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Abstract

GNSS is currently the most prominent method for outdoor positioning, providing an accuracy
of approximately 5 metres in good conditions. However, for environments such as dense city
areas or indoors, a GNSS signal reception might not be possible. An alternative method
of positioning is the fingerprint-based method, which has been widely adopted for indoor
positioning by sampling the signal strength of WiFi beacons. This method can also be
deployed for outdoor positioning by using the signal strength of mobile network cells.

This thesis presents several fingerprint-based positioning models using Gaussian Processes
(GPs) and Sparse Gaussian Processes (SGPs) to model the signal strength propagation. A
combination of global and local optimisation is used to find the position of highest likelihood,
which yields our predicted position.

Two baseline positioning methods were used to compare with our SGP models, namely the
Weighted K-Nearest Neighbours (WKNN) algorithm and the Weighted Centroid Localisa-
tion (WCL) algorithm. When validating against the most extensive and realistic dataset,
the WKNN achieved an approximately 20% smaller mean error than that of our proposed
model. When validating with data not suited for WKNN our proposed model performed
with approximately 33% better accuracy than that of WCL.
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1 Introduction

1.1 Background

Although Global Navigational Satellite Systems (GNSS) offer reliable and accurate positioning for
open space areas, one potential problem is the fact that the received signal is prone to disruptions.
For accurate positioning, a direct Line-Of-Sight (LOS) to four or more satellites is required [1],
which is not always possible to achieve. Some environments, such as dense city areas, provide Non-
Line-Of-Sight (NLOS) signals at best, meaning that the received signals have been distorted [1].
Other environments may exhibit no signal reception and therefore no positioning. Examples of such
environments are indoor, underground, urban canyons and dense forests [2]. For the environments
that provide a precise GNSS positioning the issue arises of GNSS receivers exhibiting a large power
consumption [3].

An alternative to GNSS positioning is fingerprint-based positioning. By recording the particular
characteristics at several locations we can construct a model that predicts an estimated position
when given a set of characteristics. One such characteristic that has been widely used for fingerprint
positioning refers to the signals sent from cellular network providers to be received by mobile devices.
Specifically, a unit of measurement called Received Signal Strength (RSS), which is measured in dBm.
Cell towers, referred to as cells, transmit and receive signals from nearby mobile devices. As such a
mobile device can record a position with the help of GNSS and also include the RSS from nearby
cells. When sufficient amounts of data have been gathered it is possible to create a predicted RSS
distribution over an area that can be used for fingerprint-based positioning.

A common method for modelling RSS distributions involves representing each distribution by a Gaus-
sian Process (GP) [4]–[6]. A process that is similar to the GP is the Sparse Gaussian Process (SGP),
which approximates the GP but is more efficient regarding memory demands and computational com-
plexity. Given an RSS for a certain cell, we can use a GP to determine the likelihood of measuring
that RSS at any given position. If provided with a set of multiple RSS values to different cells, the
combined likelihood can also be determined for any given position. The problem then remains to find
the position that offers the maximum likelihood of assuming the given set of RSS values, which for
example can be done iteratively or through other approximations. If it is possible to create a method
that consistently and effectively finds the optimal position according to the model, we have a solid
foundation for providing an alternative to GNSS positioning. This model can then be compared with
other methods of fingerprint positioning for comparison. Common examples of such algorithms are
the Weighted Centroid Localisation (WCL) and the Weighted K-Nearest Neighbours (WKNN).

Fingerprint positioning solves both of the issues arising from using GNSS positioning because of the
reliability of the cellular network and the low power consumption of signalling. Another advantage of
using a fingerprinting model based on RSS values is that it is adaptable. The signal provider does not
have to be a cell, and the receiver does not have to be any specific mobile device. The training phase
simply requires the collection of RSS, cell ID and positional data to be able to predict the position
of future similar devices.

While the accuracy of a fingerprint positioning model certainly is of interest, another relevant metric is
scalability. It is expected of the model to be able to provide positioning quickly and scale appropriately
as the amount of collected data grows. In this respect, scalability specifically refers to the scaling of
the computational load as the amount of training data increases.
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1.2 Goal

The goal of this thesis is to develop a positioning model using cell fingerprinting with the help of
GPs. The primary metrics of importance for the developed model will be accuracy and scalability.
Accuracy will be measured by the mean error when predicting positions for a validation data set and
scalability will be measured as computational complexity and memory usage. From these definitions
the following questions are to be answered:

• Which GP-based model offers the highest accuracy?

• How does the optimal model perform compared to common methods of positioning such as
WCL or WKNN?

• What is the tradeoff between accuracy and scalability?

1.3 Contribution

The work is expected to contribute with the following:

• A new method, or modification of existing methods, providing scalable fingerprint-based posi-
tioning using GPs.

• Performance comparisons of multiple variants of GP-based positioning.
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2 Theory

2.1 Cell Fingerprinting

Cell fingerprinting consists of two phases: the offline training phase and the online phase. The
offline training phase consists of devices providing their current position and characteristics associated
with that position. The collected data is then used to build a model capable of predicting new
positions given a set of characteristics. The characteristic that traditionally is recorded for a cell-
based fingerprinting model is the RSS value from a cell. The online phase uses the previously built
model to compute an estimated position given a new set of reported characteristics, in our case a set
of RSS measurements. We will now continue by defining a GP and how it can be used to provide a
predicted position.

2.2 Gaussian Processes

In this thesis an uppercase letter will be used to signify a matrix and a letter with bold type will
signify a vector. For any further confusion regarding notation, we refer to the list of symbols and
notations on page vi.

A GP is a collection of random variables, any finite number of which have a joint Gaussian distribution
[7]. It defines a function value f(x) that has a Gaussian (normal) distribution for any variable x ∈ Rd,
where d defines the number of dimensions. Let x′ define a secondary arbitrary position of the same
shape as x. By defining the mean and covariance function over positions x and x′ of a real process
f(x) as

m(x) = E[f(x)],
k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

(2.1)

the GP is expressed as

f(x) ∼ GP(m(x), k(x, x′)). (2.2)

We will initially assume GPs with a zero mean function, but non-fixed mean functions will also be
considered further on. Covariance functions are positively definite and describe how closely correlated
two variables are. The covariance function that will be used throughout this thesis is the Gaussian
kernel, defined by

k(x, x′) = σ2
f exp

(
− 1

2ℓ2 (x− x′)⊤(x− x′)
)

. (2.3)

This is a widely used kernel, where the two parameters ℓ and σf affect the smoothness and vertical
variation of a posterior distribution, respectively. An important feature of the Gaussian kernel is that
it has a convenient gradient with respect to either x or x′, which will be useful further on.
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2.2.1 Posterior Distribution

Let X ∈ Rd×n denote the matrix of training positions and let xi ∈ Rd denote the ith training
input. Thus, X consists of n columns of training positions. For positioning along a 2D plane, X
is of size R2×n, consisting of latitudinal and longitudinal values. Furthermore, K defines a matrix
of covariances according to Kij = k(xi, x′

j) from (2.3). To realistically model for the noisy data a
normally distributed noise ϵ is added such that the target value y is defined as y = f(x) + ϵ where
ϵ ∼ N (0, σ2

nI). The noisy prior is therefore cov(y) = K(X, X) + σ2
nI. We introduce a new matrix X∗

of size Rd×n∗ , denoting n∗ test positions, and we denote the posterior predictions at positions X∗ as
f∗. The joint distribution of the observed target values y and function values f∗ is given by

[
y
f∗

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.4)

For notational simplicity, let Ky = K(X, X) + σ2
nI of size Rn×n, K∗ = K(X, X∗) of size Rn×n∗ ,

K⊤
∗ = K(X∗, X) of size Rn∗×n and K∗∗ = K(X∗, X∗) of size Rn∗×n∗ . The joint distribution from

(2.4) is reformulated as

[
y
f∗

]
∼ N

(
0,

[
Ky K∗
K⊤

∗ K∗∗

])
. (2.5)

Let f∗ ≜ f∗|X, y, X∗ unless stated otherwise. The predictive distribution yields

f∗ ∼ N (E[f∗], cov(f∗)), (2.6)
E[f∗] = K⊤

∗ K−1
y y, (2.7)

cov(f∗) = K∗∗ −K⊤
∗ K−1

y K∗, (2.8)

where E[f∗] denotes the posterior mean and cov(f∗) denotes the posterior covariance. Note that
for the predictive distribution, the noise parameter needs to be added as the measured RSS values
y∗ at unknown positions are also assumed to be noisy. Also, note that the diagonal elements of
the covariance matrix are the pointwise variances at positions X∗. The variance for a predictive
distribution is as such V[f∗] = diag(cov(f∗) + σ2

nI). This predictive distribution uses a zero mean
function. For the use case of predicting RSS values which range from [−140,−44], a zero mean
function would indicate that positions far away from our training data X assume a mean RSS of 0.
This modelling contradicts how the signal strength generally fades the further away the receiver is
from the cell. A more realistic modelling would be to use a fixed mean function m(x) that is less
than our lower bound for RSS values. The expected RSS value for far-away positions would then
be modelled to converge to the mean function value. An even more realistic mean function would
be to base the mean function on the Log-Distance Path Loss (LDPL) model [8, p. 214], or some
other distribution that has the highest RSS value at a certain position and a decrease in RSS the
further away the mobile device is. Whichever mean function m(x) is used, the predictive mean can
be incorporated into (2.7). Including an explicit mean function and the noise variance σ2

n results in
the predictive posterior

E[f∗] = m(X∗) + K⊤
∗ K−1

y (y−m(X)), (2.9)
V[f∗] = diag(K∗∗ −K⊤

∗ K−1
y K∗ + σ2

nI). (2.10)

An example of the resulting posterior distribution is presented in Figure 2.1.
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(a) Posterior mean. (b) Posterior variance.

Figure 2.1: Two contour plots displaying the mean RSS and the variance for a single cell over an
area of 1000× 1000 metres.

2.2.2 Hyperparameter Optimisation

The goal of hyperparameter optimisation is to find the set of hyperparameters ℓ, σf and σn which
model the training data optimally. In other words, we want to maximise the marginal likelihood,
defined as the probability of the observed data given our current model. The marginal likelihood
p(y|X) is the integral of the likelihood p(y|f , X) times the prior p(f |X), expressed as

p(y|X) =
∫

p(y|f , X)p(f |X)df . (2.11)

Rasmussen [7] further derives the log marginal likelihood as

log(p(y|X)) = −1
2(y−m(X))⊤K−1

y (y−m(X))− 1
2 log |Ky| −

n

2 log(2π). (2.12)

The goal is now to find the hyperparameters ℓ, σf and σn which maximise the marginal likelihood.
As it is common for optimisers to optimise for the minimum instead of the maximum we reformulate
the problem to minimise the Negative Log Marginal Likelihood (NLML). The problem to solve is
therefore formulated

arg min
ℓ,σf ,σn

− log(p(y|X)). (2.13)

This minimisation is very demanding as it requires computing the matrix inversion K−1
y and the

determinants |Ky|. As the NLML will be computed frequently it is crucial that it is done quickly.
Algorithm 2.1 defined in [7] displays an efficient and numerically more stable approach for computing
the log marginal likelihood, which can simply be converted to the NLML. Note that for each iteration
of running the algorithm the Cholesky decomposition of Ky is computed. This operation dominates
the total computational complexity as it is n3/6 [7].
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2.3 Sparse Gaussian Processes

Computation of the inverse of Ky scales as O(n3) while the memory required scales as O(n2), which
becomes intractable for larger datasets. The purpose of sparse GPs is to reduce the computational
complexity as well as memory usage. The type of SGPs that will be used in this thesis is based on
selecting m inducing data points (where m < n) which model the function space well enough. Using
such a method reduces the time complexity to O(m2n) [7]. Note that the following demonstrated
formulas and derivations are either directly from the work by Titsias [9], or from other sources based
on the work by Titsias [9].

2.3.1 Parameter Optimisation

We assume fm to be m inducing function values at positions Xm. These positions are variable, as are
the hyperparameters ℓ, σf and σn in the pursuit of modelling the function space optimally. The goal is
to select these variables such that they are as similar as possible to the posterior GP. We achieve this
by minimising the Kullback-Leibler (KL) divergence between the true posterior distribution p(f , fm|y)
and the approximate distribution q(f , fm). For clarification, the KL divergence defines the relative
entropy, or distance, between two distributions [7].

We define Kmm = K(Xm, Xm) as the covariance matrix for the inducing positions Xm. We then
define Knm = K(X, Xm) as the covariance between the training positions X and inducing positions
Xm. Expectedly, the transpose is defined as Kmn = K(Xm, X) = K⊤

nm.

The minimisation of the KL divergence is equivalent to the maximisation of the variational lower
bound FV , defined by

FV (Xm, ϕ) =
∫

p(f |fm)ϕ(fm) log p(y|f)p(fm)
ϕ(fm) dfdfm. (2.14)

Here, ϕ(fm) denotes a Gaussian distribution dependent on the mean vector µ and covariance matrix
Σ, which are chosen to approximate p(fm|y). Following [9], by differentiating (2.14) with regard to
ϕ(fm), the optimal maximising distribution ϕ∗ is derived as

ϕ∗(fm) = N (fm|µ, Σ), (2.15)

where

µ = σ−2KmmΛKmny, (2.16)
Σ = KmmΛKmm, (2.17)
Λ = (Kmm + σ−2KmnKnm)−1. (2.18)

With an expression for ϕ(fm) defined by µ and Σ, we focus on selecting Xm as to maximise FV . The
variational lower bound (dependent on just Xm) is then

FV (Xm) = log(N (y|0, Q + σ2
nI))− 1

2σ2
n

Tr(K̃), (2.19)

where Q = KnmK−1
mmKmn approximates the true covariance matrix K and K̃ = K − Q [9]. We

define A ≜ L−1Kmnσ−1
n and B ≜ I + AA⊤ to further simplify the expression, where LL⊤ = Kmm

is the Cholesky decomposition for Kmm. Let c = L−1
B Ayσ−1

n where LBL⊤
B = B is the Cholesky
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decomposition of B. Using these definitions and following the derivations by [10], the variational
lower bound can be expressed as

FV (Xm) = −n

2 log(2π)− 1
2 log |B|− n

2 log(σ2
n)− 1

2σ2
n

y⊤y+ 1
2c⊤c− 1

2σ2
n

Tr(K)+ 1
2 Tr(AA⊤). (2.20)

The computational complexity of (2.20) is O(m2n) for each iteration, from finding the Cholesky factor
L of Kmm. We now have all the means necessary to compute the optimal parameters which maximises
the variational lower bound FV . To be clear, the parameters which initially will be optimised for
are ℓ, σf , σn and Xm. It is also possible to instead optimise for a subset of these hyperparameters.
After they have been selected, we can compute µ and Σ using (2.16) and (2.17). Since we are using a
Gaussian kernel the covariance matrices are differentiable, meaning that a gradient-based minimiser
can be used for quicker convergence toward the optimal values.
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2.3.2 Posterior Distribution

We now want to express the posterior distribution. The distribution of function values at the inducing
positions Xm can be written as

q(f∗) =
∫

p(f∗|fm)ϕ(fm)dfm. (2.21)

Following this expression the predictive posterior distribution p(f∗) is given by the mean mq(f∗) and
covariance covq(f∗) as

p(f∗) = N (f∗|mq(f∗), covq(f∗)) (2.22)
mq(f∗) = K∗mK−1

mmµ (2.23)
covq(f∗) = K∗∗ −K∗mK−1

mmK⊤
∗m + K∗mK−1

mmΣK−1
mmK⊤

∗m, (2.24)

where K∗m = K(X∗, Xm) defines the covariance between the test positions and the induced positions.
We can reuse the previously mentioned definitions B, c, L and LB to reduce the number of compu-
tations. By adding the noise variance σ2

n and reusing the previous definitions, we get the following
expressions for the predictive posterior expected value and variance:

E[f∗|fm] = K∗mL−⊤L−⊤
B c, (2.25)

V[f∗|fm] = diag(K∗∗ −K∗mL−⊤(I −B−1)L−1K⊤
∗m + σ2

nI). (2.26)

The precomputable matrices are defined

D1 = L−⊤L−⊤
B c, (2.27)

D2 = L−⊤(I −B−1)L−1, (2.28)

where D1 ∈ Rm×1 and D2 ∈ Rm×m. For every unique cell, the variables which need to be stored for
an SGP to offer quick posterior predictions are therefore the optimised hyperparameters (ℓ, σf , σn)
and the matrices D1, D2 and Xm. Using the new notation, (2.25) and (2.26) can be expressed as

E[f∗|fm] = K∗mD1 (2.29)
V[f∗|fm] = diag((σ2

f + σ2
n)I)− diag(K∗mD2K⊤

∗m). (2.30)

Using these definitions, the SGP was computed for the same cell as was used previously in Figure
2.1. The resulting posterior when using 1, 32 and 128 inducing points is presented in Figure 2.2. This
figure gives an intuition for the effect of m.
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(a) Posterior mean for m = 1. (b) Posterior variance for m = 1.

(c) Posterior mean for m = 32. (d) Posterior variance for m = 32.

(e) Posterior mean for m = 128. (f) Posterior variance for m = 128.

Figure 2.2: Six contour plots displaying the RSS distribution for a single cell over an area of
1000× 1000 metres. The left column displays the mean RSS and the right column
displays the variance. The top row uses 1 inducing point, the middle row uses 32
inducing points and the bottom row uses 128 inducing points.
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2.4 Negative Log Relative Likelihood

Let yr = [y1
r , ..., ys

r ] denote a set of s reported target RSS values to s different cells from a single
mobile device. Assume that for each of the s cells, a GP has been pre-trained such that a posterior
can quickly be determined for any test position x∗. Given an arbitrary test position x∗ and the set
of reported target values yr we would like a total likelihood measure of each GP assuming the target
values at the given position. For each GP, the posterior f∗ at position x∗ can be determined. We
denote the set of posteriors for s unique cells at position x∗ as fr = [f1

r , ..., fs
r ], as they relate to the

reported values yr. By using the Probability Density Function (PDF) of the normal distribution the
likelihood of the values yr can be determined. Inserting the Gaussian distributions from our posterior
into the PDF gives

fY (yr, fr) = 1√
2π V[fr]

exp
(
−1

2
(yr − E[fr])2

V[fr]

)
. (2.31)

Note that the PDF determines the relative likelihood for the distribution to assume the value y∗, not
the probability. This relative likelihood might be useful when compared to other relative likelihoods.
The PDF for the ith GP is as such fY (yi

r, f i
r). Using Bayes’ law we define the joint relative likelihood as

the product of the relative likelihood of each cell assuming the RSS value at a given position x∗. As the
expression could become unstable we would like to use the log relative likelihood log(

∏s
i=1 fY (yi

r, f i
r))

instead. By using the log-likelihood the expression can be reformulated into a summation. As the
NLML uses the negative we would like to do so for the relative log-likelihood as well for consistency.
We therefore define the Negative Log Relative Likelihood (NLRL) as

−
s∑

i=1
log(fY (yi

r, f i
r)) =

s∑
i=1

1
2

(
log(2π V[f i

r]) + (yi
r − E[f i

r])2

V[f i
r]

)
. (2.32)

We now have an expression for how well the model fits the validation data relative to other models.
A model that has a greater likelihood of assuming the given RSS values at the true position will
give a smaller NLRL value. Note that the NLRL does not necessarily imply better modelling of the
propagation or better conditions for finding a good prediction position.

2.5 Loss Function

We will now move on to the predictive properties given a posterior prediction, be it from a sparse
or a regular GP. The goal of this section is to provide a loss function that describes the measure of
likelihood given a position x∗. In other words, by finding the minimum of the loss function we find
the position x̂∗ which has the highest likelihood of assuming the measured values yr according to our
model. Finding the position x̂∗ will be done in Section 2.6, we must first describe the loss function.

As stated in Section 2.4, the NLRL describes the relative likelihood of a set of posteriors fr assuming
RSS values yr for s cells. The position x̂∗ of maximum relative likelihood is then found by minimising
the NLRL and can be defined as

x̂∗ = arg min
x∗

s∑
i=1

1
2

(
log(2π V[f i

r]) + (yi
r − E[f i

r])2

V[f i
r]

)
. (2.33)

Note that the constants 1
2 and 2π can be dismissed when searching for the minimum or maximum.

We therefore define the loss function L(yr, fr) as
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L(yr, fr) ≜
s∑

i=1

(
log(V[f i

r]) + (yi
r − E[f i

r])2

V[f i
r]

)
. (2.34)

The solution x̂∗ is then

x̂∗ = arg min
x∗

L(yr, fr). (2.35)

Figure 2.3 displays an example of the loss function values that were computed using (2.34) over an
area of approximately 1100 × 1300 metres. This contour plot gives an intuition for what the search
space might look like.

Figure 2.3: Displays the loss function evaluated over an area of 1100× 1300 metres for three cells
where the colour indicates the loss function value. The measured RSS values were
yr = [−70,−78,−73] and the green dot represents the true position from which the
measurements were made.

2.6 Maximum Likelihood Estimation

The purpose of the loss function minimiser is to find a global minimum x̂∗ of the loss function
L(yr, fr) according to (2.35). There are several ways to do so, either through iterative methods
or by approximating the loss function such that the positions where the gradient ∇L(yr, fr) = 0
are analytically solvable. The method used for this thesis uses both a global minimiser and a local
minimiser. The global minimiser used throughout this thesis is a grid search, partly because of its
simplicity and partly because of its parallelizability. Grid search requires a specified precision and
bounds to search in, we therefore start by defining how the initial bounds are selected.

2.6.1 Bounds Selection

For the initial bounds, we use a very simplistic but effective approach. For each set of training
positions X for a certain cell, the 80% confidence interval is computed and selected as bounds for
that cell. That is, the latitudinal bounds are selected as the 10th percentile and the 90th percentile
of the sorted latitudinal values. The same is done for the longitudinal values. Given s cells to predict
for the grid search, we select the bounds of the search space as the minimum and maximum bounds
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of all of the affected cells. Note that the selected percentile can be varied and examined further but
is arbitrarily chosen as 80%.

For each cell with input data X, there exists a median center, selected as the median of the latitudinal
values and the median of the longitudinal values. For the case where the true position is surrounded
by the median positions of each cell, we only need the median position as bound for each cell to
cover the true position. Another viable solution for bounds selection could therefore be relative to
the number of RSS values included in a scan, but this will not be examined further in this thesis.

2.6.2 Global Minimiser

Provided the previously defined bounds, the grid search algorithm can now be defined. Let a1 ≤ x1 ≤
b1 and a2 ≤ x2 ≤ b2 define the bounds for horizontal and vertical positions. Note that the bounds
will be defined for positions in metres rather than coordinates to provide an equidistant grid. Given
a precision of p metres, new sets u and v are constructed which will consist of the possible horizontal
and vertical values, respectively. The set u is constructed such that u1 = a1 and any ui+1 = ui + p
where ui ≤ b1 for all ui ∈ u. Similarly, v1 = a2 and any vi+1 = vi + p where vi ≤ b2 for all vi ∈ v.
Let the horizontal and vertical values for a test position x∗ be represented by x1

∗ and x2
∗, respectively,

such that x∗ = [x1
∗, x2

∗]. Given a loss function L, a set of observed RSS values yr and Gaussian
distributions fr at position x∗, grid search chooses an initial solution x′

∗ as

x′
∗ = arg min

x1
∗∈u,x2

∗∈v
L(yr, fr|x∗). (2.36)

2.6.3 Local Minimiser

Given an initial solution x′
∗ we want to find a local minimum x′′

∗ which is closer to the global minimum
x̂∗. The goal is simply to converge to a local minimum with the help of a faster, but local minimiser.
The local minimiser used is a bounded version of the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm denoted as L-BFGS-B [11]. The first reason for choosing L-BFGS-B is
that it uses the Jacobian and an approximation of the Hessian for faster convergence. The second
reason for using it is that it is included in the scipy.optimize package. We will simply pass the
appropriate arguments regarding the minimisation objective into the minimisation function provided
by scipy. L-BFGS-B works best when provided with a definition of the gradient, which is used to
effectively descend towards a local minimum. This section will therefore derive an expression for
the gradient with respect to x∗ of the loss function. Consequently, the required expressions for the
gradients of posteriors provided by GPs will be derived.

The gradient with respect to x∗ of the sum of loss functions for s posteriors and measured RSS values
is

∇L(yr, fr) =
s∑

i=1
∇

(
log(V[f i

r]) + (yi
r − E[f i

r])2

V[f i
r]

)
. (2.37)

Given a predictive posterior f i
∗ and a function value yi

∗ the resulting loss function gradient for a single
GP is expressed as

∇
(

log(V[f i
r]) + (yi

r − E[f i
r])2

V[f i
r]

)
= ∇V[f i

r]
V[f i

r] + E[f i
r]− yi

r

V[f i
r]2

(
2V[f i

r]∇[E[f i
r]]− (E[f i

r]− yi
r)∇V[f i

r]
)

.

(2.38)
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2.6.4 Gaussian Process Gradient

The goal of this section is to derive expressions for the gradient of the posterior mean and covariance
of a regular GP. These expressions can then be inserted into (2.38) to get the gradient of the loss
function.

We initially derive an expression for the gradient of the covariance function between an input position
x and a test position x∗. The gradient with regard to x∗ of the covariance is then defined as

∇k(x, x∗) = x− x∗

ℓ2 k(x, x∗). (2.39)

From this expression, the gradient of the covariance vector for a single test position x∗ is described
by ∇k∗ = ∇k(X, x∗). Let α = K−1

y (y −m(X)). Assuming the use of a mean function m that is
independent of x∗, the gradient with respect to x∗ can be derived from (2.9). This gives

∇E[f∗] = ∇[k⊤
∗ ]α, (2.40)

where ∇E[f∗] is of size Rd. Note that the f∗ used in this expression denotes a general posterior
prediction and can be substituted with the posterior prediction fr as well. The gradient with respect
to x∗ of the variance is derived from (2.10) as

∇V[f∗] = −diag(∇[k⊤
∗ ]K−1

y k∗ + k⊤
∗ K−1

y ∇[k∗]), (2.41)

where ∇V[f∗] is also of size Rd. Equations (2.40) and (2.41) can then be inserted into (2.38) to
express the gradient of the loss function ∇L(yr, fr).

2.6.5 Sparse Gaussian Process Gradient

This subsection will derive an expression for the gradient of the SGP. The expression is quite similar
to that of the GP and uses the definition for the gradient of the covariance function described in
(2.39). Remember the definition of the SGP posterior from (2.29) and (2.30)

E[f∗|fm] = K∗mD1,

V[f∗|fm] = diag((σ2
f + σ2

n)I)− diag(K∗mD2K⊤
∗m).

Let ∇km∗ = ∇k(Xm, x∗) denote the gradient of the covariance vector between the inducing positions
and the test position x∗. The gradient for the posterior consisting of a single position is then derived
from (2.29) and (2.30) as

∇E[f∗|fm] = ∇[k∗m]D1, (2.42)
∇V[f∗|fm] = −diag(∇[k∗m]D2k⊤

∗m + k∗mD2∇[k⊤
∗m]). (2.43)

Inserting (2.42) and (2.43) into (2.38) gives the gradient of the loss function when using SGPs.

13



2.7 Mean Potential Gain

To evaluate the solution found by grid search followed by a local minimisation, we compare it with
the solution found by local minimisation at the true position. If the latter achieves a solution of
greater likelihood (smaller loss function value), there exists a better solution than the originally
found solution. We denote the improvement by selecting the better solution as the potential gain,
measured in metres. As the potential gain is calculated for several predictions during validation, we
denote the mean potential gain as MPG. Note that the MPG does not signify an explicit potential
for improvement, as this depends on how the loss function is modelled. For example, assume that a
new and better solution was found by the local minimiser at the true position. There could still exist
a position of even greater likelihood not yet discovered, which could either be much closer or further
away from the true position. The MPG simply gives an estimate for the most general cases.

Algorithm 1 describes how the MPG is determined for k true positions Xtrue and predicted positions
X∗. The other inputs are functions, where loss() denotes the loss function L(). The distance
function is denoted distance() and computes the distance between two positions. The L-BFGS-B()
function returns the local minimum over the loss function when starting at a given position.

Algorithm 1: Psuedocode for determining the MPG.
input: Xtrue, X∗, loss(), distance(), L-BFGS-B()
total potential ← 0
k ← length(Xtrue)
for i← 1→ k do

x∗ ← Xi
∗

xtrue ← Xi
true

xtrue min ← L-BFGS-B(xtrue)
if loss(xtrue min) < loss(x∗) then

error ← distance(x∗, xtrue)
errornew ← distance(xtrue min, xtrue)
total potential ← total potential + error - errornew

return total potential

2.8 Log-Distance Path Loss

The Log-Distance Path Loss (LDPL) model expresses the path loss Ltotal from the signal provider,
defined by [8, p. 214] as

Ltotal = PL(d0) + 10N log10(∆d/d0) + σ2
n, (2.44)

where the variables are denoted as follows:

• Ltotal: path loss (dBm)
• PL(d0): path loss at d0 metres from the signal provider (dBm)
• N : path loss distance exponent
• ∆d: distance between signal provider and signal receiver (m)
• d0: reference distance (m)
• σ2

n: Gaussian random noise variable

For a simplified version we assume d0 = 1 and ignore the noise σ2
n. For free space areas, a typical

value for the path loss distance exponent is 2.0, we will therefore assume N = 2.0 [12]. By making
the previously mentioned changes and rearranging the expression we get the path loss
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Ltotal = PL(1) + 20 log10(∆d). (2.45)

An expression is needed for the distance between the assumed cell position xcell and the reported
device position x. For a more stable (and somewhat more realistic) modelling a height term h (metres)
is introduced for the cell position while the mobile device is still assumed to be at ground level. Using
simple geometry an expression for the distance ∆d can be derived as

∆d =
√

h2 + (xcell − x)⊤(xcell − x). (2.46)

Expanding (2.45) with (2.46) gives

Ltotal = PL(1)− 10 log10(h2 + (xcell − x)⊤(xcell − x)). (2.47)

Given a set of training data, we can define a loss function as the square error of the predicted RSS
over all training data X and y as

Lldpl(PL(1), xcell, h) =
n∑

i=1

(
t0 − 10 log10(h2 + (xcell − xi)⊤(xcell − xi))− yi

)2
. (2.48)

The optimising parameters are then found by the minimisation

arg min
P L(1),xcell,h

Lldpl(PL(1), xcell, h). (2.49)

The parameters to optimise for are as stated PL(1), xcell and h. Given a set of well-defined bounds
and initial guesses, this should be no problem for a minimiser such as L-BFGS-B. A reasonable guess
is that xcell is within the bounds of X. It is also reasonable to assume the initial position xcell as xi,
for which the corresponding measured RSS yi is the maximum measured RSS of y. The true optimal
location xcell is then probably within 100 metres of the reported maximum xi. An acceptable initial
value for PL(1) would be yi. A decent estimate of the height bounds of the cell would be 1 ≤ h ≤ 150.

With a set of optimal parameters, the approximate propagation model could then function as a mean
function for a Gaussian process. As this model is not constant for x∗, either the gradient of the
LDPL will have to be included or the minimisation for the optimal position x̂ will have to be done
with approximative gradients if LDPL is used as a mean function.

2.9 Weighted Centroid Localisation

WCL is a positioning algorithm that is easy to implement and offers fast predictions. The method will
be used to compare precision with other positioning models and is described as follows. Assume that
we want to predict the position of a mobile device that has reported the RSS values yr = [y1

r , ..., ys
r ] to

s unique cells. Let Xcell ∈ Rd×s denote the position of the cells such that the position of the ith cell
is xi

cell. The cell position xi
cell is naively selected as the input training position x which corresponds

to the highest reported RSS value y. With the cell positions selected, a simple centroid localisation
method defines the predicted position x∗ as the centroid of the cells according to

x∗ = 1
s

s∑
i=1

xi
cell. (2.50)
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The assumption is made that from a position of maximum RSS the signal strength decreases somewhat
uniformly. We can therefore improve the accuracy of the above method by taking RSS into account.
In other words, greater RSS values should weigh more when computing the centroid. We therefore
redefine the algorithm as

x∗ = 1
s

s∑
i=1

wixi
cell, (2.51)

where wi denotes a weight for the ith cell. We select the weights such that greater RSS values imply
a greater weight according to

wi = α exp(yi
r), (2.52)

α = 1/

s∑
i=1

exp(yi
r), (2.53)

where yi
r denotes the measured RSS value from cell i and α is a normalising constant such that the

sum of weights is 1. Given a set of RSS values to unique cells we can now compute an estimated
position using WCL.

2.10 WKNN

WKNN is a non-parametric method which can be used for positioning. It is based on the simpler
k-nearest neighbours method but adds weights to the k-nearest neighbours based on how similar
they are to the input. The similarity is determined by a covariance function, which for this thesis
is the inverse of the Euclidean distance. For this thesis the SKlearn package is used to compute
the predictions, specifically the neighbors.KNeighborsRegressor regressor [13]. The coordinate
positions are still converted to a metre representation to scale the distances proportionately.

The problem with WKNN is that it requires training data in the form of scans, where several RSS
measurements are related to a single position. During testing, we will be using data acquired from
two databases, one of which will not be applicable to use for training of WKNN. For the data that
works for WKNN, each training scan is converted into a vector where the ith element refers to the
measured RSS to the ith cell. Since every scan does not necessarily contain the same cells, a joined
vector is created with the cell IDs of all of the unique cells in the training data. Each scan is then
merged into the joined vector of IDs, where cell IDs that are not included in a scan are assigned a
default RSS value of −140.0. The input data of the regressor is a feature vector, whereas the target
data is the metre representation of the coordinates.

Regarding complexity, during training of the WKNN auto will be used as a parameter for the
algorithm option for all simulations. A choice can then be made regarding which algorithm the
regressor will use. For D > 15 the brute force algorithm is used, where D denotes the number of
features of the input. For our case, D is equal to the number of unique cells in the training data. For
all our datasets D > 15 applies, we will therefore assume that the brute force algorithm is used for
every application of the WKNN method. The computational complexity of brute force is O(Dn2),
as it involves computing the distance to all n training positions for each training position.
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3 Methodology

3.1 Programming Language and Libraries

The programming language used throughout the thesis is Python. It is simple, flexible and can utilise
several helpful libraries. Following are the imported non-standard libraries and what they are used
for.

• JAX - Automatic differentiation of mathematical expressions.
• NumPy - Linear algebra computations.
• Pandas - Filtering, sorting and other handling of large datasets.
• Plotly - Producing graphs.
• SciPy - Minimisation algorithms.
• SKlearn - WKNN method.

3.2 Data

The training data is required to contain degrees latitude (−90 < x1 < 90), degrees longitude (−180 <
x2 < 180), RSS (−140 ≤ y ≤ −44 dBm) and the ID of the cell which the signal was from. However,
for validation of the models an additional attribute scanId is needed to link several RSS entries to a
single scan. The entries that contain a scan ID can both be used for testing the models and also for
constructing propagation models for each cell. The data used will be limited to Long Term Evolution
(LTE) cells for simplicity, but the models are transferable to other connection types as long as they
contain the previously mentioned data attributes. Two different databases will be used to provide
data, with the first database being called Learning. From Learning the attributes latitude, longitude,
RSS and cell ID can be extracted for each entry. The second database is called Slam. It contains the
same attributes as Learning but additionally contains a scan ID attribute, meaning that all entries
with the same scan ID were collected from the same mobile device at the same position and time.
For example, there might be 8 entries with the same scan ID of 101. They therefore contain RSS
values to 8 different cells but were collected by the same mobile device at the same time and place.

One problem with the measured RSS-ID pairs is that a unique cell ID is not included in the original
data. Rather, every entry contains a Mobile Country Code (MCC), Mobile Network Code (MNC),
Location Area Code (LAC) and Primary Scrambling Code (PSC). The MCC identifies a country
with a 3-digit code. The MNC identifies a mobile network carrier such that given an MCC and
MNC the mobile network carrier can be uniquely identified. Countries are divided into smaller areas
defined by their LAC, which is a 16-bit integer. For each location area, there exists one or more cells.
The PSC identifies cells within a location area, but not uniquely. A code collision occurs when two
neighbouring cells use the same PSC. Network providers therefore plan the PSC assignment for each
cell to minimise the number of code collisions. Generally, cells sharing the same PSC will therefore
be at a distance from each other.

This can be used by clustering measured RSS values to create a unique cell ID. By clustering the
positions (latitude, longitude) of a certain set of IDs (MCC, MNC, LAC, PSC), a unique cell ID can
be given to this set of measurements. An estimated position can then be determined for each cell
such that new entries can be grouped to the correct cell ID based on which cell is nearest. Currently,
there already exists a database of recorded cells and their corresponding estimated positions which
will be used to match new measurements with a cell ID.
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3.2.1 Learning

In the dataset Learning, there are roughly 8 billion RSS and position pairs for LTE connections
spanning all across the globe. The data has been collected by the use of both mobile phones and
other tracking devices by using GNSS. As Learning data does not contain scan IDs, it will exclusively
be used for training purposes. The data from Learning is generally more unreliable but covers a
greater area than Slam.

3.2.2 Slam

Slam contains approximately 5.8 million GNSS positions and 25 million RSS entries that are related
to these positions. The data is more recent and, most importantly, includes a scan id attribute.
This is the reason for the increased number of RSS entries compared to the number of scans, as for
the 5.8 million scans the mean number of RSS connections is 25/5.8. Slam also contains positional
data for every street in the city of Lund, Sweden, as provided by Guggenheimer in [14]. Slam is not
as large as Learning, nevertheless, because of its coverage within Lund it is very valuable for both
validation and constructing accurate RSS propagation models.

3.2.3 Data Preprocessing

The data from both Learning and Slam have outliers which provide inaccurate data. Usually, these
are found and filtered out as bad data, either because they are not recent enough or because the
devices that reported the data are not reliable. However, some devices tend to report pre-defined
RSS values. An example of such behaviour is how there were > 2500 reports of RSS −140 while
there were less than 25 reports of RSS −139 for the Bus validation set. It seems as though a signal
was received from the cell, but the RSS could not be determined and a default value was instead
reported. When examined further some RSS values were found to disproportionately be used as
default. The choice was therefore made to include a filter that removes certain reported RSS values
from ”unreasonable” distributions.

The filter dismisses data of a certain RSS value y if the number of reported RSS values for either
y + 1 or y − 1 are less than 25% of the number of reports for y. This is only considered if there are
more than 10 reports for a certain RSS. RSS values that are commonly removed are −140, −100 and
−44. Filtering the data results in more consistent distributions and is therefore applied to all data
used for this thesis.

Another modification that is made to the data is normalisation. Originally the data is bounded by
−90.0 < x1 < 90.0, −180.0 < x2 < 180.0. Instead, we would like to convert the input data to
metres and normalise the input such that it is centered close to the origin. This makes computations
more stable and offers comprehensible units of distance. Assume that two different positions x and
x′ are of the same latitude (x1 = x′

1) but have a longitudinal difference of ϕ = |x2 − x′
2| degrees.

Note that the distance between them decreases the further away from the equator they are (assuming
they maintain the longitudinal difference ϕ). This has to be taken into account when creating the
normalised positions to get the correct distance in metres. The haversine formula is used for this
purpose [15]. The RSS values of y and yr are not normalised, but might be modelled separately by
the use of custom mean functions depending on which model is used.

3.3 Dataset Groups

Two datasets will be required for each experiment: one training dataset and one validation dataset.
Some models are intractable for training on larger datasets. However, larger datasets offer more
reliable results. We will therefore divide the testing into three different groups of data which have
different purposes.
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All of the datasets share one constraint, that they only contain positions within the bounds of Lund.
These bounds are defined by the latitudinal limits [55.734, 55.681] and the longitudinal limits [13.144,
13.256]. These bounds will be shown as a black square in geographical scatter plots for clarification.

3.3.1 Group 72

The first group of datasets is used to quickly validate approximately how well a model performs and
is referred to as group 72. An initial dataset is extracted from Slam containing 868 678 entries. A
secondary dataset is extracted from Learning of 500 000 entries. As only the Learning dataset has a
unique ID for every cell these IDs are mapped onto the Slam dataset by comparing the reported MCC,
MNC, LAC, and PSC. If there are two or more matches for these four identifiers the geographically
closest cell is selected as the cell which provided the signal. Old data and entries of bad RSS values
are then filtered out as described in Section 3.2.3. The results from applying the filtering of the
disproportionate RSS distributions are shown in Figure 3.1.

(a) RSS distribution of Slam data of group 72
before filtering.

(b) RSS distribution of Slam data of group 72
after filtering.

(c) RSS distribution of Learning data of group
72 before filtering.

(d) RSS distribution of Learning data of group
72 after filtering.

Figure 3.1: The left column displays the original distribution of reported RSS values, whereas the
right column displays the distribution after removing unreliable values. The top row
shows the distribution for Slam data while the bottom shows for Learning data.

From these two datasets (Learning and Slam), we only keep the entries that relate to cells existing in
both of the datasets. This is done to constrict the validation dataset to cells which are both in Slam
and Learning. From the Slam dataset 72, scans are selected which contain the highest number of RSS
entries per scan. These scans are removed from the Slam training data and made into a validation
dataset. We will refer to the training datasets as training Slam 72 and training Learning 72. Specific
information regarding group 72 is shown in Table 3.1, whereas the position of every scan can be seen
in Figure 3.2.

Table 3.1: Displays number of entries, unique cells and scans for each dataset in group 72.

Dataset Entries Unique cells Scans
Training Slam 72 130 669 110 37 359

Training Learning 72 57 086 73 57 086
Validation 72 1040 110 72
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(a) Location of every scan for the Slam training dataset of group 72.

(b) Location of every entry for the Learning training dataset of group 72.

(c) Location of every scan for the validation dataset of group 72.

Figure 3.2: Geographical scatter plots where every dot signifies a scan with at least one RSS-id
pair. For the Slam and validation dataset, these scans can contain several pairs.
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The bar plots in Figure 3.3 display the distributions of the number of RSS-ID pairs per scan. Note
that the validation dataset was selected to include the highest number of RSS-ID pairs.

(a) Distribution of the number of RSS-ID pairs
for the Slam training dataset of group 72

(b) Distribution of the number of RSS-ID pairs
for the validation dataset of group 72.

Figure 3.3: Bar plots displaying the number of entries per scan for group 72. The x-axis
represents the number of RSS-ID pairs, whereas the y-axis represents the number of
scans with a certain number of RSS-ID pairs.

3.3.2 Group 1000

The validation dataset of the second group contains 1000 scans which are randomly selected from
the preprocessed Slam dataset mentioned previously. A new set of 236 790 entries is then retrieved
from Learning. These entries are selected by requesting all entries with a cell ID related to the scans
from the validation dataset. The Learning data was also filtered to have been measured between the
dates 1/1 2014 and 1/3 2023. The reason for the specific end date is because after that date some
of the Slam data is inserted into Learning, and we would like to keep validation data from entering
the training dataset. The filtering of abnormal RSS distributions is shown in Figure 3.4. The mean
number of entries for each scan in the validation set is significantly decreased since the scans are not
selected based on the number of entries per scan. This group will give some insight into how well the
positioning would work for an average use case where there might not be as many entries per scan.
This validation set is also larger, making the results more reliable for the general use case. Table 3.2
shows the specifics regarding the 3 datasets of group 1000.

(a) RSS distribution of Slam data of group 1000
before filtering.

(b) RSS distribution of Slam data of group 1000
after filtering.

(c) RSS distribution of Learning data of group
1000 before filtering.

(d) RSS distribution of Learning data of group
1000 after filtering.

Figure 3.4: Displays the distribution of RSS values before and after filtering. The top row of plots
displays the distribution for Slam data while the bottom displays for Learning data.
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Table 3.2: Displays number of entries, unique cells and scans for each dataset in group 1000.

Dataset Entries Unique cells Scans
Training Slam 1000 427 288 323 128 963

Training Learning 1000 62 979 138 62 979
Validation 1000 3426 323 1000

We include bar plots in Figure 3.6, which display the distribution of the number of RSS-ID pairs per
scan. The geographical locations of the scans for the 3 datasets are shown in Figure 3.5.

(a) Distribution of the number of RSS-ID pairs
for the Slam training dataset of group 1000

(b) Distribution of the number of RSS-ID pairs
for the validation dataset of group 1000.

Figure 3.6: Bar plots displaying the number of entries per scan for group 1000. The x-axis
represents the number of RSS-ID pairs, whereas the y-axis represents the number of
scans with a certain number of RSS-ID pairs.
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(a) Location of every scan for the Slam training dataset of group 1000.

(b) Location of every entry for the Learning training dataset of group 1000.

(c) Location of every scan for the validation dataset of group 1000.

Figure 3.5: Geographical scatter plots where every dot signifies a scan with at least one RSS-id
pair. For the Slam and validation dataset, these scans can contain several pairs.
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3.3.3 Group Bus

The third and final group is acquired from the work of Guggenheimer [14]. It contains one training
dataset and one validation dataset which have both originally been retrieved from the Slam database.
We will refer to this group as group Bus. The validation dataset is named the Bus dataset as it was
collected while travelling by bus. The RSS distributions before and after the filtering of these datasets
are shown in Figure 3.7. The sizes of the datasets are listed in Table 3.3. Maps displaying the locations
of the scans are displayed in Figure 3.8.

(a) RSS distribution of training data of group
Bus before filtering.

(b) RSS distribution of training data of group
Bus after filtering.

(c) RSS distribution of validation data of group
Bus before filtering.

(d) RSS distribution of validation data of group
Bus after filtering.

Figure 3.7: Displays the distribution of RSS values before and after filtering. The top row of plots
displays the distribution for Slam training data while the bottom row displays for
validation data.

Table 3.3: Displays number of entries, unique cells and scans for each dataset in group 1000.

Dataset Entries Unique cells Scans
Training Bus 319 797 266 74 909

Validation Bus 9753 266 2431
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(a) Location of every scan from the training dataset of group Bus.

(b) Location of every scan from the validation dataset of group Bus.

Figure 3.8: Geographical scatter plots where every dot signifies a scan with at least one RSS-ID
pair.

We also include Figure 3.9, displaying the distribution of the number of RSS-ID pairs per scan.

(a) Distribution of the number of RSS-ID pairs
for the training dataset of group Bus

(b) Distribution of the number of RSS-ID pairs
for the validation dataset of group Bus.

Figure 3.9: Bar plots displaying the number of entries per scan for group Bus. The x-axis
represents the number of RSS-ID pairs, whereas the y-axis represents the number of
scans with a certain number of RSS-ID pairs.
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3.4 Gaussian Process Posterior

We are now going to describe the implementation of a process capable of producing a posterior
distribution. The inputs given are the training data for a specific cell (X, y), a set of hyperparameters
(ℓ, σf , σn) and the test positions X∗. The output is a data structure containing the expected value
E[f∗] and variance V[f∗] for the set of test positions.

A process is initially created which can find the optimal hyperparameters (ℓ, σf , σn) through min-
imisation of the NLML described in (2.12). The minimisation is done numerically with the minimise
method from the scipy.optimize package. The solver which is used is the L-BFGS-B algorithm.
We also save the number of iterations run when minimising the NLML and a measure of the compu-
tational complexity which will be named log complexity. The log complexity measure is determined
depending on the computational complexity of calculating the NLML for a GP. For a regular GP that
operation scales as O(n3) for each iteration. The resulting measure of complexity is therefore the
number of iterations times the size of the training data (n) cubed. However, computing the NLML
for an SGP scales as O(m2n). The complexity of an SGP will therefore be calculated as the number
of iterations times the number of inducing points m squared times the size of the training data n. For
simplicity, the mean will be used for the NLML and the number of NLML iterations as well. These
values are saved into a log file once the training is completed.

The next option which is added to the process is whether or not to produce a sparse GP. An option
m is therefore added which denotes the number of inducing positions. If m is provided and m < n∗
an SGP will be trained for m inducing positions along with the other specified options. The matrices
that are precomputed from the training data are saved and ready to use when computing a posterior
according to 2.21.

The final significant choice to be made is which mean function m(x) to use. The option is added
to use a fixed mean value z such that m(x) = z for any x. Another option is to let the mean
value be modelled according to the LDPL model. An LDPL process is therefore built with the same
functionality as the GP modelling process. That implies a new set of possible hyperparameters for
the LDPL model which will be possible to optimise for or fix to certain values. This model is not
meant to be exact but to provide an approximate distribution for the signal propagation. For areas
with few available data points the mean function will then give a better indication of the posterior
mean when compared to a fixed mean function. The same optimising method is used for finding the
optimal LDPL as was used for finding the optimal GP hyperparameters. With the help of the new
LDPL model, we can train optimal LDPL parameters (given X and y) by maximising the marginal
likelihood. We can then use the prediction of the LDPL model (given a position x∗) as the mean
function for the GP.

It might be the case that the positioning accuracy does not correlate to how well the GP is modelled to
its training data, but to other factors. In other words, a model that has a greater marginal likelihood
might not necessarily mean that it contributes to improving the accuracy of the resulting prediction.
If however the prediction accuracy correlates to how well the GP is modelled it is important to save the
log marginal likelihood and the configurations related to the result. As the different configurations are
tested we can provide an optimal configuration that hopefully improves the accuracy of positioning.

3.5 Positioning

With the previously described posterior distribution, we are now able to compute the loss function
value L(fr, yr) according to 2.35. The input to the function is a set of posterior distributions fr for s
different cells at a position x∗ and a set of observed RSS values y′

∗ for these cells. The output is the
loss function value to minimise for.

As the global minimisation used is a grid search the search field needs to be defined. The purpose
of the search field is simply to set the bounds for latitude and longitude coordinates. A simple
function is created which when given training input for a GP provides the bounds for the latitudes
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and longitudes according to Section 2.6.1. The search space is then bounded by the minimum and
maximum latitude and longitude of these individual bounds. It is therefore unlikely, but possible,
that the true position lies outside the search field. In the case that the true position lies outside of the
search field the predicted position will hopefully be close enough to the limiting bounds, providing a
decent prediction anyway.

With the search field defined a function is created which produces a grid of test positions X∗ given
the search field and the length in metres between any two neighbouring positions. A loss function
mapping can now be computed using X∗ as input matrix resulting in an approximate solution x′

∗ as
defined by (2.36).

The local minimisation of the loss function from starting position x′
∗ is made with the help of the

minimise method. The minimisation is improved if provided with the loss function gradient described
in (2.38). This requires a definition of the gradients ∇E[f∗] and ∇V[f∗] which have been defined
for GPs without a custom mean. These gradients are provided for faster convergence, while an
approximated gradient can be used for GPs with a custom mean function dependent on x∗. By
the end of the local minimisation we are given a position x′′

∗ which hopefully is close to the global
minimum x̂∗. This marks the end of the positioning process.

3.6 Baseline Methods

To get a perspective of the results from the previous models two baseline models are used to compare
with, namely WCL described in Section 2.9 and WKNN described in 2.10. The WCL model uses
the naive approach of assuming the centroid for a cell to be the position of the highest measured
RSS. The positioning method is then implemented using NumPy. WKNN is implemented with the
help of SKlearn. The Euclidean distance will be used as a metric for the weights and the number of
neighbours. The number of labels is equal to the number of unique cells from the training dataset.
Given a training dataset of scans, for each scan, there will be several cells which there was no reception
from. These fields are filled in as the lowest connection strength possible, -140.0. The RSS values
were then normalised between [0, 1.0] and passed to the KNeighborsRegressor as input. The target
values are the metre representations of the coordinates.

3.7 Positioning Validation

With the use of the positioning, we want to validate the accuracy of several unique model configura-
tions. A validator class is therefore constructed with the purpose of testing models on validation sets.
The input required is a training dataset, a validation data set containing the entries for several scans
and a prediction model that has been configured appropriately. The model is then trained on the
given training data. When training is done the validator can get the predicted position for all of the
validation scans and find the error in metres between the predicted position and the true position.
Although there are other measurements of accuracy such as Mean Square Error (MSE), the mean
error is computed because of its simplicity.

27





4 Results

This section is divided into three parts based on the three groups of datasets described in Section
3.3. Group 72 was used to demonstrate the general accuracy of GP models, group 1000 was used
to compare the best-performing SGP models and group bus was used to simulate a newly collected
dataset. Note that group 1000 and group bus are larger datasets, which is why only SGP models will
be tested for those groups, as regular GPs would not be able to complete the training and validations
in a reasonable time.

Firstly, results relating to the training of the models will be presented in sections named Distribution
Modelling. Hyperparameter distributions will be presented along with metrics such as the mean
NLML, the mean NLRL, the mean number of NLML iterations and the mean complexity. The
NLML and NLRL are described in Sections 2.2.2 and 2.4, respectively. These metrics report how
well the training and validation data is modelled. The number of NLML iterations and complexity is
described in Section 3.4. These metrics describe the computational complexity of the training phase.
Note that for Learning datasets we will skip this section as we are only interested in the prediction
performance when compared to the baseline models for Learning.

Secondly, starting with a basic positioning method more features will be added to the positioning
method to assess how the accuracy improves. These results will be presented in sections named
Positioning. Each of the tests will result in a mean error which ultimately is used to express accuracy.
We will also report the MPG (described in Section 2.7) and the number of points evaluated during
the positioning phase. The best-performing model will then be compared to the baseline models,
namely the WCL method described in Section 2.9 and the WKNN method described in Section 2.10.

4.1 Group 72

To be as thorough as possible a very simple model was created which could be improved by stepwise
adding features. Slam data was used while improving the model as it was more reliable. Learning
was therefore only tested for the optimal model.

4.1.1 Slam 72

Distribution Modelling

The initial model was based on a regular GP and was therefore simply named GP. For every cell,
the hyperparameters were optimised separately. Every regular GP started the minimisation of the
NLML with the initial values ℓ = 202.5, σf = 20.5 and σy = 5.5. The custom mean function was
selected to be a constant -140.0 RSS (dBm). The resulting training metrics are listed in Table 4.1,
whereas the resulting distributions of optimised hyperparameters are shown in Figure 4.1.
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(a) Distribution of hyperparameter ℓ.

(b) Distribution of hyperparameter σf .

(c) Distribution of hyperparameter σn.

Figure 4.1: Distribution of hyperparameters ℓ, σf and σn for 110 GPs when optimised over
dataset 72. A constant mean function of -140.0 (dBm) was used.

The next set of models introduced custom mean functions. The first mean function was the LDPL
and was named GP-LDPL. Given a set of training data X and y, the optimal hyperparameters for
the LDPL model were found as described in Section 2.8. The only change from our previous test was
therefore the mean function. The resulting hyperparameter distributions are shown in Figure 4.2,
whereas the resulting training metrics are shown in Table 4.1.
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(a) Distribution of hyperparameter ℓ.

(b) Distribution of hyperparameter σf .

(c) Distribution of hyperparameter σn.

Figure 4.2: Distribution of hyperparameters ℓ, σf and σn for 110 GPs when optimised over
dataset 72. The mean function used was the LDPL propagation model.

Table 4.1: Presents the mean NLML, mean NLRL, mean number of NLML iterations and mean
complexity for multiple GP models trained on the Slam 72 dataset.

Model NLML NLRL NLML iterations Complexity
GP 3835.9 45.8 20.9 1.4e+11

GP-LDPL 3718.7 44.3 24.4 1.5e+11
GP-SGP(1) 3710.7 44.6 24.6 1.5e+11
GP-SGP(8) 3687.6 44.7 24.9 1.4e+11
GP-SGP(32) 3657.4 46.6 25.3 1.6e+11
GP-SGP(128) 3671.5 48.3 22.9 1.3e+11
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The third set of models used SGPs as mean functions. The reason for testing custom mean functions
was to evaluate if the prediction accuracy could be improved by evening the input such that there
was less variation of RSS. As the purpose of SGPs is to approximate the distribution optimally they
were used for that purpose by using an SGP with a low number of inducing points m. Given a set of
training data X, y and a specified number of inducing points m, an SGP was trained to model the
propagation as described in Section 2.3. The SGP was then used as the mean function for evaluating
m(X) or m(X∗) for a regular GP. To display the effect of m, several different numbers of inducing
points were tested (1, 8, 32, 128). The models were named GP-SGP(m), where m was replaced with
the number of inducing points. The hyperparameter distribution for SGPs and GPs of the model
where m = 1 is shown in Figure 4.3. The NLML and NLRL are shown in Table 4.2.

(a) Distribution of hyperparameter ℓ for SGPs. (b) Distribution of hyperparameter ℓ for GPs.

(c) Distribution of hyperparameter σf for SGPs. (d) Distribution of hyperparameter σf for GPs.

(e) Distribution of hyperparameter σn for SGPs. (f) Distribution of hyperparameter σn for GPs.

Figure 4.3: Distribution of hyperparameters ℓ, σf and σn for 110 SGPs and GPs, where the SGPs
were used as mean functions to the GPs. The left column contains the SGPs whereas
the right contains the GPs. The rows display the hyperparameters ℓ, σf and σn in
that order.

The fourth set of models to be validated used SGPs with a constant mean function. The SGPs were
trained with varying numbers of inducing positions m on the training data and used a constant mean
function of -140.0. Similarly to previous experiments, several values for m were tested (1, 8, 32, 128,
256) and the models were named SGP(m). The reason for not continuing for greater m is that the
computation time increased quadratically. We therefore set an arbitrary limit of m ≤ 256 for the
SGP-based models. The resulting training metrics of the SGP-based models are shown in Table 4.2.

The fifth set of models tested using LDPL as a mean function, whereas the last set of models to be
validated used an underlying SGP as the mean function. As the goal was for the mean function to
simply produce an approximate propagation, the SGP mean function used samples of fewer m. The
purpose of the original SGP was to approximate the regular GP as accurately as possible, which is
why greater values of m were tested. These tests were named SGP(m1)-SGP(m2), where m1 and
m2 denoted the number of inducing points in the original SGP and the SGP representing the mean
function, respectively.
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Table 4.2: Presents the mean NLML, mean NLRL, mean number of NLML iterations and mean
complexity for multiple models trained on the Slam 72 dataset.

Model NLML NLRL NLML iterations Complexity
SGP(1) 4447.6 53.7 49.2 5.8e+4
SGP(8) 4229.3 50.3 691.1 5.7e+7
SGP(32) 4046.9 47.7 1492.7 1.9e+9
SGP(128) 3951.1 46.7 1334.6 3.3e+10
SGP(256) 3922.5 46.3 1014.4 1.1e+11

SGP(128)-LDPL 3870.5 45.6 1539.7 3.5e+10
SGP(128)-SGP(1) 3865.6 46.0 1601.8 3.7e+10
SGP(128)-SGP(8) 3918.3 47.1 1048.6 2.9e+10
SGP(256)-LDPL 3834.7 45.2 1112.3 1.1e+11

SGP(256)-SGP(1) 3838.0 45.4 1041.5 1.0e+11
SGP(256)-SGP(8) 3876.8 46.3 832.9 8.8e+10

Positioning

The initial positioning method was the simplest possible. When parsing the training data the initial
bounds were selected according to Section 2.6.1. Instead of using a minimiser, the centroid (middle
position) of the bounds was selected as the predicted position. Since all of the models used the same
bounding technique the resulting mean error was the same for all models, specifically 1598.8 metres.

The next positioning method tested was the global minimiser (grid search) described in Section 2.6.2.
Since the precision played a large role in the results multiple values for the precision were tested,
starting from 200.0 metres and going down to 80.0 metres in decrements of 40. The results regarding
the mean error are presented in Figure 4.4, which shows how the accuracy increases for all models as
the grid precision decreases. Note that the number of evaluated positions for the grid search is the
same for every model since the bounds are identical. The mean number of evaluations for each grid
search precision is shown in Table 4.3.

Figure 4.4: Mean error when using the grid search minimisation method for different precisions.
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Table 4.3: Displays the average number of positions that were computed during grid search for
models trained on the Slam 72 dataset.

Grid search precision (m)
200 160 120 80

Mean evaluations 1104 1733 3049 6791

To further optimise for the position of the highest likelihood the local minimiser described in Section
2.6.3 was implemented. The results from using the global and the local minimiser are shown in Figure
4.5. To get a sense of how much a better minimiser could potentially improve the result the MPG
was computed for each of the tested models. These results are shown in Figure 4.6. For each of the
models, the mean number of position evaluations during the local minimisation is presented in Figure
4.7. From these results, we can see a general decrease in the number of evaluations as the grid search
distance decreases. It is also apparent that the mean number of evaluations for the local minimiser
is generally less than 10 for all models.

Figure 4.5: Mean error when using the grid search minimisation method followed by a local
L-BFGS-B minimiser for different grid search precisions.

Figure 4.6: Displays the mean potential gain (MPG) of our tested models for group 72.
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Figure 4.7: Displays the average number of positions that were evaluated by the local minimiser
for models trained on the Slam 72 dataset.

The best-performing SGP model was determined to be SGP(256), further analysis was therefore
conducted regarding this model. We initially analysed the effect of m on the mean error and the
complexity of the hyperparameter training. We did so by gradually increasing m from 10 to 200
and computing the complexity measure and the mean error with a grid search precision of 80 metres
when training on Slam data. The results are shown in Figure 4.8. From these observations the
relationship between the mean error and log complexity was established, as presented in Figure 4.9.
A second-order polynomial trendline was yielded by minimising the square error. The resulting
trendline was y = 3380.07 − 628.91x + 30.85x2, where y represents the mean error in metres and x
represents the logarithm of the computational complexity. The second-order polynomial was deemed
to describe the relationship between the mean error and the log complexity good enough within the
range 10 ≤ m ≤ 200. This resulted in a range for log complexities between 8 and 10.8. For log
complexities outside of this range, the trendline does not hold.

(a) Displays the mean error over the number of
inducing points, m.

(b) Displays the base 10 logarithm of the mean
complexity over m.

Figure 4.8: Two graphs displaying how varying the number of inducing points m for the SGP
from 10 to 200 affects the mean error and complexity for group 72.
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Figure 4.9: A scatter plot displaying the observed values for the mean error over the complexity
for group 72. The trendline was calculated by minimising the mean square error,
which yielded the function y = 3380.07− 628.91x + 30.85x2, where y represents the
mean error in metres and x represents the logarithm of the computational complexity.

The SGP(256) model was then compared to the baseline methods based on WKNN and WCL. The
results are shown in Table 4.4.

Table 4.4: Mean error in metres when validating over dataset 72 with the selected optimal
positioning technique. Note that SGP(256) used a grid search precision of 80 metres.

Model Mean error (m)
SGP(256) 162

WCL 710
WKNN 116

4.1.2 Learning 72

Table 4.5 shows the resulting mean error when training on the Learning dataset of group 72. As
WKNN was only applicable to datasets with scans, it was not included for Learning.

Table 4.5: Mean error in metres when validating over validation dataset 72 after training on
Learning 72 with the selected optimal positioning technique.

Model Mean error (m)
SGP(256) 429

WCL 642

4.2 Group 1000

The next group that was evaluated was the group with a validation set consisting of 1000 random
scans. There existed two training datasets, one from Slam and one from Learning.

36



4.2.1 Slam 1000

Distribution Modelling

The metrics regarding the distribution modelling are displayed in Table 4.6.

Table 4.6: Displays the mean NLML, mean NLRL, mean number of NLML iterations and mean
complexity for multiple models trained on the Slam 1000 dataset.

Model NLML NLRL NLML iterations Complexity
SGP(128)-LDPL 4376.2 10.9 1211.3 4.1e+10

SGP(256) 4420.8 10.9 873.1 1.7e+11
SGP(256)-LDPL 4342.1 10.8 823.3 1.3e+11

SGP(256)-SGP(1) 4350.1 10.8 823.0 1.3e+11

Positioning

The number of evaluations made for each precision of grid search is presented in Table 4.7. The
mean error when using well-performing SGP models is presented in Figure 4.10, whereas the MPG
is presented in Figure 4.11. The mean number of positions to evaluate when using the L-BFGS-B
minimiser is presented in Figure 4.12.

Table 4.7: Displays the average number of positions that were computed during grid search for
models trained on the Slam 1000 dataset.

Grid search precision (m)
200 160 120 80

Mean evaluations 293 452 791 1756

Figure 4.10: Mean error when using the grid search minimisation method followed by a local
L-BFGS-B minimiser for different grid search precisions.
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Figure 4.11: Displays the mean potential gain (MPG) of our tested models for group 1000.

Figure 4.12: Displays the average number of positions that were evaluated by the local minimiser.

We chose to examine the SGP(m) model without a custom mean function as it was one of the
models that had performed best for the best grid search precision (80 metres), while also consistently
beating the other models for worse grid search precisions (120, 160, 200 metres). Regarding the
SGP(m) model, the mean error over m and the complexity over m can be seen in Figure 4.13. From
these results, a second-order polynomial relationship was established between the mean error and the
log complexity, as presented in Figure 4.14. This yielded a trendline y = 2160.54− 357.48x + 17.42x2

by minimising the square error, where y denotes the mean error in metres and x denotes the logarithm
of the computational complexity.
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(a) Displays the mean error over the number of
inducing points, m.

(b) Displays the base 10 logarithm of the mean
complexity over m.

Figure 4.13: Displays the relationships between the number of inducing points, mean error and
complexity for group 1000. The number of inducing points was selected between 10
and 200.

Figure 4.14: A scatter plot displaying the observed values for the mean error over the complexity
for group 1000. The trendline was calculated by minimising the mean square error,
which yielded the function y = 2160.54− 357.48x + 17.42x2, where y represents the
mean error in metres and x represents the logarithm of the computational complexity.

When comparing with the baseline for this dataset we chose the model that had achieved the lowest
mean error result for the dataset, namely SGP(256)-SGP(1). The results of the comparison with the
baseline models are presented in Table 4.8.

Table 4.8: Mean error in metres when validating over dataset 1000 with the selected optimal
positioning technique.

Model Mean error (m)
SGP(256)-SGP(1) 308

WCL 676
WKNN 168

4.2.2 Learning 1000

We evaluated the SGP(256) model and the WCL baseline model against the Learning 1000 dataset.
The results are presented in Table 4.9.
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Table 4.9: Mean error in metres when validating over dataset 1000 with the selected optimal
positioning technique.

Model Mean error (m)
SGP(256) 1638

WCL 1650

4.3 Group Bus

This section will evaluate the performance of our models when training and validating models on the
Bus datasets.

Distribution Modelling

The resulting metrics related to the distribution modelling are presented in Table 4.10.

Table 4.10: Displays the mean NLML, mean NLRL, mean number of NLML iterations and mean
complexity for multiple models trained on the Slam 1000 dataset.

Model NLML NLRL NLML iterations Complexity
SGP(128) 2489.9 14.9 693.8 2.0e+10

Positioning

The comparison between the mean error for SGP(128) model and the baseline models is presented in
Table 4.11. The relationships between the number of inducing points, the mean error and the com-
plexity for group Bus are presented in Figure 4.15. The resulting second-order polynomial trendline
representing the relationship between the mean error and the log complexity is presented in Figure
4.16. The trendline was found to be y = 2039.32 − 313.67x + 14.85x2, where y represents the mean
error in metres and x represents the logarithm of the computational complexity.

Table 4.11: Mean error when validating over the Bus validation dataset.

Model Mean error (m)
SGP(128) 387

WCL 655
WKNN 321
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(a) Displays the mean error over the number of
inducing points, m.

(b) Displays the base 10 logarithm of the mean
complexity over m.

Figure 4.15: Displays the relationships between the number of inducing points, mean error and
complexity for group Bus. The number of inducing points was selected between 10
and 100.

Figure 4.16: A scatter plot displaying the observed values for the mean error over the complexity
for group Bus. The second-order polynomial trendline was calculated by minimising
the mean square error, which yielded the function y = 2039.32− 313.67x + 14.85x2,
where y represents the mean error in metres and x represents the logarithm of the
computational complexity.
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5 Discussion

The discussion will be separated into a few topics which will be discussed. Firstly, we will discuss the
results related to distribution modelling. Secondly, the positioning results will be discussed. Thirdly,
the positioning results will be analysed both for the baseline models and the GP-based models.
Finally, we will discuss future work.

5.1 Distribution Modelling

For this section, we will analyse the results regarding the metrics used in the distribution modelling,
presented in Section 4.1.1.

5.1.1 Hyperparameters

As stated in the results section, the hyperparameters were optimised freely with a local minimiser.
The resulting distributions of the hyperparameters for regular GPs, shown in Figure 4.1, seem to be
concentrated around a mean value for σf and σn but noisier for ℓ. These hyperparameter distributions
differ somewhat from the distributions shown for a GP with a custom mean function. As the custom
mean function models the RSS propagation the variation for the training data is reduced, as described
in (2.9). Another prominent trend is the decreased mean of ℓ. When comparing the hyperparameter
distributions of the GP with the custom mean SGP(1) in Figure 4.3, the same trend is repeated
where the SGP achieves a better marginal likelihood with larger values for ℓ. Further, the resulting
optimised hyperparameters ℓ and σf are reduced for the basis GP when compared to a GP with a
constant mean function.

5.1.2 Metrics

For this section, the metrics NLML, NLRL, NLML iterations and complexity will be analysed.

The NLML and NLRL presented in Table 4.1 and 4.2 show how well the distributions fit the training
and validation data. Note that we want to maximise the marginal likelihood and therefore we want
to minimise the NLML, the same applies to the NLRL. One general trend that can be seen when
comparing the SGP(m) models is that the number of inducing points negatively correlates with both
the NLML and the NLRL.

The results show that the model that achieves the minimal NLRL is the GP with an SGP mean of
1 inducing point. As the number of inducing points increased for the SGP custom mean function,
the resulting NLML decreased, but the NLRL increased. This means that the model improved the
modelling of the training data, but the modelling of the validation data suffered as a result. For
the case where m = 1 of the custom mean SGP the propagation was modelled by a single inducing
point. The posterior distributions were then decided only by the covariance to that inducing point
according to the Gaussian kernel defined by (2.3). The mean function was therefore similar to the
LDPL model in the sense that one position had the maximum RSS and the propagation declined
purely dependent on the Euclidean distance to that position according to some function. Regarding
the SGP models presented in Table 4.2, the model with the minimal NLRL was the SGP(256)-LDPL
model. Interestingly, this model also achieved the lowest NLML. Other models that also achieved
low scores for the NLRL measure are SGP(128)-LDPL, SGP(256) and SGP(256)-SGP(1).

Regarding Table 4.2, no significant trend was found regarding the number of NLML iterations other
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than that SGPs with very small m did not require as many NLML iterations to find a minimising
set of hyperparameters. However, the complexity is important to consider when increasing m. As m
increases from 1 to 8 and the number of NLML iterations increases approximately 14-fold, we can
expect a mean increased computational load of about 82 ∗ 14 ≈ 900, which seems to agree with the
resulting complexity of SGP(8) as (5.8 ∗ 107)/(5.7 ∗ 104) ≈ 1000.

5.2 Positioning

5.2.1 Grid Search

Starting with the results from group 72 using just a grid search, the results of Figure 4.4 display how
much of a difference the precision makes. The number of points that need to be evaluated scales
quadratically, making the number of evaluations with a precision of less than 80.0 metres very large
for normal distances between cells. One factor that can be used to combat this is by reducing the
initial grid size. For predicting positions where the RSS of 3 or more cells are collected it is reasonable
to assume that the expected position is somewhere in between these 3 cells. It would therefore be
unnecessary to examine the furthest reach of any cell. Even if the true position is outside of the
initial grid for some positions it might enable higher grid search precision which then grants greater
accuracy for other predictions.

Note how the mean error fluctuates heavily for different grid search precisions. Since there are only
72 validation scans minor changes to the grid precision can greatly affect which position has the
greatest likelihood. This could be counteracted by examining the grid search positions further. For
some of the models the gradient can be computed, it might therefore have been beneficial to use a
local minimiser for several of the grid search positions instead of just one.

5.2.2 L-BFGS-B

Figure 4.5 introduces the local minimiser named L-BFGS-B. The results show little improvement
when comparing the results from Figure 4.4 to Figure 4.5. The cause of this is more than likely that
in many cases the function space is not perfect, and there exists many local minimiums. This leads
to L-BFGS-B being very sensitive to its initialisation. For most cases, the prediction is improved and
the local minimum is closer to the true position, but there are cases where finding the local minimum
worsens the prediction. As presented in Figures 4.7 and 4.12, the mean number of evaluations required
for the L-BFGS-B minimiser to find the local minimum is minuscule when compared to the number
of grid evaluations required for both group 72 and group 1000, shown in Table 4.3 and 4.7. However,
one important difference between the grid search minimisation and the local minimisation is the
vectorization which is made possible when evaluating multiple positions at once.

5.2.3 MPG

The MPGs for Slam data of group 72 and group 1000 are displayed in Figures 4.6 and 4.11, re-
spectively. As the grid search precision increases the MPG converges toward zero, meaning that the
solution of the highest likelihood (according to the model) is found more often. This can be pretty
useful for evaluating the potential of a model without using an extensive global search algorithm.

5.3 Baseline Comparison

We will now compare the results of the best-performing models for the different datasets.

44



5.3.1 Group 72

The sparse model which performed best for predicting the group 72 dataset was selected from Figure
4.5 as the SGP(256) model with a mean error of 162 metres when the grid search precision was 120
metres. However, several models performed similarly and the results were very noisy for this dataset.
Other models that performed similarly include SGP(256)-SGP(1) and SGP(LDPL). It is worth noting
that the SGP(256) performed best for the lowest grid search precision (200 metres), even better than
the regular GP model. The optimal GP-based model when disregarding computational complexity
was the regular GP model, with a mean error of 123 metres.

For the Slam dataset of group 72, when comparing the result of the best-performing GP model (162
metres) to the results of the baseline models shown in Table 4.4 the WCL had the highest mean error
(709 metres), whereas the WKNN had the lowest mean error (116 metres). The difference is not as
overwhelming though, as the regular GP achieved a mean error of 123 metres.

It is important to regard how the number of inducing points affects the positioning accuracy and
complexity when selecting m, as presented in Figure 4.8. From the graph, it is apparent that the
prediction accuracy flattens out somewhat after m = 50 and the mean error seems to fluctuate between
160 and 200 metres. The same trend of convergence is seen for the complexity as m increases in Figure
4.8b.

The relationship between the log complexity and the mean error is presented in Figure 4.9. The
trendline approximately describes the relationship between the mean error and the computational
complexity. As can be seen in the figure, the trendline has a minimum mean error at a log complexity
of approximately 10.2. As the trendline is described by y = 3380.07− 628.91x + 30.85x2, we can also
calculate the derivative with respect to the computational complexity. For example, the derivative at
x = 8 is −135.31. As the complexity approaches 10.2 the mean error reaches a minimum. Although
this measure is approximate and assumes a second-order polynomial relationship, it offers insight into
the cost of decreasing the mean error. Note that the relationship is specific to this dataset.

The results of the Learning dataset for group 72 (presented in Table 4.5) show that SGP(256) achieved
a mean error of 429 metres, whereas WCL achieved a mean error of 642 metres. The mean error of
SGP(256) is therefore approximately 1/3 less than that of WCL.

5.3.2 Group 1000

We will now examine the results of group 1000, shown in Figure 4.8. The best-performing GP-based
model was SGP(256)-SGP(1), with a mean error of 308 metres for a grid precision of 80 metres. It
is worth noting that the SGP(256) performed similarly for higher grid search precisions (80 m) but
for all other tested grid search distances > 80, the SGP(256) model maintained a lower mean error
when compared to SGP(256)-SGP(1). The WKNN baseline method had the greatest accuracy of all
the tested methods, with a mean error of 168 metres.

We would like to refer to Figure 4.13 for further information regarding how the accuracy and com-
plexity are affected by the number of inducing points m. A similar trend, as was seen for group 72 in
Figure 4.8, can be observed for group 1000 as well. The relationship between the log complexity and
the mean error is presented in Figure 4.14. The trendline created for the observed points is described
by the function y = 2160.54 − 357.48x + 17.42x2. Comparing this to the corresponding trendline
of group 72 shows a similar trend, where a minimum mean error is achieved at a log complexity of
around 10.2. We can determine the derivative of the mean error with regard to the complexity for
x = 8, yielding −78.76. There is a clear difference between the derivative of the mean error at x = 8
for Group 72 compared to Group 1000. It is therefore more costly to decrease the mean error for
group 1000 when compared to group 72.

Regarding the Learning dataset, the results shown in Table 4.9 display a mean error of 1638 metres
for SGP(256) and 1650 metres for the WCL method. These are both terrible results and can be
explained by the small amounts of training data regarding very few cells shown in Table 3.2. The
table shows how less than half of the cells used in the validation data exist in the training data. The
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models therefore have very little to work with when training on that Learning dataset. The reason
for this small amount of shared cells is that a large amount of the Slam data was collected after the
Learning data was. When selecting 1000 random scans many of these will therefore derive from the
newer Slam data, for which many entries contain newer established cells that are not in the Learning
dataset. We consider the results from this Learning dataset as unreliable.

5.3.3 Group Bus

Group Bus is arguably the most realistic dataset regarding training and validation of real-world
positioning scenarios. When positioning data is collected the scans are often done within intervals
of a few seconds, creating a trail of very similar scans. The problem with extracting random scans
from such trails of data and using them as validation is that the training data still contains scans
that are largely similar to the validation data. However, when the Bus dataset was collected no such
data was leaked into the training data, which is a more realistic scenario for positioning validation.
We therefore believe the results from group Bus offer the most realistic results for the mean error of
the evaluated models.

The resulting mean error from group Bus is presented in Table 4.11, where the best model was the
WKNN method at a mean error of 321 metres, whereas the SGP(128) model achieved a mean error
of 387 metres. The WKNN method therefore had a mean error that was approximately 20% less
than that of SGP(128). In turn, the SGP(128) had a mean error that was approximately 40% less
than that of WCL.

The reason for using SGP(128) instead of SGP(256) was simply to save time. SGP(128) already had
a calculated complexity of 2.0 ∗ 1010, as shown in Table 4.10. By increasing it further the complexity
would increase by a factor of 4, while still maintaining roughly the same prediction accuracy.

The trendline which describes the relationship between the mean error and the complexity is presented
in Figure 4.16, and is described by the function y = 2039.32− 313.67x + 14.85x2. The derivative of
the trendline at x = 8 is −76.07, and x = 10.56 defines the global minimum of the trendline. What
can be gathered by the trendlines of Group 72, 1000 and Bus is that they all seem to converge toward
a local minimum around x = 10.5, and increasing the complexity further does not decrease the mean
error. For all three of the groups, this complexity is achieved when using approximately 110 inducing
points. It is important to note that this assumes a simple polynomial relationship, which does not
accurately model the mean error as the number of inducing points increases above 200. For m > 200,
we would require further analysis to model the mean error correctly.

5.4 Future Work

For this section, we will present some ideas which might be of interest for further work on the topic.

During this thesis, the only input parameters that have been considered were the measured RSS
and the ID of the cell. For a more extensive prediction model, one might consider involving other
parameters besides the ones used for RSS propagation. One example would be the ID of the device
that reported the measured RSS, as certain devices could perhaps have unique noise distributions.
It is also possible that some devices might show a trend of dampening. For this thesis, the measured
values were assumed to have a Gaussian noise ϵ, but it might be possible to relate unique devices to
unique non-Gaussian noise distributions.

Another potential improvement involves the minimisation algorithm used for the NLML minimisation.
The used minimiser (L-BFGS-B) is a local minimiser and might not find the optimal set of the
hyperparameters ℓ, σf and σn. It could therefore be valuable to use a global minimiser. One
potential such minimiser is the firefly algorithm, used in [4] both to minimise the NLML and to find
the predicted position by minimising the loss function. This algorithm could potentially offer better
results for both problems, which would be interesting to compare with the method used in this thesis.
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We would also like to suggest optimising every individual GP differently. Throughout this thesis,
all trained SGPs have used the same number of inducing points and limits regarding their hyperpa-
rameters. Remember that during the training of an SGP, maximising the variational lower bound
FV leads to improving the approximation of p(f , fm|y), as described in Section 2.3.1. It would be
reasonable to assume that SGPs which represent cells with noisy RSS propagations could improve
their approximation a lot more compared to training data with smooth propagations when provided
more inducing points. There might therefore exist an exact or approximating measure of which SGPs
would improve their variational lower bound the most when provided an extra inducing point. This
would lead to a more efficient training phase.
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6 Conclusion

This thesis presents several models for fingerprint-based positioning using SGPs. The models that
used custom mean functions did not offer a significant increase in positioning compared to the SGP
model with a constant mean function. The models using a custom mean function were therefore
disregarded. Our most stable model used an SGP to model the RSS propagation, and depending on
the required precision the number of inducing points could be selected to fit this requirement.

The two baseline models that were used to compare with the GP-based models were WKNN and
WCL. We found that the WKNN model offered the greatest accuracy when applicable to the dataset.
For the dataset which was deemed the most realistic for a real-world positioning problem (group
Bus), WKNN achieved a mean error of 321 metres whereas the proposed SGP-based model achieved
a mean error of 387 metres. For datasets that did not contain scans, but rather one RSS-ID entry per
position, the SGP model and the WCL method were compared. For evaluation with the datasets of
group 72 the proposed SGP model achieved a mean error of 429 metres, whereas WCL achieved 642
metres. For evaluation with the datasets of group 1000 SGP achieved a mean error of 1638, compared
to a mean error of 1650 metres for WCL.

We will now answer the questions presented in the goals Section 1.2.

• Which GP-based model offers the highest accuracy?

The regular GP offered the greatest prediction accuracy for a majority of the cases where it could be
tested. This was expected as all the other models are SGPs which optimise their hyperparameters to
approximate the regular GP. Regarding the SGPs, using a custom mean function did not have much
of an effect and could be considered redundant for the employed tests of positioning accuracy. The
optimal scalable model therefore used SGPs to model the RSS propagation of each cell.

• How does the optimal model perform compared to common methods of positioning such as
WCL or WKNN?

The optimal SGP model achieved a mean error that was approximately 20% greater than that of
the WKNN method. For the datasets where WKNN was not applicable, the SGP model offered
more accurate predictions than the WCL method. How much more accurate was dependent on how
extensive the provided training data was. However, for the Bus dataset, the SGP model had a mean
error that was approximately 40% lower than that of WCL.

• What is the tradeoff between accuracy and scalability?

Assuming a simple relationship between the complexity and the resulting mean error we can determine
how much the mean error is expected to decrease as we increase the number of inducing points. When
using 10 inducing points for the groups 72, 1000 and Bus, the mean error had an expected decrease of
135.31, 78.76 and 76.07 metres for each factor 10 increase in complexity respectively. The trendlines
describe that the minimum mean error was achieved when using between 100 and 120 inducing points
for our tested datasets.
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