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1 Abstract

Tau-leaping is an algorithm for model simulations most often used in kinetic chemistry. It was
created to make simulations more efficient at the cost of some accuracy. However, its uses outside
of chemistry are limited but could help make some model simulations more efficient. This study
aimed to implement Tau-leaping and analyze it from a statistical perspective. The Lotka-Volterra
prey-predator and SIR models were used to implement Tau-leaping and compared to the exact
SSA version. The result was greatly improved run times at the cost of some accuracy. Since these
models’ purpose is to understand the evolution and trends in a population, the loss of accuracy
wasn’t detrimental. The conclusion then became that Tau-leaping is preferred depending on the
purpose of the simulation.
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2 Introduction

In the field of chemistry, there is a need to simulate and understand the transformation and evolu-
tion of a reacting system over a period of time. Before Daniel T. Gillespie formulated the tau leaping
method in 2001 the industry standard was to use the stochastic simulation algorithm (Gillespie,
2001). In this report, the stochastic simulation algorithm will be referred to as SSA, but the algo-
rithm has many names including the direct- and exact methods. SSA makes it possible to simulate
every reaction occurring in a system while still taking the randomness of the system into account.
Since SSA simulates every reaction in the system, the method is extremely slow. This led Daniel
T. Gillespie to develop the Tau-leaping algorithm in 2001 (Gillespie, 2001). Since then Tau-leaping
has mostly been used in chemistry and nearby fields. This report aims to look at Tau-leaping from
a statistical point of view.

2.1 Background

Chemical kinetics aims to describe the rates of reactions and the changes in the system caused by
the reactions. Traditionally these analyses have been done with an assumption that the system is
deterministic. However, this is not accurate for three reasons. Firstly, it is hard to keep a chemical
system in constant isolation. Secondly, it is impossible to know the exact time of a reaction. Lastly,
even if all initial states of the system were known, aka deterministic, the evolution of the system
would not be deterministic (Gillespie, 2007). This led to the introduction of stochastic simulation
methods in kinetic chemistry. One of the most used methods for this is SSA.

However, SSA is a slow method, which is why the Tau-leaping algorithm was created. The algo-
rithm is based on the idea that, in most cases, it is not necessary to know exactly when and where
a reaction happened but rather the number of reactions of each type. The idea then became that
leaps of small time steps could be taken and the number of each reaction type could be simulated,
for each leap. Resulting in a significantly faster method, at the cost of some accuracy (Gillespie,
2001). The details of how the algorithm works are complex and will be further explained in section 3.

The question then becomes how big the leaps should be for maximum efficiency and minimal accu-
racy loss. This led to the formation of the following leap condition, which describes the boundaries
the leap size must adhere to.

The time leap (= τ) has to be so significantly small
that the changes in all sub-populations during the
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time leap [t, t+ τ) are so small that the no rate
function changes significantly (Gillespie, 2001).

Over time many different variations of choosing the leap size have been suggested. The first and
simplest suggestion was given by Gillespie in 2001, called the explicit Tau-leaping algorithm. A
constant value for the time leap is decided upon based on the leap condition. Algorithms used for
computing the leap size have also been suggested, the most common ones being the optimized- and
implicit Tau-leaping algorithm. Finally, it is also possible to mix methods, the most common is
adaptive tau leaping. It is a combination of SSA, explicit- and implicit Tau-leaping. Their main
similarity is that they all have to meet the leap condition(Gillespie, 2007). This report will include
SSA, explicit- and optimized Tau-leaping.

A vital part of the leap condition is the rate function aj(x)dt, which has to be constant during
the entire leap [t, t+ τ). This ensures that the derivative of the rate functions aj(x)dt is the proba-
bility that any reaction type Rj will occur during the time leap, no matter what any other reaction
type is doing during the time. In section 3, the Tau-leaping algorithm will be described in detail as
well as the SSA (Gillespie, 2001).

2.1.1 Uses outside of chemistry

As stated above Tau-leaping is mainly used in the field of kinetic chemistry. However, that doesn’t
mean that it isn’t possible to use it for other purposes. Due to how the algorithm is formulated, it is
best suited for simulations of a population, containing two sub-populations that interact. These in-
teractions or as they are also called transitions correspond to the reactions happening in a chemical
system. The sub-populations correspond to the two types of atoms/molecules reacting in chemistry.

One recent use case of the algorithm outside of chemistry is the simulation of the spread of vaccine
resistance strains of the virus SARS-Cov-2 in society. The model aims to help study the likelihood
of this happening and the consequences it would bring. The authors suggested Tau-leaping and
SSA as alternatives for simulating the model (A. Rella et. al, 2021). Another example is ecology,
where Tau-leaping can be used to simulate the relationship between prey and predators in nature.
In this report, a SIR model to model the spread of disease and the Lotka-Volterra model to simulate
the relationship between animals are used.
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2.2 Simulations

The basis of simulations is using models to mimic a process or system, aiming to describe how a
model evolves over time. In reality, simulations are used to support ideas and decisions. Making
them capable of helping increase performance, training, optimizing processes and much more. A
few advantages of using good simulations could be lower costs, analysis of long-term changes, model
non-standard distributions and many more. However, simulations have limitations for example in-
sufficient models, high cost and long run time. For companies using simulations as a tool, the run
time must be low since this is an important way of reducing costs (TWI, n.d.).

2.3 Research question

In this study, Tau-leaping was implemented in R-studio and used to simulate statistical models.
The study intends to analyze use cases of Tau-leaping outside of chemistry, with a statistical per-
spective. In order to evaluate the method’s accuracy as well as its efficiency. To be able to greatly
improve the run-time.

3 Method

As stated above three different methods will be included in this report: SSA, Explicit- and Opti-
mized Tau leaping. The result of SSA will be used as the baseline for the other methods’ results to
be compared to. This is due to it not making any leaps bigger than for one transition to have the
time to occur. This is also why SSA was chosen to be included in the study, without it the analyses
of the explicit- and optimized Tau-leaping methods. The explicit method is the simplest version
of Tau-leaping and was chosen to be one of the methods in this study to highlight the problems it
can create. The optimized Tau-leaping method is one of the most commonly used and solves some
of the issues with explicit Tau-leaping. Therefore it was also chosen as one of the methods in this
study. These three methods are different but still similar enough that they can be easily compared
and they show a wide range of what the Tau-leaping algorithm is capable of. This section will
describe all three methods through a statistical lens.

3.1 Stochastic simulation algorithm

Imagine a population of size N , divided into different sub-populations {S1, ..., SN}. The sub-
populations then interact inM different ways, referred to as transition types {R1, ..., RM}. The time
is denoted as t and the sizes of the sub-population are a function of the time Xi(t). This is because
it is the size of the sub-populations that evolves as transitions in the population occur. The size
of the sub-populations at time t can then be written as Xi(t) = (X1(t), ..., XN(t)). The algorithm
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aims to simulate how the sub-population sizes Xi(t) = (X1(t), ..., XN(t)) change over a period of
time t, given that the initial sub-population sizes X(t0) = x0 are known. Two things are essential
for the simulation, the state change vector vij and the rate function aj. The state change vector vij
describes the changes in the sub-population sizes{S1, ..., SN}. caused by caused by each transition
type {R1, ..., RM}. Despite its name, the state change vector is usually written as a matrix, usually
consisting of ones and zeros. The reason is that the calculations and programming become simpler
(Gillespie, 2007). An example of how this can look is shown below, if the population consists of
three different sub-populations and can interact in three different transition types.

Transition type: 1 2 3
Sub-population 1 1 -1 0
Sub-population 2 0 1 -1
Sub-population 3 -1 0 1

The matrix can be interpreted as if transition type 1 occurs sub-population 1 grows with one, sub-
population 2 doesn’t change and sub-population 3 declines with one.

The rate function aj describes the rate at which the different transition types Rj occur. If the
derivative of the rate function is taken with respect to t, aj(x)dt, it gives the probability that one
transition type Rj happens in the given time leap [t, t+ dt), provided that X(t) = x.

aj(x)dt = P( One transition type Rj occur somewhere in the
population during the time leap [t, t+ τ)| X(t) = x)

The rate function is different depending on the model that is being simulated, but usually, some
parameters are provided and put into equations where they interact with the current sub-population
sizes. Hence it should be updated every after every loop in the simulation (Gillespie, 2007).

Using the rate function and state change vector, a density function is made. It is used to calculate
the probability of the next transition type. The density function is denoted as p(τ, j|x, t), where
τ is the time from t to the next transition (Gillespie, 2007).It looks as follows and ao is defined as (2).

p(τ, j|x, t) = aj(x)e
(−a0(x)τ) τ ≥ 0, j = (1, ...,M) (1)

ao(x) =
M∑
j=1

aj(x) (2)

The derivative of the density function p(τ, j|x, t), concerning τ , p(τ, j|x, t)dτ then becomes the prob-
ability that the next transition type is Rj and that it happens in the time interval [t+ τ, t+ τ +dτ ].
The derivative is now a joint probability density function based on two random variables, τ and
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j, given that X(t) = x. j is the index of the next transition type. Equation 1 shows that τ is a
random variable following an exponential distribution. That distribution has a mean and standard
deviation of −ao(x) =

1
a0(x)

, hence τ ∼ Exp( 1
ao(x)

(Gillespie, 2001).

The goal now is to generate values from the random variables pair τ and ȷ. The most common
way of doing this is through the so-called direct method. The first step is to rewrite the density
function p(τ, j|x, t) in its conditioned form. This means that the density function for the pair (τ, j)
is separated, providing one function for each random variable (Gillespie, 2001).

p(τ, j|x, t) = p1(τ |x, t)p2(j|τ, x, t) (3)

With p1 and p2 the τ and ȷ can now be generated (Gillespie, 2001).

p1(τ |x, t) = a0(x)e
(−a0(x)τ) τ ≥ 0 (4)

p2(j|τ, x, t) =
aj(x)

a0(x)
j = (1, ...,M) (5)

The conclusion then becomes that τ ∼ Exp(ao(x)) and j ∼ U(1,M) with the point probability
aj(x)

a0(x)
. This means that τ and ȷ can be sampled with the help of two random samples r1 ∼ U(0, 1)

and r2 ∼ U(0, 1)(Gillespie, 2001).

τ =
1

a0(x)
ln(

1

r1
), r1 ∼ U(0, 1) (6)

j = min(

j∑
j=1

aj(x) > r2a0(x)), r2 ∼ U(0, 1) (7)

All the components of SSA are now known, and the algorithm looks as follows:

1. Define the initial states x0 of the sub-populations and determine the start
time t0
2. Set x = x0 and t = t0 then compute the rate function aj(x) for each

transition type, then the sum of all of them a0(x) =
∑M

j=1 aj(x)
3. Use equation 6 to generate the time until the next reaction τ
4. Generate the next transition type´s index j using equation 7
5. Update the current state of all sub-populations x. By using j to determine
the current transition type and then applying it to the state change vector
to find out how that impacts the state x = x+ vj
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6. Update the current time with τ t = t+ τ
7. Append the updated time t and state x. Then return to point 2 until the
decided end time (Gillespie, 2007).

This was done with a while loop that ran until the given final time was reached.

3.2 Explicit Tau leaping

The big different between SSA and Tau-leaping is the number of transitions occurring during one
leap. Since Tau-leaping takes a bigger leap the variable Kj is created and indicates the number of
times one transition type Rj happens during one leap. The probability that the number of tran-
sitions kj of one transition type Rj happens during the leap [t, t + τ) for each type j = 1, ..., k,
given that X(t) = x, can be denoted as Q(k1, ..., Km|τ ;x, t).This means that Q is a joint probabil-
ity density function of the M random variables, denoted as Kj(τ ;x, t). This leads to Kj being a
probability function that describes the number of times each transition type Rj occurs during the
leap, given that X(t) = x. This is where the leap condition mentioned in the introduction matters,
because given that the condition is followed the probability function Q can be estimated. Provided
that the leap condition is meat the derivative of the rate function aj(x)dt gives the probability that
the transition type Rj occurs within the time interval [t, t+ τ). This leads to the random variable
Kj following a Poisson distribution (Gillespie, 2001):

Kj(τ ;x, t) = Poisson(aj(x), τ) j = (1, ...,M) (8)

The M random variables produced Kj(τ ;x, t), ..., KM(τ ;x, t) and since they are independent the
joint density function Q can be estimated as the product of the individual Kj random variables
density functions, denoted as follows (Gillespie, 2001):

Q(k1, ..., kM |τ ;x, t) =
M∏
j=1

Ppois(kj; aj(x), τ) (9)

It is now possible to take samples from the Poisson random variable. Making it possible to sim-
ulate the number of transitions from each transition type for every time leap, given that the leap
condition is met. The closer the leap condition is met and the smaller the leap the more accurate
the results will be. All the elements of explicit Tau-leaping are now known and the summarized
algorithm looks as follows (Gillespie, 2001):
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1. Set initial states x0 = x and t0 = t.
2. Compute all rate functions aj(x) as well as their sum a0(x) =

∑M
j=1 aj(x)

3. Choose a valid τ , meaning a τ that makes the changes in the subset so
small that the rate doesn’t change significantly.
4. Use the Poisson random variable Kj(τ ;x, t) = Poisson(aj(x), τ) to simu-
late the number of times kj for each transition type j = (1, ...,M).
5. If vj is a vector of the change in each subset for all transition types. Then
the change in each subset given the number of times each transition occurs
can be calculated as

∑M
j=1 kjvj

6. Update all of the sub-populations with the calculated change, x = x +∑M
j=1 kjvj

7. Update the time with τ , t = t+τ 8. Append updated t and x, then restart
from 2.

3.3 Optimized Tau leaping

One problem that can arise when using Tau-leaping is negative sub-populations. Since negative
populations are impossible in reality, it is important to ensure that they don’t occur. However, it
can be determined that if the leap condition is followed this would never happen. This is because
a change from positive to negative in a sub-population size would always bring a significant change
in the rate function aj. If this happens the solution would be to make τ smaller, which makes the
problem of using a constant τ obvious. One solution to this would be to check for negative subsets
and if they occur try again with a smaller τ . This solution would quickly become inefficient, which
is the opposite of the goal of using Tau-leaping. Further, it could quickly lead to accuracy problems.
In that case, it might have been better to use SSA from the start (Cao et.al, 2005).

The idea behind the optimized Tau-leaping method is to use the fact that only small sub-populations
can become negative in one leap. Since the random variableKj used to compute the number of times
each transition type happens is Poisson distributed, the probability that a subset becomes negative
given that the leap condition is met can be calculated. The transition types able to produce negative
sub-populations in one leap are now called critical. The common result is that a sub-population
is at risk of becoming negative if it has between 2 and 20 individuals. The sub-population size for
when a transition type could become critical is nc and is chosen before the simulation. The goal
now is to be able to check if a transition type is at risk of becoming critical during the next leap.
This is done by calculating the upper limit of the number of possible transitions to occur before
the sub-population becomes negative Lj. Where Lj is the upper limit for transition type j. The
formula for Lj looks as follows:
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Lj = min
i∈[1,N ];(vij<0)

[
xi

|vij|
] (10)

If Lj is equal to or smaller than nc, then Rj is a critical transition during the next time leap. It is
important to note that the critical transitions can change after each leap since the sub-population
sizes change. Therefore for every loop in the while loop, the critical transitions have to be checked.
To summarize the point of the optimized Tau-leaping algorithm is to make sure no subset popula-
tion becomes negative, by making sure that only one critical transition can occur during the time
leap. In other words, the size of τ has to be so small that only one critical transition happens (Cao
et.al, 2005).

To make Tau-leaping as efficient as possible the leap size τ should be as large as possible, while
still being compatible with the leap condition (Cao et.al, 2006). The method for finding this value
looks as follows:

tau = min
j∈[1,M ]

{ ϵa0(x)
|µj(x)|

,
(ϵa0(x))

2

σ2
j (x)

} (11)

µj(x) =
M∑

j′=1

fjj′(x)aj′(x), j = (1, ...,M) (12)

σ2
j (x) =

M∑
j′=1

f 2
jj′(x)aj′(x), j = (1, ...,M) (13)

fjj′(x) =
N∑
i=1

∂aj(x)

∂xi

vij, j, j′ = (1, ...,M) (14)

In this case, ϵ is an error control parameter and most often set to 0.03. It can then be shown that
the mean of the estimated change in the rate function aj(x) during the time leap τ is µj(x)τ , with

the standard deviation
√

σ2
j (x)τ . It follows that both the mean and standard deviation are bound

by ϵa0(x) for all j. By setting j′ to only run over the noncritical transitions, τ ′ can be chosen for
those transitions. Then if τ ′ < 1

a0(x)
SSA is run instead of tau leaping, meaning only one transition

per leap is simulated (Cao et.al, 2006). Now all components of the optimized tau leaping method
are known, the execution looks as follows:

1. Set the initial states to x0 = x and t0 = t
2. Compute all rate functions aj(x) as well as the sum of them a0(x) =
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∑
j=1

Maj(x)

3. Using equation 10 calculate Lj for every transition type aka. the number
of times the transition can occur before the subset becomes negative.
4. Identify critical transition types, meaning if Lj ≤ nc and aj(x) > 0.
5. Calculate the largest possible time step τ ′ that still follows the leap con-
dition using equations 11− 14.
6. Check if τ ′ ≤ 1

a0(x)
. If true stop the simulation and run the SSA several

times.
7. Compute the second alternative for τ ′′ by sampling one integer from
exp( 1

a0(x)
).

8. If τ ′ < τ ′′ set τ = τ ′. Set any critical transitions to 0 kj = 0, meaning no
critical transitions will happen. Compute the number of times other transi-
tion types occur kj during the time leap from Poisson(aj(x)τ)
9. If τ ′′ ≤ τ ′ set τ = τ ′′. Use the random variable with the point probability
aj(x)

a0(x)
to generate a random number jc. jc id is used to decide the critical

reaction, then set kjc = 1 and kj = 0 for all other critical transitions. Mean-
ing only one critical reaction occurs and only once. Simulate the number of
times the noncritical transitions happen during τ using the random variable
Poisson(aj(x)τ).

10. Update the subsets x = x+
M∑
j=1

kjvj

11. Update the current time t = t+ τ
12. Check for any negative subsets, if true then start over with τ ′ = τ ′

2

13. Append the updated x and t, then start over from step 2.

3.4 Implementation

Two models describing changes in different demographics were chosen to analyze the differences
between the Tau-leaping methods in a field outside of chemistry. The first is the Lotka-Volterra
model which describes the changes and dynamics in a population of animals, where one species is
classified as prey and the other as predator. The second model is the SIR model, which describes
the spread of diseases. The models will be simulated with the different Tau-leaping methods on two
different computers for comparison of the run times. The simulations will be done in R-studio, using
custom functions. The reason these two models were chosen is that they are very well-researched
and readily used in their respective fields. These two facts make these models good for analysis
because the result will be simpler to interpret and analyze.
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3.4.1 Lotka-Volterra model

The Lotka-Volterra model also known as the predator-prey model was first introduced by Vito
Volterra in 1926. The model aims to describe the changes in a population of animals, where one
species is defined as prey and the other as a predator (Morrow et.al, 1987). The model is based on
the following four assumptions:

• Limited to two species, one prey, and one predator

• The prey species has no limit of food

• The predator species can ONLY use the prey as its food source

• The rate at which the changes in the populations happen is directly proportional to the size
of it

The model is based on the two following differential equations:

d

dt
x = αx− βxy (15)

d

dt
y = δxy − γy (16)

X defines the number of prey, Y the number of predators in the population and t the time. α is
the fastest possible growth rate of the prey. β defines how the predators affect the growth rate of
prey. δ defines the change in the predator growth rate based on the size of the population of prey.
Finally, γ defines the death rate of the predators (Morrow et.al, 1987).

The parameters α, β, γ and δ can then be used to compute the rate function for each transi-
tion type. The three different transition types of the model and their effect on the populations are
described in Table 1.

Table 1: Models transition types and their effect on the population sizes, through the matrix state
change vector vij.

1. The population size of prey grows
2. The population size of predators grows
3. The population size of predators decreases

Transition type: 1 2 3
Predator 1 -1 0
Prey 0 1 -1
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3.4.2 SIR model

The SIR (=Suspected, Infected, Recovered) model is used to model the spread of diseases, usually
to learn more about how different epidemics spread. The SIR model is based on the following model
of transmission rates (Rubin, M. D. et.al, 2021).

r(t) = βI(t)S(t)

Where β is a proportionality factor calculated for a case-by-case basis for each disease. For the SIR
model to work it has to be assumed that all infected individuals make a full recovery. Then if R(t) is
the recovered individuals, S(t)+I(t)+R(t) represents the whole population and is constant(Rubin,
M. D. et.al, 2021). The differential equations for the SIR model then look like:

d

dt
S(t) = −r(t) + γR(t) (17)

d

dt
I(t) = r(t)− βI(t) (18)

d

dt
R(t) = βI(t)− γR(t) (19)

The immunity loss rate is regulated by γ and the recovery rate is regulated by β. These parameters
can then be used in tau leaping to compute the rate functions. The SIR model has two different
transition types displayed in Table 2 below (Rubin, M. D. et.al, 2021).

Table 2: Models transition types and their effect on the population sizes, through the matrix state
change vector vij.

1. Someone gets infected
2. Someone recovers

Transition type: 1 2
Suspected -1 0
Infected 1 -1
Recovered 0 1

14



4 Result

4.1 Lotka-Volterra model

The three simulations of the Lotka-Volterra model will be done using the initial variable values seen
in Table 3, as well as the state change vector matrix seen in Table 2. Note that the unit of time is
unspecified since that is usually the case for the Lotka-Volterra model.

Table 3: Initial value used for all tau leaping simulations of the Lotka-Volterra model.

Variables
Start time 0
Final time 3

N 2000
Predators 1000

Prey 1000
Parameters

α 10
β 0.01
δ 10

4.1.1 SSA

The first simulation of the Lotka-Volterra model was done with SSA, hence no leaps were made.
The number of transitions done was 289500 during the entire simulation time. The result of this
simulation will be the foundation on which the results of the tau leaping methods will be judged.
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Figure 1: The simulated changes in a population of prey and predators using SSA.

Figure 1 shows how the sub-populations of prey and predators change and interact during the sim-
ulation time. The prey reaches its peak slightly before the predators and then starts going down
again. It is also clear that the population size becomes bigger for every local max point.

4.1.2 Explicit tau leaping

As stated above the explicit tau leaping method uses a constant value for τ , in this case, τ = 0.002.
Because it is small enough to comply with the leap condition outlined in the introduction, while
still being large enough to improve the efficiency.
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Figure 2: The simulated changes in a population of prey and predators using explicit tau leaping,
with τ = 0.002.

At first glance figure 2 looks fairly similar to figure 1, however, some precision has been lost which
is expected. It also looks like figure 2 has larger sub-population sizes, than figure 1, the further
into the simulation it gets. It might also be the case that the peeks of the population sizes appear
a bit later in figure 2 than in figure 1. However, these differences will be further analyzed in the
upcoming section 4.1.4.

4.1.3 Optimized tau leaping

As explained in section 3.3 τ gets chosen for each loop during the entire simulation. The mean of
τ during the simulation was 0.00217, notably similar to the τ used for the explicit tau leaping.
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Figure 3: The simulated changes in a population of prey and predators using optimized tau leaping.

Figure 3 has roughly the same shape as both figure 1 and -2. However, figure 3 seems to have even
bigger local max points than figure 2, which were already bigger than figure 1. Worth noting is that
figure 3 seems to not peek further along the x-axis unlike figure 2.

4.1.4 Comparison

The simulations will be compared to analyze if the time gained from τ is worth the loss of precision
in this case. Table 4 has some basic statistics from all simulations, followed by graphs comparing
the results visually.

Table 4: Mean and median values from all simulations, as well as run time from two different
computers.
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SSA Explicit Optimized
Run time 1 (s) 1541.10 1.96 0.98
Run time 2 (s) 1412.31 1.53 0.89
Num. of leaps 261486 4503 1383

Mean Prey 1020.3 989.2 843.9
Predator 1001.6 1012.705 1080.9

Median Prey 1010 969 706
Predator 986 1005 1023

Standard deviation Prey 229.1 322.8 465.1
Predator 226.6 313.5 533.2

For easier interpretation, 1541.10 seconds are roughly 26 minutes and 1412.31 seconds are roughly
24 minutes. The explicit simulation was around 800 times faster than SSA and the optimized
simulation was around 1600 times faster than SSA. The SSA simulation made 261486 leaps, the
explicit simulation made 4503 leaps and the optimized simulation made 1383 leaps. Which explains
the significant time differences. The mean of SSA and explicit for both prey and predators are
fairly similar while the mean of optimized is difference more. The optimized simulation also has a
significantly larger standard deviation.
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Figure 4: Comparison of the changes in prey simulated by the three tau leaping methods.

Figure 4 shows the difference between the simulation methods for the sub-population prey. The
graph supports that explicit- and optimized tau leaping gave larger sub-population size peaks. It
also shows that explicit tau leaping peaks slightly later in the simulation than both SSA and op-
timized tau leaping. This is also shown by the explicit tau leaping ending at a local min point
compared to the other two.
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Figure 5: Comparison of the changes in predator simulated by the three tau leaping methods.

Figure 5, which shows the changes in predators, supports the conclusion that explicit- and opti-
mized Tau-leaping produced larger peaks. As well as explicit Tau-leaping peaks occurring slightly
later than the other twos.

The comparison shows that the optimized method follows the pattern of SSA more closely, while the
explicit method follows the SSA more closely on the y-axis. It is worth noting that the optimized tau
leaping was almost twice as fast as the explicit tau leaping. In this case, that difference is minimal
but if a much larger simulation is run that difference could be significant. Since the purpose of the
Lotka-Volterra model is to get an idea of how the sub-populations interact the preferred method in
this case would be the optimized method.
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4.2 SIR model

Three simulations of a SIR model with the initial variables seen in table 5 were run. Unlike the
Lotka-Volterra model, the SIR model has days as a unit of time.

Table 5: Initial values used for all simulation methods of the SIR model.

Variables
Start time 0
Final time 150

N 1010
Suspected 1000
Infected 10

Parameters Recovered 0
β 0.1
γ 0.02

4.2.1 SSA

The simulation of the SIR model done with SSA will be the baseline for analyses of the two other
methods. The number of transitions done with SSA was 289500.
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Figure 6: The simulated spread of a disease in a population using SSA.

Note that for all the graphs of the SIR model S stands for suspected, I for infected and R for re-
covered. Figure 6 shows the exact version of the SIR model simulation, this will later be compared
to both the tau leaping methods.

4.2.2 Explicit tau leaping

The value of tau used for the explicit method was τ = 2 since it is small enough to comply with
the leap condition, while still being large enough to make it significantly more efficient.
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Figure 7: The simulated spread of a disease in a population using explicit tau leaping.

The difference between figure 6 and 7 is minimal and hard to see. The only obvious difference
is that in figure 6 the lines show the exact transitions. In the upcoming comparison section, the
differences between the figures will be examined.

4.2.3 Optimized tau leaping

As mentioned in section 3.3 the size of tau gets computed every leap for the entire simulation. The
average tau of the simulation became 0.0135. The reason tau is so much larger than the chosen
tau for the explicit method is that when one sub-population is very small the optimized algorithm
makes tau significantly small. This results in the average tau being small, even though the value
for tau gets as big as 4 when all the sub-populations don’t risk becoming negative.
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Figure 8: The simulated spread of a disease in a population using optimized tau leaping.

Figure 8 also looks similar to figures 6 and 7. One difference is that the line for the suspected
population starts declining later than the SSA and explicit methods. The result is that the line for
the recovered and infected populations starts increasing later.

4.2.4 Comparison

All simulation results will be compared, starting with some basic statistics in table 6.

Table 6: The simulated spread of a disease in a population using optimized tau leaping.
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SSA Explicit Optimized
Run time 1 (s) 2216.73 4.18 4.22
Run time 2 (s) 1831.19 4.10 4.17
Num. of leaps 289500 11250 11100

Mean Suspected 350.2 371.1 341.1
Infected 351 287.4 384.2
Recovered 322.2 368.4 288.0

Median Suspected 272.5 150 294.0
Infected 375 270 421.5
Recovered 248 302 213

Standard deviation Infected 313.8 397.4 299.8
Suspected 148.2 178.6 143.5
Recovered 255.5 311.9 217.7

Table 6 shows the big difference between the number of leaps computed for each simulation, SSA
computed around 25 times more leaps than the others. The result is that SSA was roughly 500
times slower than the optimized- and explicit method. The mean of all the simulations and all the
sub-populations are fairly similar, while the medians diverge more from each other. Overall the
optimized method has the smallest standard deviations while the explicit method has the biggest.
Note that the means and medians can vary between the methods due to the difference in the number
of leaps.
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Figure 9: The three different simulations of the changes in the suspected sub-population.

As expected in section 4.2.3 the optimized method had the suspected population start to decrease
later than SSA and explicit tau leaping. However, the inclination of the decrease seems fairly similar
between all the simulations.
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Figure 10: The three different simulations of the changes in the infected sub-population.

Figure 10 shows that the optimized method resulted in the curve occurring later than for the two
other simulations.
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Figure 11: The three different simulations of the changes in the recovered sub-population.

The line representing the optimized method again starts to increase later than the others. However,
just like in Figure 9, the inclination of the lines seems roughly the same.

This comparison concludes that the explicit method followed the SSA method the most, but the
difference between them was relatively small. The biggest difference between the simulations was
their run time, since the differences were very significant the slight loss of exactness could be worth
the time saved.
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5 Discussion

5.1 Result summarize

Both Tau-leaping methods produced significantly faster simulations of both models but suffered
from some loss of accuracy. The problem with explicit Tau-leaping is the need to choose the leap
size and it being constant. Since it is constant issues can arise if systems don’t evolve at a constant
rate. If the system changes quickly in some parts and slowly in others the method won’t adapt.
Leading to too big leaps being taken during fast changes and too small leaps being taken during
slow changes. Resulting in either an inefficient simulation or an inaccurate one. This could be the
reason for the explicit method computing a less accurate simulation for the Lotka-Volterra model.
While the optimized Tau-leaping method leap size changes dynamically with the system, therefore
the optimized method is preferable.

5.2 Run-time vs. Accuracy

As stated in the introduction one of the aims of this study was to analyse the possible improvements
of simulation run-times. The result was staggering with improvements between 500 and 1600 times
faster simulations. For a company doing multiple simulations, the time gained could be significant
leading to cost savings. However, it has to be acknowledged that the results have a significant loss of
accuracy. Depending on the goal of the simulation this could be an issue. If the simulations are done
to make predictions the loss of accuracy could make them significantly less accurate. Firstly, by
making a less accurate point prediction. Secondly, by making either larger- or inaccurate confidence
intervals. However, many simulations are done to get an idea of how a process or system evolves
over time. In this case, the loss of accuracy is less impactful, since the trends of the system stay
mostly intact. Another way of looking at it is that the faster the run time the more simulations can
be done. This could lead to a more accurate result. Since the standard deviation becomes smaller
the more data is available. The conclusion then becomes that Tau-leaping is preferable depending
on the wanted result of the simulation, especially if there are time- or cost limitations.

5.3 Suggested use cases

As stated before Tau-leaping is mostly used in chemistry, but could be used for other purposes
especially if efficiency is a requirement. After doing this study we have some suggestions on other
topics Tau-leaping could be implemented on. Models suited best for Tau-leaping are those that
describe interactions between distinct sub-populations. This is why it would be great suited for any
simulations of demographics, for example, a simulation of how information spreads in a population.
As well as the evolution of population sizes. Another use case could be the spread and evolution of

30



mutations in a population. A completely different suggestion would be the simulation of the flow
of traffic, strategies in game theory and controls of inventory.

5.4 Further research

If I were to continue studying Tau-leaping I would implement more methods for tau selection. Then
analyze which methods are preferable to what kind of data or model. I would also analyze how
much time could be saved for significantly larger simulations than presented in this report. If Tau-
leaping were implemented for a company the time saved could be directly translated to a cost save.
Another interesting research would be to analyze how accurate results could be if running the simu-
lation multiple times. Then compare the result with SSA and determine if the time saved is worth it.

5.5 Conclusion

To conclude this report, Tau-leaping would be preferable over SSA in some cases, especially when
prediction accuracy isn’t a big issue. The time savings could be significant and lead to cost savings,
without losing too much information about the system.
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7 Appendix

Processor computer 1: AMD Ryzen 7 1800X 8-Core Processor 3.60 GHz
Processor computer 2: AMD Ryzen 5 3600 6-Core Processor 3.60 GHz
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