
MASTER’S THESIS 2023

Facilitating the Development
and Release of Research
Software into an Open-Source
Project
Fritjof Bengtsson

ISSN 1650-2884
 LU-CS-EX: 2023-47

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-47

Facilitating the Development and Release
of Research Software into an Open-Source

Project

Främjande av utvecklandet och utgivandet
av forskningsprogramvara som öppen

källkod

Fritjof Bengtsson

Facilitating the Development and Release
of Research Software into an Open-Source

Project

Fritjof Bengtsson
eko15fbe@student.lu.se

November 7, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors:
Alexander Ekman, alexander.ekman@hep.lu.se

Alma Orucevic-Alagic, alma.orucevic-alagic@cs.lth.se
Caterina Doglioni, caterina.doglioni@cern.ch

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:eko15fbe@student.lu.se
mailto:alexander.ekman@hep.lu.se
mailto:alma.orucevic-alagic@cs.lth.se
mailto:Caterina.Doglioni@cern.ch
mailto:martin.host@cs.lth.se

Abstract

This work presents an account of the process of transforming Baler, a data com-
pression tool for scientific data, into an open-source software project. Initially
created for specialized scientific use, the expansion into an open-source project
required combining the expertise of various scientific fields.

Navigating this process presented several challenges, including managing a
steep learning curve for scientists new to the industry standard of software de-
velopment, deciding on a license, and addressing technical issues with limited
existing solutions.

The transition of Baler highlights the potential of open-source approaches in
scientific software development. The interdisciplinary collaboration established
during the process marks the value of combining diverse knowledge and skills.
This experience provides valuable insights for similar projects and emphasizes
the importance of open-source development in broadening the accessibility of
scientific software tools.

Keywords: MSc, Open-Source, Compression, License, Software Development, Particle-
physics, Design Science

2

Acknowledgements

The successful completion of this thesis would not have been possible without the support
and guidance of several individuals. I am deeply grateful to my supervisor at the Department
of Computer Science, Alma Orucevic-Alagic, for her invaluable insights and guidance on the
thesis and open-source.

I also extend my sincerest thanks to Martin Höst, my examiner at the Department of
Computer Science, for his expertise on open-source and his contributions to broadening my
understanding of the topic.

Additionally, I would like to express my gratitude to Alexander Ekman, at the Depart-
ment of Physics, for his tireless efforts on the Baler project. His dedication and passion for his
work have been truly inspiring, especially his curiosity and eagerness to adopt good computer
science and open-source standards.

I would also like to mention Axel Gallén from the Department of Physics at Lund Uni-
versity, and Pratik Jawahar from the Department of Physics at Manchester University. It has
been a joy working together with both of you.

3

4

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Objectives . 8
1.3 Limitations . 8

1.3.1 Isolated project . 9
1.3.2 Not about machine learning . 9

2 Methodology 11
2.1 Literature Study . 11

2.1.1 Database Choice . 12
2.1.2 Theoretical Foundation on Open-Source 12

2.2 Case Study . 13
2.2.1 Objective and Purpose . 13
2.2.2 The Baler Project as Case . 14
2.2.3 Data Collection Methods . 15
2.2.4 Theoretical Framework . 15
2.2.5 Validity of the Baler Case Study . 16

2.3 Design Science . 17
2.3.1 Process . 17
2.3.2 Contribution . 17

3 Background 19
3.1 Overview of Baler . 19

3.1.1 Python . 20
3.1.2 Docker . 20

3.2 Overview of Open-Source Software . 21
3.2.1 Contrasting Proprietary Software 21
3.2.2 The Growth and Impact of Open-source 22
3.2.3 Benefits of Open-source Software 22
3.2.4 Licensing . 23

5

CONTENTS

3.2.5 Measuring Success in an Open-Source Project 23
3.3 Open-Source within Academia . 24

4 Results and Discussion 25
4.1 Project Management Insights . 26
4.2 Developing as a non-developer . 28

4.2.1 Documentation . 28
4.2.2 Typing . 29
4.2.3 Testing . 31
4.2.4 Formatting . 32
4.2.5 Version Control Systems . 32

4.3 Project Dilemmas . 33
4.3.1 License Choice . 33
4.3.2 Choice of Data Format . 34

4.4 Reflection on Design Science . 34
4.4.1 Real-world Problem Solving . 34
4.4.2 Iterative Design and Evaluation . 35
4.4.3 Documented Learnings as Technological Rules 35

5 Open-source Checklist 37
5.1 Higher Priority . 37
5.2 Lower Priority . 38

6 Conclusion 39

References 41

6

Chapter 1

Introduction

Particle physics is a branch of physics that studies the fundamental constituents of matter
and their interactions. The Large Hadron Collider (LHC) at CERN[1] is the largest particle
accelerator facility in the world, designed to produce high-energy particle collisions to ex-
plore the fundamental structure of matter and the universe. The LHC experiments generates
vast amounts of data, that was essential in discoveries such as the Higgs boson [2] and insights
into dark matter [3][4].

However, the sheer volume of data produced by the LHC experiments presents significant
challenges for data processing and storage. The upgrade to the High Luminosity LHC in 2029
will increase the production of particle collisions ten-fold and in turn data generation five-
fold [5][6]. This makes it imperative to only save the most relevant and valuable data for the
scientific goals of the experiments. In response to these challenges, the Physics Department
and Computer Science Department at Lund University, in collaboration with the Physics
Department at Manchester University have developed a compression tool. The tool – Baler
– utilizes lossy machine learning-based compression [7] to compress multi-dimensional data
and evaluate the accuracy of the process.

Lossy machine learning-based compression has the potential to be a suitable method for
compressing multi-dimensional data in the context of particle physics, as it could offer a
balance between accuracy and statistical power. While it is important to maintain accuracy of
the decompressed data in relation to the original dataset, the main focus is on maximizing the
statistical power. Statistical power refers to the ability to detect a true effect or relationship
within the data, which is usually enhanced by having a larger sample size. Therefore, the
goal is to obtain the greatest possible statistical power by making use of a larger amount of
data, while still ensuring the decompressed data remains accurate and representative of the
original dataset. The goal of Baler is to enable researchers to efficiently compress and store
more data without compromising the overall quality and usefulness of the information.

7

1. Introduction

1.1 Motivation
In the context of handling large volumes of scientific data, Baler has the potential to tackle
this challenge of efficient data compression, while also providing the capability to evaluate
accuracy of the process. This ensures the scientific goals of the experiments are not compro-
mised by the compression or decompression process. A goal of the Baler project is to enable
researchers from vastly different fields to test feasibility of compressing different types of
scientific data.

Making Baler an open-source tool has the potential to greatly expand its impact and
reach. Open-source tools are not only freely available, but they also foster collaboration and
promote the sharing of ideas and knowledge within the community [8]. By releasing Baler on
the European Open Science Cloud (EOSC) platform [9], researchers in a variety of fields will
have access to Baler. Our objective is to determine the strategy for making Baler an open-
source tool and to facilitate its release on the EOSC platform, where it can be shared with
researchers beyond the field of particle physics [9].

1.2 Objectives
The objective of this Master’s thesis is to develop a strategy for transitioning Baler into an
open-source environment, so it can be released on the EOSC platform and made widely avail-
able to researchers in various fields. To achieve this objective, we will address the following
research questions:

1. How can Baler be designed to meet the data requirements of different fields of science
and industry?

2. How can we establish and foster an open-source community around the Baler tool, and
what are the key elements for creating a sustainable open-source project?

3. What metrics can be used to assess adoption and impact of Baler?

By answering these research questions, we aim to determine a product road-map for Baler
that supports its use in a variety of data-intensive scientific applications, and to establish
a strategy for making Baler an open-source tool that can be used and improved upon by
researchers in these fields.

1.3 Limitations
This section details the limitations of the results presented in this thesis. The research con-
ducted has produced useful findings. However, it is necessary to be aware of certain limi-
tations of our research. These don’t take away from our work’s value but are important to
bear in mind when interpreting the results. These limitations also point towards areas where
more research could be beneficial, particularly in managing open-source project for scientific
software development.

8

1.3 Limitations

1.3.1 Isolated project
In this section, we present a key limitation of the case study, namely, the isolated nature of the
Baler project. While our investigation has provided valuable insights into the challenges and
best practices associated with managing an open-source project with non-developer contrib-
utors (individuals who contribute to the project in roles other than software development or
are coming from a background with limited exposure to software development), it is impor-
tant to recognize that these findings are based on the analysis of a single project.

The experiences and outcomes observed in the Baler project may not necessarily be gener-
alizable to other open-source or research software projects, particularly those with different
scopes, goals, or team compositions. While the lessons learned from the Baler project can
potentially offer guidance for future projects, it is crucial to acknowledge that the results
presented in this study may not be universally applicable.

To overcome the fact that the insights from the Baler project might not be universally
applicable, we suggest a future study involving a survey. This survey should be aimed at scien-
tists across various fields, such as physics, biology, and beyond, who are actively developing,
or have developed, software for their research. The goal of this survey would be to gather
a variety of perspectives on the challenges experienced during the development of scientific
software, particularly those transitioning to open-source. This would enable a comparison
between the Baler project and those found in the broader scientific context.

Such research would enable a more comprehensive understanding of the factors influenc-
ing the success and efficiency of open-source projects involving non-developer contributors,
ultimately contributing to more effective project management and collaboration.

1.3.2 Not about machine learning
Another limitation of this study lies in its primary focus on the process of making Baler an
open-source project and fostering a healthy open-source community with scientists, rather
than delving into the technical details of the autoencoder implementation. This study does
not offer an in-depth analysis of the technical aspects of the Baler implementation.

As a result, readers interested in the specifics of the machine learning techniques em-
ployed in Baler might not find the desired level of detail in this study. This limitation also
implies that the present research may not directly contribute to the advancement of machine
learning-based compression methods or their applications.

It is important to recognize that the scope of this study is intentionally focused on the
open-source community and collaboration aspects, as the primary goal is to explore the
unique challenges and opportunities associated with managing an open-source project in-
volving non-developer contributors. For those seeking a more comprehensive understanding
of the implementation of Baler, we suggest reading our paper Baler–Machine Learning Based
Compression of Scientific Data [10], which delves into the machine learning compression
techniques and their performance. Details of its implementation and performance in parti-
cle physics can found in An Open-Source Autoencoder Compression Tool for High Energy
Physics by Axel Gallén [11]. We also suggest reading the article Deep Autoencoders for Com-
pression in High Energy Physics [12] by Eric Wulff, to which some extent the Baler project is
based on. Finally, we suggest delving into the source code [7][13].

9

1. Introduction

10

Chapter 2

Methodology

This research primarily utilizes a case study methodology [14] to probe the challenges and
best practices in open-source software development, especially concerning the collaboration
between developers and non-developers. While the literature study [15] provides the foun-
dational theoretical framework and academic rigor to the research, the case study remains
the centerpiece, offering a rich and nuanced exploration of the intricacies inherent in open-
source development.

The design science approach [16] is integrated as a supplementary method, serving a dual
purpose. On one hand, it aids in problem-solving during the case study, ensuring practical
issues encountered are aptly addressed with innovative solutions. On the other, it places a
firm emphasis on the generation of technological rules stemming from the insights garnered,
enhancing the applicability of the research findings. This approach accentuates the contribu-
tions’ novelty, their tangible relevance to the real world, and their alignment with scientific
rigor.

In essence, the symbiotic blend of a case study with supportive methodologies, like the
literature review and design science, ensures that this research stands as both an academic
exploration and a practical guide, poised to offer actionable insights and recommendations
for future projects in the domain of open-source software development.

2.1 Literature Study
This section outlines the sources and the approach used in gathering existing information
relevant to the study. A mix of books and academic articles were consulted to provide a
foundational understanding and context. The subsequent subsections provide a look at the
resources chosen and the rationale behind their selection.

11

2. Methodology

2.1.1 Database Choice
This research primarily employed Google Scholar for its extensive reach across various disci-
plines. However, due to concerns over quality control and unclear indexing guidelines [17],
Scopus was also utilized. Recognized for its rigorous selection criteria and refined search ca-
pabilities, Scopus served as a more robust and precise complement to the broader scope of
Google Scholar [18], ensuring comprehensive foundation for the literature study.

2.1.2 Theoretical Foundation on Open-Source
A considerable portion of the research into open-source was grounded in two primary texts:

1. Proudcing Open Source Software by Karl Fogel [8]. This work offers a detailed explo-
ration of the mechanisms, practices, and challenges of open-source software produc-
tion

2. The Cathedral and the Bazaar by Eric Raymond [19]. Raymond discusses contrasting
methodologies in software development, presenting insights into open-source prac-
tices.

These books set the stage for the theoretical framework adopted in the research. The
literature sourced from Google Scholar was employed to either support, nuance, or contest
the views presented by Fogel and Raymond. This range of literature enriches the theoretical
depth of the study; it also ensures a balanced and rounded discourse.

Google Scholar Search Strategy
Given the quality control issues on Google Scholar mentioned earlier, a conscious effort was
made to narrow down the results to those published by reputed institutions such as the In-
stitute of Electrical and Electronics Engineers (IEEE) [20]. The search strings primarily followed
the pattern "open-source <TOPIC>". As an example, when investigating the realm of security
in open-source, the query "open-source security" was used.

Given the absence of advanced sorting mechanisms on Google Scholar, the default "Sort
by relevance..." setting was used. The literature sourced from these searches was predom-
inately incorporated in chapter 3–Background–providing depth, support, and occasional
counterpoints to the foundational theories drawn from Fogel and Raymond.

Case Study Research
To gain insights into the methodology of case studies within the software engineering realm, a
Scopus advanced search was conducted. The search string used specifically was: "case study"
AND "software engineering" AND (LIMIT-TO (AF-ID , "The University of Manchester"
60003771) OR LIMIT-TO (AF-ID , "Lunds Universitet" 60029170)) AND (LIMIT-TO (
SUBJAREA , "COMP")). The result was sorted by number of citations in descending order.
This criterion prioritized works affiliated with Lund University and Manchester University
in the context of computer science, given the collaborative nature of the Baler project be-
tween these institutions.

The first five works yielded by the search:

12

2.2 Case Study

1. Experimentation in Software Engineering by Wohlin, C., Runeson, P., Höst, M., Reg-
nell, B., Wesslén, A., 2012 [21]

2. Guidelines for conducting and reporting case study research in software engineering
by Runeson, P., Höst, M., in Empirical Software Engineering, 2009 [14].

3. Case Study Research in Software Engineering: Guidelines and Examples by Runeson,
P., Höst, M., Rainer, A., Regnell, B., 2012 [22]

4. Information systems and developing countries: Failure, success, and local improvisa-
tions by Heeks, R. in Information Society, 2002 [23]

5. Detection of duplicate defect reports using natural language processing by Runeson,
P., Alexandersson, M., Nyholm, O., in Proceedings - International Conference on Soft-
ware Engineering, 2007 [24]

Of the results, the first three works were of particular interest. Their focus on case study
methodologies, combined with the high citation counts, underline their significance in shap-
ing contemporary approaches and understanding in software engineering case studies.

2.2 Case Study
The case study component of this research focuses on the Baler project, offering an in-depth
look into the real-world application of the concepts and best practices identified from the
literature. The case study is based on the guidelines presented by Runeson and Höst in their
paper [14]. This section provides an overview of the case study methodology and delves into
the Baler project as the case. An overview of the case study can also be seen in Table 2.1. The
results derived from this case study are presented in Chapter 4–Results and Discussion–of
this paper. We also present technical rules–guidelines–in Chapter 5.

2.2.1 Objective and Purpose
As the nature of scientific inquiry has evolved, so too have the tools that support it. Cen-
tral to this evolution is the burgeoning domain of scientific software. While the creation of
tools like Baler–previously introduced in Chapter 1–represents advancements, ensuring their
adoption, adaptation, and widespread use requires another layer of strategy. This is partic-
ularly relevant when considering the rich collaborative potential of transitioning such tools
to an open-source platform.

Primary Objective: The main focus of this case study is to understand the intricate pro-
cesses, challenges, and strategies associated with transitioning Baler to an open-source plat-
form. As presented in section 1.3, our insights are rooted in a single, albeit comprehensive,
case study of Baler.

Collaboration Dynamics: An embedded objective within this primary aim is to explore
the collaborative dynamics between developers and non-developers. This interaction is piv-
otal in open-source projects, especially when the contributors hail from diverse scientific
fields with varying levels of software development experience. Drawing insights from the
Baler project will offer a lens into the complexities of such interdisciplinary collaborations

13

2. Methodology

Table 2.1: Overview of the Baler Case Study

Aspect Description
Case and Units (2.2.3)

• Primary Case: Baler project.
• Units: Developer’s diary, interactions with researchers.

Objectives, Questions, and
Hypotheses (1.2, 2.2.1) • Transition understanding.

• Collaboration dynamics exploration.
• Actionable guidelines derivation.

Theoretical Basis (2.2.4)
• Grounded in literature, particularly Fogel’s works.

Authors’ Intentions (2.2.1)
• Examine Baler transition.
• Define open-source transition guidelines.
• Seed broader research.

Case Definition (1, 2.2.2)
• Focus: Baler transition.
• Concerns: IP, quality, community.
• Perspectives: Researchers of Baler.

Data Triangulation (2.2.3)
• Qualitative: Developer’s diary, researcher interactions.

Rationale for Selection (2.2.1)
• Baler’s representation of open-source transition.

Construct Validity (2.2.5)
• Baler-specific insights, broader aims.

Integrity Consideration (2.2.2)
• Focused on Baler researchers, with verbal agreements.

Deriving Guidelines: Stemming from our understanding of Baler’s transition and col-
laborative dynamics, this study aims to derive actionable guidelines (technical rules, as pre-
sented in section 2.3 on design science [16]). These guidelines seek to aid research software
projects in navigating their open-source journey, ensuring seamless transition, broad reach,
and fostering healthy collaboration.

Broader Implications: While our findings are rooted in the Baler project, we acknowledge–
as presented in section 1.3–that a single project’s insights might not be universally applicable.
However, our objective is to lay the foundation for broader research, possibly via future sur-
veys and multiple case studies, to validate, refine, and expand upon the guidelines formulated
here.

2.2.2 The Baler Project as Case
The Baler project, previously introduced in Chapter 1, signifies the journey of a research
software project transitioning to open-source. This transition presents various challenges
and opportunities, including intellectual property concerns, assurance of software quality,
and fostering an open-source community.

At the heart of this exploration are the researchers actively involved with the Baler project.
Their engagements, obstacles faced, and insights furnish a varied perspective on the multi-
faceted dynamics inherent in projects such as Baler.

14

2.2 Case Study

To ensure the ethical integrity of this case study (as outlined in [14])–verbal agreements
were established between us and the other researchers on the Baler project–granting permis-
sion to conduct the study on the project. These agreements served to clarify roles, respon-
sibilities, and the handling of sensitive information. While the foundation of the study was
built on trust, these measures were important in ensuring transparency and maintaining a
working collaboration throughout the research process.

2.2.3 Data Collection Methods
For this study, data were gathered in two ways. The data is qualitative by nature. In turn, the
case study on Baler becomes qualitative, even though it can be used for both qualitative and
quantitative research [25]:

1. Developer’s Diary: As a developer and researcher engaged with the Baler project, I
maintained a diary. This diary became a chronicle of my journey in the project; en-
compassing observations, reflections, and interactions between myself and fellow re-
searchers. It offers a look at both the technical challenges and the human narratives
that paint the picture of transitioning research software into open-source.

2. Interactions with Fellow Researchers: While the diary primarily documents my per-
sonal experiences, it also integrates insights from interactions with other researchers.
These interactions help broadening the scope of understanding and capturing a more
holistic view of the project’s ecosystem.

In line with the framework proposed by [14], our primary case is the Baler project itself.
The diary entries and researcher interactions form the units of analysis.

2.2.4 Theoretical Framework
The methodological and theoretical underpinnings of this research draw deeply from the
literature discussed in previous sections. While the structure and design of the Baler project
case study are inspired by contemporary case study methodologies, the underlying principles
of open-source software development are derived largely from Karl Fogel’s insights.

Foundational Insights from Literature
Karl Fogel’s book [8] serves as the primary theoretical compass for this research. Through
his detailed examination of open-source development dynamics—spanning communication,
version control, licensing, and conflict resolution—Fogel presents a holistic view of the prac-
tices and challenges inherent to open-source projects.

This comprehensive understanding, framed within Fogel’s perspectives, is further en-
riched and contextualized using the case study methodologies identified in the Scopus search
(2.1.2). The methodologies drawn from the likes of Wohlin [21], Runeson [14][24], and others
are pivotal in shaping the research design, ensuring its alignment with accepted best practices
in the field of software engineering.

15

2. Methodology

2.2.5 Validity of the Baler Case Study
The Baler case study delves into transitioning research software to open-source. While its
insights are valuable, it is imperative to evaluate the validity of the results, ensuring they
accurately mirror real phenomena and are not skewed by research methodologies or the re-
searchers’ viewpoints. The four aspects of validity presented by Runeson and Höst [14]–as
well as Yin [26]–are outlined below.

Construct Validity

The operational measures used in the Baler case study primarily concern the dynamics of
open-source software development within a research-based context. A potential threat to
construct validity emerges if these measures aren’t consistently interpreted by both the re-
searcher and the subjects of the study. However, continuous discussions were held within the
project on a weekly basis to ensure alignment and shared understanding, thereby mitigating
possible threats to construct validity.

Internal Validity

The study outlines various factors influencing the transition to open-source. An example of
a potential third-party factor not accounted for could be the existing familiarity or expertise
of the research team with open-source practices and tools. If some members of the team had
prior experience, it might affect the transition speed and success rate, influencing the results.

External Validity

Given the specificity of the Baler case to a physics domain, generalizing findings to all re-
search software realms can be ambitious. Yet, the broader strategies and challenges identi-
fied in transitioning to open-source might hold relevance across domains. Thus, while certain
specifics may differ, the Baler case holds promise as a point of reference for future open-source
transitions in diverse fields.

Reliability

Ensuring the reliability of the case study’s results was of importance. While there was no
formal review of collected data, in-depth discussions were held within the project concerning
the researcher’s observations and the experiences of the project’s members. These discussions
played a pivotal role in ensuring the alignment between the researcher’s interpretations and
the actual experiences of the subjects. However, the interpretation of these discussions were
left to the researcher, who might have erroneously recalled the exact words or formulations.
Because of this, we recommend–in alignment with the paper by Runeson and Höst [14]–that
future research use a more systematic approach is used in terms of data collection and review.

16

2.3 Design Science

2.3 Design Science
Design science offers a comprehensive lens for assessing and communicating research contri-
butions [16].

Design science is a problem solving paradigm that seeks to create innovative solutions
for real world problems. The key idea is that research must be both original and practical to
contribute to the cumulative tradition of scientific knowledge. Therefore, it emphasizes the
importance of producing a theoretical output – technological rules – that can guide practice
and reflect on the relevance, novelty, and rigor of these rules.

2.3.1 Process
In line with design science methodology, this research is carried out in a series of iterative
cycles that include problem identification, solution design, and evaluation phases.

Problem Identification: In this phase, a real-world problem is identified and its rele-
vance is established. This phase involves an extensive literature review and consultation with
experts in the field to fully understand the problem’s context.

Solution Design: The next step involves the design of an innovative solution to the prob-
lem. The solution is developed based on a thorough understanding of the problem and the
current state of the art in the field.

Evaluation: The final phase of each cycle involves evaluating the designed solution’s per-
formance and effectiveness. This is typically done through empirical studies, simulations, or
other suitable methods.

The results from the evaluation feed into the next problem identification phase, creating
an iterative cycle of continuous improvement.

2.3.2 Contribution
In terms of the contribution, this research not only aim to design and develop an innovative
but also to generate technological rules. These rules, formulated based on the insights gained
during the research process, serve as guiding principles for future application and further
development.

Through this design science approach, this work aims to generate valuable insights and
make meaningful contribution to the field between software engineering and science.

17

2. Methodology

18

Chapter 3

Background

As modern scientific experiments produce an increasing amount of data, tools like Baler
emerge as possible essential assets, streamlining data handling through machine learning-
based compression techniques. In this chapter, we start by introducing Baler and touching
on its foundational principle – autoencoders, highlighting their transformative potential for
data-intensive scientific fields. Subsequent sections will touch on Baler’s implementation us-
ing the Python [27] programming language and its use of Docker [28]. The chapter then
moves on to provide an overview of open-source principles, with a specific emphasis on li-
censing.

3.1 Overview of Baler
Baler uses a neural network architecture called an "Autoencoder" [29] to reduce the size of
multi-dimensional data whilst trained to have minimal discrepancy to the original data [7].
Autoencoders are composed of an encoder, a latent space that is smaller than the input, and
a decoder. The encoder condenses information from the input into the latent space, while
the decoder tries to reconstruct the original input from the compressed form. By storing the
compressed data in the latent space along with the decoder network, the original data can
be reconstructed when needed. Figure 3.1 gives a brief overview of how autoencoders and
Baler works. Additionally, autoencoders can be used for anomaly detection [30]. Since any
significant deviation from the training data, which results in a large reconstruction error,
would be flagged as an anomaly [12]. The goal of Baler is to test the feasibility of compress-
ing different types of scientific data using autoencoders. Tools like Baler can be crucial for
enabling researchers to make the most of the data they can collect.

In addition to its potential impact in particle physics, the development and implementa-
tion of Baler have the potential to significantly impact other scientific disciplines and indus-
tries. By using machine learning to compress data, Baler offers an approach to data compres-
sion that has the potential to be applied in a wide range of contexts, such as computational

19

3. Background

Figure 3.1: An overview of Baler’s autoencoder implementation

fluid dynamics. This method has also shown to be promising on a number of different data
sets in previous studies [31].

Overall, Baler could represent an advancement in the field of data compression and pro-
cessing for scientific data, and its development and implementation could have a lasting
impact on the field of particle physics, in addition to other areas of science and industry.
However, for this to take place, it is crucial that a thriving community and continuous de-
velopment is created around Baler.

3.1.1 Python
Python is a high-level, general-purpose programming language known for its simplicity,
readability, and versatility. Created by Guido van Rossum in the late 1980s [27], Python
has become one of the most widely-used programming languages [32], thanks to its extensive
standard library, numerous third-party packages, and active community support. Python
supports multiple programming paradigms, including object-oriented, imperative, and func-
tional programming, making it suitable for a diverse range of applications, such as web de-
velopment, data analysis, artificial intelligence, and scientific computing [27].

In the Baler project, Python was chosen as the primary programming language due to its
ease of use, flexibility, and the extensive machine learning libraries available (such as PyTorch
[33] and NumPy [34]).

3.1.2 Docker
Docker is a tool that simplifies the process of developing, shipping, and running applications
by using containerization technology [28][35]. Containers allow developers to package an
application along with its dependencies, such as libraries and system tools, into a single,

20

3.2 Overview of Open-Source Software

portable unit. this approach ensures that the application runs consistently across various
environments, eliminating the "it works on my machine" issue often encountered in software
development.

Docker containers are lightweight, as they share the host system’s kernel and isolate only
the application and its dependencies [36]. This characteristic distinguishes Docker contain-
ers from traditional virtual machines [37][38], which require a full guest operating system to
run. Docker’s containerization technology has become increasingly popular among develop-
ers [39], as it accelerates development cycles, simplifies deployment processes, and enhances
application scalability.

In academia, and specifically in the field of software engineering, Docker has proven in-
strumental to promoting reproducibility in research, as it addresses many of the challenges
associated with undocumented assumptions, dependencies, and configurations [40]. By pack-
aging code and associated data into containers, Docker assists in overcoming barriers to the
reproducibility of research artifacts, enhancing the reliability and credibility of scientific
work.

In the context of the Baler project, distributing the software via a Docker image ensures
platform independence and simplifies the installation process for users. By encapsulating the
Baler application and its dependencies within a container, users can run the software seam-
lessly on any system with Docker installed, regardless of the underlying operating system.

3.2 Overview of Open-Source Software
Open-source software [8] represents a philosophy where the original source code is made
freely available to the public. This allows anyone to view, modify, and distribute the software,
fostering collaboration and transparency. The ethos behind open-source is not just about cost
but emphasizes freedom: the freedom to share, adapt, and innovate. Prominent examples like
the Mozilla Firefox browser [41] owe their origins to this principle, as they were built on open
foundations where community contribution is central [8].

3.2.1 Contrasting Proprietary Software
Proprietary software is where the source code remains undisclosed and exclusive. This means
only the original creators or authorized entities can access, modify, and distribute it [8].
Proprietary software often comes with licensing restrictions, limiting its use, distribution,
and modification. Examples of this can be seen in many commercially available software
products. Purchasing a license for such software allows you to use it, but you do not truly own
it or have the liberty to tweak its underlying code or redistribute it as you wish. In contrast,
while open-source software offers free access and customization advantages, some sectors still
gravitate towards proprietary due to barriers in open-source adoption or strategies leveraged
by proprietary vendors to maintain dominance [42].

While open-source platforms like Linux [43] often see a greater level of investment in
applications than their counterparts such as Windows [44], the incentive dynamics for de-
velopers vary based on reputation effects and developer community size [45].

21

3. Background

3.2.2 The Growth and Impact of Open-source

Recent years have witnessed a significant growth in open-source software’s popularity and
growth, challenging the norms of traditional software development [46]. While most stud-
ies previously focused on software built within conventional corporate structures, the rise
of open-source projects, like the Linux operating system kernel [43], offers new perspectives.
Despite its expansive nature, with over two millions lines of code, Linux [43] has consis-
tently grown at a linear rate. This unexpected trajectory, diverging from tightly managed
commercial software norms, highlights the dynamic potential and resilience of open-source
platforms.

3.2.3 Benefits of Open-source Software

Open-source software catalyzed innovation, fostering a collaborative environment that spurred
technological advancements and novel business models [47]. This movement reshaped soft-
ware development paradigms, with methodologies like iterative development and agile tech-
niques tracing their roots back to the open-source ethos [48]. Despite some criticism, the
open-source model has shown resilience and innovation in the industry. Recent research [49]
indicates that there is no substantial difference in quality between open-source and propri-
etary software.

Delving deeper into the benefits of open-source, the model inherently fosters a more di-
verse and inclusive environment for development [50]; this wide-ranging participation from
developers not only speeds up the problem-solving process, but also introduces varied per-
spectives, often leading to holistic solutions.

Modern code review practices, as employed by industry giants like Google, further ex-
emplify the robustness of open-source methodologies. In an exploratory investigation into
modern code review at Google, it was identified that this practice was introduced early on
and has been continually refined over the years, ensuring code quality and maintaining stan-
dards across millions of code reviews [51]. Such practices highlight the collaborative and
rigorous nature of open-source development, where code is meticulously vetted, ensuring its
reliability and robustness.

Another advantage is the heightened security [52][53]. With many eyes reviewing the
code, vulnerabilities are detected and rectified swiftly, reducing the window of exploitation.
Furthermore, the flexibility of open-source software ensures that it can be tailored to spe-
cific user requirements, making it particularly valuable for businesses looking to differenti-
ate themselves or address niche needs. Additionally, it facilitates continuous learning and
upskilling among developers [19]; by accessing and understanding the code behind major
projects, new developers can gain insight and improve their coding skills.

Open-source software offers a unique approach to development, promoting transparency,
collaboration, and flexibility. While not without its challenges [8][54], its merits stand firm
against traditional proprietary models. As the digital landscape evolves, open-source remains
an important consideration, reflecting the benefits of community-driven innovation. Its con-
tinued relevance emphasizes its value in the modern world.

22

3.2 Overview of Open-Source Software

3.2.4 Licensing
In the realm of open-source software, licenses form the legal foundation upon which com-
munity contributions thrive. These licenses dictate how software can be used, modified, and
distributed, striking a balance between creative freedom and safeguarding intellectual prop-
erty.

Key in this ecosystem are the Open Source Initiative (OSI) [55] and the Free Software
Foundation (FSF) [56], two leading authorities that maintain comprehensive lists of open-
source licenses. The OSI, renowned for its Open Source Definition [57], offers a seal of ap-
proval for licenses adhering to essential freedoms, ensuring standardization and compatibil-
ity within the community. Simultaneously, the FSF, through its commitment to software
freedom, classifies licenses according to their adherence to the principles of free software,
often highlighting the ethical and philosophical underpinnings of open-source development.
Karl Fogel, in his writings on open-source software, emphasizes the intricate nature of these
licenses and their crucial role in shaping the open-source ecosystem [8].

Licenses vary in their provisions. While some are permissive, granting developers wide
latitude, others are restrictive, ensuring that the derived works retain the same level of open-
ness [58][59]. Choosing a license is thus not merely a legal consideration but a declaration of
the project’s values and its stance on community collaboration [8].

The General Public License (GPL) stands out as a paragon of open-source licensing, often
associated with the Linux operating system [43]. Under GPL, any derivative work based on
the licensed software must also adopt the GPL, thereby perpetuating the spirit of openness
[58].

Conversely, licenses like the Apache License [59] and the MIT License [60] offer a more
permissive approach. These licenses permit users to use, modify, and distribute the software
as they deem fit. Particularly, the Apache License provides the freedom without mandating
the release of derivative works [59]. Similarly, the MIT License allows for unfettered use,
modification, and distribution without any strings attached.

However, the world of open-source licensing isn’t binary. Hybrid licenses, like the Lesser
General Public License (LGPL), carve a niche by combining elements of both open and pro-
prietary systems. The LGPL, for instance, permits the use of open-source software within
proprietary products, provided the open-source segment remains freely accessible [61].

Grasping the details of these licenses is important [62]. Each carries its own set of rules
and permissions. As Fogel notes, understanding and adhering to these terms not only re-
spect the creator’s intent but also averts legal pitfalls [8]. As open-source continues to grow,
navigating its licensing landscape with an informed mind mind becomes all the more crucial.

3.2.5 Measuring Success in an Open-Source Project
Open-source projects use many ways to measure their quality and success. Some studies have
shown that most experts look at code quality to determine how good the software is, and they
check market success and how active developers are to see how successful it is [63]. Another
study observed 283 open-source projects for three years. They found that how popular a
project is and how active its developers are can tell us a lot about its success. They also
found that factors like the size of the user base, how man language versions there are, how
responsibilities are given out, and how well the project is organized play a big role in its

23

3. Background

success [64].

3.3 Open-Source within Academia
Open-source software holds significant value in academia, promoting collaboration and the
free exchange of tools and knowledge for research advancement. It breaks away from the
siloed development typical of proprietary systems (presented in section 3.2.1), encouraging
diverse input and broad application.

Choosing Baler as a case study in the open-source context is motivated by practical and
strategic factors. Baler’s open-source nature invites a wider pool of knowledge and skill to
further refine its utility and efficiency, potentially extending its relevance beyond its initial
scope, such as particle physics.

The strategic aspect of what to share as open-source software is highlighted by Linåker
et al. [65]. Similar to businesses, academic entities benefit from open innovation by lever-
aging external contributions and insights. Sharing Baler openly helps in harnessing diverse
expertise for its development, thereby enhancing its capabilities and reliability.

Moreover, the importance of open-source software extends well beyond academia. To-
day, it is recognized as a crucial component in the digital infrastructure of various sectors,
including the public sector where its adoption, although more recent, is on a significant rise
[66]. Factors driving this demand include the potential for economic growth, innovation,
and competition, alongside benefits particularly pertinent to the public sector context, such
as improved interoperability, transparency, and digital sovereignty.

This trend is not limited to local or national initiatives. At an international level, or-
ganizations such as the World Bank and the United Nations are expressing interest in OSS,
recognizing its potential to shape sectors critical for global development [66]. This shift un-
derscores the need for comprehensive strategies in adopting and contributing to OSS, as it
involves navigating complex procurement frameworks, legal constraints, and varying policy
incentives unique to the public sector.

Furthermore, Baler serves as a tangible, accessible example of educational exploration,
offering students and researchers a direct view into advanced neural network application.
This open model ensures that Baler doesn’t just remain a static tool but evolves with collective
intelligence, possibly leading to breakthroughs in data processing or other scientific fields.

In summary, using Baler as an open-source case study underscores the importance of
communal contribution in academia, potentially leading to enriched learning, improved re-
search tools, and faster innovation [48]. The expanding adoption of open-source practices
in the public sector reaffirms its value, suggesting a broader, more universal application that
could revolutionize how governmental and non-governmental organizations operate and col-
laborate [66].

24

Chapter 4

Results and Discussion

The primary goal of this Master’s thesis was to delve into the process of transitioning Baler
to an open-source platform. This aim was motivated by the growing need for effective data
compression and storage solutions, especially in data-rich fields such as particle physics.

To revisit the initial research questions:

1. How can Baler be designed to meet the data requirements of different fields of science
and industry?

2. How can we establish and foster an open-source community around the Baler tool, and
what are the key elements for creating a sustainable open-source project?

3. What metrics can be used to assess adoption and impact of Baler?

Our findings suggest:

1. Baler’s design transitioned beyond mere technical solutions (4.2), evolving into a plat-
form that meets diverse scientific needs through several strategic initiatives. Central
to this was the establishment of a standardized data format to ensure consistency
and compatibility across fields. However, the community aspect became equally piv-
otal. The implementation of structured project management, characterized by regular
meetings and systematic review processes, ensured high-quality outputs. This compre-
hensive approach facilitated the creation of a versatile tool adaptable across various
domains, underpinned by a commitment to quality, standardization, and community
engagement (4.1, 4.3.2).

2. The cultivation of open-source community around Baler extended beyond accessibil-
ity of the code. It was about nurturing a collaborative environment with a shared
purpose. Key strategies included clear licensing, contributing guidelines, and inclusive
community policies that welcomed diverse skill sets. Regular community meetings,
and recognition of contributions fostered a sense of belonging and encouraged ongoing

25

4. Results and Discussion

engagement. This holistic methodology was crucial in creating a sustainable ecosystem
around Baler, driving both user adoption and contributor retention (4.1, 4.3.1, 4.3.2).

3. To evaluate Baler’s adoption and impact, a multi-faceted approach should be adopted.
Key metrics include developer activity as seen in Figure 4.1 which gives insight into how
frequently the tool is updated and refined, andmarket successwhich looks at the number
of downloads, contributions, and mentions in industry or research. Additionally, the
size and growth of its user base can provide insights into its success. Lastly, examining
the regularity and quality of collaborations, code contributions, and user feedback can
provide a holistic view of Baler’s influence and resonance in the open-source domain
(3.2.5, 4.1).

Using Baler as a case study, this thesis offers insights into the complexities and considera-
tions required when managing open-source projects in a scientific setting. The aim has been
to shed light on the nuances of moving from closed to open-source software and to provide
guidance for similar future endeavors.

In the process of transitioning Baler into a well-functioning open-source software project,
several significant challenges and learning opportunities emerged. The journey, demanding
substantial time and resources, involved not just the technical aspects of software develop-
ment but also a multidisciplinary approach leveraging expertise from the fields of particle
physics and computer science.

This chapter will describe the author’s observation after having spent five months mon-
itoring and contributing to the Baler project. An overview of the key statistics represent-
ing the progress and enhancements made to the Baler project before and after the research
intervention is summarized in Table 4.1. These metrics provide a quantitative measure of
the project’s evolution, emphasizing the effectiveness of various strategies and efforts imple-
mented throughout this study. Figure 4.1 further explains the development rhythm of the
Baler project during the period of observation. The surge in activity in between February
and April 2023 reveal a period of iterative problem identification, solution design (and im-
plementation), and evaluation – a hallmark of the design science approach which was imple-
mented more successfully during on-site hackathons. This was when the core development
of Baler was intensely underway. The subsequent decline aligns with the shift in focus to
the finalization of scientific articles and the onset of the vacation periods. This graphical
representation, while complementing the quantitative metrics in Table 4.1, underscores the
interplay between methodological rigor and practical application throughout the project’s
development milestones.

4.1 Project Management Insights
Transitioning Baler was not without its hurdles. Contributors, primarily scientists entering
the realm of software development, faced a steep learning curve. They grappled with un-
familiar development tools, practices, and standards, diving into new territories like VCS,
testing, continuous integration, and code documentation. The choice of an open-source li-
cense, a decision with far-reaching implications, presented another challenge, with numerous
nuanced options adding complexity to the process. Technical obstacles were also abundant,
necessitating dedicated time for troubleshooting, research, and experimentation.

26

4.1 Project Management Insights

Figure 4.1: Code frequency over the history of the Baler project su-
perimposed with major events

Despite these challenges, the team’s journey was marked by significant learning and growth,
often resonating with the academic spirit. Overcoming these barriers showcased their techni-
cal skill, persistence, and commitment to evolving Baler into a tool accessible to the broader
scientific community.

The Baler project stands as a testament to the power of interdisciplinary collaboration.
While rooted in particle physics, the project drew profoundly on computer science expertise.
Computer scientists guided non-developer contributors through the maze of technical soft-
ware development aspects, introducing essential practices like version control, code reviews,
testing, and weekly sprint meetings. Their role was crucial in standardizing code, implement-
ing best practices, and making pivotal decisions impacting the project’s future scalability and
success.

Moreover, acknowledging contributors by attributing their work, such as including their
names in scientific papers, played a significant role in incentivizing participation. This form
of recognition not only highlighted individual contributions but also reinforced a sense of
accomplishment and belonging within the community, thereby enhancing individuals’ will-
ingness to invest their time and expertise.

The synergy between the fields was not just beneficial but necessary, ensuring the soft-
ware’s relevance, practicality, and usability in the scientific community. This collaboration
highlighted the invaluable process of blending scientific research with robust software devel-
opment practices. Despite the challenges, the project facilitated ongoing learning, fostered
engagement, and confirmed the resilience and adaptability of all contributors involved.

27

4. Results and Discussion

Table 4.1: Baler project statistics before and after the project

Metric Before After
Code of conduct No Yes
Contributors 3 9
CI/CD No Yes
Commits 64 710
Contribution guidelines No Yes
Docker release No Yes
GitHub Stars 0 21
Issue template No Yes
License No Yes
Standardised code format No Yes
Tests No Yes
Working example No Yes

4.2 Developing as a non-developer
In the following section, we present four critical aspects of software development that were
particularly challenging for the Baler project in its transition to open-source, given that most
of its contributors were scientists and not experienced developers. These aspects include

• Documentation

• Typing and variable naming conventions

• Testing

• Version Control Systems

We explore the difficulties faced in maintaining consistency and clarity in documenta-
tion, and the obstacles encountered in promoting good practices for typing and variable
naming among contributors who are new to programming. The necessity of implementing
unit tests and integration tests to ensure code quality, stability, and maintainability is also
emphasized, along with the challenges experienced in enforcing these practices. Lastly, we
delve into the complexities of using version control systems effectively.

Through a detailed examination of these aspects, we aim to provide insights into the
unique challenges faced by the Baler project and the steps taken to address them, ultimately
improving the project’s overall quality, efficiency, and collaboration.

4.2.1 Documentation
Documentation plays a crucial role in the success of any software project, as it ensures the
project’s maintainability, understandability, and usability. However, creating comprehen-
sive and effective documentation can be challenging, particularly when working with non-
developers, such as scientists without a computer science background. This complexity stems
from several factors, including the need to address operating system compatibility, library

28

4.2 Developing as a non-developer

dependencies, workarounds for known issues, and potential pitfalls while following some
guide.

Moreover, maintaining up-to-date documentation is essential, especially in projects like
Baler that involve a continuous rotation of contributors, a characteristic shared by both
academia and open-source communities. In the Baler project, it became evident that ex-
pecting scientists to simultaneously learn a programming language and implement a docu-
mentation scheme was demanding. This led to disagreements and confusion regarding docu-
mentation practices, with some documentation being overly specific to particular operating
systems, or containing instructions beyond the project’s scope.

Throughout the Baler project, significant strides have been made to improve the quality
and consistent of documentation from a computer science perspective. The project now
features a standardized and platform-independent README-file, along with well-structured
in-code documentation. These enhancements facilitate a smoother onboarding process for
new developers, but also foster a shared language among the core team, promoting effective
communication and collaboration within the project.

During our time in the Baler project, the documentation has vastly improved, looking
from a computer science view. The documentation, both in terms of a good README-file and
docstrings [67] have been standardized and made system independent. This also lets other
developers more easily get up to speed with the project, and has created a communication
standard for the core developers to use, in the project, and with each other.

4.2.2 Typing
Proper typing and variable naming are essential aspects of code quality and maintainability,
particularly in a programming language like Python, which features dynamic typing. The
absence of static typing can lead to confusion and potential errors when working with vari-
ables of different data types, as well as difficulties in understanding the intended purpose of
a variable.

Figure 4.2 illustrates a fraction of the improvements made to the Baler project, by com-
paring the normalization function before and after refactoring. As seen in 4.2(a), the function
doesn’t adhere to the pep8 style guide [67], includes code that can never be reached (code af-
ter return statement), and global variables. In contrast, Figure 4.2(b) has added some typing,
removed redundant code and improved the general readability of the function.

In the early stages of the Baler project, improper typing and ambiguous variable names
were prevalent, which made it challenging for team members to comprehend the code and
created complications during the documentation process. Code snippets similar to my_cat
= create_dog() were not only confusing but also prone to errors during refactoring, as the
variable name suggested a Cat type while the method returned a Dog. This type of code is
problematic when moving to open-source because it can create barriers to entry for potential
contributors. In open-source projects, contributors often come from diverse background and
may not be familiar with the specific coding habits of the original developers. As a result,
ambiguous or misleading naming conventions can cause confusion and slow down the process
of understanding and modifying the code.

To tackle these problems, the Baler project implemented a strategy to use more descrip-
tive and meaningful variable names, complemented by a thorough application of typing. By
embracing a uniform naming convention and employing Python’s type hinting features, the

29

4. Results and Discussion

(a) The normalize function before

(b) The abbreviated normalize function after, docstring left out

Figure 4.2: Comparison of the normalization function before and
after refactoring in the Baler project

30

4.2 Developing as a non-developer

project has enhanced its readability and maintainability. This strategy provides clarity about
the intended purpose and data type of variables. Additionally, it simplifies the documenta-
tion process by presenting a clear understanding of how variables are used across the code
base.

4.2.3 Testing
Upon joining the Baler project, it became apparent that there was a lack of testing infrastruc-
ture, specifically in terms of unit tests and integration tests. This absence of testing mech-
anisms posed several challenges for the development process, especially in an open-source
environment, which are described below.

Release Process: Without proper tests in place, it was difficult to confidently create and
deploy a release, as the functionality and stability of the code could not be guaranteed. This
uncertainty hindered the project’s progress and risked introducing errors or regressions into
the deployed software.

Refactoring and Feature Implementation: The lack of tests complicated refactoring ef-
forts and the addition of new features. Non-developer team members were often unaware
that changes to the code base required corresponding modifications or additions to the tests.
This oversight led to situations where the code appeared to be broken due to outdated or
incomplete test, rather than actual issues in the implementation.

Code Submission Practices: It became evident that not all team members were running
tests before pushing their code to the remote repository. When one researcher was asked if his
new feature had passed the tests, he confidently replied, "Yes, it did.". Only later did the team
realize that he hadn’t written a test for his new feature, which inadvertently broke other parts
of the code. Such incidents underscored the gaps in testing awareness among contributors.
This led to the potential introduction of problematic code into the project, compounding
the challenges posed by the absence of testing infrastructure. To mitigate these challenges
and improve the overall quality and maintainability of the Baler project, several steps were
taken.

Establishing a Testing Infrastructure: The project introduced a comprehensive set of
unit tests and integration tests to validate the functionality and compatibility of individ-
ual components and their interactions. This testing infrastructure provided a safety net for
developers, ensuring that their changes did not inadvertently break existing functionality.

Educating Non-Developer Team Members: To bridge the knowledge gap, non-developer
team members were educated about the importance of tests and their role in the develop-
ment process. This training helped them understand the need to update or create tests when
refactoring code or adding features, reducing instances of apparent code breakage due to
outdated or incomplete tests.

Implementing Code Submission Guidelines: The team adopted a set of best practices for
code submission, including forking and the requirement to run tests before submitting a pull
request to the remote repository. These guidelines ensured that all team members followed
a consistent process, minimizing the risk of introducing issues into the code base. Through
these efforts, the Baler project successfully addressed the challenges posed by the initial lack
of testing infrastructure and established a robust and reliable testing framework to support
ongoing development collaboration.

31

4. Results and Discussion

4.2.4 Formatting
Just as there were a lack of tests, formatting guidelines were also missing when joining the
Baler project. The lack of consistency in code formatting led to problems for the development
process.

Version Control Noise: The absence of a consistent formatting style resulted in develop-
ers inadvertently introducing their personal code styles when making changes. This incon-
sistency generated noise in the version control system, suggesting extensive modifications
when, in reality, only minor alterations had been made.

Code Review Difficulties: The lack of standardized formatting made it challenging to
review code changes accurately, as it was unclear what had been genuinely modified and
what was simply a formatting difference. This confusion slowed down the review process
and increased the likelihood of overlooking important changes.

Enforcement Challenges: The introduction of standardized formatting guidelines pre-
sented an additional challenge, as it was difficult to ensure that all contributors adhered to
the established style. This issue was particularly relevant for non-developer team members
who were new to coding and more focused on functionality than formatting.

To handle these challenges, the Baler project did several things. The project adopted a
standardized formatting style to ensure consistency across the code base. This unified style
eliminated noise in the version control system, facilitated more accurate code reviews, and
contributed to the overall readability and maintainability of the code.

Team members were educated on the importance of adhering to standardized formatting
guidelines. This training helped them understand the impact of formatting on the develop-
ment process and encouraged them to prioritize consistent formatting alongside functional
code.

Lastly, formatting enforcement was introduced. To ensure adherence to the established
formatting style, the team introduced automated tools and pre-commit hooks that checked
and enforced the formatting guidelines. This approach minimized the reliance on manual
enforcement and made it easier for contributors to maintain consistent formatting across
their submissions.

The Baler project successfully addressed the challenges posed by the initial lack of stan-
dardized formatting and established a consistent and maintainable code base.

4.2.5 Version Control Systems
In the Baler project, employing Version Control Systems (VCS) effectively presented a signif-
icant challenge, particularly for scientists who were new to the industry standard of software
development and unfamiliar with the intricacies of VCS. One of the most pressing issues was
the submission of large commits and pull requests (PRs), which made it difficult to review
and manage changes. The lack of rebasing to the main branch before creating PRs further
compounded the problem, resulting in broken code and increased time spent on VCS man-
agement.

"I feel like I’ve spent more time trying to fix broken merges than I have writing new
code...", a researcher laughingly exclaimed during a project meeting. The sentiment under-
scored the time and effort required to learn proper handling of VCS.

Navigating the complexities of VCS often demanded more time and effort than writing

32

4.3 Project Dilemmas

the code itself, with tasks such as merging branches, deciding which branch to branch from,
and handling merge conflicts proving to be particularly challenging. Moreover, the unintu-
itive nature of the Git command-line interface added to the confusion experienced by team
members who came from non computer science backgrounds.

To overcome this, learning to use Git effectively became an essential skill for many con-
tributors in the Baler project. Emphasizing the importance of smaller, more manageable
changes, team member were encouraged to submit commits that were only a few lines long
rather than a few hundred lines. This approach facilitated easier code reviews and reduced
the likelihood of errors or conflicts.

Another aspect of effective VCS usage was writing clear and informative commit mes-
sages. By crafting meaningful descriptions of their changes, contributors enabled other team
member to quickly understand the purpose and scope of each commit, streamlining collab-
oration and ensuring a better development process.

Through continuous learning and the adoption of best practices, the Baler project team
improved their use of VCS, fostering better collaboration and enhancing overall project man-
agement. By focusing on smaller, more manageable commits, providing informative commit
messages, and effectively utilizing Git features such as rebasing, the team successfully ad-
dressed the challenges posed by VCS.

4.3 Project Dilemmas
4.3.1 License Choice
Selecting an appropriate license for the Baler project was a challenge. The license under which
an open-source project is released is a crucial decision as it sets the terms for use, modifica-
tion, and distribution of the software. It was initially assumed that picking an appropriate
license would be a straightforward process. However, the reality proved to be quite the op-
posite. The process was complicated and time-consuming, often leading to more questions
than answers.

Several discussions were held within the team, and with various individuals knowledge-
able about software licensing. Additionally, extensive research was conducted to understand
the potential implications of each license type. However, despite these efforts, finding clear,
concise, and accurate information on how to choose a license remained a difficult task. The
available resources were often complex, legalistic, and contradictory, making it hard to com-
pare and understand the potential implications of different licenses.

Amidst the discussions and challenges, one of the researchers expressed their frustration,
remarking, "How can we confidently decide on a license when even the organization we’re
conducting research for seems unsure?". This sentiment highlighted the inherent complexi-
ties and lack of clarity surrounding the decision-making process for open-source licensing.

Interestingly, it was noted that some open-source projects had chosen to use the CCBY4
license [68]. This license, typically used for creative works, is generally not recommended for
software due to its ambiguity concerning source code and executable programs. This example
further illustrates the complexity of open-source licensing and underscores the need for more
accessible and clear resources to guide individuals trying to choose an appropriate license for
their open-source project.

33

4. Results and Discussion

After thorough research and several discussions, the team decided on the Apache 2.0 Li-
cense [59] for the Baler project [7]. This license was chosen due to its permissive nature, and
widespread recognition within the open-source community. It offers a good balance, encour-
aging both the use and modification of the software, while also providing a legal framework
to protect the project and its contributors.

4.3.2 Choice of Data Format
As we aimed to shape Baler into a tool that would support data formats from a variety of sci-
entific fields and industries, deciding on an appropriate data format was important. Initially,
we considered allowing each user to implement their own data parsing methods, potentially
enabling Baler to support a variety of data formats. During one of our discussions, one re-
search optimistically noted, "If we allow everyone to contribute their own parsers, we will
end up with a ton of supported data formats!". Yet, while the idea seemed promising, it be-
came clear that managing and updating a multitude of user-contributed parsers would be
too complex.

Given these factors, we decided to go with the NumPy[34] data format. Why?
Firstly, NumPy arrays are already used across a variety of scientific disciplines. By select-

ing this commonly adopted format, we aimed to remove any unnecessary hurdles for poten-
tial users. There would be no need for user to convert their data into an unfamiliar or less
commonly used format before they could use Baler. This consideration was particularly im-
portant, given our goal of ensuring that Baler could be used by as a large group of users as
possible.

Furthermore, our choice was also influenced by technical considerations. Baler uses PyTorch
[33], a library that leverages tensors for computations, as its core. Since NumPy arrays and
PyTorch tensors share structural and functional similarities, the conversion process between
these two formats is straightforward and efficient. Choosing the NumPy format aligns seam-
lessly with the technical requirements of Baler’s core library.

While choosing the NumPy data format may limit Baler’s immediate compatibility with
other data formats, the advantages offered by the NumPy format led us to believe it was the
optimal choice. We anticipate that users with different data formats can easily convert their
data into NumPy arrays, thereby making Baler a universally applicable tool.

4.4 Reflection on Design Science
Revisiting the methodology chapter 2.3, the Design Science approach was detailed as a guid-
ing paradigm for this research. It is worth noting how this methodology has been applied in
practice within the context of the Baler project results.

4.4.1 Real-world Problem Solving
The Baler project, at its core, was a manifestation of the real-world problem-solving paradigm
central to Design Science. The challenges it faced, predominantly arising from the unique
composition of its contributors, serve as the major identified problems, intricately aligned
with Design Science’s problem identification phase.

34

4.4 Reflection on Design Science

4.4.2 Iterative Design and Evaluation
As the results unravel, the iterative nature of addressing each software development chal-
lenge – from documentation to version control – mirrors the solution design and evaluation
phases in the Design Science methodology. The solutions developed were tailored to cater
to the distinctive nature of the Baler project, ensuring relevance and feasibility. These solu-
tions underwent cycles of implementation, evaluation, and refinement, echoing the iterative
advancement central to Design Science.

4.4.3 Documented Learnings as Technological Rules
The learnings derived from the Baler project, as detailed in the results chapter, can be per-
ceived as "technological rules" in the realm of Design Science. These rules or principles,
formed based on real-world observation and experiences, are generalizable and can guide
similar projects that involve non-developers in the software development process. The im-
provements made to the Baler project, particularly in documentation and code quality (typ-
ing and formatting), serve as tangible guidelines for future endeavors.

In essence, the Baler project results exemplify the Design Science approach in action.
The challenges, solutions, and derived principles align seamlessly with the phases and ethos
of the Design Science methodology, reinforcing its utility and relevance in practical software
engineering contexts.

35

4. Results and Discussion

36

Chapter 5

Open-source Checklist

Based on the readings, observations, and contributions made during the period of this thesis
project, this chapter provides a check-list of some key components that researchers should
pay extra attention to if they want to transition their software into open-source projects.
This check-list should serve as a guide on topics which should be implemented in order to
have a better chance to create a good open-source project. This is a non-exhaustive list, but
based on the findings of this thesis, the items in this list are the most impactful whilst also
considering the effort needed for their implementation.

Before making a research software open-source project, make sure that you have the rights
to do so in regards to intellectual property and copyright.

5.1 Higher Priority
□ Choosing and correctly applying an appropriate license: Select a license that reflects

your values and how you want your project to be used, ensuring it is compatible with
other projects with which it might interact. This decision can influence the project’s
adoption, contribution, and future development.

□ Crafting a well-structured README: This file is often the first item viewed by visitors
to your repository. It should clearly explain the purpose of the project, its installation
and usage, and how to contribute, thereby setting the tone for the entire project.

□ Providing working examples along with relevant data: Demonstrations of your project
in action, using real or sample data, help users understand its capabilities and how
they might use it. This tangible insight can be crucial for engaging potential users or
contributors.

□ Maintaining proper dependency control: Clearly specify and manage dependencies
to prevent conflicts, ensure consistent environments for all contributors, and simplify

37

5. Open-source Checklist

the installation process for users.

□ Implementing a testing framework: A robust suite of tests helps validate code func-
tionality, making it easier to identify and fix bugs, thereby enhancing code quality and
reliability.

□ Choose a code formatter: This ensures consistency across the codebase, making it more
readable and maintainable. It also standardizes the style, leading to fewer debates
about code aesthetics.

□ Issue tracker and Kanban board for project management: These tools help manage
tasks, track bugs, and visualize the workflow, fostering better organization and prior-
itization within the team.

□ Implementing code reviews: Reviews improve code quality and foster learning and
collaboration among team members. They ensure that merges into main branches are
well-validated, maintaining the health of the codebase.

□ Provide a quick course in version control to core developers: Knowledge of version
control is essential as it helps manage changes, tracks the history of the project, and
fosters effective collaboration.

5.2 Lower Priority
□ Implementing descriptive and comprehensive typing: Adding detailed type descrip-

tions helps maintain code quality, makes the codebase more readable, and aids in de-
bugging.

□ Equipping the team with a good Integrated Development Environment (IDE): A ca-
pable IDE can enhance developer productivity through advanced code editing, debug-
ging, navigation features, and integrated tooling.

□ CI/CD tool for continuous integration and deployment: These practices facilitate
regular code integration and automated testing, ensuring that the codebase remains
clean and dependable. They also streamline the release process.

□ Creating clear contributing guidelines and code of conduct: Setting expectations for
behavior and contributions helps create a welcoming environment, encouraging par-
ticipation from a diverse group of contributors.

38

Chapter 6

Conclusion

In concluding this thesis, we see that Baler’s move to open-source is reflective of a growing
trend towards collective problem-solving in technology. The insights from this project shed
light on the nuanced journey that comes with adopting open-source models. It’s a path that
involves not just technical adjustments but also the fostering of a community where everyone
can contribute meaningfully. Baler’s story is one of many that show how sharing resources
and expertise can lead to more efficient and innovative outcomes.

Additionally, the steps taken by Baler to become open-source resonate with wider move-
ments in academia and the public sector, where sharing knowledge is increasingly seen as
crucial for development and innovation. The practices and principles we’ve examined here
offer a framework that can be adapted by others, highlighting the value of open communi-
cation, community engagement, and cross-disciplinary collaboration.

Open-source projects like Baler are becoming vital in bridging the gap between technol-
ogy and its users, ensuring that tools are not just available but are evolving through collective
input. This thesis serves as a narrative of Baler’s transformation and as a resource for those
considering a similar path, providing a clearer understanding of what it takes to nurture an
open-source project.

In the academic sphere, open-source software like Baler presents a compelling case for
a more open and collaborative approach to research and development. The transition of
Baler into the open-source domain emphasizes the critical role that academic institutions
play in nurturing innovation. By embracing open-source practices, academia can accelerate
the exchange of ideas and tools, democratizing knowledge and fostering a culture of shared
learning. This thesis has highlighted how open-source methodologies not only benefit the
individual project but also contribute to a larger ecosystem of research, supporting a more
interconnected and resourceful academic community.

As this study wraps up, the story of Baler is just one example within the ongoing evolu-
tion of open-source projects. It illustrates the broader potential for collaborative innovation
in our increasingly digital world. The practical knowledge gained here is an invitation for
others to join the open-source movement, leveraging shared knowledge for mutual benefit

39

6. Conclusion

and progress.
The journey of Baler, documented through this research, underscores the importance of

community and collaboration in the growth of open-source initiatives. It suggests a future
where shared development leads to tools that are more adaptive and accessible, and where
the spirit of open-source continues to encourage widespread participation and innovation.

40

References

[1] CERN. CERN. https://home.cern, 2023. Accessed: 2023-05-08.

[2] Georges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Ab-
delalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Observation of a new particle
in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC.
Physics Letters B, 716(1):1–29, 2012.

[3] Nabila Aghanim, Yashar Akrami, Mark Ashdown, J Aumont, C Baccigalupi, M Ballar-
dini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results-VI. Cosmo-
logical parameters. Astronomy & Astrophysics, 641:A6, 2020.

[4] CERN. The Large Hadron Collider. https://home.cern/science/
accelerators/large-hadron-collider. Accessed: 2023-02-04.

[5] Barisits, Martin, Borodin, Mikhail, Di Girolamo, Alessandro, Elmsheuser, Johannes,
Golubkov, Dmitry, Klimentov, Alexei, Lassnig, Mario, Maeno, Tadashi, Walker, Rod-
ney, and Zhao, Xin. ATLAS Data Carousel. EPJ Web Conf., 245:04035, 2020.

[6] Benedikt Hegner Graeme A Stewart. Time to adapt for big data. https://
cerncourier.com/a/time-to-adapt-for-big-data, 2018. Accessed: 2023-03-
27.

[7] Per Alexander Ekman, Axel Gallén, Pratik Jawahar, Fritjof Bengtsson, Oliver Woolland,
Caterina Doglioni, Marta Camps Santasmasas, Nicola Skidmore, and Alma Orucevic-
Alagic. baler-collaboration/baler: v1.0.0. https://doi.org/10.5281/zenodo.
7817467, April 2023.

[8] Karl Fogel. Producing Open Source Software: How to Run a Successful Free Software Project.
O’Reilly Media, Inc., 2005.

[9] European Open Science Cloud. European Open Science Cloud. https://
eosc-portal.eu, 2023-01-01. Accessed: 2023-05-22.

41

https://home.cern
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://cerncourier.com/a/time-to-adapt-for-big-data
https://cerncourier.com/a/time-to-adapt-for-big-data
https://doi.org/10.5281/zenodo.7817467
https://doi.org/10.5281/zenodo.7817467
https://eosc-portal.eu
https://eosc-portal.eu

REFERENCES

[10] Fritjof Bengtsson, Caterina Doglioni, Per Alexander Ekman, Axel Gallén, Pratik Jawa-
har, Alma Orucevic-Alagic, Marta Camps Santasmasas, Nicola Skidmore, and Oliver
Woolland. Baler–Machine Learning Based Compression of Scientific Data. arXiv preprint
arXiv:2305.02283, 2023.

[11] Gallén, Axel. An Open-Source Autoencoder Compression Tool for High Energy
Physics, 2023. Lund Student Paper.

[12] Wulff, Eric. Deep Autoencoders for Compression in High Energy Physics. 2020. Lund
Student Paper.

[13] Baler-compressor. Baler. https://github.com/baler-compressor/baler, 2022.
Accessed: 2022-12-19.

[14] Per Runeson and Martin Höst. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empirical software engineering, 14:131–164, 2009.

[15] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, Anders
Wesslén, Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, et al. Systematic
Literature Reviews. Experimentation in software engineering, pages 45–54, 2012.

[16] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria Teresa
Baldassarre. How Software Engineering Research Aligns with Design Science: A Re-
view. Empirical Software Engineering, 25:2630–2660, 2020.

[17] Gali Halevi, Henk Moed, and Judit Bar-Ilan. Suitability of Google Scholar as a source
of scientific information and as a source of data for scientific evaluation—Review of the
Literature. Journal of Informetrics, 11(3):823–834, 2017.

[18] Judy F Burnham. Scopus Database: A Review. Biomedical digital libraries, 3(1):1–8, 2006.

[19] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3):23–
49, 1999.

[20] The Institute of Electrical and Electronics Engineers. About IEEE. https://www.
ieee.org/about/index.html. Accessed: 2023-09-03.

[21] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in software engineering, volume 9783642290442. Springer-
Verlag Berlin Heidelberg, 2012. Cited by: 2912; All Open Access, Green Open Access.

[22] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley and Sons, 2012. Cited by: 944.

[23] Richard Heeks. Information systems and developing countries: Failure, success, and
local improvisations. Information Society, 18(2):101 – 112, 2002. Cited by: 834; All Open
Access, Green Open Access.

[24] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate defect
reports using natural language processing. page 499 – 508, 2007. Cited by: 423.

42

https://github.com/baler-compressor/baler
https://www.ieee.org/about/index.html
https://www.ieee.org/about/index.html

REFERENCES

[25] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical Research Methods in
Software Engineering. Empirical methods and studies in software engineering: Experiences
from ESERNET, pages 7–23, 2003.

[26] Robert K Yin. Case study research: Design and methods, volume 5. sage, 2009.

[27] The Python Software Foundation. Python. https://www.python.org, 2023.
Accessed:2023-04-11.

[28] Docker Inc. Docker. https://www.docker.com, 2023. Accessed:2023-05-03.

[29] Junhai Zhai, Sufang Zhang, Junfen Chen, and Qiang He. Autoencoder and its various
variants. In 2018 IEEE international conference on systems, man, and cybernetics (SMC), pages
415–419. IEEE, 2018.

[30] Chunyong Yin, Sun Zhang, Jin Wang, and Neal N Xiong. Anomaly detection based on
convolutional recurrent autoencoder for IoT time series. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 52(1):112–122, 2020.

[31] Tong Liu, Jinzhen Wang, Qing Liu, Shakeel Alibhai, Tao Lu, and Xubin He. High-Ratio
Lossy Compression: Exploring the Autoencoder to Compress Scientific Data. IEEE
Transactions on Big Data, 9(1):22–36, 2023.

[32] KR Srinath. Python–the fastest growing programming language. International Research
Journal of Engineering and Technology, 4(12):354–357, 2017.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An Imperative Style, High-Performance Deep Learning Library. Advances in neural in-
formation processing systems, 32, 2019.

[34] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[35] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux journal, 2014(239):2, 2014.

[36] Sachchidanand Singh and Nirmala Singh. Containers & Docker: Emerging roles &
future of Cloud technology. In 2016 2nd international conference on applied and theoretical
computing and communication technology (iCATccT), pages 804–807. IEEE, 2016.

[37] James E Smith and Ravi Nair. The architecture of virtual machines. Computer, 38(5):32–
38, 2005.

[38] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421, 1974.

43

https://www.python.org
https://www.docker.com

REFERENCES

[39] Hong Zhu and Ian Bayley. If docker is the answer, what is the question? In 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pages 152–163. IEEE, 2018.

[40] Jürgen Cito and Harald C Gall. Using Docker containers to improve reproducibility in
software engineering research. In Proceedings of the 38th international conference on software
engineering companion, pages 906–907, 2016.

[41] Mozilla Foundation. History of the Mozilla Project. https://www.mozilla.org/
en-US/about/history/. Accessed: 2023-06-12.

[42] Del Nagy, Areej M. Yassin, and Anol Bhattacherjee. Organizational Adoption of Open
Source Software: Barriers and Remedies. Commun. ACM, 53(3):148–151, mar 2010.

[43] Linus Torvalds. Linux kernel. https://github.com/torvalds/linux, 2023.
Accessed:2023-02-13.

[44] William Stallings. The Windows Operating System. Operating Systems: Internals and
Design Principles, 2005.

[45] Nicholas Economides and Evangelos Katsamakas. Linux vs. Windows: A comparison of
application and platform innovation incentives for open source and proprietary soft-
ware platforms. In The Economics of Open Source Software Development, pages 207–218.
Elsevier, 2006.

[46] Qiang Tu et al. Evolution in open source software: A case study. In Proceedings 2000
International Conference on Software Maintenance, pages 131–142. IEEE, 2000.

[47] Neeshal Munga, Thomas Fogwill, and Quentin Williams. The adoption of open source
software in business models: a Red Hat and IBM case study. In Proceedings of the 2009 An-
nual Research Conference of the South African Institute of Computer Scientists and Information
Technologists, pages 112–121, 2009.

[48] Christof Ebert. Open Source Drives Innovation. IEEE Software, 24(3):105–109, 2007.

[49] S. Raghunathan, A. Prasad, B.K. Mishra, and Hsihui Chang. Open source versus closed
source: software quality in monopoly and competitive markets. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, 35(6):903–918, 2005.

[50] Margaret S. Elliott and Walt Scacchi. Free Software Developers as an Occupational
Community: Resolving Conflicts and Fostering Collaboration. In Proceedings of the 2003
ACM International Conference on Supporting Group Work, GROUP ’03, page 21–30, New
York, NY, USA, 2003. Association for Computing Machinery.

[51] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli.
Modern Code Review: A Case Study at Google. In Proceedings of the 40th international
conference on software engineering: Software engineering in practice, pages 181–190, 2018.

[52] Brian Witten, Carl Landwehr, and Michael Caloyannides. Does open source improve
system security? IEEE Software, 18(5):57–61, 2001.

44

https://www.mozilla.org/en-US/about/history/
https://www.mozilla.org/en-US/about/history/
https://github.com/torvalds/linux

REFERENCES

[53] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source. Commu-
nications of the ACM, 50(1):79–83, 2007.

[54] Jing Wang, Patrick C Shih, and John M Carroll. Revisiting Linus’s law: Benefits and
challenges of open source software peer review. International Journal of Human-Computer
Studies, 77:52–65, 2015.

[55] Open Source Initiative. Open Source Initiative. https://opensource.org, 2023-
01-01. Accessed: 2023-10-14.

[56] Free Software Foundation. Free Software Foundation. https://www.fsf.org, 2023-
01-01. Accessed: 2023-10-14.

[57] Open Source Initiative. Open Source Definition. https://opensource.org/osd/,
2023-01-01. Accessed: 2023-10-14.

[58] GNU. The GNU General Public License v3.0. https://www.gnu.org/licenses/
gpl-3.0.en.html, 2007. Accessed: 2023-02-05.

[59] Apache. Apache License. https://www.apache.org/licenses/LICENSE-2.0,
2004. Accessed: 2023-02-05.

[60] Jerome H Saltzer. The origin of the “MIT license”. IEEEAnnals of the History of Computing,
42(4):94–98, 2020.

[61] GNU. GNU Lesser General Public License. https://www.gnu.org/licenses/
lgpl-3.0.en.html, 2007. Accessed: 2023-02-05.

[62] Arnoud Engelfriet. Choosing an Open Source License. IEEE Software, 27(1):48–49, 2010.

[63] Bahar Gezici, Nurseda Özdemir, Nebi Yılmaz, Evren Coşkun, Ayça Tarhan, and
Oumout Chouseinoglou. Quality and Success in Open Source Software: A System-
atic Mapping. In 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 363–370. IEEE, 2019.

[64] Vishal Midha and Prashant Palvia. Factors affecting the success of Open Source Soft-
ware. Journal of Systems and Software, 85(4):895–905, 2012.

[65] J. Linåker, H. Munir, K. Wnuk, and C.E. Mols. Motivating the contributions: An open
innovation perspective on what to share as open source software. Journal of Systems and
Software, 135:17–36, 2018.

[66] Johan Linåker, Gregorio Robles, Deborah Bryant, and Sachiko Muto. Open source soft-
ware in the public sector: 25 years and still in its infancy. IEEE Software, 40(4):39–44,
2023.

[67] Guido van Rossum, Barry Warsaw, and Nick Coghlan. Style Guide for Python Code.
PEP 8, 2001.

[68] Creative Commons. Creative Commons Attribution 4.0 International Public License.
https://creativecommons.org/licenses/by/4.0/legalcode, 2013. Accessed:
2023-05-24.

45

https://opensource.org
https://www.fsf.org
https://opensource.org/osd/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://creativecommons.org/licenses/by/4.0/legalcode

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-08-24

EXAMENSARBETE Facilitating the Development and Release of Research
Software into an Open-Source Project
STUDENT Fritjof Bengtsson
HANDLEDARE Alexander Ekman, Alma Orucevic-Alagic, Caterina Doglioni
EXAMINATOR Martin Höst

Baler – Hur öppen källkod kan tjäna ett
större syfte

POPULÄRVETENSKAPLIG SAMMANFATTNING Fritjof Bengtsson

Tänk om vetenskapliga framsteg inte var begränsade till forskare i laboratoriet, utan
för vem som helst; oavsett om hen vill bidra till forskning eller experimentera på eget
håll. Det har varit målet när Baler publicerats som öppen källkod.

Initialt utvecklades Baler som en resurs för par-
tikelfysikaliska experiment. Specifikt för att kom-
primera den data som måste sparas för att i fram-
tiden kunna utvärdera experimenten i sig. Ba-
ler använder sig av destruktiv komprimering med
hjälp av maskininlärning. Icke-destruktiv kompri-
mering innebär att det går att återskapa all data
precis som den var innan komprimering. Tänk dig
att du har skrivit en text du vill skicka till en vän.
Du lägger texten i ett kuvert och skickar iväg den
– ingen information går förlorad. Om du däremot
hade använt dig av destruktiv komprimering, så
hade du först skrivit om texten utan adjektiv och
konjunktioner. På detta sätt får all text plats på
ett mindre papper och ett mindre kuvert kan an-
vändas. När din vän läser denna text kan innebör-
den fortfarande förstås, även om grammatiken är
fel. Slutligen används maskininlärning för att på
bästa sätt välja ut vilka ord som ska utelämnas, så
att kuvertet kan bli så litet som möjligt samtidigt
som textens innebörd bevaras så gott som möjligt.
Forskarna som utvecklade Baler insåg att möj-
ligheten att komprimera data inte bara är viktig
inom partikelfysik, utan inom många olika forsk-
ningsområden. På grund av det ville de göra Baler
tillgänglig till forskare inom andra discipliner, lik-
som den bredare allmänheten. Med detta hoppa-

des man kunna bygga ett projekt som sträckte sig
över vetenskapliga discipliner och på så sätt främ-
ja samarbete och innovation. Men att göra käll-
kod och programvara framtaget för ett specifikt
ändamål allmänt tillgängligt var mer utmanande
än förutspått. Om utomstående individer skulle
vilja använda Baler, och eventuellt bidra till dess
utveckling, behövdes en övergripande strategi för
hur detta skulle uppnås. Den strategi som använ-
des i övergången till öppen källkod baseras delvis
på nuvarande forskning liksom praktisk erfaren-
het från projektet. Vidare så togs en rad riktlinjer
fram som ska kunna användas som grund då ett
projekt skall omvandlas och publiceras som öppen
källkod. Vår förhoppning är att Balers transfor-
mation från specifik programvara till ett etablerat
öppet källkodsprojekt kan exemplifiera ett skifte
inom vetenskapen, där nyttig programvara på ett
lätt sätt kan delas mellan olika discipliner, och all-
mänheten. Med detta skifte skulle vi få mer valuta
för de resurser som läggs på forskning, då vi under-
lättar disciplinövergripande samarbete och bjuder
in de som i vanliga fall kanske inte hade tagit del
av forskningens framsteg. Vem vet vilka insikter
som väntar när vi utnyttjar världens kollektiva in-
telligens.

	Introduction
	Motivation
	Objectives
	Limitations
	Isolated project
	Not about machine learning

	Methodology
	Literature Study
	Database Choice
	Theoretical Foundation on Open-Source

	Case Study
	Objective and Purpose
	The Baler Project as Case
	Data Collection Methods
	Theoretical Framework
	Validity of the Baler Case Study

	Design Science
	Process
	Contribution

	Background
	Overview of Baler
	Python
	Docker

	Overview of Open-Source Software
	Contrasting Proprietary Software
	The Growth and Impact of Open-source
	Benefits of Open-source Software
	Licensing
	Measuring Success in an Open-Source Project

	Open-Source within Academia

	Results and Discussion
	Project Management Insights
	Developing as a non-developer
	Documentation
	Typing
	Testing
	Formatting
	Version Control Systems

	Project Dilemmas
	License Choice
	Choice of Data Format

	Reflection on Design Science
	Real-world Problem Solving
	Iterative Design and Evaluation
	Documented Learnings as Technological Rules

	Open-source Checklist
	Higher Priority
	Lower Priority

	Conclusion
	References

