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1 Abstract

Thermo Fisher Scientific manufacture automatic pipetting instruments for
diagnostic tests. These tests are sensitive to abnormalities and changes in
e.g. volume or density could potentially lead to less precision or other issues
in the pipetting work flow. Utilizing data collected from a pressure sensor
inside the pipette could be a way of automatically verifying different aspects
related to the pipetting. Machine learning may be a powerful tool in con-
tinuously evaluating these aspects and keeping the handler notified of any
changes.

This thesis aims to investigate the feasibility of extracting useful insights
from pipetting pressure recordings. The initial objective was classifying er-
ror causes such as bubbles or foam in the pipette and data was collected
with this in mind. This however was not successful as these errors were
not detectable in the pressure recordings. Hence, the thesis focuses on the
secondary objective, to estimate pipetted volume and density based on pres-
sure sensor data.

The data collection was done using the Thermo Fisher pipetting instrument
Phadia 200. Three different sets were collected. D1 data set consisting of
4 groups of 80 observations each. These were water, 5% glycerol, 10% gly-
cerol and 40% glycerol. D2 data set consisting of 3 groups of 50 observations
each. These were three different human samples. D3 data set consisting of
3 groups of 50 observations each. These were 2.5% glycerol, 7.5% glycerol
and 20% glycerol. Pressure recordings as well as estimated volumes for each
sample were collected. A partial least squares model (PLS) and an artificial
neural network (ANN) model were used for the regression problem.

The results of the regressions were not satisfactory and it was concluded
that the data was not ideal for the task. All models but the ones where all
data sets were included in training yielded very poor R2 scores, especially
in the volume estimations. The best model was a PLS model which had
an R2 of 0.96 in volume predictions and 0.54 in density predictions. This
model had an RMSE of 0.9660 in volume predictions and 0.0140 in density
predictions. However, since this model was trained with all data and did
not predict on any new densities, this does not say anything about general-
izability to new and unseen data. The model that had the best results for
predicting unseen data was a PLS model trained on D1 data set predicting
the D3 data set. For these density predictions, R2 was 0.80 and RMSE
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0.0093. For the volume predictions however, R2 was -40 and RMSE 2.1135.

The data was collected with the primary objective, a classification prob-
lem, in mind. Since the data was finally used for a regression task, it was
concluded that shortcomings in the experimental design were a crucial as-
pect affecting the results. It is however not possible to say whether a better
set up and data set would yield better results. There is a risk that the rela-
tionships between pressure, volume and density simply are not clear enough
or are too easily affected by outside factors. The conclusion is therefore that
further investigation needs to be done in order to evaluate the feasibility of
the methods.
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4 Introduction

4.1 Background
The accuracy of in vitro diagnostic methods is contingent on precisely defined
volumes for quantifying the concentration of substances in samples. To up-
hold the high quality of results in these diagnostic tests, the equipment
utilized must incorporate features to validate the precision of sample pipet-
ting.

Thermo Fisher specializes in immunodiagnostics, specifically in the diagnosis
of allergies and autoimmunity through the detection of specific antibodies
in blood plasma and serum. This is accomplished using Enzyme-Linked
Immunosorbent Assay (ELISA). The measurement of antibody content in-
volves a series of reactions, culminating in the utilization of a fluorescent
molecule to quantify the amount of antibodies present in the sample. Here,
the quantity information is correlated with the amount of fluorescent light
emitted. In diagnostic procedures, the focus lies on concentration informa-
tion rather than the intensity of emitted light, and therefore an essential step
for accurate calculations is the employment of a calibration curve. However,
the accuracy of this function is susceptible to volume inaccuracies, under-
scoring the critical importance of precise pipetting volumes.

Inaccuracies in aspiration and dispersion volumes may arise from various
factors, such as blood clots obstructing the pipette or the presence of bubbles
or foam impacting the actual pipetted volume. The handler is particularly
interested in understanding both the pipetted volume and the reasons for
faulty pipettings. An interesting aspect when pipetting is the difference in
density in samples, as this may be useful information when analyzing and
handling samples. Furthermore, when interpreting errors and differences
that arise in the pipetting process. One potential method for determining
these aspects involves analyzing the pressure inside the pipette.

Thermo Fisher manufacture a pipetting machine, Phadia 200, which allows
the user to pipette predetermined volumes of liquid. The pipette incorpor-
ates a pressure sensor which can output information of pressure during as-
piration and dispersion. As of today, this sensor is not used for controlling
pipetting volumes or pipetting errors, but this is something the company
would like to investigate.

8



Figure 1: Phadia 200 (Martin Danielson n.d.)

4.2 Aims and Objectives
The primary objective of this thesis was to detect and classify causes of er-
ror such as foam and bubbles based on pressure sensor data gathered by the
Phadia 200. The secondary objective of this thesis was to estimate pipetted
volume and density based on pressure sensor data gathered by the Phadia
200.

The primary objective encountered challenges as the sensors failed to de-
tect the presence of foam or bubbles. Consequently, the secondary objective
was necessitated, leading to the implementation of multivariate regression.
This new purpose aimed to investigate the potential for predicting volume
and density based on pipetting aspiration pressure curves. This thesis there-
fore handles the pressure data collection from pipetting samples using the
Phadia 200 and predictive modeling of volume and density from this data.
It investigates feasibility and discusses possible error sources. Furthermore,
things to consider when gathering and processing data for the specific use.

The machine learning methods used are explained in section 5. Info on
the data collection procedure as well as data processing steps can be found
in section 6. The data and its rejected outliers, extracted features as well as
prediction results are found in section 7. Comments and discussion regard-
ing the results and possible error sources are found in section 8.
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5 Theory

5.1 Multivariate Linear Regression
A multivariate linear regression from m independent variables Xi to n de-
pendent variables Yi can be expressed in matrix form as

Y = Xβ + ϵ (1)

where Y is an n×1 vector of dependent variables, X is an n×(m+1) matrix
of independent variables, β is a (m+1)×n matrix of coefficients, ϵ is an n×1
vector of error terms.

The goal is to estimate the coefficients that minimize the errors.

5.2 Partial Least Squares Regression
The partial least square (PLS) algorithm originates from Herman Wolds
work with the NIPALS algorithm (Wold 1966). It is a multivariate statist-
ical method that is used for modeling relationships between sets of variables.
It is particularly useful for predictive modeling in cases where there is mul-
ticollinearity between variables or high dimensional data. This is due to
its robustness, deriving from the fact that the model parameters are not as
sensitive to changes in the data as in other methods such as ordinary least
squares (Geladi and Kowalski 1986). Because of this, a more stable model
can be achieved, with better predictive and generalizing abilities.

In PLS regression the goal is to identify n components

K = [k1...., kn] (2)

as linear combinations of inputs X

kk = Xwk (3)

for k = [1...., n], where wk is some weight vector. We aim to derive compon-
ents that serve as effective predictors not only for the response variable Y but
also for the input variables Xj , where j=1,. . . ,p, fulfilling the relationships

X = KLT + E (4)

Y = Kb+ e (5)
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where K is the matrix of scores (PLS components), L is a matrix of PLS
loadings, E is a matrix of X- residuals, b is a vector of PLS regression coef-
ficients and e is a vector of y- residuals.

By choosing n components (n<p), we approximate the model for the X-
space

X̂ = ΞΓT (6)

and Y- space
Ŷ = Ω∆T (7)

where

• Ξ ∈ Rn×K , Ω ∈ Rn×K contain the scores in their columns.

• ΓT ∈ RK×d, ∆T ∈ RK×d contain the loadings in their rows.

The components are obtained through the NIPALS algorithm (see 5.2.1)(Sanc-
hez and Marzban 2020).

5.2.1 NIPALS: Nonlinear Iterative Partial Least Squares algorithm

Given matrices X and Y and a number of components

X ∈ Rn×d,
Y ∈ Rn×t,

components K

X1 is set to X and Y1 is set to Y and for each k ∈ [1,K] :

1. Compute the weights uk ∈ Rd and vk ∈ Rt. These are the first left
and right singular vectors of the cross-covariance matrix C = XT

k Yk.
These are computed by the power method (5.2.2). By definition, uk

and vk are chosen so that they maximize the covariance between the
projected Xk and the projected target, that is Cov (Xkuk, Ykvk).

2. Find the scores ξk, ωk, these are obtained by projecting Xk and Yk on
uk and vk:

• ξk = Xkuk

• ωk = Ykvk

3. Find the loading vectors, γk and δk, these are obtained by
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• γk: Finding a vector γk ∈ Rd such that the rank-1 matrix ξkγ
T
k

is as close as possible to Xk.

• δk: Yk are approximated using the projection of Xk (i.e. ξk ) :
finding a vector γk ∈ Rd such that the rank-1 matrix ξkδ

T
k is as

close as possible to Yk.

4. deflate Xk and Yk, i.e. subtract the rank-1 approximations:

• Xk+1 = Xk − ξkγ
T
k

• Yk+1 = Yk − ξkδ
T
k .

At the end, we have approximated X as a sum of rank-1 matrices:

X = ΞΓT (8)

where

• Ξ ∈ Rn×K contains the scores in its columns

• ΓT ∈ RK×d contains the loadings in its rows.

Similarly for Y , we have
Y = Ω∆T (9)

where

• Ω ∈ Rn×K contains the scores in its columns

• ∆T ∈ RK×d contains the loadings in its rows.

Note that the scores matrices Ξ and Ω correspond to the projections of the
training data X and Y , respectively (scikit-learn developers 2023).

5.2.2 The power method

The PLS algorithm contains an inner loop, the power method, which com-
putes the eigenvectors of C (see 5.2.1). Here, superscript k in uk, vk denote
iteration in the inner loop and subscripts ur, vr denote iteration in outer
loop (5.2.1) and are the columns of U and V. Superscripts on scalars indicate
exponents. The power method algorithm as follows:

Let C be an I × J matrix. Set r ← 0.

1. Repeat
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(a) Set r ← r + 1

(b) Choose u0 ∈ RI

(c) Set k ← 0

(d) Repeat

k ← k + 1

vk ← CTuk−1

vk ← vk

uk ← Cvk

uk ← uk/
∥∥uk

∥∥
until

∥∥uk − uk−1
∥∥ is less than some convergence criterion.

(e) Save
ur ← uk

vr ← vk

dr ← (ur)
T
Cvr

(f) (Set C← C− drurv
T
r . until ∥C∥ is less than some criterion.

2. Reorder the dr so that

d1 > d2 > . . . > dR

and reorder the ur and vr accordingly.

(Wegelin (2000). For proof of convergence see section 13, pg. 37-39 We-
gelin (ibid.)).

5.2.3 Data assumptions

There are several assumptions made when attempting a linear regression.
In this work, partial least squares estimation is used for the reason that it
is a robust method that handles some aspects better than other regression
methods. Nonetheless, it is good practice to have some things in mind when
attempting a regression.

• Linear relationship: PLS assumes a linear relationship between the
independent and dependent variables. Linearity can stem from a linear
relationship but can also in some cases be achieved by transformation
of the data.
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• Independence of observations: PLS, like other regression techniques,
assumes that observations are independent of each other.

• Multicollinearity: PLS is designed in a way that makes it robust to
multicollinearity. When there are high correlations among the inde-
pendent variables, PLS is particularly useful since the method not
uses the observed variables directly, but constructs new latent vari-
ables which are designed to capture the shared variance among the
predictors (El-Salam 2014). Dissimilar to the traditional regression
approach, which generally focuses on predicting the dependent vari-
able, it maximizes the covariance between the dependent variables and
predictors while also finding components which have maximum correl-
ation with the response (Johnsson and Kuhn 2013). This makes it less
sensitive to multicollinearity.

• Outliers: PLS is generally less sensitive to the presence of outliers
compared to some other regression techniques. since PLS performs di-
mensionality reduction by constructing latent variables, outliers may
have less influence on these compared to the original predictors, yield-
ing a more robust model. Still, extreme outliers can influence the
results, and it is good practice to check for their presence.

• Homoscedasticity: If the variance of the residuals is not homogenous
accross all levels of predictor variables, this can yield bad results and
skewed predictions and this should therefore be taken into account.
PLS is less sensitive to this than e.g. ordinary least squares, since
it constructs latent variables that are linear combinations of the ori-
ginal predictors, and these latent variables are designed to capture the
shared variance among the predictors, potentially reducing the impact
of heteroscedasticity.

5.3 Artificial Neural Network
The Artificial neural network (ANN) used in this thesis is a feedforward
neural network, i.e. there is only one way connections and no loop backs in
the network. The primary objective of a feedforward network is to approx-
imate a specific function f∗.

Here, we have a regression task incorporating two continuous output vari-
ables. Hence, the function

y = f∗(x) (10)
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maps an input x to a pair of outputs y1 and y2. By defining a mapping

y = f∗(x; θ) (11)

the feedforward network strives to learn the optimal values for the paramet-
ers θ that result in the most accurate function approximation (Goodfellow,
Bengio and Courville 2016).

5.3.1 Architecture

The network consists of various layers, each employing computations to
achieve an optimal mapping from the input to the output. While there are
countless ways to structure the model, here a simple model with one hidden
layer is used. The layers are fully connected (i.e. each neuron in every layer
is connected to each neuron in the next).

Figure 2: A feedforward neural network (Nguembang Fadja, Lamma and
Riguzzi 2018)

Each layer is built up of a n of nodes. The input layer has n equal to the
number of input variables, the output layer has n equal to the number of
output variables and the number of nodes in the hidden layers are a design
choice. Each node is associated with an activation function f . There are
several choices of activation functions. Each input x is weighted by some
weight w. The weights are adjusted during training in order to achieve the
desired output, minimizing some error function. (Zou, Han and So 2009).
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Figure 3: A node (Nguembang Fadja, Lamma and Riguzzi 2018)

5.3.2 Activation functions

In this work, two different activation functions are used.

A rectified linear unit function, defined as

ReLU(x) = max(0, x) (12)

Here, the output is zero for any negative input and equal to the input for
any non-negative input.

The output function is a linear activation function, defined as

F (x) = x (13)

here, the network will output a linear variable, which is appropriate for a
regression task (Siddharth Sharma 2020).

5.3.3 Hyperparameters

Several hyperparameters can be experimented with in an ANN. In this work
the following hyperparameters will be tuned during training.

• Number of nodes in each layer. The number of nodes may affect
generalization and capacity of fitting the data. In the hidden layers,
this is a parameter that can be evaluated and optimized.
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• Batch size. This determines how many training examples are con-
sidered together before the model’s weights are updated. It is a trade-
off between computational efficiency, memory requirements, and the
quality of weight updates.

• Epochs. An epoch is one complete pass through the entire training
dataset during the training phase. This hyperparameter determines
how many iterations the the model gets for learning the data. Here,
the trade-off lies between underfitting and overfitting the data.

5.4 Model training and testing
There are some things to consider and methods to utilize when training a
model to achieve good results on both traning and test data. Overfitting
is a common problem in machine learning, and here, good generalization to
new data is the goal.

5.4.1 Model complexity and hyperparameters

Finding the right balance between model complexity and generalization is
essential. In the case of partial least squares, choosing the right number of
components is key. While many components may yield a good fit on training
data, it may lead bad generalization and hence bad performance on future
data. Too few may lead to underfitting. In the case of neural networks,
the architecture plays a crucial role in its performance, and having a very
complex architecture with many layers and nodes can lead to overfitting.

Hyperparameters play a crucial role in the performance of a machine learn-
ing model and can significantly impact its ability to generalize well to new,
unseen data. Balancing model complexity and hyperparameters is an ongo-
ing process that involves experimentation and tuning.

5.4.2 K-fold cross-validation

K-fold cross-validation is a widely used technique for assessing the perform-
ance and generalization ability of a predictive model. It provides a more
robust estimate of the model’s performance by averaging over multiple test
sets. Furthermore, it ensures all data points are utilized for training and
validating. The steps of K- fold cross validation are as follows:

1. Split the dataset into K subsets
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2. The model is trained K times. In each iteration, K-1 folds are used for
training, and the remaining fold is used for validating. The model’s
performance metrics are recorded for each iteration.

3. The performance metrics obtained from each iteration are averaged to
provide an overall assessment of the model’s performance.

5.4.3 Model testing

Model testing is a crucial step in the machine learning workflow that involves
evaluating the performance of a trained model on new, unseen data. The
primary goal of model testing is to assess how well the model generalizes to
data it has not encountered during the training phase. The performance on
the test data is a critical indicator of how well the model is likely to perform
in real-world scenarios. It helps make informed decisions about the model’s
suitability for deployment or further refinement. Still, although the model is
not fit on the test data, there is a danger of overfitting the model on the test
data by tweaking it too much in the testing stage. This is something to take
into account during the process as the test data should remain representative
of unseen data in the future.

5.5 Evaluation Metrics
The choice of evaluation metrics is a crucial aspect in assessing the per-
formance of a predictive model. As illustrated in figure 4, different metrics
highlight different aspects of model performance, and the selection should
be based on the specific characteristics of the problem at hand.

Figure 4: Evaluation Metrics
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In figure 4, three different models have been used to predict values.
Here, the root mean squared error (RMSE) is the same for all three models,
meaning they have a similar overall accuracy in predicting values. However,
mean absolute error (MAE) and R2 scores differ. MAE reflects the average
magnitude of errors, and R2 reflects the goodness of fit, indicating how well
the model explains the variance in the data. The variations in MAE and R2

between the models illustrate how they perform differently in terms of the
absolute errors and how well they explain the variance in the data.

5.5.1 Root Mean Squared Error

Root mean squared error is useful when the error measured in units is of
interest. It measures the average magnitude of the errors between predicted
values and actual values.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (14)

Where n is the number of observations or data points, yi is the actual value
of the dependent variable for observation i, ŷi is the predicted value of the
dependent variable for observation i.

5.5.2 Mean Absolute Error

Mean absolute error measures the average absolute difference between pre-
dicted values and actual values. It is easy to interpret since it provides a
straightforward measure of how far, on average, the predictions deviate from
the actual values. Additionally, MAE is less sensitive to outliers compared
to other metrics like Root Mean Square Error (5.5.1).

MAE =
1

n

n∑
i=1

|yi − ŷi| (15)

Where n is the number of observations, yi is the actual (observed) value, ŷi
is the predicted value.

5.5.3 R2 score

The R2 score, or coefficient of determination, indicates the proportion of the
variance in the dependent variable that is predictable from the independent
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variables. In other words, it measures the percentage of variation in the
dependent variable that can be explained by the independent variables.

R2 = 1− SSres

SStot
= 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)

2 (16)

Here SStot represents the total variability in the dependent variable and
SSres represents the unexplained variability, n is the number of data points,
yi is the actual value of the dependent variable for the i-th data point, ŷi
is the predicted value of the dependent variable for the i-th data point, ȳ is
the mean of the actual values y.
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6 Methodology

6.1 Data Collection
The data collection was done on two occasions. The thesis worker collected
the D1 set and D2 set at the beginning of the process. A test set, D3, was
later collected by an employee at Thermo Fisher. The collection methods
are presented in this section.

6.1.1 Materials and Equipment

6.1.1.1 Phadia 200 Machine

The Phadia 200 machine, manufactured by Thermo Fisher, served as the
instrument for automated pipetting. It is equipped with precision pumps
and sensors to monitor and record pressure changes during liquid dispensing.

6.1.1.2 Pipetting wells

Glucose-stained sponges within wells were subjected to a washing and drying
process. Subsequently, these sponges were transferred to empty wells and
utilized in the pipetting procedure. This transfer was undertaken with the
aim of minimizing evaporation as much as possible.

6.1.1.3 Manual pipette and pipette tips

A micropipette, from Thermo Fisher scientific, and disposable pipetting tips
were utilized in the sample preparation and density measurements.

6.1.1.4 Scale

A Mettler Toledo AT261 deltarange was used for the weight measurements.

6.1.1.5 Camera

An RS Pro Wifi Digital Microscope was used to monitor the process.

6.1.1.6 Liquids

Glycerol and water were used to achieve different viscosities and densities.
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6.1.2 Data sets

The three datasets collected with the measured densities can be seen in
tables 1, 2 and 3.

liquid water 5 % glycerol 10 % glycerol 40 % glycerol
measured density 0.99890 g/cm3 1.01014 g/cm3 1.02270 g/cm3 1.11240 g/cm3
observations 80 80 80 80

Table 1: D1 data set

liquid plasma serum 1 serum 2
measured density 1.01494 g/cm3 1.01668 g/cm3 1.01652 g/cm3
observations 50 50 50

Table 2: D2 data set

liquid 2.5 % glycerol 7.5 % glycerol 20 % glycerol
measured density 1.00330 g/cm3 1.01959 g/cm3 1.05526 g/cm3
observations 50 50 50

Table 3: D3 data set

6.1.3 D1: Water/ glycerol sample preparation

Various blends of water and glycerol were created to encompass a spec-
trum of compositions. Each mixture underwent thorough mixing to ensure
homogeneity. These prepared mixtures were then categorized into distinct
experimental groups, each corresponding to a specific water/glycerol ratio.
The objective of the experiment was to span a range of concentrations, sys-
tematically exploring how differences in viscosity and density impact the
pressure applied during pipetting.

At this stage, the primary goal was classification. Accordingly, the samples
were distributed to investigate the potential scale for distinguishing between
densities. For each mixture, 1000 µL of liquid was aspirated using a pipette,
and the resulting liquid was subsequently weighed to estimate its density.
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6.1.4 D2: Serum/ plasma sample preparation

Three different samples of serum/ plasma were prepared and used to collect
data. These were provided by Thermo Fisher. The samples were thawed
and for each mixture, 1000 µL of liquid was aspirated using a pipette, and
the resulting liquid was subsequently weighed to estimate its density.

6.1.5 Pipetting Procedure

The D1 and D2 data sets were collected by the thesis worker. Prior to the
main experiment, the Phadia 200 was calibrated according to the manu-
facturer’s specifications. This calibration ensured accurate and consistent
pipetting across all experimental conditions. The heat inside the instrument
was turned of to minimize evaporation. For each water/ glycerol experi-
mental group, 80 measurements of a fixed volume of 40 µL of the sample
mixture was pipetted using the Phadia 200 machine. For each serum/
plasma group, 50 measurements were pipetted in the same manner. The
wells were manually loaded into the machine. The machine’s automated
pipetting protocol was employed, and pressure curves were recorded in real-
time during the dispensing process. Pressure curves generated during the
pipetting process were recorded and stored for subsequent analysis. The
wells were weighed before and after each pipetting and the results auto-
matically put into an excel sheet, enabling calculations of actual pipetted
volume. The complete pipetting process was monitored using a camera,
ensuring subsequent verification that no errors occurred.

6.1.6 D3: Test data set

The D3 dataset was not gathered by the thesis worker, as this determination
was deferred to a later stage following a shift in objectives. Instead, it was
collected by a Thermo Fisher employee and provided to the thesis worker
near the conclusion of the process. The test data was however collected
using the same process. The same instrument, scale and pipette was used.
The heat inside the instrument was turned off. The density was measured
in the same manner. The only clear difference is that about a month passed
before the test data was collected.
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6.2 Data Preprocessing
To yield better results, data preprocessing and feature extraction are power-
ful tools. The goals are finding the most discriminating features and remov-
ing noise and unnecessary information.

6.2.1 Filtering and sampling by Phadia 200

In the pressure sensor, the data is filtered using a second order low pass
Bessel filter with a cutoff frequency of 20 Hz. This is then sampled with a
sampling frequency of 5 kHz and further filtered with a second order low
pass Bessel filter with cutoff frequency 3 Hz.

6.2.2 Environment

The response data was collected to Excel and pressure data was extracted as
log files from the Phadia 200. The pressure data was then initially visualized
using Matlab. Scipy was used for the remaining programming work.

6.2.3 Outlier Rejection

Outliers can derive from different sources and hence contain more or less
interesting information. Since they can greatly affect the results in a machine
learning model, it is crucial that they are handled correctly. Outliers are
in this work considered data points that greatly deviate from the data set.
These are interpreted to originate from error in the data collection process
and are assumed not to represent any relevant information for the analysis at
hand, but instead disturb the model and yield incorrect and skewed results.
The outlier rejection was done by visual inspection of the signals.
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6.3 Feature Extraction
In this work, both the use of hand crafted features and using the entire pres-
sure signals as predictor is attempted. This is due to interest from Thermo
Fisher in understanding what basic aspects of the signals may serve as good
predictors for the problem. The features are extracted and evaluated on the
D1 data set.

The signal was evaluated and features were chosen by visually finding the
discriminating factors for the different density clusters as these might serve
as good features. The features used initially were

1. Mean value

2. Standard Deviation

3. Minimum value

4. Maximum value

5. Index of minimum value

6. Index of maximum value

7. Maximum positive derivative

8. Maximum negative derivative

9. Index of maximum positive derivative

10. Index of maximum negative derivative

The features were scaled using z-score normalization. This is a method
used to rescale a distribution with a mean µ and standard deviation σ to a
standard normal distribution with a mean of 0 and a standard deviation of
1. The z-score for a data point x is calculated using equation 11.

Z =
x− µ

σ
(17)

where Z is the z-score, x is the individual data point, µ is the mean of the
distribution,σ is the standard deviation of the distribution.

The features were evaluated by looking at 10-fold cross-validation mean
square error. The selection of features involved examining the consequences
of excluding each feature. Ultimately, the reduced feature set yielding the
best 10-fold cross-validation results was used.
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Figure 5: Example features

6.4 Prediction of volume and density

6.4.1 Partial Least Squares Regression

Partial Least Squares regression was performed using scikit function PLS-
regression (Pedregosa et al. 2011) which follows the NIPALS algorithm (see
section 5.2.1). The number of components to be used in the PLS model
was optimized by minimization of the Mean Square Error as well as max-
imization of R2 score. This was done in an iterative algorithm, evaluating
the results of different choices. The PLS model was evaluated using 10-fold
cross-validation.

First, the model was trained and tested using the entire signal as input.
Examination of R2 scores raised concerns, suggesting potential significant
differences in the data. Consequently, a more in-depth analysis and visu-
alization of the data was done to gain deeper insights. Since the model
showed poor results when predicting the D2 and D3 sets, the effect of in-
volving different parts of the D1, D2 and D3 data in training and testing of
the model was explored. Secondly, the model was trained using the hand
picked features as input. Here as well, different choices of data incorporation
were investigated. Furthermore, the effect of log transforming the response
variables was also examined.

26



6.4.2 Artificial Neural Network

A simple feedforward network was built using Keras sequential model (Martín
Abadi et al. 2015). The Sequential model is a linear stack of layers, where
you can add one layer at a time. The following architecture was used:

• Input layer: A fully connected layer with a reLU activation function
and a varied number of nodes.

• Hidden layer: A fully connected layer with half the nodes compared
to the first layer and a reLU activation function.

• Output layer: Two output nodes (yielding two predictions) and a linear
activation function (predicting a continuous response).

Different batch sizes, epochs and numbers of nodes were tested for each
training setup and the ones yielding the lowest MSE and highest R2 scores
were used in the model. The same choices of data in traning as for the
PLS were investigated. The use of ANN was mainly investigated in order to
evaluate the possibility of achieving higher R2 scores and to inspect whether
the residuals would distribute differently than for the PLS models.
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7 Results

7.1 Data Preprocessing
All data collected in D1 data set is presented in figure 6.

Figure 6: Aspiration pressure curves: D1

All data collected in D2 data set is presented in figure 7.

Figure 7: Aspiration pressure curves: D2

All data collected in D3 data set is presented in figure 8.
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Figure 8: Aspiration pressure curves: D3

7.1.1 Outlier Rejection

One pressure recording in the D2 set is removed. This outlier (see figure 9)
comes from a clog in the pipette and its value does not represent information
on volume or density, but rather the clog caused by lumps in the liquid. It
is therefore considered an incorrect measurement for the use in this study.

(a) Before removing outliers (b) After removing outliers

Figure 9: D2 set: before and after removing outliers

The D3 data set has 8 outliers in the highest density measurements (see
figure 10), these seem to come from some issue in the data collection as
they differ from the rest of the curves to a great extent. There are some
measurements that deviate slightly, these are kept as they may represent
some true variation in the data.
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(a) Before removing outliers (b) After removing outliers

Figure 10: D3: before and after removing outliers

Mean pressure curves for D1 and D2 data sets after removing outliers are
presented in figure 11. Here, lower density is consistently related to higher
mean pressure.

Figure 11: Mean pressure curves for D1 and D2 data sets, asterisk lines
mark D1 set.

Mean pressure curves for D1 and D3 data sets after removing outliers
are presented in figure 12. This comparison shows an unexpected result, as
the lowest density is not related to the highest mean pressure.
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Figure 12: Mean pressure curve for D1 and D3 data sets, asterisk lines mark
D1 set

7.2 Feature Extraction
In this section, the feature set yielding the best 10-fold cross-validation result
on the D1 data set is presented. The reduced feature composition yielding
the best results was

• Mean value

• Standard deviation

• Maximum absolute pressure

• Indices of maximum absolute pressure

• Maximum negative derivative

• Indices of maximum derivative

with the average errors of 10 iterations presented in table 4 and table 5.

volume RMSE MAE R2
all features 0.6991 0.5402 0.9607
reduced set 0.6805 0.5309 0.9609

Table 4: Volume prediction errors: all features incorporated vs reduced
feature set
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density RMSE MAE R2
all features 0.0049 0.0045 0.9863
reduced set 0.0046 0.0039 0.9871

Table 5: Density prediction errors: all features incorporated vs reduced
feature set

Figure 13 illustrates the relationship between volume and density across
all 3 data sets. D1 demonstrates expected correlation between volume and
density. D3 however shows a completely different pattern. D2 looks similar
to D1, however due to the narrow density range it is not possible to draw
conclusions from this.

Figure 13: Volume vs density for D1, D2 and D3 data sets

All features for each dataset are visually represented in figures 14 through
19. The features are plotted against density in the (a) figures and volume
in the (b) figures. Examining all features, patterns in the D1 dataset, from
which the features were derived, appear discernible. However, this consist-
ency is not observed in the other two datasets.

The mean pressure, in figure 14(a), shows some similarity between D1 and
D3, however D2 shows a dissimilar pattern. In 14(b), D1 exhibits dissimilar
behavior compared to both the D2 and D3 datasets.
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(a) Density (b) Volume

Figure 14: Mean pressure vs volume and density

The standard deviation, presented in figures 15(a) and 15(b) behave
comparable to the mean pressure. In 15(a), there is some similarity between
D1 and D3 but not D2. In 15(b), D1 exhibits dissimilar behavior compared
to both the D2 and D3 datasets.

(a) Density (b) Volume

Figure 15: Standard deviation vs volume and density

This pattern seems to continue in figures 16(a) and 16(b) with the only
clear correlation between D1 and D3 in 16(a).
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(a) Density (b) Volume

Figure 16: Maximum absolute pressure vs volume and density

In figures 17(a) and 17(b), D2 still does not show any clear correlation
with any of the other data sets. In this case, the only resemblance is still
between D1 and D2 in figure 17(a).

(a) Density (b) Volume

Figure 17: Indices of maximum absolute pressure vs volume and density

In figures 18(a) and 18(b), the relationship in D1 appears evident, while
in D2 it is not apparent at all, and in D3, it is only noticeable for the density
measurements.
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(a) Density (b) Volume

Figure 18: Maximum negative derivative vs volume and density

In figures 19(a) and 19(b), this trend persists, although the correlation
appears weaker in D1. D2 exhibits some resemblance to D1 in the density
measurements, but neither D2 nor D3 show significant similarity in the
volume measurements.

(a) Density (b) Volume

Figure 19: Indices of maximum derivative vs volume and density

7.3 Prediction of volume and density
The results of predicting volume and density are presented in this section.
In the first part using PLS with feature input and in the second part using
PLS and ANN and the entire signal as input.
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7.3.1 PLS: Feature input

The results of attempting PLS regression using the feature set as input is
presented in this section. Using features taken from the D1 set yielded the
volume prediction errors presented in table 6 and density prediction errors
in table 7. The tukey mean difference plots of the predictions can be seen
in figures 20 and 21.

test set RMSE MAE R2

D1 (cross validation) 0.6613 0.5070 0.9631
D2 1.6036 0.8863 -42.19
D3 2.1431 1.1014 -41.73

Table 6: PLS volume predictions: D1 feature input

test set RMSE MAE R2

D1 (cross validation) 0.0040 0.0033 0.9906
D2 0.0212 0.0111 -660.3
D3 0.0125 0.0089 0.6425

Table 7: PLS density predictions: D1 feature input

(a) Density (b) Volume

Figure 20: Tukey mean-difference: training PLS model on D1 feature set
and predicting D2 data set
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(a) Density (b) Volume

Figure 21: Tukey mean-difference: training PLS model on D1 feature set
and predicting D3 data set

Using features taken from D1, D2 and D3 sets combined yielded the
volume prediction errors presented in 8 and density prediction errors in 9.
The tukey mean difference plots of the predictions can be seen in figures 22
and 23.

test set RMSE MAE R2

D1 (cross validation) 1.0727 0.8254 0.8757
D2 0.9892 0.5208 -15.4369
D3 1.1674 0.6136 -11.6811

Table 8: PLS volume prediction: combined D1, D2 and D3 feature input

test set RMSE MAE R2

D1 (cross validation) 0.0110 0.0083 0.9051
D2 0.0192 0.0085 -540.5328
D3 0.0160 0.0095 0.4141

Table 9: PLS density predictions: combined D1, D2 and D3 feature input
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(a) Density (b) Volume

Figure 22: Tukey mean-difference: training PLS model on combined D1,D2
and D3 feature set and predicting D2 data set

(a) Density (b) Volume

Figure 23: Tukey mean-difference: training PLS model on combined D1,D2
and D3 feature set and predicting D3 data set

7.3.2 PLS vs ANN: Raw data input

In this section, the results when using raw input data when training a PLS
model and an ANN model is presented. The ANN hyperparameters were
optimized for each training input, these are presented in table 10.

training input nodes in layer 1 nodes in layer 2 batch size epochs
D1 10 5 32 10
D1, D2 and D3 12 6 64 20

Table 10: ANN hyperparameters

Training the models on the D1 data set and predicting the D2 data set
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yielded the volume prediction errors presented in 11 and density prediction
errors in 12. The tukey mean difference plots of the predictions can be seen
for PLS in figure 24 and for ANN in figure 25.

volume RMSE MAE R2

PLS cross validation 0.6613 0.5070 0.9769
ANN cross validation 0.5282 0.5020 -50.14
PLS test 3.6311 0.7914 -170
ANN test 0.6126 1.7365 -0.5151

Table 11: PLS vs ANN volume predictions: Training models on D1 data set
and predicting D2 data set.

density RMSE MAE R2

PLS cross validation 0.0040 0.0033 0.9906
ANN cross validation 0.1892 0.1722 0.8066
PLS test 0.0605 0.0121 -6617
ANN test 0.7316 0.0251 -1751

Table 12: PLS vs ANN density predictions: Training models on D1 data set
and predicting D2 data set.

(a) Density (b) Volume

Figure 24: Tukey mean-difference: Training PLS model on D1 data set and
predicting D2 data set.
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(a) Density (b) Volume

Figure 25: Tukey mean-difference: Training ANN model on D1 data set and
predicting D2 data set.

Training the models on the D1 data set and predicting the D3 data set
yielded the volume prediction errors presented in 13 and density prediction
errors in 14. The tukey mean difference plots of the predictions can be seen
for PLS in figure 26 and for ANN in figure 27.

volume RMSE MAE R2

PLS cross validation 0.6613 0.5070 0.9769
ANN cross validation 0.5282 0.5020 -50.14
PLS test 2.1135 1.1786 -40.56
ANN test 1.792 1.140 -28.88

Table 13: PLS vs ANN volume predictions: Training models on D1 data set
and predicting D3 data set.

density RMSE MAE R2

PLS cross validation 0.0040 0.0033 0.9906
ANN cross validation 0.1892 0.1722 0.8066
PLS test 0.0093 0.0051 0.80
ANN test 10.294 7.211 0.7595

Table 14: PLS vs ANN density predictions: Training models on D1 data set
and predicting D3 data set.
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(a) Density (b) Volume

Figure 26: Tukey mean-difference: Training PLS model on D1 data set and
predicting D3 data set.

(a) Density (b) Volume

Figure 27: Tukey mean-difference: Training ANN model on D1 data set and
predicting D3 data set.

Training the models on the D1, D2 and D3 data set and predicting the
D2 data set yielded the volume prediction errors presented in 15 and density
prediction errors in 16. The tukey mean difference plots of the predictions
can be seen for PLS in figure 28 and for ANN in figure 29.
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volume RMSE MAE R2

PLS cross validation 0.9450 0.7655 0.9046
ANN cross validation 1.1481 0.8751 0.9039
PLS test 0.7548 0.5191 -8.5692
ANN test 0.4901 0.8060 0.3622

Table 15: PLS vs ANN volume predictions: Training models on D1, D2 and
D3 data sets combined and predicting D2 data set.

density RMSE MAE R2

PLS cross validation 0.0092 0.0066 0.9318
ANN cross validation 0.0126 0.0086 0.8915
PLS test 0.0151 0.0082 0.9318
ANN test 0.4986 0.0122 -334.3

Table 16: PLS vs ANN density predictions: Training models on D1, D2 and
D3 data sets combined and predicting D2 data set.

(a) Density (b) Volume

Figure 28: Tukey mean-difference: Training PLS model on D1, D2 and D3
data sets combined and predicting D2 data set.
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(a) Density (b) Volume

Figure 29: Tukey mean-difference: Training ANN model on D1, D2 and D3
data sets combined and predicting D2 data set.

Training the models on the D1, D2 and D3 data set and predicting the
D3 data set yielded the volume prediction errors presented in 17 and density
prediction errors in 18. The tukey mean difference plots of the predictions
can be seen for PLS in figure 30 and for ANN in figure 31.

volume RMSE MAE R2

PLS cross validation 0.9450 0.7655 0.9046
ANN cross validation 1.1477 0.8290 -11.25
PLS test 0.9660 0.5690 0.9642
ANN test 0.6100 1.9019 -45.95

Table 17: PLS vs ANN volume predictions: Training models on D1, D2 and
D3 data sets combined and predicting D3 data set.

density RMSE MAE R2

PLS cross validation 0.0092 0.0066 0.9318
ANN cross validation 0.0126 0.0086 0.8915
PLS test 0.0141 0.0069 0.5432
ANN test 0.2481 0.0080 0.7181

Table 18: PLS vs ANN density predictions: Training models on D1, D2 and
D3 data sets combined and predicting D3 data set.
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(a) Density (b) Volume

Figure 30: Tukey mean-difference: Training PLS model on D1, D2 and D3
data sets combined and predicting D3 data set.

(a) Density (b) Volume

Figure 31: Tukey mean-difference: Training ANN model on D1, D2 and D3
data sets combined and predicting D3 data set.

44



8 Discussion

There are two main aspects to consider when evaluating the feasibility of
the methods in this thesis. The first is how well the model can predict
data that has been incorporated in training the model. The second is the
ability to generalize to and predict new, unseen data. It is expected that
the model predicts data belonging to the same data set best, and here the
issue lies in how representative the data is as well as how much data needs
to be collected to ensure good results. When predicting new, unseen data,
other factors may play a significant role. Generalizing the model to different
instruments, handlers and new measurements is subject to many different
insecurities and differences.

The only model that yielded sufficiently good R2 scores in both volume
and density predictions was the PLS model trained on all data sets (see
tables 30 and 18). This suggests that there perhaps are some differences
between data sets that are difficult to generalize to. This nonetheless, shows
that the model can in fact predict data that has been incorporated in the
training of it.

A fixed volume of 40 µL was used for the pipettings, and this or 90 µL
is what is usually pipetted for the most common tests employed by the
Phadia 200. In relation to this, the resulting RMSE scores were satisfactory
for most cases presented. While the RMSE scores were acceptable, the R2

scores observed across all models but the one presented in tables 30 and
18 were significantly below the desired level, revealing a notable shortfall
in meeting the specified objectives. This underscores a substantial need for
improvement in the employed methodology. The negative R2 scores might
indicate that there is such high variability in the data that the model is
unable to capture underlying patterns. Significant differences in the data
sets are clear in the visualizations of features (see figures 14- 19), correla-
tions between volume and density (see figure 13) and mean pressure curves
(see figure 12). It is probable that the volume predictions are simply some
mean value, and that the differentiation of these small volumes is not pos-
sible. Notably, slightly more favorable results were obtained for density
predictions. This could be attributed to the increased volume of input data
available for each density response, potentially contributing to a better ex-
planation of its variance. It could also be the case that the relationship
between volume and pressure is more difficult to capture or perhaps not as
clear.
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The ANN performed equally as bad as PLS regarding R2 score and the MSE
scores were worse notably worse for many models. The difference in cross
validation and test suggest over training and several different techniques
were tested, without yielding better results. The addition of a dropout layer,
experimenting with the model complexity (i.e. hidden layers), batches and
epochs and the use of metrics when optimizing the model. The model might
be more sensitive to learning the noise in the signal than the PLS model.
ANN had more similar prediction residuals, when comparing high and low
density predictions.

Mean pressure curve of each density cluster can be seen in figure 12. Here, it
is clear that the either the assumed densities are incorrect or their effect on
the pressure curves is ambiguous. The mean curve with the highest values
is not that with the lowest measured density. The accuracy of the algorithm
can not be expected to be higher than this inseparable difference, at least
when features derived from these aspects are used. It suggests that there
might have been either a calibration difference or a handling difference for
the different sets as some of the curves were collected in a later stage, by a
different technician. It could also be due to inaccuracies in density meas-
urements.

Looking at figures 14 through 19, the features that effectively captured di-
verse volumes and densities in the training data (D1) exhibit dissimilar
patterns in the test data (D2 and D3). While this discrepancy could be
attributed to suboptimal feature choices, a noteworthy aspect is that these
features demonstrated efficacy with the training data, as is apparent in fig-
ures 14 through 19. The densities appear to have slightly more consistent
impact on pressure across the sets; perhaps further explaining the better
density prediction results. Nevertheless, there are still notable differences in
the patterns.

The models consistently demonstrated superior performance for values in
the middle range compared to peripheral values across all cases. Exam-
ination of mean-difference plots (e.g. figure 22) suggests the need for a
transformation. Log transformation was tested and it did not significantly
improve results. However, it is observed that differences vary with choice
of training and test data. A notable contrast is evident when comparing
figures 28 and 30, revealing differences distributed in opposing patterns.
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This suggests differing relationships in the sets used for training and test as
training with the different sets makes the model predict high and low values
in opposed patterns. One reason of the center values being predicted more
accurately could be that there simply is more data available in this region.
When the data collection was done, a balanced data set meant training on
groups of data of similar size. Since the data now has been used in regres-
sion, also the choice of data points is of importance. Since more data was
recorded in the center region, the model might perform better here. In any
case, while the training dataset exhibited characteristics that suggested the
viability of the methods, the consistency of the relationships observed in
other datasets collected at different times remains uncertain.

There are several things to take into consideration when constructing a data
set. How the collection process and methods affect the data and its validity
as well as what data is best suited for the problem at hand are things that
directly affect results and model generalization abilities. Deciding on what
data to collect is an important step and different choices may be advantage-
ous depending on the application. For a classification task, well clustered
data points are favourable. For a regression task, accuracy and consistency
in the data might be even more important. Furthermore, machine learning
algorithms tend to be sensitive to imbalanced data. When trained on an
imbalanced data set, the algorithm might get biased towards the majority
group of data. It learns to favor the most common outcome. It is easy to
misinterpret the quality of the results since this might give good accuracy
but bad overall performance. A balanced dataset is therefore of great im-
portance (Frederik Hvilshøj 2023).

Errors originating from the data collection process may occur due to a vari-
ety of reasons. Random errors from e.g. inconsistent mixing of liquids or
incorrect measurements or systematic errors from e.g. miscalibrated ma-
chinery are some examples. When generating data one can argue that it is
favorable to randomize the error by e.g. mixing the same solution several
times in order to avoid systematic error in the data. Systematic error can
be a big problem since it skews the data, yielding data centered around an
incorrect mean value. Random error can yield better precision, especially
when working with big data sets, as the data points tend to center around
a more correct mean value. On the other hand, the data will have more
variance (Bhandari, P. 2023).

The assumption when collecting the data was that the problem at hand
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was a classification problem. It was therefore decided that low variance was
favoured over high accuracy, and the data collection process was designed
with this in mind. Small systematic errors were not expected to affect the
ability of clustering data points. Despite this, as the aims changed after the
collection process, and the data was instead used for a regression problem,
it is clear that this approach was not ideal. The algorithms issues with
accuracy could have been smaller if the error was distributed more ran-
domly. Furthermore, the data was collected in big density clusters. While
this approach was logical for a classification problem, it lacks applicability
for a regression problem. In this context, a more diverse set of densities and
spread measurements would be more suitable. Since the data was collected
in order to investigate the scale in which the data points would be discern-
ible, meaning clusters with decreasing density differences were collected, the
data set was not balanced for a regression problem. While the data within
each set was collected as clusters with equal size, these were not spread
equally. A better balanced set for regression would incorporate more evenly
spread observations. Furthermore, the D1 and D3 sets were not collected
in equally as big clusters. This was due to the fact that these were initially
meant to be used only for testing the model. When incorporating this data
into the training, this too affects the balance in the training data.

This all further raises concerns of the accuracy in measurements. There are
several measurement uncertainties involved in the experiment. The pipette
used for pipetting the liquid in the density measurement, the effect of higher
viscosity (and hence density) on the pipetting procedure and the scale ac-
curacy all affect the density measurements. The liquid has been mixed once
and density measured once for each density. This process makes the risk
of measurement errors significant. Furthermore, the volume measurements
could be inaccurate due to the scale, differences in temperature and process
time affecting the risk for evaporation. While the thesis worker and the
technician collecting the test set used the same methods in theory, there
might be uncontrolled differences. One obvious aspect is the fact that the
D3 set was collected about a month after the D1 and D2 sets.

8.1 Further Development
Given the sensitivity of the analysis to various factors, additional meas-
urements must be undertaken and assessed to assess the feasibility of the
methods. It is suggested that less clustered data is collected, i.e. more dens-
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ities with fewer samples per density. Also data that better represents the
entire spectrum of densities. Furthermore, collecting the data in a way that
introduces random error rather than systematic. This can be done by mix-
ing liquids several times, measuring the density for each mix and measuring
the density using a hydrometer.

8.2 Ethical Considerations
It is essential to always consider ethical considerations and potential risks
when working with human samples. The decision to utilize water/glycerol
mixes instead of exclusively relying on human samples was driven partially
by convenience and also stemmed from ethical considerations. Extracting
the required amount of human blood for this study was deemed ethically
impractical.

There were however a couple of human samples used for one of the data
sets in this study. These were handled with caution, the appropriate pro-
tection gear and in a separate space of the laboratory. The samples used
were provided by Thermo Fisher and were old samples that had been stored
for some time. These samples did not have any specific preallocated pur-
pose and were therefore utilized for this study when the aims were changed
to further add to the analysis. The aim for using them was to investigate
whether it was possible to train a model on water/ glycerol data and still
use human samples in testing. Also, investigating if they could perhaps add
useful information or would just lead to more noise if used in training.

Regarding the methods, there are ethical aspects to consider regarding these
as well. As the diagnostic tests may be affected by e.g. hidden errors and
wrongly estimated volumes or densities this poses a patient risk. Since these
tests are sensitive to small differences in volume, it is crucial that the meth-
ods are precise and reliable in order to avoid misdiagnosis.
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9 Conclusion

The primary objective was not successful as the pressure sensor in the pipette
was unable to detect the errors of interest. Regarding the secondary object-
ive, based on the data collected in this work, it is not possible to say that
there is a clear enough relationship between the pressure sensor data and
the volume and density.

An approach using a PLS regression model and an ANN model has been
presented. PLS seems to have better generalization abilities, but the R2

score remains unsatisfactory for most models. Some outliers were identified
and dealt with but besides that no apparent issues were found in the data.
The model still has issues generalizing to new data. The conclusion is that
there might be two different sources for these issues. There might not be a
clear enough relationship between the response variables and pressure data.
Especially comparing the different data sets this correlation seems unclear.
Perhaps the relationship is not similar enough in different density clusters,
as the model only performed satisfactory when all densities were included in
training. The second possibility is that the issues stem from measurement
insecurities or calibration differences.

The data collection process is thought to have affected the results greatly.
Using a more appropriate experimental design might yield better results
with higher accuracy. It is likely that with a sufficient amount of well-
representative data, calibration of a model could be possible. Nonetheless,
the challenge might lie in addressing variations in instrument calibrations.
Currently, it is challenging to determine the precision of such a model, and
it may be necessary to calibrate the model individually for each instrument,
and to re calibrate it routinely. This is clear from the differences in the data
sets collected by the thesis worker and the one later collected by the Thermo
Fisher employee, which showed significant differences despite having been
collected in the same manner using the same instruments.
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