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Popularized summary in Swedish 
 

Djupinlärningsbaserad bildregistrering för rörelsekorrigering 
i MRI 

MRI är en icke-invasiv diagnostisk procedur som kan ge radiologer väsentlig strukturell eller funktionell information om 
organ. Ungefär som vid fotografering kan rörelse under förvärvet öka risken för dålig bildkvalitet. Medicinska 
bildbehandlingsmetoder är inte immuna mot detta problem. Bildtagningstiden varierar beroende på de fysikprinciper som 
utnyttjas för att ta bilden. MRI är känt för sina relativt långa avbildningstider, vilket kräver att patienter ligger stilla i 
skannern. Anledningen till detta är att MRI utnyttjar signalen som erhålls från protonerna av vattenmolekyler i patientens 
kropp via Faradays lag. Olika spatiala frekvenser appliceras på området av intresse. Därför kommer spatiala frekvenser 
som representerar den volym bäst kommer att producera mest signal. För att få denna signal måste protonerna exciteras 
till ett högre energitillstånd. Med tiden kommer dessa protoner att återgå till grundtillståndet. En annan faktor till de 
relativt långa insamlingstiderna är skapandet av de spatiala frekvenser som krävs för att erhålla en acceptabel bild. 
 
Bilder tagna med MR-skanner som är av dålig diagnostisk kvalitet kan kräva att patienter kallas tillbaka till kliniken och 
undersöks på nytt. Enligt några nyare studier är denna risk för en omundersökning på grund av rörelse under 
bildinsamling minst 16 %. Denna fråga är framträdande vid pediatriska undersökningar. En vanlig lösning som används 
för detta problem är att använda lugnande medel eller anestesimedel. Men användningen av dessa typer av droger hos 
barn är ett omtvistat ämne på grund av dess potentiella negativa hälsoeffekter. Därför finns det en önskan att utveckla 
MRI-tekniker för att korrigera för rörelse under en skanning. 
 
Ett allmänt sätt att korrigera för rörelse är genom att skaffa information om rörelsen under en undersökning och tillämpa 
någon sorts korrigering i realtid. Detta har vissa MRI-forskare visat i ett program som de kallade iMOCO. Tanken är att 
bestämma patientens position i skannern i realtid genom att få en snabb lågupplöst bild av fettet som omger skallen. Två 
bilder vid olika tidpunkter skjuts igenom en iterativ lösare som försöker få bilderna att helt överlappa med 
bildtransformationer. Beskrivningen av patienternas rörelser mellan dessa två tidpunkter definieras som dessa 
transformationer. Sedan används en rörelsepoäng för att bedöma om data som samlats in mellan dessa två tidpunkter är 
potentiellt värdelösa för god bildkvalitet och behöver krävas, eller så kan avbildningsparametrarna omdefinieras till den 
nya patientens position. 
 
För att ett sådant system ska fungera i en MRI-pipeline måste det vara snabbt. Specifikt i storleksordningen 100-tals 
millisekunder. Ett exploderande forskningsfält är djupinlärning. Potentialen med att noggrant lära in mönster av problem 
för att tilldela vikter till neuroner som kan utföra en tidvis beräkning har visat sig vara möjlig med djupinlärning. Deep 
learning-forskare har skapat flera olika typer av nätverk som har kunnat överlappa medicinska bilder. En potentiell fördel 
för iMOCO-programmet skulle vara att ersätta den iterativa lösaren med ett nätverk för djupinlärning. Man tror att detta 
nätverk skulle kunna utföra bildregistreringen inom en fast tidsperiod, vilket är en fördel jämfört med den iterativa lösaren 
eftersom det tar en obestämd tid att nå en acceptabel lösning för ett specifikt bildpar. En annan potentiell fördel är att 
detta nätverk kan utföra en korrekt registrering på kortare tid. 
 
Huvudsyftet med detta examensarbete var att utveckla ett sådant nätverk och implementera det på en mjukvara för MR-
skannrar för att testa det in vivo. Båda målen uppnåddes framgångsrikt, men nätverkets noggrannhet vid registrering av 
bilder var dålig i jämförelse med iterativa lösare. Olika tillvägagångssätt för att träna ett nätverk undersöktes, och 
resultaten visade att indata spelade en stor roll för uppgifternas noggrannhet. Ej övervakade tillvägagångssätt för träning 
överträffade de övervakade träningsmetoderna, troligen på grund av utbildningen på verkliga data i den ej övervakade 
metoden. Den här avhandlingen visade att det krävs mer tänkande för att träna ett nätverk för att utveckla ett genomförbart 
nätverk som kan ersätta den iterativa lösaren i iMOCO-programmet. 
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Abstract 
The framework for a fat navigator-based prospective motion correction (PMC) is already embedded on the 7 T scanner 
at Hvidovre hospital.  This framework is dubbed iMOCO, and it tackles the motion artifact problem by registering fat 
navigators after each k-space readout train to some reference fat navigator taken at the start of the scan with rigid body 
transformation parameters. A grade of motion is determined by the magnitude of the registration. Based on the severity 
of the grade of motion, reacquisition of potentially motion corrupted lines in k-space can be performed or updates to the 
FOV can be made. This will reduce the risk for motion artifacts in the image for diagnosis. The registration method in 
iMOCO uses an iterative approach, which reaches acceptable solutions around 250 ms. Recently, deep learning (DL) has 
been used for several image registration tasks. The feasibility of replacing the current registration method in iMOCO 
with a DL network was investigated in this thesis. 
  
The fundamental type of DL network used was convolution neural networks (CNN). The inputs into the network would 
be the image pair sent to the iMOCO program, which would be a reference fat navigator and a motion fat navigator. The 
output will be six values representing the rigid body transformations to register the two navigators. Two main design 
choices of CNNs were compared. These designs differed from how the input data was handled. One design extracted 
features of each image independently in different branches of a network. The other design choice had the image pair 
subtracted before inputted into a single branch in a network. The design choices were compared for interference speed 
and accuracy. The single branch design was trained once in a supervised manner and once in an unsupervised manner. 
The two-branch design was trained only in a supervised manner. The data set used for the supervised training was 18000 
fat navigators from 100 subjects with synthetic motion fat navigators were created using rigid body transformations. The 
data set used for the unsupervised training was 2200 fat navigator pairs from 2 subjects. Embedding a DL network to the 
iMOCO program was done by network interface using a TCP communication between the host computer of the scanner 
and a computer with a GPU. This connection costs 15 ms for sending the necessary data for registration. The networks 
trained in a supervised manner were tested on data collected in vivo, and a comparison between the iMOCO registration 
and DL network registration was made by a simple difference between the two. The networks trained in an unsupervised 
manner were tested on the same data but compared with a normalized cross-correlation (NCC) metric before and after 
different registration methods. 
  
With the initial data augmentations, the two-branch network and the one branch network reached a similar mean square 
error (MSE) on the validation data set after training. Using the one branch network at least halved the interference time 
to around 100 ms, then when using the two-branch network. After reducing the magnitude of transformations in the 
synthetic motion data, the difference between the registrations with DL and iMOCO decreased with the larger magnitudes 
of transformations. The unsupervised trained network did not outperform FreeSurfer’s rigid body registration tool on 
unseen data. The NCC median FreeSurfer reached was while the DL network reached (without any applied registration). 
This was confirmed visually as well.  
  
This thesis shows the importance of data in training neural networks. More realistic transformations in the generation of 
synthetic motion showed to have halved differences between more robust registration methods. There are practical 
limitations with the generation of synthetic motion data as well. An unsupervised trained network that used in vivo 
motion data showed to be able to learn to perform registration. However, the relatively small data set size makes it 
difficult to push the model trained in this thesis into deployment. The data set issues mentioned must be addressed before 
a feasible DL registration network can replace the current registration method in iMOCO.      
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1 Introduction 

1.1 Background 

Patient motion artifacts in magnetic resonance (MR) 
examinations are the most common reason for patients to 
undergo re-examinations resulting in an increased cost for 
the healthcare (Afacan, et al., 2016). The origin of motion 
artifacts is primarily due to the relatively long data 
acquisition in magnetic resonance imaging (MRI). This 
has prompted the development of shortening acquisition 
durations such as parallel imaging, compressed sensing, 
and echo-planar imaging (EPI) (Usman, et al., 2020). 
Despite the recent advancements, motion still poses a 
problem since the duration of the acquisition is not short 
enough to not generate artifacts.   

The results are images with worsened diagnostic 
quality, which requires the healthcare to reschedule 
patients and prolong the examination times. This is seen in 
all populations, but it is more prevalent in pediatric 
patients, patients with anxiety, the elderly, and patients 
with neurodegenerative diseases (Afacan, et al., 2016; 
Andersen, et al., 2019; Törnqvist, et al., 2006). Methods of 
reducing the impact of motion in image quality include the 
use of sedatives or anesthetic drugs. These methods may 
be problematic due to the long-term adverse effects of 
these drugs, and especially a concern in pediatric studies 
(Afacan, et al., 2016). In a 2015 report, 8.6% of children 
experienced a long-term effect from a sedation or 
anesthesia event, where 57.5% of these events were from 
MR examinations (Havidich, et al., 2016).  Alternatively, 
computed tomography (CT) may be used when the concern 
for motion is significant. However, this exposes the subject 
to radiation which is generally considered a larger risk for 
children than the use of sedatives or anesthetic drugs. In 

addition, the CT images provide poor contrast in the brain 
(Afacan, et al., 2016). Furthermore, it is estimated that 
patient motion can call for healthcare costs of at least 
$115,000 per scanner per year (US prices). This estimation 
is based on the prevalence of motion artifacts which lead 
to an examination being repeated being 16.4% (Andre, et 
al., 2015). Hence, the investment into motion correction 
research is beneficial for the healthcare. 

Today there exist motion correction techniques for MRI 
in clinical practice and development phases. These can be 
divided into two categories, based on when the correction 
is applied, which are retrospective and prospective motion 
correction (PMC). Information of motion during a scan can 
be obtained with different techniques such as with 
navigators, RF-based tracking systems, and optical 
tracking systems (Godenschweger, et al., 2016).  

Some retrospective motion correction techniques use 
the principle that a rigid body transformation causes a 
linear phase shift in k-space. By knowing the translation in 
each direction from the systems mentioned above, it is 
possible to determine a phase correction to apply to the 
acquired k-space data resulting in a motion-corrected 
image (Bookwalter, et al., 2010). Other retrospective 
methods uses deep learning (DL) to reduce motion 
artifacts. This is done by training a network on 
synthetically corrupted data to learn the mapping from 
motion-affected images to artifact-free images (Usman, et 
al., 2020). 

One of the proposed methods of PMC in MRI is with 
optical trackers placed in the bore of an MR camera to 
acquire translation and rotation information from subject 
movement to adjust the gradient field direction and radio 
frequencies (RF) phases and frequencies in real-time to 
reduce motion artifacts (Qin, et al., 2009). Another method 
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for reducing motion artifacts was found in 1986 when 
researchers suggested that phase encoding gradients could 
be adjusted in real-time based on navigation data (Haacke 
& Patrick, 1986). The use of image-based navigators has 
been of interest in the recent decade. By exploiting the 
waiting time for longitudinal relaxation in magnetization 
preparation imaging sequences, EPI can be used to acquire 
images of the entire subject volume to determine the 
subject’s position in between the repetitions. The 
transformation parameters between the two EPI images are 
determined in real-time, then an image registration is 
performed on the sequence of interest images (Tisdall, et 
al., 2012).  

This EPI method has further been built on to show its 
success in other imaging sequences, such as T1-, T2-
weighted images, and angiographies. This has been done 
by adding a motion score threshold for a specific k-space 
data being reacquired, among other additions (Andersen, 
et al., 2019). One limitation of this method is that the 
registration of the reference and moving EPI images is an 
iterative process, meaning that the solution may not be 
reached within the desired time frame and that the timing 
to reach a solution varies. It would be beneficial for 
sequence design if these limitations were solved. 

A DL model used to predict rigid-body transformation 
parameters from inputting a reference and moving image 
has shown to be successful with synthetic transformed fat 
navigators (FatNavs). The advantage of using a DL model 
is that the predictions of transformation parameters are 
made in a specific computation time, 40.1 ms with the 
most successful model. This approach is presented in a 
bachelor project from the Technical University of 
Denmark (DTU) (Svane Olsen & Nguyen-Cong, 2021) 
and is yet to be validated in vivo.  

1.2 Aim 

The aim of this work is to determine the feasibility of 
implementing a deep learning model into the PMC pipeline 
of a Philips 7 T scanner, replacing the current iterative 
image registration, to generate accurate transformation 
parameters to reduce motion artifacts, and have a practical 
computation time for better sequence design. 

1.3 Goal and Purpose 

The goal and purpose of this work is to implement, 
validate, and optimize the DL approach proposed by the 

DTU students (Svane Olsen & Nguyen-Cong, 2021). A 
method of calling DL models in the host computer of the 
scanner is needed for the implementation. At the same 
time, different DL architectures are to be explored if they 
can produce shorter computational times and more 
accurate predictions. Finally, the suggested architectures 
will be tested in vivo on the 7 T scanner.  
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2 Theory 

2.1 Essential Principles of Magnetic 
Resonance Imaging 

2.1.1 General Spin Physics 

Atomic nuclei with an uneven number of protons or 
neutrons exhibit a non-zero spin 𝑠𝑠. The spin angular 
moment magnitude is defined as  

𝑆𝑆2= 𝑠𝑠(𝑠𝑠 + 1)ℏ2 (1) 

A quantum number associated with the spin is the magnetic 
spin quantum number 𝑚𝑚𝑠𝑠. This number ranges from −𝑠𝑠 to 
+𝑠𝑠 in steps of one, which generates 2𝑠𝑠 + 1 values of 𝑚𝑚𝑠𝑠 as 
follows 

𝑚𝑚𝑠𝑠 = [−𝑠𝑠, −(𝑠𝑠 − 1), … , 𝑠𝑠 + 1, 𝑠𝑠] (2) 

A classical analogy to understand the quantum spin is 
to imagine a charged sphere rotating on its own central 
axis. Its spinning results in angular momentum and if 
charged will generate a magnetic dipole moment 𝜇𝜇. The 
magnetic dipole moment describes the strength of the 
interaction the proton will have on an external magnetic 
field and the strength of the magnetic field it generates 
itself. It can be described in terms of the 𝑆𝑆 and the 
gyromagnetic ratio 𝛾𝛾  by 

𝜇𝜇 = 𝛾𝛾𝑆𝑆 (3) 

In the presence of an external magnetic field 𝐵𝐵, the 
potential energy the dipole experiences are described 
classically as the following 

𝑈𝑈 = −𝜇𝜇 ⋅ 𝐵𝐵�⃗ (4) 

This means that the moment will align parallel to the 
external magnetic field to reach a minimum energy state 
(Brown, 2014). 

There is a large abundance of hydrogen H⠀1  in the 
human body, primarily due to a large amount of water 
H2O. H⠀1  is a nucleus with an uneven number of protons, 
hence it will exhibit a 𝑠𝑠 = 1

2 and spin states 𝑚𝑚𝑠𝑠 = ± 1
2. These 

two states are usually defined as spin up (𝑚𝑚𝑠𝑠 = 1
2) and spin 

down (𝑚𝑚𝑠𝑠 = − 1
2). In the presence of an external magnetic 

field 𝐵𝐵𝑧𝑧, these two states will become degenerate. This is 
an example of the Zeeman effect. The amount of the 
splitting can be determined using the energy equation 4 

𝐸𝐸�𝑚𝑚𝑠𝑠 = 1
2� = 1

2
𝛾𝛾ℏ𝐵𝐵𝑧𝑧 

𝐸𝐸�𝑚𝑚𝑠𝑠 = − 1
2� = − 1

2
𝛾𝛾ℏ𝐵𝐵𝑧𝑧 

𝛥𝛥𝐸𝐸 = 𝐸𝐸�𝑚𝑚𝑠𝑠 = 1
2� − 𝐸𝐸�𝑚𝑚𝑠𝑠 = − 1

2� = 𝛾𝛾ℏ𝐵𝐵𝑧𝑧 (5) 

Due to thermal energy, the spins will populate both the 
lower and higher energy states (Brown, 2014). 

Excitation of the spins from the lower energy state to 
the higher will require an electromagnetic field with 
energy equal to the Δ𝐸𝐸. For an electromagnetic field, its 
frequency 𝜈𝜈 will equal 

ℎ𝜈𝜈 = 𝛥𝛥𝐸𝐸 ⟺ 𝜈𝜈 =
𝛾𝛾

2𝜋𝜋
𝐵𝐵𝑧𝑧 (6) 
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For H⠀1 : 
𝛾𝛾

2𝜋𝜋
= 42.58 MHz T−1 

This frequency is often denoted as 𝜈𝜈0 and is called the 
Larmor frequency, for a specific external magnetic field 𝐵𝐵0 
in the z-direction. The Larmor frequency for H⠀1  is in the 
radio frequency (RF) range. The probability for excitation 
is the same for deexcitation, however, there is a larger 
population of spins in the lower energy state. The 
population distribution can be described as a Boltzmann 
distribution. This will lead to a collective magnetism 𝑀𝑀0 
parallel to the static magnetic field. The magnitude of this 
collective magnetism is almost proportional to the field 
strength of 𝐵𝐵𝑧𝑧 as derived in the following approximation 

𝑀𝑀0 ≈ 𝑁𝑁
𝜇𝜇𝑝𝑝

2

𝑘𝑘𝑘𝑘
𝐵𝐵𝑧𝑧 (7) 

Where 𝑁𝑁  is the proton density, 𝜇𝜇𝑝𝑝 is the magnetic dipole 
moment of protons, 𝑘𝑘 is the Boltzmann constant, and 𝑘𝑘  is 
the temperature (Brown, 2014).  

Due to the Heisenberg uncertainty principle, the spins 
can’t be parallel to the magnetic field. This will result in a 
torque on the spin and it will precess around the axis of the 
static magnetic field. This precession frequency 𝜔𝜔 is 
related to the 𝜈𝜈 by 

𝜔𝜔 = 2𝜋𝜋𝜈𝜈 (8) 

Sending an RF pulse with a frequency of 𝜔𝜔 will change 
the population distribution between the two states over 
time while it is active. Measuring a signal from the 
precessing spins can be done via Faraday induction with a 
coil from the magnetism 𝑀𝑀𝑥𝑥𝑥𝑥 in the plane orthogonal to 
the direction of the static magnetic field. The magnitude of 
𝑀𝑀𝑥𝑥𝑥𝑥 can be maximized by manipulating the population 
distribution so that the net magnetism before the RF signal 
is completely transferred to the 𝑥𝑥𝑥𝑥-plane, then shutting off 
the RF (Brown, 2014). 

2.1.2 Spatial Encoding 

In other imaging modalities, the detection of particles 
transmitted through or from the patient is used to generate 
an image. One challenge in MRI is that there are no 
particles being emitted. Some form or spatial encoding of 
the spins is needed to be able to distinguish protons at 
different locations in the body. The main idea of solving 
this challenge is to use magnetic field gradients to create a 

varying magnetic field. This will give protons at different 
locations in the gradient a different 𝜈𝜈.  

Along the direction orthogonal to the transverse plane 
of a patient, usually defined as 𝑧𝑧, a magnetic field gradient 
is used to set different locations to have different 𝜈𝜈. It is 
commonly desired to only excite a region in the gradient 
field, such as a head. This then requires a bandwidth of 
frequencies to be sent in the excitation RF pulse. The name 
of this process is slice selection, where a slice refers to the 
region of protons that has been excited (Brown, 2014).  

Now the remaining protons in the two directions of the 
patient need to be encoded. This is done by applying 
magnetic field gradients in these directions. Consider the 𝑥𝑥 
to be encoded first. By activating a gradient in this 
direction during the signal acquisition, the induced signal 
frequencies will correspond to the signal produced by 
protons at different locations in this gradient. The direct 
Fourier transform of the one signal read out will 
correspond to the magnitude of signal coming from all 
protons in the plane orthogonal to the direction of the field. 
This process is named frequency encoding (Brown, 2014). 

Since the frequency of resonance is used to determine 
the position in the 𝑥𝑥 direction, the same method cannot be 
used in the 𝑥𝑥 direction, since we will have lost the 
encoding. Instead, gradients are activated in the 𝑥𝑥 direction 
before a signal readout. However, the 𝑥𝑥 gradient in the next 
read-out will have changed in steepness by some 
increment. This is repeated a number of times with the 
same increment so that each signal read out has 
experienced a different steepness in the 𝑥𝑥 direction. The 
result is that the signal acquired will have phase-dependent 
on the location of protons in slice orthogonal to the 𝑥𝑥 
direction. This process is named phase encoding (Brown, 
2014). 

2.1.3 Relaxation Theory 

After the RF signal, relaxation effects will start to take over 
and determine the magnitudes of 𝑀𝑀𝑥𝑥𝑥𝑥 and 𝑀𝑀𝑧𝑧. The 
population distribution of spins will return to equilibrium. 
This is seen in the gradual increase of 𝑀𝑀𝑧𝑧 over time. The 
reason for this is due to dipole-dipole interactions induced 
by fluctuations in the local magnetic field. These 
fluctuations arise from molecular motion including 
rotations, vibrations, and translations. These fluctuations 
occur with different frequency components. The 
frequencies depend on the mobility of the water molecules 
in a medium. For a simple tissue model, water bounded 



THEORY 
Neural Networks 

 
 

5 

next to proteins are considered to be relatively less mobile, 
hence they have an abundance of low-frequency 
components. While more mobile water molecules have a 
broader distribution of frequencies. If the water molecules 
in a specific medium contain an abundance of the 𝜈𝜈, the 
growth of 𝑀𝑀𝑧𝑧 will be more effective as these fluctuations 
frequencies are enough to stimulate deexcitation. This is 
referred to as T1 relaxation or longitudinal relaxation 
(Brown, 2014). 

The 𝑀𝑀𝑥𝑥𝑥𝑥 will also decrease gradually over time, 
however, this will be due to spatial variations in the 
magnetic field. If the fluctuations are rapidly changing, the 
effect is canceled out. However slow fluctuations will 
cause protons to point in some direction for some time. 
Which will be enough to exert a bias on the local magnetic 
field. This will change the 𝜈𝜈 and thus contribute to the 
dephasing of the spins. Hence, an abundance of less mobile 
water molecules means that the decrease in 𝑀𝑀𝑥𝑥𝑥𝑥 will be 
more effective. This is named T2 relaxation or transversal 
relaxation (Brown, 2014).  
 

2.1.4 Ultra-High Field Magnetic Resonance 
Imaging 

It is clear that from equation 1, more signal can be achieved 
by increasing the static magnetic field strength. This has 
been one of the reasons for the push for developing stable 
MR scanners with stronger static magnetic fields. It is 
expected that signal-to-noise should increase linearly. 
However, there are many other factors that signal-to-noise 
such as the imaging sequences, the properties of the object, 
and magnetic field homogeneity. One notable difference 
when using ultra-high field (UHF) strengths is that the 𝜈𝜈 
increases linearly, meaning that the T1 relaxation time will 
increase as well (Olsson, 2021). 
 

2.2 Neural Networks 

The field of neural networks (NN) is heavily inspired by 
the goal to model biological neuron systems. These results 
of this have proven to be useful in machine learning (ML) 
tasks. A simple description of a neuron in the brain is that 
it is one computational unit. The human nervous system 
contains billions of these neurons, which are each 
connected to synapses. Signals are received by the neurons 
through their dendrites. After the neuron processes the 

signals received, it releases a signal through its single axon. 
This signal will later branch off to other synapses of other 
neurons. When this signal enters the dendrites of the other 
neurons, it is modified by some weight which is specific 
for signal the link between the two neurons.  

A neuron in ML is essentially a number, which is 
equivalent to the strength of the signal in the biological 
description. There are four parts of a neuron: (i) a group of 
inputs (ii) a linear function (iii) a non-linear function (iv) 
an output. These parts are illustrated in Figure 1. The 
output of a neuron is determined by 

𝑥𝑥 = 𝜎𝜎 �� 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=0
� = 𝜎𝜎(𝑧𝑧) (9) 

Where 𝜎𝜎 is the non-linear function which is often defined 
as the activation function, and the terms inside 𝜎𝜎 represent 
the linear function 𝑧𝑧 operating on the input vector 𝑥𝑥. The 
linear function has two parameters which are the weights 
𝑤𝑤 and biases 𝑏𝑏. The idea in ML is that the values of these 
weights and biases of links between neurons are 
determined through training.  

The path from a neuron to a NN is by considering 
several vector columns of neurons linked in sequence. 
Each column is defined as a layer. Figure 2 shows the 
appearance of a multi-layer NN. Equation 1 can be 
modified to show the values of the neurons in the 𝑙𝑙’th layer 
based on the neurons values in the layer before.  

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥0

(1)

𝑥𝑥1
(1)

⋮
𝑥𝑥𝑘𝑘

(1)
⎦
⎥
⎥
⎥
⎥
⎤

= 𝜎𝜎

⎝
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡𝑤𝑤0,0

⠀ 𝑤𝑤0,1
⠀ ⋯ 𝑤𝑤0,𝑛𝑛

𝑤𝑤1,0
⠀ 𝑤𝑤1,1

⠀ ⋯ 𝑤𝑤1,𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑤𝑤𝑘𝑘,0
⠀ 𝑤𝑤𝑘𝑘,1

⠀ ⋯ 𝑤𝑤𝑘𝑘,𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝑥𝑥0

(0)

𝑥𝑥1
(0)

⋮
𝑥𝑥𝑛𝑛

(0)⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡𝑏𝑏0
𝑏𝑏1
⋮

𝑏𝑏𝑛𝑛 ⎦
⎥
⎥
⎥
⎤

⎠
⎟
⎟
⎟
⎞
 

 (10) 

A more compact formulation is  

𝑥𝑥(𝑙𝑙) = 𝜎𝜎(𝑙𝑙)�𝑊𝑊 (𝑙𝑙)𝑥𝑥(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙)� = 𝜎𝜎(𝑙𝑙)�𝑧𝑧(𝑙𝑙)� (11) 

Letting this function iterate over itself the number of layers 
the network has, 𝐿𝐿, gives the composite function 

𝑥𝑥(𝐿𝐿) = 𝜎𝜎(𝐿𝐿−1)�𝑊𝑊 (𝐿𝐿−1)𝜎𝜎(𝐿𝐿−2)�𝑊𝑊 (𝐿𝐿−2). . . +𝑏𝑏(𝐿𝐿−2)� + 𝑏𝑏(𝐿𝐿−1)� 

(12) 

This is essentially the definition of a NN. The 𝐿𝐿’th layer is 
named as the output layer, the first layer is named the input 
layer, and the layer between are named hidden layers. NN 
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is generally defined as deep neural networks (DNN) if 
there are more than two hidden layers in the network (𝐿𝐿 >
4).  

In practice, NN is shown to have better performance 
with more layers than one layer with many neurons. This 
is likely due to that with each layer, the input is 
transformed and creates new representations of it. 
However, an excessive number of layers can impair the 
performance of the network as well. This is one of the 
obstacles of DNN, as most methods for pursuing the 
optimal number of layers rely on trial and error. There are 
a few methods that will later be mentioned in this section 
that can improve the performance of DNNs. 

2.2.1 Activation Functions 

The activation function is an operation that is performed 
on the result from the linear function in a neuron. Its result 
will be the overall output of the function. The purpose of 
the activation function is to introduce non-linearity into the 
output of the neuron. If the activation function between two 
consecutive layers is an identity map, then due to linearity 
equation 3 becomes 

𝑥𝑥(𝑙𝑙+1) = 𝜎𝜎(𝑙𝑙)�𝑊𝑊 (𝑙𝑙)�𝑊𝑊 (𝑙𝑙−1)𝑥𝑥(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙−1)� + 𝑏𝑏(𝑙𝑙)�
= 𝜎𝜎(𝑙𝑙)�𝑊𝑊� (𝑙𝑙)𝑥𝑥(𝑙𝑙−1) + �̃�𝑏(𝑙𝑙)�⠀⠀⠀⠀⠀⠀⠀

 

Where 𝑊𝑊� (𝑙𝑙) = 𝑊𝑊 (𝑙𝑙) ⋅ 𝑊𝑊 (𝑙𝑙−1) and �̃�𝑏(𝑙𝑙) = 𝑊𝑊 (𝑙𝑙) ⋅ 𝑏𝑏(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙). 
This shows that the neurons in 𝑥𝑥(𝑙𝑙+1) are directly connected 
to the neurons in 𝑥𝑥(𝑙𝑙−1) without the need for the neurons in 
between (𝑥𝑥(𝑙𝑙)). If all the activation layers in a NN were 
identity maps, the whole network would be in principle a 

linear model. Hence, the activation function is the primary 
source of non-linearity in NN. It is believed that non-linear 
activation functions enable better representation of 
complex relationships by transforming the input data and 
creating an additional fold.  

There are several types of activation functions. One of 
the first encountered types is sigmoid. A sigmoid function 
is defined as 

𝑓𝑓(𝑥𝑥) = 1
(1 + 𝑒𝑒−𝑥𝑥)

(13) 

It is a non-linear function whose range covers 0 to 1. For 
𝑥𝑥 = 0, this function returns 1

2� . For very positive and 
negative values, the function returns 1 or 0 respectively. 
Historically, the sigmoid has been popular for its nice 
interpretation of the firing of a neuron. 0 for not firing at 
all and 1 for saturating the firing.  

Another type of activation function is the tanh function, 
which is defined as 

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑥𝑥) (14) 

Like the sigmoid function, this function saturates for very 
positive and negative values. However, the output of the 
function ranges between 1 and −1, meaning that it is zero-
centered. This is one reason why tanh functions would be 
preferred more than sigmoid functions. It is worth noting 
that the tanh function is essentially a scaled sigmoid 
function 𝜎𝜎 like 

𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑥𝑥) = 2𝜎𝜎(2𝑥𝑥) − 1 

Figure 1: Temporary figure for 
single neuron 
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One notable activation function is the rectified linear 
unit (ReLU) function. It is defined is as 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥, 𝑥𝑥 > 0
0, 𝑥𝑥 ≤ 0 (15) 

ReLU use as an activation function has been popular 
recently for its successes in effective training. The basic 
idea of the ReLU function is to set the threshold at zero.  

The last activation function to mention here is the 
Leaky ReLU function. It is in principle the attempt in 
solving the dying gradient problem of using ReLU 
activation functions. It is defined as 

𝑓𝑓(𝑥𝑥) = �
⠀⠀𝑥𝑥, 𝑥𝑥 > 0
𝑥𝑥 ⋅ 𝑡𝑡, 𝑥𝑥 ≤ 0 (16) 

2.2.2 Optimization and Training 

Solving problems with a DL approach requires a training 
phase. The purpose of the training phase is to determine 
the optimal parameters 𝑊𝑊 ∗ for the network from training 
data. This is often formulated mathematically as an 
optimization problem where the goal is to minimize some 
loss function 𝑀𝑀 . From equation 4, the optimization 
problem can be expressed as 

𝑊𝑊 ∗ = 𝑚𝑚𝑖𝑖𝑛𝑛
𝑊𝑊

𝑀𝑀(𝑊𝑊 ) = 𝑀𝑀��̂�𝑥, 𝑥𝑥(𝐿𝐿)� (17) 

Where �̂�𝑥 is the desired output of the network. The loss 
function method is specific to the type of problem the 
network is attempting to solve. For linear regression 
problems, the mean square error (MSE) is often used and 
can be expressed as 

𝑀𝑀��̂�𝑥, 𝑥𝑥(𝐿𝐿)� = 1
2 � �𝑥𝑥𝑖𝑖

(𝐿𝐿) − �̂�𝑥𝑖𝑖�
2

𝑛𝑛𝐿𝐿−1

𝑖𝑖=1
= 𝐸𝐸 (18) 

The term 𝐸𝐸 is used to convenience.  
The difficulty in finding the optimal parameters for 

equation 9 is that it is often a non-convex optimization 
problem, meaning that there are difficulties in finding a 
global minimum in the function. The most common 
method used to solve these types of problems is the 
gradient descent algorithm, in which the gradient of the 
function is examined to determine which direction 
decreases the function the quickest (Rojas, 1996). Thus, 
the gradient of the loss function is needed 

𝛥𝛥𝑊𝑊 ∶= −𝜂𝜂 �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤1

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏1

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤2

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏2

, … , 𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤𝜅𝜅

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏𝜅𝜅 ��𝑊𝑊 (old)

       ∶= −𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (old)

                                                       
 

(19) 

Where 𝑤𝑤𝜅𝜅  are the 𝜅𝜅 number of weights in the entire 
network. This is used to determine the increment on the 
weights and biases to find the minimal of the loss function. 
In the case of the weights, this is 

𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘 + 𝛥𝛥𝑊𝑊 = 𝑤𝑤𝑘𝑘 − 𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑤𝑤𝜅𝜅

(20) 

Here, 𝜂𝜂 is called the learning constant, which is a scalar 
applied to the increment. Now the optimization problem 
boils down to determining the partial derivatives of the loss 
function and iteratively changing the weights until Δ𝑀𝑀 =
0.  

Since the loss function and weights are linked via two 
different functions and due to the composite function form 
of the output in the neuron, the chain rule can be applied to 
determine the gradient in equation 11. This can be seen 
from equation 10, the partial derivative of the loss function 
with respect to weight is given by 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑤𝑤𝑘𝑘,𝑛𝑛

(𝑙𝑙) =
𝜕𝜕𝑧𝑧𝑘𝑘

(𝑙𝑙)

𝜕𝜕𝑤𝑤𝑘𝑘,𝑛𝑛
(𝑙𝑙)  

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙)  𝜕𝜕𝑀𝑀

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙) (21) 

The first term describes how the linear function is 
influenced by some change in the weights in the layer. As 
a reminder, the linear function 𝑧𝑧 is defined as 

𝑧𝑧(𝑙𝑙) = � 𝑤𝑤𝑘𝑘,𝑖𝑖
(𝑙𝑙) 𝑥𝑥𝑘𝑘,𝑖𝑖

(𝑙𝑙−1) + 𝑏𝑏𝑘𝑘,𝑖𝑖
(𝑙𝑙)

𝑛𝑛

𝑖𝑖=0
 

Since only one term is dependent on the weights, the partial 
derivative becomes 

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑤𝑤𝑘𝑘,𝑛𝑛
(𝑙𝑙) = 𝑥𝑥𝑘𝑘,𝑖𝑖

(𝑙𝑙−1) 

The second term in equation 13 is the values of the neurons 
which is essentially the output of the neurons. Hence, the 
partial derivative with respect to linear function is given by 

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙) =

𝜕𝜕𝜎𝜎(𝑙𝑙)(𝑧𝑧𝑘𝑘
(𝑙𝑙))

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙) = 𝜎𝜎′(𝑙𝑙)

�𝑧𝑧𝑘𝑘
(𝑙𝑙)

� 

The final term in equation 13 is the sensitivity of the loss 
function to a change of the value of a neuron in a layer. If 
this layer is the output layer of the NN, 𝑙𝑙 = 𝐿𝐿, then the 
partial derivative becomes 

𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝑙𝑙) = 𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐿𝐿) 
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This means that only the derivatives influenced by the 
layer before the output layer are needed to determine this. 
If the loss function is the MSE as in equation 10, the partial 
derivative of the output layer will be 

𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐿𝐿) = 𝑥𝑥𝑘𝑘
(𝐿𝐿) − �̂�𝑥𝑘𝑘 

In the case of 𝑙𝑙 being some hidden layer, the derivative is 
not as straightforward. For comprehensibility, sub-indices 
are now ignored. Each of the neurons influences the loss 
function through several different paths. Hence the loss 
function will be dependent on the linear operations in 
between the 𝑙𝑙’th layer and the output layer 𝐿𝐿. Through the 
total derivative and the chain rule, the result is  

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥(𝑙𝑙) =

𝜕𝜕𝑀𝑀�𝑧𝑧(𝑙𝑙+1), 𝑧𝑧(𝑙𝑙+2), … , 𝑧𝑧(𝐿𝐿)�
𝜕𝜕𝑥𝑥(𝑙𝑙)  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀  

⠀⠀ = 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑙𝑙+1)

𝜕𝜕𝑧𝑧(𝑙𝑙+1)

𝜕𝜕𝑥𝑥(𝑙𝑙) + 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑙𝑙+2)

𝜕𝜕𝑧𝑧(𝑙𝑙+2)

𝜕𝜕𝑥𝑥(𝑙𝑙) +. . . + 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝐿𝐿)

𝜕𝜕𝑧𝑧(𝐿𝐿)

𝜕𝜕𝑥𝑥(𝑙𝑙)  

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑙𝑙)�𝑗𝑗∈𝐿𝐿
 ⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀   

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗)
𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑙𝑙)�𝑗𝑗∈𝐿𝐿
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗) 𝑤𝑤(𝑗𝑗)
�𝑗𝑗∈𝐿𝐿
⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀  

Finally, all the terms of equation 13 are defined and the 
updates to the weights by equation 12 can be determined.  

This method of optimizing and training and network 
can be very costly in memory usage. Finding the global 
minimum of equation 9 is neither guaranteed. To solve 
address these issues, researchers have suggested the use of 

stochastic optimization methods such as stochastic 
gradient descent (SGD) and adaptive moment estimation 
(ADAM).  

The common idea of stochastic optimization methods is 
to solve the optimization problem by iterating sets of the 
full training data set instead of passing the full data set in 
one iteration. This tackles the memory usage problem. 
These smaller sets of the training data are called batches 
and the amount of data in the set is referred to as the batch 
size. Before data is placed into these batches, the entire 
training set is shuffled. Updates to the weights are 
performed after a batch has been passed through the model. 
Each pass of all batches in the entire dataset is called an 
epoch. The difference between each epoch is the random 
shuffling of the data before being assigned to batches. If 
the number of batches is defined as 𝜏𝜏 and the size of the 
batch is 𝜒𝜒 , then equation 10 will be the following for any 
loss function 

𝐸𝐸(𝜏𝜏) = � 𝑀𝑀 ��̂�𝑥
�(𝜏𝜏−1)𝜒𝜒+𝑖𝑖�
 , 𝑥𝑥

�(𝜏𝜏−1)𝜒𝜒+𝑖𝑖�
(𝐿𝐿)

�

𝜒𝜒

𝑖𝑖=1
, 𝑚𝑚 = 1,2, … , 𝜏𝜏 

 (22) 

The most notable difference to the updates of the 
weights by using the SGD method is that a momentum 
term is added to equation 12. The idea is to include the 
gradients calculated in the previous batch into the new 
batch calculations. A scalar 𝛼𝛼 is introduced into equation 
11 which is multiplied with the previous batch (𝛽𝛽 − 1) 
gradients. 

Figure 2: Visualization of the 
iterative process in 
determining the change of 
the loss function (Mean 
square error in this case) with 
respect to weights of an inner 
layer 𝑙𝑙 = 2. 
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𝛥𝛥𝑊𝑊 (𝜒𝜒) ∶= 𝛼𝛼𝛥𝛥𝑊𝑊 (𝜒𝜒−1) − 𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (𝜒𝜒−1)

(23) 

This can improve the step size in the gradient descent when 
the slope is steep, which shortens the time to convergence. 
Typical values of 𝛼𝛼 are between 0.5 and 0.9 and can result 
in a factor two faster convergence rate.   

The ADAM algorithm was proposed in 2015 for DL 
and is one of the most frequently used optimization 
algorithms. It includes the idea of momentum as in SGD, 
and an adaptive rate scheme meaning that the learning rates 
will vary per parameter. In mathematical terms, the 
updates to the weights  

𝑊𝑊 (𝜒𝜒) = 𝑊𝑊 (𝜒𝜒−1) −
𝜂𝜂

√𝑣𝑣(̂𝜒𝜒) + 𝜖𝜖
𝑚𝑚�(𝜒𝜒) (24) 

𝑚𝑚�(𝜒𝜒) = 𝑚𝑚(𝜒𝜒)

1 − 𝛽𝛽1
𝜒𝜒  , 𝑣𝑣(̂𝛽𝛽) = 𝑣𝑣(𝜒𝜒)

1 − 𝛽𝛽2
𝜒𝜒  

𝑚𝑚(𝜒𝜒) = 𝛽𝛽1𝑚𝑚(𝜒𝜒−1) + (1 − 𝛽𝛽1)𝛥𝛥𝑊𝑊  

𝑣𝑣(𝜒𝜒) = 𝛽𝛽2𝑣𝑣(𝜒𝜒−1) + (1 − 𝛽𝛽2)𝛥𝛥𝑊𝑊 ⊙ 𝛥𝛥𝑊𝑊  

𝛥𝛥𝑊𝑊 = 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (𝜒𝜒−1)

 

Where 𝑣𝑣 is the term which modifies the learning rate 
depending on different parameters, 𝑚𝑚 is the term which 
includes a moment into the gradient descent, and the 
respective hat accents (𝑣𝑣,̂ 𝑚𝑚�) on each term represents the 
normalization of them. The 𝛽𝛽 values are user-defined 
values and are typically set to 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.99. The 
𝜖𝜖 term is usually set to 10−18, its purpose is to avoid a 
division by zero.  
 

2.2.3 Convolutional Neural Networks 

In the analysis of images with NN, convolution operations 
are frequently used. The major reasons are that there is an 
explosion of the number of parameters, and the loss of 
information with respect to how the pixels are interrelated 
if the usual inner product operation is performed as in a 
NN. Vectorizing an image with a resolution of 256 × 256 
pixels will result in a column vector containing 65536 
elements. Assuming that the number of neurons in the first 
layer is 1000, then the number of weight parameters 
connecting the input and first layer will be in the order of 
65 ⋅ 106. For this number of parameters, the computational 
cost of the model would be significant, and the 

generalization performance will take a hit for many 
parameters. Convolutional neural networks (CNN) are 
used to solve these issues. The main two operations 
introduced by CNNs are the convolution step and the 
pooling step.  

As mentioned, a problem with NN in image analysis is 
that the number of parameters will be very large. A 
potential solution to this is to share parameters between 
neurons in the same layer. A convolution operation is 
mathematically expressed as 

𝑓𝑓(𝑥𝑥) ⊗ ℎ(𝑥𝑥) = � 𝑓𝑓(𝜏𝜏)ℎ(𝑥𝑥 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 

𝑓𝑓(𝑥𝑥, 𝑥𝑥) ⊗ ℎ(𝑥𝑥, 𝑥𝑥) = � 𝑓𝑓(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑥𝑥 − 𝜏𝜏1, 𝑥𝑥 − 𝜏𝜏2)𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2

∞

−∞
 

 (25) 

for 1D and 2D respectively. The input is defined as 𝑓𝑓  and 
ℎ is defined as the kernel. 

From using convolutions in NNs, weight sharing is 
possible, meaning that the kernel ℎ is shared with all 
neurons of the previous layer instead of each neuron 
having its own weight. Information of the local 
neighborhood surrounding each neuron is considered with 
the use of convolutions, which effectively tackles the loss 
of information of how the pixels are interrelated when 
using a conventional NN and inner product. 

After each convolution, any activation function is 
applied to all neurons in the output in each channel. The 
introduction of CNNs also includes another process that 
can improve the performance networks. Several kernels 
are often used to extract information from the data, this can 
lead to memory issues if the resulting number of channels 
is large. Reducing the dimensions of the data is one method 
of tackling this. In CNN, this is known as pooling and one 
of these operations is named max pooling. In max pooling, 
a convolution process is applied data, where a kernel slides 
across the data, but instead of the conventional convolution 
process, a selective kernel is applied which outputs the 
value of the neuron in the neighborhood with the maximum 
value. The stride of the convolution is set so that the 
dimensions of the data are reduced, and the idea is to 
preserve as much information as possible in the data after 
the reduction in size. Selecting the max-pooling process 
assumes that the important information in the data is the 
largest value. Another pooling process is named average 
pooling. Here, the output is the average value of the 
neurons in the neighborhood. This could improve the 
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performance of the network as all information is 
considered. 
 

2.2.4 Learning Strategies 

Learning strategies in DL can primarily be either 
supervised or unsupervised. Data used in supervised 
training are labeled as input and expected output. This type 
of training is straightforward as the optimizing goal is 
clearly to predict the expected output and penalize the 
network for incorrect predictions. However, the 
requirement for supervised training is that such input and 
output data exist. Knowing the exact ground truth is not 
always the case. Acquiring such data for supervised 
training can be difficult, such as segmentation data where 
segmentations are expected to be drawn from medical 
annotators, which is time-consuming. Luckily, there exists 
data that is publicly available that has been gathered that 
can be used in some DL methods. However, this data might 
not always be the right to tackle a specific problem. 
Especially for regression tasks, there have been successes 
with accurate predictions on synthetic data (Svane Olsen 
& Nguyen-Cong, 2021). One problem with using synthetic 
data is that the trained model could be less generalizable to 
real data.  

On the other hand, unsupervised learning aims to find 
the patterns in the data without feeding the training ground 
truth or our targeted output.  

2.2.5 Deep Learning Frameworks 

The most common way to implement DL solution to a 
problem is by using a programming script. In recent years, 
several frameworks have been distributed with common 
DNN and CNN operations already implemented such as 
activation functions and 3-dimensional convolutions. Most 
of these can be used with Python and C++. Two of the 
most popular frameworks in recent years are TensorFlow 
and PyTorch (Paszke, et al., 2019). The availability of 
these types of frameworks allows for easy training of NN 
for researchers without the need of developing all the 
operations in a programming language.  

TensorFlow is Python-based and is the framework with 
the largest support and usage for its focus on production 
and scalability in mind, which makes it popular in an 
industrial setting where quickly pushing prototypes into 
deployment can be important. It was developed by the 

Google Brain Team and distributed publicly in 2015, and 
since then has reached the milestone of having the largest 
community of all DL frameworks. Since TensorFlow’s 2.0 
releases, have Keras fully integrated by default. Keras is a 
high-level wrapper around TensorFlow making for 
seamless and easy training of networks. Eager Execution 
is enabled by default in the >2.0 releases allowing for 
faster development and debugging. 

In recent years, PyTorch has received the fastest 
community growth among all DL frameworks. This is 
mainly due to its different approach than in TensorFlow 
and has made it more popular in academia.  

There are several more frameworks available for DL, 
each with its advantages and disadvantages as well as the 
use of different languages. Both TensorFlow and PyTorch 
have released C++ API to allow for easy deployment of 
the models, and due to their popularity, there exists plenty 
of support for each.  
 

2.2.6 Hyperparameter Tuning 

Hyperparameters of a NN refer to the parameters the user 
must define in the model before training such as the 
number of hidden layers in a network or the choice of 
activation functions. There are several hyperparameters in 
NN, and each has its impact on the training. 
Hyperparameter optimization refers to the adjustment of 
these parameters to minimize a defined loss function for a 
given set of data.  

One popular approach to hyperparameter optimization 
is Bayesian optimization… 
 

2.3 Geometric Transformations 

Geometric transformations are essential tools for image 
analysis.  

2.3.1 Rigid-Body Transformation 

In Euclidean space, translations, 𝑡𝑡, in 3D can be 
represented in a matrix 𝑘𝑘  in the following way 

𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀1 0 0 𝑡𝑡𝑥𝑥⠀
⠀0 1 0 𝑡𝑡𝑥𝑥⠀
⠀0 0 1 𝑡𝑡𝑧𝑧⠀
⠀0 0 0 1⠀⠀⎦

⎥
⎥
⎥
⎤

(26) 
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Rotations around each axis can be represented in the 
matrices 𝑅𝑅 in the following way 

𝑅𝑅𝑥𝑥 =
⎣
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀1 0 0 0⠀
⠀0 ⠀𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 0⠀
⠀0 − 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎤

(27) 

 

𝑅𝑅𝑥𝑥 =

⎣
⎢
⎢
⎢
⎡

⠀ ⠀ ⠀ ⠀
⠀ 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 0 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 0⠀
⠀0 1 0 0⠀

− 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 0 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎥
⎤

(28) 

 

𝑅𝑅𝑧𝑧 =
⎣
⎢
⎢
⎡

⠀ ⠀ ⠀ ⠀
⠀ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧) 0 0⠀
− 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) 0 0⠀
⠀0 0 1 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎤

(29) 

 
This gives in total 6 degrees of freedom from the variables 
in the matrices. Each of these matrices are used in 
determining the new position of a voxel for a certain set of 
parameters.  

In imaging, rigid-body transformations maintain the 
original shape of the object and only works as a movement 
of pixels to a new destination. In a medical imaging setting, 
this is beneficial for problems where size difference 
between objects is not of interest. More specifically, rigid-
body transformations preserve the distances and angles of 
an object. 

Let 𝑌𝑌  be the vector describing the coordinates of the 
voxels after a transformation. For a set of rigid body 
transformation parameters, the new coordinates 𝑌𝑌  of the 
voxels with coordinates 𝑋𝑋 can be found by 

𝑌𝑌 = 𝑅𝑅𝑥𝑥 ⋅ 𝑅𝑅𝑥𝑥 ⋅ 𝑅𝑅𝑧𝑧 ⋅ 𝑋𝑋 + 𝑘𝑘 (30) 

2.3.2 Affine Transformation 

In addition to linear transformations, there is the affine 
transformation which includes 3 more degrees of freedom, 
in 3D, than in rigid-body transformations. These 
parameters introduce scaling to the matrix. In an image 
transformation sense, this preserves parallelism meaning 
that lines preserve their ratios of distances along a line. 
However, absolute distances and angles are not preserved 
after affine transformations.  

A matrix describing shearing in combination with the 
matrices 18 − 21 complete the affine transformation. 
Scaling in 3D can be represented in the following way 

𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀𝑠𝑠𝑥𝑥 0 0 0⠀
⠀0 𝑠𝑠𝑥𝑥 0 0⠀
⠀0 0 𝑠𝑠𝑧𝑧 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎥
⎤

(31) 

2.4 Image Registration 

Image registration is a major research field in computer 
vision that will be difficult to grasp completely in this 
thesis. It refers to the process of spatial aligning two 
images so that the coordinates in one image match the 
coordinates of the other image. It is common to refer to the 
matching images as a reference and moved images 
respectively. Then the reference is the image that is kept 
unchanged, while the moving image is transformed to 
match the geometry and coordinate system of the reference 
image. One common use of this is in registering satellite 
images for mapping, such as when the alignment of two 
satellite images with different zooms is desired. Image 
registration has also made its way into medical imaging. 
There are several problems in medical imaging which can 
be addressed with image registration, such as when health 
personnel need spatially aligned images of a patient that 
were taken at different dates. 

Figure 3: Illustrating the coordinate shift (black to green) 
from rigid-body transformations (red). 
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2.4.1 Deep Learning Methods 

Recently, the state-of-the-art deep learning image 
registration methods for 3D MRI are based on the 
Voxelmorph approach. Voxelmorph (Balakrishnan, et al., 
2019) is a deep learning-based tool that is publicly 
available and has been shown to outperform traditional 
registration methods. The main architecture is based on a 
U-Net in combination with a spatial transform network 
(STN). Loss functions are based on traditional similarity 
metrics such as MSE or cross-correlation. The 
transformations made in the Voxelmorph are both affine 
and deformable in this order. This has been shown to 
improve the accuracy of the final registration.  

In comparison to other DL deformable image 
registration methods, Voxelmorph includes a smoothness 
regularizer to address ‘folds’ in the deformation field, 
which is where the determinant of the deformation field is 
negative. These can appear in several regions of the 
deformation field in other methods, making it not 
physically realistic. Ideally, the deformation field should 
be smooth and invertible. The number of ‘folds’ is a 
criterion that evaluates the smoothness of the deformation 
field. To tackle this, Voxelmorph introduces the 
smoothness regularizer to its optimization problem. This 
uses a diffusion regularizer on the gradients of the 

displacement field and approximates them using 
differences between neighboring voxels. This base design 
has been used to develop other tools such as tools that can 
generate atlases for 3D brain images and contrast-invariant 
image registration. 

The performance of the Voxelmorph is data-dependent. 
For example, models trained on T1W image pairs will 
poorly register T2W image pairs. There is a possibility to 
consider all combinations of contrasts, however, this 
would need a large dataset. The contrast invariant method 
named SynthMorph attempts to train models to register 
segmentations of images with arbitrary contrasts. In 
addition to this, these images with arbitrary contrasts are 
synthetically generated, meaning there is no need to input 
data. In this way, the researchers hoped to encourage the 
model to generalize across MRI contrasts. 

In SynthMorph, pairs of atlases are generated with 
arbitrary shapes. Each pair has one randomly generated 
deformable transformation relationship between them. The 
moving atlas will be the reference atlas after this 
deformable transformation. These atlases are pushed into 
an image sampler which generates a grayscale image using 
a Gaussian mixture method which will include creating 
arbitrary contrasts, blurring, and intensity bias. The model 
is then trained with these two images to optimize a 
combined loss function of a regularization term and dice 
term of the warped image. This is a form of unsupervised 

Figure 4: An outline of the SynthMorph pipeline. The initial atlas pair are synthetically generated, then pushed into an image sampling function which 
generates the corresponding images in grayscale. These are pushed into a NN which generates a deformation field describing how to transform the 
moving atlas to the reference atlas. Since unsupervised learning is used, red indicates the needed images to determine the loss. Adapted from ??. 
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learning, and a general overview of the pipeline is outlined 
in figure 5.  

In addition to non-linear registration DL methods, there 
exist linear registration DL methods. One recent work 
suggested a network design to predict rigid body 
transformation parameters that register 3D images of the 
brain from different modalities. Results from registration 
of 3D brain computed tomography (CT) and MR images 
are shown to produce accurate results in comparison to 
traditional registration methods. This method uses 
supervised training by augmenting data from CT and MRI 
with random rotations and translations. The model is then 
optimized by a loss function describing the difference 
between the predicted parameters and the augmentation 
parameters used for the specific image pair. The suggested 
CNN is relatively large in comparison to VoxelMorph. It 
can be seen as the encoding part of a U-Net, but larger as 
shown in figure 6. A complete description of the model can 
be found in the original paper.  

2.5 Motion Correction 

Correcting motion artifacts in MRI is another large field of 
research. As previously mentioned, motion artifacts can 
lead to several re-examinations which will impact 
healthcare availability and cost. Focus on reducing motion 
artifacts is highly desired. The two main approaches to 
tackling this issue are retrospective and prospective motion 
correction (PMC). Retrospective means that correction is 
applied after the data acquisition and prospective meaning 
that correction is applied during data acquisition. Both 
approaches have advantages and disadvantages. 
 

2.5.1 Prospective Motion Correction 

One type of method for PMC is iMOCO. It is a navigator-
based approach where information of the patient's motion 
is acquired during an examination. Based on this 
information, updates to the scanning parameters or 
requiring motion corrupted data can be done which will 
effectively reduce the risk of motion artifacts. This entire 
pipeline can be split up into three parts, a navigator, a 
registration, and a correction. 

iMOCO depends on acquiring two 3D images fast 
during scanning. These images are taken between readout 
trains in a sequence, thus are desired to be in the magnitude 
of ms to acquire. Sequences able to produce 3D images in 

this time are navigators. Navigators are commonly used by 
radiographers as fast low-resolution images to determine 
an appropriate FOV for the main imaging sequences. The 
low resolution is due to the readout technique which is 
often used for navigators which is EPI. Acquiring 3D 
navigators can be in the order of 350 ms, and an MRI data 
collection sense, this is a comparable time. The TI of 
FLAIR sequences can be a factor 2 larger than this, such 
as in T1W FLAIR sequences where TI can be around 
860 ms. This means that navigators can be acquired in 
between readout trains of FLAIR sequences and won’t 
disturb the desired output image data collection. It is also 
possible to acquire navigators with fat-selective 
excitations.  
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Once two navigators are acquired at different time 
points, image registration is performed. The earliest 
navigator is set as the reference image while the other is set 
as the moving image. Rigid-body transformation 
parameters are determined with an iterative approach, 
hence the time it takes to reach a solution is arbitrary. For 
registering fat-navigators with iMOCO, it is agreed that it 
takes around 250 − 300 ms. This still is in the order of 
magnitude for TIs in FLAIR sequences. Together with the 
acquisition of a new motion navigator, this process can 
take a total of 650 ms, which is squeezed into the TI. 

Once the registration is completed, the parameters are 
used to calculate a motion score, 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒, using the following 
equation 

𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒 =  𝛥𝛥𝑅𝑅 + �𝑡𝑡𝑥𝑥
2 + 𝑡𝑡𝑥𝑥

2 + 𝑡𝑡𝑧𝑧
2�

1
2� (32) 

Where Δ𝑅𝑅 is the largest displacement a point experiences 
on a sphere with a 64 mm radius when rotated by the 
magnitude of the rotation ��̂�𝑅�. Δ𝑅𝑅 is given by 

𝛥𝛥𝑅𝑅 = 64��1 − 𝑐𝑐𝑐𝑐𝑠𝑠���̂�𝑅���
2 + �𝑠𝑠𝑖𝑖𝑛𝑛���̂�𝑅���

2
�

1
2� (33) 

Figure 5: Deep learning network suggested by (Svane Olsen & Nguyen-Cong, 2021). Each image is pushed through a sequence of convolution, batch normalization, 
Leaky ReLU and max pooling layers until concatenated and pushed into a fully connected dense layers which outputs the predicted rigid-body transformation 
parameters. 
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And ��̂�𝑅� is given by 

��̂�𝑅� = �𝑐𝑐𝑐𝑐𝑠𝑠−1
�

1
2 �−1 + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) 

⠀
⠀⠀⠀⠀⠀⠀⠀⠀ + 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) + 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧)�� 

 (34) 

This score is used to decide whether requisition of motion 
corrupted data is needed. Today, the integrated iMOCO 
technique at the Danish Research Center for Magnetic 
Resonance (DRCMR) uses a threshold of 1 mm for 
requisition. For scores below this threshold, updates to the 
FOV are performed so that the next readout train acquires 
data in the assumed new position of the patient.  

This entire correction method has been shown to 
improve diagnostic quality in T1W-, T2W imaging as well 
as in time-of-flight angiography. Furthermore, the 
integration to other sequences than FLAIRs which don’t 
have an obvious long wait time is shown to be possible. 
Figure 7 illustrates this entire process.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: iMOCO workflow. Green sequence indicates the main desired sequence, with 3D cubes representing the amount of k-space data that has been acquired. In-
between read-out-trains navigators are acquired to determine the subjects position at these dead-times. A reference navigator is used to register the current navigator 
with a rigid body transformation. These parameters are used to calculate a score which determines whether data should be required or if scanning parameters should 
be updated. 
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3 Method 

3.1 Datasets and Environment 

The same dataset as in (Svane Olsen & Nguyen-Cong, 
2021) was used as the main dataset for model training. This 
consisted of 18000 3D fat navigators acquired from 110 
subjects, both male and female, with the Philips 7 T MRI 
scanner at DRCMR in Hvidovre, Copenhagen. Each 
navigator had 23 slices, each with dimensions 48 × 48 
pixels. The resolution of each voxel is 7.00 mm ×
5.33 mm × 5.33 mm. 

iMOCO from (Andersen, et al., 2019) is already 
implemented on the same scanner at DRCMR as a C++ 
program built into the host computer. Users can select 
whether this type of PMC will be used during a scanning 
procedure simply by toggling the motion correction 
parameters in the main UI of the scanner. Then two arrays 
of single-precision floats containing a reference and 
current fat navigator are sent to the iMOCO program. 
These are quickly sent to an iterative solver which finds a 
solution to rigid body transformation parameters which 
minimize the difference between the two images. By 
default, the time the scanner allows the iMOCO program 
to take before continuing to the next read-out train is 300 
ms. This restriction can be varied in the scanner UI from 
the Edit Scan Parameters category with the parameter 
PMC Lead Time. The rigid body transformation 
parameters are sent back to the PDF for assessment of 
whether updates to the scan FOV or reacquisition should 
be made. 

The majority of the programs that run on the host 
computer of the scanner are written in C++, which include 
thousands of lines of code. A simple way to swap the 

iterative solver in the iMOCO program won’t be as 
straightforward. An optimal method of replacing the 
iterative solver would be to avoid the need to rebuild a 
larger portion of the scanner's code, and instead just 
replace the shared library file of the PMC. This way, 
deployment to other scanners will be easier. For this 
project, this will be the goal to achieve in implementation. 

Another challenge of this host computer is that it does 
not have a GPU. Convolutions are known to be a 
computational heavy operation. However, GPUs are 
designed to be able to perform these operations at quicker 
speeds than GPUs. Without a GPU, all predictions will 
have to be made on the host computer’s CPU if the method 
is to be fully implemented on the scanner. 

All training was performed on a system with 2 × 
GeForce RTX 3090s with 24 GB each.  

3.2 Initial Data Augmentations 

From (Svane Olsen & Nguyen-Cong, 2021; Islam, et al., 
2021), it is clear supervised training can generate models 
to predict rigid body transformation parameters. In both 
cases, randomly generated transformations were applied to 
the data to have an image pair of a reference and  
a transformed image that were related via these 
transformation parameters. In (Islam, et al., 2021), angles 
for rotations were generated randomly between the interval 
[−15°, 15°]. A random axis was chosen to perform the 
rotation. Then a random distance between the interval 
[−5, 5] was chosen to  
perform a translation across the coordinate axis. It unclear 
whether the researcher performed only one translation on 
a single axis or one on each axis. In any case, the 
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researchers stated that this was not the focus of their study. 
In (Svane Olsen & Nguyen-Cong, 2021), angles for 
rotations were generated randomly between [−15°, 15°] 
and transformations were randomly generated between 
[−15 voxels, 15 voxels] for each axis. These were applied 
to the datasets using the SimpleITK toolkit (Yaniv, et al., 
2018) in Python.  

One concern with rigid body transformations on images 
is the method of handling edges in the images after a 
transformation. Since the coordinates of an image are 
shifted in the same coordinate space, there will appear 
undefined pixels. The most common way of handling these 
undefined pixels is to set them to zero. For 2D axial MRI 
images, this would not cause too much of an issue unless 
there is heavy noise, as the skull is shown in the center of 
the image. In (Islam, et al., 2021), Otsu thresholding was 
applied to all images. This can effectively reduce the noise 
of anatomical structure images since the distribution of 
voxel intensities is crowded at different intervals, as seen 
in Figure 7. However, for 2D sagittal and coronal MRI 
images, setting the undefined pixels to zero can introduce 
unrealistic edges in the transformed image. It is unclear 
how this is addressed in (Islam, et al., 2021). These issues 
appeared in (Svane Olsen & Nguyen-Cong, 2021) as well. 
The distribution of voxel intensities is not similar to the 
distribution present in structural images, as seen in Figure 
7. Hence, simple thresholding of the voxel intensities was 
made to address noise at the edges. 

Since the goal of this project is to register fat navigators, 
the initial approach to data pre-processing will be the same 
as in (Svane Olsen & Nguyen-Cong, 2021), where a simple 
threshold is applied first for reducing noise. The 
transformation was then applied using the SimpleITK 
toolkit in Python. For each of the 18000 3D fat navigators, 
a random rigid body transformation was applied, using the 
same random intervals as in (Svane Olsen & Nguyen-
Cong, 2021). Transformations were applied to the center 
of the 3D image. Resampling was performed using a B-
spline interpolator. To ensure that the same pre-processing 
steps were applied to the reference image, the same 
functions were applied but with transformation parameters 
equal to zero. In total, 18000 image pairs of a reference and  
transformed images were generated with six single-
precision floats of the rotations in degrees and translation 
in voxels applied on each axis.  

3.3 Initial Neural Network Design 

Earlier studies have shown that CNNs can perform 
registration tasks (Svane Olsen & Nguyen-Cong, 2021; 
Balakrishnan, et al., 2019; Islam, et al., 2021) on medical 
images. Both approaches in (Svane Olsen & Nguyen-
Cong, 2021; Islam, et al., 2021) use supervised training, 
and present CNN designs where an image pair of a 
reference and transformed image were fed into their own 
sequence of layers. Figure 5 shows this separate sequence 
of layers. Due to the appearance of the network, it will be 
named as a Y-branch network. The idea is that for each 
layer in each branch of the network, additional folds are 
created from the data. The results at the end of the branches 
are concatenated. (Islam, et al., 2021) proceeds with 
flattening and then with a FCNN which outputs six 
numbers. In (Svane Olsen & Nguyen-Cong, 2021), the 
concatenated result is pushed through another sequence of 
layers before flattened, and then pushed through a FCNN.  

The sequence of layers mentioned is a 3D convolution 
layer, followed by a batch normalization layer and a ReLU 
layer. In the case where the data size exceeds hardware 
limits such as in (Islam, et al., 2021), 3D max pooling 
layers were added after some ReLU layers to reduce the 
dimensions.  

Figure 7: Histograms from two 3D images. Top is a histogram 
from a publicly available anatomical T1W MRI image and bottom 
is a histogram from a fat navigator used in (Svane Olsen & 
Nguyen-Cong, 2021). 
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A Bayesian approach to hyperparameter optimization 
was initiated, using TensorFlow 2.7, with search 
parameters based on the network designs in the mentioned 
studies. The goal of the hyperparameter search was to 
minimize a loss function on the validation dataset. The loss 
function was defined to be the predefined MSE function in 
the Keras library. A summary of these search parameters 
is found in Table 1. A Y-branch network was searched for.  

The number of convolution layers for a branch was 
varied in steps of two between the interval [4, 20]. For each 
convolution layer that will be generated in a branch, a 
number for kernel size, stride, and filter parameter will be 
varied. This selection will be the same in both branches. 
Kernel size and stride will be varied between [1, 3] in steps 
of one. This number will be applied to each direction of the 
kernel size and stride, making it symmetrical. The number 
of filters for a convolution layer in the branches varied 
between the intervals [2, 1024] in steps of power of twos. 
The selection of activation layers used after every 
convolution layer in the network was varied between using 
a sigmoid, tanh, ReLU, and Leaky ReLU function. Then 
the data is pushed through a batch normalization layer. At 
every fourth convolution layer, a dropout layer was added. 
Max pooling layers were not added due to the already 
relatively low dimensions of the input data. Reduction of 
the dimensions was thought to  

Once each input has been pushed through each layer of 
their respective branches, the outputs are concatenated. 
Another sequence of convolutions and activation layers are 
varied in a similar way as in the branches. However, batch 
normalizations and dropout layers are not added. The 
output of the final convolution layer is flattened before 
being sent into a FCNN. The number of dense layers is 
varied between the interval [1, 5] in steps of 1, and the 
number of neurons each contains varied between the 
interval [2, 512] in steps of the power of two. The last layer 
of the entire network will be a dense layer with six neurons  

 The network will be trained using the SGD 
optimization method, which is pre-defined in Keras. Its 
learning rate is varied between the interval [1 ⋅ 10−1, 1 ⋅
10−5] and the momentum is varied between the interval 
[0, 1 ⋅ 10−1, 1 ⋅ 10−2] in steps of the power of ten. The 
Bayesian hyperparameter optimizer used was the 
predefined optimizer in the Keras library, with the alpha 
and beta parameter set to 1 ⋅ 10−4 and 2.6 respectively. 
20% of the training dataset was used as a validation set, 
while the remaining 80% was used to train networks. 
Networks with no change greater than 1 in validation loss 

Hyperparameter Search Parameter 

Number of convolution layers 
in a branch 

Minimum value:  4 

Maximum value:  20 

Steps:  2 

Symmetrical kernel size for a 
convolution layer in a branch 

Minimum value:  1 

Maximum value:  3 

Steps:  1 

Number of filters for a 
convolution layer in a branch 

Minimum value:  2 

Maximum value:  1024 

Steps:  Power of two 

Symmetrical stride for a 
convolution layer in a branch 

Minimum value:  1 

Maximum value:  3 

Steps:  1 

Dropout rate for dropout 
layers in a branch 

Minimum value:  0.0 

Maximum value:  0.5 

Steps:  0.1 

Activation function for every 
convolution layer in the 
network 

Sigmoid, Tanh, ReLU,  
or Leaky ReLU 

Leaky ReLU scalar parameter 
0.5, 1 ⋅ 10−1, 1 ⋅ 10−2,  

or 1 ⋅ 10−3 

Number of convolution layers 
in concatenated sequence 

Minimum value:  1 

Maximum value:  6 

Steps:  1 

Symmetrical kernel size for a 
convolution layer in 
concatenated sequence 

Minimum value:  1 

Maximum value:  3 

Steps:  1 

Number of filters for a 
convolution layer in 
concatenated sequence 

Minimum value:  2 

Maximum value:  512 

Steps:  Power of two 

Activation function for every 
dense layer in the network 

Sigmoid, Tanh, ReLU,  
or Leaky ReLU 

Number of dense layers in the 
FCNN 

Minimum value:  1 

Maximum value:  5 

Steps:  1 

Number of neurons for a 
dense layer  

Minimum value:  16 

Maximum value:  512 

Steps:  Power of two 

Learning rate of optimizer 1 ⋅ 10−1, 1 ⋅ 10−2, 1 ⋅ 10−3, 

1 ⋅ 10−4, or 1 ⋅ 10−5 

Momentum of optimizer 0, 1 ⋅ 10−1, or 1 ⋅ 10−2 

Table 1: Search parameters for the initial Bayesian hyperparameter optimization 
of a supervised training network design based on (Svane Olsen & Nguyen-Cong, 
2021; Islam, et al., 2021) using the same dataset as in (Svane Olsen & Nguyen-
Cong, 2021) with similar augmentations, as described in section 3.2. 
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after five epochs were aborted in training, and its current 
weights are saved on the online toolkit for visualizations of 
machine learning experiments Weights & Biases (Biewald, 
2020). 

Weights & Biases offers an analysis of parameter 
importance and correlation with respect to a metric. This 
method is inspired by Jeremy Howard, founder of the 
machine learning education platform Fast.ai. A more 
detailed motivation for this type of analysis is available in 
the lecture notes (Howard, et al., 2018). From training 
around 200 models based on the Bayesian hyperparameter 
optimization initiated, the learning rate was the most 
important parameter with respect to the MSE of the 
validation set. A summary of other notable hyperparameter 
importance and correlation is shown in Table 2. This gives 
a more general idea of what type of network design would 
yield the lowest MSE. An increase in the learning rate 
would increase the loss function. This is most likely due to  
Missing the global minimum during the gradient descent. 
The number of convolution layers in each branch was 
positively correlated to the loss function, meaning that 
networks with more convolutions in the branches will 
perform better in predictions than networks with fewer. 
This is likely due to the that important features, or ‘folds’, 
of the initial input data, are extracted the deeper the 
network the data is in. Both filter number parameters 
presented in the table show a positive correlation to the loss 
function. This indicates that it is not the number of feature 
extractions that are important for this task. Rather, the 
correlation leans towards that well-fined filters to create 
relevant ‘folds’ in the data is more important. 

From these 200 models, the model with the lowest 
validation loss was selected for further training and use. A 
summary of the exact network parameters is shown in 
Figure 8. This model was trained for 30 epochs with the 
training dataset. 20% of this dataset was used as a 
validation set. This reached an MSE on the validation set 
of 1.3253772 and the interference time was 40 ms on a 

GeForce RTX 3090 with TensorFlow 2.7, Cuda 11.2, and 
Cudnn 8.1.1.33. The corresponding loss and interference 
time is comparable to the results obtained by (Svane Olsen 
& Nguyen-Cong, 2021), this shifted the focus of the 
project towards deployment of the model onto the 7 T 
scanner. 

3.4 Deployment of Deep Learning Model 

Interference time is the main factor in this deployment 
challenge. Since the consensus is that Python performs 
slower and occupies more memory in several tasks than 
C++ (Zehra, et al., 2020), it was desired to avoid using a 
wrapper to Python to call the DL libraries and generate a 
prediction. Instead, it was desired to do this entirely inside 
the environment of the host computer and the iMOCO 
program, which was in C++. Due to the recent popularity 
of DL, deployment is a frequently discussed topic, and 
there exist several documentation and libraries that tackle 
this challenge. Due to time constraints and personal 
experience, it was not attempted to use the C++ API 
directly. 

3.4.1 Cppflow 

Cppflow is a C++ library that is publicly available on 
GitHub (Izquierdo, 2019), which allows for easy calling of 
TensorFlow’s C++ API without the need to build 
TensorFlow C. This will automatically enable eager 
execution mode for fast training and debugging of 
networks.  

For easy testing of this approach for implementation, a 
Python script will simulate calling the Cppflow program 
for loading a pre-trained model. Then the Python side will 
load an image pair from the test dataset and send it to the 
Cppflow program as an array of single-precision floats in 
a similar way to how the iMOCO program receives its 
input arrays. The Cppflow program points to this array as 

Hyperparameter Importance [1] Correlation [1]

Learning Rate of optimizer 0.217 0.246

Number of convolution layers in a branch 0.146 -0.189

Number of filters for second convolution layer in a branch 0.084 0.111

Momentum of optimizer 0.083 0.271

Symmtrical kernel size for first convolution layer in concatenated sequence 0.052 0.106

Symmtrical kernel size for second convolution layer in a branch 0.038 -0.089  
Table 2: Hyperparameter importance and correlation with respect to the MSE of the validation set from the initial Bayesian hyperparameter optimization. 
This was  
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inputs for making a prediction with the pre-trained model. 
The predictions are sent back to the Python script so that a 
simple timer can be wrapped around this process. 
Predictions of the same input images in a C++ and Python 
environment using the same model were confirmed to be 
the same. 

Building the Cppflow library on the host computer 
would not be as straightforward. The program written 
needed to work in the same C++ environment as in the 
host computer. Up to here, it had been built with C++17 
since the standard release of Cppflow was written for it. 
The majority of the host computer programs had been built 
on C++98 and Visual Studio 2008, meaning that several 
syntax differences needed to be addressed. Due to time 
constraints and experience, syntax changes were made that 
made Cppflow compatible with C++14. Further syntax 
changes would involve figuring out what type of variable 
each auto is creating. This is a time-consuming process. 
The Cppflow changes for C++14 are available on GitHub. 
Focus shifted then to another approach for deployment. 

3.4.2 LibTorch 

LibTorch is the official PyTorch C++ API which is 
available to the public on the PyTorch website. It is not 
clear at first whether this library would be easier to make 
compatible with the host computer C++ environment. 
Nevertheless, the hyperparameters which gave the lowest 
MSE from the Bayesian hyperparameter optimization were 
written entirely in PyTorch to generate a LibTorch 
compatible model file. This model was trained with the 
same training dataset for 30 epochs. The necessary 
PyTorch scripts are available on GitHub. 

During the development of a working LibTorch script, 
it was noted that PyTorch is not compatible with 32-bit 
systems, which the host computer runs on. Hence, another 
shift of focus was made in the approach for deployment. 

3.4.3 keras2c 

The final C deployment library attempted to use for 
implementation was keras2c (Conlin, 2021). In contrast to 
the previous two methods, keras2c avoids the use of the 

Figure 8: Model selected for deployment testing from the initial Bayesian hyperparameter optimization described in section 3.3.  
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C++ libraries distributed by TensorFlow. Instead, core 
functionalities that are required to perform an operation 
with each layer in a network are written entirely in C99, 
using only standard library functions. This would also be 
functional on 32-bit systems but would not implement 
GPU support out-of-the-box. All layer types from Figure 8 
are supported with this library. The workflow of this 
deployment method is illustrated in Figure 9.  

A Python script is used to load a pre-trained model with 
TensorFlow. Then it extracts all the necessary weights, 
parameters, and architecture design to make a prediction. 
These weights and parameters are saved into a separate 
CSV file and the architecture is automatically translated to 
the syntax of keras2c. This translation is a C file that 
describes the functions to call to make a prediction in C. A 
simple test script can call this prediction function and 
measure the interference time. In the keras2c paper 
(Conlin, et al., 2021), differences in interference times with 
respect to model size between TensorFlow and keras2c 
were mentioned, as well as differences in prediction 
results. Hence, different models from the hyperparameter 
optimization in section 3.3 with sizes with comparable 
MSE to the model in Figure 8 had their predictions 
between TensorFlow and keras2c compared, and their 
interference times in keras2c measured.  

The paper (Conlin, et al., 2021) presented results of 
interference times with TensorFlow, TensorFlow Lite (a 
lightweight deployment framework for TensorFlow), and 
keras2c with different types of common layer operations. 
The measured interference times in our study matched 
these trends. The timings increased with increasing model 
size, which can be explained by the larger number of 
operations. For the model in Figure 8, the interference time 
on keras2c was 206.25 s. However, a strange result was 

that the difference in predictions between TensorFlow and 
keras2c on the same input data was dependent on model 
size. For smaller model sizes, this difference increased. It 
is unclear what could be the reason for this result, and this 
would be the ultimate reason to rethink the approach to 
deployment. 

3.4.4 Network Interface 

One Python library which is included in the default 
distribution of Python is socket. Socket enables client and 
server to communicate with transmission control protocol 
(TCP) and user datagram protocol (UDP). These types of 
communications can enable information to be sent between 
computers. Client-Server architecture is a standard type of 
workflow for these communications in a network. In a 
nutshell, the server refers to the computer that offers an 
application service to a client. This server creates a socket, 
that enables a connection and communication through a 
port in the server computer, which goes into a waiting state 
which listens for incoming connection requests from other 
computers, named clients. The main difference between 
TCP and UDP protocols is speed. The reason for this is that 
TCP handles multiple clients in a different way than UDP 
does. UDP handles all incoming data from multiple clients 
through the same socket, whilst TCP assigns a unique 
dedicated socket for each incoming connection (Jones & 
Ohlund, 2002).  

This way that UDP handles multiple connections can 
introduce issues with the ordering of the client data. 
Incoming data from multiple clients can overlap, which 
leads to this issue. Hence, a TCP network type will be used. 

At the 7 T scanner in DRCMR, there is exists a 
computer on the same network as the host computer. This 
computer has a GPU on it and runs Windows 10, and it will 
be referred to as the GPU-computer. A TCP connection 
between the GPU computer and the host computer can be 
established, which can then send the data being sent to the 
iterative algorithm to the GPU computer. This eliminated 
the compatibility issues of DL frameworks that were 
caused by the host computer’s environment. Now the data 
could be processed in a 64-bit Windows 10 environment. 
The only requirement for the server-side was that it sent an 
array of six single-precision floats which describe the 
rigid-body registration in the same way as the iterative 
algorithm would have outputted it. This was done to reduce 
the number of needed changes to the actual PMC program 

Load Pre-Trained 
TensorFlow Model 

Model Weights & 
Parameters 

Network Architecture keras2c Library 

Callable Network 
Prediction Function 

Written in C 
Saved as Loadable File 

Figure 9: Diagram showing the workflow of keras2c. (green) indicates Python 
environment, (red) indicates datafiles, and (brown) indicates C environment. 
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and to increase the robustness and deployment to other 
scanners of this DL approach.  

Due to time constraints, a complete replacement of the 
registration method on the host computer was not made. 
Instead, the PMC program sends the reference and current 
fat-navigator through the TCP connection to the GPU 
computer, then it waits for the six single-precision floats 
before continuing in the program and generating a 
registration with the iterative algorithm. The entire server 
side of the TCP connection on the GPU computer was 
coded in Python for flexibility, and speed was not 
prioritized. In the end, two arrays will exist in the host 
computer’s memory, one being the six floats from the TCP 
connection and the other being the six floats from the 
iterative method. However, the PMC will only continue the 
program with the six floats received from the DL approach. 
The general workflow of the scripts used is illustrated in 
Figure 10. Timings can be measured of the DL approach, 
the DL approach, and the iterative approach combined.  

One clear obstacle now was the matching of the 
coordinate systems. To make sure that the coordinate 
system of the scanner matches the coordinate system of the 
coordinate system used in the data augmentations, as 
described in section 3.2, measurements with a phantom 
and of a subject were performed.  

For the measurements with a phantom, the standard fat 
navigator sequence for the iMOCO program was used. The 
server side made no predictions. Instead, after the images 
have been received, the server sent to the client six single-
precision floats containing a shift, with a magnitude of 2, 
in one of the degrees of freedom for ten fat navigators. This 
shift is the same for each of the ten fat navigators. Another 
set of ten navigators received another shift in another 
degree of freedom. In this way, the PMC will apply these 
transformations to the FOV, since it will be below the 
threshold of 1 mm in the motion score from equation 32. 
Then the way the PMC applies the transformations can be 
assessed based on which direction the phantom is 
transformed across the ten fat navigators. Since no 
predictions are made, the timing for the connection 
workflow can be measured. This was measured to be 
roughly 15 ms on average across all fat navigator 
acquisitions.  

For the measurements with a subject, the same fat 
navigator sequence was used. The server side made no 
predictions, but it sends an array containing six zeros to the 
client, meaning no transformations should be made to the 
current navigator. The images received from the client side 

also saved immediately as binary files on the hard drive of 
the GPU computer, and the corresponding registration 
computed by the iterative method was saved together with 
the binary files. The subject was asked to move their head 
corresponding to one of the degrees of freedom in rigid 
body transformations at the fifth fat navigator acquisition. 
Then the first five navigators will in the reference image 
position, and the last five navigators will be located at 
another position. Six sets of ten navigators were acquired, 
where at each set, the last five navigators had moved in one 
of the degrees of freedom. The fourth and ninth navigator 
of these sets were inputted into the pre-trained model from 
section 3.3. The output predictions are compared to the 
corresponding iterative computations. It the dimensions of 
the model predictions were shifted and inverted to identify 
which order the PMC expected the dimensions to be in the 
six floats array.  

Based on these phantom and subject measurements, no 
major changes to the dimensions needed to be made, other 
than that the PMC expects the slice direction dimension to 
be first, i.e., 7 mm × 5.33 mm × 5.33 mm. Now knowing 
the difference between the coordinate systems, predictions 

Figure 10: Workflow of the TCP communication scripts between 
the host computer (brown) and the GPU computer (green).  
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on the server-side with the initial model were compatible 
with the PMC program by some shift in dimensions. 

The 40 ms interference time measured for the initial 
model used different hardware than what is available on 
the GPU computer. Interference times on the GPU 
computer reached roughly 100 ms on average. This 
realization prompts the interest in designing smaller 
models to reduce computation times. However, even with 
the 100 ms time, this network workflow is comparable to 
the iMOCO method. 

3.5 In-Vivo Testing  

One of the most interesting questions to answer in this 
project is to determine whether models trained in a 
supervised fashion with synthetic transformations can 
perform accurate registration with real data. This was 
tested on the data gathered for the coordinate system 
verification in section 3.4.4. The six parameters from the 
iterative method on the scanner and the initial pre-trained 
model were used to apply transformations on the ninth 

navigator of each set. These were visually inspected. It was 
clear that the iterative method produced correct 
transformations, i.e., that the transformed and reference 
navigators were accurately registered.  Registration with 
the DL parameters did not lead to any acceptable results, 
both visually and numerically by assuming the iterative 
method is a ground truth.  

It was first assumed that this deviation was due to the 
issues mentioned in section 3.2 of the handling noise and 
clipping at edges due to transformations. Hence, a new 
approach to data augmentations was taken. Rotations were 
limited to the interval [−5°, −5°], and translations were 
limited to the interval [−2, 2]. This was considered to be 
realistic magnitudes of motion within the head coil of the 
7 T. Note that the translation interval is denoted in voxels, 
thus the maximum amount of motion this would include is 
14 mm in the slice direction. Thresholding of setting all 
pixels below 10% of the maximum intensity value in the 
navigator was set to zero. 

One realization was that the network architecture could 
be re-designed. Instead of having two branches of 
convolution layers, the subtracted image of the reference 
and current navigator could be inputted into a single branch 
network. This would significantly reduce the number of 
operations in the network but keep information from both 
images in it. 

Based on these new approaches, a new Bayesian 
hyperparameter optimization was initiated which searched 
hyperparameters with this new dataset and architecture that 
optimized an MSE loss function on a validation set. This 
was done in the same way as in section 3.3, but with the 
following differences based on the results from Table 2 and 
intuition. A summary of the hyperparameter search is 
available in Table 3. 

The total number of convolution layers varied between 
the intervals [4, 10] in steps of one. Each convolution layer 
had a kernel size of (4, 4, 2) and a stride of (1, 1, 1). The 
number of filters varied for a convolution layer between 
the intervals [4, 9] in steps of the power of two. The final 
parameter that varied for the convolution layers was the 
activation function. This was varied between using ReLU 
and Leaky ReLU activation function, where the Leaky 
ReLU scalar was set to 0.3.  

After each convolution layer, the output passes a batch 
normalization layer, then a dropout layer. This dropout 
layer dropped 10% of the data. At the third and second last 
convolution layers, the data passed through a 3D Max 
Pooling layer with a pool size of (2, 2, 1). 

Hyperparameter Search Parameter 

Number of convolution layers 
Minimum value:  4 

Maximum value:  10 

Steps:  2 

Number of filters for a 
convolution layer  

Minimum value:  2 

Maximum value:  512 

Steps:  Power of two 

Activation function for every 
convolution layer  

ReLU, or Leaky ReLU 

Number of dense layers in the 
FCNN 

Minimum value:  2 

Maximum value:  6 

Steps:  1 

Number of neurons for a 
dense layer  

Minimum value:  16 

Maximum value:  512 

Steps:  Power of two 

Optimizer choice SGD, or ADAM 

Learning rate of optimizer 1 ⋅ 10−1, 1 ⋅ 10−2, 1 ⋅ 10−3, 

1 ⋅ 10−4, or 1 ⋅ 10−5 
Table 3: Search parameters for the new Bayesian hyperparameter optimization of 
a supervised training network design using a dataset with similar augmentations, 
as described in section 3.5. 
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After the final dropout layer, the data is flattened before 
being sent into an FCNN. The number of dense layers 
varied between the intervals [2, 6] in steps of one. The 
number of units in a dense layer varied between the 
intervals [4, 9] in steps of the power of two. The selection 
of activation function for all dense layers, besides the 
output layer, was the tanh function. 

The optimizer choice varied between using the SGD or 
the ADAM algorithms with varying learning rates between 
the interval [1 ⋅ 10−1, 1 ⋅ 10−5] in steps of the power of ten.  

The model with the lowest MSE was selected for 
further training with the training dataset and 30 epochs. 
This reached a validation loss of 0.2034, which is at least 
a factor 6 less than the loss of the initial Y-branch model. 
Predictions were made on the coordinate system 
verification data. Visually, these predicted transformations 
were more accurate than the Y-branch model. The 
numerical differences in the six transformation parameters 
from the iterative and the new DL model were less than 
with the Y-branch model. However, the magnitude of the 
difference was still too large to consider the DL model as 
an accurate predictor of registration parameters. This still 
leaned towards the conclusion that a more accurate model 
could be achieved from the improvement of the 
architecture and data pre-processing. 
 

3.6 Unsupervised Training 

An unsupervised training approach was attempted with 
the same network-style as in Figure 11. However, the 
outputs of the network had a spatial transformer layer 

(STL) and the six transformation parameters. The idea of 
using an STL comes from previous DL registration studies 
(Jaderberg, et al., 2016). The STL will apply the predicted 
transformation parameters to the input moving image. 
Then the loss function can be adapted to minimize the 
difference between the STL output and the reference 
image. This difference is evaluated by using a normalized 
cross-correlation (NCC). 

Since the use of synthetic motion data can be avoided, 
a new data set was collected from two subjects. Each 
subject was instructed to move their head during an 
examination. Hence, around 2000 image pairs were 
collected. Each pair consisted of a moving image and a 
reference image.   

In a similar way as in the supervised training 
approaches, the network was trained on these 2000 image 
pairs with the goal of minimizing the NCC in the data set. 
The trained network was used to pass the entire data set 
again through the network and evaluate the outputs NCC. 
Additionally, the data set used to determine the scanner 
coordinate system was also passed through the network 
and the outputs NCC was evaluated. 
 
 
 
 
 
 
 
 
 
 

Figure 11: Model selected from the second Bayesian hyperparameter optimization described in 3.5. 
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4 Results 

As mentioned in the methods section, a DL pipeline for 
image registration was embedded on the Philips 7 T 
scanner at DRCMR. Different approaches to this were 
investigated and the findings relevant to the conclusions 
made are presented here. Development of a DL network 
that accurately registers fat navigators was investigated. 
The results from the development stages are presented here 
as well. 

4.1 Initial Supervised Training Network 
Design 

The initial supervised network architecture based on 
previous studies designs was hyperparameter optimized 
using a Bayesian approach to the initial data augmentations 
dataset with the goal of minimizing the MSE of the 
validation data set. Around 200 models were trained with 
this search, as summarized in Table 1. Figure 12 shows the 
validation loss calculated at each epoch. Only models 
reaching validation losses below 5 are displayed.  

The model design that reached the lowest loss was used 
and trained further with 30 epochs on the same training 
data set. The validation loss calculated at each epoch on 
this training is shown in Figure 13. This model will be 
named as the supervised trained Y-branch model (SYM). 
The model predicted transformation parameters for the 
image pairs in the testing data set. The difference between 
these predictions and the actual transformations of the 
testing data set is plotted as a histogram in Figure 14. A 
random image pair in the testing dataset is used to visualize 
the DL registration. These results are shown in Figure 15. 

Figure 12: MSE on the validation dataset versus epochs of models trained in 
the first Bayesian hyperparameter optimization. 

Figure 13: The model which reached the lowest MSE in Figure 12 was used 
for training with 30 epochs. The results from the training for each epoch is 
presented in the plot. 
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4.2 Deployment of Deep Learning Model 

The interference time of the SYM with Cppflow and 
keras2c was tested. Table 4 shows these results. The 
dependence of interference time in keras2c with the 

number of parameters in a model was investigated. The 
SYM and two other models which reach similar MSE with 
the validation data set were used to make a prediction on 
the same input data using keras2c. This result is presented 
in Figure 15. 

Figure 14: Histogram of differences in predictions made on the testing dataset with the model trained in Figure 12 and the actual transformation parameters.  

Figure 15: Registration example of one of the image pairs in the testing data set of the first data augmentations. The first row of slices in the coronal, 
sagittal and transversal planes show the raw input into the SYM, meaning no registration performed. Green shows the randomly generated motion image 
and red shows the image without any motion (i.e., reference). The yellow colors indicate where the two images overlap, due to additive blending. The 
second row of slices show the same planes, but the green image now shows the suggested transformation by the SYM of the motion image for registration. 
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Predictions made with SYM on Cppflow were the same 
as in TensorFlow using the same input data. However, this  

was not the case with keras2c. The same models used 
to determine the interference time dependence were used 

to calculate the absolute difference in predictions. The 
maximum difference is shown in Figure 16 where it is 
plotted against of the number of parameters in the model. 

The network interface approach for deployment was 
benchmarked. The timer on the host computer side 
measured the TCP communication speed which includes 
sending roughly 4.85 MB. This was found to be around 20 
ms. Due to the hardware on the GPU computer, the 
interference time was twice as long as measured on the 
offline testing environment. 

In combination of determining the coordinate system of 
the data the PMC program uses, DL registration applied 
offline was compared to the scanners registration of known 
motion directions. Meaning, data of actual motion. The 
difference between the transformation parameters for 
registration of an image determined by the scanner and the 
SYM is shown in Table 5. 

4.3 Improvements to Supervised Training 
Network Design 

As it was roughly twice as long to make a prediction with 
the SYM model on the GPU computer, it was convenient 
to discover that the computational cost of the initial 
network design could almost be halved by inputting the 
difference between the volume pairs into the model instead 
of a Y-branch approach. This was confirmed from the 
models trained in the second Bayesian hyperparameter 
search. This search trained around 200 models on the 
second data augmentations (i.e., the data set with less 
extreme transformations). Figure 18 shows the validation 
loss calculated at each epoch for 20 models which reached 
the lowest loss.  

As with the SYM, the model reaching the lowest 
validation loss was trained further for 100 epochs on the 
training data set, and the validation loss calculated at each 
epoch is shown in Figure 19. This trained model was used 
to predict transformation parameters for registration of an 
image pair for an entire test data set, as with the SYM. A 
histogram of the differences in transformation parameters 
is shown in Figure 20.  

Transformation parameters for registering the data set 
used for determining the coordinate system in the PMC 
program were calculated using this new subtraction style 
model. Then, in the same way as with the SYM, the 
difference is presented in Table 6. An example of the 
extreme motion registration is visualized in Figure 21. 

 

Framework Interference Time [s] 
Python TensorFlow CPU ~10 
Python TensorFlow GPU ~0.040 
C++ Cppflow ~8 
C keras2c ~200 
Table 4: Interference time of SYM using different DL deployment 
frameworks with the same input data. 

Figure 17: The absolute maximum difference between TensorFlow 
models predictions made on TensorFlow(Python) and keras2c(C) using 
the same input data. 

Figure 16: Three trained DL TensorFlow models with different number of 
parameters used to make a prediction on keras2c with the same input data. 
The interference time is plotted.  
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Figure 20: Histogram of differences in predictions made on the testing dataset with the model trained in Figure 20 and the actual transformation parameters. 
 

Figure 18: MSE on the validation dataset versus epochs of models trained 
in the second Bayesian hyperparameter optimization of the subtraction 
model. 

Table 5: Difference in transformation parameters for registration of image pairs with known motion directions from the scanner and the SYM. Green values indicate 
positive values and red values indicate negative values. Golden bars indicate the relative magnitude of the difference between the transformation parameters in a single 
degree of freedom.   

Motion Registration x rotation [°] y rotation [°] z rotation [°] x translation [mm] y translation [mm] z translation [mm]
Deep Learning -0.3058 0.6716 0.6166 0.8891 -4.7260 9.6780

Scanner -0.9611 -0.0620 -0.4982 0.9349 -0.2397 4.6859
Difference 0.655 0.734 1.115 0.046 4.486 4.992

Deep Learning -2.4686 1.4410 3.9160 9.5846 10.0013 1.3631
Scanner 0.1701 -0.4008 -0.2243 1.2409 5.2418 1.8220

Difference 2.639 1.842 4.140 8.344 4.760 0.459
Deep Learning -3.2371 0.4992 3.7185 11.5507 11.6363 5.4866

Scanner 2.1561 -0.5233 -1.6450 1.6396 7.5922 2.9342
Difference 5.393 1.022 5.363 9.911 4.044 2.552

Deep Learning 1.4212 0.7230 0.3191 7.0169 -2.6217 -2.2353
Scanner 0.0592 -1.3242 -0.4443 2.3815 -0.6369 0.4915

Difference 1.362 2.047 0.763 4.635 1.985 2.727
Deep Learning 0.1554 -2.0589 3.0236 5.1428 3.4053 8.9064

Scanner 3.4745 -0.7812 0.9748 0.4802 2.6974 1.1133
Difference 3.319 1.278 2.049 4.663 0.708 7.793

Deep Learning 1.7253 13.2859 2.6475 12.0396 -1.4133 -17.4395
Scanner -0.0296 4.9990 -0.2260 7.2105 -0.7089 -3.2666

Difference 1.755 8.287 2.874 4.829 0.704 14.173
Deep Learning -0.0683 2.3281 1.2897 3.5457 -5.1324 -0.9067

Scanner -1.0445 1.1430 -3.6544 0.5592 -3.2164 -0.8386
Difference 0.976 1.185 4.944 2.987 1.916 0.068

Looking Right

Right Motion

Forward Motion

Looking up

Anti-Clockwise 

rotation

Left to Right 

(extreme motion)

Head Towards 

Feet

Figure 19: The model which reached the lowest MSE in Figure 18Figure 
12 was used for training with 100 epochs. The results from the training for 
each epoch is presented in the plot. 
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Motion Registration x rotation [°] y rotation [°] z rotation [°] x translation [mm] y translation [mm] z translation [mm]
Deep Learning 0.3084 -0.4953 -0.1798 0.6272 0.0288 3.5858

Scanner -0.9611 -0.0620 -0.4982 0.9349 -0.2397 4.6859
Difference 1.269 0.433 0.318 0.308 0.269 1.100

Deep Learning -0.7413 0.0780 2.2470 2.4410 5.6787 1.2223
Scanner 0.1701 -0.4008 -0.2243 1.2409 5.2418 1.8220

Difference 0.911 0.479 2.471 1.200 0.437 0.600
Deep Learning -0.8891 0.0762 1.7563 4.7033 7.2104 2.5639

Scanner 2.1561 -0.5233 -1.6450 1.6396 7.5922 2.9342
Difference 3.045 0.600 3.401 3.064 0.382 0.370

Deep Learning -0.3892 -0.3071 0.3082 2.9211 1.2215 -0.1875
Scanner 0.0592 -1.3242 -0.4443 2.3815 -0.6369 0.4915

Difference 0.448 1.017 0.752 0.540 1.858 0.679
Deep Learning 0.5610 0.1060 1.9804 3.7438 3.8187 2.0148

Scanner 3.4745 -0.7812 0.9748 0.4802 2.6974 1.1133
Difference 2.913 0.887 1.006 3.264 1.121 0.902

Deep Learning 0.0412 1.6048 -1.3230 1.0610 -1.1035 0.7835
Scanner -0.0296 4.9990 -0.2260 7.2105 -0.7089 -3.2666

Difference 0.071 3.394 1.097 6.149 0.395 4.050
Deep Learning -1.5180 0.6999 -1.1210 0.7943 -0.3918 0.6283

Scanner -1.0445 1.1430 -3.6544 0.5592 -3.2164 -0.8386
Difference 0.474 0.443 2.533 0.235 2.825 1.467

Forward Motion

Anti-Clockwise 

rotation

Right Motion

Left to Right 

(extreme motion)

Head Towards 

Feet

Looking Right

Looking up

Table 6: Difference in transformation parameters for registration of image pairs with known motion directions from the scanner and the subtraction style model. Green 
values indicate positive values and red values indicate negative values. Golden bars indicate the relative magnitude of the difference between the transformation 
parameters in a single degree of freedom.   

Figure 21: Registration example of the “Left to Right” image pair of the coordinate system determination data set. The first row of slices in the coronal, 
sagittal and transversal planes show the registration made by the scanner. The second row shows the suggested registration by the subtraction style 
model. Green shows the transformed image by the respective registration method. The yellow colors indicate where the two images overlap, due to 
additive blending. 
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4.4 Unsupervised Learning Network 
Design 

With the goal of minimizing a NCC between a registration 
of image pairs, a subtraction model was searched for using 
a random search hyperparameter optimization approach. 
Around 50 models were trained in this search. Figure 22 
shows the NCC at each epoch of 20 of these models which 
reached the lowest NCC. 

The model reaching the lowest NCC was used for 
further benchmarking. First, the entire data set used to train 
the model was passed through the trained model to 
determine the distribution of NCCs. The same input data 
was passed through the FreeSurfer rigid body registration 
program. The results of this are presented in Figure 23. To 
avoid bias, the small data set used to determine the 
coordinate system of the scanner was also passed through 
the same registration methods. These results are presented 
in Figure 24. 

 
 
 
 
 
 
 
 
 
 
 

Figure 22: NCC on 200 random images versus epochs of models trained in 
the second random search hyperparameter optimization of the subtraction 
model. 
 

Figure 23: Box plot of NCC distribution of (left) input data, (center) output registration from FreeSurfer, and (right) output registration from DL. Data is the same 
training data used for the training the model. 
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Figure 24: Box plot of NCC distribution of (left) input data, (center-left) output registration from FreeSurfer, (center-right) output registration from DL, and (right) 
output registration from the scanner. Data is the coordinate system determination data. There are less data points in the scanner distribution due to missing 
information of the scanners transformation parameters for registration for 80% of the data set.  
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5 Discussion

The results from this thesis show that DL can accurately 
perform rigid-body registration of fat navigators obtained 
at 7 T to some extent. The handling of the data and the type 
of motion data used for training are shown to be important 
in generating a feasible network for registration. This is a 
consensus in DL, that data plays a major role in training a 
feasible network. Different approaches to manipulation of 
the input data in supervised training were investigated, as 
well as training on actual motion data in an unsupervised 
fashion. Furthermore, the interference times of performing 
DL registration of fat navigators outrun the current 
iterative method used in iMOCO. Therefore, it is possible 
to replace the iterative method in iMOCO with a DL 
approach with respect to speed, however several general 
DL issues need to be addressed first to be able to count on 
the registrations made from the network. 

From following approaches that recent DL registration 
in MRI researchers have used (Svane Olsen & Nguyen-
Cong, 2021; Islam, et al., 2021), a supervised trained 
network was obtained. From the initial hyperparameter 
search and data manipulations, Figure 12 shows that out of 
around 200 models, the network reaching the lowest 
validation loss was used for further training. It would be 
interesting to investigate further hyperparameter 
optimizations. However, the validation loss reached by the 
selected model was comparable to the losses obtained in 
the previous study which had the same initial dataset 
(Svane Olsen & Nguyen-Cong, 2021), and due to time 
constraints, focus on deployment of this network onto the 
scanner became a priority. Figure 13 shows this network 
trained and that it reaches convergence within in the 
number of epochs used. The distribution of errors in Figure 
14 agreed with the results obtained in the previous study 

(Svane Olsen & Nguyen-Cong, 2021). However, visually 
observing the registrations as in Figure 15 shows 
unacceptable results of registration to be expected in the 
iMOCO workflow.  

The conclusion from this poor result was that the data 
manipulations to generate fat navigators with motion were 
too extreme. Additionally, speed of this DL registration 
method was an important parameter to investigate. 
Reconsiderations of the suggested network design were 
made, and the SYM model reached similar validation 
losses with the same input data as the Y-branch model did. 
This design choice almost halved the interference time 
without the cost of accuracy.  

After reducing the distribution of translations and 
rotations, the error distribution was reduced by almost a 
factor four in translations as shown in Figure 20. This 
showed that the generation of motion data played a role in 
the accuracy of the DL registration predictions. An 
interesting result is that the distribution of errors in 
rotations did not decrease at the same grade as in 
translations. This shows that the network had a hard time 
learning rotation and that only changes to the degree of 
transformations in the training data was not enough to 
improve this ability. The results from both Table 5 and 
Table 6 support this conclusion. When isolating one 
rotation degree of freedom, differences between the 
iMOCO program and DL network rigid body registration 
parameters were larger than when isolating one translation 
degree of freedom. To confirm the accuracy of the 
registration from iMOCO, registration pairs were visually 
inspected as well as the NCC for seven fat navigator pairs 
is presented in Figure 24. Both comparisons support the 
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use of the parameters of the scanner as a comparable 
registration.        

Still, registration differences after the improvements to 
the supervised training data generation were not acceptable 
for replacing the iterative method in iMOCO. Reductions 
in differences were significant after the change in data 
generation, as seen in Table 6. Yet, the differences could 
reach 4 mm and 3.3°. These motions presented in the table 
were simulated to be as realistic as possible. Therefore, 
when the iMOCO program detects motions of around  7.5 
mm or 4°, this means that the registration by the DL 
method can be expected to be at least 50% incorrect, which 
wouldn’t be feasible to use in iMOCO.  

One limitation not completely addressed in the 
supervised training approach was the clipping that arises 
from the transformations applied to the fat navigators. This 
was partially addressed by the windowing applied to the 
images before inputted into the network. This limited the 
effect that noise had on the clipping. Undefined voxels that 
appeared due to clipping in the volume were assigned to be 
zero. Hence, the noise present outside the skull did exist in 
the zero-filled areas. Removal of the noise was successful 
to some extent by visually testing different window 
settings on a few selected fat navigators. Simulating this 
noise was not attempted in this thesis. It would be 
interesting to attempt this to improve the accuracy of the 
registration network. Since by eliminating noise in the 
volumes with windowing, important information for NN 
can be lost.  

Other DL registration methods for MRI involve some 
preprocessing steps for data inputted into the network and 
have shown to produce accurate registrations of more 
complex geometries compared to fat navigators. One 
recent study used these types preprocessing steps as well 
as simulating MRI artifacts on images taken with a MR 
scanner. Registration networks trained on this data could 
match the accuracy of state-of-the-art registration methods 
in MRI (Hoffmann, et al., 2021).  

Setting a larger FOV for when acquiring fat navigators 
was also considered in this thesis. However, the first 
dataset was assumed to be enough at first to train an 
accurate registration network. The idea of an increase in 
FOV was to make it easier to reduce the effects of the 
clipping when applying transformations to the volumes. 
The issue will still exist in the edges of the volume towards 
the body of the subject. Another potential solution would 
be to replace the undefined voxels with the actual volume 
flipped along that edge. This would hopefully lead to more 

accurate registrations on real motion data, since the DL 
network would be trained on data set which lacked 
unrealistic motion volumes. Other solutions could involve 
reducing the FOV of the training data set after 
transformations has been applied. Then use the DL 
network to acquire transformation parameters which 
register a smaller FOV of actual acquired motion data. This 
will lower the chance that the network will hunt for 
clipping artifacts in actual motion data. Thus, improve the 
accuracy of the DL registration. However, this will also 
reduce the amount of information fed into the network 
which could play a role in accurate DL registration. The 
significance of the using the entire FOV in comparison to 
using a smaller FOV was not investigated in this thesis. 

Additionally, the supervised training data set consisted 
of each individual fat navigator volume being assigned a 
random transformation once to create a pair. Other studies 
(Islam, et al., 2021) have shown that a larger number of 
randomly assigned transformations to a single image can 
have a positive impact on the accuracy of DL rigid body 
registration. By which, the data set increases in size, and 
potentially a sufficient number of synthetic motion 
volumes are generated for the network to learn accurate 
registration. 

Up to this point, only the supervised training approach 
has been discussed. In principle, common data set issues in 
DL have emerged in this project with this approach. The 
reasoning for this approach was to acquire some sort of 
ground truth in the predictions that we wanted the DL 
network to make based on some image pair with motion 
and without. Defining a patient’s motion and linking it to 
some acquired fat navigator is a difficult task to assure that 
it is accurate. One method could be to acquire data on 
patient’s head position with lasers or pressure plates. 
However, the motion determined here might not accurately 
represent the motion of the brain. The accuracy of these 
types of methods can also limit the validity of these motion 
measurements. In cases where ground truth data is 
unobtainable for supervised training, it is common to 
consider an unsupervised approach.  

Based on previous studies (Balakrishnan, et al., 2019; 
Hoffmann, et al., 2021) approach to MRI registration using 
DL, an unsupervised training approach was attempted to 
solve the lack of ground truth data issue. A network similar 
to the SYM was used, with the addition of a spatial 
transformer layer (Jaderberg, et al., 2016) at the end. While 
being trained on several image pairs only acquired from 
two subjects, the network was still able to improve the 
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correlation of a data set of image pairs from a completely 
new and unseen subject, as seen in Figure 24. However, 
FreeSurfer’s rigid body registration still outperformed the 
DL registration when comparing the change in correlation.  

One assumption that needs to be taken into 
consideration is whether NCC is a good indicator of 
registration efficiency. The previous studies 
(Balakrishnan, et al., 2019; Hoffmann, et al., 2021) used 
NCC as their loss function when training their networks. 
However, these studies performed deformable registration 
to MR images with different contrasts. Since the aim of this 
thesis was to register exclusively fat navigators to each 
other, a simpler loss function could potentially have been 
used, such as an MSE. This was rapidly tested when 
designing the unsupervised network. It was quickly 
concluded that the NCC would result in better 
performance. This conclusion could be flawed due to other 
limitations of this unsupervised training approach. 
Furthermore, observing a random registration visually 
from using the DL method or an iterative method as in 
Figure 21, it can be assumed that the magnitude of NCC 
achieved by the iterative methods corresponds to 
acceptable registration since the amount of additive 
blending in the iterative method registration dominates and 
is greater than in the DL registration. This trend was 
observed in all slices of the volumes.  

One limitation of the unsupervised training approach is 
that fat navigators in the data set were acquired from only 
two subjects. The low number of subjects was due to the 
time constraints in this project. Typical data set sizes used 
for training DL registration networks are around 400 
subjects (LaMontagne, et al., 2019). With data sets, this 
large, DL registration networks have been trained to match 
state-of-the-art registration programs in MRI (Hoopes, et 
al., 2021). The limited number of subjects in this thesis 
does impair the generalizability of the network to new 
subjects. This can be seen in the differences of NCC 
between the training data set and a new subject data set, as 
seen in Figure 23 and Figure 24 respectively. For the 
unseen subject, the network performed worse than on the 
training data set. This is generally an expected result in 
machine learning, and it could be seen in Figure 13 and 
Figure 19 for the supervised training approach as well. One 
notable result is that even the iterative methods performed 
worse on this unseen subject data set, as seen in Figure 24. 
This could indicate that this specific data set was difficult 
to perform accurate registration for. Furthermore, the 
performance difference between the iterative and DL 

registration methods were similar between two data sets. 
The unseen data set was initially used to determine how the 
scanner defined its coordinate system. Hence, it contained 
extreme subject motion in each of the six degrees of 
freedom. If this data set contained difficult registration 
problems, then a part of the decreased performance of the 
DL registration can be associated to this. Assuming this, 
then the DL registration performed adequately well for 
only being trained two subjects. The need for a relatively 
large data set might not be needed to tackle this machine 
learning problem. This could be due to the somewhat 
simpler geometry of fat navigators that desired to be 
registered in comparison to other DL registration studies 
where T1W volumes are registered to DWI volumes.  

As previously mentioned, a smaller FOV might have 
been a solution to the clipping artifacts arising from the 
synthetic motion volumes generation in the supervised 
training approach. In an attempt to improve the accuracy 
of the unsupervised training approach, the calculation of 
the NCC was restricted to an inner cube of the original 
FOV. Specifically, three voxels inwards from each edge of 
the volume became the new volume to be considered in the 
NCC. A quick comparison of accuracy by doing this 
showed positive results. This could indicate that the 
relevant information for DL registration of fat navigators 
is contained in the smaller volume. 

The spatial temporal profile of MRI images has shown 
to be compressible. Thus, hinting that the dimensionality 
of this registration problem could be reduced. One possible 
solution could be to describe the image at a certain time 
point with a low rank approximation or another compact 
representation. By predetermining a reasonable 
dimensionality reduction of this problem in before-hand 
would decrease the number of parameters. This would 
potentially speed up the iterative method, but also the 
generalizability of trained DL models. 
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6 Conclusion

Overall, the feasibility of replacing the iterative 
registration method in the iMOCO framework with a DL 
registration method is poor. A method for testing DL 
registration network's performance in conjunction with 
iMOCO was successfully implemented onto the Philips 7 
T scanner at DRCMR.  Creating an accurate DL 
registration network is heavily dependent on the data set 
used. For supervised trained networks, the use of less 
extreme random transformations in the generation of 
training data improved registration accuracy significantly. 
For unsupervised trained networks, it is possible to 
generate accurate DL registration networks with a limited 
number of subjects. This also showed that the ground truth 
of transformations for registration is not essential. 

In conclusion, more data acquisition and research are 
needed to reach a feasible network. The performance of DL 
registration networks generated in this thesis are inferior to 
the current iterative method in iMOCO. 
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