
we will not get any collisions for the entire dataset.

For the scenario in Figure 4.4, the angle between the two roads is 0.10575 radians. 2·π
26 ≈

0.0982, meaning that six bits would be sufficient for the two vectors to be placed into dif-
ferent buckets, even if one of the vectors coincides exactly with the start of a bucket interval.

Figure 4.4: Intersection collision with a small angle between the road
vectors.

To determine the global lower bound, we executed our hash function on the global dataset

28

4.3 Optimizations for Collision-Free Complete Hash (CFCH)

using this new bucket method. This could be implemented using the base simple binary
search function, utilizing 0 ≤ angle ≤ 2 · π as the range. Running the job using 64 bits for
Geohash, 10 bits for length, 7 bits for elevation and varying the value for angle, we managed
to reach zero collisions caused by intersections at six bits.

Thus, we successfully removed four bits from the angle portion of the hash, simultane-
ously eliminating the random elements associated with the modulo operator and satisfying
RQ#1, as we now fulfill the requirements for a perfect hash as described in the Problem Defi-
nition Section 1.4.

4.3.2 Length Optimizations
In optimizing for road lengths, our approach mirrored the one used for angle. The goal was
to eliminate the random elements introduced by the modulo operation, striving to achieve a
perfect hash state for the known dataset.

Implementing a bucket solution for lengths posed a more complex challenge compared
to angles. In the angle scenario, the assumption that all angles were equally likely to occur,
coupled with the limited range of 0 ≤ angle ≤ 2 · π, facilitated a straightforward approach.
However, for road lengths, no clear upper bound existed, as roads could be arbitrarily long.
The likely non-uniform distribution of lengths would result in a highly imbalanced bucket
distribution based solely on length. To address this, we sought to understand the length
distribution in the current dataset, recognizing the need to make reasonable assumptions to
create a hash function close to perfection.

To determine the bucket distribution, we analyzed the lengths of the approximately 224
million roads in the global dataset. The resulting rough distribution is depicted in Figure
4.5. Notably, longer roads were less frequent in the dataset. To implement the same bucket
(binary search) methodology employed for angles, a pre-processing step was necessary to
determine which length values should belong to each bucket.

In the pre-processing step, roads were sorted based on their lengths. For b bits, the sorted
list was divided into b equally large segments, and the head value for each sub-sequence was
extracted. The resulting list’s initial element was substituted with zero, and∞was appended
as an upper bound beyond the last value. These intervals then constituted the range. The list
was cached, and in the hashing pipeline, the bucket index could be determined by searching
for the index satisfying list[index] ≤ length < list[index+1], a process implemented using
binary search.

Executing this pre-processing job with various bit counts revealed that at six bits we had
resolved most collisions caused by length. The remaining collisions shared a common char-
acteristic—they all involved circular roads where the sole distinguishable difference was the
circumference. An illustration of one such collision is presented in Figure 4.6. Distinguishing
between these cases necessitated additional bits in the length hash. However, given that all
these collisions involved circular roads with identical start and end points, the angle hash
contributed no additional information. This insight led to the optimization that when the
road’s start and end points coincide, all angle bits could be utilized for extra detail in length.
With six angle bits and six length bits, this translated to an increase from 26 = 64 buckets to
212 = 4096 buckets. This adjustment proved more than adequate to address circumference
collisions without requiring extra bits.

When reducing the size to five bits, a pattern emerged among the introduced collisions—they

29

4. Algorithm Implementation

Figure 4.5: Rough distribution of road lengths in the global data set
in cm, as the shortest roads were only centimeters long.

Figure 4.6: Circumference collision for six bit length optimisation

formed V-shaped structures, differing in the length between the start and end points, as vi-
sualized in Figure 4.7. Similar to the case with the circumference, where the angle had no
impact, we leveraged this observation to re-purpose angle bits for encoding length. The con-
dition was set that the length from the start to the end node needed to be shorter than the

30

4.3 Optimizations for Collision-Free Complete Hash (CFCH)

length from the start to the middle-most node. This optimization proved successful, and we
managed to resolve all length collisions using five bits.

As was the case in angle, this optimization was based upon the assumption that the length
distribution trend stays relevant in the data. If this distribution changes in the future, our
function is less accurate and becomes more prone to collisions.

Figure 4.7: Very similar roads, sharing the same middle point

4.3.3 Elevation Optimisations
The elevation hash presented a unique characteristic compared to other components: only
roads containing elevation information utilized this portion of the hash. Given that this
subset of roads was relatively small within the entire dataset, the seven bits allocated for
elevation were largely unused by the majority of roads. Consequently, the investigation aimed
to integrate these elevation bits into the broader hash without significant loss of accuracy.

A key insight emerged from the fact that, in cases involving elevation, collisions occurred
only among features that were identical except for elevation elements, thanks to the opti-
mizations for angle and length. When constructing the Geohash portion, it was decided to
run Geohash on the midpoint of the road, representing the average latitude and longitude
values of all nodes. Realizing that the point where Geohash is executed can be shifted, the
method of shifting can convey information. This shift, if unique for a given elevation value,
eliminates collisions for features with identical geospatial information, except for elevation.

The initial concept involved using seven fewer bits for Geohash when a feature contained
elevation data. This would result in a Geohash tile 27 times larger, where each small tile,
originally used for Geohash precision, could be assigned a static value mapped to an eleva-
tion value. One value was reserved to handle collisions between the Geohash point of the

31

4. Algorithm Implementation

elevation-lacking feature, which still used full Geohash precision. This collision possibility
was mitigated by checking if the reserved elevation tile matched what would be computed
without elevation. If so, the reserved tile was used. Visualization of this concept is presented
in Figure 4.8, where four bits are used for clarity. The red tile represents the full precision
Geohash tile if the feature lacked elevation. All tiles except for the reserved green tile are
mapped to an elevation value. For the elevation value mapped to 1001, a collision is found
when compared to the full precision tile. In this case, the green tile is chosen to resolve the
collision.

Figure 4.8: 4-bit elevation-Geohash replacement

Implementation attempts revealed that seven bits introduced a slightly higher error, caus-
ing collisions with nearby features. Figure 4.8 provides an intuitive understanding of this
issue when looking at the edge tile 0011 which is located fairly far away from the road vec-
tor. To address this, the values were encoded into different four bit geohash tiles, shifted
along the road vector. Elevation collision candidates, having the same node coordinates but
different elevation values, allowed for shifting the midpoint along the polyline into the next
Geohash tile. Multiple four-bit tiles shifted k-tiles from the midpoint along the vector were
employed to cover all required elevation values. To fill the 72 necessary values, a total of five
four-bit tiles were needed: one at the actual midpoint and two shifted ones in both direc-
tions along the vector. This process is visualized in Figure 4.9, where the original midpoint
is represented in red, along with the first two shifted four-bit Geohash grids based on the
yellow tiles, located one Geohash diagonal away along the road vector.

Performance measurements employing these optimizations demonstrated the elimina-
tion of all elevation-related collisions without adding any extra bits to the composite hash.
Once again this optmization heavily relies on the trend for how elevated roads appear in the
current data, and is prone to collisions if this trend changes.

32

4.3 Optimizations for Collision-Free Complete Hash (CFCH)

Figure 4.9: Midpoint shifted 4-bit elevation-Geohash replacements

4.3.4 Geohash Improvements
The Geohash component of the hash structure holds paramount importance due to its sub-
stantial size, making it crucial to explore optimization avenues. As discussed earlier, reducing
precision in Geohash may lead to collisions, especially in scenarios where features demand
higher precision for accurate differentiation. An illustrative collision example is presented in
Figure 4.10, depicting a bus stop where the sidewalk and platform closely align with identical
angle, length, and elevation.

Given these challenges, the focus shifted towards optimizing the leading portion of the
Geohash. Considering the geographical distribution of roads, particularly in urban areas,
roads are not uniformly distributed across the globe. For instance, large portions of the Pa-
cific Ocean have minimal road presence, while cities exhibit dense road networks. Conse-
quently, the initial 64 bits of our hash are sparsely distributed in most regions but highly
clustered in specific areas.

As previously mentioned, while the global road distribution might evolve, creating a
perfect hash for every conceivable scenario remained an insurmountable task. Leveraging
this uneven distribution to our advantage, we had the idea of implementing hash tables.
The idea involved dynamically allocating hash bits based on the local feature density. For
instance, in sparsely populated regions like the Pacific Ocean, we could allocate a smaller
percentage of the hash space, optimizing the representation for the actual feature distribution
rather than adhering to a fixed global allocation. In practice, a manual determination of
coordinate ranges with sparse road distribution was impractical and challenging to define

33

4. Algorithm Implementation

Figure 4.10: Example highlighting the need for high-precision Geo-
hash to distinguish features

comprehensively.
To gauge the density-entropy of sparse road distributions, we devised a strategy by hash-

ing all roads to a lower precision and measuring the density-entropy of each corresponding
tile. In alignment with RQ#2, we also extended this to consider nearby tiles likely to expe-
rience increased density in the future, especially those adjacent to dense tiles. To measure
the density of tiles at an even lower Geohash precision, we again ran the same job assigning
each road to its Geohash tile at the lower precision. This essentially meant zooming out to
ascertain if larger tiles exhibited higher density proportions. We utilized Geohash Hilbert
for this, as it has the property of preserving a better locality than regular Geohash, something
we discussed in Section 2.1.2.

This pre-processing job involved encoding indices for tiles with entropy above a defined
threshold. Sparse non-empty tiles below the threshold are placed in a separate sparse bucket,
and each is assigned a specific hash value. Subsequently, these indices are encoded using the
minimum required bits. For new hashes with a distribution of zero during pre-processing, it
will be assigned the first available index. In the case that the world grows beyond the spaces
that fit within the size we have chosen, a random assignment of one of the values within the
sparse distribution is made. Although this introduces a collision risk for the first part of the
Geohash until the pre-processing is rerun, the shared tile’s sparsity significantly mitigates the
collision risk.

We chose a precision of 28 bits for the small tile measurement, providing a maximum
latitude/longitude error of 1221 m at the equator [17]. For larger tiles, a precision of 24 bits,
equivalent to an error of 4886.496 m at the equator, was chosen. We set the density thresholds
at 10 for small tiles and 320 for larger tiles. The reason behind these choices was that any tile
below 10 (small) or 320 (large) at 1221 m or 4886 m respectively we determined to be urban.
We used an OR check on whether the tile’s density exceeds these values to determine whether
a tile should be marked as sparse or dense. The results are presented in Table 4.1. Utilizing 24
bits to assign indices to all 12615718 populated tiles yields an additional 224 − 12615718 =

34

4.4 Runtime Analysis

4161498 unused reserved tiles for future pre-processing runs. Once these are filled, a small
risk of a collision is introduced.

Table 4.1: Number of 20-bit tiles matching the predicate.

Predicate Number of matching tiles
Global tiles 268.435.456
Populated tiles 12.615.718
Sparse tiles 8.945.804
Dense tiles 3.669.914

4.4 Runtime Analysis
As described in Section 1.2, a key advantage of avoiding a centralized service is the elimination
of latency associated with service requests. The extent of this benefit, however, hinges on the
efficiency of the proposed replacement algorithm. Therefore, it was imperative to assess the
efficiency through a runtime analysis.

Firstly, the time complexity of the four hash properties was analyzed to identify its up-
per bound. While generic binary search algorithms exhibit a logarithmic time complexity
proportional to the size of the array [9], our algorithm’s recursive depth is limited to the
number of bits used to represent the hash. Consequently, the time complexity for the binary
searches is O(precision), where precision is a constant. The Hilbert Geohash function also
only depends on the static precision parameter, and thus also performs in constant time.

Although the binary search for length index is constant, the calculation of this length is
not. The haversine function runs at constant runtime, but as we calculate the length as the
composite of the length between nodes, we need to run haversine N − 1 times, where N is
the number of nodes in the road segment. Thus the time complexity becomes O(N) for this
part.

Since time complexity is decided by the worst case, our composite algorithm runs at
O(N), where N is the number of nodes in the road. Experiments conducted on an Apple M2
Max with 64 GB RAM, validated this observation. The results are illustrated in Table 4.2 For
a road having two nodes, the time complexity reduces down to constant, and our algorithm
could compute its hash in a mere 0.3 ms. For the upper bound, a test using a road with 270
nodes yielded a runtime of 7.3 ms.

Table 4.2: Runtime for roads of differing lengths.

Number of nodes Runtime (ms)
2 0.3
270 7.3

35

4. Algorithm Implementation

36

Chapter 5

Discussion

This chapter will analyse and discuss the results from the previous section, aiming to address
RQ#2. Additional implementation ideas that were unfruitful will be discussed, and we will
also present ideas for future research directions on the subject.

5.1 Evaluation of Results
In Chapter Four, we successfully developed a hashing function that achieved zero collisions
in the global OpenStreetMap data set. The initial iteration utilized 91 bits, and through
subsequent improvements, we managed to reduce this to 71 bits without incorporating any
random elements. A summary of these optimizations can be seen in Table 5.1 While this
reduction is noteworthy, common data type representations often align with powers of two.
Therefore, to represent an ID exceeding 64 bits, a 128-bit alternative is typically employed.
We propose a way to work around this would be to store the ID as a combination of one 64-
bit part, and one eight-bit part totalling 72 bits. Nevertheless, an exploration of possibilities
to further reduce the size below 64 bits was seen as necessary, which will be detailed in the
following section.

Table 5.1: Summary of results from the optimizations to the core
algorithm.

Subset of hash CFCH Optimized CFCH
Geohash 64 60
Length 10 5
Angle 10 6
Elevation 7 0
Total 91 71

37

5. Discussion

In Section 4.4 we analysed the time complexity of our algorithm- and ran experiments
to verify our hypothesis regarding the runtime. In Figure 4.5 we could see that long roads
are uncommon in the data, and as this is the slowest part of our algorithm, most roads will
be computed fast. A side-note that needs to be taken into account is that our experiments
were made on a powerful machine, and may thus not give an accurate representation of all
potential users. A centralized service also has the benefit of very easily handling batch re-
quests. The algorithm we proposed was implemented in a sequential fashion, so a concurrent
alternative may be of interest to investigate if a user struggles with performance.

The obtained results are compared with the alternatives discussed in Section 1.2, illus-
trated in Figure 5.1. This also includes a depiction of the original CFCH without optimiza-
tions, alongside an extended CFCH designed to almost guarantee uniqueness for all con-
ceivable future roads. The upper bound for the latter, totaling 115 bits, was estimated by
considering various factors:

• Length range: 0 ≤ length ≤ 2.043.071 (max length found in data), with a step of 0.1
cm, requiring 25 bits.

• Angle range: 0 ≤ angle ≤ 2 · π radians, with a step of 0.0001, demanding 16 bits.

• Geohash set to 64 bits, representing maximum precision.

• Elevation range: −100 ≤ elevation ≤ 100, with a step of 0.1, necessitating 10 bits.

Figure 5.1: Number of bits required for each ID representation con-
vention.

In contrast, a centralized service only needs to convey the cardinality of the set, equivalent
to the current number of elements in the data. For the utilized dataset, encompassing 224
million features, a mere 28 bits suffice today. The graphical representation underscores that
our proposed solution achieves a smaller size than UUID while avoiding a dependency on a
centralized service, as detailed in Section 1.2. Notably, it also possesses the unique capability
to detect duplicates at creation, further explored in subsequent sections.

38

5.1 Evaluation of Results

An intriguing revelation from the graph is the size of the expanded CFCH, approaching
a near guarantee of uniqueness for all future roads, while not exceeding the size of the 128
bit alternative, UUID.

5.1.1 Explorations of Further Improvements
This section serves as a means to describe attempts to further optimize the function, mainly
through the exploration of the technologies described in Previous Work (Section 1.5).

Locality-Sensitive Hashing (LSH) Approach
As discussed in the Previous Work chapter, an intriguing approach involves leveraging the
clustering properties of Locality-Sensitive Hashing (LSH). The proposed method integrates
MinHash with k different randomly chosen hash functions applied to road features. The
minimum value across these hash functions is compiled into a k-length hash. Thanks to the
characteristics of MinHash, the resulting hash exhibits the property that more similar roads
yield more similar hash values. To represent roads, a Geohash tiling approach with lower
precision was employed. This involved interpolating between each pair of nodes within a
road to ensure that even short roads with two nodes received multiple tiles.

Each hash function was executed on each Geohash tile associated with a road, and the
minimum value was extracted. Utilizing a Java library based on the fast non-cryptographic
XXHash algorithm [8], a seed parameter allowed using the same k-number hash functions
for every road. The code implementation can be found in Appendix A.

To resolve collisions introduced by the LSH approach, the same resolution strategy used
in the original implementation was applied: appending the tail bits from the Geo-elevation-
hash. With this strategy, all collisions resulting from LSH, with parameters k = 48 and Geo-
elevation-hash precision 8, were successfully resolved, achieving 0 collisions globally using 56
bits.

Despite this achievement, the optimization was deemed unsuitable due to an increase
in false positives when reducing precision further. False positives refer to roads that, by
chance, map to the same hash value but are not similar in any capacity. Drawing parallels
to the birthday problem described in Section 4.3.1, the formula for computing the collision
probability given k and N was adapted to estimate the number of collisions for the same
parameters. The Scala code implementation for this calculation can be found in Listing 5.1.
This same formula applies to the randomness introduced with false positives in LSH.

This highlights that using less bits than required to accurately distinguish between col-
lision candidates introduces a random risk of a collision. As these false positive collisions
are purely random, they do not perform better than a random oracle and because of this we
discarded the strategy.

Listing 5.1: Expected number of collisions for a random hash func-
tion

def expectedCollisions(k: Int, N: Int): BigDecimal = {
val denominator = BigDecimal(2) * BigDecimal(2).pow(N)
BigDecimal(k) * BigDecimal(k) / denominator

}

39

5. Discussion

Large Drop of Head in GeoHash
Another approach considered was to drop a significant prefix of the GeoHash. This would re-
sult in all roads sharing a broader location on Earth. The assumption here was that collisions
would be exceedingly rare since coinciding factors, such as location within this tile, angle,
and length, would all need to align for a collision to occur. However, upon implementation,
it became evident that, once again, the random nature of these parameters would lead to a
probability akin to the Locality-Sensitive Hashing (LSH) attempts—essentially resembling a
perfectly random function.

It is worth noting that roads within a tile still cannot collide. Thus, while there is a
marginal improvement over random hashing, the difference is not significant given the vol-
ume of available data.

Application of Guo et al.’s Adapted Hilbert Geohash (AHG)
Attempts were made to apply the findings by Guo et al. The idea was that while the appli-
cation of AHG (Angle Histogram Grid) might introduce more collisions for roads sharing
the same Minimum Bounding Rectangle (MBR), it could potentially allow us to use fewer
bits than those stripped off during the process, thus resolving collisions more efficiently than
increasing Geohash precision. However, this approach encountered two main challenges.
Firstly, some road segments were exceptionally short, necessitating a relatively high Geo-
Hash precision to capture them accurately. Consequently, the MBR of these short segments
did not significantly exceed the maximum precision Geohash tile, limiting the number of bits
that could be saved for this edge case. Suppose bits were used to resolve collisions for roads
with a large MBR. In that case, it might inadvertently introduce collisions with shorter roads
that coincidentally share the resulting hash as a Geohash prefix. Consequently, we opted not
to further explore this approach in our algorithm.

5.1.2 Geohash Optimization Challenges
The most intricate optimization lies within the Geohash component of the hash. To leverage
the inherent likelihood that certain regions of the world contain fewer roads and to allocate
less space for these areas, we had to make a decision regarding a cutoff precision. Higher pre-
cision allowed for more space reduction but risked overfitting the current dataset. We settled
on 28 bits, as the error at that precision is at the scale of a city. Additionally, we introduced
the larger tile at 24 bits to check if our tile was close to a populated one, anticipating that
cities tend to grow, and most, if not all, new roads would connect to existing ones. While it
is possible to increase this precision much further and create a nearly perfect hash mapping
with each 64-precision Geohash tile having a reserved index, doing so would guarantee col-
lisions with new additions to the map. This extreme scenario would significantly reduce the
size of the Geohash portion of our composite hash but could introduce issues with new map
additions.

Another consideration when increasing precision too much is the storage space required
for this Geohash map. Creating an artifact hundreds of gigabytes large for this purpose may
not be desirable.

Determining the size of the Geohash prefix from 28 to 24 bits is straightforward in C

40

5.1 Evaluation of Results

using the built-in function sizeof(). Scala lacks an equivalent function due to the properties
of the JVM and object references in Java-based languages, making it challenging to obtain
an exact answer. However, an estimation for code without references can be obtained using
the code shown in Listing 5.2. Running this on the Global dataset, we estimate the mapping
artifact to be five GB for the current extract, with an average of 344 bytes per key-value pair.
Due to the large size, it would be beneficial to investigate the compression of this artifact in
a manner where you could still obtain the value for a key without decompressing the entire
artifact. This is left as future work potential.

Listing 5.2: Measurement of mapping size
val denseSparseToIndexRDD = denseRoadMappingsRDD ++ sparseRoadMappingsRDD
val baos = new ByteArrayOutputStream()
val oos = new ObjectOutputStream(baos)
oos.writeObject(denseSparseToIndexRDD.collect().toMap)
oos.close();
val size = baos.size()

Another concern arises when adding roads to a previously unused tile after exhausting
all indices in 24 bits. For instance, in the scenario where a new city is built in the middle of a
desert, our implementation randomly assigns a sparse tile. While the collision risk within this
tile is minimal, it does introduce potential collision risks in the future. In cases where such
occurrences are unacceptable, adjustments may be necessary, such as increasing the precision
to 25 bits or reconsidering this optimization altogether.

5.1.3 Churn Issues
A noteworthy consideration when employing this hashing function is the potential churn
issues it may introduce. Given that the IDs are intricately tied to the road layout, modifying
the structure of a road will result in an ID change. This behavior is generally undesirable
for stable IDs. To address this, modifications might be necessary, indicating the use of the
old version’s ID when, for instance, extending a road by a few meters. However, as the ID is
assigned at creation, it could be argued that any change warrants the consideration of a new
road altogether. The resolution of this issue depends on one’s definition of what constitutes
a road or road segment.

5.1.4 Usage in Validation of Duplicate Roads
As outlined in Section 3.1.1, OpenStreetMap lacks proper validation and detection mecha-
nisms for incorrect data. An intriguing aspect of our algorithm is its potential to identify
actual data discrepancies. During our verification process, we observed that a significant
portion of the detected collisions corresponded to genuine instances of incorrect duplicates
in the data, an example of which can be seen in Figure 5.2. These were roads that were iden-
tical in geospatial location, and elevation, and were candidates for removal upon discovery.
A majority of the duplicate ways identified early in the project have since been deleted by
users attempting to rectify the map, such as the one in Figure 5.3. We were also able to catch
a lot of cases where the roads were not duplicates, but the data did not follow the correct
conventions, especially in the tags where there is no restriction on the text you can enter.

41

5. Discussion

Executing the batch job developed in this thesis would provide an efficient means to
uncover existing incorrect data in the dataset. Furthermore, it could serve as a future verifi-
cation tool, notifying editors when a newly created road receives the same ID as an existing
one, prompting them to discard the change.

Figure 5.2: Duplicate road example

Figure 5.3: Deleted duplicate road as part of cleanup project

42

5.2 Answering the Problem Statement

5.2 Answering the Problem Statement

5.2.1 Research Question One
Our first research question, What is the minimum ID bit width computed as perfect hashes in
the available data? was the primary focus of Chapter 4. We successfully reduced the size to 71
bits, an improvement of 220 times from the initial 91 bit implementation inhibiting the zero-
collision property. This accomplishment was achieved by eliminating all random elements,
effectively satisfying RQ#1. In this Discussion chapter, we also deliberated on additional at-
tempts to further minimize the size and provided reasons for discarding certain approaches.

5.2.2 Research Question Two
Research question two, How is the solution impacted by new data being added in the future?, was
primarily tackled by avoiding a significant performance decrease for new data under the
assumption that it follows the existing data trends, a large focus in Section 4.3.1 and 4.3.2. As
outlined in Section 1.3, predicting future data patterns is inherently uncertain. Nevertheless,
by constraining optimizations that overly tailor to the current dataset, we aim to maintain
comparable performance with future data. We also discussed an expanded CFCH in Section
5.1, which provides immense collision resistance while still not exceeding UUID in size.

5.3 Future Work

5.3.1 Expansion to Other Feature Types
An evident area for extending this research involves adapting the concept of ID generation
based on feature properties to different feature types. To narrow the thesis scope, our focus
was exclusively on roads, serving as a sort of "proof of concept." However, exploring the exten-
sion of this approach to all features in OSM is of interest. Nodes should be straightforward,
and represented by a single point, while other types may pose more challenges.

Concerning ways, as mentioned in the Preprocessing chapter, we didn’t analyze roads with
the area tag. The reason is that they resemble buildings, also represented in ways, more than
roads do. This is because they describe the area within the polyline, not the polyline itself.
Extending the algorithm to include buildings should address these cases, and matching on
feature type could determine the appropriate algorithm for each feature.

Relations, being the most complex structure in OSM, may prove to be the most challeng-
ing for adaptation. However, since OSM uses different ID namespaces for nodes, ways, and
relations (meaning the same ID could represent one way and a completely different node), it
would be possible to implement this hashing technique on a subset, such as only nodes and
ways.

43

5. Discussion

5.3.2 Choice of Point to Run Geohash On
As detailed in Section 4.2.1, the decision to use the midpoint defined by the average lati-
tude/longitude values for running Geohash was not arbitrary. Several other options were
considered before settling on the midpoint. Initial attempts involved using either the start
or end nodes, but this proved problematic in scenarios such as the one illustrated in Fig-
ure 5.4, where roads with very similar characteristics shared the same start and endpoint.
Another option, the middle node, also encountered issues, as demonstrated in Figure 4.7.
Despite observing the most success using the average latitude/longitude point, determining
the optimality of this choice remains challenging and is a subject for potential exploration
in future work.

Figure 5.4: Very similar roads, sharing the same start and endpoint

5.3.3 Resolution of Small Changes in Feature Prop-
erties

As mentioned earlier, addressing the churn in ID generation, where the ID is closely tied to
the object itself, is essential. As discussed in Section 1.5, a noteworthy problem arises from
the change in coordinates of all OSM features worldwide due to tectonic plate motion, as
outlined by Mocnik and Westerholt. Earthquakes pose an even more significant challenge,
as coordinates can shift by whole meters from one day to the next. Resolution of this issue
is deferred to future work, as OSM currently lacks support for batch updates to features to
accommodate such changes, a topic also acknowledged by Mocnik and Westerholt in their
paper.

44

5.3 Future Work

5.3.4 Handling of Full Dataspace in Geohash Optimi-
sation

As discussed earlier, further work is needed to refine the handling of Geohash optimization,
specifically the mapping of 28 precision tiles to indices. Key limitations include determining
a suitable bit cutoff to prevent overflow in the future or establishing a robust strategy for
handling such overflow. The precision itself warrants additional analysis, as it hinges on
the desire to align with the current world, where full precision would achieve a perfect fit
(perfect hash) for the existing data set. Additionally, the storage of the mapping table should
be compressed effectively to ensure that the artifact remains of manageable size for users.

45

5. Discussion

46

Chapter 6

Conclusion

In this study, we successfully addressed the challenges of generating unique identifiers for
geospatial features in OpenStreetMap. Our hashing algorithm, designed to minimize identi-
fier size while ensuring zero collisions, achieved a significant improvement by reducing the
size from the initial 91 bits to 71 bits, which can be stored in one 64-bit datatype and one 8-
bit datatype. The elimination of random elements and incorporation of geospatial features,
including angles, lengths, and elevations, played a pivotal role in achieving uniqueness.

Our deterministic hashing function ensures consistent hash generation, and the use of a
perfect hash function enhances collision avoidance, a crucial feature in geospatial data map-
ping applications. Our optimized 71 bit function operated under assumptions of existing
trends in the available current data, but we also presented a 115 bit extended version that
would work for all possible future worlds as well.

Future work should explore the extension of the algorithm to other OSM feature types,
refine the handling of small changes in feature properties, and address potential churn issues
due to coordinate shifts. Further optimization of Geohash mapping, including strategies for
overflow scenarios, can enhance the algorithm’s scalability.

47

6. Conclusion

48

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

[2] Alibabatech. Putting China’s Second-Hand Economy on the Map with GeoHash Match-
ing. https://hackernoon.com/putting-chinas-second-hand-economy-o
n-the-map-with-geohash-matching-f6eb7626ff96, 2018. Accessed: January
2024.

[3] Ameen Alkasem, Hongwei Liu, Decheng Zuo, and Basheer Algarash. Cloud computing:
A model construct of real-time monitoring for big dataset analytics using apache spark.
In Journal of Physics: Conference Series, volume 933. IOP Publishing, 2017.

[4] Angel Cervera Claudio. osm4scala. https://simplexspatial.github.io/osm4s
cala/, Accessed: October 2023.

[5] Muhammad Rehan Anwar, Desy Apriani, and Irsa Rizkita Adianita. Hash algorithm
in verification of certificate data integrity and security. Aptisi Transactions on Techno-
preneurship (ATT), 3(2):181–188, 2021.

[6] Paul Chiusano and Runar Bjarnason. Functional programming in Scala. Simon and Schus-
ter, 2014.

[7] Nitin R Chopde and Mangesh Nichat. Landmark based shortest path detection by
using a* and haversine formula. International Journal of Innovative Research in Computer
and Communication Engineering, 1(2):298–302, 2013.

[8] Yann Collet. xxHash. https://xxhash.com/. Accessed: January 2024.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduc-
tion to algorithms. MIT press, 2022.

[10] Zbigniew J Czech, George Havas, and Bohdan S Majewski. Perfect hashing. Theoretical
Computer Science, 182(1-2):1–143, 1997.

49

https://hackernoon.com/putting-chinas-second-hand-economy-on-the-map-with-geohash-matching-f6eb7626ff96
https://hackernoon.com/putting-chinas-second-hand-economy-on-the-map-with-geohash-matching-f6eb7626ff96
https://simplexspatial.github.io/osm4scala/
https://simplexspatial.github.io/osm4scala/
https://xxhash.com/

REFERENCES

[11] The Apache Software Foundation. Apache Spark. https://spark.apache.org/.
Accessed: October 2023.

[12] geohash.org. Geohash.org. http://geohash.org, Accessed October 2023.

[13] Joachim Gudmundsson and Rasmus Pagh. Range-efficient consistent sampling and
locality-sensitive hashing for polygons. In Proceedings of 28th International Symposium
on Algorithms and Computation (ISAAC 2017), Leibniz International Proceedings in Infor-
matics. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, 2017.

[14] Ning Guo, Wei Xiong, Ye Wu, Luo Chen, and Ning Jing. A geographic meshing and
coding method based on adaptive hilbert-geohash. IEEE Access, 7:39815–39825, 2019.

[15] Muki Haklay. Openstreetmap: User-generated street maps. PPGIS, 2008, 2008.

[16] Muki Haklay and Patrick Weber. How good is volunteered geographical information?
a comparative study of openstreetmap and ordnance survey datasets. Environment and
Planning B: Planning and Design, 37(4):682–703, 2010.

[17] Tammo Ippen. geohash-hilbert. https://pypi.org/project/geohash-hilbert/,
2020. Accessed: January 2024.

[18] Jonathan K. Lawder and Peter J. H. King. Querying multi-dimensional data indexed
using the hilbert space-filling curve. ACM Sigmod Record, 30(1):19–24, 2001.

[19] P. Leach, M. Mealling, and R. Salz. A universally unique identifier (uuid) urn names-
pace. Technical Report RFC 4122, Network Working Group, July 2005. Request for
Comments.

[20] Jiajun Liu, Haoran Li, Yong Gao, Hao Yu, and Dan Jiang. A geohash-based index for
spatial data management in distributed memory. In 2014 22nd International Conference
on Geoinformatics, pages 1–4, 2014.

[21] Earl H McKinney. Generalized birthday problem. The American Mathematical Monthly,
73(4):385–387, 1966.

[22] John A Miller, Casey Bowman, Vishnu Gowda Harish, and Shannon Quinn. Open
source big data analytics frameworks written in scala. In 2016 IEEE International Congress
on Big Data (BigData Congress), pages 389–393. IEEE, 2016.

[23] Franz-Benjamin Mocnik and René Westerholt. The effect of tectonic plate motion on
georeferenced long-term global datasets. International Journal of Applied Earth Observation
and Geoinformation, 94:102183, 2021.

[24] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering properties
of the hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering,
13(1):124–141, 2001.

[25] Peter Mooney, Marco Minghini, et al. A review of openstreetmap data. Mapping and the
citizen sensor, pages 37–59, 2017.

50

https://spark.apache.org/
http://geohash.org
https://pypi.org/project/geohash-hilbert/

REFERENCES

[26] G. M. Morton. A computer oriented geodetic data base; and a new technique in file
sequencing. Phys. Plasmas, 24(7):159–173, 1966.

[27] OpenStreetMap Foundation. OpenStreetMap Taginfo - Database statistics. https:
//taginfo.openstreetmap.org/reports/database_statistics, ongoing.
Accessed: February 2024.

[28] N. Paskin. Toward unique identifiers. Proceedings of the IEEE, 87(7):1208–1227, 1999.

[29] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A com-
parison of hash function types and querying mechanisms. Pattern recognition letters,
31(11):1348–1358, 2010.

[30] Ian Rees. Geohashes and You. https://www.mapzen.com/blog/geohashes-and
-you/, 2015. Accessed: January 2024.

[31] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and
Joshua Zhexue Huang. Big data analytics on apache spark. International Journal of Data
Science and Analytics, 1:145–164, 2016.

[32] Scala Contributors. Scala Programming Language. https://www.scala-lang.org/.
Accessed: February 2024.

[33] Svenonius, Dan. Detecting Anomalies in OpenStreetMap Changesets using Machine
Learning. Master’s thesis, Lund University, 2023.

[34] Tibor Vukovic. Hilbert-geohash-hashing geographical point data using the hilbert
space-filling curve. Master’s thesis, NTNU, 2016.

[35] OpenStreetMap Wiki. Openstreetmap wiki,. https://wiki.openstreetmap.org/,
2023. Accessed October 2023 Pages: [Key:layer, Key:level, Key:area, Key:highway, Way,
Shortlink].

51

https://taginfo.openstreetmap.org/reports/database_statistics
https://taginfo.openstreetmap.org/reports/database_statistics
https://www.mapzen.com/blog/geohashes-and-you/
https://www.mapzen.com/blog/geohashes-and-you/
https://www.scala-lang.org/
https://wiki.openstreetmap.org/

REFERENCES

52

Appendices

53

Appendix A

Source code

Github repository documenting the source code can be found at https://github.com/T
imfjalar/thesis_tim/tree/main

55

https://github.com/Timfjalar/thesis_tim/tree/main
https://github.com/Timfjalar/thesis_tim/tree/main

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-02-22

EXAMENSARBETE Locally Generated Unique Identifiers for Geospatial Data
STUDENT Tim Jangenfeldt
HANDLEDARE Patrick Cording (Apple Inc.) Jonas Skeppstedt (LTH)
EXAMINATOR Flavius Gruian (LTH)

Hur mycket information behövs för att
unikt identifiera alla världens vägar?

POPULÄRVETENSKAPLIG SAMMANFATTNING Tim Jangenfeldt

I vårt arbete presenterar vi en geografisk algoritm som genererar IDn på vägar i Open-
StreetMap utifrån vägens utformning. Med en kombination av geografiskt läge, längd
och vägvinkel lyckades vi unikt identifiera 224 miljoner vägar med 71 bitar.

Ponera att du vill komma på ett sätt att en män-
niska ett helt unikt förnamn, så när du ser en ny
person vet du direkt vad den heter. Du har ej vet-
skap om vad andra människor heter, och du vill
använda så få bokstäver som möjligt för att up-
pnå detta. Din uppgift blir att komma på en opti-
mal kombination av egenskaper hos personen som
tillsammans är helt säregen. Eftersom alfabetet
har 29 bokstäver och jordens befolkning ligger på
ca åtta miljarder kan du uppnå detta med mini-
malt sju bokstäver teoretiskt (297 > 8md), men
i verkligheten blir det mer komplicerat. Du kan
exempelvis välja att representera personens ögon-
färg med första positionen, längd med nästa, vikt
med en tredje och så vidare. Du kanske också up-
ptäcker regler runt namngivningen såsom att fler
än två av samma bokstav inte får förekomma i
följd. Problemet blir snabbt komplext.

I detta examensarbete försöker vi uppnå detta
på alla världens vägsegment i karttjänsten Open-
StreetMap, och vårt resulterande ID består av et-
tor och nollor (bitar) istället för bokstäver. På så
sätt slipper man beroende av en central enhet som
håller koll på vilka ID som använts hittils. Andra
metoder metoder såsom Universally Unique Iden-
tifier (UUID) förlitar sig på sannolikhet, där ID
är unika till följd av storleken. Vårt ID beror inte
på slumpmässiga element på samma sätt, och vi

föreslår två storlekar; 71 samt 115 bitar, där den
större hanterar möjliga framtida scenarion bättre.
Vi fann även att det kan användas för att snabbt
verifiera om en kopia till en väg som läggs till i
kartan redan existerar, då dessa får samma ID.

Egenskapen där mest antal bitar behövdes var
geografiskt läge. Här användes en befintlig algo-
ritm Geohash, där man kan beskriva koordinater
med rutor vars storlek beror på hur många bitar
som används. Eftersom världen är ofantligt stor
behövs mycket information för att beskriva en 2D
punkt ner till centimeternivå.

Vi lyckades namnge varenda väg med 71 bitar,
utan att inkludera slumpmässiga element. Det
visar sig även att vår metod är snabb på att gener-
era enskilda ID, vilket är det primära användning-
sområdet. Vi föreslår därmed en lösning som är
effektiv och kan användas för att upptäcka felak-
tig data, samtidigt som vi slipper beroende av en
central enhet som håller koll på vilka ID som an-
vänts.

	Introduction
	Background
	Motivation
	Scope & Limitations
	Problem Definition
	Previous Work
	Geohash (2008)
	Vukovic's Hilbert Geohash (2016)
	Guo et al.'s Adapted Hilbert Geohash (2019)
	Tectonic Plate Motion and Global Datasets
	Locality Sensitive Hashing for Polygons (2017)

	Disposition

	Theoretical Background
	Hashing
	Universally Unique Identifiers
	Geohash
	Locality Sensitive Hashing (LSH)

	Haversine Formula

	Methodology
	Tools
	OpenStreetMap
	OSM Tags
	Scala
	Apache Spark

	Work Process

	Algorithm Implementation
	Preprocessing
	Creation of the Core Hashing Function
	Geohash
	Intersection Collisions
	Length Collisions
	Elevation Collisions
	Composition of Geohash, Angle, Length, and Elevation

	Optimizations for Collision-Free Complete Hash (CFCH)
	Angle Optimisations
	Length Optimizations
	Elevation Optimisations
	Geohash Improvements

	Runtime Analysis

	Discussion
	Evaluation of Results
	Explorations of Further Improvements
	Geohash Optimization Challenges
	Churn Issues
	Usage in Validation of Duplicate Roads

	Answering the Problem Statement
	Research Question One
	Research Question Two

	Future Work
	Expansion to Other Feature Types
	Choice of Point to Run Geohash On
	Resolution of Small Changes in Feature Properties
	Handling of Full Dataspace in Geohash Optimisation

	Conclusion
	References
	Appendix Source code

