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Abstract

Information flow analysis is a concept that aims to analyze how information prop-
agates in a program with the goal of detecting program points where sensitive
information might leak. This thesis introduces SinfoJ, a static information flow
analysis for Java, inspired by the JFlow language [12]. A key component in
JFlow and information flow analysis, is the fact that variables and objects are
labeled with something called Security Labels. These labels depict the sensitiv-
ity of information within variables and objects and determine the information
flows that are allowed in a program. Unlike JFlow, our approach utilizes Java
Annotations instead of extending the Java syntax, aiming for easier usage and
implementation. SinfoJ employs an intraprocedural Control Flow Graph and ex-
tends to basic interprocedural analysis using a Call Graph. With this thesis, we
aim to answer questions such as: How can Reference Attribute Grammars be em-
ployed for intraprocedural and basic interprocedural analysis? What subset of
JFlow can be implemented with the use of annotations? And how could Sin-
foJ be further improved? This thesis provides a foundation for future research
in information flow analysis as well as showcasing some of the capabilities and
limitations of Reference Attribute Grammars.

Keywords: Information Flow Analysis, Static Program Analysis, Control Flow Graph,
Decentralized Label Model, Reference Attribute Grammars
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Chapter 1

Introduction

The importance of ensuring the security, confidentiality and integrity of sensitive informa-
tion in computer programs cannot be overstated. The rise of cyber threats necessitates strong
measures to protect highly sensitive data from unintended exposure. Information flow analysis
has emerged as a discipline for addressing this challenge by providing an approach of analyz-
ing how information propagates through a program and how this could potentially lead to
security vulnerabilities.

In this thesis, we will explore how a static information flow analysis in Java can be imple-
mented with the help of Reference Attribute Grammars (RAGs) and the extensible Java com-
piler ExtendJ [6][14]. With this analysis, we aim to examine how sensitive data can inad-
vertently leak into less restrictive variables or objects, i.e. variables or objects with lower
security levels, and potentially compromise the security of a program. To address this issue,
we take on a concept of security-class labels, which we in this thesis generally and simply refer
to as labels.

These labels serve the purpose of adding security levels to variables, objects and methods
in order to preserve safe information flows within a program. In practical terms, this aims
to prevent high sensitive information in e.g. a variable, from flowing into a variable with
lower sensitivity. A simple example of this could be that a high sensitive variable cannot be
assigned to a low sensitive variable.

We aim to implement a subset of the information flow control language JFlow [12]. JFlow is
an extension to Java that enables information flow analysis with the help of the decentralized
label model [13]. To be able to add labels to variables, methods and classes, JFlow introduce
new syntax to the Java language. In this thesis, we want to investigate how we can implement
a similar analysis as the one in JFlow, without the need to introduce new Java syntax, mak-
ing our analysis easier to implement and use. Instead of extending the Java language, we will
explore the use of Java Annotations to label variables, objects and methods with security-class
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1. Introduction

labels.

To implement the mentioned information flow analysis, we need to construct a Control Flow
Graph (CFG). This CFG serves as the foundation for conducting a dataflow analysis. To ac-
complish this, we will use two frameworks: IntraJ1 and Cat2. IntraJ is a framework for
constructing an intraprocedural CFG, i.e. a CFG within a process such as a method or a func-
tion [15]. Cat (Call Graph Analysis Tool) will facilitate the interprocedural analysis, i.e. ana-
lyzing interactions between processes such as methods and functions. Both frameworks are
implemented using Reference Attribute Grammars and ExtendJ.

By working with a subset of JFlow, we aim to introduce an implementation of an infor-
mation flow analysis that can be used for more in-depth exploration and research. This ex-
ploration will hopefully be an initial step toward examining the potential applications of
ExtendJ and RAGs in future, more advanced information flow analysis or similar endeav-
ors.

1.1 Scope and Limitations
To ensure that the purpose of this thesis is viable, we need to narrow our focus. We will begin
with an investigation of JFlow and its implementation. This will enable us to select a subset
of JFlow. The goal of this chosen subset is to produce an analysis that is minimally viable
but still capable of detecting fundamental information flow violations. Furthermore, we
intentionally restrain ourselves from extending the Java syntax. The reason for this decision
is the desire to prevent a over complicated implementation and ensure that the analysis is
useful for future research and potential users.

1.2 Aims and goals
Within the context of our defined scope, we have identified certain aims and goals to clarify
the objectives of this thesis.

Our initial goal is to identify a subset of JFlow that can utilize Java Annotations instead
of extending the Java language. This will be explored with the help of Chapter 2 — Back-
ground. Secondly, we want to investigate how Reference Attribute Grammars can be em-
ployed to implement an intraprocedural and basic interprocedural information flow analysis
with the chosen subset of JFlow. This will be covered in Chapter 3 — Designing SinfoJ.
We also want to briefly assess how SinfoJ performs in terms of speed compared to similar
analyses, which will be evaluated in Chapter 4 — Evaluation. Lastly, we are interested in how
our implemented analysis could be further improved, which will be discussed in Chapter 5
— Limitations and Further Work.

1https://github.com/lu-cs-sde/IntraJ
2https://github.com/IdrissRio/cat
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Chapter 2

Background

The upcoming chapter will outline theory necessary to understand the content of this thesis
and to help achieve the goals mentioned in Section 1.2. Firstly, we will provide an introduc-
tion to Information Flow and its connection to security vulnerabilities in Section 2.1. This will
be followed by theory regarding Static Program Analysis and Dataflow Analysis in Section 2.2.
Lastly we will give a rather basic and general explanation of Compilers in Section 2.3, with a
more focused discussion on the compiler components relevant to the content in this thesis.

2.1 Information Flow
Information flow generally refers to the movement and propagation of data or information
through a program, system, or network. It encompasses how data is generated, modified,
transmitted, and consumed by different components within a system. In a standard access-
control scheme, the primary goal is to ensure that only authorized users or entities are granted
access to restricted data while also preventing unauthorized access or security breaches [16].

Information flow becomes of utmost importance when looking at how sensitive informa-
tion, such as confidential data, personal details, passwords, etc., moves and spreads within
a computer system. The primary objective of an information flow analysis from a security
perspective is therefore to ensure that sensitive information is not inadvertently leaked to
unauthorized parties or used inappropriately. This analysis involves tracing the paths that
sensitive data takes through a program or system and understanding how it interacts with
other data, processes, and components.

Confidentiality and Integrity are two terms often used in the context of data security. In order
to preserve confidentiality, a system needs to protect sensitive information from leaking to
unauthorized destinations or unauthorized disclosure. Integrity, on the other hand, refers
to the accuracy and trustworthiness of information and in order to preserve integrity, a sys-
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2. Background

tem needs to protect sensitive information from unauthorized modification. A distinct dif-
ference between these two concepts is that integrity can be compromised without external
interactions, such as by unregulated computations in a program. For example, caused by a
programming error, or in other words, a bug.

Explicit and Implicit Flows
There exists two important and distinct information flows: explicit and implicit flows. Any
statement or construct that directly lets data flow into another, such as in an assignment or
a declaration is called an explicit flow, see the left example in Figure 2.1. An implicit flow on
the other hand, is the result of a program structure that implicitly lets information from a
variable flow into another, see the right example in Figure 2.1. In these examples, the variable
low refers to a public variable, i.e. a variable with low sensitivity, and the variable high refers
to a secret variable, i.e. a variable with high sensitivity.

1: int low;
2: int high;
3: . . .
4: low = high;

1: int low;
2: boolean high;
3: . . .
4: int low = 0;
5: if (high) {
6: low = 1;
7: }

Figure 2.1: Example of explicit and implicit flows.

The left example in Figure 2.1 is an example of an explicit flow, it occurs on line 4 where
the secret variable high directly flows into the public variable low. The right example in Fig-
ure 2.1 shows an implicit flow on line 6, where the assignment to the public variable low is
conditioned on the secret variable high. This lets an observer deduct the value of high when
observing the value of low.

Through regulation of variations of these two information flows, we can locate leakage of
sensitive information to unauthorized destinations, thereby maintaining confidentiality. Ad-
ditionally, this helps preserve data integrity by ensuring that unauthorized computations do
not occur, which otherwise might result in security risks arising from unregulated security-
critical decisions within a program.

2.1.1 Taint Analysis
Taint analysis is a concept used to track the information flow of sensitive or tainted data from
a source to a sink within a program. The term tainted data refers to data that originates from
untrusted or external sources, such as user inputs or data obtained from network communi-
cation. A sink refers to the final destination in the program, whether that may be a return
statement in a method or some sort of output stream.
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2.1 Information Flow

Essentially, a taint analysis tracks how and where tainted data is being processed, manip-
ulated, or potentially used to influence a program’s behavior. For example, in an assignment,
the left-hand expression becomes tainted if the right-hand expression is tainted. If, at any
point in this analysis, the tainted data is used inappropriately, the taint analysis flags it as a
potential security vulnerability [11] [17].

Taint analysis is closely related to information flow in the sense that both analyses tracks
how data flows trough a program, essentially a taint analysis can be said to track information
flows.

2.1.2 Decentralized Label Model
The decentralized label model is a security model used to enforce information flow control in
computer programs. It is designed to prevent unauthorized information flow and protect
sensitive data from leakage or unauthorized access. Unlike traditional access control models,
which rely on a centralized authority to manage permissions, the decentralized label model
distributes control over information flow to individual data objects in the system [13].

In the decentralized label model, data objects, e.g. variables, are associated with Security La-
bels that represent their level of sensitivity or confidentiality. These security labels are used
to enforce access controls and information flow policies throughout a system. The labels are
typically represented as tags or markings attached to the data object.

Essentially, a label consists of policies that define who can read and modify the entity as-
sociated with the label. The owners are allowed to read and modify the labeled data object,
while the readers are allowed to read the data from the entity. Owners and readers, com-
monly referred to as principals, are users or groups for a given security system, much like in
an access-control scheme.

To further explain this concept, consider a label that looks like the following:

L1 = {p1 ; p2}, where p1 = {o1 : r1, r2}, p2 = {o2 : r2, r3}

The label L1 has two policies, p1 and p2. These policies have readers and owners, separated
by a colon. Policy p1 has an owner o1 and policy p2 has an owner o2. Furthermore, p1 has the
readers {r1, r2} and p2 has the readers {r2, r3}. The effective reader set of the label L1, which
is the intersection of the readers in the policies, is { r2 }. If a variable x is labeled with L1,
only the defined users o1 and o2 can modify the value of x. The principals who are allowed
to read the value of x is the effective reader set, i.e. r2, along with the owners o1 and o2, since
owners implicitly are allowed readers. Consider another label:

L2 = { }

This is an empty label and is the least restrictive label, i.e. an entity with this label can basi-
cally be seen as a public entity.

An important thing to mention about the decentralized label model is that it enables an
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2. Background

owner of a policy, to declassify its own policy. This means that it can downgrade or essen-
tially lower its security level in order to be able to allow certain information flows. Some
systems sometimes need to leak sensitive information, such as in a login procedure. If a user
provides a wrong password, the system will tell the user this, which in turn can be used to
deduce the actual password. Downgrading the security level allows for a relaxation of the
strict allowed information flows, but since a principal can only act for its own policies, this
still preserves the overall security of a program. Although this is very useful in practical sce-
narios, this concept will not be further covered in this thesis since it would add another layer
of complexity to the analysis and isn’t needed for a basic information flow analysis.

2.1.3 JFlow
JFlow is an information flow control language that employs the decentralized label model
and performs an information flow analysis. It is an extension to the Java language that sup-
ports labeling of e.g. variables, methods and objects [12]. Look at the following example:

int{Alice:Bob} x;
int{Bob:} y;
...
x = y; // -> Information flow violation

This is a simple example of how JFlow has extended Java syntax to add support for labels. In
this example, variable x has been labeled with the policy { Alice : Bob }. This means that the
owner is a defined principal called Alice and the reader is a defined principal called Bob. The
variable y has been labeled with the policy { Bob }, i.e. Bob is the owner and since no readers
are listed, the sole reader of y. In the above example, there is an information flow from y to
x. Since Bob is allowed to read the variable x but not modify it, this program will lead to an
information flow violation.

Generally, a variable y with a label L1, can be assigned to another variable x with a label
L2, if the label L1 can be relabeled to the label L2. This flow is denoted by L1 ⊑ L2. This is
allowed if and only if, for every policy within label L2, the label L1 contains a policy that is
at least as restrictive. Furthermore, the label of a computed value is the join of the labels, i.e.
it is at least as restrictive as the variables in that computation,

An implementation of JFlow is the security-typed language Jif [1]. The entire specifica-
tion of JFlow and Jif would take up too much space and is not necessary for this thesis. If
you are interested, most of it can be read in the paper JFlow: Practical Mostly-Static Information
Flow Control by Andrew C. Myers [12].

2.2 Static Program Analysis
Static program analysis is a technique used to analyze source code or compiled code without
actually executing the program. It aims to identify potential errors, vulnerabilities or other
properties of a program by examining its code structure, syntax, and semantics. By examining

10



2.2 Static Program Analysis

the static behavior, this type of analysis can look at all possible execution paths. The alter-
native is dynamic analysis, which only looks at one execution path when running a program.
Static analysis is performed before a program is executed and can therefore help developers
catch problems early in their development process, leading to improved code quality and re-
duced defects. A few examples of different static program analyses are type analysis, dataflow
analysis, control flow analysis and abstract interpretation [11].

2.2.1 Lattice Theory
A lattice is an abstract structure commonly used in dataflow analysis to provide a formal
mathematical framework for modeling and solving dataflow problems. The lattice is con-
structed to represent possible program states. A lattice is a partially ordered set where each
element signifies a state of the program’s variables and the partial ordering reflects the in-
formation flow between these states. A partial order, (S, ⊑), consists of a set, S, and a partial
order relation, ⊑, which signifies the relations between the set elements. Furthermore, the
conditions reflexivity, transitivity and anti-symmetry need to be satisfied for the elements in
the set [11].

The notion x ⊑ y can be used for lattice elements to signify that x is at least as precise
as y, or we can say that y is a safe approximation of x. In the context of the analysis we will
implement with security classes, a high-sensitive security class is a safe approximation of a
low-sensitive security class.

In lattice theory, we additionally have a least upper bound,
⊔

X , and a greatest lower bound,d
X , for a subset X in a lattice. If X is a subset of the set S, i.e. X ⊆ S, then the least upper

bound for X is the smallest element in the set S that is greater than or equal to every other
element in X . This can also be expressed by the following equation:

X ⊑
⊔

X ∧ ∀y ∈ S : X ⊑ y =⇒
⊔

X ⊑ y (2.1)

And the greatest lower bound for the subset X is instead the largest element in S that is less
than or equal to every other element in X . The definition is as following:

l
X ⊑ X ∧ ∀y ∈ S : y ⊑ X =⇒ y ⊑

l
X (2.2)

When least upper bound and greatest lower bound are used for pairs of elements in the lat-
tice set we use the notion x ⊔ y called join and x ⊓ y called meet. Both of these operations are
fundamental in dataflow analysis for merging different states in a program, which we will
discuss more in Section 2.2.3 and later in our implementation in Chapter 3.

As mentioned, a lattice is a partial order (S, ⊑) where ∀x, y ∈ S, x ⊔ y and x ⊓ y exists.
A complete lattice is a lattice where the previous condition also holds for all X ⊆ S. Addition-
ally, a complete lattice has two elements that denotes the smallest and largest elements in the
set, called bottom, ⊥, and top, ⊤, respectively.

All finite lattices can be represented with a Hasse diagram where nodes are the elements in
the set and the edges indicates relations. Let’s look at an example, where have the partial
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2. Background

order (P(A), ⊆ ) and P(A) is the powerset of the set A = { 0, 1, 2 }. Additionally ⊤ = A and
⊥ = ∅. The resulting Hasse diagram can be seen in Figure 2.2.

Figure 2.2: A Hasse diagram representation of the complete lattice
(P(A), ⊆).

A fixed point is a solution to an equation system over a lattice where each equation is called a
constraint equation. Formally we say that x, in a lattice L, is a fixed point for the function f if
f (x) = x. The least fixed point x is the most precise solution to these equations. Theorem 1
is called Kleene’s Fixed-Point Theorem [11] and tells us that if we have a complete lattice with
finite height and strictly monotone functions, we can ensure convergence and the finding of
a unique most precise solution. This is important in dataflow analysis, which we will dis-
cuss more in Section 2.2.3, where we need to reach a state when further iterations does not
alter the analysis result. One thing to consider is that the equation system is a conservative
approximation of the actual program and will only produce the most semantically precise
solution, which often is a good enough approximation.

Theorem 1. Kleene’s Fixed-Point Theorem [11]: In a complete lattice L with finite height, every
monotone function f : L → L has a unique least fixed point denoted lfp( f ) defined as:

lfp ( f ) =
⊔
i≥0

f i(⊥)

2.2.2 Control Flow Graph
A Control Flow Graph (CFG) is a graph representation used in static program analysis to rep-
resent the possible execution paths of a program. It represents how a program’s control flow,
or the order of execution of instructions, moves from one instruction to another based on
various conditions and decisions. Control flow graphs are particularly useful for analyzing
the structure of a program, where it is more important to analyze the order of execution
rather than the Abstract Syntax Tree (AST) [11].

A CFG can be seen as a directed graph where nodes symbolize e.g. expressions or state-
ments and edges indicate potential pathways of control. When considering a node within a
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2.2 Static Program Analysis

CFG, denoted as v, the term pred(v) designates the set of preceding nodes, while succ(v),
represents the set of successor nodes. A CFG can also be assumed to possess an entry point,
referred to as entry and an exit point, referred to as exit.

2.2.3 Dataflow Analysis
Dataflow analysis is a technique in program analysis and compiler optimization that aims to
understand how data values propagate through a program along a CFG. Its primary goal is to
gather information about how data is used and modified throughout a program’s execution,
which can help compilers make informed decisions about optimizing code and performing
various tasks, for example, controlling information flow [11].

In order to perform dataflow analysis, the standard approach is centered around a CFG in
combination with a complete lattice of finite height. This lattice contains abstract infor-
mation for different CFG nodes targeted to deduce dataflow information. Each CFG node
is linked to a constraint variable, which has a value of one of the elements in the lattice.
Additionally, dataflow constraints are formulated for each CFG node, controlling the inter-
relationships between the constraint variable of the node and those of other nodes, typically
neighbors. These dataflow constraints are based on the programming construct the node em-
bodies. As mentioned earlier, if the lattice has a finite height and consists of monotone con-
straint functions, there exists a unique least fixed point. A framework with a complete lattice
and monotone functions is called a monotone framework. It suffices to construct a CFG and
specify monotone constraint functions for every CFG node in order to perform a dataflow
analysis.

When doing dataflow analysis on a CFG, a normal approach is to define the following sets,
where JvK refers to a constraint variable which models the abstract state at the node v.

• inv: Contains knowledge at the entrance of node v, i.e immediately before the program
point at v.

• outv: Contains knowledge at the exit of node v, i.e immediately after the program point
at v.

• transv: The transfer function is used to transform the state at node v. In a forward analysis
it updates outv from inv and vice versa for a backward analysis. In order to instantiate
a dataflow analysis it is necessary to define the transfer function for each CFG node.

• joinv: Combines abstract states of the predecessors or successors of the CFG node at
v. It is defined by:

JOIN (v) =
⊔

w∈pred(v)

JwK

.

Another characteristic of a dataflow analysis is whether it is a forward or backward analysis. A
forward analysis computes information regarding something in the past, and depends on the
pred values of a CFG node. A backward analysis is an analysis that computes information
regarding the future, and depends on succ of a CFG node. In a forward analysis, joinv is
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2. Background

defined by using pred, as seen in the definition above, and starts at the CFG entry point. In
a backward analysis, joinv is defined by the use of succ and instead starts at the CFG exit
point.

Live Variable Analysis
To provide a contextual illustration and enhance the practical understanding of dataflow
analysis, we will now explain a common analysis. Live Variable Analysis (LVA) identifies
whether a variable’s value might be read later in the program without any intervening writes.
While this property is inherently undecidable, a static LVA analysis helps optimize programs
by conservatively assuming that "not live" results are trustworthy and "live" results considered
safe but unnecessary for optimization purposes.

The lattice used in a LVA is a so called powerset lattice, such as the one in Figure 2.2. Each el-
ement in the lattice corresponds to a set of variables in the program, which makes the lattice
unique for the program being analyzed. The bottom element,⊥, is the empty set and the top
element, ⊤, is the set of all the variables in the program.

As stated in Section 2.2.3, the initiation of this analysis begins with defining the necessary
functions. The join function, for instance, can be defined in the following manner.

JOIN (v) =
⋃

w∈succ(v)

JwK

In this context, v represents a CFG node, and JvK signifies the constraint variable, whose
value is the set of program variables that may be live immediately before node v. The most
important constraint in LVA is for assignments and that rule along with a few others can be
defined in the following manner:

Assignment: X = E : JvK = JOIN (v) \ X ∪ vars (E) (2.3)
Declaration: T X1, . . . , Xn : JvK = JOIN (v) \ X1, . . . , Xn (2.4)

Branch statements:
if (E) :
while (E) :

}
JvK = JOIN (v) ∪ vars (E) (2.5)

Output statements: output E : JvK = JOIN (v) ∪ vars (E) (2.6)
Exit node: exit : JexitK = ∅ (2.7)

To exemplify what these equations mean, we will cover the equation 2.3, which is for as-
signments. This equation tells us that the variables within the set JvK directly subsequent
to the assignment operation are the set of live variables before the assignment without the
variables that were written to in union with the variables in the expression on the right-hand
side, denoted as vars (E). For nodes not encompassed by any of the specified equations, the
constraint rule simplifies to the following:

JvK = JOIN (v)

With these constraint rules we can perform the live variable analysis which can be used by
a compiler to optimize code with the knowledge of which variable that are live at a certain
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point in the program [11].

In this thesis, we aim to employ a dataflow analysis similar to LVA, but focusing on identi-
fying information flow violations within a program.

2.2.4 IntraJ
IntraJ is a framework for intraprocedural control flow and dataflow analysis for Java. It is
implemented using the ExtendJ compiler and IntraCFG, which is a language-independent
framework for control flow. IntraJ adds necessary interfaces, such as CFGRoot and CFGN-
ode, to different AST nodes so that it works with Java in order to construct a Control Flow
Graph [15]. We will use the intraprocedural CFG constructed from IntraJ in our analysis to
perform a dataflow analysis.

In conjunction with a constructed Control Flow Graph, IntraJ includes several dataflow
analyses, among them Live Variable Analysis, Reaching Definition Analysis, and Null Pointer
Analysis. One noteworthy analysis is the Live Null Pointer Analysis, which we will use in
Chapter 4 when evaluating our implemented information flow analysis in terms of speed.

An important aspect of IntraJ pertains to its implementation, which relies on the exten-
sible ExtendJ framework, supported by the JastAdd framework. Consequently, IntraJ’s
architectural flexibility facilitates the incorporation of additional dataflow analyses via the
established CFG structure. To accomplish this, one can introduce additional aspects employ-
ing new Reference Attribute Grammars, discussed more in sections 2.3.4 and 2.3.3.

Intraprocedural and Interprocedural Analysis
Intraprocedural and Interprocedural analysis are two different approaches for statically analyz-
ing programs. Intraprocedural analysis focuses on examining the behavior of a single proce-
dure or method, i.e. it looks at a specific procedure without considering how it may interact
with other parts of the program. Conversely, interprocedural analysis involves analyzing how
different procedures and methods interact with each other in a program.

Performing interprocedural analysis poses a significant challenge, as it requires precise iden-
tification of the method being invoked. In object-oriented languages like Java, this deter-
mination is not always statically apparent. For instance, classes can override an inherited
method and the specific instance of the class may not be known at compile-time. To enable
interprocedural analysis despite such challenges, an approximate representation of an inter-
procedural control flow graph, known as the call graph, is employed. This graph outlines all
possible functions that could be invoked from a given method call, providing a basis for this
type of analysis. [11].

Various approaches can be employed to build the call graph, including methods such as Class
Hierarchy Analysis (CHA), Rapid Type Analysis (RTA), and Variable Type Analysis (VTA) [11].

A tool that, similarly to IntraJ, is implemented using ExtendJ and reference attribute gram-
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mars, is Cat (Call Graph Analysis Tool). This tool utilizes Class hierarchy analysis (CHA) to
construct call graphs. CHA essentially analyzes the class hierarchy to find suitable methods
that may be the ones that are invoked [3]. In order to do interprocedural analysis in SinfoJ,
we will employ Cat.

The example in Figure 2.3 shows how a call graph constructed from CHA might look. Since a
compiler at compile-time does not know whether the method call a.m() refers to the method
m() in class A or class B, both calls are included in the call graph. In the figure, the dotted
line signifies potential calls, while the solid line signifies the actual call, but note that both
are included in the call graph.

Figure 2.3: Example of a call graph constructed from Class Hierarchy
Analysis.

2.3 Compilers
A compiler is a specialized software tool that translates source code written in a high-level
programming language that is human-understandable into machine code or bytecode, which
in turn can be executed by a computer’s hardware. The compilation process involves several
stages, including lexical analysis, syntax analysis, semantic analysis, code generation and code
optimization. Each phase is responsible for specific tasks that lead to the final executable
output [2].

2.3.1 Abstract Syntax Trees
The Abstract Syntax Tree (AST) is a hierarchical data structure that represents the syntactic
structure of the source code. It is generated during the syntax analysis phase of the compila-
tion process. The AST captures the essential elements of the source code, abstracting away
irrelevant details like white space and comments, while preserving the relationships and hi-
erarchy of the code’s components [2] [11].

The AST is often used as an intermediate representation of the source code when proceeding
to subsequent stages of compilation, such as semantic analysis and code generation. By using
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an AST, compilers can efficiently analyze and manipulate the structure of the code without
the need to work directly with the raw source code text.

Each node in the AST corresponds to a specific language construct in the source code, such
as variable declarations, expressions, control flow statements (if, while, etc.), function def-
initions and more. The nodes are organized in a tree-like structure, where parent nodes
represent higher-level constructs and their children nodes represent the sub-components of
those constructs.

When constructing Abstract Syntax Trees (ASTs) using object-oriented programming lan-
guages, such as Java, it is customary to organize the tree structure within a class hierarchy.
In this schema, an AST can effectively represent abstract nodes like "Statement" as abstract
classes and concrete nodes like "Assignment" as concrete classes.

Consider the code seen in Figure 2.4. The resulting AST could for example be illustrated
as in the same figure. Note that this is just a simplified example and in practicality, many
more nodes would exist.

Figure 2.4: Abstract Syntax Tree of an example program

2.3.2 Semantic Analysis
The semantic analysis phase of a compiler is a vital step in the compilation process, focusing
on understanding the meaning and structure of source code. Key tasks include ensuring con-
sistent data types, determining variable scope, constructing symbol tables, checking function
overloading, simplifying constant expressions and performing other language-specific tasks.
This phase bridges the gap between syntactic representation and intended program behavior,
enhancing the compiler’s understanding of the source code for subsequent optimization and
code generation.

Many statically typed languages, such as Java or C++, utilize ASTs extensively for their se-
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mantic analysis. These languages often require a thorough analysis of types, scoping, and
other semantic rules before generating machine code. By traversing the AST during semantic
analysis, the compiler can for example infer the types of operands or perform type coercion
if necessary.

One of the more crucial analyses in the semantic analysis phase is type checking. This in-
volves examining the AST to ensure that the types of expressions and statements are used
correctly according to the programming language’s rules. The AST nodes are in some man-
ner annotated with type information. An example is type checking an expression that pro-
duces a value from a computation. The compiler checks that the types of the operands are
compatible with the operation being performed.

2.3.3 Reference Attribute Grammars
D.E Knuth introduced Attribute Grammars (AGs) in the article "Semantics of Context-Free Lan-
guages", published in 1968 [8]. Attribute grammars provide a formal framework for specifying
the relationships between the syntactic components of an AST and the associated attributes,
enabling a structured approach to handling both the syntax and semantics of programming
languages.

Attribute grammars have some key components. First, the syntax rules of a context-free gram-
mar define the structure of a language through production rules that describe how symbols
are derived from others. These rules establish the ASTs structure with the hierarchical ar-
rangement of the language’s constructs.

The second component, attributes, introduce an additional layer of information associated
with the AST nodes. Each node possesses attributes that convey additional properties or
characteristics related to the underlying syntactic construct. These attributes offer a means
of encoding semantic information that goes beyond the syntactic structure.

Attribute equations constitute another essential component of attribute grammars. These
equations define how attributes are computed based on the attributes of other nodes in the
AST. By specifying these equations, developers can systematically determine how attributes
are derived, facilitating a structured approach to semantic analysis and computation.

Central to Knuth’s framework is the distinction between synthesized and inherited attributes.
Synthesized attributes are computed at the given node and depend on information in the
node or its children. In contrast, inherited attributes are propagated from parent nodes to
their children, to provide information of e.g. the environment. This distinction allows for
a comprehensive representation of information flow and dependencies within the syntax tree.

Reference Attribute Grammars (RAGs) are an extension to AGs in the way that it adds the
feature that an attribute can be a reference to an object or a node in the AST. This feature al-
lows a graph structure to be superimposed on the tree structure of an AST. It thereby enables
references from one node to e.g. a declaration of a variable that is far away in the tree. This is
a natural extension to object-oriented ASTs and makes it easy to add declarative behaviour
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to the compiler [6] [7].

2.3.4 JastAdd
JastAdd represents a meta-compilation framework designed for the creation of compilers
within a Java-based computational environment. Fundamentally, JastAdd consists of declar-
ative programming, employing Reference Attribute Grammars (RAGs), along with the in-
corporation of imperative programming manifested as conventional Java code. This serves
the purpose of implementing the modular construction of compilers [7].

JastAdd allows methods and fields for AST nodes to be defined modularly in separate files
called aspects. During the compilation process, JastAdd interweaves these aspects alongside
the regular Java code to generate an AST. This architectural design enhances the framework’s
capacity for the inclusion of new functionalities, e.g. new type-checking routines, by encap-
sulating them within dedicated modules presented in the form of aspects.

As mentioned, JastAdd is partly based on the use of RAGs, but it also has support for
a few other types of attributes such as Higher-Order attributes [18], Collection attributes [9],
Node type interfaces [5] and Attribution aspects [7]. An additional characteristic of the JastAdd
framework pertains to its on-demand attribute evaluation methodology, wherein attribute
computations are triggered solely upon their utilization, complemented by an optional in-
corporation of memoization to store and retrieve previously computed results.

To illustrate how RAGs can be implemented using JastAdd, consider the AST in figure
2.5.

Figure 2.5: Abstract Syntax Tree Example

In JastAdd, a synthesized attribute of A can be written as follow:

syn int C.x();
eq C.x() = 1;

In AST nodes of type C, the attribute x will assume the value of 1, whereas the other nodes,
A and D, do not posses the attribute x. If we now instead assume that C and D are sub-types
of an abstract node B, we can define different equations for these nodes.
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syn int B.x() = 1;
eq C.x() = 2;

The attribute x now has the value 1 for all nodes that are sub-types of type B, but for AST
nodes of type C the value of x is 2. This example illustrates that a synthesized attribute can
be initially computed at the node level and subsequently this holds for all sub-types, or it can
be overwritten by a sub-type node.

An inherited attribute can be expressed in JastAdd as the following:

inh int D.y();
eq A.getD().y() = 2;

In the current context, the value of the attribute y assumes the value of 2 for nodes of type
D that also are children to a node of type A. Now again assume that C and D are sub-types
to the abstract node B.

inh int B.y();
eq A.getC().y() = f() + 1;
eq A.getD().y() = g() + 1;

Here you can see how the value of y is defined by the parent node and differs depending on
the context of the parent, assume g() and f () are attributes in the context of the parent node
A.

Another important type of attribute that JastAdd supports and that are pertinent to e.g.
dataflow analysis, are Circular attributes [10]. These are attributes that may exhibit dependen-
cies on their own values. Circular attributes incorporate declarative fix-point computations,
rendering them suitable for the computation of dataflow properties.

syn int A.x() circular [ ... ]
eq A.x() = ...;

The example above shows a circular attribute x, which has the starting value specified within
the square brackets and the value of the attribute is computed by some expression on the line
below. The important factor here is that this expression can depend on the attribute x itself.

2.3.5 ExtendJ
ExtendJ is a Java compiler developed using the JastAdd framework. It is built to be exten-
sible, allowing developers to customize and augment the language processing capabilities to
meet their specific needs. It provides a Java method API for compiler-based information [14].

One of the strengths of ExtendJ lies in, as stated earlier, its extensibility. By integrating new
language constructs or experimental features, ExtendJ provides a ground for research, inno-
vation, and exploration in language design and compiler construction. With this in mind, we
have chosen to utilize ExtendJ to implement our analysis.

As this thesis is written, ExtendJ supports Java 8. Using JastAdd, ExtendJ has defined
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the necessary AST nodes along with RAGs that enable various semantic analysis, such as
node types, bindings, types, compile-time errors and corresponding byte-code. Because of
the modular aspects in JastAdd, it is simple to add new nodes, attributes or analyses to the
compiler.
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Chapter 3

Designing SinfoJ

With the goal of detecting security vulnerabilities associated with information flows, we in-
troduce SinfoJ, a client analysis for Java in the form of a forward dataflow analysis. The
implementation of SinfoJ is inspired by JFlow and was made possible with the help of
tools and frameworks, including ExtendJ, JastAdd, IntraJ and Cat.

Within this analysis, a pre-defined set of security classes is integrated, allowing for the as-
signment of these security classes to variables and methods. The central objective of this
analysis is to pinpoint occurrences where information flow violates established constraint
rules. The precise specifications of these constraints follow in subsequent sections.

This chapter will provide comprehensive descriptions of the various components compris-
ing SinfoJ. Furthermore, we will clarify the underlying design decisions that have been made
with the theory from Chapter 2 — Background, as the foundation.

3.1 Monotone framework

As explained in Section 2.2.3, a dataflow analysis necessitates specifying a monotone frame-
work. To accomplish this goal, we establish a complete lattice with finite height, along with
a designated set of monotone functions. Figure 3.1 illustrates this lattice as a Hasse Diagram
in order to visualize the increasing restrictiveness of the security classes. The directed arrows
signify that an entity with a lower security class is allowed to flow into an entity of a higher
security class but not vice versa. This will be discussed in detail further on.
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Figure 3.1: Hasse diagram over the described lattice

SC = {BOTTOM,UNCLASSIFIED,CONFIDENTIAL, SECRET, TOPSECRET} (3.1)

SCi → SC j iff. i ≤ j (3.2)

SCi ⊔ SC j ≡ SCmax(i, j) (3.3)

SCi ⊓ SC j ≡ SCmin(i, j) (3.4)

⊥ = Bottom,⊤ = TopSecret (3.5)

The specified complete lattice above describes a linear partial order among the security
classes within the set denoted as SC in Equation 3.1. In our case, the lattice is actually a total
order lattice since any two element in the set are comparable. In this abstract domain, the se-
curity classes are predefined. In contrast to the decentralized label model used in JFlow and
discussed in Sections 2.1.2 and 2.1.3, the inclusion of principals is essentially omitted. This
simplification aims to further simplify the implementation of SinfoJ, focusing on studying
how an information flow analysis can be realized using RAGs and ExtendJ rather than delv-
ing into the intricacies of handling multiple principals.

This approach diverges from JFlow in several ways. Firstly, the security classes are prede-
fined. Secondly, this approach does not employ owners and readers as JFlow does, which
makes the analysis less powerful in terms of usage. This design makes the analysis resemble
taint analysis, with the distinction that it has multiple security classes beyond just tainted
data and non-tainted data. It also enables the labeling of variables and methods, which taint
analysis generally does not. It is once again worthy to acknowledge that while this design
choice may limit adaptability to specific security requirements of a program, it significantly
simplifies the implementation.

The monotone functions expressed in Equation 3.3 and 3.4 describes how these pre-defined
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security classes can be combined and compared within this framework. In SinfoJ, the meet
operator, denoted as ⊓, yields the least restrictive security class, as defined in Equation 3.3.
This can be illustrated through cases such as Unclassified ⊓ Secret =Unclassified. The
join operator, denoted as⊔, produces the most restrictive security class, as defined in Equation
3.4. This is exemplified in scenarios like Confidential ⊔ Secret = Secret. Furthermore,
within the lattice structure, the highest point, denoted as ⊤, is defined as the security class
TopSecret, while the lowest point, designated as⊥, is defined as the security class Bottom.

The specified monotone functions, 3.2 – 3.4 play a pivotal role in maintaining the order de-
lineated in the lattice. They are instrumental in enforcing the security constraints essential
for identifying information flows that violate the established security constraints.

3.2 Dataflow analysis
In the context of the established monotone framework, we can undertake the implementa-
tion SinfoJ. The initial phase of the implementation involves an intraprocedural analysis,
denoting an analytical process that considers the propagation of information within a pro-
cedure, e.g. a method.

3.2.1 Labels
In SinfoJ, variables exhibit dual attributes, namely, a conventional data type akin to those
encountered in Java programs (e.g., int, boolean, string), as well as a distinct security-class that
we refer to as a label. A variable x’s label is denoted by x. This label signifies the sensitivity
a variable manifests and corresponds to a lattice element outlined in Section 3.1. With this
information the analysis can maintain secure information flows that adhere to the lattice
structure. To further clarify the purpose of this, consider the following examples, where X
and Y signify some variables in a program:

X → X = Secret→ Secret ⇒ Valid flow ∵ Secret ≤ Secret
X → Y = Secret→ TopSecret ⇒ Valid flow ∵ Secret ≤ TopSecret
X → X = Secret→ Bottom ⇒ Not a valid flow ∵ Secret ̸≤ Bottom

In order to perform an interprocedural analysis, methods also need to have labels. In fact,
methods possess a few different labels in order to preserve the information flow constraints
between methods. A method in SinfoJ has two labels, namely a begin-label and a return-label.
The begin-label is an upper bound on the caller-pc, i.e. it is a restriction on when the method
can be called upon. The return-label is a label for the information that will be returned by
the method. This is the same as in JFlow, however, in JFlow methods also have a so called
end-label. This label specifies if information can be gained knowing whether the method ter-
minates normally or not. JFlow handles and checks termination paths in a manner that is
rather complicated. It requires the need to check whether or not a program may terminate
from an exception. It also requires the developer to explicitly list all exceptions that may be
thrown. This part in JFlow has been omitted in our analysis for the same reason as omitting
principals, i.e., to simplify SinfoJ.
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Statements and expressions may also have labels, but this is only for the sake of implemen-
tation. One cannot explicitly label a whole statement or expression. In SinfoJ, a label of a
statement or an expression is the label of the most restrictive label of the concerned objects
in the statement. Consider the following example, x = y + z, where y = Secret and z =
Unclassified. The expression y + x then obtains the label Secret and the same applies to
the whole statement if needed in the analysis.

Something that is worth mentioning regarding the lattice elements and labels, is that the
Bottom security-class label is only used internally in the analysis. This means that a user
cannot annotate a variable or method with this label, the lowest element they intend to an-
notate with is Unclassified. The reason for this is that the analysis needs to be able to
differentiate between something being unlabeled and something having the label Unclassi-
fied. Unlabeled variables will be discussed in Section 3.2.2.

3.2.2 Default labels
In SinfoJ, developers have the option to abstain from labeling variables and methods in a
program. In such cases, an unlabeled variable or method will be assigned a label via inference
or given a default label. Here follow the rules for the default labels used in this analysis, along
with the labels of Literals and Booleans. These were inspired by the default values specified in
JFlow [12].

• Default variable label: The lattice ⊥ element, i.e. Bottom, which implies that the
variable can be used in any context.

• Default parameter label: The lattice ⊤ element, i.e. TopSecret. The reason for this
being that the parameter may come from untrusted sources.

• Default method begin-label: The lattice ⊤ element, i.e. TopSecret. This implicitly
means that the upper-bound on any method call is the top element, indicating that the
method can always be called upon.

• Default method return-label: The join of all declared parameters. This is a common
case, as a method often is the result of some computation on the parameters. If none
are declared, the default label is the lattice ⊥ element, Bottom. This means that the
method’s return value won’t violate any information flows.

• Default array label: The lattice ⊥ element, i.e. Bottom.

• Default data-type label: The label of the pc, see Section 3.2.3.

• Default pc label: The lattice ⊥ element, i.e. Bottom.

In addition to using default labels, our analysis incorporates label inference, leveraging the
properties of the lattice model detailed in Section 3.1. Label inference assesses how security-
class labels interact, utilizing the lattice structure and partial order relationships to deduce
labels for a given variable. If an unlabeled variable with the label Bottom is assigned a
value, the analysis will infer the label of this variable from whatever label the right-hand side
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expression has. If the expression on the right-hand side has multiple operands, the label can
be deduced by joining, ⊔, the label’s of the operands.

3.2.3 Explicit and Implicit flows
Within the scope of the intraprocedural analysis, our focus is directed towards two distinct
forms of information flows, specifically denoted as explicit and implicit flows. These two flows
were discussed upon in Section 2.1. In our endeavor to address implicit flows, we have ex-
plored two distinct approaches.

The first approach, used in JFlow, involves the introduction of a program counter, denoted
as pc. This pc accompanies every statement and expression and serves the purpose of moni-
toring information that can be gained if a given statement or expression were to be evaluated.
The pc is inherently a set of variables that were evaluated and that has affected the execution
so that the program has reached the program point under consideration [12].

1 int x; // pc = {}
2 int y; // pc = {}
3 ...
4 int y = 0; // pc = {}
5 if (x == 0) { // pc = {x}
6 y = 1; // pc = {x}
7 } // pc = {}
8 // pc = {}

Figure 3.2: An implicit flow and the values of the pc.

Illustratively, let us consider the example depicted in Figure 3.2. In this example, x = Secret
and y = Unclassified. Examine the value of the pc at each line. Up to and including line 4,
the pc possesses an empty set as its value, denoted as { }. This signifies that no information
from evaluated expressions and statements up to this point led to any gain in information.
However, upon reaching line 5, we encounter an if-statement with the condition x == 0.
Subsequent to the evaluation of this expression, the variable x is added to the set in pc. This
indicates that any statements, such as assignments or method calls, within this if-statement
are influenced by the variable x in the conditional expression. In other words, an implicit
flow emanates from x to any entity residing within the if-statement, such as the expression
y = 1 at line 6. As seen in Section 3.2.2, data types, such as literals have the same label as the
pc, which is the highest label of any variables seen in the set. In this scenario, the literal 1
has the label pc = x = Secret. Following the exit of the if-statement, the pc reverts to its
initial value of { }, since no information regarding the condition on line 5 affects information
flow hereafter. By retaining this information within the pc, the analysis can detect implicit
flows arising from a conditional construct.

Another approach, which at first may seem advantageous, involves the incorporation of a
backward dataflow analysis within conditional constructs. Consider an example program
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consisting of a conditional statement, S, with a condition c, followed by some other state-
ments affected by the condition.

c ; S1; . . . ; Sn;

When the analysis reaches a conditional statement, e.g. an if-, while- or for-statement, the
statement S assumes the label S = S1 ⊓ · · · ⊓ Sn. In other words, the label of the entire
conditional statement S assumes the same label as the least restrictive label of the affected
statements S1, . . . , Sn. The analysis then proceeds to execute a label-check operation on the
information flow c → S. This serves the purpose of enforcing that the implicit flow adheres
to the allowed information flows and that it does not violate any of the constraints estab-
lished in the monotone framework.

In the example in Figure 3.2, this would mean that an the if-statement would assume the
label S = { y = 1 } = Unclassified. A label-check is then performed on the flow c → S,
which evaluates to Secret → Unclassified. This is an information flow violation since
Secret ̸≤ Unclassified.

The second approach holds greater mathematical appeal; however, its implementation is ren-
dered nontrivial due to the current configuration of IntraJ’s CFG we employ. As mentioned
in Section 2.2.3, a backward analysis starts at the exit-node in a CFG. The CFG we use, as
currently structured, features an exit-node positioned solely at the end of a method. Imple-
menting a backward analysis of this nature would require the incorporation of exit-nodes at
the end of relevant conditional structures, a modification that is not easily integrated within
the current CFG framework. Furthermore, an additional consideration pertains to the chal-
lenge of generating informative compile-time warning messages under this approach. The
analysis, when following the second approach, only possesses knowledge of potential viola-
tions of an implicit flow of the affected statements without discerning the precise location
within the source code. In the example in Figure 3.2, an error would be detected on the label-
check at line 5 and not on line 6, where the information flow violation actually occurred. As
a result, it becomes slightly more complicated to provide meaningful warning messages.

Consequently, the approach centered around the pc is adopted for SinfoJ, as it offers greater
ease of implementation and practicality.

3.3 Constraint rules
As discussed in Section 2.2.3, a typical forward dataflow analysis comprises both an in set
and an out set that contain knowledge at the entrance, respectively, immediately after a CFG
node. Additionally, it involves a join function responsible for merging abstract states from
the CFG node’s predecessors in the CFG, as well as a transfer function that transforms the
state at the given node. This has been applied in this analysis and the join function, where v
signifies a CFG node, is defined as follows:

JOIN(v) =
⋃

w∈pred(v)

JwK (3.6)
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The definition of the transfer function is dependent on the CFG node under consideration.
To clarify further, let’s delve into the most interesting constraint rules governing information
flow, namely those associated with assignments and declarations.

Assignment: X = E : JvK = JOIN (v)
⋃

X ⊔ E ⊔ pc (3.7)

Declaration: T X : JvK = JOIN (v)
⋃

X ⊔ pc (3.8)

In Equation 3.7, the symbol X represents the destination for an assignment, while E des-
ignates the source. The constraint also defines the transfer function for an assignment.
The transfer function can be seen if we rewrite the equation in the following form: JvK =
tv( JOIN (v) ), where tv signifies the transfer function. Upon closer examination of the equa-
tion, it becomes evident that the constraint conveys that the abstract state subsequent to an
assignment is the state immediately preceding the assignment, in union with X , E, and pc.
In other words, the most restrictive label associated with all three entities.

Equation 3.8 outlines the definition of the constraint rule for a declaration. Here, T repre-
sents the data type of the declared variable X . This constraint rule is defined as the abstract
state immediately preceding the declaration, in union with X and pc. It is worth noting that
in the context of a declaration, a right-hand side expression may exist. In such cases, it can
be construed as a declaration followed by an assignment statement.

It is also noteworthy to highlight that within this analysis, the inclusion of the pc label re-
mains a consistent component within the transfer functions for all constraint rules.

3.3.1 Label-checking rules
Enforcing and validating information flows is a comparatively straightforward endeavor. As
stated earlier, variables and methods have their own labels, which embody their security class.
With these labels, we can perform label checks where needed. Much like type checking in a
regular compiler, label checking examines whether or not the labels under consideration are
compatible.

Java constructs that are interesting when label checking are various assign-statements, en-
compassing both normal assign-statements and declarations coupled with right-hand side
expressions, declarations, method calls and procedural terminations, e.g. return- or throw-
statements.

Assignments
In the context of assignments, SinfoJ assesses whether the information flow from the source
to the destination aligns with the security constraints of the monotone framework. For in-
stance, if we consider the following segment of Java code:

1 int x = y; // x: Confidential , y: Confidential

Assume x = y = Confidential and pc = Secret. The assignment would result in an
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information flow violation since the label of the right-hand side expression is equal to Con-
fidential ⊔ Secret, which yields the label Secret. A label check is then performed on the
information flow Secret→ Confidential, which in turn would lead to a warning since
Secret ̸≤ Confidential.

Another enhancement to the analysis was to be able to keep track of information that has
flowed into various variables in a program. To illustrate this, let’s look at the following sce-
nario:

1 String password = " password "; // password : TopSecret
2 String s1 = "Hello ,"; // s1: Unclassifed
3 String s2 = " World!" // s2: Unclassifed
4

5 s2 += password ; // -> Warning !
6 s1 += s2; // -> Warning !

In this example, pc = { } and therefore it has the label Bottom, see Section 3.2.2. This exam-
ple will result in two warnings, one on line 5 and one on line 6. The first warning is relatively
straightforward, as it involves the flow of information from the variable password, labeled
TopSecret into the variable s2, labeled Unclassified. However, the warning on line 6
presents a more nuanced scenario. In this assignment, the variable s1, initially labeled as
Unclassified, receives information from the variable s2, also labeled Unclassified, which
instinctively may seem safe. Nevertheless, since s2 has received information from the variable
password, it contains information with the label TopSecret. Consequently, this program
breaches the permissible information flow constraints. This violation can be demonstrated
using the following equation:

s2 ⊔ pc → s1 = s2 ⊔ password ⊔ pc → s1 ≡

Unclassified ⊔ TopSecret ⊔ Unclassified→ Unclassified ≡

TopSecret→ Unclassified

The information flow from TopSecret→ Unclassified is not allowed due to the hierar-
chical relationship where Unclassified is less restrictive than TopSecret.

Declarations
In the context of declarations, the requirement of label checking arises primarily in cases
where a right-hand side is present. In such instances, the label-check procedure mirrors that
which is conducted during an assignment, discussed in the previous section. A second cir-
cumstance necessitating label checking for declarations pertains to their susceptibility to
implicit flows. To illustrate this point, consider the following example:
In this example, y = TopSecret, x = Secret and therefore, pc = Secret on lines 3 and 4
due to the conditional statement. Consequently, the declaration occurring on line 4 becomes
subject to the influence of an implicit flow originating from the condition expressed on line
3. Specifically, an implicit flow, denoted as x → y, necessitates a subsequent label-checking
procedure since the variable y implicitly receives information with the label Secret. In this
example, the label-check would not produce a warning since Secret ≤ TopSecret.
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1 int x; // x: Secret , pc = {}
2 ...
3 if (x == 1) { // pc = {x}
4 int y; // y: TopSecret , pc = {x}
5 } // pc = {}

Procedural terminations
Additional program points where label checking is essential encompass those that lead to
termination of a procedure, including return- and throw-statements. To illustrate the signif-
icance of label-checks in these contexts, examine the example in Figure 3.3.

1 public int run () throws Exception {
2 int x; // x: Secret
3 ...
4 if (x < 0) { // pc = {x}
5 throw new Exception (); // pc = {x}
6 }
7 // pc = {}
8 if (x == 0) { // pc = {x}
9 return -1; // pc = {x}

10 }
11 // pc = {}
12 return x; // pc = {}
13 }

Figure 3.3: Example of return and throw statements affected by im-
plicit flows.

In the example depicted in Figure 3.3, pc = {x} on lines 4, 5, 8, and 9. The potential presence
of implicit flows within the if-statements introduces the potential for information leakage
upon method termination via the throw-statement on line 5 and the return-statement on
line 9. This necessitates the implementation of a label-checking mechanism at these pro-
gram points. Conversely, the return-statement on line 12 diverges in that it does not entail
an implicit flow; rather, it returns the variable x, which is labeled Secret. Notably, if the
method run() is assigned a return-label that is less restrictive than Secret, each of the dis-
cussed statements leads to information flow violations.

The potential of information flow violations through exceptions exists in scenarios where
a variable, with a more restrictive label than the return-label of the enclosing method, is
passed as an argument to an exception. This could potentially lead to the argument flowing
to less restricted variables where the exceptions are caught. Figure 3.4 shows an example of
this scenario. In this example, the method run() has the return-label Unclassified. We
can note that a problem emerges when the variable x is passed as an argument to the throw-
statement on line 6. This action gives rise to an information flow, denoted as x → run, which
violates the established label hierarchy, since Secret ̸≤Unclassified. Note that a violation
does not occur on line 11 since this exception is caught within the method. Consequently,
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this example shows an information flow violation where a variable with a more restrictive
label is passed as an argument to an operation or construct, which leads to a termination of
a procedure. This necessitates the enforcement of a label-check mechanism to address such
scenarios.

1 // Return -label: Unclassified
2 public int run () throws Exception {
3 int x; // x: Secret
4 int y; // y: Unclassified
5 ...
6 if (y < 0) {
7 throw new Exception (x); // -> Warning !
8 }
9

10 try {
11 if (x < 0) {
12 throw new Exception (x); // -> No Warning !
13 }
14 } catch ( Exception e) {
15 // Exception is caught within method
16 }
17

18 return y;
19 }

Figure 3.4: Example of a throw statements with an argument that
has a more restrictive label than the method along with an example
of a caught exception.

On lines 10 – 16 of the example in Figure 3.4, a try-catch is illustrated. In this situation,
the throw-statement is influenced by an implicit flow from the condition on line 10. This
would result in an information flow violation if there were no catch-clause in this example to
handle the thrown exception. However, the thrown exception doesn’t lead to a termination
and therefore it does not violate the same information flow violation as the throw-statement
on line 6.

Arrays
Due to the static nature of SinfoJ, it presents certain limitations when it comes to exam-
ining the individual labels of array elements. The reason for this being that the elements
in an array dynamically can change during execution. Consequently, dealing with labels for
arrays and their constituent elements becomes a non-trivial task. To address this challenge
while upholding the integrity of the label hierarchy and ensuring secure information flows,
a solution has been devised.
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In this analysis, arrays are assigned a single label that is inherited by all elements contained
within that array. This approach results in the creation of a label that serves as an over-
approximation of the potential labels that individual array elements may possess. This method
is often referred to as a may analysis in static analysis since it describes information that may
be true [11]. In particular, this approach acknowledges the possibility that certain elements
within the array may possess the over-approximated label assigned to the entire array while
other elements do not. Nonetheless, for the purposes of maintaining the integrity and re-
liability of a sound static analysis, all elements are treated as if they in fact do have this
over-approximated label.

1 public int run () throws Exception {
2 int x; // x: Secret
3 int a, b, c; // a, b, c: Unclassified
4 ...
5 int [] list = {x, a} // list: Secret
6

7 b = list [0]; // -> Warning !
8 c = list [1]; // -> Warning !
9 }

Figure 3.5: Example of a how the label of an array is over-
approximated.

Due to the aforementioned over-approximation of an array label, the array list in the ex-
ample in Figure 3.5, obtains the label Secret since it contains the element x. Consequently,
all array accesses within list are treated as though they may potentially possess the label Se-
cret label, e.g. the variable a with the actual label Unclassified.

On lines 7 and 8 of the example, two distinct array accesses are illustrated. The array access
on line 7 attempts to retrieve the first element, which corresponds to the variable x whose
actual label is Secret. As this assignment should not be permitted based on the actual label,
the over-approximated label for the entire array aligns with this restriction. Conversely, the
array access on line 8 is directed towards the 1-indexed element within the array. This access
depends on our ability to ascertain the label of the array’s element, which, in practice, is not
achievable in a static analysis. Consequently, the over-approximated label assigned to the
array serves as a safeguard, producing a warning in such accesses to ensure compliance with
the underlying security constraints. In general, for all accesses to this array, the following
information flow is true:

list[i]→ l = Secret→ l ,where i < list.length, l ∈ SC

Methods and Method calls
As mentioned in Section 3.2.1, methods possess two labels: a begin-label and a return-label.
The begin-label has the purpose of maintaining secure information flows when the method
is called upon. The return-label has the purpose of maintaining secure information flows
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when the method terminates as well as being the approximated label of the returned value
to where the method was called. In addition to the two labels for a method, the parameters
of the method also come with their own labels, indicating what variables can be used as
arguments in a method call.

1 // Return -label: Secret
2 // Begin -label: Secret
3 public int add(int x, int y) { // x, y: Unclassified
4 return y + x;
5 }
6

7 public void run () {
8 int m1 = add (1, 2); // -> No Warning !
9

10 boolean x = true; // x: TopSecret
11 int m2; // m2: Unclassified
12

13 if (x) {
14 m2 = add (1, 2); // -> Double Warning !
15 }
16 }

Figure 3.6: Example of method calls.

In Figure 3.6, we have two methods, add(int x, int y) and run(). The first of the two
has a return-label Secret, a begin-label Secret and two parameters, x and y. In run() two
method calls to add(int x, int y) is made, one on line 8 and one on line 14. For the
first call, the pc at the call site, also called the caller-pc is empty and the arguments 1 and
2 are both literals with the same label as the pc. This means that the call does not violate
any constraints since the flow pc→ Secret is allowed. However, the call on line 14 violates
the information flow constraints since it’s affected by the fact that caller-pc = {x}. This flow,
TopSecret→ Secret, is not allowed. Furthermore, the return-value from the method call
has the label Secret which leads to the flow in the assignment of Secret→Unclassified,
and since Secret ̸≤ Unclassified this also violates the established constraints.

3.4 Client Analysis
In order to enable the analysis described in Section 3.2, we have developed and implemented
a client analysis called SinfoJ. This analysis has been realized with the help of ExtendJ,
RAGs (facilitated by JastAdd), IntraJ and Cat, all discussed in 2.

Utilizing the JastAdd framework, our analysis was instantiated using declarative RAGs in
various aspects, discussed in Section 2.3.4. Additionally, several regular Java classes were im-
plemented to handle different data structures or other tasks more suitable for Java, such as
the use of custom Java Annotations. This entire setup was then integrated as an extension to
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the ExtendJ Java compiler.

Due to space constraints, we won’t delve into the entire implementation, but the most note-
worthy aspects of the analysis involve the sections pertaining to the actual information flow
analysis on the Control Flow Graph. To implement these sections, we utilized IntraJ to
construct and navigate through the CFG. The following are three important attributes that
implement the described dataflow analysis in Section 3.2.

syn Alpha CFGNode.IF_in() circular[new Alpha()] {...}
eq Entry.IF_in() = new Alpha();

syn Alpha CFGNode.IF_out() circular[new Alpha()] {...}

syn Alpha CFGNode.IF_trFun(Alpha alpha) = alpha;

Alpha is a custom HashMap that stores variables and their labels, this corresponds to JvK for
a CFG-node. Additionally, Alpha includes the joinv function, responsible for combining
information flow from the predecessors of v. The inv and outv functions, discussed in Sec-
tion 2.2.3, compute sets of information flow labels for various variables at the entrance and
exit of the CFG-node v. Since this is a forward analysis, it commences at the entry-node, as
indicated by the second attribute equation. The transfer function is specified for the required
CFG-nodes, detailed in Section 3.2. Both the inv and outv attributes are circular, implying
that they may depend on themselves and compute a fix point.

Another noteworthy aspect of the implementation is the segment dealing with the pc dis-
cussed in Section 3.2.3. This was implemented in a manner similar to the information flow
dataflow analysis just discussed. The following are key attributes for computing pc.

syn Beta CFGNode.PC_in() circular[new Beta()] {...}
eq Entry.PC_in() = new Beta();

syn Beta CFGNode.PC_out() circular[new Beta()] {...}

syn Beta CFGNode.PC_trFun(Beta beta) = beta;

Just like Alpha, Beta is a custom HashMap, but it differs by instead tracking variables that
have been observed and affected the information flow at the specified CFG node. The im-
plementation principles for inv, outv, and the transfer function for pc align with those used
in the overall information flow dataflow analysis. This means that the transfer function is
implemented for expressions and variable accesses that are conditions in conditional state-
ments, such as if-, for- and while-statements.

To be able to make the interprocedural analysis possible, i.e. controlling information flows
regarding method calls, the class hierarchy analysis Cat discussed in Section 2.2.4 is utilized.
In practice one attribute is especially important, namely the allDecls() below.

syn Set<InvocationTarget> Invocable.allDecls(){...}
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This attribute returns a set of all declarations of the specific Invocable, which is something
that can be invoked or called, in our case a method call. With this set we can approximate
which method declaration is called upon and through that, approximate the method’s begin-,
return- and parameter-labels.

3.4.1 Annotations
To enable security-class labeling of a program, Java custom annotations have been utilized.
These annotations serve as a practical means by which developers can annotate variables and
methods as needed. Consequently, with the integration of these annotations, developers can
label their Java programs as necessary without the need to use special syntax.

The custom Java Annotations are located within a package called org.extendj.infoflow.utils.
There exist different types of annotations in this package. A collection of annotations used
for variables and parameters, namely @Unclassified, @Confidential, @Secret and @TopSe-
cret. One for each security-class in the lattice model, except BOTTOM, which is not in-
tended to be used for labeling. The other type of annotations are the ones intended to be
used for method declarations, namely @BeginLabel(LabelDomain label) and @ReturnLa-
bel(LabelDomain label). These are used to declare a method’s begin- and return-label. They
incorporate a parameter, a Java enum called LabelDomain. This LabelDomain enum, also
located within the package org.extendj.infoflow.utils, encompasses a set of constants, each
corresponding to one of the security classes defined within the lattice model. Additionally,
LabelDomain has functionalities facilitating the comparison of the constants.

1 import org. extendj . infoflow .utils. LabelDomain ;
2 import org. extendj . infoflow .utils. InfoFlowLabel ;
3

4 public class Foo
5 {
6 @BeginLabel (label= LabelDomain . UNCLASSIFIED )
7 @ReturnLabel (label= LabelDomain . SECRET )
8 public void bar () {
9

10 @TopSecret int x = 1;
11 @Secret int y;
12

13 y = x; // -> Warning !
14

15 return y; // -> Warning !
16 }
17 }

Figure 3.7: Example of how to use SinfoJ in a program with the
package org.extendj.infoflow.utils.

Figure 3.7 provides a demonstration of the practical application of these annotations. As
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depicted in the figure, the method bar() is assigned the return-label Secret and the begin-
label Unclassified. Variable x is assigned the label TopSecret, and variable y is assigned
the label Secret. Upon subjecting this program to analysis, two warnings would be pro-
duced. Firstly, a warning would manifest in response to the assignment on line 13, where
x → y lead to an information flow violation, as TopSecret ̸≤ Secret. Secondly, another
warning would emerge concerning the return statement on line 15, where y → bar(). This
violation is rooted in the fact that y has TopSecret information from the variable x, while
bar() has the return-label Secret.

3.4.2 Warnings
One of the objectives of SinfoJ is to provide developers with an understanding of how data
flows within their program with regard to the potential existence of information flows that
violate the lattice properties delineated in Section 3.1. To give informative insights, the anal-
ysis is designed to generate warnings whenever it detects flows that breach the permissible
information flow.

It is important to emphasize that these warnings are intended to provide information and do
not interfere with the regular compilation and execution of the program. In the presence of
potential information flow errors, the program can proceed with its normal compilation and
execution. This approach is chosen to streamline the development process while also provid-
ing developers with feedback concerning potential information flow security vulnerabilities.

Given the inherent complexity and the approximations employed by this analysis, it is antic-
ipated that a substantial number of warnings may be generated. Consequently, some of these
warnings might be considered superfluous for certain scenarios, and as such, it is necessary
for the developer to exercise discernment when interpreting these warnings in the context
of their specific needs.
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Chapter 4

Evaluation

The upcoming chapter outlines how we tested and evaluated SinfoJ. First, we will confirm
that our analysis is a functional subset of the JFlow language by comparing it to the Jif test
suite. This will be followed by a performance evaluation with two different benchmarks. The
purpose of this evaluation is to determine whether our analysis performs within a reasonable
time. In order to determine what reasonable time is, we chose to compare SinfoJ to the
standard compilation time for ExtendJ and to a similar analysis, also implemented with
IntraJ, a Null-Pointer-Analysis (NPA).

4.1 Tests
As stated, we compare our analysis with the Jif test suite, which consists of 626 tests. Since
Jif has a more complex security-class lattice than our framework, which we outlined in Sec-
tion 3.1, we made necessary adjustments to their test cases. These modifications should not
affect the test’s validity and should still produce the same information flow results. See an
example of what these adjustments could look like in Figures 4.1 and 4.2.

1 public void run () {
2 int{Alice:Bob} x = 1;
3 int{Bob :} y = 1;
4

5 x = y; // -> Information flow violation
6 }

Figure 4.1: Example of a Jif program.
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1 public void run () {
2 @TopSecret int x = 1;
3 @Secret int y = 1;
4

5 x = y; // -> Information flow violation
6 }

Figure 4.2: Example of the program in Figure 4.1 written with Sin-
foJ.

Among the 626 test cases in Jif, many involve syntax and concepts not implemented in Sin-
foJ. This is largely due to their use of the entire decentralized label model, as discussed in
Section 2.1.2. This model introduces additional complexity and features such as acts for, prin-
cipals, and declassification [1]. Additionally, Jif supports runtime and generic labels. However,
in cases where tests exclude these more advanced concepts and focus solely on labels and
basic information flows, our implemented analysis effectively addresses almost all of them.
When rewriting the test cases that do not include the concepts SinfoJ does not support, we
can confirm that SinfoJ handles roughly 80 of the test cases. This may seem like a very small
subset and it is, but note that if SinfoJ upgraded its lattice model, it would probably pass
more test cases very quickly.

It is perhaps be worth mentioning that while Jif is more complex than SinfoJ and supports
the complete JFlow language, it is implemented with a total of 38 616 lines of code (LOC).
Even though this might not be a perfect comparison, SinfoJ itself comprises only 650 LOC
of standard Java code, and 675 LOC of JastAdd code. If we combined this with IntraJ and
Cat, implemented with approximately 3500 LOC, SinfoJ is consists of roughly 5000 LOC.
This could indicate that the use of ExtendJ, JastAdd and RAGs is rather efficient.

4.2 Performance
Evaluation Setup and Methodology
The benchmarks were performed on a machine with a Intel Core i7-8665U running at 1.90GHz
and 16GB RAM. The machine ran Ubuntu 22.04.03 LTS and the benchmarks were executed
on OpenJDK Runtime Environment 8.0.275.fx-zulu. The analysis was implemented using Ex-
tendJ version 8.1.2, JastAdd version 2.3.6, IntraJ at commit 207874a1 and Cat at commit
e193b832.

Firstly, we performed measurements for start-up performance, cold-starting the Java Vir-
tual Machine (JVM) for each run. Then we performed measurements for steady-state per-
formance, with a single measurement after 24 warm-up runs. Each benchmark iteration was
then repeated 25 times, resulting in a total of 625 runs for steady-state. The report metrics

1https://github.com/lu-cs-sde/IntraJ
2https://github.com/IdrissRio/cat
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include median values along with 95% confidence intervals. The two benchmarks used were
pmd3 and jfreechart4 and can be seen in Table 4.1.

Benchmark LOC Version
pmd 60749 4.2.5

jfreechart 95664 1.0.0

Table 4.1: The Java benchmarks used for evaluation.

Benchmark

Start-up

ExtendJ CFG NPA SinfoJ

Time(s) Time(s) Time(s) Time(s)

pmd 1.07±0.03 5.35±0.13 8.90±0.43 15.65±0.53

jfreechart 1.27±0.02 5.17±0.07 10.72±0.37 18.43±0.27

Table 4.2: Benchmark results for Start-up measurement.

Benchmark

Steady-state

ExtendJ CFG NPA SinfoJ

Time(s) Time(s) Time(s) Time(s)

pmd N/A 1.49±0.11 2.95±0.14 6.51±0.16

jfreechart N/A 1.50±0.07 4.22±0.20 10.16±0.19

Table 4.3: Benchmark results for Steady-state measurement.

Results
The benchmark evaluation results are presented in Tables 4.2 and 4.3. They show the average
time for running the entire respective benchmark. As stated earlier, we aim to show that
our analysis performs within a reasonable execution time. As shown in the table, SinfoJ ex-
hibits slower performance than NPA, but note that the difference is not unreasonably large.
Looking at the steady-state measurement for SinfoJ compared to NPA we see that it is a
factor of 2.21 for the pmd benchmark and 2.41 for the jfreechart benchmark. This outcome
is expected, considering that NPA is a relatively simple and strictly intraprocedural analysis.
In contrast, SinfoJ incorporates the pc, the information flow intraprocedural analyses and
the integration of CAT, which introduces interprocedural analysis.

3https://github.com/pmd
4https://www.jfree.org/jfreechart
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Even though SinfoJ was not designed with the primary goal of optimizing performance, the
results indicate that, in comparison to the already established and tested NPA, it performs
quite well.
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Chapter 5

Limitations and Further Work

In this chapter, we will discuss how SinfoJ could be further improved and developed, one
of the aims of this thesis. We will also address some of the problems we faced when imple-
menting this analysis within the scope defined in the introduction and the limitations this
resulted in.

5.1 Subset of JFlow
The goal of this thesis was not to implement the entire JFlow information flow analysis.
However, we hope that the work done with this thesis and SinfoJ can contribute to fur-
ther research within the area of information flow analysis and RAGs. There are still many
features from JFlow missing in our analysis. Probably the most interesting feature is the de-
centralized label model. This more complex model enables programs to have very advanced
security models, but it does not necessarily mean a much more advanced implementation.
Due to that, the actual dataflow analysis will almost remain the same. Although, the lat-
tice model could then no longer be linear with increasing restrictive security classes as the
one we employ in SinfoJ. In a lattice model that supports the decentralized label model, a
lattice element would consist of a set of policies, which were mentioned in Section 2.1.2. A
variable with a label L1 can flow into another variable with a label L2 if and only if for all
policies in L1, there exists a policy in L2 that is at least as restrictive. This means that L2 is
at least as restrictive as L1 and therefore information can flow from the variable with label
L1. The monotone framework described in Section 3.1 would then need to be updated to
conform with this. The entire decentralized label model and its lattice model are described
in the paper "A lattice model of secure information flow" by Denning, Dorothy E. [4] and in the
paper "Complete, safe information flow with decentralized labels" by A.C. Myers and B. Liskov [13].
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Another interesting feature in JFlow worth exploring is the way JFlow examines termi-
nation paths. JFlow keeps track of where a program might terminate due to exceptions or
potential run-time errors. This leads to a more precise information flow analysis, since the
analysis can catch information flow violations resulting from these potential terminations.
SinfoJ only identifies terminations that are explicitly declared, such as return-statements or
throw-statements. However, it does not identify potential violations in situations where run-
time exceptions like null-pointer or division-by-zero could occur. A solution here could be to
utilize e.g. the Null Pointer Analysis already existing in IntraJ, in order to detect potential
terminations due to null-pointers.

5.2 Performance
In terms of performance, there is a lot of room for improvement. First and foremost, the im-
plementation of the pc leads to one more dataflow analyses being performed. Our analysis
basically consists of two independent dataflow analysis, one for information flow states and
one for the pc. This could potentially be incorporated into one dataflow analysis. This area
and solution have not been explored but would be interesting and a good starting point for
performance optimization.

For storing the states in both the pc and the information flow analysis, we use Java HashMaps.
They work quite well because most operations performed are the retrieval and updating of
elements, which have an average time complexity of O(1). However, when we want to re-
trieve the expression with the most restrictive label in the pc, a linear search is performed
on the HashMap, which obviously isn’t ideal. A very simple solution would be to keep track
of which expression in the set has the most restrictive label and update this value whenever
we add or remove values.

5.3 Java Annotations
The use of Java Annotations made it possible to implement this analysis without the need
to extend Java syntax. This enabled more focus on the actual dataflow analysis. It is also
generally a better approach than extending Java, which will need maintenance of a custom
compiler. A program written with SinfoJ annotations can be compiled with a regular java
compiler if you do not want to get the information flow warnings.

As already discussed, SinfoJ do not employ the entire decentralized label model as in JFlow.
While it might be theoretically feasible to implement this model using Java Annotations, it
is likely to be less practical in reality. To elaborate, the decentralized label model permits a
label to have multiple policies, which in turn allows multiple readers. When labels are imple-
mented with annotations, this would lead to either excessively lengthy annotation declara-
tions or the use of multiple annotations for a labeled object. This approach therefore becomes
less practical, for example in scenarios such as parameter declarations within a method dec-
laration.
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Java annotations are intended to be used for providing a compiler with meta-data that can be
used during compile-time or run-time. A feature JFlow and Jif allows is the use of generic
and run-time labels, which currently SinfoJ does not support. Just as with implementing the
decentralized label model, it would probably be possible to implement generic and run-time
labels with Java annotations, although this is not very straightforward. Custom Java anno-
tations, used in SinfoJ, have rather strict rules for parameters. They can only be typed as
a primitive, String, Class (note that this is not an object), enum, annotations or an array of
any of these. This makes it rather hard to provide generic information for a label that can be
used at run-time.

5.4 Interprocedural Analysis
The interprocedural part of this analysis can also be further developed to make it more pre-
cise. Right now, we utilize CAT in order to construct a call graph, which we then use to
approximate what method is called. This is then used to retrieve the labels for that method
and check that they do not violate any information flow constraints. However, as the labels
serve as approximations from either annotations or inferred labels, a bit of precision is lost.
One improvement would be to use an interprocedural control flow graph instead of an in-
traprocedural, which IntraJ is. This would give our dataflow analysis the ability to preserve
information between processes, i.e. between methods. This hasn’t been further researched,
but it seems like a very interesting direction for further work.

Another way to deal with this loss in precision due to approximations of the interproce-
dural flows, would be to inline the information flow states from the point of the call-site to
the entry-node of a method. At the termination of a method, combine the states with the
information at the program point of the caller. This is probably a rather non-trivial task,
partly due to the nature of RAGs. An equation in JastAdd cannot result in any visible side
effects. This means that in the equations where we specify the dataflow analysis, we cannot
set the value for attributes of other AST nodes, i.e. we cannot inline information by setting a
start-value for a given entry-node. However, this could possibly be implementable by passing
around data, as already done in the dataflow analysis discussed in Section 3.2, but this hasn’t
been explored and would possibly lead to a rather different implementation and the necessity
to work around the already defined intraprocedural CFG we employ.
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Chapter 6

Conclusion

This thesis has introduced a static information flow analysis inspired by the JFlow language,
which we call SinfoJ. In order to outline the subset of JFlow to implement for our analy-
sis, we did research in various areas of static program analysis, information flow analysis and
compilers. It was then implemented using RAGs and utilizes JastAdd, ExtendJ, IntraJ and
CAT. The resulting analysis, SinfoJ, is capable of detecting basic information flow violations
in intraprocedural and interprocedural programs. The dataflow analysis that is used follows
the monotone framework discussed in Section 3.1. With this, we were able to implement a
simple version of the JFlow language with security-class labels using Java Annotations. Al-
though this leads to some limitations and restrictions, which were discussed in Chapter 5,
the decision to use Java Annotations, made it easier to implement SinfoJ and more time
could be focused on the actual analysis. It is also worth exploring the use of Java Annotations
for labeling, since it holds great value if a user do not need to use a custom compiler or a
custom programming language. The use of Reference Attribute Grammars (RAGs) proved
to be rather effective. Implementing the dataflow analysis was rather straightforward when
inherited, synthesized and circular attributes could be utilized. Furthermore, the constraint
rules for various constructs, e.g. assignments and declarations, were easily implemented, and
if needed, it’s easy to add more rules to other Control Flow Graph nodes. If one wants to add
further label checks or more constraint rules for the dataflow analysis, simply add a synthe-
sized attribute for that specific CFG node. The same applies if more label checks are needed,
then it’s easy to add attributes for the specific Java constructs.

In terms of performance, SinfoJ performs quite well in comparison to a similar dataflow
analysis, namely a Null-Pointer Analysis, also implemented with RAGs. Although, SinfoJ is
somewhat slower, it still performs within reasonable time.

As SinfoJ is rather a simple information flow analysis and does not allow for very com-
plex security models, it might not be practical in real-life scenarios. However, this analysis
lays the groundwork for further development of both this particular analysis and RAGs in

47



6. Conclusion

general. With this, we hope that SinfoJ and this thesis can contribute to others that wish to
implement an information flow analysis or further research in the area of Reference Attribute
Grammars.
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SinfoJ: En Informationsflödesanalys
med RAGs och Java Annotations

POPULÄRVETENSKAPLIG SAMMANFATTNING Max Soller

Informationsflödesanalys är ett koncept som syftar till att analysera hur information
propagerar i ett program med målet att upptäcka punkter i ett datorprogram där
känslig information potentiellt kan läcka. För att lokalisera dessa programpunkter
introducerar vi SinfoJ, en dataflödesanalys som är implementerad med hjälp av Ref-
erence Attribute Grammars och Java Annotations.
Säkerhet, sekretess och integritet är avgörande
koncept i datavetenskap, och att skydda känslig
information från oavsiktlig spridning är en allt
viktigare utmaning. Utvecklare behöver skriva
datorprogram där känslig data inte riskerar att
läcka ut till obehöriga. Det kanske låter relativt
enkelt, men i praktiken är detta en väldigt knepig
uppgift.

För att göra denna utmaning enklare har
något som kallas för informationsflödesanalys
tagits fram. Genom att analysera hur t.ex. data,
variabler och metoder interagerar och påverkar
varandra i ett datorprogram, kan man upptäcka
flöden av information som är oönskvärda. Det vill
säga, informationsflöden som potentiellt kan leda
till att sekretess och integritet komprometteras.

Vi presenterar SinfoJ, en simplistisk infor-
mationsflödesanalys som inspirerats av kon-
trollflödesspråket JFlow. Vi har implementerat
SinfoJ med hjälp av Reference Attribute Gram-
mars (RAGs), Java Annotations och verktyg som
t.ex. ExtendJ, en extensibel Java-kompilator,
och IntraJ, ett verktyg för att konstruera en
kontrollflödesgraf.

Confidential

Unclassified

Secret

Top Secret

Figure 1: Säkerhetsklasser i SinfoJ.

Genom att annotera variabler och metoder med
säkerhetsklasser, som ni kan se i Figur 1, kan
utvecklare använda SinfoJ för att säkerställa att
känslig information inte läcker till mindre säkra
delar av ett datorprogram.

SinfoJ må vara en relativt simplistisk analys
men förhoppningsvis ett steg framåt. Genom
att bygga vidare på forskningen inom RAGs och
applicera det på arbetet JFlow bidragit med
inom informationsflödesanalys, hoppas vi öppna
upp nya möjligheter för säkerhetsanalys och
dataskydd.
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