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Abstract

High-order Harmonic Generation (HHG) is a highly non-linear process in which an atom
interacts with a strong laser field. The laser field lowers the atomic potential barrier
allowing bound electrons to escape into the continuum through tunnel ionization, prop-
agate, and, with some probability, recombine with the parent ion. As a result, coherent
eXtreme UltraViolet (XUV) radiation is emitted in the form of ultrashort pulses with at-
tosecond durations. This phenomenon has been successfully described with semi-classical
models that consider the atoms as quantum systems and the radiation as a classical wave.
However, there have been recent efforts to develop a fully quantum mechanical theory of
HHG in which the radiation is also described as a quantum system. This quantum optical
description has opened the doors to several applications of HHG radiation in quantum
technology and fundamental physics research. In this thesis work, the newly developed
Strong Field Quantum Electrodynamics (SFQED) theory applied to HHG is reviewed.
The effects of considering a spatial distribution for the atoms and radiation’s intensity
are investigated using this framework. To do this, two Python simulations, where SFQED
and the Strong Field Approximation (SFA) are used, were created. One of them consid-
ers single atom generation, and the other one considers few atoms generation using a
Gaussian beam intensity profile. It is found that the spatial distribution affects the shape
of the spectrum, but does not affect the final radiation state’s statistics or purity. Sev-
eral avenues to further explore the application of SFQED to HHG include applications
in quantum technology, HHG driven by quantum light, and generation in more complex
targets, such as diatomic molecules.
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Chapter 1

Introduction

1.1 High-Order Harmonic Generation

Lasers have been extensively used to study light-matter interactions since they were in-
vented by Maiman in 1960 [1, 2]. This light source made it possible to achieve intensities
never reached before, allowing the observation of new optical processes, like the generation
of optical harmonics by atoms. When the intensity of a non-resonant driving laser is low
compared to the atomic potential, harmonic generation is achieved through the absorp-
tion of n consecutive photons and the emission of the nth harmonic of the driving field.
This phenomenon was first observed by Franken et al. in 1961 [3], who detected second
harmonic generation in a solid target. In subsequent studies, low-order harmonics were
generated in plasma and gas targets. The conversion efficiencies were found to decrease
exponentially with the harmonic order of the emission. These results can be explained by
perturbation theory, which is often adequate to describe harmonic generation in the low-
intensity regime, i.e., when the laser field is weak enough to be considered a perturbation
to the field-free Hamiltonian.

With the development of ultrashort high-power lasers, previously unknown optical pro-
cesses were observed during the 80s. In 1987, two separate laboratories, Chicago [4] and
Saclay [5], discovered that by focusing an intense picosecond laser on a gas target, one may
observe the emission of light pulses consisting of a superposition of high-order odd har-
monics. This process, now known as High-order Harmonic Generation (HHG), produces
coherent eXtreme UltraViolet (XUV) light pulses with attosecond durations (Figure 1.1).
These characteristics make HHG of interest for applications in fundamental physics and
material science research [6].

Figure 1.1: Schematic representation of HHG. An intense laser is focused on a gas. In principle, the
driving laser can be a continuous wave laser. In practice, to achieve the required high intensities, the
driving laser is a finite duration pulse of a few femtoseconds. As a result of the light-atom interaction,
high-order harmonics of the fundamental frequency are emitted producing an Attosecond Pulse Train
(ATP).
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Unlike low-harmonic generation, HHG cannot be described perturbatively, and when it
was first observed, there was no theoretical framework available. In the years following its
discovery, a few theoretical models and numerical methods were developed to understand
and describe HHG. The first theoretical framework that accomplished this is known as
the 3-step model, which was proposed by Kulander et al. [7] and Corkum [8] in 1993. It
describes the light-matter interaction as follows. HHG happens when the electric potential
of the driving laser is of the order of the atomic potential. Under such conditions, (1) an
electron can escape the confining potential through tunneling, (2) undergo propagation
in the continuum, and finally, (3) recombine with the parent ion (Figure 1.2). As the
photoelectron is accelerated by the driving field in the continuum, it gains kinetic energy.
When it recombines with the parent ion it emits highly energetic photons: h̄ω = Ip+Ekin

where h̄ is Plank’s reduced constant, ω is the angular frequency of the light, Ip is the
atom’s ionization energy, and Ekin is the electron’s kinetic energy. This process repeats
itself every half cycle, creating constructive and destructive interference that generates an
XUV Attosecond Pulse Train (APT).

Figure 1.2: Schematic representation of the 3-step model for a linearly polarized driving laser. The
figures represent (1) tunnel ionization, (2) propagation in the continuum, and (3) recombination and
emission. The solid red lines represent the potential present in each step, including the atomic and
radiation potentials. The dashed red lines represent the potential present in the previous step, or in the
case of (1), the atomic potential in the absence of the laser. The electron is represented with dots, in
bright green for the electron at the current step, and light green for the electron in the previous step.
The emitted photon is represented with a blue wave.

The HHG spectrum (Figure 1.3) consists of a comb of frequencies presenting the expected
exponential decrease in efficiency for the low-order harmonics (perturbative regime), fol-
lowed by a nearly constant efficiency plateau for the high-order odd harmonics (nonper-
turbative regime) that ends abruptly at some cut-off frequency. This cutoff is related to
the maximum kinetic energy an electron following a classical trajectory may gain while
propagating in the continuum. On the other hand, the isotropy of the atomic system,
as well as the periodic oscillation of the driving field result in the emission of only odd
harmonics (ionization may occur when the field is positive or negative).

The observed cutoff energy depends on the driving laser parameters, and with the devel-
opment of shorter-duration higher-intensity pulses, the plateau has been extended into
the hundreds of harmonics. With the 3-step model, it was shown that the cutoff posi-
tion follows the universal law Ecutoff

∼= Ip + 3.2Up, where Up = (e2/8π2ε0c
3me)Iλ

2 is
the ponderomotive energy, proportional to the driving laser intensity I times its square
wavelength λ2. This model constitutes a simple and intuitive way of understanding HHG.
Furthermore, quantum mechanical models recover the cutoff law found with it, making it
a good quantitative description as well [9, 10].
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Figure 1.3: Schematic representation of an HHG spectrum in logarithmic scale. The spectrum consists
of three distinct parts (exaggerated for clarity): the perturbative regime for low orders, the plateau for
intermediate orders, and the cutoff region at the highest orders.

A formal approach to the complete treatment of matter in intense laser fields relies on
solving the Time-Dependent Schrödinger Equation (TDSE). Numerical solutions for sim-
ple systems, e.g., HHG on a hydrogen atom or a hydrogen molecule, were developed
shortly after the discovery of HHG [11, 12]. Nevertheless, this requires extensive com-
putational power, and for realistic laboratory conditions where several more complicated
atoms/molecules participate in the HHG process, solving the TDSE exactly is unfeasible.
Under these circumstances, approximate methods are necessary.

An approximate method of particular relevance is the Strong Field Approximation (SFA).
It was first suggested for HHG by Ehlotzky in 1992 [13], and later successfully formulated
by Lewenstein et al. in 1994 [10]. In this framework three key assumptions are made: (1)
the strong laser field only couples to the atomic ground state |g⟩ (no internal resonances),
(2) the time-dependent amplitude of the ground state is considered to be a(t) ∼= 1 (no
depletion), and (3) the continuum states are taken to be the exact solutions for a free
electron propagating in a laser field |p(t)⟩ (the atomic potential is neglected). SFA is
valid in the regime of low laser frequency and high intensity, where the ionization happens
through tunneling and the effects of the atomic potential on the dynamics of the electron
in the continuum can be neglected. These characteristics make it an adequate tool for
describing HHG as a simple and efficient model widely used by experimentalists [10, 14,
15].

Until recently, it was consensus that a Quantum Electrodynamics (QED) formulation of
HHG wasn’t necessary, given that it is a coherent process where many photons participate.
Nevertheless, there has been an effort to develop a quantum optical description and recent
work confirms that, after the interaction, both the driving field and the harmonic radiation
possess quantum features that may play an important role in experiments [16, 17, 2, 18,
19, 20].

In these newly published papers, a Strong Field Quantum Electrodynamics (SFQED) the-
ory is developed treating both the atoms and the radiation as quantum systems [16, 17].
In this new framework, it is possible to separate the light-matter interaction into a ’clas-
sical coupling’ and its ’quantum corrections’. The ’classical coupling’ between the driving
laser field and the atoms governs the dynamics of the electronic system. Meanwhile, the
’quantum corrections’ describe the dynamics of the radiation field, including the emission
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of the harmonics and the back-action on the driving laser. This allows for the use of the
previously developed methods to solve the ’classical’ part of the problem. Afterward, this
partial solution can be used to find the back-action and the amplitudes of the emitted har-
monics, effectively solving the full problem. Additionally, these papers suggest promising
applications of this theory in quantum technology and attosecond science [2]. Particu-
larly, the engineering of high photon number Schrödinger Cat states with quantum HHG
is discussed along with proposals for an experimental setup to generate, characterize, and
control them, as it may represent a potential tool for quantum computation [18, 19, 20].

In the literature, macroscopic effects in HHG have not been addressed in detail using
the new framework. In realistic laboratory conditions, the atoms and the laser used
for HHG have a spatial distribution. Therefore, atoms at different positions experience
different intensities from the radiation field. This raises the question of whether there are
macroscopic effects on the generated radiation due to the different contributions from each
atom to the spectrum. If there are important macroscopic effects, it is crucial to consider
them in the theory, since they may have significant implications for the applications
mentioned before.

1.2 Scope of this work

For this degree project, I joined the Attolab group from the Atomic Physics Division at
Lund University, which mainly focuses on studying attosecond photoionization using pho-
toelectron interferometry. To do quantum state tomography of the photoionized electron
wave packets, the Attolab group developed the KRAKEN technique where the attosec-
ond radiation is considered fully coherent and any loss of purity of the electron state is
attributed to coupling to environmental degrees of freedom or partial measurements of
entangled states [21, 22]. In HHG, macroscopic effects play a major role and can affect
the spatial and temporal properties of the emitted XUV radiation. So far, there has been
no discussion of these effects in the framework of SFQED. This work aims to investigate
how macroscopic effects modeled within SFQED can affect the properties of the XUV
radiation’s final quantum state. To do this, I have written a Python simulation consid-
ering generation in a single hydrogen atom. In this simulation, SFA is used to solve the
semi-classical part of the problem, and the emitted radiation is modeled and characterized
using the results from the SFQED formalism. Subsequently, I expanded this simulation to
describe the HHG process in four atoms considering their spatial distribution. The results
of the two simulations are presented and discussed in this thesis work. The knowledge
acquired through this project will aid the Attolab group in determining the relevance of
the new quantum theory for their line of research and in developing experiments where
macroscopic effects may be measured, provided they play an important role.

1.3 Outline

The content of this thesis is structured as follows. In Chapter 1, a brief introduction to
HHG and its history is provided. A general description of the project’s goals and methods
is given. In Chapter 2, the theoretical background necessary to formulate the quantum
optical description of HHG is laid out. The SFQED theory applied to HHG is reviewed in
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detail, and the fundamentals and main results of SFA are presented. Chapter 3 explains
in detail the considerations and methods of the numerical implementation. The results
of each simulation are presented and analyzed in depth. In Chapter 4, a summary and
conclusions of this thesis work are provided. Different possible avenues to continue this
research are discussed. Lastly, Chapter 5 contains the acknowledgments.
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Chapter 2

Theoretical Framework

2.1 The Quantum Description of light

In this section, the fundamental formalism needed to describe radiation within quantum
theory is introduced. The electromagnetic fields are quantized. Classical and quantum
representations of light are discussed and contrasted. The quantum description of coherent
states of light is laid out. The statistical characterization of different states of light is
discussed. The content of this section closely follows the work presented in [23, 24, 25, 26],
where the reader may find additional details.

2.1.1 States of Light: Waves and Particles

The heart of classical electromagnetism is Maxwell’s equations. In SI units, these equa-
tions read:

∇ ·B = 0, (2.1a)

∇×E = −∂B
∂t

, (2.1b)

∇ ·E =
ρ

ε0
, (2.1c)

∇×B = µ0J +
1

c2
∂E

∂t
. (2.1d)

Classical free radiation states (or light waves) are given by the electric and magnetic fields
that solve equations 2.1 in the absence of charges (ρ = 0) and currents (J = 0). In such
a case, the solutions are plane waves, which may be written in the following way:

E(r, t) = E0e
iφei(k·r−ωt), (2.2a)

B(r, t) = B0e
iφei(k·r−ωt), (2.2b)

where E0 andB0 are the field amplitudes, k is the wave vector, ω is the angular frequency,
and φ is the phase. The field amplitudes fulfill the relation |E0|/|B0| = c, making the
electric field much stronger than the magnetic field.

Poynting’s Theorem [27] states that the total energy density stored in the electromagnetic
field is given by:

u =
1

2

(
ε0|E|2 + 1

µ0

|B|2
)
. (2.3)
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Therefore, the free field Hamiltonian function is:

H =
1

2

∫
d3r

(
ε0|E|2 + 1

µ0

|B|2
)
. (2.4)

On the other hand, the electric and magnetic fields may be written in terms of a scalar
potential field U(r, t) and a vector potential field A(r, t) in the following way:

E(r, t) = −∇U(r, t)− ∂A(r, t)

∂t
, (2.5a)

B(r, t) = ∇×A(r, t), (2.5b)

These expressions are invariant under gauge transformations:

A(r, t) −→ A′(r, t) = A(r, t) +∇f(r, t), (2.6a)

U(r, t) −→ U ′(r, t) = U(r, t)− ∂tf(r, t), (2.6b)

where f is a scalar function of time and position. In particular, it is possible to choose f
such that ∇·A = 0 and U = 0. The first condition is known as the Coulomb gauge, and it
will be used throughout this thesis unless stated otherwise. In this case, the Hamiltonian
function can be written as:

H =
1

2

∫
d3r

(
ε0 |∂tA|2 + 1

µ0

|∇×A|2
)
. (2.7)

If the Hamiltonian function is Fourier transformed into reciprocal space where ∇ → k,
and the transformed A(r, t) and π(r, t) = ε0∂tA(r, t) = −ε0E(r, t) are considered as the
generalized coordinates analogous to position r and momentum p, then equation 2.7 looks
remarkably similar to the Hamiltonian function for a harmonic oscillator1 [23, 24]:

HHO =
1

2

(
p2

m
+mω2r2

)
. (2.8)

To formulate a quantum description of light, it is necessary to postulate the vector field
and its conjugate momentum field as operators. Motivated by the similarities with the
harmonic oscillator, it is proposed that [28]:[

Â(r), Π̂(r′)
]
= ih̄δ(r − r′), (2.9)

and

Â(r) =
∑
l

∫
d3k

√
h̄

2ε0ck(2π)3
[
âk,lϵk,le

ik·r +H.c.
]
, (2.10a)

Π̂(r) =
∑
l

∫
d3k

√
h̄ε0ck

2(2π)3
[
−iâk,lϵk,leik·r +H.c.

]
, (2.10b)

where (ϵk,l)m = δlm are the polarization vectors (l,m ∈ {1, 2, 3}), and âk,l, â
†
k,l are the

annihilation and creation operators corresponding to mode k and polarization l, which
fulfill the commutation relations [âk,l, â

†
k′,l′ ] = δ(k − k′)δll′ .

2

1In reciprocal space, the Coulomb gauge implies k ⊥ A.
2The operators in 2.10 are defined in the Schrödinger picture, where the time dependence is embed-

ded in the states rather than the operators.
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The free radiation quantized Hamiltonian is obtained substituting equations 2.10 in 2.7:

ĤFR =
∑
l

∫
d3k h̄ωk

(
â†k,lâk,l +

1

2

)
, (2.11)

where ωk = ck is the angular frequency and â†k,lâk,l = N̂k,l is known as the number opera-
tor. Equation 2.11 shows that the Hamiltonian operator for free radiation corresponds to
the sum of individual harmonic oscillators for each mode k and polarization l. Therefore,
the solutions will be given by the number states |n⟩k,l such that:

ĤFR|n⟩k,l = h̄ωk

(
n+

1

2

)
|n⟩k,l, (2.12)

where the action of the creation and annihilation operators on the number states (also
known as Fock states) is given by:

â†k,l|n⟩k,l =
√
n+ 1|n+ 1⟩k,l, (2.13a)

âk,l|n⟩k,l =
√
n|n− 1⟩k,l, (2.13b)

âk,lâ
†
k,l|n⟩k,l = N̂ |n⟩k,l = n|n⟩k,l. (2.13c)

The classical description of light is fully deterministic with a definite value of the magnetic
and electric fields for each time and position. In quantum theory, position and momentum
are conjugate variables that obey Heissenberg’s uncertainty principle ∆x∆p ≥ h̄/2, where
∆x =

√
⟨x2⟩ − ⟨x⟩2. This means the expected values for the analogous field operators

spread across an interval instead of having a definite value, i.e., ∆A(r, t)∆E(r, t) ≥ h̄/2.

2.1.2 Coherent States

Coherent states of light are defined as:

|αk,l⟩ = e−
|αk,l|

2

2

∞∑
n=0

αn
k,l√
n!
|n⟩k,l, (2.14)

where αk,l is a complex number3. These states are a superposition of number states, and

therefore they are solutions of the Hamiltonian ĤFR. Furthermore, âk,l|αk,l⟩ = αk,l|αk,l⟩,
i.e., they are eigenstates of âk,l with eigenvalue αk,l (see Appendix A.1).

To simplify the notation, the subscript k, l that labels the mode and polarization corre-
sponding to each Hilbert space will be omitted in the discussion that follows. Nevertheless,
the reader should keep in mind that each mode and polarization have their own set of
operators and basis states.

The annihilation operator â is not Hermitian; hence, its eigenvalues α are not observables.
Nevertheless, the number operator N̂ is a Hermitian operator with measurable eigenvalues.
The probability of measuring n photons given a coherent state |α⟩ is:

P (n) = |⟨n|α⟩|2 =
∣∣∣∣e−|α|2/2 α

n

√
n!

∣∣∣∣2 = e−|α|2 |α|2n

n!
. (2.15)

3Here there is a slight abuse of notation, as it is considered that the undefined number 00 is equal
to 1 so that the Fock vacuum state |n = 0⟩ and the coherent vacuum state |α = 0⟩ coincide.
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Equation 2.15 is known as a Poissonian distribution, characterized by ∆n =
√

⟨n⟩. For a
coherent state |α⟩, ∆n =

√
⟨n⟩ = |α| (see Appendix A.2).

Although the annihilation operator is not Hermitian, it can be shown that the coherent
states fulfill the completeness relation [26]:

1

π

∫
d2α|α⟩⟨α| = 1, (2.16)

where d2α = d(Re α)d(Im α). This implies that for any Fock state |n⟩:

|n⟩ = 1

π

∫
⟨α|n⟩|α⟩d2α. (2.17)

Thus, any arbitrary state may be decomposed in terms of coherent states. Nevertheless,
coherent states are not orthogonal to each other:

⟨α|β⟩ = e−|α|2/2−|β|2/2
∑
n,m

α∗nβm

√
n!m!

⟨n|m⟩

= e−|α|2/2−|β|2/2+α∗β ̸= 0 ∀α, β ∈ C. (2.18)

This means that the set of all coherent states is linearly dependent and any arbitrary
state decomposition is not unique [26]. Then, {|α⟩ : α ∈ C} constitutes an over-complete
basis of the Hilbert space.

The photon number is not the only observable of a coherent state. Drawing from the
analogy with harmonic oscillators, Hermitian quadrature operators may be defined as:

x̂ =

√
h̄

2ω
(â† + â), (2.19a)

p̂ = i

√
h̄ω

2
(â† − â). (2.19b)

The expected values of these quadrature operators are then given by:

⟨x⟩ =
√

2h̄

ω
⟨α|(â† + â)|α⟩ =

√
h̄

2ω
(α∗ + α) =

√
2h̄

ω
Re α, (2.20a)

⟨p⟩ = i

√
h̄ω

2
⟨α|(â† − â)|α⟩ = i

√
h̄ω

2
(α∗ − α) = i

√
2h̄ω Im α. (2.20b)

Thus, the coherent states’ phase space is in direct correspondence with the complex
plane of eigenvalues α, which provides a powerful tool for the graphic representation of
these states and their dynamics (Figure 2.1). Furthermore, the quadrature operators’
fluctuations are given by:

∆x =
√

⟨x2⟩ − ⟨x⟩2 =
√

h̄

2ω
(4Re2 α + 1)− 2h̄

ω
Re2 α =

√
h̄

2ω
, (2.21a)

∆p =
√

⟨p2⟩ − ⟨p⟩2 =
√
h̄ω

2
(4Im2 α + 1)− 2h̄ωIm2 α =

√
h̄ω

2
, (2.21b)

such that ∆x∆p = h̄/2. Therefore, although coherent states are quantum states, they
possess minimum uncertainty, bringing this description as close as possible to classical
localization.
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In many sources, the quadrature operators are defined as the ’normalized’ operators [24]:

x̂ =
1

2
(â† + â), (2.22a)

p̂ =
i

2
(â† − â). (2.22b)

Then [x̂, p̂] = i/2, ∆x = ∆p = 1, and α = ⟨α|x̂|α⟩+ i⟨α|p̂|α⟩. These definitions make the
representation of coherent states in the optical phase space symmetrical in both quadra-
tures. From this point on, the quadrature operators considered in this thesis will be those
from equations 2.22.

It is of interest to investigate the temporal evolution of coherent states in the phase space
representation. According to Schrödinger’s equation, the coherent states evolve in time
as:

|α(t)⟩ = Û(t)|α(0)⟩ (2.23)

where Û(t) = e−iĤFRt/h̄ is the time evolution operator. Here, it is convenient to momen-
tarily switch to the Heisenberg picture and consider the time evolution of the annihilation
operator â(t) = Û †(t)â(0)Û(t) instead. The Heisenberg equation that governs the time
evolution reads:

d

dt
â(t) =

i

h̄

[
ĤFR(t), â(t)

]
=
i

h̄
h̄ω
[
â(t)â†(t), â(t)

]
= iω

(
â(t)[â†(t), â(t)] + [â(t), â(t)]â†(t)

)
= −iωâ(t). (2.24)

Therefore, â(t) = e−iωtâ(0), and â(t)|α⟩ = e−iωtα|α⟩. Then, returning to the Schrödinger
picture, the evolution of the eigenvalues will be α(t) = e−iωtα(0), such that:

â|α(t)⟩ = e−iωtα(0)|α(t)⟩. (2.25)

2.1.3 The Displacement Operator

The coherent states understood as eigenstates of the annihilation operator are an abstract
mathematical description of light. Nevertheless, a lot of insight can be gained from an
intuitive understanding of coherent states. To achieve this, one can think of the most
elementary light source: an electric current distribution J(r, t) coupled to the electric
field through the vector potential A(r, t). Then, in the interaction picture with respect
to ĤFR, the evolution of the radiation state |ψ(t)⟩ is described by:

ih̄
d

dt
|ψ(t)⟩ =

∫
d3rJ(r, t) · Â(r, t)|ψ(t)⟩. (2.26)

The solution will be given by |ψ(t)⟩ = Û(t)|ψ(0)⟩ with

Û(t) = T exp

[
− i

h̄

∫ t

0

dt′
∫
d3rJ(r, t′) · Â(r, t′)

]
, (2.27)

where T denotes the time-ordering of the terms in the exponential expansion. Plugging
the definition from equation 2.10a into equation 2.27 and defining the following quantity:

αk,l(t) =
i

h̄

√
h̄

2ε0ck(2π)3

∫ t

0

dt′
∫
d3rJ(r, t′) · ϵk,l e−i(ωkt

′−k·r), (2.28)
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the evolved state may be expressed as:

|ψ(t)⟩ = T exp

[∑
l

∫
d3k

[
αk,l(t)â

†
k,l − α∗

k,l(t)âk,l

]]
|ψ(0)⟩. (2.29)

Notice that the numbers αk,l(t) are the Fourier transform of the classical current J(r, t).
Now, using the Zassenhaus formula 4 equation 2.29 becomes:

|ψ(t)⟩ =
⊗
k,l

eiφk,l(t)exp
[
αk,l(t)â

†
k,l − α∗

k,l(t)âk,l

]
|ψ(0)⟩, (2.30)

where
⊗

k,l represents the infinite tensor product over all modes, and the phase is given
by the commutator of the exponential argument at different times 0 < t′ < t:

exp (iφk,l(t)) = exp
[
(αk,l(t)â

†
k,l − α∗

k,l(t)âk,l), (αk′,l′(t
′)â†k′,l′ − α∗

k′,l′(t
′)âk′,l′)

]
= exp

(
i2Im[αk,l(t)α

∗
k,l(t

′)]
)
. (2.31)

From equation 2.30, it is clear that the dynamics of the radiation state |ψ(t)⟩ are com-
pletely determined by the exponential operators in the product. Motivated by this, it is
convenient to define a set of unitary operators given by:

D̂k,l(αk,l) = exp
[
αk,lâ

†
k,l − α∗

k,lâk,l

]
. (2.32)

These are known as the displacement operators for reasons that will become evident soon.
If the initial radiation state is considered to be the vacuum, then the action of a given
displacement operator D̂k,l(αk,l) on that state will generate |αk,l⟩:

D̂k,l(αk,l)|0k,l⟩ = exp
|αk,l|2

2
exp(αk,lâ

†
k,l) exp(α

∗
k,lâk,l)|0k,l⟩

= exp
|αk,l|2

2
exp(αk,lâ

†
k,l) |0k,l⟩ = e

|αk,l|
2

2

∞∑
n=0

αn
k,lâ

†n
k,l

n!
|0k,l⟩

= e
|αk,l|

2

2

∞∑
n=0

αn
k,l√
n!
|n⟩k,l = |αk,l⟩, (2.33)

where in the first line of equation 2.33, the Zassenhaus formula was used again. Visualized
in the coherent state phase space, this corresponds to a displacement of the vacuum state
in the complex plane (Figure 2.1). In that sense, any coherent state can be understood
as the displaced vacuum.

The action of the displacement operator D̂k,l(βk,l) on an arbitrary coherent state |αk,l⟩
can be obtained using that5:

D̂k,l(βk,l)D̂k,l(αk,l) = ei2 Im [βk,lα
∗
k,l]D̂k,l(βk,l + αk,l). (2.34)

4The Zassenhaus formula is an immediate consequence of the better known Baker-Campbell-
Haussdorff formula. It states:

exp(X̂ + Ŷ ) = exp(X̂)exp(Ŷ )exp(
1

2
[X̂, Ŷ ])exp(

1

3
[Ŷ , [X̂, Ŷ ]] +

1

6
[X̂, [X̂, Ŷ ]]) · · · .

5Equation 2.34 is a direct application of the Baker-Campbell-Hausdorff formula, which states:

exp(X̂)exp(Ŷ ) = exp

(
X̂ + Ŷ +

1

2
[X̂, Ŷ ] +

1

12
[X̂, [X̂, Ŷ ]] · · ·

)
.
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Then D̂k,l(βk,l)|αk,l⟩ = D̂k,l(βk,l)D̂k,l(αk,l)|0⟩ = ei2 Im [βk,lα
∗
k,l]|βk,l + αk,l⟩.

For a given set α = {αk,l}, where a complex number has been chosen for each available
mode and polarization, the transformation defined as:

D̂ [α] =
⊗
k,l

D̂k,l(αk,l) (2.35)

fulfills the properties:

D̂† [α] D̂ [α] = 1, (2.36a)

D̂† [α] âk′,l′D̂ [α] = âk′,l′ + αk′,l′ , (2.36b)

D̂ [α] âk′,l′D̂† [α] = âk′,l′ − αk′,l′ . (2.36c)

Additionally, the action of the operator D̂ on the vacuum is given by:

D̂ [α]
⊗
k,l

|0k,l⟩ =
⊗
k,l

|αk,l⟩. (2.37)

Optical Phase Space

𝛼 𝛽 2 = 𝑒− 𝛼−𝛽 2

a) Coherent state evolution b) Displacement operator

𝑝
=
Im

𝛼

𝑥 = Re 𝛼

Δx

Δp
|𝛽⟩

𝜔Δ𝑡 𝑒−𝑖𝜔𝛥𝑡|𝛽⟩

⟨𝛼 𝐷 𝛽 0⟩
2

⟨𝛼 𝐷 𝛾 𝛽⟩
2

𝑝

𝑥

|𝛽⟩= 𝐷 𝛽 |0⟩

𝐷 𝛾 𝛽 = 𝑒𝑖𝜑 𝛽 + 𝛾

|0⟩

𝛾𝛽

𝛽 + 𝛾

Figure 2.1: a) Optical phase space representation of a coherent state and its dynamics. A coherent state
|β⟩ is represented as a Gaussian function over the phase space (colored with a blue gradient) alongside
its time evolution after a period of length ∆t (outlined with a dashed line). b) Optical phase space
representation of the action of the displacement operator. The vacuum state |0⟩ is displaced to position
β generating a state |β⟩ (colored with a blue gradient). The state |β⟩ is displaced to position β + γ
generating the state eiφ|β + γ⟩, where φ = 2Imγβ∗ (colored with a green gradient). As a coherent state
is displaced further away from the vacuum state, the Gaussian distribution widens.

2.1.4 Squeezed States

As discussed in subsection 2.1.2, coherent states are minimum uncertainty states that
present equal uncertainty in both quadratures. Nevertheless, through certain non-linear
optical interactions, it is possible to produce states of light with a reduced uncertainty
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in one quadrature at the cost of enlarging the uncertainty in the other. These states are
called squeezed states of light and are represented as an ellipse-shaped Gaussian in the
optical phase space. Mathematically, similarly to how coherent states can be understood
as the displaced vacuum, the squeezed states |α, ζ⟩ can be modeled as the displaced
’squeezed vacuum’:

|α, ζ⟩ = D̂(α)Ŝ(ζ)|0⟩, (2.38)

where Ŝ = exp[1/2(ζ∗â2 − ζâ†2)] is the squeezing operator and ζ = reiθ a complex
number. Then the uncertainty in the new (rotated) quadrature operators x̂ζ = x̂eiθ/2 and
p̂ζ = p̂eiθ/2 is given by ∆x̂ζ = e−r/2 and ∆p̂ζ = er/2.

2.1.5 Coherent State Superposition

Another example of quantum states of light is Coherent State Superpositions (CSS):

|ψ⟩ =
∑
i

ci|αi⟩. (2.39)

A particular case of special interest for applications in quantum technology is the Schrö-
dinger Cat state. This is a quantum superposition of 2 coherent states with opposite
phases:

|cat⟩ = c1|α⟩+ c2| − α⟩. (2.40)

Since the time evolution of coherent states remains coherent, these states can be used
to engineer qbits with long coherence times. Another interesting feature of cat states is
that they are quantum superpositions of two classically distinguishable states, effectively
realizing Schrödinger’s thought experiment right in the limit between the quantum and
the classical.

2.1.6 Thermal States

Quantum formalism can be used to describe what is known as thermal or chaotic states of
light, which are also well described by black-body radiation. Thermal light is electromag-
netic radiation emitted by moving charged particles in matter. All matter with non-zero
temperature emits thermal light. Thermal states are described by an incoherent mixture
of different Fock states. For a single-mode field in thermal equilibrium at temperature T :

ρ̂ =
exp(−βĤ)

Tr [exp(−βĤ)]
=
∑
n

ρnn|n⟩⟨n|, (2.41)

where β = 1/κBT and Ĥ = h̄ω(â†â + 1/2). Then the average photon number will be
given by:

⟨n⟩ = Tr( ρ̂N̂) =
∑
n

nρnn =
1

eβh̄ω − 1
, (2.42)

and the probability of measuring n photons is:

P (n) = ρnn = (1− e−βh̄ω)e−nβh̄ω =
1

⟨n⟩+ 1

(
⟨n⟩

⟨n⟩+ 1

)n

. (2.43)

For the derivations of equations 2.41 through 2.43, see reference [24].
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2.1.7 Characterizing States of Light

Now that different states of light have been reviewed, it is opportune to discuss the
characteristics intrinsic to each of them. The criterion most widely used to classify states
of light is their photon statistics, which can be super-Poissonian, Poissonian, or sub-
Poissonian. A distribution is said to be Poissonian if ∆n = ⟨n⟩1/2, super-Poissonian if
∆n > ⟨n⟩1/2, and sub-Poissonian if ∆n < ⟨n⟩1/2.

A state’s photon statistics can be used to assess the ’quantumness’ of the light. In the
previous subsections, different states of light were modeled using the formalism of quantum
mechanics. Some of those states can also be modeled with classical field theories, such as
thermal and coherent states [29, 28]. On the other hand, neither squeezed light nor CSSs
can be described with classical theories. In this sense, one may say that squeezed light
and CSS can be considered ’quantum light’ (they only admit a quantum description),
while thermal light and coherent light may be classified as ’classical light’ (they admit
both descriptions). If a state of light presents a sub-Poissonian photon distribution, it
is concluded that the state at hand represents quantum light. This condition is enough,
but not necessary, as exemplified by the squeezed vacuum state in Table 2.1, which has
super-Poissonian statistics but is clearly non-describable with classical electromagnetism.

The classification of states discussed in the previous subsections is included in Table 2.1.
For derivations and further details, the reader should refer to [23, 24].

Type State ⟨n⟩ ∆n Classification

Thermal
states

ρ̂ = exp (−βĤFR)

Tr [exp (−βĤFR)]

1
eβh̄ω−1

eβh̄ω/2

(eβh̄ω−1)

Super-
Poissonian

Squeezed
vacuum

|ψ⟩ = |ζ⟩ sinh2 r
√
2sinhrcoshr

Super-
Poissonian

Coherent
states

|ψ⟩ = |α⟩ |α|2 |α| Poissonian

Fock
states

|ψ⟩ = |n⟩ n 0
Sub-

Poissonian

Table 2.1: Photon statistics classification for thermal, squeezed vacuum, coherent, and Fock states.
From left to right: light type, state, average photon number, standard deviation, and classification are
shown for each light state.

A convenient short-hand parameter one may use to classify a light state is the Mandel
parameter, defined as:

Q =
⟨n2⟩ − ⟨n⟩2

⟨n⟩
− 1. (2.44)

Then a distribution will be Poissonian if Q = 0, super-Poissonian if Q > 0, and sub-
Poissonian if Q < 0.
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2.2 The Quantum Electrodynamics Description

of High-Order Harmonic Generation

In this section, a full Quantum Electrodynamics (QED) description of HHG is developed
from first principles following the formalism presented in [17, 16]. Starting with Maxwell’s
equations in the reciprocal space, the fields are separated into longitudinal and transverse
components with respect to the wave vector. The longitudinal component corresponds
to the Coulomb potential due to the charge distribution, while the transverse component
contains all the information about the radiation field and the light-matter interaction
[28]. Subsequently, the minimal coupling Hamiltonian is quantized and the dipole ap-
proximation is introduced. This separates the Hamiltonian into three independent terms,
the electronic Hamiltonian, the radiation Hamiltonian, and the interaction Hamiltonian.
Finally, the interaction Hamiltonian is separated into ’semi-classical’ and ’quantum’ com-
ponents, allowing the use of known methods, such as solving the semi-classical TDSE
numerically or using SFA, to obtain the solution.

2.2.1 Classical Light-Matter Interaction in the Coulomb Gauge

In this subsection, the formalism presented in [28] is followed closely. Once more, the
starting point is Maxwell’s equations 2.1, but this time in the presence of a charge distri-
bution ρ(r, t) and the associated current J(r, t). Performing a spatial Fourier transform
on equations 2.1, the following expressions are obtained:

ik ·B(k, t) = 0, (2.45a)

ik × E(k, t) = − ∂

∂t
B(k, t), (2.45b)

ik · E(k, t) = ϱ(k, t)

ε0
, (2.45c)

ik ×B(k, t) = µ0J (k, t) +
1

c2
∂

∂t
E(k, t). (2.45d)

Further, the longitudinal and transverse components of the fields with respect to the wave
vector k are separated according to:

ikB∥(k, t) = 0, (2.46a)

ik × E⊥(k, t) = − ∂

∂t
B⊥(k, t), (2.46b)

ikE∥(k, t) =
ϱ(k, t)

ε0
, (2.46c)

ik ×B⊥(k, t) = µ0J ⊥(k, t) +
1

c2
∂

∂t
E⊥(k, t). (2.46d)

The Coulomb gauge, where∇·A = 0, eliminates the longitudinal component of the vector
field in reciprocal space, i.e., A∥ = 0. Then, equations 2.5 expressed in the conjugate
variable become:

E∥(k, t) = −ikU(k, t), (2.47a)

E⊥(k, t) = − ∂

∂t
A⊥(k, t), (2.47b)

B⊥(r, t) = ik ×A⊥(r, t). (2.47c)
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Comparing equations 2.46c and 2.47a one obtains:

U(k, t) = 1

ε0k2
ϱ(k, t). (2.48)

Transforming back to the space variable:

U(r, t) =
1

4πε0

∫
d3r′

ρ(r′, t)

|r − r′|
. (2.49)

Therefore, in the Coulomb gauge, the longitudinal vector potential is zero and the scalar
potential corresponds to the Coulomb potential due to the charge distribution ρ(r, t).
Hence, the independent variables associated with the radiation field will be the transverse
vector potential A⊥(r, t) = A(r, t) and its temporal derivative Ȧ(r, t) = −E⊥(r, t),
which can be quantized as in section 2.1.1.

2.2.2 Minimal Coupling and the Dipole Approximation

Consider a distribution of N atoms at positions {Ri | i ∈ {1, 2, ..., N}} interacting with
a radiation field. In the following, the Single Active Electron (SAE) approximation is
used. Within the SAE approximation, it is considered that the field only interacts with
a single electron that experiences an appropriately chosen effective potential. Then, the
interaction can be described by the minimal coupling Hamiltonian consisting of two terms:

Ĥ = ĤC + ĤR, (2.50)

where the first term describes the coupling of the electrons with positions r̂i and momenta
p̂i to the radiation field:

ĤC(t) =
∑
i

{
1

2m

[
p̂i − eÂ⊥(r̂i)

]2
+ V̂SAE(r̂i,Ri)

}
, (2.51)

and the second term describes the free transverse radiation field:

ĤR =
1

2

∫
d3r

{
1

ε0
Π̂⊥(r̂) +

1

µ0

[
∇× Â⊥(r̂)

]}
=
∑
l

∫
d3k h̄ωk

(
â†k,lâk,l +

1

2

)
. (2.52)

The Hamiltonian ĤC(t) can be further simplified using the dipole approximation, which is
valid when the wavelength of the radiation is much larger than the typical size of an atom
(k · ⟨Ri − ri⟩ << 1). Within the dipole approximation, it is considered that the electric
and vector potential fields are approximately constant in the small volume occupied by
each atom. Under this approximation, the total Hamiltonian can be separated into three
terms: one term describing the electronic degrees of freedom6, one describing the radiation
and one describing the interaction between the two:

Ĥ = ĤE + ĤR + ĤI , (2.53)

6This term contains a potential V̂ ′(r̂i,Ri) which is the SAE effective potential considering polariza-
tion effects [17].
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where:

ĤE =
∑
i

{
p̂2
i

2m
+ V̂ ′(r̂i,Ri)

}
, (2.54)

and
ĤI =

∑
i

er̂i · Ê⊥(Ri). (2.55)

Note that the theory considered here is a non-relativistic quantum description of elec-
trons interacting with radiation in the dipole approximation. This theory is ultraviolet
divergent, partially due to the incorrect treatment of large wave vectors in the dipole
approximation. The divergence cannot be successfully renormalized [30], but it can be
treated including a form factor that tempers the coupling to high frequencies [31, 32]:

g(k) =
Γ√

Γ2 + k2
, (2.56)

where Γ = d−1 with d the characteristic amplitude of electron oscillations in the funda-
mental electric field. With this consideration, the quantized electric field becomes:

Ê⊥(Ri) =
∑
l

∫
d3kg̃i(k)

[
iâk,lϵk,le

ik·Ri +H.c.
]
, (2.57)

where:

g̃i(k) = gi(k)

√
h̄ck

2ε0(2π)3
. (2.58)

2.2.3 The Time-Dependent Schrödinger Equation for HHG

Two different methods are available in the literature to find solutions to the Hamiltonian
2.50. Reference [16], proposes a very general theory where the quantum component of
the interaction Hamiltonian is treated as a perturbation to the semi-classical component.
In this treatment, any method may be used to solve the semi-classical problem. On the
other hand, a less general theory using the dipole approximation, where SFA is required
to solve the semi-classical component is developed in reference [17]. In this subsection, an
SFQED theory using the dipole approximation where any method can be used to solve
the semi-classical Hamiltonian is presented. The intention is to put forward a formulation
located in the middle ground between the SFA-specific theory developed in [17] and the
completely general theory developed in [16]. As a starting point, consider the Schrödinger
equation:

ih̄
∂

∂t
|ψ(t)⟩ = [ĤE + ĤR + ĤI ]|ψ(t)⟩, (2.59)

where |ψ(t)⟩ = |ψE(t)⟩ ⊗ |ψR(t)⟩ describes both the electronic state |ψE(t)⟩ and the
radiation state |ψR(t)⟩. Note that postulating the total wave function as a tensor product
of the electronic and radiation states eliminates the possibility of having entanglement
between the two sub-systems. The treatment explicitly presented in this subsection makes
use of this simplifying assumption. This choice and style of presentation are consistent
with the fact that, at a later point in the theoretical derivation, the dipole moment is
obtained using SFA. Within SFA, a key assumption is that the electric field only couples
to the ground state, a prescription that effectively destroys the entanglement between
atom and radiation. However, a comprehensive treatment where the wave function is
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considered to be a general element in the Hilbert space HE⊗HR, rather than the product
|ψE(t)⟩ ⊗ |ψR(t)⟩, is available in references [16, 17]. The reader is referred to the original
literature for full details.

In the following, a single-mode laser of frequency ωL is considered. Additionally, before
the interaction, the atoms are taken to be all in their ground state |gi⟩ and the only
populated mode is the fundamental kL, ℓ, i.e.,

|ψ(0)⟩ =
⊗
i

|gi⟩
⊗
ℓ

|αkL,ℓ⟩
⊗

k ̸=kL,l

|0k,l⟩. (2.60)

Since the solutions of ĤR are known, it is convenient to transform the Schrödinger equation
to the interaction picture by applying the unitary transformation Û1(t) = exp(iĤRt/h̄):

|ψ(t)⟩ −→ |ψ1(t)⟩ = Û1(t)|ψ(t)⟩ = |ψE(t)⟩ ⊗ Û1(t)|ψR(t)⟩, (2.61a)

ĤE −→ Ĥ1E = Û1(t)ĤEÛ
†
1(t) = ĤE, (2.61b)

ĤI −→ Ĥ1I = Û1(t)ĤIÛ
†
1(t) = ĤI(t) =

∑
i

er̂i · Ê⊥(Ri, t), (2.61c)

where it was used that Û1(t)âÛ
†
1(t) = â(t), yielding:

Ê⊥(Ri, t) =
∑
l

∫
d3kg̃i(k)

[
iâk,l(t)ϵk,le

ik·Ri +H.c.
]
. (2.62)

Now, let β = {βk,l} be such that βk ̸=kL,l = 0, and βkL,ℓ = αkL,ℓ for ℓ ∈ {1, 2, 3}. Then,

the unitary operator D̂†[β] defined in 2.35, and which displaces the fundamental mode to
the vacuum state, can be used to transform the state and operators in 2.61 as follows:

|ψ1(t)⟩ −→ |ψ2(t)⟩ = D̂†[β]|ψ1(t)⟩ = |ψE(t)⟩ ⊗ D̂†[β]Û1(t)|ψR(t)⟩, (2.63a)

ĤE −→ Ĥ2E = D̂†[β]ĤED̂[β] = ĤE, (2.63b)

ĤI(t) −→ Ĥ2I(t) = D̂†[β]ĤI(t)D̂†[β] = ĤCI(t) + ĤQI(t), (2.63c)

where the properties in 2.36 have been used, and as a result, the interaction Hamiltonian
has been split into ’semi-classical’ and ’quantum’ components given by:

ĤCI(t) =
∑
i

er̂i ·EC(Ri, t) = e
∑
i,l

∫
d3kg̃i(k) r̂i ·

[
i βk,l ϵk,l e

i(k·Ri−ωkt) +H.c.
]

= e
∑
i,ℓ

g̃i(kL) r̂i ·
[
i αkL,ℓ ϵkL,ℓ e

i(kL·Ri−ωLt) +H.c.
]
, (2.64a)

ĤQI(t) =
∑
i

er̂i · ÊQ(Ri, t) = e
∑
i,l

∫
d3kg̃i(k) r̂i ·

[
iâk,l(t)ϵk,le

ik·Ri +H.c.
]
. (2.64b)

Thus, the new Schrödinger equation is:

ih̄
∂

∂t
|ψ2(t)⟩ = [ĤE + ĤCI(t) + ĤQI(t)]|ψ2(t)⟩. (2.65)

Note that the solutions to the semi-classical Hamiltonian ĤSC(t) = ĤE + ĤCI(t) can be
obtained with the previously developed methods, e.g., by numerically solving the TDSE
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or using SFA. Therefore, the Schrödinger equation in 2.65 can be further simplified by
transforming to the interaction picture with respect to ĤSC(t), using the unitary operator

Û3(t) = T exp
[
i
∫ t

0
ĤSC(t

′)dt′
]
:

|ψ2(t)⟩ −→|ψ3(t)⟩ = Û3(t)|ψ2(t)⟩ = Û3(t)|ψE(t)⟩ ⊗ D̂†[β]Û1(t)|ψR(t)⟩
= |ψ3E(t)⟩ ⊗ |ψ3R(t)⟩, (2.66a)

ĤQI −→Ĥ3QI = Û3(t)ĤQIÛ
†
3(t) = e

∑
i

r̂i(t) · ÊQ(Ri, t), (2.66b)

with r̂i(t) = Û3(t)r̂iÛ
†
3(t). Hence, the Schrödinger equation reduces to

ih̄
∂

∂t
|ψ3(t)⟩ = e

∑
i

r̂i(t) · ÊQ(Ri, t)|ψ3(t)⟩. (2.67)

This work will focus on the solution of the radiation part of the wavefunction |ψR(t)⟩.
The electronic part |ψE(t)⟩ can be eliminated from the analysis by projecting equation
2.67 onto a complete set of solutions {|ϕn⟩} to the Hamiltonian ĤE, while simultaneously
inserting an identity operator as follows:

ih̄
∂

∂t

∑∫
n

⟨ϕn|ψ3E(t)⟩ ⊗ |ψ3R(t)⟩

= e
∑
i

∑∫
n,m

⟨ϕn|r̂i(t)|ϕm⟩ · ÊQ(Ri, t)[⟨ϕm|ψ3E(t)⟩ ⊗ |ψ3R(t)⟩]. (2.68)

Here ⟨ϕn|ψ3E(t)⟩ = ⟨ϕ̃n(t)|ψE(t)⟩ and ⟨ϕn|r̂i(t)|ϕm⟩ = ⟨ϕ̃n(t)|r̂i|ϕ̃m(t)⟩, with {|ϕ̃n(t)⟩} the
set of solutions to ĤSC given by |ϕ̃n(t)⟩ = Û †

3(t)|ϕn⟩. Note that to obtain the dipole
moment ⟨r̂(t)⟩n,m, one needs the full set of solutions to ĤSC(t) evolved from the full set of

solutions to ĤE. However, equation 2.68 encompasses all possible processes in strong laser-
matter interactions. Here the focus is on HHG, and therefore one may select the processes
that yield high-order harmonics by exclusively considering dipole transitions between the
bound states of ĤE. Hence, one may write the Schrödinger equation concerning the
radiation state as:

ih̄
∂

∂t
|ψ3R(t)⟩ = e

∑
i,n,m

⟨r̂i(t)⟩nm · ÊQ(Ri, t)|ψ3R(t)⟩. (2.69)

Furthermore, when generating on N atoms, with N such that N << N2, the coherent
part of the spectrum, i.e., the portion corresponding to the diagonal dipole elements
⟨r̂(t)⟩n, will dominate [33, 16]. This is due to the random phase that results when the
electron recombines to a state different than the one it tunneled from. On the other
hand, when the electron recombines to the same state there is a fixed phase. Then,
one may neglect the cross terms which will cancel out and not contribute to the final
emission. Generation in a few atoms, where N ∼ N2, yields very low intensities. For
current applications, the harmonics are generated in a very large number of atoms, and
the incoherent contributions are never considered. In reference [16], the authors study
generation in a single atom taking into account the incoherent contributions. Here, the
focus will be on exploring the nature of the emitted XUV radiation that is used to study
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attosecond photoionization. Therefore, only the coherent contributions will be considered.
With this assumption, equation 2.69 is exactly solvable using the time evolution operator:

Û(t) = T exp

(
−ie
h̄

∫ t

0

dt′
∑
i,n

⟨r̂i(t′)⟩n · ÊQ(Ri, t
′)

)
. (2.70)

Moreover, defining:

χk,l(t) = −e
∑
i,n

g̃i(k)e
−ik·Ri

∫ t

0

dt′⟨r̂i(t′)⟩n · ϵk,leiωkt
′
, (2.71)

and using equation 2.64b, the time evolution operator from 2.70 can be written as:

Û(t) = T exp

(
1

h̄

∑
l

∫
d3k[χk,l(t)â

†
k,l − χ∗

k,l(t)âk,l]

)
=
⊗
k,l

D̂(χk,l(t))e
iφk,l(t), (2.72)

where φk,l(t) comes from the Zassenhaus formula, which yields the phase:

φk,l(t) =
1

h̄

[(
χk,l(t)â

†
k,l − χ∗

k,l(t)âk,l

)
,
(
χk′,l′(t1)â

†
k′,l′ − χ∗

k′,l′(t1)âk′,l′

)]
=
e2

h̄

∑
i,j
n,m

{
g̃2i (k)

∫ t

0

dt1⟨r̂i(t′)⟩n · ϵk,l
∫ t1

0

dt′⟨r̂j(t′)⟩m · ϵk,l

sin [k · (Rj −Ri) + ωk(t1 − t′)]

}
. (2.73)

Then, the solutions to 2.69 are given by:

|ψ3R(t)⟩ =
⊗
k,l

D̂(χk,l(t))e
iφk,l(t)|ψ3R(0)⟩

=
⊗
ℓ

eiφkL,ℓ(t)|χkL,ℓ(t)⟩
⊗
k,l

eiφk,l(t)|χk,l(t)⟩. (2.74)

To obtain the radiation state in the original frame of reference, the transformations done
in previous steps must be inverted |ψR(t)⟩ = Û †

1(t)D̂[β]|ψ3R(t)⟩:

|ψR(t)⟩ =
⊗
ℓ

eiφkL,ℓ(t)eiθℓ(t)| [αkL,ℓ + χkL,ℓ(t)] e
−iωLt⟩

⊗
k,l

eiφk,l(t)|χk,l(t)e
−iωkt⟩, (2.75)

where θℓ(t) = 2Im
[
αkL,ℓχ

∗
kL,ℓ

(t)
]
.

The HHG emission spectrum is directly proportional to the Fourier transform of the dipole
velocity ⟨ϕn|ṙi(t)|ϕn⟩ [34]:

S(ωk) ∝

∣∣∣∣∣∑
i,n

g̃i(k)e
−ik·Ri

∫ ∞

−∞
dt′⟨ϕn|ṙi(t′)|ϕn⟩eiωkt

′ · ϵk,l

∣∣∣∣∣
2

= ω2
k

∣∣∣∣∣∑
i,n

g̃i(k)e
−ik·Ri⟨r̃i(ωk)⟩n · ϵk,l

∣∣∣∣∣
2

, (2.76)
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where r̃ denotes the Fourier transform of the dipole moment7. Therefore,

S(ωk) ∝ ω2
k lim
t→∞

|χk,l(t)|2. (2.77)

From this treatment, it becomes evident that a spatial distribution will have an effect
on the displacements χkL,ℓ through the phase factor in 2.71 (if k ̸⊥ Ri) and through
the magnitude of the time-dependent dipole moment, introducing some distortion in the
spectrum. Additionally, the final state’s phases will also be affected as seen in 2.73. Never-
theless, the solution for each mode will still be a coherent state of the form 2.75. States of
light with quantum characteristics such as sub-Poissonian statistics and squeezing, can be
obtained in schemes where the incoherent part of the emission is not neglected [16]. Still,
as discussed previously, generation in small samples consisting of just a few atoms yields
very weak signals, and for most experimental applications it is not relevant to consider
this case.

The sum in equation 2.76 contains many terms, making it very computationally demand-
ing to evaluate the total dipole moment. Nevertheless, here, SFA is used to obtain the
solutions to ĤSC making the evaluation of the dipole moment much simpler.

2.3 Strong Field Approximation

In this section, the fundamentals of SFA are presented and the assumptions considered for
the numerical analysis are stated [10, 35, 36]. Exceptionally clear and detailed derivations
of all expressions can be found in reference [37]. Here only the main results are presented.
From this point forward, all equations are expressed in atomic units [a. u.], where it is
assumed that h̄ = 1, e = −1, ε0 = 4π, and c ≈ 137. All calculations in both simulations
are carried out in atomic units as well.

2.3.1 Main Assumptions

The simplest version of the SFA model is that proposed by Lewenstein et al. in [10],
where three key assumptions are made:

1. There are no internal resonances: the time-dependent dipole moment only
couples to the ground state |g⟩ of each atom. This assumption neglects contributions
from all other bound states.

2. The continuum states are plane waves: propagating electrons are not influ-
enced by the atomic potential. Therefore, the continuum states will be those of an
electron being accelerated in an electric field |p(t)⟩. This assumption is valid when
the driving laser intensity is such that Ip < 2Up, which for infrared lasers usually
holds when the intensity is in the range of 1013−1014 W/cm2 [10]. In this situation,
the electron is accelerated by the intense laser field reaching high speeds when in
the vicinity of the ion. Hence, the effect of the atomic potential on the electron
dynamics can be neglected.

7Note that the full spectrum will include the Fourier transform of the driving field Ẽ(ω) as well
[34].
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3. There is no ground state depletion: the depletion of the ground state can be
neglected at all times. For this assumption to be reasonable, the laser intensity must
be smaller than the saturation intensity of the atom, for which ionization happens
directly. In other words, the ponderomotive energy must be under the saturation
level Up < Usat. In this parameter region the ionization during the interaction is
weak [38].

For simplicity’s sake, and since the total dipole response is the addition of the individual
atom responses, only one atom will be considered in the following discussion. Assumption
1 means that in equations 2.68 through 2.76, one may only consider the dipole moment
elements ⟨g|r̂(t)|g⟩. Together with assumption 2, it also implies that one may write the
solutions to ĤSC as:

|Ψ(t)⟩ = Û †
3(t)|g⟩ = eiIpt

(
a(t)|g⟩+

∫
d3p b(p, t)|p(t)⟩

)
. (2.78)

Finally, assumption 3 implies that a(t) ≈ 1. The amplitudes b(p, t) can be found substi-
tuting 2.78 in the Schrödinger equation, which yields a solvable differential equation. The
solution is found to be:

b(p, t) = i

∫ t

0

dt′
{
E(t′)⟨p(t′)|r̂|g⟩ exp

[
−i
∫ t

t′
dt̃

(
p2(t̃)

2
+ Ip

)]}
. (2.79)

For convenience, one may introduce the shorthand notation d(p(t)) = ⟨p(t)|r̂|g⟩ for
the atomic dipole matrix element corresponding to the bound-free transition. The SFA
assumptions greatly simplify the expression for the time-dependent dipole moment:

r(t) = ⟨Ψ(t)|r̂|Ψ(t)⟩ = ⟨g|r̂|g⟩+

+

∫
d3p′ b∗(p′, t)d(p′(t)) +

∫
d3p b(p, t)d∗(p(t))

+

∫
d3p d3p′ b∗(p′, t)b(p, t)⟨p′(t)|r̂|p(t)⟩, (2.80)

where the first term is zero and the last term corresponds to continuum transitions which
can be neglected. Substituting the mechanical momentum p(t) with the conserved canon-
ical momentum pc = p(t)−A(t), the SFA expression for the dipole moment becomes:

r(t) = i

∫
d3pc

∫ t

0

dt′E(t′)d(pc+A(t′)) exp

[
−i
∫ t

t′
dt̃

(
[pc +A(t̃)]2

2
+ Ip

)]
d∗(pc+A(t))

− i

∫
d3pc

∫ t

0

dt′E(t′)d∗(pc+A(t′)) exp

[
i

∫ t

t′
dt̃

(
[pc +A(t̃)]2

2
+ Ip

)]
d(pc+A(t)),

(2.81)

where the phase in the exponential corresponds to the semi-classical action:

S(pc, t, t
′) =

∫ t

t′
dt̃

(
[pc +A(t̃)]2

2
+ Ip

)
. (2.82)

Equation 2.81 can be interpreted in the following way. In the first term from left to right,
one finds the probability amplitude of ionization at a time t′, followed by the propagation
of the electron in the continuum from a time t′ to time t, followed by the probability
amplitude for recombination at a time t, reproducing the three distinctive processes in
the 3-step model.
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2.3.2 The Time-Dependent Dipole Moment

The integral over the momentum in equation 2.81 can be approximated using the method
of steepest descent, also known as the saddle point approximation. In this approximation,
the action is Taylor expanded around its stationary points ps and approximated to second
degree S(pc, t, t

′) ≈ S(ps, t, t
′) +∇2

pS(ps, t, t
′)(pc − ps)

2/2. The stationary points will be
those for which the canonical momentum takes the value:

ps(t, t
′) = − 1

t− t′

∫ t

t′
dt′A(t′). (2.83)

Since the action evaluated in ps is now not a function of pc:

S(ps, t, t
′) =

∫ t

t′
dt̃

(
[ps +A(t̃)]2

2
+ Ip

)
, (2.84)

after substituting the second degree approximation in equation 2.81, the remaining inte-
gral over pc becomes a Gaussian integral that can be evaluated yielding the factor:

ζ(t, t′) =

(
π

ε+ i(t− t′)/2

)3/2

, (2.85)

where ε is an infinitesimal regulation constant.

On the other hand, to obtain an explicit expression for the function d(p), the atomic
ground state is chosen to be that of a hydrogen-like atom:

⟨r|g⟩ = α3/4

√
π
e−

√
αr, (2.86)

where α = 2Ip. Then,

d(p) = −i2
7/2α5/4

π

p

(p2 + α)3
. (2.87)

Gathering these results, the final expression for the dipole moment becomes:

r(t) = i
27α5/2

π2

∫ t

0

dt′
{
ζ(t, t′)E(t′)

ps+A(t′)

([ps+A(t′)]2 + α)3
e−iS(ps,t,t′)

ps+A(t)

([ps+A(t)]2 + α)3

− ζ∗(t, t′)E(t′)
ps+A(t′)

([ps+A(t′)]2 + α)3
eiS(ps,t,t′)

ps+A(t)

([ps+A(t)]2 + α)3

}
.

(2.88)

As mentioned before, in the single atom and few atom simulations created for this work
hydrogen atoms are used. Hydrogen atoms posses a single electron, and therefore there
are no electron correlations that need to be taken into account. Nevertheless, if one
considers heavier atoms, electron correlations might be relevant and could be included
in the electronic states that are used to compute the dipole moment. Similarly, when
considering molecules one could include nuclear motion in the analysis.

27



Chapter 3

Numerical Implementation

3.1 Parameters

In this section, the laser parameters and target sample details considered in each simula-
tion are clearly stated.

In the numerical implementation, the harmonics are generated in hydrogen atoms for
which Ip = 13.6 eV. The driving laser is considered to be a linearly-polarized pulse with
a sine square envelope and a Gaussian intensity profile at focus:

E(r, t) = E0e
− r2

w2 sin2

(
π

∆tp
t

)
cos(ωLt) êx, (3.1)

where E0 is the field amplitude, r is the radial distance from the beam center, w is the
beam waist, ∆tp is the pulse duration, and ωL is the angular frequency of the light. For
the single atom simulation, the atom is positioned at the center of the beam where r = 0.
For the few atoms simulation, the atoms are positioned in a plane perpendicular to the
propagation axis of the beam. In this case, the phase factors e−ik·Ri in equation 2.71
will be unity.1 In Table 3.1, the laser parameters used in both the single and few atoms
simulations are shown. In Figure 3.1 the corresponding electric field and vector potential
at r = 0 are plotted.

Parameter SI a.u.

Wavelength 800 nm 15 118

Intensity 1×1014 W/cm2 2.85×10−3

Pulse duration 30 fs 1 240

Beam waist 50 µm 9.45× 105

Table 3.1: Driving laser parameters used in simulations.

1This assumes that the plane where the atoms are positioned is exactly at focus or that a colli-
mated beam is used.
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Figure 3.1: Plots of the pulse electric field and vector potential for a 800 nm laser pulse with 30 fs
duration and sine square envelope. The pulse contains 11.24 cycles.

For the simulations, it is considered that before the pulse, all electrons are in their ground
state, and all modes except the laser mode are in vacuum. During the interaction the
harmonic modes get populated. That is, the magnitude of χk,l grows until, at the end
of the pulse, the displacements have reached a final state. After the pulse, the harmonic
states evolve as coherent states, and the electrons are back to their ground state.

3.2 Equations and Methods

In this section, the approximated discrete expressions, as well as the methods used to
compute the momentum, action, and dipole moment found with the saddle point analysis
are presented.

Both the single atom and the few atoms simulations were written using Python. The win-
dow of observation was set between t0 = 0 and tf = ∆tp with step δt = 1, corresponding
to N = 1240 time samples. For each atom at position Ri, and each possible ionization
time tn, the following computations are performed for all times tm > tn:

• Momentum: the canonical momentum from equation 2.83 is computed using the
quad function from the scipy.integrate package. Each calculated value pi,nm =
ps,i(tm, tn) is stored in a square matrix Pi (one matrix per atom). This matrix
is used to obtain a mechanical momentum matrix Pkin,i from which a kinetic energy
matrix Ekin,i is computed.

• Action: equation 2.84 is also implemented using the quad function. Once again, a
value Si,nm = Si(ps,i(tm, tn), tm, tn) is obtained and then stored in a matrix Si.

• Dipole moment: the dipole moment is approximated with the following discrete
version2 of equation 2.88:

xi(tm) ≈ δt
m∑

n=0

xi,nm = δt
m∑

n=0

{iζ(tm, tn)E(Ri, tn)×

d(pi,nm + A(Ri, tn))e
−iSi,nmd∗(pi,nm + A(Ri, tm)) + c.c

}
. (3.2)

To implement 3.2, the numbers xi,nm are computed and stored in a matrix X ′
i.

The maximum time of flight τmax is used to make a mask matrix M which is then

2This is the rectangular rule approximation.
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used to select the short trajectories3 using element-wise multiplication Xi = X ′
i ∗M

[36, 39]. Then, the columns of Xi are summed over, and a vector with entries xi(tm)
is obtained.

• Spectrum: the spectrum is obtained by performing a Fourier transform on the
time-dependent dipole moment plus the fundamental field, with the following con-
vention:

x̃i(ων) =
N−1∑
j

xi(tj)e
iωνtj , (3.3)

and plugging it in equation 2.76.

• Displacements: the displacements are computed using the approximated version
of 2.71:

χk(tm) ≈
∑
i

e−ik·Ri g̃i(ων/c)δt
m∑

n=o

x(tn)e
iωktn . (3.4)

3.3 Simulation Description

In this section, a short description including the goals and specifications of each simulation
is provided. The simulations’ code can be found in Appendix B.1.

• Single atom: the computations described in the previous section are performed
considering a single atom placed in the center of the Gaussian beam. In other
words, the calculations are performed with a single intensity value corresponding
to the laser’s peak intensity. The running time of the main code is 18.29 minutes.
This simulation was used to aid in the understanding of the theory presented in
the preceding sections and to compare it with the results in [17] and the few atoms
simulation.

• Few atoms: here, four atoms are positioned as shown in Figure 3.2, where the
intensity profile is also plotted. The distance between atoms is such that the inter-
atomic interactions can be neglected. Additionally to the spectrum generated by the
atoms shown in Figure 3.2, the cylindrical symmetry was exploited to obtain a few
atoms spectrum and displacements. This was done by multiplying the contributions
of atoms 1-4 by an effective number of atoms proportional to the square of their
distance to the center of the beam, namely, 1, 7 611, 30 444, and 68 500 atoms,
respectively.4 The running time of the main code is 104.52 minutes. This simulation
was used to understand the effects of a spatial distribution in the emitted radiation.

3In laboratories, experimentalists usually control the generation conditions so that only the short
trajectories are phase-matched, effectively eliminating the contribution from long trajectories.

4This distribution was chosen ad-hoc to work within the limitations of the 64-bit Windows computer
used to run the simulations. With this hardware, it was only possible to calculate distributions between
0 and 50 photons, given that the numbers |χ|2n and n! in equation 2.15 must be stored in a variable with
higher precision for n > 50.
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Figure 3.2: Plot of the laser intensity profile showing the positions of the four atoms.

3.4 Results and Discussion

3.4.1 Single atom

In this section, the results of the single atom simulation are presented and analyzed. The
maximum kinetic energy and time of flight are obtained. The time-dependent dipole
moment is presented and contrasted to the dipole moment from a similar simulation
found in the literature. The resulting harmonic spectrum is shown and discussed. The
displacements’ time evolution in the optical phase space is analyzed. The final state’s
photon statistics and density matrices are graphically represented.

Kinetic Energy

The canonical momentum from equation 2.83 was used to obtain the mechanical momen-
tum at a time tm of an electron born at time tn, i.e., (Pkin,i)nm = (Pi)nm + A(tm), which
in turn was used to obtain the kinetic energy (Ekin,i)nm = (Pkin,i)

2
nm/2. The obtained

kinetic energy matrix is plotted in panel a) of Figure 3.3. From this matrix a maximum
kinetic energy value Emax, and its corresponding time of flight τmax can be extracted.
These quantities can be used to verify that the calculations are correct, as it is known
that Emax ≈ 3.17Up and τmax ≈ 0.65T , for a laser of period T [37]. Note, however, that
the maximum energy relationship is specific to the case of a continuous waveform, where
for every cycle there are possible ionization and recombination times with kinetic energy
Emax. Nevertheless, here a finite duration pulse with varying intensity is used, and only
one ionization time can be associated with a trajectory for which the maximum energy is
reached.

In panel a) it can be seen that the electrons that escape the ion when the driving field
is at maximum amplitude reach the highest energies at short times after the ionization.
The maximum energy value in this matrix is found to be Emax ≈ 3.1687Up, which closely
approximates the expected value from the semi-classical models. Moreover, this matrix
element represents the energy at time t = 629 a.u. of an electron born at time texit =
557 a.u., corresponding to a time of flight τmax ≈ 0.65T . Panel b) in Figure 3.3 shows
the kinetic energy as a function of time for an electron born at time texit = 557 a.u.,
which can be interpreted in a semi-classical way as follows. The electron appears in the
continuum and is accelerated away from the ion. After the field changes polarity (first
local maximum), the electron is decelerated until it reaches velocity zero and then begins
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to move in the other direction toward the ion. The electron goes by the ion’s position
and is decelerated again after another change of polarity (second local maximum). In the
following, the electron continues to oscillate with a decreasing probability of recombination
over time due to quantum diffusion. This plot is similar to that shown in FIG.1 of reference
[10], where the authors plot the kinetic energy as a function of the return time, further
validating the results presented here.

Figure 3.3: a)Plot of the time-dependent kinetic energy for different ionization times. b) Plot of the
kinetic energy as a function of time for an electron born at time texit = 557 a.u. (thick blue line), and of
the fundamental field represented in arbitrary units as reference (thin red line).

Dipole Moment and Spectrum

The time-dependent dipole moment calculated using equation 3.2 is plotted in Figure 3.4
alongside the fundamental field. As can be seen, the dipole moment response follows the
fundamental field oscillations closely, revealing that the dominant spectral component is
that of the fundamental frequency. However, the dipole moment’s shape is not identical
to that of the fundamental field, as it contains contributions from the other spectral
components that make up the emission spectrum and affect the shape of the curve. The
obtained dipole moment can be compared to the one plotted in Figure D.2 from reference
[37], which is the result of a similar SFA simulation on hydrogen-like argon using a linearly-
polarized driving field of the form E(t) = E0 cos (t), with I0 = 1 × 1014W/cm2 and
λ = 1030nm. The dipole moment obtained here holds a resemblance to the one shown
in [37], with the main difference being the amplitude modulation of the dipole, which
follows the raising and falling amplitude of the pulse, and a slight shape difference in the
second half of the pulse with respect to the first half. This shape difference could be due
to temporal interference between the leading and trailing parts of the pulse.
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Figure 3.4: Plot of the dipole moment (blue solid line) and the fundamental field (orange dashed line)
as a function of time.

The spectrum obtained from Fourier transforming the dipole moment shown in Figure 3.4
and then using equation 2.76 is plotted in Figure 3.5. Here, all the spectral components
of the dipole moment and their relative strengths are represented, showing that the main
contributions come from the first few harmonic orders, which present the highest intensity
peaks. The harmonic intensities rapidly decrease for the low orders until the plateau is
reached, where they stay somewhat constant. Later, the intensities rapidly decrease again
for orders in the cutoff region. This spectrum can be compared with that shown in FIG.4
from reference [17], where they also consider hydrogen and use a finite pulse with the
same peak intensity and central wavelength. The spectra are similar but not identical.
The differences may arise from the fact that in [17] it is assumed that the driving laser
populates more than one mode around the central frequency. Additionally, they take
the pulse’s vector potential to have the shape in equation 2.88 instead of the electric
field. Nevertheless, the spectrum in Figure 3.5 reproduces the three distinctive regions in
an HHG spectrum: the perturbative regime for harmonics 5 and lower, the plateau for
harmonics between 5 and 19, and the cutoff region after harmonic 19.

Figure 3.5: a) Plot of the HHG spectrum showing the perturbative regime, the plateau, and the cutoff.

Mode Displacements

Equation 3.4 was used to compute the time evolution of each harmonic displacement
during the interaction. The time evolution for harmonic 13 is plotted in Figure 3.6 (figures
for harmonics 1-27 can be found in Appendix C.1.1). As it can be seen in panel a), the
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magnitude of the displacement begins to grow as the interaction starts, oscillating around
a central value that increases approaching the final magnitude at the end of the pulse.
From panel b), it can be concluded that the time evolution during the interaction involves
counterclockwise rotation around the origin, as could also be deduced from equation 2.71.
Finally, panel c) shows the state’s trajectory in the optical phase space as the mode
begins to get populated due to the interaction, resulting in a final displacement marked
with a red dot. Note that this is related to the evolution of the radiation’s quantum state
in the rotating frame of reference resulting from applying the transformation Û1(t) =
exp (iĤRt/h̄). It is the final displacement that corresponds to the emitted radiation
stationary state |χk,l⟩, which in the lab frame of reference has a coherent state evolution
in the phase space.

Figure 3.6: a) Plot of the displacement magnitude as a function of time for harmonic 13. b) Plot of the
displacement phase as a function of time for harmonic 13. c) Plot of the displacement time evolution in
the optical phase space for harmonic 13. The final displacement is marked with a red dot.

Having access to the quantum state of the radiation allows the analysis of the state’s
photon statistics. In the case of coherent states, the distributions will be Poissonian with
Mandel parameter Q = 0, as discussed in subsection 2.1.1. For single atom HHG, the
signal is too small to see any interesting statistics since the most probable photon number
for all displacements is 0. Therefore, here the single atom displacements were multiplied
by a number Ñ to amplify the effect. As seen in equation 2.15, to obtain the distribution,
the computer must calculate |χ|2n and n! for each photon number n. This is limiting
for the choice of Ñ , given that the 64-bit Windows computer used to run the simulation
can only compute the distribution for a limited magnitude of χ and n without throwing
an overflow warning. With this in mind, it was chosen that Ñ = 9.7 × 103 so that the
plateau harmonics show distributions between 0 and 50 photons in a range the computer
can handle. The distributions for the plateau harmonics are shown in Figure 3.7, where
it can be seen that the average photon number varies slightly from one harmonic to
another. The relative intensity of the harmonics in the plateau depends on the atom used
to generate them, and slight differences are expected. It is in the logarithmic scale that
the intensities appear to be somewhat constant, and even then it can be seen in figure 3.5
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that harmonic 13 is the most intense in the plateau.

Figure 3.7: a)-f) Plots of the final state photon distributions (amplified signal) for harmonics 11-21.

The density matrices for each harmonic mode can be computed using the radiation’s final
(pure) state in equation 2.75. In Figure 3.8, the density matrices for harmonics 13, 15, and
17 are plotted (plots for other harmonics can be found in Appendix C.1.2). The density
matrices show the expected shapes, where the diagonals correspond to the Poissonian
distributions in Figure 3.7. The phases of the matrix elements are determined by the
expression

ρnm =
e−|χ|2|χ|n+m

√
n!m!

ei arg(χ)(n−m). (3.5)

Then the phase of the matrix elements depends on arg(χ), which itself depends on the
phase that the electron acquires during the propagation in the continuum, and (n−m).
The factor (n −m) in the exponential slowly cycles from right to left through the color
bars in Figure 3.8 as we move through the matrix anti-diagonal. Thus, the magnitude
of arg(χ) will determine the speed with which the matrix elements’ phase cycles through
the color bar, while the sign will determine the direction. For example, harmonic 13
shows very fast variation from right to left, consistent with the final displacement phase
shown in Figure 3.6, which is larger than 3π/4. Similarly, it can be seen in the figures
from Appendix C.1.1 that harmonic 15’s final displacement phase is close to −π while
harmonic 17’s final displacement phase is close to 3π/4, yielding fast variations as well.

Figure 3.8: a)-c) Plots of the final state density matrices for harmonics 13, 15, and 17.
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3.4.2 Few Atoms

In this section, the results of the few atoms simulation are presented. The harmonic
spectrum generated by the four atoms is analyzed and compared with the single atom
spectrum. The displacements’ time evolution in the optical phase space is discussed. The
response is multiplied by an effective number of atoms as described in section 3.3, and the
resulting spectrum and displacements are presented. The final state’s photon statistics
and density matrices are graphically represented.

Dipole Moments and Spectra

The resulting dipole moments for each atom are shown in Figure 3.9. Once again, the
dipole moments obtained here are similar to the one in [37], with the same differences
as in the single atom case. The dipole moment curve obtained for atom 1 matches that
obtained in the single atom simulation since they are equivalent systems. The curves
for atoms 2-4 illustrate how the strengths of the responses are proportional to the field
intensity. Furthermore, in the curve for atom 4, it can be seen that both at the beginning
and end of the pulse, there is no response since the intensity is not high enough.

Figure 3.9: Plot of the dipole moment for atom 1 (blue line), atom 2 (orange line), atom 3 (green line),
and atom 4 (red line).

The obtained spectra are plotted in Figure 3.10. In panel a), the spectra for each atom
are shown. Here it can be seen that as the intensity decreases, the cutoff moves to the
left until there is no plateau (atom 4). In panel b), the harmonic phase for each atom is
also plotted. These phases play an important role when adding the spectra, and they also
affect the duration of the pulse train. In the plateau region, the phases are expected to
be quadratic in the harmonic order [40]. However, the ones obtained here don’t present
this relationship. Later in this section, the phases for the harmonic displacements are
discussed. In this instance, the phases look quadratic in the cutoff region and somewhat
constant in the plateau. The source of this discrepancy was not identified or understood
and it is left for future work. In panel c), the total spectrum and the single atom spectrum
are plotted for comparison. It can be seen that the intensities in the 4-atom spectrum
are larger, and the peaks are better defined around the harmonics. Other than that, the
differences are minimal as expected from the equations presented in subsection 2.2.3.
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Figure 3.10: a) Plot of the individual spectra obtained for atom 1 (blue line), atom 2 (orange line),
atom 3 (green line), and atom 4 (red line). b) Plot of the unwrapped harmonic phases for atom 1 (blue
line), atom 2 (orange line), atom 3 (green line), and atom 4 (red line). c) Plot of the total spectrum
(thick purple line) compared with the single atom spectrum (thin pink line).

Mode Displacements

The time evolution plots for harmonics 1-27 can be found in Appendix C.2.1. Here in
Figure 3.11, the final displacements’ a) magnitudes and b) harmonic phases are plotted
for the four atoms, and the single atom simulations. In this case, the phases in panel b)
present the expected quadratic dependence in the cutoff region and are fairly constant in
the plateau, except for harmonic 15 in the single atom case. The magnitudes in panel a)
are not very different, as the contributions of the atoms in the lower intensity zones are
weak compared to the response of the atom at the center of the beam.
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Figure 3.11: a) Plot of the displacements’ magnitudes for the single atom (orange) and few atoms (blue)
simulation. b) Plot of the unwrapped harmonic phases for the single atom (orange) and few atoms (blue)
simulation.

When looking at the final state’s photon statistics, the same problem as with the single
atom simulation arises. The emission from the 4 atoms alone is not strong enough to show
a distribution. Similarly to the single atom case, a number for each atom contribution
was chosen to show statistics within the 50 photon range. In this case, exploiting the
cylindrical symmetry of the beam, the individual atoms’ emission was multiplied by an
effective atom number Di ∝ d2i , where di is their distance to the center. As a result, the
response of the outer atoms was amplified, yielding a new emission spectrum (without the
fundamental field) and displacements shown in Figure 3.12. As can be seen, harmonics 11
and 13 are much stronger than harmonics 15-19, and the cutoff has moved to harmonic
17.

Figure 3.12: Plot of the mode displacements’ amplitude (blue solid line) and emission spectrum (gray
dotted line) after being multiplied by an effective number of atoms. The emission spectrum does not
include the fundamental driving field.
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Considering the displacements in Figure 3.12, the photon number distributions shown in
Figure 3.13 were obtained. The distributions show the expected behavior for Poissonian
distributions, which spread larger for bigger average photon numbers and become localized
for smaller average photon numbers.

Figure 3.13: Plot of the photon number distributions for harmonics 11-21.

Similarly, the density matrices shown in Figure 3.14 were calculated using the displace-
ments in Figure 3.12 (plots for harmonics 7-27 can be found in Appendix C.1.2). Once
again, they present the expected shapes and phases.

Figure 3.14: a)-c) Plots of the final state density matrices (considering the effective number of atoms)
for harmonics 11, 13, and 17.
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Chapter 4

Conclusions and Outlook

4.1 Summary and Conclusions

In this thesis, the history of harmonic generation was discussed, and the use of QED to
describe HHG was motivated. The basic formalism necessary to describe light with quan-
tum mechanics was reviewed. Different states of light were studied and compared. Later,
the light-matter interaction Hamiltonian was introduced and simplified to be used in the
specific case of HHG. The formalism to solve the time-dependent Schrödinger equation
was laid out in detail, proposing an approach that incorporates elements from different
methods found in the literature. The procedure to separate the problem into two parts,
one equivalent to the known semi-classical scheme and one corresponding to the quantum
corrections, was delineated. The selected method to solve the semi-classical problem,
SFA, was described along with its most relevant equations. The specific conditions and
methods used in the simulations were presented, and the particularities of each simula-
tion were discussed. Finally, the results of both simulations were described, analyzed, and
contrasted with each other and with similar simulations found in the literature.

The work conducted here provided a deep understanding of HHG and its underlying
physics. The single atom simulation served as a simple example that could be used to
explore and understand all the theory that was presented in this thesis. Once the results
from this simulation were understood, expanding the code to multiple atoms was more
accessible. The results from the few atoms simulation served to illustrate the effects of
considering the spatial distribution, which affects the shape and intensity of the emission
spectrum. After reviewing the literature and carrying out the simulations, it was clear
that considering a spatial distribution would not impact the purity of the final state when
generating in atoms, or yield states of light other than coherent states. Still, from a
theoretical point of view, an interesting feature of HHG was highlighted by using SFQED
to describe it. As was briefly discussed at the end subsection 2.2.3, when considering the
incoherent contributions to the generation, the radiation’s final state presents quantum
features such as sub-Poissonian statistics for some spectral components [16]. Since these
contributions are only relevant for generation in a small number of atoms, an apparent ’loss
of quantumness’ occurs when transitioning from the few atoms regime to the many atoms
regime. In the outlook section, it is discussed how the removal of certain assumptions
can enable the study of the quantum features in the few atoms regime. Additionally,
experimentally realizable schemes where the final radiation state obtained here can be
conditioned to possess quantum features are also discussed as possible avenues to explore.
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4.2 Outlook

In this work, it is found that in targets consisting of many atoms driven by classic light,
the emitted harmonics are always described by coherent states. In this section, different
possible paths to generate more interesting states of light are discussed.

4.2.1 Applications in Quantum Technology

Quantum light is considered a key element in the development of quantum technologies
due to distinct features that present an advantage over other systems. On one hand, the
electromagnetic environment for these states can be considered as the vacuum, making
the optical system somewhat decoherence-free. This provides a clear advantage over
matter particles when scaling to macroscopic sizes. On the other hand, quantum states
of light can possess reduced noise or be entangled, unlike classical light. Nevertheless, the
applicability of these states is restricted by their low photon number since the engineering
of high photon number quantum states is challenging.

In references [2, 17, 18], methods to produce entanglement between different field modes
or to engineer Schrödinger Cat states using HHG’s final radiation state are developed.
This highlights the potential of using HHG to generate high photon number quantum
states with important applications in quantum technologies.

4.2.2 HHG Driven by Quantum Light

In references [41, 42], HHG driven by different states of light, such as squeezed light or
Fock states, was studied. It was found that the statistics of the driving field affect the
characteristics of the HHG spectrum, and therefore the features of the resulting APT.
In the previous subsection, the engineering of intense Schrödinger Cat states from HHG
radiation was discussed. An alternative that hasn’t been explored in the literature yet is
the possibility of driving the HHG process with this intense cat state again in order to
study the effects on the spectrum and APT.

4.2.3 Generation in Complex Targets

With the treatment used in this thesis, it was concluded that generation in more than one
atomic target results in coherent light with no quantum features. In reference [43], where
they analyze generation in H+

2 molecular ions considering that the dipole moment couples
to the first exited level as well as the ground state of the molecule, they find that the final
state presents entanglement between the electronic and radiation degrees of freedom. The
electron-light hybrid entangled state has multiple applications within quantum technology.
This result depends heavily on, among other things, the population of different bound
states and electron localization. Therefore, considering complex targets for which the
coupling to more than one bound state is important, can lead to more interesting final
states.

4.2.4 Modifications on the Present Work

In the formulation given here, many simplifying assumptions are made. In particular,
two of these assumptions have important effects on the quantum state of the emitted
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radiation: (1) that the laser field only couples to the ground state of ĤE when solving the
semi-classical problem, and (2) that the total wave function can be written as the tensor
product |ψ(t)⟩ = |ψE(t)⟩⊗|ψR(t)⟩. These assumptions are reasonable when generating in a
large number of atoms. Nevertheless, together they eliminate the quantum characteristics
of the light from the analysis by not considering entanglement to the electronic state and
excluding the incoherent contributions to the emission. If, from a fundamental point of
view, one is interested in studying generation in small samples, it is necessary to remove
these assumptions. Note that considering contributions from other bounded states means
that the analytical solution given by the displacements χ is no longer available and time-
dependent perturbation theory must be used.
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R. Weissenbilder, L. Neoričić, S. Luo, M. Gisselbrecht, C. L. Arnold, A. Buchleit-
ner, T. Pullerits, A. L’Huillier, and D. Busto. Continuous-variable quantum state
tomography of photoelectrons. Phys. Rev. Res., 4:033220, 9 2022.

[22] H. Laurell, S. Luo, R. Weissenbilder, M. Ammitzböll, S. Ahmed, H. Söderberg,
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Appendix A

Coherent States

A.1 Coherent States are Eigenstates of âk,l

Here the proof that coherent states are eigenstates of the annihilation operator âk,l with
eigenvalue αk,l is presented:

âk,l|αk,l⟩ = e−
|αk,l|

2

2

∞∑
n=0

αn
k,l√
n!
âk,l|n⟩k,l

= e−
|αk,l|

2

2

∞∑
n=1

αn
k,l√
n!

√
n|n− 1⟩k,l

= αk,le
−

|αk,l|
2

2

∞∑
n=1

αn−1
k,l√

(n− 1)!
|n− 1⟩k,l

= αk,l|αk,l⟩. (A.1)

A.2 Coherent States Have Poissonian Photon

Number Distributions

Photon number fluctuations are defined as ∆n =
√

⟨n2⟩ − ⟨n⟩2. Then, for a coherent
state |α⟩:

⟨n⟩ = ⟨α|â†â|α⟩ = |α|2, (A.2a)

⟨n2⟩ = ⟨α|â†ââ†â|α⟩ = |α|2(⟨α|â†â|α⟩+ 1) = |α|4 + |α|2, (A.2b)

∆n =
√
|α|4 + |α|2 − |α|4 = |α|. (A.2c)
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Appendix B

Numerical Implementation

B.1 Code

The single atom code is contained in the few atoms code, given that it is equivalent to
considering the atom 1 in Figure 3.2. Therefore, only the few atoms code is presented
here.

1 import time

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib.colors as cm

5 import scipy.special as scp #factorial function

6 from scipy.integrate import odeint ,quad

7 from datetime import datetime

8 from matplotlib import animation

9 from matplotlib.animation import PillowWriter

10 #Parameters SI units

11 pint=1e14 #laser intensity W/cm2

12 wlen=8e-7 #wavelength m

13 pdur =30e-15 #pulse duration s

14 lrad =50e-6 #beam radius at focus m

15 ene=5e-3 #pulse energy J

16 iene =13.6 #ionization energy of hydrogen eV

17 #Conversion factors

18 length =1/5.291772e-11 #a.u./m

19 intensity =1/3.50945 e16 #a.u./W/cm2

20 frequency =1/4.134137 e16 #a.u./Hz

21 energy1 =1/27.2113962 #a.u./eV

22 energy2 =2.2937 e17 #a.u./J

23 time1 =1/2.418884e-17 #a.u./s

24 #Parameters in a.u.

25 pint=pint*intensity #laser intensity

26 wlen=wlen*length #wavelength

27 pdur=pdur*time1 #pulse duration

28 lrad=lrad*length #beam waist

29 ene=ene*energy2 #pulse energy

30 iene=iene*energy1 #ionization energy of hydrogen

31 c=137.04 #speed of light

32 eps0 =4*np.pi #vacuum permittivity

33 #Variables in a.u.

34 amp=np.sqrt(pint) #electric field amplitude at x=0

35 freq =(2*np.pi*c)/wlen #driving laser frequency

36 wvec =2*np.pi/wlen #wave vector
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37 per=wlen/c #driving laser period

38 ncyc=pdur*c/wlen #number of cycles

39 efreq=np.pi/pdur #envelope frequency

40 ponde=amp **2/(4* freq **2) #ponderomotive energy for atom 1

41 cutoff =3.17* ponde+iene #cutoff energy for atom 1

42 min_order=iene/freq+1 #first plateau order

43 max_order=cutoff/freq #cutoff order

44 print(" amp=",amp ,"\n","freq=",freq ,"\n","per=",per ,"\n",

45 "ncyc=",ncyc ,"\n","efreq=",efreq , "\n",

46 "lrad=",lrad ,"\n","ponde=", ponde ,"\n",

47 "cutoff=", cutoff ,"\n",

48 "min_order=", min_order ,"\n","max_order=", max_order)

49 #Spatial distribution

50 npos=4 #number of positions considered

51 start=0 #first position

52 stop=lrad #last position

53 positions=np.linspace(start ,stop ,npos) #position array

54 if npos >1: #separation between atoms

55 dely=positions [1]- positions [0]

56 else:

57 dely=1

58 print(positions)#Spatial distribution

59 npos=4 #number of positions considered

60 start=0 #first position

61 stop=lrad #last position

62 positions=np.linspace(start ,stop ,npos) #position array

63 if npos >1: #separation between atoms

64 dely=positions [1]- positions [0]

65 else:

66 dely=1

67 print(positions)

68 #Time array

69 t0=0 #pulse starts at t0=0

70 tf=pdur #pulse ends at tf=pdur

71 delt=1 #time step

72 t=np.arange(t0,tf,delt) #time values

73 N=len(t) #number of points

74 #Details for file names

75 f=round(freq ,3)

76 dur=round(pdur/( time1*1e-15))

77 inten=round(pint ,3)

78 date = datetime.now().strftime("%Y-%m-%d_%H-%M")

79 #Define functions of the intensity

80 I = lambda x: pint*np.exp((-2*x**2)/lrad **2) #intensity profile

81 E0= lambda r: np.sqrt(I(r)) #field amplitude

82 A_ = lambda am ,y: am*(np.sin (2* efreq*y-freq*y)/(8* efreq -4* freq)

83 +np.sin(2* efreq*y+freq*y)/(8* efreq +4* freq)

84 -np.sin(freq*y)/(2* freq)) #vector potential

85 E_ = lambda am ,z: am*(np.sin(efreq*z))**2*np.cos(freq*z) #el. field

86 Up = lambda s: I(s)/(4* freq **2) #ponderomotive energy

87 #Fourier transform function

88 def fourier(t,y):

89 dt=t[1]-t[0]

90 Dt=t[-1]-t[0]

91 dw=2*np.pi/Dt

92 T=len(t)

93 omega =[]

94 trans =[]
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95 for i in range(T):

96 suma=0

97 omega.append(dw*i)

98 for j in range(T):

99 suma=suma+(y[j]*np.exp(1j*t[j]* omega[i]))

100 trans.append(suma)

101 return omega ,trans

102 #Electric field and vector potential arrays

103 EL=np.zeros([npos ,N])

104 VP=np.zeros([npos ,N])

105 maxel=np.zeros([npos])

106 melin=np.zeros([npos], dtype=np.int_)

107 for i in range(npos):

108 EL[i,:]=E_(E0(positions[i]),t)

109 VP[i,:]=A_(E0(positions[i]),t)

110 maxel[i]=max(np.abs(EL[i,:]))

111 melin[i]=np.where(np.abs(EL[i,:]) == maxel[i]) [0][0]

112 #Electron oscillation amplitude (Solving the initial value problem)

113 d=[]

114 tmax =[]

115 for i in range(npos):

116 def g(y,t): #define the system of differential equations

117 v=y[1] #velocity

118 a=E0(positions[i])*np.cos(freq*t)

119 *(np.sin(np.pi*t/pdur))**2 #acceleration

120 return [v,a]

121 y0=[0 ,0]

122 sol=odeint(g,y0 ,t) #solver

123 x=sol[:,0]. tolist () #positions

124 d_osc=max(x) #oscillation amplitude

125 tmax_osc=t[x.index(d_osc)]

126 d.append(d_osc)

127 tmax.append(tmax_osc)

128 print (" tmax=",tmax ,"\n","d=",d)

129 #Form factor

130 def gamma(k,i):

131 gamma=np.sqrt(c*k/(2**6* np.pi**4))

132 *(1/d[i])/np.sqrt ((1/d[i])**2+k**2)

133 return gamma

134 #Compute momentum , action and dipole moment

135 #Empty arrays

136 p=np.zeros ([N,N,npos],dtype=np.complex_)

137 perr=np.zeros([N,N,npos],dtype=np.complex_)

138 a=np.zeros ([N,N,npos],dtype=np.complex_)

139 aerr=np.zeros([N,N,npos],dtype=np.complex_)

140 x=np.zeros ([N,N,npos],dtype=np.complex_)

141 pk=np.zeros([N,N,npos],dtype=np.complex_)

142 Ek=np.zeros([N,N,npos],dtype=np.complex_)

143 #Values are calculated for each each ionization time tn at time step

tm

144 initial=time.time()

145 for i in range(npos):

146 A = lambda y: E0(positions[i])*

147 (np.sin(2* efreq*y-freq*y)/(8* efreq -4* freq)

148 +np.sin(2* efreq*y+freq*y)/(8* efreq +4* freq)

149 -np.sin(freq*y)/(2* freq))

150 E = lambda z: E0(positions[i])*(np.sin(efreq*z))**2

151 *np.cos(freq*z)
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152 for m in range(N):

153 n=0

154 while t[n]<t[m]:

155 integral1 ,error1 = quad(A,t[n],t[m])

156 p[n,m,i] = - (1.0/(t[m]-t[n]))*integral1

157 perr[n,m,i] = error1

158 pk[n,m,i] = p[n,m,i]+A(t[m])

159 Ek[n,m,i] = (pk[n,m,i]) **2/2/ Up(positions[i])

160 real_action = lambda r: np.real((p[n,m,i]+A(r))**2/2+

iene)

161 imag_action = lambda r: np.imag((p[n,m,i]+A(r))**2/2+

iene)

162 integral_real ,error_real = quad(real_action ,t[n],t[m])

163 integral_imag ,error_imag = quad(imag_action ,t[n],t[m])

164 a[n,m,i] = integral_real +1j*integral_imag

165 aerr[n,m,i] = error_real+error_imag

166 epsilon = 1e-10 #regulation constant

167 C = (np.pi/( epsilon +1j*(t[m]-t[n])/2))**(3/2)

168 dip = lambda w: (p[n,m,i]+A(w))/(1+(p[n,m,i]+A(w))**2)

**3

169 x[n,m,i] = delt *(1j*C*dip(t[m])

170 *np.exp(-1j*a[n,m,i])*E(t[n])*dip(t[n])

171 +np.conj(1j*C*dip(t[m])

172 *np.exp(-1j*a[n,m,i])*E(t[n])*dip(t[n])

))

173 n=n+1

174 final=time.time()

175 rt=final -initial

176 print("Run time = ",rt/60," min")

177 #Kinetik energy and maximum time of flight

178 maximums =[]

179 exits =[]

180 returns =[]

181 taus =[]

182 times =[]

183 for i in range(npos):

184 maxi=np.amax(np.real(Ek[:,:,i]))

185 ex=np.where(Ek[:,:,i] == maxi)[0][0]

186 ret=np.where(Ek[:,:,i] == maxi)[1][0]

187 tim=(ret -ex)*delt

188 tau=tim/per

189 maximums.append(maxi)

190 exits.append(ex)

191 returns.append(ret)

192 taus.append(tau)

193 times.append(tim)

194 print("Max kinetic energy= " , maximums)

195 print("Max time of flight= " , times , " a.u.")

196 print("Max time of flight= ", taus , "T")

197 #Mask for selecting short trajectories

198 pondes=int2 /(4* freq **2) #ponderomotive energies array

199 scale =2**7*(2* iene)**(5/2)/np.pi**2 #constant multiplying the dipole

moment

200 flight_max=per*taus [0] #define a maximum time of flight

201 M=int(flight_max*N//pdur) #number of timesteps in the maximum time

of flight

202 Mask=np.zeros([N,N])

203 m=0
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204 for m in range(N): #make the mask

205 if m<M:

206 for n in range(M):

207 Mask[n,m]=1

208 else:

209 n=m

210 while n>m-M:

211 Mask[n,m]=1

212 n=n-1

213 Dipole=np.zeros ([N,N,npos])

214 for i in range(npos): #select trajectories

215 Dipole[:,:,i]=np.real(x[:,:,i]*Mask)

216 X1=np.transpose(np.sum(Dipole ,axis =0)*scale)

217 #Fourier transform the dipole moments

218 X=np.zeros ([npos ,N])

219 X=X1+EL

220 last =41 #last harmonic to show

221 sp=[]

222 sp1 =[]

223 om ,throw= fourier(t,X1[0 ,:]) #get the frequency array

224 om=np.array(om)

225 index=np.argmin(np.abs(om-last*freq))

226 w=np.array(om)[:index]

227 order=w/freq

228 ords =[]

229 for i in range(1,last +1): #make and order array

230 if i%2!=0:

231 ords.append(i)

232 S=len(ords)

233 for i in range(npos): #fourier transform the dipoles

234 throw ,fo = fourier(t,X[i,:])

235 fo = np.array(fo)[: index]

236 fou = fo*gamma(w/c,i)

237 throw ,fo1 = fourier(t,X1[i,:])

238 fo1=np.array(fo1)[: index]

239 fou1=fo1*gamma(w/c,i)

240 sp.append(fou)

241 sp1.append(fou1)

242 specs=np.array(sp)

243 specs1=np.array(sp1)

244 #Choose the one with electric field: specs

245 Tspec=np.sum(specs ,axis =0) #add all the contribution

246 spectrum =(np.abs(Tspec)*w)**2 #total spectrum

247 aspecs =(np.abs(specs)*w)**2 # individual spectrums

248 #Harmonic Displacements

249 initial=time.time()

250 #effective number of atoms

251 natoms =[int(np.pi*positions[i]**2/(130* dely)) for i in range(npos)]

252 natoms [0]=1

253 q=50

254 num=range(q)

255 gx=np.zeros([npos ,N],dtype=np.complex_)

256 prob=np.zeros([S,N,q])

257 chi=np.zeros([S,N],dtype=np.complex_)

258 schi=np.zeros([S,N])

259 altchi=np.zeros ([S,N],dtype=np.complex_)

260 saltchi=np.zeros([S,N])

261 chi_sa=np.zeros ([npos ,S,N],dtype=np.complex_)
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262 schi_sa=np.zeros([npos ,S,N])

263 m=0

264 s=0

265 for s in range(S): #for each order

266 for m in range(N): #for each time

267 sum1=np.zeros([npos],dtype=np.complex_)

268 for i in range(npos): #for each atom

269 wv=ords[s]*freq/c #wave vector corresponding to each

order

270 gx[i,:]= gamma(wv ,i)*X1[i,:]

271 j=0

272 while t[j]<t[m]: #copute displacements

273 sum1[i]=sum1[i]

274 +(delt*np.exp(1j*ords[s]*freq*t[j])*gx[i,j])

275 j=j+1

276 chi_sa[i,s,m]=sum1[i]

277 schi_sa[i,s,m]=np.real(chi_sa[i,s,m]

278 *np.conj(chi_sa[i,s,m]))

279 sum2=np.sum(natoms*sum1) #with effective number of atoms

280 sum3=np.sum(sum1) #without effective number of atoms

281 chi[s,m]=sum2

282 schi[s,m]=np.real(chi[s,m]*np.conj(chi[s,m]))

283 #Photon statistics

284 altchi[s,m]=sum3

285 saltchi[s,m]=np.real(altchi[s,m]*np.conj(altchi[s,m]))

286 for n in num:

287 pr=schi[s,m]**n*np.exp(-schi[s,m])/np.math.factorial(n)

288 prob[s,m,n]=pr

289 nprob=np.copy(prob)

290 final=time.time()

291 rt=final -initial

292 print("Run time = ",rt/60," min")

293 #Spectrum after multiplying by natoms

294 sp2 =[]

295 for i in range(npos):

296 om2 ,fou2 = fourier(t,X1[i,:])

297 fou2=np.array(fou2)[: index]* natoms[i]* gamma(w/c,i)

298 sp2.append(fou2)

299 specs2 = np.array(sp2)

300 Tspec2=np.sum(specs2 ,axis =0) #add all the contribution

301 spectrum2=np.abs(Tspec2)**2
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Appendix C

Results

C.1 Single atom

C.1.1 Mode Displacements

In this appendix, figures showing the time evolution of displacements 1 to 27 are included.

Figure C.1: a) Plot of displacement 1’s magnitude as a function of time. b) Plot of displacement 1’s
phase as a function of time. c) Plot of displacement 1’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.2: a) Plot of displacement 3’s magnitude as a function of time. b) Plot of displacement 3’s
phase as a function of time. c) Plot of displacement 3’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.3: a) Plot of displacement 5’s magnitude as a function of time. b) Plot of displacement 5’s
phase as a function of time. c) Plot of displacement 5’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.4: a) Plot of displacement 7’s magnitude as a function of time. b) Plot of displacement 7’s
phase as a function of time. c) Plot of displacement 7’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.5: a) Plot of displacement 9’s magnitude as a function of time. b) Plot of displacement 9’s
phase as a function of time. c) Plot of displacement 9’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.6: a) Plot of displacement 11’s magnitude as a function of time. b) Plot of displacement 11’s
phase as a function of time. c) Plot of displacement 11’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.7: a) Plot of displacement 13’s magnitude as a function of time. b) Plot of displacement 13’s
phase as a function of time. c) Plot of displacement 13’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.8: a) Plot of displacement 15’s magnitude as a function of time. b) Plot of displacement 15’s
phase as a function of time. c) Plot of displacement 15’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.9: a) Plot of displacement 17’s magnitude as a function of time. b) Plot of displacement 17’s
phase as a function of time. c) Plot of displacement 17’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.10: a) Plot of displacement 19’s magnitude as a function of time. b) Plot of displacement 19’s
phase as a function of time. c) Plot of displacement 19’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.11: a) Plot of displacement 21’s magnitude as a function of time. b) Plot of displacement 21’s
phase as a function of time. c) Plot of displacement 21’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.12: a) Plot of displacement 23’s magnitude as a function of time. b) Plot of displacement 23’s
phase as a function of time. c) Plot of displacement 23’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.13: a) Plot of displacement 25’s magnitude as a function of time. b) Plot of displacement 25’s
phase as a function of time. c) Plot of displacement 25’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.14: a) Plot of displacement 27’s magnitude as a function of time. b) Plot of displacement 27’s
phase as a function of time. c) Plot of displacement 27’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

C.1.2 Density Matrices

The density matrices for harmonics 7 to 27 are shown. The phase matrices only show
values corresponding to magnitudes greater than 1×10−55 to avoid computational errors.

Figure C.15: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.16: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.17: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.18: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.19: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.20: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.21: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.22: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.23: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.24: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.25: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

C.2 Few atoms

C.2.1 Mode Displacements

In this appendix, figures showing the time evolution of displacements 1 to 27 are included.
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Figure C.26: a) Plot of displacement 1’s magnitude as a function of time. b) Plot of displacement 1’s
phase as a function of time. c) Plot of displacement 1’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.27: a) Plot of displacement 3’s magnitude as a function of time. b) Plot of displacement 3’s
phase as a function of time. c) Plot of displacement 3’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.28: a) Plot of displacement 5’s magnitude as a function of time. b) Plot of displacement 5’s
phase as a function of time. c) Plot of displacement 5’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.29: a) Plot of displacement 7’s magnitude as a function of time. b) Plot of displacement 7’s
phase as a function of time. c) Plot of displacement 7’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.30: a) Plot of displacement 9’s magnitude as a function of time. b) Plot of displacement 9’s
phase as a function of time. c) Plot of displacement 9’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.31: a) Plot of displacement 11’s magnitude as a function of time. b) Plot of displacement 11’s
phase as a function of time. c) Plot of displacement 11’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.32: a) Plot of displacement 13’s magnitude as a function of time. b) Plot of displacement 13’s
phase as a function of time. c) Plot of displacement 13’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.33: a) Plot of displacement 15’s magnitude as a function of time. b) Plot of displacement 15’s
phase as a function of time. c) Plot of displacement 15’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.34: a) Plot of displacement 17’s magnitude as a function of time. b) Plot of displacement 17’s
phase as a function of time. c) Plot of displacement 17’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.35: a) Plot of displacement 19’s magnitude as a function of time. b) Plot of displacement 19’s
phase as a function of time. c) Plot of displacement 19’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.36: a) Plot of displacement 21’s magnitude as a function of time. b) Plot of displacement 21’s
phase as a function of time. c) Plot of displacement 21’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.37: a) Plot of displacement 23’s magnitude as a function of time. b) Plot of displacement 23’s
phase as a function of time. c) Plot of displacement 23’s time evolution in the optical phase space. The
final displacement is marked with a red dot.
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Figure C.38: a) Plot of displacement 25’s magnitude as a function of time. b) Plot of displacement 25’s
phase as a function of time. c) Plot of displacement 25’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

Figure C.39: a) Plot of displacement 27’s magnitude as a function of time. b) Plot of displacement 27’s
phase as a function of time. c) Plot of displacement 27’s time evolution in the optical phase space. The
final displacement is marked with a red dot.

C.2.2 Density Matrices

The density matrices for harmonics 7 to 27 are shown. The phase matrices only show
values corresponding to magnitudes greater than 1×10−55 to avoid computational errors.
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Figure C.40: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.41: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.42: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.43: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.44: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.45: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.46: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.47: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.48: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.

Figure C.49: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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Figure C.50: a) Plot of the density matrix magnitudes. b) Plot of the density matrix phases.
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