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Abstract
We call a number representable by some given integers a1, . . . , an, if the number can be expressed as a
linear combination of a1, . . . , an with non-negative coefficients. This thesis explores the properties of non-
representable numbers, with the main focus on the greatest such number called the Frobenius number,
denoted by g(a1, . . . , an). We derive a simple formula when n = 2 for the Frobenius number, and for
the number and sum of non-representable numbers. Furthermore, for n = 3, we give exact formulae for
some generalizations, and discuss the author’s proposed corrected version of Tripathi’s formula for the
arbitrary case g(a, b, c).
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Popular Summary
Imagine that you and your friends decided to go to a local fast food restaurant. After some discussion,
you arrive at the conclusion that together you would like to order and eat 43 chicken nuggets. The
nuggets come in 3 sizes: a box of 6, 9 and 20 pieces. Since you are the mathematician of the group, you
are given the great honor to do the math and place the order in the self-service machine. After some
thought, you can get 42 = 1 · 6 + 4 · 9 and 44 = 4 · 6 + 1 · 20, but nothing seems to work for 43... Can it
really be so? It turns out that 43 is the largest number that cannot be constructed with any multiples
of 6, 9 and 20, which is what we call the Frobenius number (for 6, 9 and 20). You start to think: Is this
unique? Does this always happen? Is there always a largest number? Is there a formula for calculating
this largest number?

This and other questions are explored in this thesis, with a surprising twist at the end. At first
glance, this knowledge does not seem to be more than just a way to mess with a fast food restaurant
employee, however, looking more deeply into the nature of this simple first-grade addition problem, many
interesting patterns pop up. We explore not only the existence of the Frobenius number, but also the
way we can easily calculate it for two chosen numbers, and not so easily calculate it for three. What
about the other numbers that cannot be represented? Good question, look no further than Chapter 3,
where we derive the formula for the amount of such numbers, and the formula for their sum.

Interestingly, we could approach this problem from the other way around as well: let us say you
choose your favourite number, is there a double or triple for which your chosen number is the Frobenius
number? The answer is yes! This and other interesting formulae are presented in Chapter 4, but
unchartered territory awaits us at the end...

The Frobenius Formula for Three Numbers! In the final chapter, we discuss this with our focus
on Tripathi’s 2017 paper. However, the twist that I mentioned earlier is that computational evidence
indicates that some of his proposed solutions are incorrect. We end this chapter with some computer-
based predictions for corrected versions of Tripathi’s results. Additionally, an algorithm is also presented
at the end in order to enable one to double check their calculations.

And now, dear reader, you can go ahead and tell your friends more about why they should maybe
consider getting more Chicken Nuggets the next time you are hungry...
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1. Introduction

1.1 Overview
In this thesis, we are going to discuss the Frobenius Number Problem for a varying number of arbitrary
integers and also explore some related concepts regarding non-representable numbers. Chapter 1 intro-
duces the problem with a concrete example, gives the definition of the Frobenius number and then a
quick overview of the history of the Frobenius Number Problem.

In Chapter 2, we are going to make sure that the Frobenius number is actually well defined for
all integers. This is going to be achieved by giving two proofs, one by Kifer [7] and one by the author.
This chapter also features an alternative definition, which we are going to rely on throughout this whole
thesis. We also give three separate proofs of the Frobenius number of two arbitrary integers, once again
featuring a proof from the author. The other two proofs by Ramı́rez Alfonśın [9] are included, since
they tackle the problem from different perspectives and use clever ideas that are worth exploring, such
as Pick’s Theorem.

Chapter 3 features two natural continuations of studying the Frobenius numbers after finding the
formula for two variables. One of them is about how many non-representable numbers there are for any
chosen two integers, and the other one is what their sum is. These questions are going to be presented with
the help of Kifer [7] and Brown & Shiue [3] respectively, with the addition of Tripathi’s [18] alternative
definition of the sum of non-representable numbers.

Chapter 4 goes further by considering the Frobenius problem with three integers. It introduces
Johnson’s theorem [6] that simplifies the number of triplets one needs to consider from being coprime
to being pairwise coprime. This chapter also gives the theorem of Rosales, Garćıa-Sánchez and Garćıa-
Garćıa [12], which states that for any number N , there exists an integer triple for which N is the Frobenius
number. In other words, if the Frobenius problem is thought of as a map from a triple to an integer, then
this mapping is surjective. Moreover, this chapter also covers formulae for some important generalizations
subject to certain conditions, namely when the integers follow an arithmetic sequence, the formula for
the triple (a2, a2 + 1, a2 + a) for some a > 2, and the formula for the case when a divides b + c for some
coprimes a, b, c > 1.

There has been a recent development in 2017, provided by Tripathi [19], where he proved that there
are several formulae based on certain conditions that actually cover all possible triples. This is covered in
Chapter 5, together with the fact that unfortunately, computational data seems to indicate a discrepancy
in Tripathi’s results. We provide an account of Tripathi’s ideas, and we highlight the place where the
first discrepancy occurs by showcasing an example, for which Tripathi’s proposed formula fails, but the
author’s amendments show potential to give the correct result.

1.2 Definition and brief history of the Frobenius number
Let us consider the following situation: You and your friends decided to go to a local fast food restaurant.
After some discussion, you have arrived at the conclusion that together you would like to order and eat
43 chicken nuggets. The nuggets come in 3 sizes: a box of 6, 9 and 20 pieces. Since you are the
mathematician of the group, they ask you to do the math and place the order in the self-service machine.
After some thought, it seems like this is not possible. Can it really be so? You can get 42 = 1 · 6 + 4 · 9
and 44 = 4 · 6 + 1 · 20, but nothing seems to work for 43 ... It turns out that 43 is the largest number that
cannot be constructed with any multiples of 6, 9 and 20. You start to think: Is this unique? Does this
always happen? Is there always a largest number? Is there a formula for calculating this largest number?

These questions and more came up to me personally after being introduced to this problem even
before starting university. The original video that grabbed my attention was a YouTube video uploaded
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in 2012 by the channel Numberphile titled How to order 43 Chicken McNuggets - Numberphile [8].
A similar famous problem is the money-changing problem, which asks the question:

“Given n coins of denomination (a1, . . . , an) with gcd(a1, . . . , an) = 1, what is the largest
integer amount of money for which change cannot be made with these coins?”

The answer to this and the previous question is called the Frobenius number. More formally,

Definition 1.1. Let a1, . . . , an be positive integers with gcd(a1, . . . , an) = 1. The Frobenius number
g(a1, . . . , an) is the largest integer N such that the equation

n∑
i=1

aixi = N (1.1)

has no solutions for x1, . . . , xn non-negative integers.

Remark 1.2. Without loss of generality, from now on we are going to assume that a < b < c < · · · for
when we write g(a, b, c, . . .).

It is essential that all numbers are coprime because if gcd(a1, . . . , an) = d, then every positive
integer d ∤ N will be impossible to be represented as an integer combination of a1, . . . , an, and as such,
the Frobenius number does not exist since there is no largest integer N to satisfy the definition. For a
simple example, take the numbers 2,4 and 6. Clearly, one cannot construct any odd number using only
these three numbers.

This problem originally came from J.J. Sylvester (1814–1897), who first published this problem in
1884 [15]. The paper tackles the case when n = 2 and gives an explicit formula for it, which we will
discuss in the coming chapter. Although it was Sylvester that first wrote about this restricted Diophantine
problem (Note: The Frobenius Problem is essentially a Diophantine equation where the coefficients are
restricted to being only non-negative numbers), its name is, however, associated to Ferdinant Georg
Frobenius (1849–1917). Even though Frobenius has contributed numerous times to the theory of elliptic
functions, differential equations, number theory and group theory, this problem was named after him
merely because he popularised this problem during his lectures, not because he made any significant
advances in the topic.

Ever since the topic was introduced, nobody succeeded in finding a way to calculate the Frobenius
number for any arbitrary 3 numbers. It has been proven by Curtis [4] that the Frobenius number cannot
be given by “closed” formulae of a certain type. Brauer [1] found the Frobenius number for consecutive
integers, Roberts [10] extended this result to numbers in arithmetic progression, and Selmer [13] further
generalized this to the determination of g(a, ha + d, ha + 2d, . . . , ha + nd). As a result of its complexity,
research was mostly focused on finding efficient algorithms to find the Frobenius numbers, alongside with
finding lower and upper bounds. The most notable early exploration of an algorithm for the Frobenius
problem for three variables was given by Rødseth [11] in 1978. In 2017, Tripathi [19] published a paper
where he presents several exact formulae for g(a, b, c) for all choices of the variables, however, in this
thesis it is going to be shown that there are some formulae that do not work.

Current research also concerns itself with the number of non-representable numbers, which is de-
noted by n(a1, . . . , an), and by looking at special cases of the Frobenius number for 4 variables.
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2. Frobenius number when n = 2

This chapter is dedicated to investigating the Frobenius Number Problem for the least amount of integers
that it makes sense for. Trivially, g(a) cannot be defined since there are infinitely many integers that do
not equal a multiple of a. Therefore the smallest n we can start with is n = 2. In Section 2.1, we are
going to make sure that the Frobenius number is actually well defined for all integers. This is going to
be achieved by giving two proofs, one by Kifer [7] and one by the author. This section also features an
alternative definition, which we are going to rely on throughout this whole thesis. In Section 2.2, we give
three separate proofs of the Frobenius number for two integers, once again featuring a proof from the
author. The other two proofs are included since they tackle the problem from different perspectives and
use clever ideas that are worth exploring.

2.1 Proof of existence
To start off, let us define what it means for an integer to be representable.

Definition 2.1. We say that a number N is representable by a1, . . . , an if there exists some representation
of N such that N = a1x1 + a2x2 + · · · + anxn for some non-negative integers x1, . . . , xn.

Theorem 2.2. For all n ≥ 2, the Frobenius number g(a1, . . . , an) is well defined.

First proof of Theorem 2.2. Given a1, . . . , an with gcd(a1, . . . , an) = 1, the extended Euclidean algorithm
gives that there exist integers k1, . . . , kn ∈ Z, such that

a1k1 + a2k2 + · · · + ankn = 1.

We collect the negative and non-negative coefficients on the left and right side respectively. Then we get

ai1ki1 + ai2ki2 + · · · + aiαkiα + aiα+1kiα+1 + · · · + ainkin = 1, (2.1)

where i1, . . . , iα are the indices of the negative coefficients and iα+1, . . . , in are the indices of the positive
and zero coefficients. It is worth noting that if α is 0, then this means that there are no negative
coefficients, which can only happen if one of the ai’s and its coefficient is 1 and every other coefficient is
0 since all ai are non-negative then. Now let

x = −(ai1 − 1)(ai1ki1 + · · · + aiα
kiα

).

Note that x is representable since ki1 , . . . , kiα
are all negative coefficients and the whole expression is

multiplied by a negative number, thus satisfying Definition 2.1. Also note that ai1 being 1 is not an issue
since x = 0 is trivially representable with coefficients of 0. Now we can create a list of other representable
numbers in the following way: Take x and add Equation (2.1) to it, yielding x + 1. We can repeat this
process ai1 − 1 times, producing the list x, x + 1, . . . , x + ai1 − 2, x + ai1 − 1. However, we cannot continue
this process to get x + ai1 . To understand why, we can see that

x + ai1 − 1 = −(ai1 − 1)(ai1ki1 + · · · + aiαkiα)
+ (ai1 − 1)(ai1ki1 + · · · + aiα

kiα
+ aiα+1kiα+1 + · · · + ain

kin
)

= (ai1 − 1)(aiα+1kiα+1 + · · · + ain
kin

),

however, by adding Equation (2.1) to x + ai1 − 1 we would obtain an expression for x + ai1 that has both
negative and non-negative terms, which does not yield that x + ai1 is representable. To overcome this
issue, we simply add ai1 to x instead of adding 1 to x+ai1 −1, which results in x+ai1 being representable
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again. After this, we can continue generating our list by the same procedure as before (adding ones until
a multiple of ai1 , at which point add ai1 itself instead of the ones). Hence we have proven that every
integer greater than or equal to x is representable.

Now I am going to present my own proof for Theorem 2.2, which I have not seen in other literature so far.
Before that, however, it will be useful to state and prove a lemma related to multiples of b and residues
modulo a.

Lemma 2.3. [7, Lemma 2.1] For positive integers a, b with gcd(a, b) = 1, the integers 0b, 1b, 2b, . . . ,

(a − 1)b form a complete set of residues modulo a.

Proof. Let i ̸= j and i, j ∈ {0, 1, 2, . . . , a − 1}. Then

ib ≡ jb mod a =⇒ a | (ib − jb)
=⇒ a | b(i − j)
=⇒ a | (i − j) since gcd(a, b) = 1
=⇒ i ≡ j mod a,

but this is a contradiction because of our initial conditions i ̸= j and i, j ∈ {0, 1, 2, . . . , a − 1}. Thus the
multiples of b form a complete set of residues modulo a since the set is composed of exactly a distinct
integers modulo a.

Now we are ready to begin the second proof of existence. Lemma 2.3 will be used later in this thesis
as well.

Second proof of Theorem 2.2. In order to prove that g(a1, . . . , an) is well defined, i.e. there always exists
some integer N < ∞ after which all integers are representable by a1, . . . , an, it suffices to only show that
it is well defined for g(a, b).

Consider the set of congruence classes modulo a, with addition defined as [m] + [n] = [m + n] and
standard multiplication defined as [m] · [n] = [m · n].

Let us take all positive integers and write them out in increasing order, grouped into a columns as
shown in Figure 1.

Figure 1: All positive integers divided into a columns.

Firstly, we will proceed by marking every number that can be represented by a with a cross. Right
now this is trivially all numbers a, 2a, 3a, . . . ; or the ath column in our figure. Next, mark integer b

and all following positive integers that satisfy b + k · a, k ∈ N. In Figure 1, this coincides with the
(b mod a)th column starting from b and going downwards. We continue doing the previous procedure
with 2b, 3b, . . . until all columns have been marked. Once this is done, we can observe that after a certain
row, all integers can be represented by some linear combination of a, b, showing that there exists a largest
non-representable number N = g(a, b). See Figure 2 for an example of this method with the integers 5, 7.

Note that this will necessarily happen for all choices of a, b because of Lemma 2.3 and because,
by definition, gcd(a, b) = 1. This results in the fact that our method described above “touches” every
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Figure 2: Example of the method for g(5,7). Multiples of b’s are marked with red crosses, and added
multiples of a’s with black. This also gives us g(5, 7) = 23.

column once after a − 1 steps, and on the ath step it reaches the rightmost column, which has already
been marked, terminating the process.

This proves the existence not only for two variables, but due to the nature of the equivalence classes,
any further number added to the list of variables will not change the fact that after some number N ,
all columns are accounted for. To illustrate this, it is enough to state that if we consider g(a, b, c),
then c will fall into the (c mod a)th column. This can happen in two cases. Case 1 is when it falls
“above” one of the red-marked numbers of the (k · b mod a)th column (meaning c = kb − ha for some
k ∈ {1, 2, . . . , a − 1}, h ∈ N), then it just further restricts the value of g(a, b, c) ≤ g(a, b). Case 2 is when
it falls “below” a red-crossed integer, but then it has no restrictive effect, so g(a, b, c) = g(a, b).

This is not unique to three variables either, as any further addition of numbers will result in
it falling into one of the columns, either above or below an already red-marked number, hence the
existence of g(a1, . . . , an) is proven. Furthermore, by induction, we get an additional fact that g(a1, a2) ≥
g(a1, a2, a3) ≥ · · · ≥ g(a1, . . . , an).

Lemma 2.3 and the above proof guarantees that every residue class of a1 will have at least one rep-
resentative that is a linear combination of a2, . . . , an. This observation warrants the following alternative
definition of the Frobenius number, initially given by Brauer & Shockley [2], which will help us to prove
the upcoming theorems much more easily.

Lemma 2.4. [16, Lemma 1] Let a1, . . . , an be such that gcd(a1, . . . , an) = 1. For 1 ≤ i ≤ a1 −1, let m(i)
denote the least positive integer that is congruent to i (mod a1) such that Equation (1.1) has a solution
in non-negative integers. Then

g(a1, . . . , an) =
(

max
1≤i≤a1−1

m(i)
)

− a1.

Proof. Since m(i) is the least positive integer that is representable by a1, . . . , an, it follows immediately
that m(i) − a1 is not representable by non-negative integers for each 1 ≤ i ≤ a1 − 1. On the other
hand, any N greater than each m(i) − a1 and congruent to j (mod a1) must be at least m(j), hence
representable by a1, a2, . . . , an in non-negative integers. This shows that the largest value of m(i) − a1 is
indeed the Frobenius number for a1, . . . , an.

To illustrate an example of this with 2 variables, notice that in Figure 2, the m(i)’s are the integers
marked with a red cross, since they are the least positive integers representable by a, b in their respective
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columns. In particular, m(1) = 21, m(2) = 7, m(3) = 28 and m(4) = 14. Therefore, by this definition,
g(5, 7) = max

1≤i≤4
m(i) − 5 = max{21, 7, 28, 14} − 5 = 28 − 5 = 23.

2.2 The formula
It takes barely any effort to calculate the Frobenius number for two chosen variables, as there is a very
simple and straight-forward formula for it. In this section we are going to state this formula, and give
three proofs for it: two given by Ramı́rez Alfonśın [9] and one by the author.

Theorem 2.5. Let a, b be two positive coprime integers with a < b. Then the formula for the Frobenius
number is given by

g(a, b) = ab − a − b.

My proof. Looking back at Figure 2, we can visually see what Lemma 2.3 has stated, namely that every
multiple of b < ab belongs to a unique column, i.e. a unique residue class modulo a. To find the largest
one, we just need to look at the last multiple of b, which is (a − 1)b, then we “go up one row”, which is
equivalent to subtracting a, giving the formula g(a, b) = (a − 1)b − a = ab − a − b.

An alternative, more rigorous approach can be achieved by using Definition 2.4, which states that
g(a, b) = ( max

1≤i≤a−1
m(i)) − a. Calculating max

i
m(i) is very easy, since {m(i)} = {1b, 2b, . . . , (a − 1)b},

whose largest element is trivially (a−1)b, hence g(a, b) = (a−1)b−a = ab−a−b, proving the theorem.

Now I am going to present two more proofs given by Ramı́rez Alfonśın. The one below already
assumes that the formula is g(a, b) = ab − a − b, and uses contradiction to prove it. This approach differs
from my proof, since my proof arrived at the formula in a constructive way, hence my decision to include
it.

Second proof of Theorem 2.5. [9, Section 2.1] For a, b ∈ N, let R = aN + bN = {xa + yb | x, y ∈ N}.
R here is simply the set of all integers that can be represented by a, b.

Suppose that ab − a − b = r1a + r2b with r1, r2 ∈ N. Collecting all the a’s on the left side and b’s
on the right, we get

a(b − r1 − 1) = b(r2 + 1).

Since gcd(a, b) = 1, then this means b has to divide b − r1 − 1, i.e. b − r1 − 1 = sb ≥ b, but this is
impossible. Therefore ab − a − b /∈ R.

The next step is to show that ab − a − b is the largest such number. In other words, we need to
show that, if we let γ = ab − a − b, then γ + i ∈ R for any integer i ≥ 1. By Bézout’s identity, there
always exist integers r1 and r2 with 0 ≤ r1 < b such that ar1 + br2 = 1. This gives us the possibility to
rewrite the integer i as i = air1 + bir1. Then

γ + i = ab − a − b + air1 + bir2 = (b − 1 + ir1)a + (ir2 − 1)b.

We may rewrite this equation as γ + i = v1a + v2b with 0 ≤ v2 < a. If we rearrange this equation, we get

−i = γ − v1a − v2b = ab − a − b − v1a − v2b = (−v1 − 1)a + (a − 1 − v2)b.

Since −i /∈ R because it is a negative integer, we must have that one of the coefficients of a or b must
be negative. Note that a − 1 − v2 ≥ 0 by construction, so then we must have −v1 − 1 < 0. This implies
that v1 > −1 =⇒ v1 ≥ 0. Since both v1, v2 are non-negative, and γ + i = v1a + v2b, we can conclude
that γ + i ∈ R. This proves that indeed g(a, b) = ab − a − b is the largest number that cannot be
represented.

The last proof is going to approach this formula from a lattice point of view. It is going to utilize
the well-known Pick’s Theorem that relates the area of a simple lattice polygon to its boundary and
internal lattice points. A simple lattice polygon is any polygon whose vertices lie on the lattice grid (or,
equivalently, their coordinates are integers) and no sides cross each other. We are going to prove this
now as a lemma with a direct, intuitive proof given by Varberg [20].
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Lemma 2.6 (Pick’s Theorem). Let S be a simple lattice polygon and write A(S) for the area of S. Then

A(S) = i + 1
2b − 1,

where i and b are the number of lattice points in the interior of S and in the boundary of S respectively.

Proof. To every lattice point Pk of S, let us associate a weight wk = θk/2π, where θk measures Pk’s
“visibility” angle into S. For example, in Figure 3, the weight of the interior lattice point A is 1, the
weight of the lattice point B on the boundary, which is not a vertex, is 1

2 and the weight of C, a
right-angled vertex, is 1

4 etc.

Figure 3: Interior points A, B, C with their inner visibility

It helps to think of wk as the contribution that the lattice point makes to the area of S. Let

W (S) =
∑

Pk∈S

wk

denote the sum of these weights. To show that W (S) = A(S), we note first that W is additive. This
means that if S = S1 ∪S2, then W (S) = W (S1)+W (S2). This fact is easy to see, since the inner visibility
angles of the common lattice points get added up when adding two polygons.

Next, if we consider a lattice rectangle Sr with sides parallel to the lattice (Figure 4) and a lattice
right-angle triangle St (Figure 5) it is immediately obvious that W (Sr) = A(Sr) and W (St) = A(St)
because of W ’s additivity. One can deduce this inductively from the fact that the unit lattice square Su

has area 1, and has four right-angles whose weight are all 1
4 , and no other lattice points are inside or on

the boundary. Therefore

A(Su) = W (Su) =
4∑

k=1

π/2
2π

= 1,

after which adding the appropriate amount of unit squares will give us our initial lattice rectangle Sr.
Upon division by 2, the right-angle lattice triangle’s area immediately follows as well.

Figure 4: Rectangle Sr Figure 5: Right-angle triangle St Figure 6: Arbitrary triangle Sa

Furthermore, if we look at an arbitrary lattice triangle Sa (Figure 6)1, then we can see that, once
again with the help of additivity, A(Sa) = W (Sa) since the area of Sa consists of the big rectangle

1Figures 4,5,6 were made with GeoGebra in the style of [20, Figure 2, 3, 4]
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that includes it, minus the union of some right-angle triangles. Thus we can conclude that we are able
to decompose an arbitrary lattice polygon as a union of some lattice triangles, proving the claim that
W (S) = A(S) for any arbitrary lattice polygon.

To finish the proof, we notice that a simple polygon with n vertices has angle sum (n − 2)π. Let
us divide the boundary points into bv vertices and bs points on the sides. Then the sum of the visibility
angles given by these points is (bv − 2)π + bsπ because every point on the side has π angles of visibility.
Therefore it follows that the sum of all visibility angles at the boundary points is (bv − 2)π + bsπ =
(bv + bs − 2)π = (b − 2)π. Thus, if I and B denote the set of interior and boundary points of S, then

A(S) = W (S) =
∑

Pk∈I

wk +
∑

Pk∈B

wk = i + (b − 2)π
2π

= i + 1
2b − 1.

Now we can proceed with the second proof of Theorem 2.5.

Second proof of Theorem 2.5. [9, Section 2.1] Let a, b be as stated in the theorem and let P be the lattice
polygon with vertices A = (b − 1, −1), B = (−1, a − 1), C = (b, 0) and D = (0, a), as shown in Figure 72.
Notice that there are no other lattice points on the boundary of P other than the 4 vertices since a, b are
coprime. Note also that the set of lattice points inside P are all in the first quadrant.

Figure 7: Polygon P as described above

The standard line equation with gradient m and y-intercept k of the line connecting A and B is given by

y = mx + k = −1 − (a − 1)
(b − 1) − (−1)x + k = −a

b
x + k =⇒ ax + by = c, c a constant.

Substituting in point B to get c, we arrive at

c = ax + by = a(−1) + b(a − 1) = ab − a − b,

therefore the lower line’s equation is ax + by = ab − a − b, as shown in the figure. A similar calculation
yields ax + by = ab for the line connecting the points C and D.

Let I(P ) and B(P ) denote the set of interior and boundary points of P respectively, and let P1, P2
be the triangles formed by the vertices CDB and BAC respectively. We can calculate the area of these
two triangles by putting the coordinates of the vertices into a matrix and calculating their determinants:

2Figure 7 was made with GeoGebra in the style of [9, Figure 2.1]
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A(P1) = 1
2

∣∣∣∣∣∣
b 0 1
0 a 1

−1 a − 1 1

∣∣∣∣∣∣ = 1
2(b(a − (a − 1)) + a) = 1

2(a + b),

A(P2) = 1
2

∣∣∣∣∣∣
−1 a − 1 1

b − 1 −1 1
b 0 1

∣∣∣∣∣∣ = 1
2(b((a − 1) − (−1)) + (1 − (a − 1)(b − 1)))

= 1
2(ab + 1 − (ab − a − b + 1)) = 1

2(a + b).

From this we can see that A(P ) = A(P1) + A(P2) = a + b. With the help of the slightly relabeled
Lemma 2.6, we are able to calculate the number of interior points, which is

I(P ) = A(P ) − 1
2B(P ) + 1 = a + b − 4

2 + 1 = a + b − 1.

We claim that the line ax + by = ab − a − b + i contains exactly one point in I(P ) for each
i = 1, . . . , a+ b−1. Suppose that there exists 1 ≤ j ≤ a+ b−1, such that ax+ by = ab−a− b+ j has two
points in I(P ), namely J1 = (x1, y1) and J2 = (x2, y2), that satisfy ax1 + by1 = ax2 + by2 = ab − a − b + j

for some 0 ≤ x1, x2, y1, y2 < b, x1 ̸= x2, y1 ̸= y2. Then we can rearrange the first equation to get
(x1 − x2)a = (y2 − y1)b, and since (a, b) = 1, we must have that b divides (x1 − x2), but this is
impossible since both x1, x2 were chosen to be less than b. Therefore we have shown that each line
ax + by = ab − a − b + i contains at most one interior point of P .

Next up, we want to show that there is no line that does not hit any of the interior points. Assume
that there exists a 1 ≤ j ≤ a + b − 1 such that ax1 + by1 = ab − a − b + j does not contain any points of
I(P ). This means then that each of the a + b − 1 points of I(P ) belongs to at least one of the a + b − 2
lines ax + by = ab − a − b + i, 1 ≤ i ̸= j ≤ a + b − 1. Since there are more points than lines available, by
the pigeon-hole principle, one of the lines must contain at least two of the interior points, but this is a
contradiction.

Since all lines ax+by = c ≤ ab contain exactly one lattice point in the first quadrant, that means all
those c’s are representable by some arbitrary a, b. We conclude that c = ab − a − b is the largest number
where ax + by = c has no non-negative solutions, therefore proving that indeed g(a, b) = ab − a − b.
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3. Other related formulae when n = 2

One natural continuation of studying the Frobenius numbers after finding the formula for two variables
is to go further; is there a formula for three variables, or perhaps more? We are going to tackle this
immensely more difficult problem in the next chapter, however before that, this chapter is going to follow
another natural path of mathematical exploration: What can we say about the number and sum of the
other non-representable integers, out of which the Frobenius number just happens to be the largest? Are
there also convenient formulae for these with two arbitrary integers as well? Section 3.1 and 3.2 are going
to cover these respectively.

3.1 Number of non-representable integers

Concerning the question of how many non-representable integers there are, Sylvester [14] tackled this
problem already in 1882, two years before his paper about the Frobenius number problem, where he
proved the following:

Theorem 3.1. [14] Let a, b be positive integers such that gcd(a, b) = 1 and let N(a, b) denote the number
of integers without non-negative integer representations by a, b. Then

N(a, b) = 1
2(a − 1)(b − 1).

The experienced reader might notice that the amount of non-representable numbers is exactly half
of the numbers from 0 to g(a, b), which is quite similar to the relationship between primes and quadratic
residues. There are many ways to prove this formula, but I will present a proof that utilizes a lattice
point counting approach that I find quite satisfying and is also used for proving the quadratic reciprocity
law. Before proving Theorem 3.1, however, we will need the help of a lemma by Kifer:

Lemma 3.2. [7, Lemma 2.3] Let a, b be such that gcd(a, b) = 1 with a, b > 1 and let ⌊·⌋ denote the
greatest integer (floor) function. Then

a−1∑
i=1

⌊
ib

a

⌋
= 1

2(a − 1)(b − 1).

Proof. Consider the line y = b
a x in the first quadrant between x = 1 and x = a − 1. We now count the

number of positive-valued lattice points below the line for all such x. When x = i with 1 ≤ i ≤ a−1, then
y = ib

a , which means that there are exactly ⌊ ib
a ⌋ lattice points below the line (see Figure 8). Summing

over all x gives the left-hand side of the stated equation, namely
∑a−1

i=1
⌊

ib
a

⌋
.

The next step is showing that this sum is equal to the right-hand side. Consider now the same
line y = b

a x, but this time, mark the rectangle defined by this line as the diagonal from the lattice point
(0, 0) to (a, b), and afterwards shrink this rectangle symmetrically to the (a − 2)-by-(b − 2) rectangle with
coordinates (1, 1), (a − 1, 1), (1, b − 1) and (a − 1, b − 1). There are a couple important things to note in
this new rectangle:

• As a result of shrinking the rectangle symmetrically, the line y = b
a x is still cutting the new rectangle

in half.

• The new rectangle contains (a − 1)(b − 1) lattice points.

• The
∑a−1

i=1
⌊

ib
a

⌋
positive-valued lattice points are all part of the new rectangle.
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Figure 8: Counting lattice points between 1 and a − 1.

• The line y = b
a x does not contain any lattice points because gcd(a, b) = 1 by definition. In order

for a lattice point to be included, it would have to be an integer multiple of a, but the new triangle
reaches only until a − 1.

Figure 9: Counting the lattice points inside the shrunk rectangle, below the line y = b
a x.

Combining all of these above shows that, since the line divides the new rectangle in half and the new
rectangle has (a − 1)(b − 1) lattice points, the number of positive lattice points lying beneath the line in
this new rectangle is 1

2 (a − 1)(b − 1), proving the lemma.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. To count the number of non-representable integers by a, b, it is enough to look at
the interval [1, ab − b − a] by Theorem 2.5. We start by proving a claim.

Claim: For each k ∈ {1, 2, . . . , a − 1}, there exists an integer tk such that the list of non-negative
integers ab − kb − a, ab − kb − 2a, . . . , ab − kb − tka are all non-representable by a, b, where tk is maximal
so that no integer in that list becomes negative.

Proof of Claim: This is proven by contradiction. Assume that for some k ∈ {1, 2, . . . , a − 1}, there
exist non-negative integers x, y and q ∈ {1, 2, . . . , tk} such that xa + yb = ab − kb − qa. Then

xa + yb = ab − kb − qa =⇒ yb = (a − k)b − (q + x)a.

Since q, x, a are non-negative, this implies that yb < (a−k)b, so y is equal to exactly one of 0, 1, . . . , a−k−1.

Furthermore, yb ≡ (a − k)b (mod a), however none of the possible values of y are congruent to a − k

modulo a since they are all less than a − k. Thus no such y, q ∈ {1, 2, . . . , tk} can exist.
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The actual size of tk for the different k’s is yet to be determined. Note that ab − kb − tka =
(a − k)b − tka will stay non-negative if we subtract the number of a’s that fit into (a − k)b. This number
is the non-negative integer

⌊
(a−k)b

a

⌋
, therefore for each k ∈ {1, 2, . . . , a − 1}, the list of non-representable

integers has
⌊

(a−k)b
a

⌋
elements. Thus the number of non-representable integers is at least

N(a, b) ≥
⌊

(a − 1)b
a

⌋
+
⌊

(a − 2)b
a

⌋
+ · · · +

⌊
(a − (a − 1))b

a

⌋
=
⌊

b

a

⌋
+
⌊

2b

a

⌋
+ · · · +

⌊
(a − 1)b

a

⌋
=

a−1∑
i=1

⌊
ib

a

⌋
= 1

2(a − 1)(b − 1) by Lemma 3.2.

We now show equality. To this end, it is important to realize that we have looked at all non-
representable integers 1b, 2b, . . . , (a − 1)b (mod a) because we counted ab − kb − qa = (a − k)b − qa ≡
(a − k)b (mod a) for each k ∈ {1, 2, . . . , a − 1} and q ∈ {1, 2, . . . , tk} (tk maximal). By Lemma 2.3,
1b, 2b, . . . , (a − 1)b (mod a) form a complete set of residues modulo a, so we have not missed any other
non-representable numbers, proving the theorem.

Another, arguably easier way to prove the formula N(a, b) = 1
2 (a − 1)(b − 1) uses a definition of

N(a1, . . . , an) that is extremely similar to that of Lemma 2.4, whose proof is again given by Tripathi [16].

Lemma 3.3. [16, Lemma 1] Let a1, . . . , an be positive integers such that gcd(a1, . . . , an) = 1 and 1 ≤
i ≤ a1 − 1. Let m(i) denote the least positive integer that is congruent to i (mod a1) such that Equation
(1.1) has a solution in non-negative integers. Then

N(a1, . . . , an) = 1
a1

a1−1∑
i=1

(m(i) − i).

Proof. The non-representable numbers that are congruent to i (mod a1) form an arithmetic progression,
where the first element is i and the last element is m(i) − a1 with common difference a1. The number
of that is therefore (m(i) − i)/a1, and since i ∈ {1, . . . , a1 − 1}, the second part of the definition easily
follows.

Now, with this definition, we are able to prove Theorem 3.1 in a more concise way.

Second proof of Theorem 3.1. As mentioned at the end of Section 2.1, the integers marked with a red
cross in Figure 2 are the m(i)’s for 1 ≤ i ≤ a − 1. Furthermore, in the first proof of Theorem 2.5, it is
stated that {m(i)} = {1b, 2b, . . . , (a − 1)b}, therefore we have that

N(a, b) = 1
a

a−1∑
i=1

(m(i) − i) = 1
a

a−1∑
i=1

(ib − i)

= 1
a

a−1∑
i=1

((b − 1)i) = b − 1
a

a−1∑
i=1

i

= b − 1
a

· a(a − 1)
2 = 1

2(a − 1)(b − 1).

3.2 Sum of non-representable integers

In the previous section we were able to show that exactly half of the integers between 0 and g(a, b) are
non-representable, which might have come as a pleasant surprise. One natural step further would be to
pose the question whether there are any patterns for the sum of these integers? For example, as we have
seen before in Figure 2, g(5, 7) = 23 with the uncrossed numbers showing the non-representable integers,
of which there are indeed N(5, 7) = 1

2 · 4 · 6 = 12 numbers, namely A = {1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23}.
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The sum of these numbers is
∑

a∈A a = 114, but is there an explicit formula for this sum? As we are
going to find out later, there is! Before that, let us introduce the notation of this function.

Let a, b be positive integers with gcd(a, b) = 1. Let NR(a, b) denote the set of numbers not
representable by a, b. Then denote the sum of these numbers as

S(a, b) =
∑

n∈NR(a,b)

n. (3.1)

Now we can state the general formula for the sum of non-representable numbers by two integers, and
afterwards present the ingenious proof given by Brown & Shiue [3], which gives us even more than what
we bargained for (see Remark 3.10 below).

Theorem 3.4. Let a, b be positive integers with gcd(a, b) = 1. Then

S(a, b) = 1
12(a − 1)(b − 1)(2ab − a − b − 1).

To set up the proof, we need to define two auxiliary functions and prove some lemmas. The first
function is r(n), which for each n ≥ 0, is going to denote the number of representations of n in the form
n = sa+ tb, where s, t are non-negative integers. For example, if we take a = 5 and b = 7, then r(35) = 2,
since 35 = 7 · 5 + 0 · 7 = 0 · 5 + 5 · 7, or in other words, the ordered pairs (7, 0) and (0, 5) are the two
possible representations of 35 by 5 and 7.

Lemma 3.5. Let a, b be positive integers with gcd(a, b) = 1. If 0 ≤ n ≤ ab−1, then r(n) = 0 or r(n) = 1.

Proof. Suppose that r(n) ≥ 2 and that n = s1a + t1b = s2a + t2b, where we assume without loss of
generality that s1 > s2. Then 0 = (s1 −s2)a+(t1 − t2)b =⇒ 0 ≡ (s1 −s2)a (mod b). Since gcd(a, b) = 1,
b | (s1 − s2), so s1 ≥ b and n ≥ ba + t1b ≥ ab.

Now we define the second function in the following way:

f(x) =
ab−a−b∑

n=0
(1 − r(n))xn. (3.2)

This is a very useful function, because if we differentiate it, apply the above claim and evaluate it at
x = 1, we obtain

f ′(1) =
ab−a−b∑

n=1
n(1 − r(n)) =

ab−a−b∑
n=1

r(n)=0

n =
∑

n∈NR(a,b)

n
(3.1)= S(a, b). (3.3)

Thus the question of finding a formula for S(a, b) has been reduced to evaluating f ′(1), but that can
still pose a big issue. How do we know whether there even exists a differentiable function that would be
equivalent? We have the possibility of exploring this question with the help of generating functions, since
f(x) is of a similar form already.

Lemma 3.6. Let a, b be positive integers with gcd(a, b) = 1 and let A(x) = 1
(1−xa)(1−xb) . Then

A(x) =
∞∑

n=0
r(n)xn.

Proof. We have that

A(x) = 1
(1 − xa)(1 − xb) =

( ∞∑
n=0

xan

)( ∞∑
n=0

xbn

)
=

∞∑
n=0

r(n)xn.

The second equation is the standard power series expansion of A(x), and the last equation follows since
upon multiplication of xas and xbt for some s, t ∈ N, the coefficient of xn “counts” the number of ways n

can be represented by the different s, t from sa + tb. This is the exact definition of r(n).
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Lemma 3.7. The polynomial

P (x) = (xab − 1)(x − 1)
(xa − 1)(xb − 1)

has a leading coefficient 1.

Proof. We can see this by factoring both the numerator and denominator into complex linear factors.
Since gcd(a, b) = 1, there are integers s, t such that as + bt = 1. Let ζ be any complex number such that
both ζa = 1 and ζb = 1, then

ζ = ζ1 = ζas+bt = (ζa)s(ζb)t = 1.

In other words, no linear factor [except for (x−1)] appears twice in the denominator of P (x), hence every
factor in the denominator cancels against a linear factor in the numerator.

Lemma 3.8. Let P (x) = (xab−1)(x−1)
(xa−1)(xb−1) as stated above. Then P (1) = 1.

Proof. Since limx→1 P (1) = 0
0 , we can apply L’Hôpital’s rule, which yields

lim
x→1

P (x) = lim
x→1

(xab − 1)(x − 1)
(xa − 1)(xb − 1) = lim

x→1

xab+1 − xab − x + 1
xa+b − xa − xb + 1

= lim
x→1

(ab + 1)xab − abxab−1 − 1
(a + b)xa+b−1 − axa−1 − bxb−1 = ab + 1 − ab − 1

a + b − a − b
= 0

0 .

Applying it a second time yields

lim
x→1

P (x) = lim
x→1

(ab + 1)xab − abxab−1 − 1
(a + b)xa+b−1 − axa−1 − bxb−1

= lim
x→1

ab(ab + 1)xab−1 − (ab − 1)abxab−2

(a + b − 1)(a + b)xa+b−2 − (a − 1)axa−2 − (b − 1)bxb−2

= ab(ab + 1) − (ab − 1)ab

(a + b)(a + b − 1) − a(a − 1) − b(b − 1)

= a2b2 + ab − a2b2 + ab

a2 + 2ab + b2 − a − b − a2 + a − b2 + b
= 2ab

2ab
= 1,

therefore we have shown that indeed P (1) = 1.

Lemma 3.9. For P (x) as defined above and a, b positive integers with gcd(a, b) = 1, we have that

P (x) − 1
x − 1 =

∞∑
n=ab

(r(n − ab) + 1 − r(n))xn +
ab−1∑
n=0

(1 − r(n))xn.

Proof. Since P (1) = 1 by Lemma 3.8, we have that P (x)−1
x−1 is also a polynomial, of degree ab − a − b,

similarly with leading coefficient 1. Now we can write

P (x) − 1
x − 1 = P (x)

x − 1 + 1
1 − x

= (xab − 1)A(x) + 1
1 − x

=
∞∑

n=0
r(n)xab+n −

∞∑
n=0

r(n)xn +
∞∑

n=0
xn

=
∞∑

n=0
r(n)xab+n +

∞∑
n=0

(1 − r(n))xn

=
∞∑

n=ab

(r(n − ab) + 1 − r(n))xn +
ab−1∑
n=0

(1 − r(n))xn.

Remark 3.10. Using the previous observations, we are able to deduce a lot of extra information as a
by-product of Lemma (3.9). Since this power series is actually a polynomial of degree ab − a − b with
leading coefficient 1, we can deduce the following corollaries:
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• All the coefficients of the powers greater than ab − a − b are 0.

• The coefficient of xab−a−b is 1, therefore 1 − r(ab − a − b) = 1 =⇒ r(ab − a − b) = 0.

• For all ab − a − b < n ≤ ab − 1, it follows that r(n) = 1. (Second part of Lemma 3.9)

• For n ≥ ab, r(n) = r(n − ab) + 1 (First part of Lemma 3.9)

Incidentally, combining these facts also constitutes yet another proof for the Frobenius number formula
for two integers!

We now have all the necessary pieces and are able to prove Theorem 3.4.

Proof of Theorem 3.4. Recall that we have a polynomial expression for the above function f(x), namely

P (x) − 1
x − 1 =

ab−a−b∑
n=0

(1 − r(n))xn (3.2)= f(x).

The next step is, of course, to calculate f ′(1) and then we are finished. Let y = xa and

P (x) = (xab − 1)(x − 1)
(xa − 1)(xb − 1) = yb − 1

y − 1 · 1
xb−1
x−1

=
∑b−1

k=0 yk∑b−1
k=0 xk

.

Then

f(x) = P (x) − 1
x − 1 =

∑b−1
k=0 yk −

∑b−1
k=0 xk

(x − 1)
∑b−1

k=0 xk
=
∑b−1

k=1
yk−xk

x−1∑b−1
k=0 xk

.

For ease of notation, let us call the numerator g(x) and denominator h(x), which will make calculating
f ′(x) easier by applying the division rule for derivatives later on. So let f(x) = g(x)

h(x) where

g(x) =
b−1∑
k=1

yk − xk

x − 1 =
b−1∑
k=1

xak − xk

x − 1 =
b−1∑
k=1

(xk + xk+1 + · · · + xak−1),

h(x) =
b−1∑
k=0

xk.

Now, in order to calculate f ′(1), we will need the values of g(1), g′(1), h(1) and h′(1). Out of these, g′(1)
will require the most attention and good confidence in algebraic gymnastics. The values are as follows:

h(1) =
b−1∑
k=1

1 = b,

h′(1) =
b−1∑
k=1

k = 1
2b(b − 1),

g(1) =
b−1∑
k=1

(a − 1)k = 1
2(a − 1)(b − 1)b,

g′(1) =
b−1∑
k=1

(k + (k + 1) + · · · + (ka − 1)) =
b−1∑
k=1

(
1
2ka(ka − 1) − 1

2k(k − 1)
)

=
b−1∑
k=1

1
2(k2(a2 − 1) − k(a − 1)) = 1

2(a2 − 1)
b−1∑
k=1

k2 − 1
2(a − 1)

b−1∑
k=1

k

= 1
2(a2 − 1)1

6(b − 1)b(2b − 1) − 1
2(a − 1)1

2(b − 1)b

= b(a − 1)(b − 1)
(

(a + 1)(2b − 1)
12 − 1

4

)
.
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Finally, substituting all these components yields

S(a, b) (3.3)= f ′(1) = h(1)g′(1) − g(1)h′(1)
(h(1))2

=
b2(a − 1)(b − 1)

(
(a+1)(2b−1)

12 − 1
4

)
− [ 1

2 (a − 1)(b − 1)b][ 1
2 b(b − 1)]

b2

= (a − 1)(b − 1)
(

(a + 1)(2b − 1)
12 − 1

4

)
− 1

4(a − 1)(b − 1)2.

= 1
12(a − 1)(b − 1)(2ab − a − b − 1).

26



27



4. Explicit formulae for specific cases
when n = 3

In the previous chapter we have derived two formulae regarding integers that could be constructed by
a linear combination of two arbitrary integers. The current chapter would present a simple formula for
the Frobenius number with three variables – if such a formula existed. Unfortunately, Curtis [4] has
shown that there is no general explicit formula for g(a, b, c) (or for any higher dimension) that is of a
certain type. However, there exist some general formulae that simplify the number of triplets one needs to
consider. We will also prove that for any number N , there exists an integer triple for which g(a, b, c) = N .
Beyond this, this chapter is going to cover formulae for some important generalizations subject to certain
conditions, namely when the integers follow an arithmetic sequence, or when a divides b + c.

Note: Recall Remark 1.2. We are still assuming, without loss of generality, that a < b < c holds
throughout this whole thesis.

Let us begin with the fact that there is no explicit formula for g(a, b, c) in the form of a polynomial.

Theorem 4.1. [4] Let A = {(a, b, c) ∈ N3 | a < b < c, where a and b are prime and a, b ∤ c}. Then there
is no non-zero polynomial H ∈ C[X1, X2, X3, Y ] such that H(a, b, c, g(a, b, c)) = 0 for all (a, b, c) ∈ A.

The proof of this theorem is beyond the scope of this thesis, however, the keen and curious reader
interested in infinite semigroups, Farey sequences and projective curves is more than welcome to explore
the proof at their own leisure. However, a useful corollary to this theorem can be stated as the following:

Corollary 4.2. [4] There is no finite set of polynomials {h1, . . . , hn} such that for each choice of a, b, c

there is some i such that hi(a, b, c) = g(a, b, c).

Proof. Assume the contrary: There exists a finite set of polynomials as described above. Then construct
the polynomial H =

∏n
i=i(hi(X1, X2, X3) − Y ). Clearly H ∈ C[X1, X2, X3, Y ], but by assumption, for

any choice of a, b, c there exists a polynomial hi such that hi(a, b, c) = g(a, b, c) = Y , which results in the
fact that H would vanish for all values of a, b, c while being a non-zero polynomial, which is prohibited
by Theorem 4.1.

Even though there is no single polynomial formula, one can view this problem from the opposite
perspective. We can view g as a function that maps three coprime integers a, b, c to a non-negative integer
g(a, b, c), and then deduce some results. One of these results is given by Rosales, Garćıa-Sánchez and
Garćıa-Garćıa [12] who have proven that this Frobenius number function is surjective. We record this
result without a full proof, but record the proofs of some of the lemmas as the whole proof is slightly
more involved.

Definition 4.3. Let R := R(a1, . . . , an) denote the set of all non-negative integers representable by
a1, . . . , an, or in other words, R = {a1x1 + · · · + anxn | x1, . . . , xn ≥ 0}. For a ∈ R \ {0}, the Apéry set
of a in R is the set

Ap(R, a) = {r ∈ R | r − a /∈ R}.

Clearly Ap(R, a) = {0, m(1), . . . , m(a − 1)}, where for 1 ≤ i ≤ a − 1, m(i) denotes the least repre-
sentable integer congruent to i (mod a), and by applying Lemma 2.4, we can also see that g(a1, . . . , an) =
(max Ap(R, a)) − a.

Lemma 4.4. [12, Lemma 1.1] Let N be a positive integer.

i) If N is odd, then g(2, N + 2) = N .

ii) If 3 ∤ N , then g(3, a, b) = N , where {a, b} = {k ∈ {N + 1, N + 2, N + 3} : 3 ∤ k}.
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iii) If N is even and 4 ∤ N, then g(4, N
2 + 2, N

2 + 4) = N.

Proof. i) Follows immediately by applying the formula for two integers:

g(2, N + 2) = 2(N + 2) − 2 − (N + 2) = N.

ii) Clearly the numbers representable by 3, a, b are also representable by 3, N + 1, N + 2, N + 3 for some
N . Thus

g(3, a, b) = g(3, N + 1, N + 2, N + 3) = N.

iii) Let R be generated by {4, N
2 + 2, N

2 + 4}. If we show that Ap(R, 4) = {0, N
2 + 2, N

2 + 4, N + 4}, then
we are done since g(4, N

2 + 2, N
2 + 4) = (max Ap(R, 4)) − 4. As all of N

2 + 2, N
2 + 4 and N + 4 belong to

R, it is enough to demonstrate that none of the integers N
2 + 2 − 4, N

2 + 4 − 4, N + 4 − 4 is in R.

• If N
2 − 2 ∈ R, then it must be a multiple of 4 since the second and third term are both larger

than N
2 − 2. Thus N

2 is a multiple of 2, which means that N is a multiple of 4, contradicting the
hypothesis.

• If N
2 ∈ R, then arguing as the above, we arrive at the same contradiction.

• If N ∈ R, then N = x14+x2( N
2 +2)+x3( N

2 +4) for some non-negative integers x1, x2, x3. Observe
that this implies that 0 < x2 + x3 (N is not a multiple of 4) and x2 + x3 ≤ 1, because otherwise
N ≥ N + 4, which is impossible. Hence either N = x14 + ( N

2 + 2) or N = x14 + ( N
2 + 4). In both

cases we get that N
2 is even, once more contradicting the fact that N is not a multiple of 4.

Lemma 4.5. [12, Proposition 1.2] If there exists a positive integer d > 1 such that gcd(d, N) = 1, (d−1) |
N and d(d − 1)(d − 3) < N , then there exist a, b, c such that g(a, b, c) = N.

Proof. Let R be generated by
{

d, N
d−1 + d, N + d

}
. We need to prove that

Ap(R, d) =
{

0,
N

d − 1 + d, . . . , (d − 2)
(

N

d − 1 + d

)
, N + d

}
,

because then max Ap(R, d) = N +d, and therefore g(a, b, c) = N +d−d = N. It is clear that if R′ denotes
the set of integers representable by a, b, where gcd(a, b) = 1, then

Ap(R′, a) = {0, b, 2b, . . . , (a − 1)b},

as we have already seen before in Lemma 2.3. If we set a = d and b = N
d−1 + d, we have that

Ap (R′, d) =
{

0,
N

d − 1 + d, . . . , (d − 1)
(

N

d − 1 + d

)}
.

Since (d − 2)( N
d−1 + d) < N + d whenever d(d − 1)(d − 3) < N , we have that{

0,
N

d − 1 + d, . . . , (d − 2)
(

N

d − 1 + d

)}
⊂ Ap(R, d).

Note that (d−1)( N
d−1 +d) = N +(d−1)d ≡ N ≡ N +d (mod d) and that (d−1)( N

d−1 +d) ≥ N +d, which
means that N + d must be in Ap(R, d). This is true because from Ap(R′, d), we had that (d − 1)( N

d−1 + d)
is the smallest representable number for its congruence class modulo d, but N + d is also in the same
congruence class while also being smaller, essentially overriding it. Therefore

Ap(R, d) =
{

0,
N

d − 1 + d, . . . , (d − 2)
(

N

d − 1 + d

)
, N + d

}
.

Since (d − 2)( N
d−1 + d) < N + d, we have that (max Ap(R, d)) − d = N + d − d = N.

Corollary 4.6. [12, Corollary 1.3] Let N be a positive integer such that it is not a multiple of 5, 7 or
11. Then there exist positive integers a, b, c such that g(a, b, c) = N.
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Proof. Assume that 5 ∤ N . We can also assume that 4 | N , since otherwise either Lemma 4.4 (i) or (iii)
would apply depending on whether N is even or odd. By applying Lemma 4.5 it suffices to prove the
statement for N ≤ 5 · 4 · 2 = 40. In view of Lemma 4.4 we can also assume that 3 | N . Thus the only
possible values left for N are multiples of 12 less than or equal to 40, that is, N ∈ {12, 24, 36}. Since
g(5, 8, 9) = 12, g(5, 11, 18) = 24 and g(5, 14, 27) = 36, we are done.

Now we study the case 7 ∤ N and 5 | N . By using Lemma 4.4, we can assume that 3 · 4 · 5 = 60 | N .
In particular, 6 | N , which allows us to apply Lemma 4.5, whence arguing as above, it suffices to prove
the statement for N ≤ 7 · 6 · 4 = 168. As N is a multiple of 60, the only possible values left for N are
N = 60 and N= 120. Since g(7, 17, 33) = 60, and g(7, 27, 73) = 120, these two cases are also covered.

Finally, suppose that 11 ∤ N , and that 5 and 7 divide N . By using this together with Lemma 4.4,
we can assume that 3 · 4 · 5 · 7 = 420 | N , whence 10 | N . By Lemma 4.5 we can restrict ourselves to
N ≤ 11 · 10 · 8 = 880. Since N is a multiple of 420, it suffices to check that the cases N ∈ {420, 840}. We
conclude the proof by pointing out that g(8, 107, 109) = 420 and g(9, 143, 353) = 840.

Lemma 4.7. [12, Proposition 1.4] If N is a positive integer such that N < 4620, then there exist positive
integers a, b, c such that g(a, b, c) = N .

Proof. Note that 3 · 4 · 5 · 7 · 11 = 4620. Hence if N < 4620, then there exists k ∈ {3, 4, 5, 7, 11} such that
k ∤ N . According to the value of k, by applying one of the results presented so far we conclude in any
case that there exist a, b, c such that g(a, b, c) = N .

The following lemma is just of interest.

Lemma 4.8. [12, Lemma 1.5] Let N be a positive integer and let d be the least positive integer such that
d ∤ N . Then d is a prime power.

Proof. If d is not a prime power, then d = pq, with gcd(p, q) = 1 and p ̸= 1 ̸= q. As p, q < d we have that
both p and q divide N , but then d = pq also divides N , contradicting the hypothesis.

The proof of the following result relies on the above lemmas, but also on other propositions and
further lemmas present in the original paper that are not mentioned here, therefore no proof is given.

Theorem 4.9. [12, Theorem 1.11] Let N be a positive integer. Then there exist positive integers a, b, c

such that
g(a, b, c) = N.

I have collected both the results of some of the lemmas and propositions mentioned in the paper
together with the ones proven here into a single corollary, which is stated below.

Corollary 4.10. [12, Proofs of Proposition 1.9 and Corollary 1.3] Let N be a positive integer and d be
the least positive integer such that d ∤ N , and set k = gcd(d, N). Then

N =

g
(

d, N+d
k ,

⌈
N+d

k(d−k)

⌉
d − N+d

k

)
if d < 5 or d(d − 1)(d − 2) < N ;

Specific values (see A.1) if 5 ≤ d < 13 and d(d − 1)(d − 2) ≥ N.

Remark 4.11. In the original paper it is proven that d ≥ 13 implies that d(d − 1)(d − 2) < N, hence
the restriction.

It is important to note that when we are dealing with the linear combination of three positive
integers, the restriction is that gcd(a, b, c) = 1, or in other words, they cannot share a common divisor.
We have already met this fact in the introduction to this thesis, namely the fact that the Frobenius number
existed for the numbers {6, 9, 20} even though gcd(6, 9) = 3 and gcd(6, 20) = 2. The following result by
Johnson, however, is vital in order to significantly restrict the number of triples to be investigated only
to pairwise coprime triples.

Theorem 4.12. [6] Let a1, a2 . . . , an be positive integers. If gcd(a2, . . . , an) = d and ai = da′
i for each

i > 1, then
g(a1, a2 . . . , an) = dg(a1, a′

2, . . . , a′
n) + a1(d − 1).
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Proof. Just like in Lemma 2.4, let m(i) and m′(i) denote the least positive integers congruent to i

(mod a1) representable by a1, a2, . . . , an and a1, a′
2, . . . , a′

n respectively. Notice that since we are reducing
them by (mod a1), m(i) and m′(i) can be represented by a2, . . . , an and a′

2, . . . , a′
n respectively, which

gives
m(i) = a2x2 + · · · + anxn = da′

2x2 + · · · + da′
nxn = d(a′

2xn + · · · + a′
nxn) = dm′(i).

Now we can use Lemma 2.4 and get

g(a1, a2, . . . , an) = max
1≤i≤a1−1

m(i) − a1 = max
1≤i≤a1−1

dm′(i) − a1

= d

(
max

1≤i≤a1−1
m′(i) − a1

)
+ a1(d − 1)

= dg(a1, a′
2, . . . , a′

n) + a1(d − 1).

Remark 4.13. This reduction works for any combination of the integers, as demonstrated later in
Example 5.2. If any of the ai are reduced to 1, the reduction still works if we define g(1, a2, . . . , an) = −1.
This extension still makes sense, because all non-negative numbers can be represented by 1, so the
“largest” non-representable number is indeed −1.

Since Curtis’ proof discouraged looking for a formula for the three integer case, there were important
developments in finding explicit formulae for other cases instead. One of the most important such solutions
for a specific case is the formula for arithmetic progressions. The most generic version for a kind of
arithmetic sequence was given by Selmer [13], for g(a, ha + d, ha + 2d, . . . , ha + kd) with gcd(a, d) = 1
and h, k ≥ 1. We give a proof of this by Tripathi [18], using the same useful notation as in Lemma 2.4.

Firstly, recall that g(a, ha + d, ha + 2d, . . . , ha + kd) denotes the largest N such that the equation

ax0 + (ha + d)x1 + (ha + 2d)x2 + · · · + (ha + kd)xk = a
(

x0 + h

k∑
i=1

xi

)
+ d
( k∑

i=1
ixi

)
= N (4.1)

does not have a solution in non-negative integers. We will now prove a lemma that is necessary for the
proof of the formula later.

Lemma 4.14. [18, Lemma 3] For each 1 ≤ x ≤ a − 1, the least positive integer of the form given in
Equation (4.1) in the class [dx] modulo a is given by ha

(
1 + ⌊ x−1

k ⌋
)

+ dx.

Proof. Let m(dx) denote the least positive integer in the class [dx] modulo a. Then m(dx) is the minimum
value attained by the expression on the left in Equation (4.1), subject to x =

∑k
i=1 ixi and each xi ≥ 0.

If we set x = qk + r with 0 ≤ r ≤ k − 1, then we claim that x0 + h
∑k

i=1 xi is minimized by choosing
xk = q and then either choose xr = 1 and xi = 0 for all other i when r > 0, or choose xr = 0 when r = 0.
Indeed, if x =

∑k
i=1 ixi = x1 + 2x2 + · · · + kxk, then minimizing x0 + h

∑k
i=1 xi corresponds to finding a

partition of x by the integers 1, . . . , k that has the least amount of parts. This is achieved by choosing the
largest integer k as many times as possible (in our case that’s q times), plus one copy of the remainder
r < k. If we choose xk < q, then we need to make up the missing k from x1 + 2x2 + · · · + (k − 1)xk−1,
but no such choice of the form xi = 1, xj = 0 exists where i, j ∈ {1, . . . , k − 1}, i ̸= j. In the case when
1 ≤ x ≤ k, then r = x. Thus the minimum value for x0 + h

∑k
i=1 xi is then h(q + 1) if r ̸= 0 and hq if

r = 0. This can be expressed in one expression by combining these conditions as h
(
1 + ⌊ x−1

k ⌋
)
. Therefore

m(dx) = ha
(
1 + ⌊ x−1

k ⌋
)

+ dx.

Theorem 4.15. [18, Theorem 4] Let a, d, h, k be positive integers, with gcd(a, d) = 1. Then

g(a, ha + d, ha + 2d, . . . , ha + kd) = ha

⌊
a − 2

k

⌋
+ (h − 1)a + d(a − 1).
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Proof. By Lemma 2.4 and Lemma 4.14, we have that

g(a, ha + d, ha + 2d, . . . , ha + kd) = max
1≤x≤a−1

m(dx) − a

= max
1≤x≤a−1

(
ha
(
1 +

⌊
x−1

k

⌋ )
+ dx

)
− a

= ha
(
1 +

⌊
a−2

k

⌋ )
+ d(a − 1) − a

= ha
⌊

a−2
k

⌋
+ (h − 1)a + d(a − 1).

There are a number of immediate consequences one can draw from the above theorem.

Corollary 4.16. Let a, a + d, a + 2d, . . . , a + kd be an arithmetic sequence with gcd(a, d) = 1. Then

g(a, a + d, a + 2d, . . . , a + kd) = a
⌊

a−2
k

⌋
+ d(a − 1).

Proof. Follows immediately from Theorem 4.15 by setting h = 1.

Corollary 4.17. Let a > 1, d > 0 be positive integers with gcd(a, d) = 1. Then

g(a, a + d, a + 2d) =
{

a(a−2)
2 + d(a − 1) if a is even.

a(a−3)
2 + d(a − 1) if a is odd.

Proof. Follows immediately from Corollary 4.16 by setting k = 2 and noticing that if a is even, then
⌊ a

2 ⌋ = a
2 , and if a is odd, then ⌊ a

2 ⌋ = a−1
2 .

Corollary 4.18. Let a > 1 be a positive integer. Then

g(a, a + 1, a + 2) =
{

a2

2 − 1 if a is even.
(a+1)(a−2)

2 if a is odd.

Proof. If we set d = 1 and a is even, from Corollary 4.17 then we have

a(a − 2)
2 + (a − 1) = a2

2 − a + a − 1 = a2

2 − 1,

and if a is odd, then we have

a(a − 3)
2 + (a − 1) = a2 − 3a + 2a − 2

2 = (a + 1)(a − 2)
2 .

Hujter has given the following specific formula in [5], however the proof is given by me because I
could not find the reference mentioned in Ramı́rez Alfonśın’s book [9].

Theorem 4.19. [9, Equation (2.4)] Let a > 2 be an integer. Then

g(a2, a2 + 1, a2 + a) = 2a3 − 2a2 − 1.

Proof. If we investigate the triple (a2, a2+1, a2+a) modulo a2, we see immediately that the second term is
1 (mod a2) and the third term is a (mod a2). Note that with these terms, there are two ways of reaching
[i]: either i(a2 + 1) ∈ i · [1] which corresponds to the second term, or ⌊ i

a ⌋(a2 + a) + (i mod a)(a2 + 1) ∈
⌊ i

a ⌋ · [a] + (i mod a) · [1] with 0 ≤ i mod a ≤ a − 1, which corresponds to a combination of the second
and third term. Note that for all a ≤ i ≤ a2 − 1, the first approach is always greater than the second
approach, and for i < a it is the same value. Recall that for this case, m(i) is the least positive integer
congruent to i (mod a2) that is representable by the triple (a2, a2 + 1, a2 + a). As a result of the above
observations, we can set m(i) = ⌊ i

a ⌋ · [a] + (i mod a) · [1]. Then m(i) is maximal when i = a2 − 1 and

[a2 − 1] = (a − 1) · [a] + (a − 1) · [1] = (a − 1)(a2 + a) + (a − 1)(a2 + 1),
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so we can apply this and Lemma 2.4, which results in

g(a2, a2 + 1, a2 + a) = max
1≤i≤a2−1

m(i) − a2

= (a − 1)(a2 + a) + (a − 1)(a2 + 1) − a2

= (a3 + a2 − a2 − a) + (a3 + a − a2 − 1) − a2

= 2a3 − 2a2 − 1.

Theorem 4.20. [2] Let a, b, c be pairwise coprime integers such that a | (b + c). Then

g(a, b, c) + a =
{

b⌊ ac
b+c ⌋ if ⌊ ac

b+c ⌋ ≥ (a−1)c
b+c ;

c⌊ ab
b+c ⌋ if ⌊ ac

b+c ⌋ ≤ (a−1)c
b+c .

Proof. [17, Theorem 1 (i)] Since a | (b + c), then m(i) is either of the form bx or cy. Assume otherwise,
without loss of generality, that m(i) = bx′ + cy′ with x′ > y′, then

bx′ + cy′ ≡ b(x′ − y′) + (b + c)y′ ≡ b(x′ − y′) ≡ bx′′ (mod a)

for some 0 < x′′ < x′. Additionally, since b ≡ −c (mod a), then bx ≡ −cx ≡ ca − cx ≡ c(a − x) (mod a),
therefore m(bx) = min{bx, c(a − x)}. Note that

bx ≤ c(a − x) ⇐⇒ (b + c)x ≤ ac ⇐⇒ x ≤ ac

b + c
. (4.2)

Observe that also since gcd(b, c) = 1, then b + c divides neither ab nor ac. Then⌊
ab

b + c

⌋
+
⌊

ac

b + c

⌋
= ab

b + c
− s

b + c
+ ac

b + c
− t

b + c
= a − (s + t)

b + c
,

where s = ab (mod (b + c)) and t = ac (mod (b + c)), with 0 ≤ s, t ≤ b + c − 1. Then we can see that
s + t ≡ ab + ac ≡ a(b + c) ≡ 0 (mod (b + c)), therefore (b + c) | (s + t), but s + t < 2(b + c), which results
in the fact that s + t = b + c, and ⌊

ab

b + c

⌋
+
⌊

ac

b + c

⌋
= a − 1. (4.3)

Then, if we apply Lemma 2.4, and notice from Equation (4.2) that the biggest x for which m(x) = bx is
⌊ ac

b+c ⌋ and consequently the biggest x for which m(x) = c(a − x) is ⌊ ac
b+c ⌋ + 1, we get that

g(a, b, c) + a = max
1≤x≤a−1

m(x)

= max
{

b

⌊
ac

b + c

⌋
, c
(

a −
(

1 +
⌊

ac

b + c

⌋))}
= max

{
b

⌊
ac

b + c

⌋
, c

⌊
ab

b + c

⌋}
,

where the last equation follows by Equation (4.3). To complete the proof, note that

b

⌊
ac

b + c

⌋
≥ c

⌊
ab

b + c

⌋
= c
(

a − 1 −
⌊

ac

b + c

⌋)
⇐⇒

⌊
ac

b + c

⌋
≥ (a − 1)c

b + c
,

where the opposite holds true as well, with equality when a = 1.

More such formulae for specific cases can be found in Chapter 2 of Ramı́rez Alfonśın’s book [9].
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5. Explicit formulae for exact cases
when n = 3

Ever since Sylvester introduced this problem to the public, nobody has been able to tackle the Frobenius
problem for n = 3 in a way that would not require some kind of generalization. However, there has
been a recent development in 2017, provided by Tripathi [19], where he proved that there are several
formulae based on certain conditions that actually cover all possible triples for g(a, b, c). Unfortunately,
computational data seems to indicate a discrepancy in Tripathi’s results. However, the ideas of the proofs
are still worth exploring. In this chapter we provide an account of Tripathi’s ideas, and we highlight the
places where the discrepancies occur. Our computational evidence implies that perhaps only a small
change needs to be made to Tripathi’s last two formulae. The preliminary lemmas and definitions are
going to be set up and presented in Section 5.1, then Section 5.2 will showcase the main theorem together
with the author’s modifications, also illustrated by an example.

5.1 Preliminary results and definitions
Recall that we have already seen a notation for the set of non-representable numbers in Section 3.2,
and a notation for the set of representable numbers in Definition 4.3. To reiterate, denote the set of
representable numbers with respect to a1, . . . , an by

R(a1, . . . , an) = {a1x1 + · · · + anxn : x1, . . . , xn ≥ 0}.

We also record the facts that

NR(a1, . . . , an) = N \ R(a1, . . . , an), and g(a1, . . . , an) := max NR(a1, . . . , an).

We know from Lemma 2.4 that g(a, b, c) is of the form bx + cy − a with some x, y ≥ 0, so our goal is
to find a pair of non-negative integers (x0, y0) for which g(a, b, c) = bx0 + cy0 − a. We also know by the
same theorem that g(a, b, c) is the maximum among the largest integers in NR(a, b, c) ∩ [i] taken over
all non-zero residue classes [i] (mod a). Note that since this chapter deals with the Frobenius number
g(a1, . . . , an) when n = 3, then by Lemma 2.4, m(i) denotes the least positive integer that is representable
by a, b, c congruent to i (mod a). We can now introduce a lemma that further restricts the number of
triplets that needs to be considered.

Lemma 5.1. [19, Lemma 1] Let gcd(a, b) = 1 and a < b. Then

g(a, b, c) =
{

g(a, b) if c ∈ R(a, b);
g(a, b) − a if c = g(a, b).

Proof. If c ∈ R(a, b), then c is representable by definition, therefore

NR(a, b, c) = NR(a, b) =⇒ g(a, b, c) = max NR(a, b, c) = max NR(a, b) = g(a, b).

If c = g(a, b) and n < g(a, b), then n ∈ R(a, b, c) ⇐⇒ n ∈ R(a, b). If m∗(x) and m(x) denote the
least positive integer in R(a, b) ∩ [x] and R(a, b, c) ∩ [x] respectively, then we have that m∗(x) = m(x),
except for [x] = [c] by the previous observation. Since m(c) = c = g(a, b), it follows from Lemma 2.4 that

g(a, b, c) = max
1≤x≤a−1

m(x) − a = m(c) − a = c − a = g(a, b) − a.
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We can therefore restrict our attention to c < g(a, b) = ab − a − b, since by Definition 1.1, all c > g(a, b)
are representable by a, b.

Example 5.2. To see these theorems in action, let us take the Chicken Nugget example from before.
We have then

g(6, 9, 20) = 3 · g(2, 3, 20) + 20 · (3 − 1) = 3 · g(2, 3) + 40 = 3 + 40 = 43,

which is exactly what we got before as well. Alternatively we could have also reduced 6 and 20, also
resulting in

g(6, 9, 20) = 2 · g(3, 9, 10) + 9 · (2 − 1) = 2 · g(3, 10) + 9 = 2 · 17 + 9 = 43.

Alternatively, as mentioned in Remark 4.13, we can reduce it twice by setting g(1, b, c) = −1 in the
following way:

g(6, 9, 20) = 3 · g(2, 3, 20) + 20 · (3 − 1)
= 3 ·

(
2 · g(1, 3, 10) + 3 · (2 − 1)

)
+ 40 = 3 ·

(
(−2) + 3

)
+ 40 = 43.

This has already proven to be very useful, but we can do even better with the help of defining two
new variables k and ℓ in the following way:

k :=
⌊c

b

⌋
, ℓ := cb−1 (mod a). (5.1)

Remark 5.3. Here ℓ is the least positive representative in its congruence class. Furthermore, in light
of Theorem 4.12, we are assuming that the necessary reductions have already been made, so the inverse
b−1 exists.

With these, we can further restrict ourselves to ℓ > k as a result of the following lemma.

Lemma 5.4. [19, Lemma 2] Let a < b < c and gcd(a, b) = 1. If ℓ ≤ k, then g(a, b, c) = g(a, b).

Proof. Since c ≡ bℓ (mod a), we can write c = am + bℓ for some m ∈ Z. Then, since ℓ ≤ k = ⌊ c
b ⌋ ≤ c

b

and a, b, k, ℓ > 0, we have that

m = c − bℓ

a
≥

c − b( c
b )

a
≥ 0.

This means that c is representable by a, b with non-negative integers m, ℓ, so therefore g(a, b, c) = g(a, b)
by Lemma 5.1.

As noted earlier, we want to find a pair (x0, y0) such that g(a, b, c) = bx0 + cy0 − a with x0, y0 ≥ 0.

To this end, we are going to use the notation v(x, y) := bx + cy and call this the v-value of (x, y).

Lemma 5.5. [19, Lemma 3] Let a, b, c be pairwise coprime positive integers. Then

g(a, b, c) = max
1≤x≤a−1

{
min

0≤t≤a−1
v
(
(x + (a − ℓ)t) mod a, t

)}
− a.

Proof. Since gcd(a, b) = 1, by Lemma 2.4 and Lemma 2.3 we have that

g(a, b, c) =
(

max
1≤i≤a1−1

m(i)
)

− a =
(

max
1≤x≤a1−1

m(bx)
)

− a.

For a fixed x0 with 1 ≤ x0 ≤ a − 1, we have that

bx + cy ≡ bx0 (mod a) ⇐⇒ b(x − x0) ≡ −cy ≡ −bℓy (mod a) ⇐⇒ x ≡ x0 − ℓy (mod a).

Hence for 0 ≤ t ≤ a − 1, the integers b
(
(x0 − ℓt) mod a

)
+ ct all belong to the class [bx0]. To ensure that

we are working with positive numbers, note that (x0 − ℓt) ≡ (x0 − ℓt + at) ≡
(
x0 + (a − ℓ)t

)
(mod a).
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Minimizing b
(
(x0 −ℓt) mod a

)
+ct over all t gives the least representable integer congruent to bx0 modulo

a, and then maximizing over all 1 ≤ x ≤ a − 1 gives the equation stated in the lemma.

Since we are trying to minimize over all t to find the smallest representative of the congruence class
[bx0] (mod a), it makes sense to define a local minimum.

Definition 5.6. Let 1 ≤ x0 ≤ a − 1. For 1 ≤ y0 ≤ a − 2, the integer v(x0, y0) is said to be a local
minimum if

v(x0, y0) ≤ min
{

v
(
(x0 − ℓ) mod a, y0 + 1

)
, v
(
(x0 + ℓ) mod a, y0 − 1

)}
.

If y0 = 0, then v(x0, 0) is said to be a local minimum if v(x0, 0) ≤ v
(
(x0 − ℓ) mod a, 1

)
.

If y0 = a − 1, then v(x0, a − 1) is said to be a local minimum if v(x0, a − 1) ≤ v
(
(x0 + ℓ) mod a, a − 2

)
.

We say that two local minima, v(x0, y0) and v(x′
0, y′

0), are consecutive if there is no local minimum v(x, y)
with y0 < y < y′

0.

We are able to speed up the process of finding the minimum v-value of each congruence class by
restricting ourselves to the v-values at local minima. To illustrate how this process works, we give a quick
example.

Example 5.7. Let a = 5, b = 13, and c = 19. Then

ℓ ≡ 19 · 13−1 ≡ (−1) · 3−1 ≡ (−1) · 2 ≡ 3 (mod 5).

Our process is to run through all 0 ≤ t ≤ a − 1 for the v-values given in Lemma 5.5. Set x0 = 1 and
t = 0, and let us check for local minima starting from v(1, 0). Then the next step t = 1 is

v(1 + (5 − 3) mod 5, 0 + 1) = v(3, 1) = 3 · 13 + 1 · 19 > 1 · 13 + 0 · 19 = v(1, 0).

Continuing these steps, we are able to set up the following inequalities:

v(1, 0) < v(3, 1) > v(0, 2) < v(2, 3) < v(4, 4).

From this we can immediately see that there are two local minima, v(1, 0) and v(0, 2), which also are
consecutive local minima.

Lemma 5.8. [19, Lemma 4] For each 0 ≤ t ≤ a − 1, the difference between two consecutive v-values for
the congruence class [bx] is either b(a − ℓ) + c or c − bℓ.

Proof. Recall that from Lemma 5.5, the v-values for [bx] are given by v
(
(x + (a − ℓ)t) mod a, t

)
. Then

checking the difference of two consecutive v-values gives

v
((

x + (a − ℓ)(t + 1)
)

mod a, t + 1
)

− v
((

x + (a − ℓ)t
)

mod a, t
)

=

= b
((

x + (a − ℓ)(t + 1)
)

mod a
)

+ c(t + 1) − b
((

x + (a − ℓ)t
)

mod a
)

− ct =

= b
(
(a − ℓ) mod a

)
+ c = b(a − ℓ) + c or c − bℓ

In order to compare the v-values at local minima in the congruence class [bx], we see from the above
lemma that the list of these integers can be generated in two ways. First option is increasing the left
component by a − ℓ while incrementing the right component by 1, the other one is decreasing the left
component by ℓ while incrementing the right component by 1. The result will be the same because of
the modular reduction, but this gives us two approaches, “Approach 1” and “Approach 2” respectively.
Let us call each such operation a step. We are going to mainly focus on Approach 1, that is given by the
mapping (x, y) →

(
(x + a − ℓ) mod a, y + 1

)
.

From Example 5.7, we have seen that a potential local minimum may happen when the x component
reduces in value modulo a, i.e. when its value reaches or surpasses a. Since we are adding a − ℓ to it, we
will be able to utilize their ratio in order to faster identify the other local minima.
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Definition 5.9. Let q, r be non-negative integers defined as

q :=
⌊

a

a − ℓ

⌋
, r := a − q(a − ℓ).

In other words, q and r are the quotient and remainder of the division a
a−ℓ respectively. Thus

a = q(a − ℓ) + r with q ≥ 1 and 0 ≤ r < a − ℓ.

Remark 5.10. It is true that r ̸= 0, except for ℓ = a − 1. This can be seen from the fact that if r = 0,
then (a − ℓ) | a, and (a − ℓ) | c because a |

(
c + b(a − ℓ)

)
. Since by assumption gcd(a, c) = 1, the only

way for (a − ℓ) to divide both a and c is when ℓ = a − 1. The case when ℓ = a − 1 is a special case of
Theorem 5.14, but it has also already been covered in Theorem 4.20.

We have tackled so far the challenge of finding out the difference between consecutive v-values. The
next lemma will go one step further, stating the difference between consecutive local minima, which is
crucial in order to determine m(bx). The following lemma gives the said difference, albeit it substantially
differs from Tripathi’s lemma, which I have found to be incorrect (c.f. Remark 5.12 and Example 5.13).
The corrected version is presented below.

Lemma 5.11. [19, Lemma 5, corrected] Let v(x0, y0) and v(x′
0, y′

0) be consecutive local minima with
0 ≤ x0, x′

0 < ℓ, and let rx0 denote a − x0 (mod a − ℓ). Then

v(x′
0, y′

0) − v(x0, y0) = v
(

(a − rx0 mod ℓ) − x0,

⌊
a − x0

a − ℓ

⌋
+
⌊

a − rx0

ℓ

⌋)
.

Proof. Since we are deploying Approach 1, we are increasing the x-component by (a − ℓ) and the y-
component by 1. In practice, if we think inside a modular grid, the values can only increase until we
reach a − (a − ℓ) = ℓ, since afterwards we wrap around to the bottom. This wrapping around is the same
as decreasing the x value by ℓ, which is our Approach 2. This essentially cuts our grid into two sections,
where the consecutive x values either only increase or only decrease. In Figure 10, the dashed red line at
ℓ = 4 divides the grid into these sections. The lower red section is where the x value is only increasing
and the upper section, where the x value is only decreasing. As a result of this, the only x values for
which v(x, y) can be a local minimum are 0 ≤ x < ℓ, because if the x value is in the upper (decreasing)
section, at the next step it has to decrease, therefore it cannot be a local minimum by Definition 5.6.

Figure 10: The modular grid for g(11, 15, 16) when x = 1. Note the axis labels.

Therefore, for a starting value x0, for the number of increases, we need to find how many copies
of (a − ℓ) fit into (a − x0), and then similarly, for the number of decreases, how many copies of ℓ fit
into (a − rx0). The former is clearly ⌊ a−x0

a−ℓ ⌋ and the latter is ⌊ a−rx0
ℓ ⌋, the sum of which is the difference

between the initial y0 value and the consecutive y′
0 value.
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To calculate the change from x0, recall that we add (a−ℓ) and subtract ℓ as many times as mentioned
above, respectively. Observe also that

a − x0 =
⌊

a − x0

a − ℓ

⌋
(a − ℓ) + (a − x0 mod a − ℓ) =⇒

⌊
a − x0

a − ℓ

⌋
(a − ℓ) = a − rx0 − x0,

a − rx0 =
⌊

a − rx0

ℓ

⌋
ℓ + (a − rx0 mod ℓ) =⇒ −

⌊
a − rx0

ℓ

⌋
ℓ = rx0 − a + (a − rx0 mod ℓ).

Now, if we add the two expressions on the right side above, we get that

x′
0 − x0 =

⌊
a − x0

a − ℓ

⌋
(a − ℓ) −

⌊
a − rx0

ℓ

⌋
ℓ = a − rx0 − x0 + rx0 − a + (a − rx0 mod ℓ)

= (a − rx0 mod ℓ) − x0.

Inserting these results into v(x′
0, y′

0) − v(x0, y0) yields the statement of the theorem.

Remark 5.12. Tripathi’s original formulation is the following:

“Let v(x0, y0) and v(x′
0, y′

0) be consecutive local minima, with 0 ≤ x0, x′
0 < a − ℓ. Then

v(x′
0, y′

0) − v(x0, y0) =
{

v(a − ℓ − r, q + 1) if 0 ≤ x0 < r;
v(−r, q) if r ≤ x0 < a − ℓ.”

Example 5.13. One can easily check that this does not work, for example, for the triple (11, 15, 16),
the same triple that was used in Figure 10. For this triple, a = 11, q = 1 and ℓ = r = 4. By Tripathi’s
lemma, we should expect the next local minimum from v(1, 0) to be v(1, 0) + v(11 − 4 − 4, 2) = v(4, 2),
since x0 = 1 < 4 = r. However, we can clearly see from Figure 10 that (4, 2) is not a local minimum,
but rather the next one, namely v(0, 3). The author’s correction, however, yields the correct difference
between the above mentioned local minima. If we set (x0, y0) = (1, 0), then rx0 = 11 − 1 (mod 7) = 3,

and

v(0, 3) − v(1, 0) = v
(

(a − rx0 mod ℓ) − x0,

⌊
a − x0

a − ℓ

⌋
+
⌊

a − rx0

ℓ

⌋)
= v

(
(11 − 3 mod 4) − 1,

⌊
11 − 1
11 − 4

⌋
+
⌊

11 − 3
4

⌋)
= v

(
(8 mod 4) − 1,

⌊
10
7

⌋
+
⌊

8
4

⌋)
= v(−1, 3),

which is indeed the correct solution.

Unfortunately, since Tripathi’s Lemma 5 has turned out to be incorrect, anything based on this
cannot be justified without further investigation. At this point I suspect that with my corrected version,
the subsequent Lemma 7 in Tripathi’s [19] paper would also hold, but this assumption could not be
verified due to time constraints. This and the validity of the other results could be verified in a future
paper.

5.2 The explicit formulae for g(a, b, c)
For completeness’ sake, we are going to state Tripathi’s formulae, however, as a result of personal investi-
gations, it has come to light that unfortunately some of the preceding lemmas are incorrect, therefore the
validity of these theorems cannot be fully justified. Furthermore, after a substantial checking of the last
two theorems during the personal investigations, it is clear that the last two formulae given by Tripathi
are incorrect. For these reasons, no proofs are going to be presented in this section.

A potential fix for these shortcomings is proposed by the author, which are going to be highlighted
in blue and explained in the remark afterwards. These conjectured fixes rely on the author’s computer-
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assisted analysis after testing several different ideas. An example is also going to be provided to showcase
the discrepancies at the end of this section.

Theorem 5.14. [19, Theorem 3] If ℓ > k and br < cq, then

g(a, b, c) + a =
{

b
(
(λ + 1)(a − ℓ) + r − 1

)
if λ ≥ c(q−1)−br

b(a−ℓ)+c ;
b(a − ℓ − 1) + c(q − λ − 1) if λ ≤ c(q−1)−br

b(a−ℓ)+c ,

where λ :=
⌊

cq−br
b(a−ℓ)+c

⌋
.

Definition 5.15. Set A := br − cq, B := b(a − ℓ − r) + c(q + 1). Then define

Λ :=
⌊

r

a − ℓ − r

⌋
, ∆ :=

⌊
A

B

⌋
; Λ′ :=

⌊
a − ℓ − r

r

⌋
, ∆′ :=

⌊
B

A

⌋
.

Now we can state the main theorem, amended by the author’s suggested corrections in blue text.

Theorem 5.16. [19, Theorem 5] Let ℓ > k and br > cq. Let u ≡ a−ℓ( mod r), and let µ′ be the smallest
non-negative integer m for which ⌊ mB

A ⌋ = ⌊ m(a−ℓ−r)
r ⌋, but ⌊ (m+1)B

A ⌋ ≠ ⌊ (m+1)(a−ℓ−r)
r ⌋.

a) If µ′ < ⌊ r
u ⌋,

g(a, b, c) + a = max
{

b(r − µ′u − 1), b(u − 1) + c
(
µ′(q + 1) + (⌊ (a−ℓ−r)µ′

r ⌋ + 1)q
)}

+ cq
⌊

(a−ℓ−1)
r

⌋
.

In particular,

i) if Λ > ∆,

g(a, b, c) + a = max
{

b
(
r − ∆(a − ℓ − r) − 1

)
, b(a − ℓ − r − 1) + c

(
∆(q + 1) + q)

)}
+ cq,

ii) if ∆′ > Λ′,

g(a, b, c) + a = max
{

b(r − 1), b
(
(a − ℓ − 1) mod r

)
+ cq

}
+ cq

⌊
(a−ℓ−1)

r

⌋
.

b) If µ′ > ⌊ r
u ⌋, then let X = {xi : 0 ≤ i ≤ µ′}, where

xi = r
(
⌊ (a−ℓ−r)i

r ⌋ + 1
)

− (a − ℓ − r)i.

Set yi = q
(
⌊ (a−ℓ−r)i

r ⌋ + 1
)

+ (q + 1)i for 0 ≤ i ≤ µ′. Let xm = minX for some 0 ≤ m ≤ µ′, and let
d be the largest positive integer such that xd + xm ∈ X. Then

g(a, b, c) + a = max
{

b(xm − 1) + cyd, b(xm−1 − xµ′ − 1) + cyµ′

}
+ cq⌊ a−ℓ−1

r ⌋.

Remark 5.17. In the statement of the theorem, the first blue amendment was originally

“and let µ′ be the largest non-negative integer m for which ⌊ mB
A ⌋ = ⌊ m(a−ℓ−r)

r ⌋”,

and the second blue statement was

“Let d1 = ⌈ r
u ⌉u−r, and d2 = minX. Let pi be the largest positive integer such that xpi

+di ∈ X
for i = 1, 2. Then

g(a, b, c) + a = max
{

b(d1 − 1) + cyp1 , b(d2 − 1) + cyp2

}
+ cq⌊ a−ℓ−1

r ⌋.”
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Example 5.18. To illustrate the differences between Tripathi’s theorem and the author’s corrections,
let us take the triple (100, 103, 111). In this case A = 3700, B = 2900, a = 100, ℓ = r = 37. If we write out
the values of ⌊ mB

A ⌋ and ⌊ m(a−ℓ−r)
r ⌋ respectively for 0 ≤ m ≤ 20, and mark with red text the m values

for which the two expressions equal, then the difference in the formulation becomes evident:⌊
mB

A

⌋
= {0, 0, 1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15},⌊

m(a − ℓ − r)
r

⌋
= {0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 14}.

In Tripathi’s formulation, µ′ = 10 since the 10th number is the largest value of m for which the two
expression are equal. However, it grossly overestimates the Frobenius number as a result, therefore I
assumed that Tripathi meant to stop after the first time they are unequal. My correction is therefore
to achieve just that, giving µ′ = 3. Continuing, since all conditions are satisfied for part b) of Theorem
5.14, let us write out all necessary variables. Let us first consider Tripathi’s original way of defining these
variables:

X = {37, 11, 22, 33},

Y = {1, 3, 6, 9},

d1 = 15, p1 = 2 =⇒ yp1 = 6,

d2 = 11, p2 = 2 =⇒ yp2 = 6.

These values can be easily verified, which then lead to the following result:

g(a, b, c) = max
{

b(d1 − 1) + cyp1 , b(d2 − 1) + cyp2

}
+ cq⌊ a−ℓ−1

r ⌋ − a

= max
{

103 · 14 + 111 · 6, 103 · 10 + 111 · 6
}

+ 111 − 100
= 103 · 14 + 111 · 7 − 100 = 2119,

however, unfortunately, the correct value of g(100, 103, 111) = 1707. This overshooting becomes more
and more egregious as larger numbers are considered. Now let us calculate the same with my corrections:

X = {37, 11, 22, 33},

Y = {1, 3, 6, 9},

xm = 11, d = 2 =⇒ yd = 6,

xm−1 = 37, xµ′ = 33, yµ′ = 9.

These values then lead to the following result:

g(a, b, c) = max
{

b(xm − 1) + cyd, b(xm−1 − xµ′ − 1) + cyµ′
}

+ cq⌊ a−ℓ−1
r ⌋ − a

= max
{

103 · 10 + 111 · 6, 103 · 3 + 111 · 9
}

+ 111 − 100
= 103 · 10 + 111 · 7 − 100 = 1707,

which is indeed the correct result, which can be easily verified by Rødseth’s algorithm [11], or any other
suitable algorithm.

The author came across the first discrepancy after trying to find a triple to demonstrate part b) of
the above theorem. After failing doing it by hand, the theorem was implemented in python to check it
against Rødseth’s algorithm. Computational evidence suggested that out of the integers triples for which
Theorem 5.20 b) can be applied, about 23% is incorrect. The same computational comparison was run
for 27 million triples with the author’s correction against Rødseth’s algorithm with a perfect result, i.e.
for all tested numbers, the values matched up. For the implementation of Rødseth’s algorithm please
refer to Appendix B.
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A. Appendix

A.1 Specific values for d < 13

N d g(a, b, c)
12 5 g(5, 8, 9)
24 5 g(5, 11, 18)
36 5 g(5, 14, 27)
48 5 g(5, 17, 53)
60 7 g(7, 17, 33)
120 7 g(7, 27, 73)
180 7 g(7, 37, 187)
420 11 g(8, 107, 109)
840 11 g(9, 143, 353)

Table A.1: Suggested Frobenius number triples for a given N such that g(a, b, c) = N .

A.2 Results for Approach 2

In this section, I am going to give an account of all the theorem and lemmas of Tripathi’s [19] paper that
concern Approach 2, that is when our main approach is decreasing the x component of v(x, y) by ℓ, as
opposed to Approach 1, where we were adding (a − ℓ).

Definition A.1. Let q, r be non-negative integers defined as

q :=
⌊a

ℓ

⌋
, r := a − qℓ.

In other words, q and r are the quotient and remainder of the division a
ℓ respectively. Thus a = qℓ + r,

with q ≥ 1 and 0 ≤ r < ℓ.

Remark A.2. It is true that r ̸= 0 unless ℓ = 1. This can be seen from the fact that if r = 0, then ℓ | a,
and ℓ | c because a | c − bℓ. Since by assumption gcd(a, c) = 1, the only way for ℓ to divide both a and c

is when ℓ = 1. The case ℓ = 1 implies that ℓ ≤ k, which Lemma 5.4 has already covered.

Lemma A.3. [19, Lemma 6] Let v(x0, y0) and v(x′
0, y′

0) be consecutive local minima, with 0 ≤ x0, x′
0 < ℓ.

Then

v(x′
0, y′

0) − v(x0, y0) =
{

v(r, q) if 0 ≤ x0 < ℓ − r;
v
(

− (ℓ − r), q + 1
)

if ℓ − r ≤ x0 < ℓ.

Theorem A.4. [19, Theorem 4] If ℓ > k and b(ℓ − r) < c(q + 1), then

g(a, b, c) + a =
{

b(ℓ − 1) + c(q − 1) if 0 ≤ r < ℓ − k;
b(r − 1) + cq if ℓ − k ≤ r < ℓ.
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For Approach 2, we state the following parallel definitions with the corresponding suggested correc-
tions for Tripathi’s results, written in blue text as well.

Definition A.5. Set A := b(ℓ − r) − c(q + 1), B := br + cq. Then define

Λ :=
⌊

ℓ − r

r

⌋
, ∆ :=

⌊
A

B

⌋
; Λ′ :=

⌊
r

ℓ − r

⌋
, ∆′ :=

⌊
B

A

⌋
.

Theorem A.6. [19, Theorem 6] Let ℓ > k and b(ℓ − r) > c(q + 1). Let u ≡ r(mod ℓ − r), and let µ′ be
the smallest non-negative integer m for which ⌊ mB

A
⌋ = ⌊ mr

ℓ−r ⌋, but ⌊ (m+1)B

A
⌋ ≠ ⌊ (m+1)r

ℓ−r ⌋.

a) If µ′ ≤ ⌊ ℓ−r
u ⌋,

g(a, b, c) + a = max
{

b(ℓ − r − µ′u − 1), b(u − 1) + c
(
µ′q + (⌊ rµ′

ℓ−r ⌋ + 1)(q + 1)
)}

+ c
(
(q + 1)⌊ ℓ−1

ℓ−r ⌋ − 2
)
.

In particular,

i) if Λ > ∆,

g(a, b, c) + a = max
{

b(r − 1) + cq(∆ + 2), b
(
ℓ − (∆ + 1)r − 1

)
+ c(q − 1)

}
,

ii) if ∆′
> Λ′

,

g(a, b, c) + a = max
{

b
(
r − 1 mod (ℓ − r)

)
+ c(q + 1), b(ℓ − r − 1)

}
+ c
(
(q + 1)⌊ ℓ−1

ℓ−r ⌋ − 2
)
.

b) If µ′ > ⌊ ℓ−r
u ⌋, then let X = {xi : 0 ≤ i ≤ µ′}, where

xi = (ℓ − r)
(
⌊ ri

ℓ−r ⌋ + 1
)

− ri.

Set yi = (q + 1)
(
⌊ ri

ℓ−r ⌋ + 1
)

+ qi for 0 ≤ i ≤ µ′. Let xm = minX for some 0 ≤ m ≤ µ′, and let d be
the largest positive integer such that xd + xm ∈ X. Then

g(a, b, c) + a = max
{

b(xm − 1) + cyd, b(xm−1 − xµ′ − 1) + cyµ′

}
+ c
(
(q + 1)⌊ ℓ−1

ℓ−r ⌋ − 2
)
.

Remark A.7. The original statement for the first blue line is

“and let µ′ be the largest non-negative integer m such that ⌊ mB

A
⌋ = ⌊ mr

ℓ−r ⌋”,

and the second blue text was written in the following way:

“Let d1 = ⌈ ℓ−r
u ⌉u − (ℓ − r), and d2 = minX. Let pi be the largest positive integer such that

xpi
+ di ∈ X for i = 1, 2. Then

g(a, b, c) + a = max
{

b(d1 − 1) + cyp1 , b(d2 − 1) + cyp2

}
+ c
(
(q + 1)⌊ ℓ−1

ℓ−r ⌋ − 2
)
.”

Just as previously, these corrections are also based on computer-assisted investigation, where these
parallel theorems also failed to the same extent as Approach 1 with a 23% failure rate.
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B. Python code for Rødseth’s algo-
rithm

Rødseth’s algorithm for finding the Frobenius number is restricted to three pairwise coprime positive
integers, however, this is not an issue considering the fact that Johnson’s formula (Theorem 4.12) allows
all valid triples to be reduced to pairwise coprime integers. The algorithm that I implemented in Python
is the one mentioned in Ramı́rez Alfonśın’s [9] book in Section 1.1.1.

1 def rodseth (A,B,C):
2

3 # Check if triple is relatively prime
4 if gcd(A,gcd(B,C))==1:
5

6 # Reduce the numbers to pairwise coprime
7 d_ab , d_bc , d_ac = gcd(A,B), gcd(B,C), gcd(A,C)
8 a, b, c = int(A/d_ab/d_ac), int(B/d_ab/d_bc), int(C/d_bc/d_ac)
9

10 # Perform Rodseth ’s main algorithm
11 b_mod =b % a
12 c_mod =c % a
13 s_0 = (pow(b_mod ,-1,a)* c_mod ) % a
14

15 s_list =[a,s_0] #s_0 = index 1
16 q_list =[0] #q_1 = index 1
17 p_list =[0 ,1] #p_0 = index 1
18

19 while b* s_list [-1]-c* p_list [ -1] > 0:
20 q_list . append (ceil( s_list [ -2]/ s_list [ -1])) #q_1 = ceil(s_ { -1}/ s_0)
21 s_list . append ( q_list [ -1]* s_list [-1]- s_list [ -2]) # s_1 = q_1 * s_0 - s_ { -1}
22 p_list . append ( q_list [ -1]* p_list [-1]- p_list [ -2]) #p_1 = q_1 * p_0 - p_ { -1}
23

24 pairwise_coprime_result = -a + b*( s_list [ -2] -1)+c*( p_list [ -1] -1) -min(b* s_list
[-1],c* p_list [ -2])

25

26 # Use Johnson ’s reduction formula to get the result
27 frobenius_number = d_ab*d_bc*d_ac* pairwise_coprime_result + A*( d_bc -1) + B*( d_ac

-1) + C*( d_ab -1)
28

29 return int( frobenius_number )
30

31 else:
32 return f"The Frobenius number does not exist for the numbers {A,B,C} as they

share a common divisor of {gcd(A,gcd(B,C))}."
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