
MASTER’S THESIS 2024

Management of Training Data
for Deep Learning Applications:
Requirements and Solutions
Adla Lagström Jebara, Fabian Sundholm

ISSN 1650-2884
LU-CS-EX: 2024-15

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-15

Management of Training Data for Deep
Learning Applications: Requirements and

Solutions

Adla Lagström Jebara, Fabian Sundholm

Management of Training Data for Deep
Learning Applications: Requirements and

Solutions

Adla Lagström Jebara
nod14aj1@student.lu.se

Fabian Sundholm
mat14fsu@student.lu.se

April 3, 2024

Master’s thesis work carried out at Precise Biometrics.

Supervisors: Lars Bendix, lars.bendix@cs.lth.se
Fredrik Stål, fredrik.stal@precisebiometrics.com

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:nod14aj1@student.lu.se
mailto:mat14fsu@student.lu.se
mailto:lars.bendix@cs.lth.se
mailto:fredrik.stal@precisebiometrics.com
mailto:emelie.engstrom@cs.lth.se

Abstract

In the realm of software development, extensive research has been conducted
on source code management, but little to no attention has been given to man-
aging associated data, such as the large volume of training data needed for the
development of deep learning applications. This thesis aims to investigate if
there is a scalable solution for storing and managing training data used in differ-
ent variants of machine learning models. This research includes identifying and
formulating requirements for a training data management system, proposing de-
sign solutions to address these requirements, and finally, implementing a proof
of concept. The requirement specification was formulated through literature re-
views and developer interviews. Design solutions were developed in alignment
with the identified requirements and by exploring available tools. Thereafter,
one of the two design solutions was chosen for implementation in a proof of
concept.

The research findings include a comprehensive list of requirements, includ-
ing key requirements such as versioning, scalability, traceability, and data life-
cycle management. The proof of concept demonstrated that the proposed de-
sign solution did not fully meet the requirements, indicating a complexity in
addressing the problem beyond initial expectations. Due to time and resource
constraints, a satisfactory full implementation of a proof of concept was not
achieved. Moreover, a built solution meeting all the requirements to a satis-
factory degree likely does not exist. Nevertheless, our research indicates that
given additional time and resources, it is feasible to address the problem. Con-
sequently, an interesting future work could be the development and implemen-
tation of such a solution.

Keywords: data management, training data, requirements, solutions, configuration man-
agement, versioning, machine learning, deep learning, management of data at scale

2

Acknowledgements

We would like to thank our supervisors, Lars Bendix and Fredrik Stål, for their continuous
support and advice during this thesis. Especially Lars, who has provided us with many hours
of advice, resources, and feedback – sometimes on a very short notice. We would also like
to thank the Scandinavian Network of Excellence in Software Configuration Management
(sneSCM), whose professional members gave us insights and suggestions that turned out to
be very valuable.

3

4

Contents

1 Introduction 7
1.1 Thesis Disposition . 8

2 Background 9
2.1 Precise Biometrics . 9
2.2 Problem Statement . 10
2.3 Research Questions . 11
2.4 Methodology . 13
2.5 Theoretical Background . 14

2.5.1 Versioning . 14
2.5.2 The Shared Data Problem and the Simultaneous Update Problem . 14
2.5.3 Private Workspaces and Merge Conflicts 15
2.5.4 Traceability . 15
2.5.5 Data Lifecycle . 15

3 Requirements 17
3.1 Requirement Elicitation Process . 17

3.1.1 General Requirements . 20
3.1.2 Security Requirements . 23
3.1.3 Other Requirements . 24

4 Design 25
4.1 Design Process . 25
4.2 Design Solution 1: Binary Repository . 28
4.3 Design Solution 2: Helix Core . 29
4.4 Discussion and Evaluation of Design Solutions 30

4.4.1 Design Solution 1: Binary Repository 31
4.4.2 Design Solution 2: Helix Core . 32
4.4.3 Choice of Design Solution for Proof of Concept 33

5

CONTENTS

5 Implementation 35
5.1 Proof of Concept . 35
5.2 What Worked? . 35
5.3 What Didn’t Work? . 37
5.4 Discussion . 38

6 Discussion and Related Work 39
6.1 Reflection on Our Own Work . 39
6.2 Validity . 40

6.2.1 Requirements . 40
6.2.2 Design Solutions . 41
6.2.3 Proof of Concept . 41

6.3 Generalizability . 41
6.4 Related Work . 42

6.4.1 Data Management Challenges for Deep Learning 42
6.4.2 DataHub: Collaborative Data Science & Dataset Version Manage-

ment at Scale . 43
6.4.3 Data Platform for Machine Learning 43
6.4.4 Discussion . 44

6.5 Future Work . 45

7 Conclusion 47

References 49

Appendix A Interview Questions 55
A.1 Pre-analysis Interview Questions . 55
A.2 Requirement Elicitation Interview Questions 56

Appendix B Ranking of Requirements by Interviewees 57

6

Chapter 1

Introduction

In the world of software development, management of source code is a well studied subject.
Significant effort has been put into developing tools and practices to solve the challenges
associated with version control, collaboration, and code quality assurance. The same can not
be said about the management of data associated with the development process, such as for
example training data for machine learning algorithms. In recent years, deep learning tech-
nologies have advanced rapidly, which has resulted in the launch of several new applications
such as image generating models and chatbots, chatGPT being one of the more popular ones.
Despite deep learning being almost a household name at this point, and the immense popu-
larity of these applications, very little is known about how the companies developing these
applications manage the vast amount of data that is required to create these models. There
is also very little public research available on the subject of data management in a machine
learning context.

This thesis was conducted at Precise Biometrics. A company that develops fingerprint
matching algorithms for customers around the world. To achieve this they use machine learn-
ing algorithms in combination with conventional image analysis methods. As their number
of customers have increased, the management of their training data has increasingly become
a problem. Features like versioning, the ability to get an overview, automatic validation and
seeing where in the data processing pipeline the data currently is are missing. The aim of this
thesis is to identify the requirements for a training data management system and to suggest
solutions that solve these requirements. More specifically, the research questions that this
thesis aims to answer are as follow:

RQ1: How can a training data storage repository be designed to improve data management
processes?

• RQ1.1: What are the requirements for such a training data storage repository?

• RQ1.2: What are some design solutions that fulfill these requirements?

• RQ1.3: Is the selected solution feasible and practical?

7

1. Introduction

The research questions will be answered with the specific situation of the case company
in mind, but the generalizability of the results is discussed in the Generalizability section in
chapter 6.

To formulate and answer the research questions, this thesis was carried out in several
phases. In the first phase, a pre-analysis was carried out, during which initial interviews were
conducted with developers at Precise Biometrics to gain an understanding of the system and
the underlying issues. Thereafter, the research questions were formulated. In the second
phase, requirements were elicited and a comprehensive requirements specification was iden-
tified through in-depth interviews with developers, coupled with literature studies. In the
third phase, two design solutions were theorized and in the final phase a proof of concept for
one of the design solutions was implemented following consultation with the developers.

1.1 Thesis Disposition
The thesis consists of a background chapter which contains the background information on
Precise Biometrics and how we arrived at the research questions, as well as the methodology
of the study and some background theory. The results of the thesis are then presented in the
three chapters Requirement Specification, Design and Implementation. The next chapter is
Discussion and Related Work, in which generalizability and threats to validity are discussed,
along with a comparison to related work and potential future research on the subject. Finally,
the conclusion chapter presents the most important results and concludes how these can solve
the original problem.

8

Chapter 2

Background

In this chapter, an overview of the case company will be presented, followed by an in-depth
discussion of the initiating problem and motivation of why and how the research questions
were formulated and derived from the initiating problem. Thereafter, the related theory per-
tinent to the initiating problem will be discussed, followed by a discussion of the method-
ology that will be employed in this thesis. The aim of this chapter is to a provide a broader
context to the problem domain and motivate how and why we, the authors of thesis, for-
mulated the research questions of this thesis. The current context and situation at the case
company have played a significant role in shaping the direction and decisions made dur-
ing the research process. Moreover, this chapter seeks to present the initiating problem in
connection with the existing theoretical framework. This is done not only to position the
study within the realm of existing knowledge, but also to present readers with the necessary
theoretical context related to this research.

2.1 Precise Biometrics
In this section, a brief overview of Precise Biometrics, the case company where this master
thesis has been conducted, will be presented to provide necessary context related to the back-
ground of this master thesis.

Precise Biometrics, which will be referred to as the case company in this thesis, is a digital
identification software company headquartered in Lund, Sweden, with customers across the
world. Their range of products include facial recognition solutions, visitor management so-
lutions and fingerprint recognition solutions. This thesis research was conducted within the
team responsible for developing fingerprint recognition solutions. This development team
consists of approximately 20 developers divided between two locations: Lund and Shanghai.
Precise Biometrics uses machine learning algorithms in combination with other conventional
image analysis methods to provide tailored fingerprint recognition solutions designed to ad-

9

2. Background

dress the specific needs and requirements of their clients. The fingerprint recognition models
integrated into the product are configured using model-specific configuration files, which
determine the training parameters, including the selection of training datasets and various
other settings. These models are trained on different datasets, mainly provided by clients
and are stored on a designated file server internally referred to as "the fingerprint database"
(FPDB), which in addition to the training data includes additional necessary data, such as
index files containing labels and metadata.

2.2 Problem Statement
In this section, we will discuss and elaborate on the initiating problem at the case company.
This is important because by analyzing the current situation at the case company, we were
then able to formulate research questions that addresses this initiating problem.

To formulate relevant and applicable research questions addressing the initial problem,
it was necessary to investigate the current situation at the case company. This was achieved
through conducting semi-structured interviews with several developers within the company,
including both junior and senior developers. The rationale behind this approach lies in the
potential for junior developers to offer different perspectives and discuss issues that may not
be perceived by senior developers. Junior developers may also have a clearer recollection of
the on-boarding process when they joined the development team, and they may remember
which parts of the system initially seemed confusing to them. On the other hand, senior
developers were interviewed because of their substantial experience in the domain of interest,
which would allow them to provide valuable context concerning the present challenges and
the current situation.

The responses from the interviews highlighted that the process of working with "FPDB"
can be characterized as frustrating, complex, and quite messy. This primarily stems from the
existing data storage system, which relies on a basic file server and suffers from numerous
challenges, which will be discussed in this section.

Potential contributing factors to these challenges, as mentioned by some developers, in-
clude stress and deadlines. When developers are faced with deadlines and stress it is natural
for them to allocate more time to complete tasks for customer delivery rather than address-
ing the system’s challenges. Furthermore, the data management system has evolved organi-
cally over time. That is, when there were only a few customers, these issues were relatively
inconspicuous, but as the number of customers has increased over time, accompanied by
a corresponding surge in data volume, the deficiencies of the current setup have become
more apparent. Additionally, a sense of familiarity with this system has developed over time,
largely due to the inherent understanding of its operations by a small group of developers.
Nonetheless, when viewed from an external perspective, such as that of a new employee, the
system’s efficiency appears to be compromised.

The first significant challenge with the current data management approach is the inability
to trace changes made to files on the server and who made these changes. As a result, devel-
opers have had to manually generate various versions of the same file, sometimes resorting
to arbitrary naming conventions to distinguish the files from one another, and to manually
track these changes. This deficiency is a consequence of "FPDB" functioning solely as a file

10

2.3 Research Questions

server, lacking any versioning capabilities.
A second challenge arising from the current "FPDB" set-up is its inefficiency. Developers,

depending on their experience at the company, frequently encounter difficulties in deter-
mining the purpose of files and their relevance, partly due to inconsistencies in the naming
system. While there exist naming conventions, they are not consistently followed when mak-
ing alterations or adding new files. Furthermore, the absence of a search mechanism for files
or specific features within files, consumes a significant amount of time that could be more
effectively allocated to other tasks.

A third challenge that has been identified pertains to the limited knowledge and under-
standing of specific sections of "FPDB", which are confined to certain developers who have
been working at the case company for a longer period of time. This challenge could become
more pronounced when an employee leaves the company, as their expertise in particular sec-
tions of "FPDB" may be lost, and new employees either have no familiarity with the file server
or typically possess familiarity only with the portions of the file server they have directly in-
teracted with. This issue arises from the sheer size and volume of the file server, the absence of
any overview functionality to offer additional information of the structure of the file server,
and, as previously mentioned, the inconsistencies in the naming system. Furthermore, the
existing system’s steep learning curve contributes to its inefficiency, demanding a substantial
period for new developers to become familiar with it and understand it.

Considering all these challenges discussed above, there is a need for the case company to
simplify their data handling process in order to enhance the effectiveness of their developers.
The purpose of this master’s thesis is, therefore, to investigate if there is a scalable solution
for storing and managing training data used in different variants of machine learning models,
which can be implemented by the case company.

2.3 Research Questions
The challenges discussed in the previous section illustrate the need for the case company to
explore how they could better store, organise, and manage more effectively the training data
and associated files which are used in different variants of machine learning models. As such,
the research questions were designed to address some of the challenges of the existing data
storage system and thereby, solve the initiating problem. The main research question RQ1:
How can a design of a training data storage repository be made to improve data management processes?
was formulated with the intention to deal with these challenges and investigate whether there
is a way and how to improve the current data management process by finding a new design
for the data management process.

We have structured the research questions as one main question, and sub-questions to
help answer this main question. This approach aids in maintaining clarity and focus by
breaking down the complexity of the main research question into smaller, manageable com-
ponents. It also provides guidance for the research process. To answer the main research
question, there is first a need to identify the requirements of a training data storage reposi-
tory. A requirement specification is also important for developing the design solutions of a
training data storage repository, and also helps to determine which design is the most suit-
able. With this in mind, the second research question RQ1.1: What are the requirements for
such a training data storage repository? was formulated, followed by the third research question

11

2. Background

RQ1.2: What are some design solutions that fulfill these requirements? to explore multiple design
alternatives rather than focusing solely on one. To demonstrate and validate the feasibility
of these designs, there is a need to develop a proof of concept. Therefore, once the poten-
tial design solutions have been developed, a proof of concept is intended to be implemented,
which leads to the final research question RQ1.3: Is the selected solution feasible and practical?

• RQ1: How can a training data storage repository be designed to improve data man-
agement processes?

• RQ1.1: What are the requirements for such a training data storage repository?

• RQ1.2: What are some design solutions that fulfill these requirements?

• RQ1.3: Is the selected solution feasible and practical?

12

2.4 Methodology

2.4 Methodology
In this section, we will discuss the methodology employed in this thesis, and motivate why
the specific methodology was chosen in relation to the research questions. The planned work
process for this thesis project is presented in Figure 2.1.

The process started with a pre-analysis phase, during which initial interviews were con-
ducted to identify the initial problem and thereafter to formulate the research questions.
The second phase was the problem analysis phase, which consisted of a literature study and
in-depth interviews with the objective of identifying and eliciting requirements to be used
in the design phase. In this report the result of this phase is presented in chapter 3: Re-
quirements. The subsequent phase is the design phase, which entailed developing design
proposals, followed by an evaluation of these design proposals. The results from this phase
corresponds to chapter 4: Design. The final phase of the planned work process is the proof
of concept phase, comprising the implementation of the proof of concept followed by an
evaluation of the proof of concept. The results from the final phase are described in chapter
5: Implementation.

Figure 2.1: Planned work process.

The work process of this thesis project was inspired by the Design Research Methodology
(DRM) [1, p. 113], which is why the thesis project was split into multiple phases as illustrated
in Figure 2.1. The initial phase in DRM, referred to as Research Clarification, involves pro-
ducing a goal document, which corresponds to the pre-analysis phase of this thesis project[1,
p. 114].

In the second phase of DRM, referred to as the Descriptive study, the goal is to gain deeper
insight into the problem at hand[1, p. 114]. In the context of this thesis project, the second
phase entails the development of a requirement specification, which serves as the foundation
for the design proposals. The primary objective of the second phase is to address RQ1.1. Our
method for data collection during this phase is mainly through conducting interviews with

13

2. Background

developers employed at the case company, in addition to a literature study. To discuss and
evaluate the findings from the interviews, we conducted a focus group with developers and
stakeholders at the case company. The intended goal was to formulate a detailed requirement
specification. The requirement specification and a more detailed description of this phase
can be found in the requirements chapter.

In the third phase, known as the Prescriptive Study in DRM[1, p. 114], the requirements
identified in the prior phase will be used to develop design solutions addressing RQ1.2. In
the final phase of this thesis, a proof of concept is implemented for one of the identified
design solutions, aiming to address RQ1.3. Ideally, the proof of concept should be evaluated
by developers as initially planned. However, due to the time constraint of this thesis and the
limited resources of the case company dedicated to this thesis project, developers will likely
not be able to evaluate the proof of concept.

2.5 Theoretical Background
In this section, we will discuss some relevant theoretical information pertinent to the prob-
lem domain of this thesis. The purpose of this section is to provide the reader with a foun-
dational understanding of the theoretical concepts underpinning this thesis. These concepts
are relied upon throughout this thesis, particularly when formulating the requirement spec-
ification and developing the design solutions.

2.5.1 Versioning
In Software Configuration Management (SCM), versioning is a central concept which refers
to the ability to track changes. If a project is developed by a single individual in a strictly
linear manner, versioning could be managed by simply saving the state of the project and
tagging it with a timestamp. In many applications, such as Google Docs or Photoshop, this
is done automatically and is just called the version history. When projects are developed by
multiple people and versions start to diverge, however, things get a bit more complicated.

2.5.2 The Shared Data Problem and the Simultane-
ous Update Problem

The Shared Data problem is a typical SCM problem that means that changes made by one
developer can interfere with the changes made by another[2, p. 10]. In the specific case
of a machine learning project, it could for example mean that one developer can’t run part
of their pipeline because another developer is currently working on making changes to a
dataset which is part of said pipeline, making the data temporarily corrupt. Another reason
why one developer might be unable to do their work when another developer is making
changes to a dataset is the Simultaneous Update Problem[2, p. 13]. The Simultaneous Update
problem means that if both developers are making changes to a dataset, the developer that
first saves their changes might have them overwritten by the second one. At the case company,
these problems are rare because developers are assigned to different data sets from different
customers and sensors. Because usage of such diverse data sets are rare, so are conflicts. In

14

2.5 Theoretical Background

the world of source code management this problem is mostly considered to be “solved” with
the introduction of tools like git, which might lead to its oversight in other contexts.

2.5.3 Private Workspaces and Merge Conflicts
In SCM, the most common solution to the shared data problem is generally considered to
be private workspaces. Copying the common baseline into a private workspace means that
the developer is protected from changes made by others until a time of his choosing. Private
workspaces do not, however, solve every problem. Every time a copy of a repository is made
there is a risk of double maintenance problems, and private workspaces do not solve the
simultaneous update problem. One solution to these problems is locking modules so that only
whoever locked the module is allowed to make changes at a certain time. This is, in essence,
how Precise Biometrics manages these problems today (although it is done manually, there
is no actual lock), but the most common solution by far is to use merge conflicts to manage
the simultaneous update problem and to manage the double maintenance problem through
several other practices such as continuous integration and issue tracking/assignment systems.

2.5.4 Traceability
In software engineering, the term traceability refers to the ability to track, in both directions,
changes through the different stages of development. For example, it could be the ability to
link a specific requirement to a specific change in the code, to specific tests and further to
a specific change in the end product. This is usually achieved through some kind of doc-
umentation, which could be created manually or automatically. In the case of this thesis,
traceability will refer to the link between training data and what the training data is used
for, for example machine learning models or validity tests.

2.5.5 Data Lifecycle
The data lifecycle and its management share similarities with the Software Development
Lifecycle (SDLC)[3], a methodology familiar to most developers. SDLC refers to the de-
velopment methodology where changes move through different stages such as for example
development, testing and deployment. The data lifecycle in the context of machine learning
refers to the various stages that data can traverse within a machine learning pipeline. Raw
input data is typically distinguished from prepared training data, and prepared training data
is not the same as validated and tested data that is “known to be good”. At the case company,
there is currently no system for managing the lifecycle of data.

15

2. Background

16

Chapter 3

Requirements

Several challenges associated with the current data storage system and the process of working
with it were identified in the problem statement. To address these challenges, this thesis
seeks to explore how to improve the storage, organisation, and management of training data
and associated files that are used in different variants of machine learning models at the
case company. This chapter delves into the requirement elicitation process, comprising a
literature review and interviews with developers in various roles at the case company, and it
examines the elicited requirements aimed at addressing RQ1.1: What are the requirements for
a training data storage repository? During the pre-analysis phase, we realised that addressing
the initial problem necessitates, inter alia, an investigation to determine the requirements
for an improved training data management system. These requirements are intended to be
used as the basis for the design solutions that are developed in the next phase of this thesis
project. This chapter presents the result from the problem analysis phase described in the
methodology chapter.

3.1 Requirement Elicitation Process
The requirement elicitation process encompasses a thorough approach, combining a litera-
ture review, semi structured interviews and a focus group discussion meeting.

The process was initiated by deriving a list of potential requirements identified during
the pre-analysis phase and in the literature found. We searched for literature through Google
Scholar and LUBSearch combining different search terms such as "data management", "ma-
chine learning", "training data management", etc. Unfortunately we did not find a lot of
related literature. One of the papers found at this stage is discussed in the related literature
section[4].

Thereafter, a series of semi-structured interviews were conducted with developers, where
questions were asked to acquire additional information regarding the current state, elicit ad-
ditional requirements, and assess the derived requirements from the problem analysis phase.

17

3. Requirements

A general template of the questions asked can be found in Appendix A, but the questions
were developed and modified depending on who the interviewee was, when new requirements
were discovered, and when our understanding of the requirements increased and definitions
changed.

The interviews were held with a diverse group of developers, including junior and senior
developers in various roles such as DevOps engineer, architect and product owner, as shown
in table 3.1. This intentional diversity of the interviewees was aimed at gathering a compre-
hensive understanding of the system’s needs from as many different perspectives as possible.
The security manager at the case company was also interviewed in addition to the developers,
with the objective of eliciting specific security requirements that were not attainable from
other developers.

Table 3.1: List of interviewees.
Senior Developer 1 Product Owner
Senior Developer 2 Architect
Senior Developer 3 DevOps Manager
Senior Developer 4
Senior Developer 5 Security Expert
Junior Developer 1
Junior Developer 2
Junior Developer 3

To assess the derived requirements, all developers were asked to categorise them accord-
ing to their importance from their perspective: "must-have" (highest priority), "should-have",
"nice to have” (lowest priority), or "not needed". This approach was carried out in order to
gain an understanding of the priorities of the development team at the case company. Follow-
ing the conclusion of the interviews, a comprehensive analysis of all findings was conducted,
and graphical representations of the results were generated (see Appendix B).

Subsequent to the series of interviews, a focus group meeting was conducted with five
developers, including three seniors and one junior, in addition to the DevOps manager, with
the purpose of discussing the results of the interviews and the additional requirements that
were elicited during the interviews. The primary objective of the focus group was to discuss
the results of the interviews, understand the developers’ interpretations of the requirements
and strive to achieve a common understanding. In the focus group, the participants were
presented with the definitions of the different requirements that we had established so far as
well as diagrams of how the developers had ranked the requirements during the interviews.
Through discussion some of the definitions were changed and cemented and some misun-
derstandings were resolved. Extra attention was put towards the requirements where the
developers had given different rankings during the interviews, so that a final decision about
whether the requirement should be included or not could be made.

The resulting requirements were categorised into two groups: general requirements and
security requirements. The reason for this is that the origin of the requirements are differ-
ent. General requirements are derived from the interviews with developers and the literature
study. In contrast, security requirements, were primarily derived from the insights gathered
during the interview with the security manager at the case company, and weren’t evaluated

18

3.1 Requirement Elicitation Process

by the other developers. In the following sections of this chapter, we will discuss the require-
ments we’ve elicited. They are listed according to their overall importance, each accompanied
by a description of our definition and an analysis and motivation behind the requirement.

19

3. Requirements

3.1.1 General Requirements
Requirement 1 - Versioning
The system must support versioning and enable the identification of who has made changes to the data,
what data was changed and when the changes were made.

This requirement was first mentioned during our first talks with the case company, prior
to the initial interviews in the pre-analysis phase. The results from the interviews and focus
group shows that this requirement was deemed by an overwhelming majority of developers
to be the most important requirement. As most interviewees mentioned this requirement
themselves and almost everyone rated it as a must have. In the current implementation of
"FPDB" there is no version control system, which leads to manual versioning of files by de-
velopers. It is not unusual to find two or more versions of a file in a location, with names
such as "old_filename.[fileending]". This makes it harder to know what version of a
file should be used, and makes it harder to get an overview of the data.

Requirement 2 - Scalability
The system must be able to handle significant increases in the size of stored data, types of data and
number of files, as well as the number of users, without negatively affecting either its performance or
the manual workload.

This requirement is another that was mentioned early on in the pre-analysis phase. One
of the main reason this thesis came to be is that the current solution has proven to not be
scalable. More precisely, the current solution worked fine when the number of customers
and data was low, but as those numbers have increased, several new problems have appeared,
as described in previous chapters. The definition of this requirement is not quite as clear
as the other requirements as it’s not a functional requirement, but we decided to define it
as the first paragraph in this section, incorporating concepts like performance and amount
of manual workload into its definition. It is also the hardest requirement to measure, since
a complete implementation and extensive testing would be needed in order to completely
assess its fulfillment. Most developers rated scalability as a must have.

Requirement 3 - Traceability
The system should support the capability to trace what data was used in a specific model or process,
and the other way around.

Traceability is a requirement that was originally inspired from previous experience in
Software Configuration Management, where the term traceability usually refers to the abil-
ity to trace features and changes though the different stages of the software development life
cycle, stages like requirements, development and testing. Since this thesis is about managing
training data, the term traceability refers to the connection between the data and the spe-
cific model or process it was used in. The current system used by the case company already
supports traceability to some extent, it is possible to discern what index files were used in

20

3.1 Requirement Elicitation Process

which trained model. However, since the index files are not versioned, traceability in the di-
rection from model to data is fundamentally broken. One developer mentioned that he was
tracing his own work manually, and similarly another developer mentioned that traceabil-
ity was possible with the current setup but that it required extra manual work. This is also
something that is noted in related works[5]. Traceability in the direction from data to model
or process is not present at all, but the interviewees did not seem to think that feature was
very important. In general, the interviewees found traceability to be relatively important,
and were split between rating traceability as a “must have” or a “should have”.

Requirement 4 - Data Lifecycle Management
The system should provide the capability to determine the current stage of the data. For example, it
should be able to identify whether the data has recently been received from the customer and is await-
ing processing, whether the data is currently in an active state of being worked on, or if it has already
been integrated into production or is part of a legacy product.

This requirement is also inspired by previous experience in Software Configuration Man-
agement. In software development, changes or new features could, for example, start in a
requirements phase, move on to a development phase, into a testing phase and end up in a
deployment phase. This is called the software development lifecycle[3]. The idea is the same
for the data lifecycle. Several interviewees expressed that a basic level of data lifecycle man-
agement was needed, especially the ability to distinguish raw data from processed data that
can be used in the production environment. The interviewees were split between rating this
requirement as a should have and a must have.

Requirement 5 - Overview Functionality
The system must provide the capability to obtain a comprehensive overview of the content within var-
ious data sets.

An overview of data was something that was also mentioned very early in the initial
interviews. The interviewees expressed that looking through the data required a lot of manual
work, navigating through the file structure and opening different files to find out what type
of data a specific data set contained. The interviewees rated this requirement as a should
have.

Requirement 6 - Avoiding Shared Data/Simultaneous Update Prob-
lem
The work of one developer should not affect anyone else, and that developer should not be affected by
anyone else’s work, unless they want to.

The shared data and simultaneous update problems are established problems in software
configuration management[2, p. 10]. During the in depth interviews, it was something that
many interviewees downplayed, which surprised us, especially since one of the interviewees

21

3. Requirements

was quoted as saying “I can’t run my pipelines right now, because [another developer] is clean-
ing up the database.”. The explanation we got was that it was pretty rare for two developers to
be working on the same part of the FPDB, and that they avoided conflicts by communicating.
For this reason most of the developers rated it as a nice to have. However, when discussed
at the focus group, the attendees agreed that it was an actual problem. It was deemed that
some developers had assumed that this was already a part of the versioning requirement, or
perhaps not understood the concept fully, and it was decided at the focus group meeting that
the requirement was still something that should be included in the requirement specification.

Requirement 7 - Automatic Validation
The system must support data validation in a continuous manner or upon any occurrence of changes
being made.

This requirement was something that appeared in the initial interviews, and is also some-
thing that is common in modern software development. A script for validating the index files
already exists, but it is only run manually, and there is no reliable way to immediately tell if a
file has passed validation since the last time it was changed. Similarly to when discussing the
data lifecycle management requirement, some developers expressed that it would be useful
to know if data is ready to be trained on. Opinions differed on this requirement, but half of
the developers ended up rating it as a must have.

Requirement 8 - Searchability
The system must support the capability to search for specific files or features within the data, such as,
for example, "dry fingers" from a particular customer from a specific year.

Searchability was something that was mentioned in both the initial and the in-depth in-
terviews. Interestingly, this concept seemed to be very important to some interviewees and
not very important to others, probably because of the different work duties of different de-
velopers. One developer said “If I want to find fake fingerprints made by latex fingers, I have
to manually look for them, or write a python script to find them for me”. The interviewees
were split fairly evenly between rating this requirement as a must have, should have and nice
to have.

Requirement 9 - Load Only Required Data
FPDB contains terabytes of data and thousands of data sets. The largest data sets contain more than
a million individual files. It is not feasible to have a local copy of the whole repository, so only the
necessary files should be loaded onto the developers computers.

FPDB is several terabyte big and contains millions of files. Because of the size and con-
tinuous growth of FPDB, it’s not possible for all the data to be stored on each developer’s
computer. There’s also no need to check out all of the data at once, since each developer
only works on one or a small number of data sets at a time. During the design phase of the
project, we realized that we were already working towards this requirement that we hadn’t

22

3.1 Requirement Elicitation Process

formulated yet, so it was added to the list of requirements. As an example, a distributed
version control system like git would not be an acceptable solution without some additional
functionality, since git stores a complete copy of the repository on the computer. Since this
requirement was added at a later stage, its importance was not rated by the developers, how-
ever, we consider it a must have.

3.1.2 Security Requirements
The security requirements mainly deal with the sensitivity of the type of data, which, in this
case, is biometric data, and is thus subject to regulatory scrutiny. Furthermore, since the case
company serves clients in various regions, including Asia and North America, the data man-
agement and storage methods carry legal implications. Thus, emphasizing the data’s source
and collection location is crucial in light of these regulatory considerations. Additionally, be-
cause the case company is headquartered in Sweden and operates in the EU, EU regulations,
such as GDPR laws, are applicable. The security requirements are discussed and presented
below, in no particular order.

Requirement 10 - Local Server Storage
The system must store data on a local server, rather than on the cloud due to regulatory considerations.

A previous investigation had been carried out at the case company to assess the feasi-
bility of using a cloud-based system as a platform for storing biometric training data. The
conclusion reached from that investigation is that local storage is more appropriate due to
regulatory issues from having clients in different regions of the world. Consequently, it is
highly improbable that the case company will move the data to a cloud-based storage sys-
tem in the future. In short, there are no technical reasons not store the data on cloud-based
storage systems, except for regulatory.

Requirement 11 - Encrypted Storage
The system must encrypt all data to ensure the security and confidentiality of the data.

There are two main reasons why using encrypted storage is desirable, especially when
taking into account the sensitivity of the data. The first reason is confidentiality assurance,
to protect the confidentiality of data and prevent unauthorised individuals or entities from
accessing sensitive information. The second reason is to ensure the protection of intellectual
property since the data is owned by clients.

Requirement 12 - Ability to remove personal data
The system must support the removal of data upon the request of its owner.

Compliance with GDPR regulations in the European Union, as well as other regulatory
requirements in various regions, necessitates the capability to erase personal data. This era-
sure process should ensure that personal data is fully deleted and not retained in backups or

23

3. Requirements

version history. Since the data is not owned by the case company, there must be a process to
enable the deletion of data.

3.1.3 Other Requirements
More requirements were presented to the developers, including built-in support for meta-
data, identification of outdated or garbage data, and automatic deployment; however, most
interviewees agreed that they were not ultimately necessary for the solution.

24

Chapter 4

Design

Following the completion of the requirement elicitation process, which, as explained in the
previous chapter, form the foundation for the intended design solutions, the design phase
constitutes the next stage in addressing the initial problem, and aims to answer RQ1.2 What
are some design solutions that fulfill these requirements?. Therefore, this chapter is dedicated to
investigating and exploring potential design solutions aimed at addressing RQ1.2, discussing
how these design solutions fulfill the requirements, in addition to reflecting upon the designs’
respective strengths and weaknesses in relation to the initial problem.

This chapter begins by discussing the design process, followed by investigating and ex-
ploring two design solutions and lastly, motivating the design solution chosen for implemen-
tation in a proof of concept. This chapter may serve as a valuable starting point for those
interested in implementing a similar solution addressing a related problem.

4.1 Design Process
The design process began with an initial step of investigating academic papers and studies
related to the problem domain, with the intention of identifying an academic framework
which could be used or built upon in our design solutions. The investigation, however, re-
vealed a scarcity of academic research pertaining to the problem this thesis aims to solve. As
a result, an alternative approach was adopted, focusing on exploring available tools used by
the industry.

Therefore, the next step was to compile an extensive list of potential tools capable of
addressing as many requirements as possible. During the early stages of this thesis, a meet-
ing was organized at the case company in collaboration with the Scandinavian Network of
Excellence in Software Configuration Management (sneSCM) [6], with the aim of gathering
insights from industry experts and veterans. The primary purpose of the meeting was not
explicitly to discuss potential design solutions, but rather to discuss the broader topic of this
thesis and the initial problem. Nevertheless, discussions emerged about various tools that

25

4. Design

could potentially address parts of the identified problem, providing valuable insights that
we were now able to investigate in the ongoing design phase.

As previously mentioned, due to the absence of relevant academic research, the design
process was oriented towards specific tools that held potential to fulfill the requirements.
These tools were theoretically investigated through reading documentation. Numerous tools
were investigated (see Table 4.1), but owing to the time constraints in this thesis, a decision
was ultimately made to focus only on a few alternatives. These alternatives were selected
for further detailed exploration as they were perceived to possess the greatest potential in
addressing the majority, if not all, of the requirements. Each alternative was then compared
against all requirements. Combinations of several tools were also considered but no obvious
satisfying combination was found. Consequently, the two final design solutions explored in
detailed in the following sections in this chapter is attributed to this decision-making process.
As can be seen in Table 4.1 and as mentioned in the literature [5] [4], it’s clear that most of
the publicly available tools are more focused on training and evaluation than on managing
data.

26

4.1 Design Process

Table 4.1: List of all investigated tools.

Alectio [7] Discarded. The tools seem focused on
optimizing datasets and labeling as well
as monitoring the performance of mod-
els.

Aquarium [8] Discarded. This tool is focused on pro-
viding visualization and data analysis,
which is not the main focus of this thesis.

Artifactory [9] Fulfills several requirements, part of de-
sign solution 1.

Data Version Control (DVC) [10] Documentation was thoroughly studied
but the tool was not included in the de-
sign solutions. This tool can potentially
solve several requirements, such as ver-
sioning and data lifecycle management,
but it would need to be combined with
other tools that can solve traceability,
searchability and overview functionality.

Eiffel [11] Discarded. Even though the traceability
is mentioned, the project doesn’t seem to
be about data management at all.

GitLFS [12] Documentation was thoroughly studied
but the tool was not included in the de-
sign solutions. Similar reasoning to DVC.
There is also related research outlining
performance issues in git-based systems
in this context.[13]

Helix Core [14] Fulfills several requirements, part of de-
sign solution 2.

Hydra [15] Documentation was thoroughly studied
but the tool was not included in the de-
sign solutions because it potentially only
fulfills few requirements. It could be con-
sidered for future research.

Labelbox [16] Discarded. This tool doesn’t support on-
premise storage. For another situation,
this tool might have some potential.

LatticeFlow [17] Discarded. The purpose of this tool ap-
pears to be diagnostics, to fix erroneous
data and improve model performance.

Openlayer (FKA Unbox) [18] Discarded. The tool is mainly focused
on evaluation and monitoring of ML
pipelines, not data management.

Sonatype Nexus Repository [19] Similar to Artifactory, considered for
design solution 1.

27

4. Design

4.2 Design Solution 1: Binary Repository
The first design solution is a solution based on the possibilities of binary repository managers
such as Artifactory [9] or Sonatype Nexus Repository [19]. Binary repository managers are
generally used to manage binary dependencies and releases in the form of compiled executa-
bles. In theory, training data in the form of images is a type of binary dependency, so the idea
is that a binary repository should be well suited to manage the training data. The solution is
idealized to some extent, since the capabilities of different binary repository managers can
differ and since it’s not clear if all aspects of the solution are technically feasible without
building and testing the solution.

Setup
Because of the lack of version control functionality in binary repositories, in this solution
the index files containing labels and metadata are not managed in the binary repository, but
instead moved to the code repository, where they are managed in git. This means that either
the index files need to be submitted separately from the data, or, perhaps preferably, the index
files need to be separated from the data somewhere in the pipeline. Managing the index files
in git will ensure that the versioning requirement is fulfilled and that the requirement to avoid
shared data/ simultaneous update problem is at least partially fulfilled. The perfect solution
would of course be if the binary repositories had better versioning capabilities, but currently
it appears that the way version control is managed in these programs is by simply attaching
a revision number to the configuration item, which is not significantly different from the
current versioning system at the case company, which relies on file names. Making the index
files version controlled completes the case company’s traceability chain in the direction from
model to data. Since binary repositories are also intended to manage builds (equivalent to
models in this case), there is also potential to expand the traceability to two directions in the
future.

In order to fulfill the data lifecycle requirement, the binary repository is set up to have
multiple stages which the data can move through. Some of the interviewees had previously
expressed that there was a desire to empower the customers to upload and validate their own
datasets. Because of this, the initial stage could be set up to be accessible for both customers
and developers at the case company. Additionally, there could be a second stage where the
data is worked on before deployment, and a final stage where the data is moved once it is ready
for deployment. The exact stage configuration is not set in stone and should be modified to
fit the needs of the users.

In order to fulfill the automatic validation requirement the stages need to be set up with
different validation tests, so to change data or move it from one stage to another, some tests
need to pass. The tests should be different depending on the stage. For example, the initial
stage should have no or few tests so that the system does not prevent the customer from
uploading their data in a case where the customer encounters a problem which they are unable
to fix themselves.

Some binary repositories provide metadata functionality, called properties in Artifac-
tory. Different properties can be assigned to data sets. The properties could specify different
information about the data, such as which customer, sensor or condition the data is pro-
duced from. These properties can be used to search through the data and could potentially

28

4.3 Design Solution 2: Helix Core

also be used to construct a graphical interface, which could help give the developers a better
overview of the data.

A binary repository can be mounted on a local server. It is easy to pick and choose what
data is loaded onto the developers computer, fulfilling several requirements. Since binary
repositories do not have any advanced versioning capabilities, and since the index files which
are stored in git are completely anonymized, it’s also possible to completely remove any per-
sonal data upon request. When the designs were compared to the requirements this solution
was able to fulfill 7 out of the 12 requirements completely, with versioning, overview and
avoiding shared data/simultaneous update problems being partially fulfilled. It is not clear
if the design fulfills the scalability requirement. The binary repositories do not appear to
support encryption of the data by themselves, so that requirement would have to be achieved
in some other way, possibly by encrypting the data before upload or by making sure that the
servers that the binary repository is run on has some form of built in encryption. Since there
are likely other ways to achieve this requirement, and because the requirement is not a very
high priority for the case company, encryption of data is not a part of this design solution.

4.3 Design Solution 2: Helix Core
This design solution is based on Helix Core, developed by Perforce (also formerly known
as Perforce), which is a version control software for large scale development environments
and which supports the versioning of binary files. The basic idea behind the Helix Core
version control system is that it uses client-server architecture to implement version control
management[20]. Shared file repositories that contain every revision of every file are managed
by the Helix Core server, and files are organized into directory trees[20]. Additionally, a
database is maintained by the server to track data associated with files and client activity,
such as logs, user permissions, metadata, configuration values, etc[20].

Setup
Technically, the Helix Core server would be installed on the local machine where the biomet-
ric data and index files are stored[21]. This design solution would therefore keep the current
arrangement of having index files and biometric data stored on the same server since both
can be versioned with Helix Core, and therefore there is no need to separate them. The in-
dex files and biometric data would be organized into directories. To ensure consistency, any
newly created directory must adhere to the naming convention, but since Helix Core cannot
enforce this, the development team must commit to following these naming conventions.
One way developers can access the server, is through the Helix Visual Client, which provides
a comprehensive overview of all the server’s content[22].

The versioning requirement is fulfilled by Helix Core since it versions every type of file,
even binary files[23]. Both biometric data files and the index files would therefore be ver-
sioned. Each time a file is changed, an updated file is submitted to the server as a new revision.
The version control management system in Helix Core also fulfills the requirement of avoid-
ing shared data/simultaneous update problem, as Helix Core synchronises the files in the
master repository to local workspaces. Since files are by default in read-only state, changes
made to files are made on local workspaces. Only after the files have been checked out,

29

4. Design

can developers make changes and submit them back to the master repository. Furthermore,
similar to git, Helix Core also has a conflict resolution mechanism to resolve any potential
conflicts[24].

The traceability requirement, i.e. that system should support the capability to trace what
data was used in a specific model or process, and the other way around, is not fulfilled in
this design solution. Though Helix Core provides an immutable historical record of all the
changes ever made to a file in the repository, and by tracking all changes made to files any
changes to the files can be traced back to the person who made the changes, they cannot be
tracked to the specific model or process in which they have been used.

This design solution has the potential to meet the scalability requirement, which entails
the system’s ability to adapt to significant increases in data volume and types without com-
promising performance or increasing manual workload. Currently, the file server ’fpdb’ holds
approximately 4TB of data. According to Perforce, Helix Core is designed to handle tens of
millions of daily transactions and petabytes of data [23]. Since the needs of gaming develop-
ment companies, whose files may amount to hundreds of terabytes or even petabytes of data,
can be accommodated by the Helix Core Server, it is also possible for the data of the case
company to be handled by Helix Core, and for it to manage future storage and management
as data expands [25].

One way in which the data lifecycle management requirement could be fulfilled is by uti-
lizing separate directories for the data with access permissions tailored to the accessing party.
Similar to in the binary repository design, three stages could be represented by different di-
rectories: a directory for the unvalidated stage, to which customers also have access and can
upload their data; a separate directory for the validated stage; and an additional directory for
the processed stage, both of which only developers would have access to. Another way could
be by creating and using branching.

The requirement of overview functionality can be fulfilled by the Helix Visual Client
(P4V), a desktop application that grants access to versioned files in Helix Core through a
graphical interface [22]. Through this interface, a comprehensive overview of the content
within various data sets can be achieved. By integrating with Helix Visual Client, the search-
ability requirement could also be fulfilled.

The requirement of automatic validation, i.e. that the system must support data valida-
tion in a continuous manner or upon any occurrence of changes being made, is not fulfilled
in this design solution using HelixCore as a main tool. It would most likely need a man-
ual implementation and integration of validation tests for example. As for the requirement
of encrypted storage, secure communication between clients and servers is guaranteed with
Helix Core according to Perforce [26]. The last requirement, which is the ability to remove
personal data, is also fulfilled.

4.4 Discussion and Evaluation of Design So-
lutions

In this section, we will evaluate and discuss the design solutions, considering their strengths
and weaknesses. In general, the evaluation of the design solutions rely on their theoreti-
cal capabilities. To thoroughly evaluate the design solutions regarding their effectiveness in
meeting the requirements in practice and ease of implementation, thorough testing is de-

30

4.4 Discussion and Evaluation of Design Solutions

sired. However, owing to the time limitations of this thesis, we were only able to conduct
thorough testing on one of the two design solutions, which will serve as a proof of concept
(See Chapter 5). At the end of this section, we will discuss and motivate the selection of the
design solution chosen for implementation in the proof of concept.

4.4.1 Design Solution 1: Binary Repository
Even if all aspects of this design proposal are technically achievable, there are still some chal-
lenges that remain unsolved. Some of the data in the index files act both as labels and as
metadata which provides information and searchability for the developers. For example,
whether or not a finger has the “latex” tag can be relevant both for the developer, who might
be working on a spoof detection algorithm and needs data to test it, and for the systems
that are using the data to train or validate ML-models. Moving the index files to the code
repository and adding properties to the data sets solves the versioning problem but leads to
a double maintenance problem (information such as “latex” could exist both in the index file
and as a data set property).

Using this solution, the shared data and simultaneous update issues are mostly solved,
since the index files are now managed in git once they have been passed the validation phase.
But it is unclear how the system could handle two different users trying to move data through
stages at the same time or making changes to the index file before it moves to the git reposi-
tory at the same time etc. Other potential problems with the solution are performance and
price. As the solution has not been tested on large scale data sets, it is possible that there
are performance issues in the solution. When it comes to pricing, both Sonatype Nexus and
JFrog Artifactory have free and open source versions, but these versions might be lacking
some desired features, such as tool integration and authentication options. Depending on
the need for these features, the financial cost of the solution could be high.

Table 4.2: Summary of requirements fulfilled by design solution 1.
Req 1 - Versioning Partially fulfilled.
Req 2 - Scalability Potentially fulfilled.
Req 3 - Traceability Fulfilled.
Req 4 - Data lifecycle management Fulfilled.
Req 5 - Overview functionality Partially fulfilled.
Req 6 - Avoiding shared
data/simultaneous update problem

Partially fulfilled.

Req 7 - Automatic validation Fulfilled.
Req 8 - Searchability Fulfilled.
Req 9 - Load only required data Fulfilled.
Req 10 - Local Storage Fulfilled.
Re1 11 - Encrypted storage Not fulfilled.
Req 12 - Ability to remove personal data Fulfilled.

31

4. Design

4.4.2 Design Solution 2: Helix Core
The primary advantage of this design solution lies in its ability to meet the majority of the
requirements, particularly those ranked highest. However, its main weakness is its potential
cost, which may present a challenge for any development team or company seeking to im-
plement it. Naturally, this is a subjective matter because it depends on the financial capacity
and priorities of a company. Another weakness is that while it fulfills most of the require-
ments, there are some requirements that it doesn’t naturally fulfill as they require manual
implementation.

One of the challenges we identified in the pre-analysis phase and that are mentioned in
the problem statement of this thesis, is that as a result of the inability to trace modifica-
tions made to files on the server and who made these changes, developers have sometimes
resorted to arbitrary naming conventions to distinguish the files from one another. Addi-
tionally, there are also inconsistencies in the naming system, as naming conventions are not
consistently followed. In this proposed design solution, index files and biometric data would
be organized into directories, which would necessitate the renaming of directories according
to a specific naming convention. Helix Core lacks the capability to enforce this, which would
require the development team to commit to adhering to the naming conventions. However,
while this design solution does not directly address the challenge of consistently enforcing
naming conventions, it does fulfill the requirement for versioning. This might facilitate this
process by encouraging developers to comply with naming conventions due to the increased
transparency provided by versioning features.

Another insight we’ve gleaned from this design solution is that, while this design solution
is intended to be implemented in a way that resembles the current setup of having the index
files and biometric data stored on the same server, it can also be configured to function as
a centralized repository. This means storing all digital assets of the case company, including
the source code, data, index files, and other digital assets, in one place, as Helix Core appears
to be scalable and was built to handle tens of millions of daily transactions and petabytes of
data. A centralized repository can be utilized as a centralized location for the management
and provision of master data to the organization [27]. This facilitates the consolidation and
integration of data from diverse sources into a unified instance and representation for each
distinct master data object [28]. However, it should be noted that a centralized repository is
likely not considered ideal for the case company and the development team at this time for
practical reasons, as it would require the entire development environment to be changed.

32

4.4 Discussion and Evaluation of Design Solutions

Table 4.3: Summary of requirements fulfilled by design solution 2.
Req 1 - Versioning Fulfilled.
Req 2 - Scalability Potentially fulfilled.
Req 3 - Traceability Partially fulfilled.
Req 4 - Data lifecycle management Fulfilled.
Req 5 - Overview functionality Fulfilled.
Req 6 - Avoiding shared
data/simultaneous update problem

Fulfilled.

Req 7 - Automatic validation Not fulfilled. Requires manual implemen-
tation.

Req 8 - Searchability Fulfilled.
Req 9 - Load only required data Fulfilled.
Req 10 - Local Storage Fulfilled.
Re1 11 - Encrypted storage Fulfilled.
Req 12 - Ability to remove personal data Fulfilled.

4.4.3 Choice of Design Solution for Proof of Concept
The choice of the design solution to be implemented in a proof of concept was influenced
by a few considerations. The first is the input provided by the case company based on their
priorities. The second is the time constraints of this thesis and our own assessment. The
feedback from the case company suggests that implementing the helix core design solution
would be financially impractical for them at present or in the near future. Consequently,
Design Solution 1: Binary Repository was considered to be more suitable from a financial
standpoint. Moreover, it is perceived that a binary repository would be easier to test at
the case company. Considering the time constraints of this thesis project and the limited
resources provided by the case company, our assessment indicates that thoroughly testing
and implementing a proof of concept for design solution 1 would require less time compared
to design solution 2. As a result, we conclude that design solution 1: Binary Repository is the
preferred option for implementation in a proof of concept.

33

4. Design

34

Chapter 5

Implementation

The design solution chosen for implementation in a proof of concept is design solution 1:
Binary Reposiory. In this chapter, we will discuss and analyze the implementation of the
chosen design solution in a proof of concept and discuss the limitations and challenges that
were encountered during implementation. The purpose of a proof of concept is to demon-
strate the feasibility and practicality of the design solution, therefore this chapter aims to
answer research question RQ1.3: Is the selected solution feasible and practical? This chapter is
divided into two sections, the first explores the implementation, what worked, and what
didn’t work, and the second discusses the overall implementation.

5.1 Proof of Concept
To get started, JFrog Artifactory was installed on a local server at the case company [29]. As
this is a proof of concept implementation, we were working in a testing environment, and
not on the actual machine currently hosting the data. Test data was subsequently uploaded
through the graphical interface. In the following two sections, we will discuss what worked,
and what didn’t work according to the expectations of the design solution.

5.2 What Worked?
Local Storage
Artifactory was installed on a local server and test data was uploaded with no issues.

Traceability
As mentioned in the design section, the case company already has some flawed in-house
functionality for traceability in the direction from the model to the data, which relies on

35

5. Implementation

the index files. Since the index files can change and are not version controlled, the chain is
incomplete. This problem is fixed by moving the index files to a version control system, in this
case git. It should be noted, however, that Artifactory is designed to manage binaries of all
types, including builds and releases. It’s therefore possible that Artifactory has a functional
system for bidirectional traceability. However, this was not investigated as the case company
did not indicate any intentions to alter their release management process and was satisfied
with traceability being limited to one direction.

Data Lifecycle Management
There are different ways to organize the data in Artifactory. We suggest that each customer
is represented by a project, and in each project, the customer’s different data can be added in
the form of repositories. This approach ensures clarity and makes use of Artifactory’s built-in
functionality, particularly since projects can be assigned different user permissions.

To represent the different stages the data should move between, the environments fea-
ture in Artifactory can be used to assign each repository a stage. There are already two de-
fault environments in Artifactory, DEV and PROD, with the feature of adding custom ones,
depending on the number of stages the development team would want the data to move
between [30]. To assign or change the environment of the data, developers can select the
desired environment in the interface, and it will be visible to all users who have access to the
project. Unlike the current setup at the case company, where the status or stage of the data
isn’t directly visible in the file server (or whether it’s been cleaned and prepared for training),
Artifactory’s interface enables users to determine what stage the data is currently in. This
fulfills our requirement of data lifecycle management.

Overview Functionality
Through the user-friendly interface, developers can gain a comprehensive overview of the
different datasets, repositories and projects. Additionally, Artifactory includes a ‘properties’
feature that allows developers to “tag” repositories with keywords, which enables developers
to see additional information about the repositories.

Searchability
The interface of Artifactory includes a search bar, which enables developers to browse the
different projects and repositories. However, it is uncertain whether this requirement is fully
met, as the effectiveness of this feature largely depends on the utilization of the properties
function to fulfill the requirement effectively.

Load Only Required Data
Artifactory is a centralized repository and a user can download whichever data he or she
desires.

36

5.3 What Didn’t Work?

Simultaneous update
To replicate the simultaneous update issue, we used two different logins to access the interface
and perform different actions at the same time. We found no apparent issues with this.

Ability to Remove Personal Data
Since Artifactory does not have any advanced versioning functionality, completely removing
data is easy. Backups of data should also be taken into account, but backups were imple-
mented in this proof of concept. The index files which are versioned in git are anonymized
and do not contain any personal information.

5.3 What Didn’t Work?
Versioning
Although versioning is fulfilled by moving the index files to the source code repository, ver-
sioning is not fulfilled in Artifactory. As mentioned when discussing the data lifecycle man-
agement requirement, there is no way to see who moved data from one stage to another,
when the data was moved, or connect the move to any specific changes. This means that the
requirement for versioning, the way we defined it, is not fulfilled.

Scalability
The scalability of the system remains unknown. In order to test the scalability and reach
a proper conclusion if it is scalable or not, we would ideally need to move a large amount
of data (if not the entire data storage) to the binary storage, and test the system to verify
that increasing the number of files, users and total data volume does not negatively affect the
performance or the manual workload.

Encrypted Storage
Artifactory does not support the ability to encrypt the data. Data encryption needs to be
achieved some other way, possibly by using drives with built-in encryption for the server or
encrypting.

Automatic Validation
When this design solution was envisioned, we hoped that it would be possible to set up tests to
validate data when they moved through the data lifecycle stages, however, it does not appear
that Artifactory has this functionality. We were also unable to find a way to automatically
validate files that were uploaded.

37

5. Implementation

5.4 Discussion
During the implementation of the proof of concept, it was clearly noticeable that JFrog Ar-
tifactory was not designed with the aim of managing training data. The main focus of Ar-
tifactory is the integration with other tools, such as build tools and dependency managers,
and much of the required functionality would have to be built on top of Artifactory using
the command line interface or API. Nevertheless, we found it to be able to fulfill some of the
requirements, as we have discussed.

It should be noted that some of the functionality that one might expect from a lifecycle
management system is missing, such as validation tests or reviews, the ability to connect a
move to specific changes that have been made, determining who moved the data from one
stage to another or determining when the data was moved. If one is used to source code
management tools such as Git in combination with GitLab or GitHub, this is most likely a
disappointment. In hindsight, our definition of data lifecycle management was probably too
narrow, however, we decided that some of this missing functionality fits with our definition
of automatic validation and versioning.

38

Chapter 6

Discussion and Related Work

In this chapter, we will first reflect upon the methodology and work process of this thesis.
Thereafter, we will discuss the results, consider potential threats to validity and the general-
izability of our findings. Subsequently, we’ll examine related work and, finally, address future
work prospects. This chapter provides insights to readers into the challenges we encountered
during our research. It is also important because it discusses the applicability of our results to
other companies and software development teams. Furthermore, by examining related work,
we discuss how the findings of our research intersect with existing literature, thereby provid-
ing a broader context for understanding. Moreover, it outlines potential directions for future
research, providing interested readers with opportunities to explore further extensions of our
research.

6.1 Reflection on Our Own Work
In this section we will reflect upon the work process of this thesis project. We will discuss
the aspects we found effective and positive, as well as those that presented challenges. We
will also reflect upon areas where improvements could be made, and discuss what we would
do differently in future projects. The purpose of this section is to present readers with an
understanding of the challenges encountered during this research, and provide insights and
lessons that can be drawn from this study for consideration when conducting similar research.

Dividing the work process of this thesis into phases, as illustrated in Figure 2.1, proved
to be a good decision. Since the research questions naturally unfolded in a chronological
order, they constituted separate phases in the work process. This approach felt not only log-
ical but also highly effective. It provided a clear and structured framework for conducting
our research, allowing for a systematic exploration of each question and guiding the research
towards its intended objectives. Furthermore, we are particularly satisfied with the require-
ment specification and the elicitation process behind it, since this is the part of the thesis
we believe to be the most significant and generalizable, and the part where we have the most

39

6. Discussion and Related Work

data to support our results.
One of the most time-consuming and challenging aspects we encountered in this thesis

project was determining the initial problem and formulating the problem statement. Ini-
tially, the problem this thesis aimed to address lacked clarity and precision. The case company
was aware that their current process of working suffered from issues, but not exactly what the
issues were. This lack of insight necessitated a significant investment of time to refine and
delineate the problem. Undoubtedly, this aspect was of immense significance given its piv-
otal role in shaping the subsequent phases of the thesis project. A clearer problem statement
from the case company prior to initiating this thesis project would have greatly facilitated
this process and could have allowed for redirecting more time and effort towards other as-
pects of the project, such as exploring additional tools during the design phase, thoroughly
evaluating the design solutions or implementing a second proof of concept.

The requirement elicitation process also proved to be a more time-consuming process
than we expected. This is largely due to our desire to elicit and include as many requirements
as possible. This, however, presented a challenge during the design phase. In hindsight,
focusing on the most important requirements would have been more effective and would have
allowed for greater flexibility during the design phase. The approach adopted in this thesis
resembles the waterfall model, wherein we completed one phase before beginning another.
In future projects, we would instead employ a more agile approach with an iterative process.
This approach could potentially have allowed us to try out more solutions practically at an
earlier stage in the process and accommodate changes in the requirements during the work
process when new deficiencies were found in the tested solutions.

In future projects, we would also opt for breaking down requirements into smaller, more
easily manageable requirements. For instance, the versioning requirement could be divided
into three smaller requirements: identifying the user responsible for changes to the data,
identifying the data that was changed, and recording the timestamp of when changes were
made. This approach would not only enhance clarity, but also mitigate the complexity of ad-
dressing broad requirements, as working with broader requirements was at times frustrating
and required constant recollection of the entire definition.

6.2 Validity
In this section, we will address the threats to the validity of the results presented in this thesis.
This discussion is essential as it enables readers to judge the validity of the findings in light
of the identified threats. We will address the validity threats associated with the results for
each research question separately in the following three sections.

6.2.1 Requirements
One potential threat to validity is selection bias of the interviewees. To mitigate this po-
tential threat and enhance the diversity among interviewees, we chose to interview eight
developers with different roles and experience within the development team. We also em-
ployed a ranking system to gain a comprehensive understanding of the most prioritized needs
of the developers, and thereafter, we conducted a focus group to evaluate the findings. While
there may be potential differences in opinions compared to developers from other compa-

40

6.3 Generalizability

nies or development teams, the findings from the literature review indicate that the results of
this research closely resemble those highlighted in the existing literature, thus strengthening
the validity of the result. Therefore, we contend that the requirement specification offer a
conclusive result.

6.2.2 Design Solutions
A potential threat to the validity of the result is the lack of evaluation of the design solutions
by the development team, mainly due to the time constraints of this thesis. The design so-
lutions primarily rely on the author’s previous experience and theoretical knowledge of the
field of configuration management, both having taken the configuration management course
by Professor Lars Bendix at LTH. To mitigate this threat, our approach was to assess the de-
sign solutions to determine which requirements were met and which were not. However, a
comprehensive evaluation of the design solutions by the development team could strengthen
the validity of the result.

6.2.3 Proof of Concept
The proof of concept was conducted in a testing environment, with limited data used as test-
ing data. While some of the requirements were fulfilled, some requirements were not. It is
possible that had the proof of concept been conducted using a significantly larger volume of
data, it might have allowed for a more comprehensive evaluation of requirements, includ-
ing the scalability requirement. This could potentially enhance the validity of the results.
Nonetheless, we argue that while the proof of concept results are inconclusive, they provide
valuable indications.

6.3 Generalizability
In this section, we will discuss the generalizability of the results, that is, to which extent they
are specific to the case company, and to which extent they are applicable to other organiza-
tions that use data at a large scale in their development process. This section is important as
it assesses the potential for other organizations to use or draw inspiration from the results of
this research.

We consider the requirements to be the most important result of this thesis. In terms of
generalizability, we posit that the requirements of versioning, scalability, traceability, data
lifecycle management, searchability and overview functionality are applicable to most orga-
nizations and development teams in similar situations where data is used at a large scale in
their development process. The reason for this is the overwhelming consensus that existed
among those interviewed about these requirements as well as the references to these concepts
that were found in related literature [5][13].

Other requirements, particularly the security requirements, are deemed less generalizable
than the other requirements, but still fairly generalizable to companies operating in regulated
countries or regions. For example, the requirement of local storage primarily stems from
regulatory considerations related to the origins of client data from different countries of the
world. Therefore, this requirement may not be relevant to companies operating in a single

41

6. Discussion and Related Work

country or geographic location. Similarly, the requirement to remove personal data mainly
arises from the sensitive nature of the data handled by the case company, which necessitates
compliance with EU regulations such as GDPR laws. Companies located outside the EU may
not have similar regulatory obligations.

Regarding the first design solution and its subsequent implementation, we conclude that
the result, i.e. that the design solution is ultimately not satisfactory, is generalizable. The
reason for this is that the solution fails to support some of the most generalizable require-
ments to a satisfactory degree. Additionally, the tool the solution is based on is not designed
for the specific purpose of managing data in a machine learning context. This necessitates
the management of certain data components in a separate system (git), contributing to the
system’s overall cumbersome usability.

It is possible that the second design solution could be generalized to any company who
has the financial means to implement it. However, it still needs to be tested beforehand to
verify its feasibility in validating the requirements as intended in the design solution.

6.4 Related Work
In this section, we will discuss and reflect upon related work pertinent to this thesis and
the problem domain. This section aims to highlight the findings and differences observed
in the work of others who have addressed similar problem. It is worth noting that we en-
countered difficulty in finding relevant research related to their problem domain, which also
subsequently influenced the approach taken during the design phase.

6.4.1 Data Management Challenges for Deep Learn-
ing

In this paper[4], the authors conducted a multiple-case study where they investigated seven
different organizations that were developing Deep Learning (DL) applications using real-
world data for training. The data was collected through semi-structured interviews with DL
experts from the different cases.

The motivation behind the study was that while there has been significant progress in
the field of DL, the development of methods to manage the data needed for DL models has
been lacking. The goal of the study was to identify and categorize challenges related to data
management in development of deep learning models.

The study outlines 20 different data management challenges and categorizes them accord-
ing to the development phase in which they are encountered. Some examples of challenges
identified are shortage of diverse samples, data leaking (training and validation data getting
mixed) and data shifts. Overall, the challenges identified in this paper are more related to the
data itself, rather than the management of data which makes their results harder to compare
to our results. According to the authors, the challenges identified in this study could be used
by practitioners to foresee roadblocks that may occur while developing DL-applications, or
as research challenges for the academic community.

The study concludes that because the management of data often requires more effort and
time than the actual model creation, companies building DL applications that are able to

42

6.4 Related Work

manage their data well and overcome these challenges can have a significant advantage.

6.4.2 DataHub: Collaborative Data Science & Dataset
Version Management at Scale

In this paper[13], Bhardwaj et al. argues that current data management systems lack the
capability to effectively support collaborative data environments, and no previous tool has
explicitly addressed the problem of dataset versioning. For instance, relational databases, al-
though suitable for schema-conformed data, do not offer any version management support.
Consequently, teams often resort to storing data in file systems and rely on manual version
management techniques, which is similar to the current situation encountered at the case
company. Furthermore, the authors evaluated established source-code version control sys-
tems like SVN and Git and discovered significant performance issues. They contend that
these systems are not designed to handle millions of files or terabytes of data.

To address the problem of dataset versioning at scale, the paper proposes a two-tiered
system: a dataset version control system that enables developers to perform actions on such
as branching and merging on large collections of datasets, and a platform (DataHub) which
enables users to perform collaborative data analysis, leveraging the aforementioned version
control system.

The authors conducted a survey among several computational biology groups at MIT to
underscore the necessity of a dataset version control system. They argue that their results
are representative of many other data science teams across various domains. The problem
addressed in this paper, along with the results of the survey which served as the motivation
behind this research, closely mirrors the challenges we aim to address at the case company
where this thesis is conducted. Both focus on the challenge of data versioning at a large scale
in a collaborative environment. However, there is a distinction in the primary use of the data.
The teams interviewed in this paper primarily used data for data analysis and related tasks,
whereas the case company employs the data for ML training purposes.

Despite being published in 2014, the paper highlights the absence of tools explicitly de-
signed to address the issue of data versioning, a finding that aligns with our observations.
The paper’s contribution to future work is notable, as it presents a detailed design solution
that can be implemented, evaluated and further developed.

6.4.3 Data Platform for Machine Learning
This paper[5] is published by a number of employees at Apple Inc. in 2019. Unfortunately,
we did not find it in our initial research and were therefore unable to include learnings from
this paper in our requirements or design. On the other hand, this means that we can compare
the conclusions we have made with the ones made by the authors of this paper to see if we
can find any similarities or significant differences.

The paper describes a new solution, called Machine Learning Data Platform (MLdp),
which addresses the challenges identified in existing solutions. Some of the challenges iden-
tified is that data is currently often stored in multiple places for different parts of the de-
velopment process or when handled by different teams, that the data needs to be tracked
and versioned in order to ensure reproducible results, ensure compliance with regulations

43

6. Discussion and Related Work

and identify stakeholders, that there are performance challenges, and more. Towards the
end of the paper the authors also include a call to action from their communities in order
to solve further challenges, such as data discoverability and visualization, optimizations and
integrations.

Along the way the authors describe some interesting and well thought out ways to solve
some of the challenges, as an example, the authors come up with a way to divide the data into
separate configuration items: 1. Dataset - the main entity on which the models are trained
on, which is mostly immutable once it has reached a mature level. In a computer vision
project, for example, the data sets could consist of images.. 2. Annotation - labels describing
the data. 3. Split - a subset of a dataset, often used to divide the dataset into a training
subset and validation subset. 4. Package - packages are similar to views in databases and
are basically a selection of data from different datasets. One can think of them as a way to
construct new datasets out of existing data. This division of the data has some advantages.
As an example, new datasets can be created from existing data without affecting previous
data sets or requiring any duplication of data, datasets can have multiple sets of annotations
serving different purposes, and the dependency of models can be tracked accurately. The
authors are using their own experiences in machine learning and databases, as well as related
work when they identify and solve problems. It is implied in the paper that MLdp was built
and is not just a theoretical system, but there is no information on if it is used anywhere or if
it’s available to the public. The authors suggest that MLdp will allow for better collaboration
and innovation for organizations, but recognize that there are still challenges to address.

This paper raises several interesting questions. The authors describe a platform that ad-
dresses the most important challenges better than any other tool we have tested, but the
platform appears to be unavailable to the public. Why has the platform not garnered any
significant attention or adoption? Is it flawed in some non-obvious way or was it only ever
meant as a proof of concept? The paper includes detailed technical descriptions, so why has
nobody else picked up the torch? From this paper and related papers as well as from our ex-
periences with the case company we can conclude that the problems discussed here are real,
so possible reasons are that other organizations are using in-house solutions or are unaware
of the extent of the problems.

6.4.4 Discussion
Upon comparing the results of this thesis with those from the reviewed literature, many
similarities can be noted. Throughout the literature it is noted that although significant
efforts have been put towards some ML problems, such as algorithm development and model
management, there has been a lack of progress when it comes to management of the data
needed to develop the models [4][5]. This was a conclusion that we also arrived at during the
time we conducted our thesis work.

Regarding requirements and challenges, Wu et al. [5] identified several challenges as part
of their work on a machine learning data platform. Similar to our findings, they have identi-
fied versioning, traceability and data lifecycle management as some of the major challenges.
They also discuss concepts such as data visualization, data discovery and data exploration,
which we find to be related the requirements of searchability and overview functionality
we’ve elicited in this thesis. Additionally, they address performance optimizations, which
correlate with the requirement of scalability that we’ve identified, as well as the ability to

44

6.5 Future Work

completely remove data for regulatory compliance purposes. Furthermore, Bhardwaj et al.[13]
also highlight that the system they proposed must be able to handle large datasets, which
closely aligns with the scalability requirement elicited in this thesis.

Bhardwaj et al.[13] also noted challenges encountered by the teams they surveyed, includ-
ing the use of a shared file folder for data storage, unknown data duplication, as well as the
expressed desire for a transparent data access mechanism. These challenges closely resemble
those encountered at the case company, aligning with the initial problem we identified after
analyzing the current situation at the case company. Wu et al.[5] also discuss access control.
This is something that we did not include in our requirements but still ended up working
towards in the final design and implementation, and perhaps it should have been included
in the original requirements.

Some of the requirements we have identified, such as local server storage and encryption
of data, we deem to be quite specific to the case company, which may explain their absence
in related literature. We also believe that some authors of the paper we’ve examined might
have overlooked discussing the need to load only required data, perhaps assuming it’s a bit
of a no-brainer. Surprisingly, we found no mention of avoiding the shared data problem or
the simultaneous update problem in the literature we have examined. This was unexpected,
considering it is one of the main features of similar systems built to manage source code.

6.5 Future Work
In this section, we will discuss and suggest potential areas to be further researched in the
future. By doing so, interested readers may gain insights and inspiration for further exploring
the subject matter. Because of the time limitations of this thesis project, we couldn’t carry out
the implementation and evaluation of the second design solution based on Helix Core. This
area could be further explored as future work for those aiming to address a similar problem
as the one at hand in this thesis. Furthermore, since the proof of concept wasn’t evaluated by
developers, this aspect could further be investigated.

One of the conclusions drawn from this thesis is that a comprehensive purpose built
solution meeting all the requirements likely does not exist. For this reason, an interesting
future work would be to develop and implement such a solution. We believe that with the
requirements elicited and outlined in this thesis and mentioned in related work, along with
the technical solutions discussed and presented in the work of Wu et al.[5] and Bhardwaj et
al.[13], collectively demonstrate substantial potential for the creation and a new industry-
defining system.

45

6. Discussion and Related Work

46

Chapter 7

Conclusion

The purpose of this thesis was to investigate if there is a scalable solution for storing and
managing training data. To achieve this we conducted an investigation into the current pro-
cess of handling the data at the case company, followed by interviews with developers and
a literature study. The result was a comprehensive requirement specification. The next step
was to develop design solutions based on the requirement specification, which resulted in
two design solutions. One of the two design solutions was implemented in a proof of con-
cept. Reflecting on the main research question, RQ1: How can a training data storage repository
be designed to improve data management processes? This thesis has outlined several aspects that
can enhance the data management process. The most important and generalizable require-
ments are versioning, scalability, traceability and data lifecycle management. Additionally,
the requirements of overview functionality, avoiding the shared data/simultaneous update
problem, automatic validation and searchability are also considered important requirements.

The first design solution is an idealized solution based on the possibilities of binary repos-
itory managers. Although the solution wasn’t tested during the design phase, we believed it
would fulfill 7 of the 12 requirements to a satisfactory degree, and 3 of the remaining re-
quirements would be partially fulfilled. Design solution 2 was based on Helix Core, but was
deemed financially unfeasible for the case company to implement. Therefore, and due to
time constraints of this thesis project, it was not implemented in a proof of concept.

During the development of a proof of concept for design solution 1, it became evident
that the tool was not intended for the management of training data used in machine learning
development. While the solution did meet some requirements, many requirements were not
met to the expected degree, leading to the realization that it was ultimately insufficient as
a complete solution to the problem. Based on these findings and related literature that we
have reviewed, we conclude that a publicly available tool capable of meeting the requirements
outlined in this thesis likely does not exist. Therefore, we propose future endeavors to develop
such a solution, implementing the requirements outlined and discussed in this thesis along
with the technical solutions presented in the related literature[5][13].

47

7. Conclusion

48

References

[1] Kristina Säfsten and Maria Gustavsson. Research Methodology For Engineers and Other
Problem-Solvers. Studentlitteratur AB, 2020.

[2] Wayne A Babich. Software configuration management: coordination for team productivity.
Addison-Wesley Longman Publishing Co., Inc., 1986.

[3] Amazon. What is SDLC (Software Development Lifecycle)? https://aws.amazon.
com/what-is/sdlc/. Accessed: 2024-03-27.

[4] Aiswarya Munappy, Jan Bosch, Helena Holmström Olsson, Anders Arpteg, and Björn
Brinne. Data Management Challenges for Deep Learning. In 2019 45th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA), pages 140–147, 2019.

[5] Pulkit Agrawal, Rajat Arya, Aanchal Bindal, Sandeep Bhatia, Anupriya Gagneja, Joseph
Godlewski, Yucheng Low, Timothy Muss, Mudit Manu Paliwal, Sethu Raman, Vishrut
Shah, Bochao Shen, Laura Sugden, Kaiyu Zhao, and Ming-Chuan Wu. Data Platform
for Machine Learning. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD ’19, page 1803–1816, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[6] Scandinavian Network of Excellence in Software Configuration Management. https:
//snescm.org/Common/CMCM/. Accessed: 2023-08–15.

[7] Alectio. https://alectio.com/. Accessed: 2023-11-02.

[8] Aquarium. https://www.aquariumlearning.com/. Accessed: 2023-11-02.

[9] JFrog. Atifactory. https://jfrog.com/artifactory/. Accessed: 2023-11-02.

[10] DVC.AI. https://dvc.org/. Accessed: 2023-11-02.

[11] Eiffel. https://eiffel-community.github.io/. Accessed: 2023-11-02.

[12] Git Large File Storage (LFS). https://git-lfs.com/. Accessed: 2023-11-02.

49

https://aws.amazon.com/what-is/sdlc/
https://aws.amazon.com/what-is/sdlc/
https://snescm.org/Common/CMCM/
https://snescm.org/Common/CMCM/
https://alectio.com/
https://www.aquariumlearning.com/
https://jfrog.com/artifactory/
https://dvc.org/
https://eiffel-community.github.io/
https://git-lfs.com/

REFERENCES

[13] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J.
Elmore, Samuel Madden, and Aditya G. Parameswaran. Datahub: Collaborative Data
Science & Dataset Version Management at Scale. ArXiv, abs/1409.0798, 2014.

[14] Perforce Helix Core. https://www.perforce.com/products/helix-core. Ac-
cessed: 2023-11-02.

[15] Hydra. https://hydra.cc/. Accessed: 2023-11-02.

[16] Labelbox. https://labelbox.com/. Accessed: 2023-11-02.

[17] LatticeFlow. https://latticeflow.ai/. Accessed: 2023-11-02.

[18] Openlayer. https://www.openlayer.com/. Accessed: 2023-11-02.

[19] Sonatype Nexus. https://www.sonatype.com/products/
sonatype-nexus-repository/. Accessed: 2023-11-02.

[20] Perforce. Helix Server As a Version Control Implementation. https:
//www.perforce.com/manuals/overview/Content/Overview/basic_
concepts.helix.html. Accessed: 2023-11-02.

[21] Perforce. Install Helix Server on Linux. https://help.perforce.com/
helix-core/quickstart/Content/quickstart/admin-install-linux.
html. Accessed: 2023-11-02.

[22] Perforce. Helix Visual Client (P4V) for Helix Core. https://www.perforce.com/
products/helix-core-apps/helix-visual-client-p4v. Accessed: 2023-11-
02.

[23] Perforce. Helix Core. https://www.perforce.com/products/helix-core. Ac-
cessed: 2023-11-02.

[24] Perforce. The Basics of Version Control. https://www.perforce.com/manuals/
overview/Content/Overview/basic_concepts.basics.html. Accessed: 2023-
11-02.

[25] Perforce. Performance, Scaling, and High Availability. https://www.perforce.
com/manuals/overview/Content/Overview/basic_concepts.performance.
html. Accessed: 2023-11-02.

[26] Perforce. Securing the System. https://www.perforce.com/manuals/overview/
Content/Overview/basic_concepts.security.html. Accessed: 2023-11-02.

[27] Reeve, April. Chapter 22 - Conclusion to Managing Data in Motion. In Reeve, April,
editor, Managing Data in Motion, MK Series on Business Intelligence, pages 160–163. Mor-
gan Kaufmann, Boston, 2013.

[28] Loshin, David. Chapter 10 - Data Consolidation and Integration. In Loshin, David, ed-
itor, Master Data Management, The MK/OMG Press, pages 177–180. Morgan Kaufmann,
Boston, 2009.

50

https://www.perforce.com/products/helix-core
https://hydra.cc/
https://labelbox.com/
https://latticeflow.ai/
https://www.openlayer.com/
https://www.sonatype.com/products/sonatype-nexus-repository/
https://www.sonatype.com/products/sonatype-nexus-repository/
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.helix.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.helix.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.helix.html
https://help.perforce.com/helix-core/quickstart/Content/quickstart/admin-install-linux.html
https://help.perforce.com/helix-core/quickstart/Content/quickstart/admin-install-linux.html
https://help.perforce.com/helix-core/quickstart/Content/quickstart/admin-install-linux.html
https://www.perforce.com/products/helix-core-apps/helix-visual-client-p4v
https://www.perforce.com/products/helix-core-apps/helix-visual-client-p4v
https://www.perforce.com/products/helix-core
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.basics.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.basics.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.performance.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.performance.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.performance.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.security.html
https://www.perforce.com/manuals/overview/Content/Overview/basic_concepts.security.html

REFERENCES

[29] JFrog. JFrog Installation & Setup Documentation. https://
jfrog.com/help/r/jfrog-installation-setup-documentation/
install-artifactory-single-node-with-debian. Accessed: 2023-11-02.

[30] JFrog. JFrog Platform Administration Documentation, Environments.
https://jfrog.com/help/r/jfrog-installation-setup-documentation/
install-artifactory-single-node-with-debian. Accessed: 2023-11-02.

51

https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-debian
https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-debian
https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-debian
https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-debian
https://jfrog.com/help/r/jfrog-installation-setup-documentation/install-artifactory-single-node-with-debian

REFERENCES

52

Appendices

53

Appendix A

Interview Questions

A.1 Pre-analysis Interview Questions
1. How would you describe the project you are working on to someone outside the or-

ganisation?

2. What type of development are you currently working on?

3. What product do you deliver?

4. What tools do you use to keep track of project requirements?

5. What do you think is the most difficult part of your job? What are the biggest chal-
lenges?

6. Why do you think these challenges occur?

7. How do you approach a problem that occurs? Which steps do you take from the initial
stage to the final stage on a specific problem you’re working on?

8. What do you think is the easiest part of of your job?

9. How do you handle the current different variants within the project?

10. What works well with having and handling many variants, and what doesn’t work well?

11. Describe a typical scenario during your workday when you interact with FPDB?

12. How long does it take you to find the right data?

13. How is what the customer wants represented to you?

14. If you were to describe FPDB to a new employee, how would you do it?

15. How would you describe the index files and their purpose?

55

A. Interview Questions

A.2 Requirement Elicitation Interview Ques-
tions

1. Are there any problems with the way you work that you think should be addressed?

2. Which functionality is desired but missing in FPDB (generally)?

3. Is there any specific functionality that is missing but would aid you personally in your
workflow?

4. How long does it take you to use FPDB?

5. Can you describe in detail the whole process of handling the data, from when you
receive it from the customer until it is used in training the model?

6. How do you see the difference between processed and non-processed data?

7. How does the system store processed data and non-processed data?

8. What are the inputs and outputs for the whole system (training data, metadata, what
else?)?

9. What metadata is required (for each image/data)?

10. Rank the following requirements from must have - should have - nice to have or not
needed.

56

Appendix B

Ranking of Requirements by Interviewees

Nice to have
14.3%

Should have
14.3%

Must have
71.4%

Scalability

57

B. Ranking of Requirements by Interviewees

Nice to have
28.6%

Should have
28.6%

Must have
42.9%

Searchability

Should have
14.3%

Must have
85.7%

Versioning

58

Nice to have
14.3%

Should have
28.6%

Must have
57.1%

Traceability

Should have
57.1%

Must have
42.9%

Staging (later renamed to Data Lifecycle Management)

59

B. Ranking of Requirements by Interviewees

Nice to have
100.0%

Identify outdated data

Not needed
14.3%

Nice to have
14.3%

Should have
14.3%

Must have
57.1%

Automatic validation

60

Not needed
71.4%

Nice to have
28.6%

Automated deployment

Nice to have
60.0%

Must have
40.0%

Separate workspace and repository
(later renamed to Avoiding shared data problem)

61

B. Ranking of Requirements by Interviewees

Not needed
42.9%

Should have
14.3%

Nice to have
42.9%

Built-in support for metadata

Should have
100.0%

Overview functionality

62

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-03-14

EXAMENSARBETE Management of Training Data for Deep Learning Applications:
Requirements and Solutions
STUDENTER Adla Lagström Jebara, Fabian Sundholm
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Emelie Engström (LTH)

Uncharted Territories: Exploring Data
Management in Software Development

POPULÄRVETENSKAPLIG SAMMANFATTNING Adla Lagström Jebara, Fabian Sundholm

Within software development, the management of source code has been extensively
studied. The same level of attention, however, has not been devoted to the manage-
ment of associated data, such as training data used in machine learning algorithms.

In recent years, deep learning technologies have
advanced rapidly, which has resulted in the launch
of several new applications such as image gener-
ating models and chatbots. These applications
are trained on large datasets to recognize patterns
and make predictions or classifications based on
new data they encounter. However, despite deep
learning being almost a household name at this
point, very little is known about how the compa-
nies developing these applications manage the vast
amount of data that is required to create these ap-
plications. There is also very little public research
available on data management in a machine learn-
ing context.

At the case company where this research was
conducted, machine learning algorithms are used
in combination with other technologies, such as
conventional image analysis methods, to pro-
vide tailored fingerprint recognition solutions, i.e.
technology that identifies and verifies individuals
based on their unique fingerprint patterns. How-
ever, the process of working with the vast amount
of data have been described by developers at the
company as "frustrating", "complex", and "quite
messy", and suffers from numerous challenges.

To address this problem, our research aimed to
investigate if there is a scalable solution for storing

and managing training data, and thereby enhance
the effectiveness of the developers.

The research included identifying the system’s
needs and how it should work, developing designs
to meet these needs, and then testing out one of
these designs to see how it works.

To identify the system’s needs, we did a litera-
ture study and interviewed several developers at
the case company. To come up with design solu-
tions, we looked at available tools to determine if
any existing tool could fulfill the system’s needs.
We found two different design solutions, and one
of them was selected for implementation as a proof
of concept.

However, we found that the proposed design so-
lution did not fully meet the system’s needs, indi-
cating a complexity in addressing the problem be-
yond our initial expectations. Moreover, we found
that an available tool on the market fulfilling all
the system’s needs to a satisfactory degree likely
does not exist. Nevertheless, our research indi-
cates that with additional time and resources, it
is feasible to address the problem and develop such
a solution by implementing the identified needs of
the system, which we be consider to be an inter-
esting area for future work.

	Introduction
	Thesis Disposition

	Background
	Precise Biometrics
	Problem Statement
	Research Questions
	Methodology
	Theoretical Background
	Versioning
	The Shared Data Problem and the Simultaneous Update Problem
	Private Workspaces and Merge Conflicts
	Traceability
	Data Lifecycle

	Requirements
	Requirement Elicitation Process
	General Requirements
	Security Requirements
	Other Requirements

	Design
	Design Process
	Design Solution 1: Binary Repository
	Design Solution 2: Helix Core
	Discussion and Evaluation of Design Solutions
	Design Solution 1: Binary Repository
	Design Solution 2: Helix Core
	Choice of Design Solution for Proof of Concept

	Implementation
	Proof of Concept
	What Worked?
	What Didn't Work?
	Discussion

	Discussion and Related Work
	Reflection on Our Own Work
	Validity
	Requirements
	Design Solutions
	Proof of Concept

	Generalizability
	Related Work
	Data Management Challenges for Deep Learning
	DataHub: Collaborative Data Science & Dataset Version Management at Scale
	Data Platform for Machine Learning
	Discussion

	Future Work

	Conclusion
	References
	Appendix Interview Questions
	Pre-analysis Interview Questions
	Requirement Elicitation Interview Questions

	Appendix Ranking of Requirements by Interviewees

