
 Master of Science
Thesis

 HT2021

Medical Radiation Physics, Lund
Faculty of Science

Lund University
www.msf.lu.se

Using CNNs to Predict Rigid Body
Transformation Parameters Which

Register Fat Navigators to Apply
Prospective Motion Correction

in MRI at 7 T

Thomas Olausson

Supervisors
Linda Knutsson, Vincent O. Boer, Jan Ole Pedersen, Esben

Thade Petersen, Mads Andersen

This work has been performed at the
Danish Research Centre for Magnetic Resonance

Thomas Olausson, Master of Science dissertation: Using CNNs to Predict Rigid Body
Transformation Parameters Which Register Fat Navigators to Apply Prospective Motion
Correction on MRI Sequences at 7 T. October 2022

ii

To the students in the medical physics program at Lund University, who are the ones most likely to read this.

Acknowledgments

I wish to show my appreciation to all my supervisors who have guided me throughout the entirety of this project and
made this work possible.

Additionally, the following people deserve my gratitude

• Torkil Svensgaard & Ruben Vestergaard – for their great help and tolerance for all my IT related questions.
• Simon Kevin – for the crash-course in C++.
• Simon Yamazaki Jensen & Oula Puonti – for all the interesting discussions.
• Linda Knutsson – for the constant support and faith in me.
• Fang Cao – for the crash-course in networking interface.
• Jan Ole Pedersen – for taking on this project, even though this wasn’t assigned to him. A great deal of progress

wouldn’t have been possible without his efforts.
• Of course, to my parents – for their never-ending support in stuff outside this project.

Lund,
February 13, 2022

Thomas Olausson

v

Popularized summary in Swedish

Djupinlärningsbaserad bildregistrering för rörelsekorrigering
i MRI

MRI är en icke-invasiv diagnostisk procedur som kan ge radiologer väsentlig strukturell eller funktionell information om
organ. Ungefär som vid fotografering kan rörelse under förvärvet öka risken för dålig bildkvalitet. Medicinska
bildbehandlingsmetoder är inte immuna mot detta problem. Bildtagningstiden varierar beroende på de fysikprinciper som
utnyttjas för att ta bilden. MRI är känt för sina relativt långa avbildningstider, vilket kräver att patienter ligger stilla i
skannern. Anledningen till detta är att MRI utnyttjar signalen som erhålls från protonerna av vattenmolekyler i patientens
kropp via Faradays lag. Olika spatiala frekvenser appliceras på området av intresse. Därför kommer spatiala frekvenser
som representerar den volym bäst kommer att producera mest signal. För att få denna signal måste protonerna exciteras
till ett högre energitillstånd. Med tiden kommer dessa protoner att återgå till grundtillståndet. En annan faktor till de
relativt långa insamlingstiderna är skapandet av de spatiala frekvenser som krävs för att erhålla en acceptabel bild.

Bilder tagna med MR-skanner som är av dålig diagnostisk kvalitet kan kräva att patienter kallas tillbaka till kliniken och
undersöks på nytt. Enligt några nyare studier är denna risk för en omundersökning på grund av rörelse under
bildinsamling minst 16 %. Denna fråga är framträdande vid pediatriska undersökningar. En vanlig lösning som används
för detta problem är att använda lugnande medel eller anestesimedel. Men användningen av dessa typer av droger hos
barn är ett omtvistat ämne på grund av dess potentiella negativa hälsoeffekter. Därför finns det en önskan att utveckla
MRI-tekniker för att korrigera för rörelse under en skanning.

Ett allmänt sätt att korrigera för rörelse är genom att skaffa information om rörelsen under en undersökning och tillämpa
någon sorts korrigering i realtid. Detta har vissa MRI-forskare visat i ett program som de kallade iMOCO. Tanken är att
bestämma patientens position i skannern i realtid genom att få en snabb lågupplöst bild av fettet som omger skallen. Två
bilder vid olika tidpunkter skjuts igenom en iterativ lösare som försöker få bilderna att helt överlappa med
bildtransformationer. Beskrivningen av patienternas rörelser mellan dessa två tidpunkter definieras som dessa
transformationer. Sedan används en rörelsepoäng för att bedöma om data som samlats in mellan dessa två tidpunkter är
potentiellt värdelösa för god bildkvalitet och behöver krävas, eller så kan avbildningsparametrarna omdefinieras till den
nya patientens position.

För att ett sådant system ska fungera i en MRI-pipeline måste det vara snabbt. Specifikt i storleksordningen 100-tals
millisekunder. Ett exploderande forskningsfält är djupinlärning. Potentialen med att noggrant lära in mönster av problem
för att tilldela vikter till neuroner som kan utföra en tidvis beräkning har visat sig vara möjlig med djupinlärning. Deep
learning-forskare har skapat flera olika typer av nätverk som har kunnat överlappa medicinska bilder. En potentiell fördel
för iMOCO-programmet skulle vara att ersätta den iterativa lösaren med ett nätverk för djupinlärning. Man tror att detta
nätverk skulle kunna utföra bildregistreringen inom en fast tidsperiod, vilket är en fördel jämfört med den iterativa lösaren
eftersom det tar en obestämd tid att nå en acceptabel lösning för ett specifikt bildpar. En annan potentiell fördel är att
detta nätverk kan utföra en korrekt registrering på kortare tid.

Huvudsyftet med detta examensarbete var att utveckla ett sådant nätverk och implementera det på en mjukvara för MR-
skannrar för att testa det in vivo. Båda målen uppnåddes framgångsrikt, men nätverkets noggrannhet vid registrering av
bilder var dålig i jämförelse med iterativa lösare. Olika tillvägagångssätt för att träna ett nätverk undersöktes, och
resultaten visade att indata spelade en stor roll för uppgifternas noggrannhet. Ej övervakade tillvägagångssätt för träning
överträffade de övervakade träningsmetoderna, troligen på grund av utbildningen på verkliga data i den ej övervakade
metoden. Den här avhandlingen visade att det krävs mer tänkande för att träna ett nätverk för att utveckla ett genomförbart
nätverk som kan ersätta den iterativa lösaren i iMOCO-programmet.

vii

viii

Abstract
The framework for a fat navigator-based prospective motion correction (PMC) is already embedded on the 7 T scanner
at Hvidovre hospital. This framework is dubbed iMOCO, and it tackles the motion artifact problem by registering fat
navigators after each k-space readout train to some reference fat navigator taken at the start of the scan with rigid body
transformation parameters. A grade of motion is determined by the magnitude of the registration. Based on the severity
of the grade of motion, reacquisition of potentially motion corrupted lines in k-space can be performed or updates to the
FOV can be made. This will reduce the risk for motion artifacts in the image for diagnosis. The registration method in
iMOCO uses an iterative approach, which reaches acceptable solutions around 250 ms. Recently, deep learning (DL) has
been used for several image registration tasks. The feasibility of replacing the current registration method in iMOCO
with a DL network was investigated in this thesis.

The fundamental type of DL network used was convolution neural networks (CNN). The inputs into the network would
be the image pair sent to the iMOCO program, which would be a reference fat navigator and a motion fat navigator. The
output will be six values representing the rigid body transformations to register the two navigators. Two main design
choices of CNNs were compared. These designs differed from how the input data was handled. One design extracted
features of each image independently in different branches of a network. The other design choice had the image pair
subtracted before inputted into a single branch in a network. The design choices were compared for interference speed
and accuracy. The single branch design was trained once in a supervised manner and once in an unsupervised manner.
The two-branch design was trained only in a supervised manner. The data set used for the supervised training was 18000
fat navigators from 100 subjects with synthetic motion fat navigators were created using rigid body transformations. The
data set used for the unsupervised training was 2200 fat navigator pairs from 2 subjects. Embedding a DL network to the
iMOCO program was done by network interface using a TCP communication between the host computer of the scanner
and a computer with a GPU. This connection costs 15 ms for sending the necessary data for registration. The networks
trained in a supervised manner were tested on data collected in vivo, and a comparison between the iMOCO registration
and DL network registration was made by a simple difference between the two. The networks trained in an unsupervised
manner were tested on the same data but compared with a normalized cross-correlation (NCC) metric before and after
different registration methods.

With the initial data augmentations, the two-branch network and the one branch network reached a similar mean square
error (MSE) on the validation data set after training. Using the one branch network at least halved the interference time
to around 100 ms, then when using the two-branch network. After reducing the magnitude of transformations in the
synthetic motion data, the difference between the registrations with DL and iMOCO decreased with the larger magnitudes
of transformations. The unsupervised trained network did not outperform FreeSurfer’s rigid body registration tool on
unseen data. The NCC median FreeSurfer reached was while the DL network reached (without any applied registration).
This was confirmed visually as well.

This thesis shows the importance of data in training neural networks. More realistic transformations in the generation of
synthetic motion showed to have halved differences between more robust registration methods. There are practical
limitations with the generation of synthetic motion data as well. An unsupervised trained network that used in vivo
motion data showed to be able to learn to perform registration. However, the relatively small data set size makes it
difficult to push the model trained in this thesis into deployment. The data set issues mentioned must be addressed before
a feasible DL registration network can replace the current registration method in iMOCO.

ix

x

Table of Contents

Acknowledgments .. iv
Table of Contents .. x
1 Introduction ... 1

1.1 Background ... 1
1.2 Aim ... 2
1.3 Goal and Purpose .. 2

2 Theory ... 3
2.1 Essential Principles of Magnetic Resonance Imaging 3

2.1.1 General Spin Physics .. 3
2.1.2 Spatial Encoding ... 4
2.1.3 Relaxation Theory ... 4
2.1.4 Ultra-High Field Magnetic Resonance Imaging 5

2.2 Neural Networks ... 5
2.2.1 Activation Functions ... 6
2.2.2 Optimization and Training .. 7
2.2.3 Convolutional Neural Networks ... 9
2.2.4 Learning Strategies ... 10
2.2.5 Deep Learning Frameworks.. 10
2.2.6 Hyperparameter Tuning .. 10

2.3 Geometric Transformations .. 10
2.3.1 Rigid-Body Transformation .. 10
2.3.2 Affine Transformation .. 11

2.4 Image Registration .. 11
2.4.1 Deep Learning Methods .. 12

2.5 Motion Correction .. 13
2.5.1 Prospective Motion Correction ... 13

3 Method .. 17

xi

3.1 Datasets and Environment .. 17
3.2 Initial Data Augmentations ... 17
3.3 Initial Neural Network Design ... 18
3.4 Deployment of Deep Learning Model .. 20

3.4.1 Cppflow ... 20
3.4.2 LibTorch ... 21
3.4.3 keras2c .. 21
3.4.4 Network Interface ... 22

3.5 In-Vivo Testing ... 24
3.6 Unsupervised Training .. 25

4 Results ... 27
4.1 Initial Supervised Training Network Design .. 27
4.2 Deployment of Deep Learning Model .. 28
4.3 Improvements to Supervised Training Network Design 29
4.4 Unsupervised Learning Network Design ... 32

5 Discussion ... 35
6 Conclusion .. 39
7 References ... 41

xii

1

1 Introduction

1.1 Background

Patient motion artifacts in magnetic resonance (MR)
examinations are the most common reason for patients to
undergo re-examinations resulting in an increased cost for
the healthcare (Afacan, et al., 2016). The origin of motion
artifacts is primarily due to the relatively long data
acquisition in magnetic resonance imaging (MRI). This
has prompted the development of shortening acquisition
durations such as parallel imaging, compressed sensing,
and echo-planar imaging (EPI) (Usman, et al., 2020).
Despite the recent advancements, motion still poses a
problem since the duration of the acquisition is not short
enough to not generate artifacts.

The results are images with worsened diagnostic
quality, which requires the healthcare to reschedule
patients and prolong the examination times. This is seen in
all populations, but it is more prevalent in pediatric
patients, patients with anxiety, the elderly, and patients
with neurodegenerative diseases (Afacan, et al., 2016;
Andersen, et al., 2019; Törnqvist, et al., 2006). Methods of
reducing the impact of motion in image quality include the
use of sedatives or anesthetic drugs. These methods may
be problematic due to the long-term adverse effects of
these drugs, and especially a concern in pediatric studies
(Afacan, et al., 2016). In a 2015 report, 8.6% of children
experienced a long-term effect from a sedation or
anesthesia event, where 57.5% of these events were from
MR examinations (Havidich, et al., 2016). Alternatively,
computed tomography (CT) may be used when the concern
for motion is significant. However, this exposes the subject
to radiation which is generally considered a larger risk for
children than the use of sedatives or anesthetic drugs. In

addition, the CT images provide poor contrast in the brain
(Afacan, et al., 2016). Furthermore, it is estimated that
patient motion can call for healthcare costs of at least
$115,000 per scanner per year (US prices). This estimation
is based on the prevalence of motion artifacts which lead
to an examination being repeated being 16.4% (Andre, et
al., 2015). Hence, the investment into motion correction
research is beneficial for the healthcare.

Today there exist motion correction techniques for MRI
in clinical practice and development phases. These can be
divided into two categories, based on when the correction
is applied, which are retrospective and prospective motion
correction (PMC). Information of motion during a scan can
be obtained with different techniques such as with
navigators, RF-based tracking systems, and optical
tracking systems (Godenschweger, et al., 2016).

Some retrospective motion correction techniques use
the principle that a rigid body transformation causes a
linear phase shift in k-space. By knowing the translation in
each direction from the systems mentioned above, it is
possible to determine a phase correction to apply to the
acquired k-space data resulting in a motion-corrected
image (Bookwalter, et al., 2010). Other retrospective
methods uses deep learning (DL) to reduce motion
artifacts. This is done by training a network on
synthetically corrupted data to learn the mapping from
motion-affected images to artifact-free images (Usman, et
al., 2020).

One of the proposed methods of PMC in MRI is with
optical trackers placed in the bore of an MR camera to
acquire translation and rotation information from subject
movement to adjust the gradient field direction and radio
frequencies (RF) phases and frequencies in real-time to
reduce motion artifacts (Qin, et al., 2009). Another method

INTRODUCTION
Aim

2

for reducing motion artifacts was found in 1986 when
researchers suggested that phase encoding gradients could
be adjusted in real-time based on navigation data (Haacke
& Patrick, 1986). The use of image-based navigators has
been of interest in the recent decade. By exploiting the
waiting time for longitudinal relaxation in magnetization
preparation imaging sequences, EPI can be used to acquire
images of the entire subject volume to determine the
subject’s position in between the repetitions. The
transformation parameters between the two EPI images are
determined in real-time, then an image registration is
performed on the sequence of interest images (Tisdall, et
al., 2012).

This EPI method has further been built on to show its
success in other imaging sequences, such as T1-, T2-
weighted images, and angiographies. This has been done
by adding a motion score threshold for a specific k-space
data being reacquired, among other additions (Andersen,
et al., 2019). One limitation of this method is that the
registration of the reference and moving EPI images is an
iterative process, meaning that the solution may not be
reached within the desired time frame and that the timing
to reach a solution varies. It would be beneficial for
sequence design if these limitations were solved.

A DL model used to predict rigid-body transformation
parameters from inputting a reference and moving image
has shown to be successful with synthetic transformed fat
navigators (FatNavs). The advantage of using a DL model
is that the predictions of transformation parameters are
made in a specific computation time, 40.1 ms with the
most successful model. This approach is presented in a
bachelor project from the Technical University of
Denmark (DTU) (Svane Olsen & Nguyen-Cong, 2021)
and is yet to be validated in vivo.

1.2 Aim

The aim of this work is to determine the feasibility of
implementing a deep learning model into the PMC pipeline
of a Philips 7 T scanner, replacing the current iterative
image registration, to generate accurate transformation
parameters to reduce motion artifacts, and have a practical
computation time for better sequence design.

1.3 Goal and Purpose

The goal and purpose of this work is to implement,
validate, and optimize the DL approach proposed by the

DTU students (Svane Olsen & Nguyen-Cong, 2021). A
method of calling DL models in the host computer of the
scanner is needed for the implementation. At the same
time, different DL architectures are to be explored if they
can produce shorter computational times and more
accurate predictions. Finally, the suggested architectures
will be tested in vivo on the 7 T scanner.

3

2 Theory

2.1 Essential Principles of Magnetic
Resonance Imaging

2.1.1 General Spin Physics

Atomic nuclei with an uneven number of protons or
neutrons exhibit a non-zero spin 𝑠𝑠. The spin angular
moment magnitude is defined as

𝑆𝑆2= 𝑠𝑠(𝑠𝑠 + 1)ℏ2 (1)

A quantum number associated with the spin is the magnetic
spin quantum number 𝑚𝑚𝑠𝑠. This number ranges from −𝑠𝑠 to
+𝑠𝑠 in steps of one, which generates 2𝑠𝑠 + 1 values of 𝑚𝑚𝑠𝑠 as
follows

𝑚𝑚𝑠𝑠 = [−𝑠𝑠, −(𝑠𝑠 − 1), … , 𝑠𝑠 + 1, 𝑠𝑠] (2)

A classical analogy to understand the quantum spin is
to imagine a charged sphere rotating on its own central
axis. Its spinning results in angular momentum and if
charged will generate a magnetic dipole moment 𝜇𝜇. The
magnetic dipole moment describes the strength of the
interaction the proton will have on an external magnetic
field and the strength of the magnetic field it generates
itself. It can be described in terms of the 𝑆𝑆 and the
gyromagnetic ratio 𝛾𝛾 by

𝜇𝜇 = 𝛾𝛾𝑆𝑆 (3)

In the presence of an external magnetic field 𝐵𝐵, the
potential energy the dipole experiences are described
classically as the following

𝑈𝑈 = −𝜇𝜇 ⋅ 𝐵𝐵�⃗ (4)

This means that the moment will align parallel to the
external magnetic field to reach a minimum energy state
(Brown, 2014).

There is a large abundance of hydrogen H⠀1 in the
human body, primarily due to a large amount of water
H2O. H⠀1 is a nucleus with an uneven number of protons,
hence it will exhibit a 𝑠𝑠 = 1

2 and spin states 𝑚𝑚𝑠𝑠 = ± 1
2. These

two states are usually defined as spin up (𝑚𝑚𝑠𝑠 = 1
2) and spin

down (𝑚𝑚𝑠𝑠 = − 1
2). In the presence of an external magnetic

field 𝐵𝐵𝑧𝑧, these two states will become degenerate. This is
an example of the Zeeman effect. The amount of the
splitting can be determined using the energy equation 4

𝐸𝐸�𝑚𝑚𝑠𝑠 = 1
2� = 1

2
𝛾𝛾ℏ𝐵𝐵𝑧𝑧

𝐸𝐸�𝑚𝑚𝑠𝑠 = − 1
2� = − 1

2
𝛾𝛾ℏ𝐵𝐵𝑧𝑧

𝛥𝛥𝐸𝐸 = 𝐸𝐸�𝑚𝑚𝑠𝑠 = 1
2� − 𝐸𝐸�𝑚𝑚𝑠𝑠 = − 1

2� = 𝛾𝛾ℏ𝐵𝐵𝑧𝑧 (5)

Due to thermal energy, the spins will populate both the
lower and higher energy states (Brown, 2014).

Excitation of the spins from the lower energy state to
the higher will require an electromagnetic field with
energy equal to the Δ𝐸𝐸. For an electromagnetic field, its
frequency 𝜈𝜈 will equal

ℎ𝜈𝜈 = 𝛥𝛥𝐸𝐸 ⟺ 𝜈𝜈 =
𝛾𝛾

2𝜋𝜋
𝐵𝐵𝑧𝑧 (6)

THEORY
Essential Principles of Magnetic Resonance Imaging

4

For H⠀1 :
𝛾𝛾

2𝜋𝜋
= 42.58 MHz T−1

This frequency is often denoted as 𝜈𝜈0 and is called the
Larmor frequency, for a specific external magnetic field 𝐵𝐵0
in the z-direction. The Larmor frequency for H⠀1 is in the
radio frequency (RF) range. The probability for excitation
is the same for deexcitation, however, there is a larger
population of spins in the lower energy state. The
population distribution can be described as a Boltzmann
distribution. This will lead to a collective magnetism 𝑀𝑀0
parallel to the static magnetic field. The magnitude of this
collective magnetism is almost proportional to the field
strength of 𝐵𝐵𝑧𝑧 as derived in the following approximation

𝑀𝑀0 ≈ 𝑁𝑁
𝜇𝜇𝑝𝑝

2

𝑘𝑘𝑘𝑘
𝐵𝐵𝑧𝑧 (7)

Where 𝑁𝑁 is the proton density, 𝜇𝜇𝑝𝑝 is the magnetic dipole
moment of protons, 𝑘𝑘 is the Boltzmann constant, and 𝑘𝑘 is
the temperature (Brown, 2014).

Due to the Heisenberg uncertainty principle, the spins
can’t be parallel to the magnetic field. This will result in a
torque on the spin and it will precess around the axis of the
static magnetic field. This precession frequency 𝜔𝜔 is
related to the 𝜈𝜈 by

𝜔𝜔 = 2𝜋𝜋𝜈𝜈 (8)

Sending an RF pulse with a frequency of 𝜔𝜔 will change
the population distribution between the two states over
time while it is active. Measuring a signal from the
precessing spins can be done via Faraday induction with a
coil from the magnetism 𝑀𝑀𝑥𝑥𝑥𝑥 in the plane orthogonal to
the direction of the static magnetic field. The magnitude of
𝑀𝑀𝑥𝑥𝑥𝑥 can be maximized by manipulating the population
distribution so that the net magnetism before the RF signal
is completely transferred to the 𝑥𝑥𝑥𝑥-plane, then shutting off
the RF (Brown, 2014).

2.1.2 Spatial Encoding

In other imaging modalities, the detection of particles
transmitted through or from the patient is used to generate
an image. One challenge in MRI is that there are no
particles being emitted. Some form or spatial encoding of
the spins is needed to be able to distinguish protons at
different locations in the body. The main idea of solving
this challenge is to use magnetic field gradients to create a

varying magnetic field. This will give protons at different
locations in the gradient a different 𝜈𝜈.

Along the direction orthogonal to the transverse plane
of a patient, usually defined as 𝑧𝑧, a magnetic field gradient
is used to set different locations to have different 𝜈𝜈. It is
commonly desired to only excite a region in the gradient
field, such as a head. This then requires a bandwidth of
frequencies to be sent in the excitation RF pulse. The name
of this process is slice selection, where a slice refers to the
region of protons that has been excited (Brown, 2014).

Now the remaining protons in the two directions of the
patient need to be encoded. This is done by applying
magnetic field gradients in these directions. Consider the 𝑥𝑥
to be encoded first. By activating a gradient in this
direction during the signal acquisition, the induced signal
frequencies will correspond to the signal produced by
protons at different locations in this gradient. The direct
Fourier transform of the one signal read out will
correspond to the magnitude of signal coming from all
protons in the plane orthogonal to the direction of the field.
This process is named frequency encoding (Brown, 2014).

Since the frequency of resonance is used to determine
the position in the 𝑥𝑥 direction, the same method cannot be
used in the 𝑥𝑥 direction, since we will have lost the
encoding. Instead, gradients are activated in the 𝑥𝑥 direction
before a signal readout. However, the 𝑥𝑥 gradient in the next
read-out will have changed in steepness by some
increment. This is repeated a number of times with the
same increment so that each signal read out has
experienced a different steepness in the 𝑥𝑥 direction. The
result is that the signal acquired will have phase-dependent
on the location of protons in slice orthogonal to the 𝑥𝑥
direction. This process is named phase encoding (Brown,
2014).

2.1.3 Relaxation Theory

After the RF signal, relaxation effects will start to take over
and determine the magnitudes of 𝑀𝑀𝑥𝑥𝑥𝑥 and 𝑀𝑀𝑧𝑧. The
population distribution of spins will return to equilibrium.
This is seen in the gradual increase of 𝑀𝑀𝑧𝑧 over time. The
reason for this is due to dipole-dipole interactions induced
by fluctuations in the local magnetic field. These
fluctuations arise from molecular motion including
rotations, vibrations, and translations. These fluctuations
occur with different frequency components. The
frequencies depend on the mobility of the water molecules
in a medium. For a simple tissue model, water bounded

THEORY
Neural Networks

5

next to proteins are considered to be relatively less mobile,
hence they have an abundance of low-frequency
components. While more mobile water molecules have a
broader distribution of frequencies. If the water molecules
in a specific medium contain an abundance of the 𝜈𝜈, the
growth of 𝑀𝑀𝑧𝑧 will be more effective as these fluctuations
frequencies are enough to stimulate deexcitation. This is
referred to as T1 relaxation or longitudinal relaxation
(Brown, 2014).

The 𝑀𝑀𝑥𝑥𝑥𝑥 will also decrease gradually over time,
however, this will be due to spatial variations in the
magnetic field. If the fluctuations are rapidly changing, the
effect is canceled out. However slow fluctuations will
cause protons to point in some direction for some time.
Which will be enough to exert a bias on the local magnetic
field. This will change the 𝜈𝜈 and thus contribute to the
dephasing of the spins. Hence, an abundance of less mobile
water molecules means that the decrease in 𝑀𝑀𝑥𝑥𝑥𝑥 will be
more effective. This is named T2 relaxation or transversal
relaxation (Brown, 2014).

2.1.4 Ultra-High Field Magnetic Resonance
Imaging

It is clear that from equation 1, more signal can be achieved
by increasing the static magnetic field strength. This has
been one of the reasons for the push for developing stable
MR scanners with stronger static magnetic fields. It is
expected that signal-to-noise should increase linearly.
However, there are many other factors that signal-to-noise
such as the imaging sequences, the properties of the object,
and magnetic field homogeneity. One notable difference
when using ultra-high field (UHF) strengths is that the 𝜈𝜈
increases linearly, meaning that the T1 relaxation time will
increase as well (Olsson, 2021).

2.2 Neural Networks

The field of neural networks (NN) is heavily inspired by
the goal to model biological neuron systems. These results
of this have proven to be useful in machine learning (ML)
tasks. A simple description of a neuron in the brain is that
it is one computational unit. The human nervous system
contains billions of these neurons, which are each
connected to synapses. Signals are received by the neurons
through their dendrites. After the neuron processes the

signals received, it releases a signal through its single axon.
This signal will later branch off to other synapses of other
neurons. When this signal enters the dendrites of the other
neurons, it is modified by some weight which is specific
for signal the link between the two neurons.

A neuron in ML is essentially a number, which is
equivalent to the strength of the signal in the biological
description. There are four parts of a neuron: (i) a group of
inputs (ii) a linear function (iii) a non-linear function (iv)
an output. These parts are illustrated in Figure 1. The
output of a neuron is determined by

𝑥𝑥 = 𝜎𝜎 �� 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=0
� = 𝜎𝜎(𝑧𝑧) (9)

Where 𝜎𝜎 is the non-linear function which is often defined
as the activation function, and the terms inside 𝜎𝜎 represent
the linear function 𝑧𝑧 operating on the input vector 𝑥𝑥. The
linear function has two parameters which are the weights
𝑤𝑤 and biases 𝑏𝑏. The idea in ML is that the values of these
weights and biases of links between neurons are
determined through training.

The path from a neuron to a NN is by considering
several vector columns of neurons linked in sequence.
Each column is defined as a layer. Figure 2 shows the
appearance of a multi-layer NN. Equation 1 can be
modified to show the values of the neurons in the 𝑙𝑙’th layer
based on the neurons values in the layer before.

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥0

(1)

𝑥𝑥1
(1)

⋮
𝑥𝑥𝑘𝑘

(1)
⎦
⎥
⎥
⎥
⎥
⎤

= 𝜎𝜎

⎝
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡𝑤𝑤0,0

⠀ 𝑤𝑤0,1
⠀ ⋯ 𝑤𝑤0,𝑛𝑛

𝑤𝑤1,0
⠀ 𝑤𝑤1,1

⠀ ⋯ 𝑤𝑤1,𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑤𝑤𝑘𝑘,0
⠀ 𝑤𝑤𝑘𝑘,1

⠀ ⋯ 𝑤𝑤𝑘𝑘,𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝑥𝑥0

(0)

𝑥𝑥1
(0)

⋮
𝑥𝑥𝑛𝑛

(0)⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡𝑏𝑏0
𝑏𝑏1
⋮

𝑏𝑏𝑛𝑛 ⎦
⎥
⎥
⎥
⎤

⎠
⎟
⎟
⎟
⎞

 (10)

A more compact formulation is

𝑥𝑥(𝑙𝑙) = 𝜎𝜎(𝑙𝑙)�𝑊𝑊 (𝑙𝑙)𝑥𝑥(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙)� = 𝜎𝜎(𝑙𝑙)�𝑧𝑧(𝑙𝑙)� (11)

Letting this function iterate over itself the number of layers
the network has, 𝐿𝐿, gives the composite function

𝑥𝑥(𝐿𝐿) = 𝜎𝜎(𝐿𝐿−1)�𝑊𝑊 (𝐿𝐿−1)𝜎𝜎(𝐿𝐿−2)�𝑊𝑊 (𝐿𝐿−2). . . +𝑏𝑏(𝐿𝐿−2)� + 𝑏𝑏(𝐿𝐿−1)�

(12)

This is essentially the definition of a NN. The 𝐿𝐿’th layer is
named as the output layer, the first layer is named the input
layer, and the layer between are named hidden layers. NN

THEORY
Neural Networks

6

is generally defined as deep neural networks (DNN) if
there are more than two hidden layers in the network (𝐿𝐿 >
4).

In practice, NN is shown to have better performance
with more layers than one layer with many neurons. This
is likely due to that with each layer, the input is
transformed and creates new representations of it.
However, an excessive number of layers can impair the
performance of the network as well. This is one of the
obstacles of DNN, as most methods for pursuing the
optimal number of layers rely on trial and error. There are
a few methods that will later be mentioned in this section
that can improve the performance of DNNs.

2.2.1 Activation Functions

The activation function is an operation that is performed
on the result from the linear function in a neuron. Its result
will be the overall output of the function. The purpose of
the activation function is to introduce non-linearity into the
output of the neuron. If the activation function between two
consecutive layers is an identity map, then due to linearity
equation 3 becomes

𝑥𝑥(𝑙𝑙+1) = 𝜎𝜎(𝑙𝑙)�𝑊𝑊 (𝑙𝑙)�𝑊𝑊 (𝑙𝑙−1)𝑥𝑥(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙−1)� + 𝑏𝑏(𝑙𝑙)�
= 𝜎𝜎(𝑙𝑙)�𝑊𝑊� (𝑙𝑙)𝑥𝑥(𝑙𝑙−1) + �̃�𝑏(𝑙𝑙)�⠀⠀⠀⠀⠀⠀⠀

Where 𝑊𝑊� (𝑙𝑙) = 𝑊𝑊 (𝑙𝑙) ⋅ 𝑊𝑊 (𝑙𝑙−1) and �̃�𝑏(𝑙𝑙) = 𝑊𝑊 (𝑙𝑙) ⋅ 𝑏𝑏(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙).
This shows that the neurons in 𝑥𝑥(𝑙𝑙+1) are directly connected
to the neurons in 𝑥𝑥(𝑙𝑙−1) without the need for the neurons in
between (𝑥𝑥(𝑙𝑙)). If all the activation layers in a NN were
identity maps, the whole network would be in principle a

linear model. Hence, the activation function is the primary
source of non-linearity in NN. It is believed that non-linear
activation functions enable better representation of
complex relationships by transforming the input data and
creating an additional fold.

There are several types of activation functions. One of
the first encountered types is sigmoid. A sigmoid function
is defined as

𝑓𝑓(𝑥𝑥) = 1
(1 + 𝑒𝑒−𝑥𝑥)

(13)

It is a non-linear function whose range covers 0 to 1. For
𝑥𝑥 = 0, this function returns 1

2� . For very positive and
negative values, the function returns 1 or 0 respectively.
Historically, the sigmoid has been popular for its nice
interpretation of the firing of a neuron. 0 for not firing at
all and 1 for saturating the firing.

Another type of activation function is the tanh function,
which is defined as

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑥𝑥) (14)

Like the sigmoid function, this function saturates for very
positive and negative values. However, the output of the
function ranges between 1 and −1, meaning that it is zero-
centered. This is one reason why tanh functions would be
preferred more than sigmoid functions. It is worth noting
that the tanh function is essentially a scaled sigmoid
function 𝜎𝜎 like

𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑥𝑥) = 2𝜎𝜎(2𝑥𝑥) − 1

Figure 1: Temporary figure for
single neuron

THEORY
Neural Networks

7

One notable activation function is the rectified linear
unit (ReLU) function. It is defined is as

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥, 𝑥𝑥 > 0
0, 𝑥𝑥 ≤ 0 (15)

ReLU use as an activation function has been popular
recently for its successes in effective training. The basic
idea of the ReLU function is to set the threshold at zero.

The last activation function to mention here is the
Leaky ReLU function. It is in principle the attempt in
solving the dying gradient problem of using ReLU
activation functions. It is defined as

𝑓𝑓(𝑥𝑥) = �
⠀⠀𝑥𝑥, 𝑥𝑥 > 0
𝑥𝑥 ⋅ 𝑡𝑡, 𝑥𝑥 ≤ 0 (16)

2.2.2 Optimization and Training

Solving problems with a DL approach requires a training
phase. The purpose of the training phase is to determine
the optimal parameters 𝑊𝑊 ∗ for the network from training
data. This is often formulated mathematically as an
optimization problem where the goal is to minimize some
loss function 𝑀𝑀 . From equation 4, the optimization
problem can be expressed as

𝑊𝑊 ∗ = 𝑚𝑚𝑖𝑖𝑛𝑛
𝑊𝑊

𝑀𝑀(𝑊𝑊) = 𝑀𝑀��̂�𝑥, 𝑥𝑥(𝐿𝐿)� (17)

Where �̂�𝑥 is the desired output of the network. The loss
function method is specific to the type of problem the
network is attempting to solve. For linear regression
problems, the mean square error (MSE) is often used and
can be expressed as

𝑀𝑀��̂�𝑥, 𝑥𝑥(𝐿𝐿)� = 1
2 � �𝑥𝑥𝑖𝑖

(𝐿𝐿) − �̂�𝑥𝑖𝑖�
2

𝑛𝑛𝐿𝐿−1

𝑖𝑖=1
= 𝐸𝐸 (18)

The term 𝐸𝐸 is used to convenience.
The difficulty in finding the optimal parameters for

equation 9 is that it is often a non-convex optimization
problem, meaning that there are difficulties in finding a
global minimum in the function. The most common
method used to solve these types of problems is the
gradient descent algorithm, in which the gradient of the
function is examined to determine which direction
decreases the function the quickest (Rojas, 1996). Thus,
the gradient of the loss function is needed

𝛥𝛥𝑊𝑊 ∶= −𝜂𝜂 �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤1

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏1

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤2

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏2

, … , 𝜕𝜕𝑀𝑀
𝜕𝜕𝑤𝑤𝜅𝜅

, 𝜕𝜕𝑀𝑀
𝜕𝜕𝑏𝑏𝜅𝜅 ��𝑊𝑊 (old)

 ∶= −𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (old)

(19)

Where 𝑤𝑤𝜅𝜅 are the 𝜅𝜅 number of weights in the entire
network. This is used to determine the increment on the
weights and biases to find the minimal of the loss function.
In the case of the weights, this is

𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘 + 𝛥𝛥𝑊𝑊 = 𝑤𝑤𝑘𝑘 − 𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑤𝑤𝜅𝜅

(20)

Here, 𝜂𝜂 is called the learning constant, which is a scalar
applied to the increment. Now the optimization problem
boils down to determining the partial derivatives of the loss
function and iteratively changing the weights until Δ𝑀𝑀 =
0.

Since the loss function and weights are linked via two
different functions and due to the composite function form
of the output in the neuron, the chain rule can be applied to
determine the gradient in equation 11. This can be seen
from equation 10, the partial derivative of the loss function
with respect to weight is given by

𝑑𝑑𝑀𝑀
𝑑𝑑𝑤𝑤𝑘𝑘,𝑛𝑛

(𝑙𝑙) =
𝜕𝜕𝑧𝑧𝑘𝑘

(𝑙𝑙)

𝜕𝜕𝑤𝑤𝑘𝑘,𝑛𝑛
(𝑙𝑙)

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙) 𝜕𝜕𝑀𝑀

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙) (21)

The first term describes how the linear function is
influenced by some change in the weights in the layer. As
a reminder, the linear function 𝑧𝑧 is defined as

𝑧𝑧(𝑙𝑙) = � 𝑤𝑤𝑘𝑘,𝑖𝑖
(𝑙𝑙) 𝑥𝑥𝑘𝑘,𝑖𝑖

(𝑙𝑙−1) + 𝑏𝑏𝑘𝑘,𝑖𝑖
(𝑙𝑙)

𝑛𝑛

𝑖𝑖=0

Since only one term is dependent on the weights, the partial
derivative becomes

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑤𝑤𝑘𝑘,𝑛𝑛
(𝑙𝑙) = 𝑥𝑥𝑘𝑘,𝑖𝑖

(𝑙𝑙−1)

The second term in equation 13 is the values of the neurons
which is essentially the output of the neurons. Hence, the
partial derivative with respect to linear function is given by

𝜕𝜕𝑥𝑥𝑘𝑘
(𝑙𝑙)

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙) =

𝜕𝜕𝜎𝜎(𝑙𝑙)(𝑧𝑧𝑘𝑘
(𝑙𝑙))

𝜕𝜕𝑧𝑧𝑘𝑘
(𝑙𝑙) = 𝜎𝜎′(𝑙𝑙)

�𝑧𝑧𝑘𝑘
(𝑙𝑙)

�

The final term in equation 13 is the sensitivity of the loss
function to a change of the value of a neuron in a layer. If
this layer is the output layer of the NN, 𝑙𝑙 = 𝐿𝐿, then the
partial derivative becomes

𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝑙𝑙) = 𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐿𝐿)

THEORY
Neural Networks

8

This means that only the derivatives influenced by the
layer before the output layer are needed to determine this.
If the loss function is the MSE as in equation 10, the partial
derivative of the output layer will be

𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐿𝐿) = 𝑥𝑥𝑘𝑘
(𝐿𝐿) − �̂�𝑥𝑘𝑘

In the case of 𝑙𝑙 being some hidden layer, the derivative is
not as straightforward. For comprehensibility, sub-indices
are now ignored. Each of the neurons influences the loss
function through several different paths. Hence the loss
function will be dependent on the linear operations in
between the 𝑙𝑙’th layer and the output layer 𝐿𝐿. Through the
total derivative and the chain rule, the result is

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥(𝑙𝑙) =

𝜕𝜕𝑀𝑀�𝑧𝑧(𝑙𝑙+1), 𝑧𝑧(𝑙𝑙+2), … , 𝑧𝑧(𝐿𝐿)�
𝜕𝜕𝑥𝑥(𝑙𝑙) ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀ = 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑙𝑙+1)

𝜕𝜕𝑧𝑧(𝑙𝑙+1)

𝜕𝜕𝑥𝑥(𝑙𝑙) + 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑙𝑙+2)

𝜕𝜕𝑧𝑧(𝑙𝑙+2)

𝜕𝜕𝑥𝑥(𝑙𝑙) +. . . + 𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝐿𝐿)

𝜕𝜕𝑧𝑧(𝐿𝐿)

𝜕𝜕𝑥𝑥(𝑙𝑙)

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑙𝑙)�𝑗𝑗∈𝐿𝐿
 ⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗)
𝜕𝜕𝑧𝑧(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑙𝑙)�𝑗𝑗∈𝐿𝐿
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀

= � �
𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑥𝑥(𝑗𝑗)

𝜕𝜕𝑧𝑧(𝑗𝑗) 𝑤𝑤(𝑗𝑗)
�𝑗𝑗∈𝐿𝐿
⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀

Finally, all the terms of equation 13 are defined and the
updates to the weights by equation 12 can be determined.

This method of optimizing and training and network
can be very costly in memory usage. Finding the global
minimum of equation 9 is neither guaranteed. To solve
address these issues, researchers have suggested the use of

stochastic optimization methods such as stochastic
gradient descent (SGD) and adaptive moment estimation
(ADAM).

The common idea of stochastic optimization methods is
to solve the optimization problem by iterating sets of the
full training data set instead of passing the full data set in
one iteration. This tackles the memory usage problem.
These smaller sets of the training data are called batches
and the amount of data in the set is referred to as the batch
size. Before data is placed into these batches, the entire
training set is shuffled. Updates to the weights are
performed after a batch has been passed through the model.
Each pass of all batches in the entire dataset is called an
epoch. The difference between each epoch is the random
shuffling of the data before being assigned to batches. If
the number of batches is defined as 𝜏𝜏 and the size of the
batch is 𝜒𝜒 , then equation 10 will be the following for any
loss function

𝐸𝐸(𝜏𝜏) = � 𝑀𝑀 ��̂�𝑥
�(𝜏𝜏−1)𝜒𝜒+𝑖𝑖�
 , 𝑥𝑥

�(𝜏𝜏−1)𝜒𝜒+𝑖𝑖�
(𝐿𝐿)

�

𝜒𝜒

𝑖𝑖=1
, 𝑚𝑚 = 1,2, … , 𝜏𝜏

 (22)

The most notable difference to the updates of the
weights by using the SGD method is that a momentum
term is added to equation 12. The idea is to include the
gradients calculated in the previous batch into the new
batch calculations. A scalar 𝛼𝛼 is introduced into equation
11 which is multiplied with the previous batch (𝛽𝛽 − 1)
gradients.

Figure 2: Visualization of the
iterative process in
determining the change of
the loss function (Mean
square error in this case) with
respect to weights of an inner
layer 𝑙𝑙 = 2.

THEORY
Neural Networks

9

𝛥𝛥𝑊𝑊 (𝜒𝜒) ∶= 𝛼𝛼𝛥𝛥𝑊𝑊 (𝜒𝜒−1) − 𝜂𝜂 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (𝜒𝜒−1)

(23)

This can improve the step size in the gradient descent when
the slope is steep, which shortens the time to convergence.
Typical values of 𝛼𝛼 are between 0.5 and 0.9 and can result
in a factor two faster convergence rate.

The ADAM algorithm was proposed in 2015 for DL
and is one of the most frequently used optimization
algorithms. It includes the idea of momentum as in SGD,
and an adaptive rate scheme meaning that the learning rates
will vary per parameter. In mathematical terms, the
updates to the weights

𝑊𝑊 (𝜒𝜒) = 𝑊𝑊 (𝜒𝜒−1) −
𝜂𝜂

√𝑣𝑣(̂𝜒𝜒) + 𝜖𝜖
𝑚𝑚�(𝜒𝜒) (24)

𝑚𝑚�(𝜒𝜒) = 𝑚𝑚(𝜒𝜒)

1 − 𝛽𝛽1
𝜒𝜒 , 𝑣𝑣(̂𝛽𝛽) = 𝑣𝑣(𝜒𝜒)

1 − 𝛽𝛽2
𝜒𝜒

𝑚𝑚(𝜒𝜒) = 𝛽𝛽1𝑚𝑚(𝜒𝜒−1) + (1 − 𝛽𝛽1)𝛥𝛥𝑊𝑊

𝑣𝑣(𝜒𝜒) = 𝛽𝛽2𝑣𝑣(𝜒𝜒−1) + (1 − 𝛽𝛽2)𝛥𝛥𝑊𝑊 ⊙ 𝛥𝛥𝑊𝑊

𝛥𝛥𝑊𝑊 = 𝑑𝑑𝑀𝑀
𝑑𝑑𝑊𝑊 �𝑊𝑊 (𝜒𝜒−1)

Where 𝑣𝑣 is the term which modifies the learning rate
depending on different parameters, 𝑚𝑚 is the term which
includes a moment into the gradient descent, and the
respective hat accents (𝑣𝑣,̂ 𝑚𝑚�) on each term represents the
normalization of them. The 𝛽𝛽 values are user-defined
values and are typically set to 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.99. The
𝜖𝜖 term is usually set to 10−18, its purpose is to avoid a
division by zero.

2.2.3 Convolutional Neural Networks

In the analysis of images with NN, convolution operations
are frequently used. The major reasons are that there is an
explosion of the number of parameters, and the loss of
information with respect to how the pixels are interrelated
if the usual inner product operation is performed as in a
NN. Vectorizing an image with a resolution of 256 × 256
pixels will result in a column vector containing 65536
elements. Assuming that the number of neurons in the first
layer is 1000, then the number of weight parameters
connecting the input and first layer will be in the order of
65 ⋅ 106. For this number of parameters, the computational
cost of the model would be significant, and the

generalization performance will take a hit for many
parameters. Convolutional neural networks (CNN) are
used to solve these issues. The main two operations
introduced by CNNs are the convolution step and the
pooling step.

As mentioned, a problem with NN in image analysis is
that the number of parameters will be very large. A
potential solution to this is to share parameters between
neurons in the same layer. A convolution operation is
mathematically expressed as

𝑓𝑓(𝑥𝑥) ⊗ ℎ(𝑥𝑥) = � 𝑓𝑓(𝜏𝜏)ℎ(𝑥𝑥 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞

𝑓𝑓(𝑥𝑥, 𝑥𝑥) ⊗ ℎ(𝑥𝑥, 𝑥𝑥) = � 𝑓𝑓(𝜏𝜏1, 𝜏𝜏2)ℎ(𝑥𝑥 − 𝜏𝜏1, 𝑥𝑥 − 𝜏𝜏2)𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2

∞

−∞

 (25)

for 1D and 2D respectively. The input is defined as 𝑓𝑓 and
ℎ is defined as the kernel.

From using convolutions in NNs, weight sharing is
possible, meaning that the kernel ℎ is shared with all
neurons of the previous layer instead of each neuron
having its own weight. Information of the local
neighborhood surrounding each neuron is considered with
the use of convolutions, which effectively tackles the loss
of information of how the pixels are interrelated when
using a conventional NN and inner product.

After each convolution, any activation function is
applied to all neurons in the output in each channel. The
introduction of CNNs also includes another process that
can improve the performance networks. Several kernels
are often used to extract information from the data, this can
lead to memory issues if the resulting number of channels
is large. Reducing the dimensions of the data is one method
of tackling this. In CNN, this is known as pooling and one
of these operations is named max pooling. In max pooling,
a convolution process is applied data, where a kernel slides
across the data, but instead of the conventional convolution
process, a selective kernel is applied which outputs the
value of the neuron in the neighborhood with the maximum
value. The stride of the convolution is set so that the
dimensions of the data are reduced, and the idea is to
preserve as much information as possible in the data after
the reduction in size. Selecting the max-pooling process
assumes that the important information in the data is the
largest value. Another pooling process is named average
pooling. Here, the output is the average value of the
neurons in the neighborhood. This could improve the

THEORY
Geometric Transformations

10

performance of the network as all information is
considered.

2.2.4 Learning Strategies

Learning strategies in DL can primarily be either
supervised or unsupervised. Data used in supervised
training are labeled as input and expected output. This type
of training is straightforward as the optimizing goal is
clearly to predict the expected output and penalize the
network for incorrect predictions. However, the
requirement for supervised training is that such input and
output data exist. Knowing the exact ground truth is not
always the case. Acquiring such data for supervised
training can be difficult, such as segmentation data where
segmentations are expected to be drawn from medical
annotators, which is time-consuming. Luckily, there exists
data that is publicly available that has been gathered that
can be used in some DL methods. However, this data might
not always be the right to tackle a specific problem.
Especially for regression tasks, there have been successes
with accurate predictions on synthetic data (Svane Olsen
& Nguyen-Cong, 2021). One problem with using synthetic
data is that the trained model could be less generalizable to
real data.

On the other hand, unsupervised learning aims to find
the patterns in the data without feeding the training ground
truth or our targeted output.

2.2.5 Deep Learning Frameworks

The most common way to implement DL solution to a
problem is by using a programming script. In recent years,
several frameworks have been distributed with common
DNN and CNN operations already implemented such as
activation functions and 3-dimensional convolutions. Most
of these can be used with Python and C++. Two of the
most popular frameworks in recent years are TensorFlow
and PyTorch (Paszke, et al., 2019). The availability of
these types of frameworks allows for easy training of NN
for researchers without the need of developing all the
operations in a programming language.

TensorFlow is Python-based and is the framework with
the largest support and usage for its focus on production
and scalability in mind, which makes it popular in an
industrial setting where quickly pushing prototypes into
deployment can be important. It was developed by the

Google Brain Team and distributed publicly in 2015, and
since then has reached the milestone of having the largest
community of all DL frameworks. Since TensorFlow’s 2.0
releases, have Keras fully integrated by default. Keras is a
high-level wrapper around TensorFlow making for
seamless and easy training of networks. Eager Execution
is enabled by default in the >2.0 releases allowing for
faster development and debugging.

In recent years, PyTorch has received the fastest
community growth among all DL frameworks. This is
mainly due to its different approach than in TensorFlow
and has made it more popular in academia.

There are several more frameworks available for DL,
each with its advantages and disadvantages as well as the
use of different languages. Both TensorFlow and PyTorch
have released C++ API to allow for easy deployment of
the models, and due to their popularity, there exists plenty
of support for each.

2.2.6 Hyperparameter Tuning

Hyperparameters of a NN refer to the parameters the user
must define in the model before training such as the
number of hidden layers in a network or the choice of
activation functions. There are several hyperparameters in
NN, and each has its impact on the training.
Hyperparameter optimization refers to the adjustment of
these parameters to minimize a defined loss function for a
given set of data.

One popular approach to hyperparameter optimization
is Bayesian optimization…

2.3 Geometric Transformations

Geometric transformations are essential tools for image
analysis.

2.3.1 Rigid-Body Transformation

In Euclidean space, translations, 𝑡𝑡, in 3D can be
represented in a matrix 𝑘𝑘 in the following way

𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀1 0 0 𝑡𝑡𝑥𝑥⠀
⠀0 1 0 𝑡𝑡𝑥𝑥⠀
⠀0 0 1 𝑡𝑡𝑧𝑧⠀
⠀0 0 0 1⠀⠀⎦

⎥
⎥
⎥
⎤

(26)

THEORY
Image Registration

11

Rotations around each axis can be represented in the
matrices 𝑅𝑅 in the following way

𝑅𝑅𝑥𝑥 =
⎣
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀1 0 0 0⠀
⠀0 ⠀𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 0⠀
⠀0 − 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎤

(27)

𝑅𝑅𝑥𝑥 =

⎣
⎢
⎢
⎢
⎡

⠀ ⠀ ⠀ ⠀
⠀ 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 0 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 0⠀
⠀0 1 0 0⠀

− 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 0 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎥
⎤

(28)

𝑅𝑅𝑧𝑧 =
⎣
⎢
⎢
⎡

⠀ ⠀ ⠀ ⠀
⠀ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧) 0 0⠀
− 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) 0 0⠀
⠀0 0 1 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎤

(29)

This gives in total 6 degrees of freedom from the variables
in the matrices. Each of these matrices are used in
determining the new position of a voxel for a certain set of
parameters.

In imaging, rigid-body transformations maintain the
original shape of the object and only works as a movement
of pixels to a new destination. In a medical imaging setting,
this is beneficial for problems where size difference
between objects is not of interest. More specifically, rigid-
body transformations preserve the distances and angles of
an object.

Let 𝑌𝑌 be the vector describing the coordinates of the
voxels after a transformation. For a set of rigid body
transformation parameters, the new coordinates 𝑌𝑌 of the
voxels with coordinates 𝑋𝑋 can be found by

𝑌𝑌 = 𝑅𝑅𝑥𝑥 ⋅ 𝑅𝑅𝑥𝑥 ⋅ 𝑅𝑅𝑧𝑧 ⋅ 𝑋𝑋 + 𝑘𝑘 (30)

2.3.2 Affine Transformation

In addition to linear transformations, there is the affine
transformation which includes 3 more degrees of freedom,
in 3D, than in rigid-body transformations. These
parameters introduce scaling to the matrix. In an image
transformation sense, this preserves parallelism meaning
that lines preserve their ratios of distances along a line.
However, absolute distances and angles are not preserved
after affine transformations.

A matrix describing shearing in combination with the
matrices 18 − 21 complete the affine transformation.
Scaling in 3D can be represented in the following way

𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡
⠀ ⠀ ⠀ ⠀
⠀𝑠𝑠𝑥𝑥 0 0 0⠀
⠀0 𝑠𝑠𝑥𝑥 0 0⠀
⠀0 0 𝑠𝑠𝑧𝑧 0⠀
⠀0 0 0 1⠀⎦

⎥
⎥
⎥
⎤

(31)

2.4 Image Registration

Image registration is a major research field in computer
vision that will be difficult to grasp completely in this
thesis. It refers to the process of spatial aligning two
images so that the coordinates in one image match the
coordinates of the other image. It is common to refer to the
matching images as a reference and moved images
respectively. Then the reference is the image that is kept
unchanged, while the moving image is transformed to
match the geometry and coordinate system of the reference
image. One common use of this is in registering satellite
images for mapping, such as when the alignment of two
satellite images with different zooms is desired. Image
registration has also made its way into medical imaging.
There are several problems in medical imaging which can
be addressed with image registration, such as when health
personnel need spatially aligned images of a patient that
were taken at different dates.

Figure 3: Illustrating the coordinate shift (black to green)
from rigid-body transformations (red).

THEORY
Image Registration

12

2.4.1 Deep Learning Methods

Recently, the state-of-the-art deep learning image
registration methods for 3D MRI are based on the
Voxelmorph approach. Voxelmorph (Balakrishnan, et al.,
2019) is a deep learning-based tool that is publicly
available and has been shown to outperform traditional
registration methods. The main architecture is based on a
U-Net in combination with a spatial transform network
(STN). Loss functions are based on traditional similarity
metrics such as MSE or cross-correlation. The
transformations made in the Voxelmorph are both affine
and deformable in this order. This has been shown to
improve the accuracy of the final registration.

In comparison to other DL deformable image
registration methods, Voxelmorph includes a smoothness
regularizer to address ‘folds’ in the deformation field,
which is where the determinant of the deformation field is
negative. These can appear in several regions of the
deformation field in other methods, making it not
physically realistic. Ideally, the deformation field should
be smooth and invertible. The number of ‘folds’ is a
criterion that evaluates the smoothness of the deformation
field. To tackle this, Voxelmorph introduces the
smoothness regularizer to its optimization problem. This
uses a diffusion regularizer on the gradients of the

displacement field and approximates them using
differences between neighboring voxels. This base design
has been used to develop other tools such as tools that can
generate atlases for 3D brain images and contrast-invariant
image registration.

The performance of the Voxelmorph is data-dependent.
For example, models trained on T1W image pairs will
poorly register T2W image pairs. There is a possibility to
consider all combinations of contrasts, however, this
would need a large dataset. The contrast invariant method
named SynthMorph attempts to train models to register
segmentations of images with arbitrary contrasts. In
addition to this, these images with arbitrary contrasts are
synthetically generated, meaning there is no need to input
data. In this way, the researchers hoped to encourage the
model to generalize across MRI contrasts.

In SynthMorph, pairs of atlases are generated with
arbitrary shapes. Each pair has one randomly generated
deformable transformation relationship between them. The
moving atlas will be the reference atlas after this
deformable transformation. These atlases are pushed into
an image sampler which generates a grayscale image using
a Gaussian mixture method which will include creating
arbitrary contrasts, blurring, and intensity bias. The model
is then trained with these two images to optimize a
combined loss function of a regularization term and dice
term of the warped image. This is a form of unsupervised

Figure 4: An outline of the SynthMorph pipeline. The initial atlas pair are synthetically generated, then pushed into an image sampling function which
generates the corresponding images in grayscale. These are pushed into a NN which generates a deformation field describing how to transform the
moving atlas to the reference atlas. Since unsupervised learning is used, red indicates the needed images to determine the loss. Adapted from ??.

THEORY
Motion Correction

13

learning, and a general overview of the pipeline is outlined
in figure 5.

In addition to non-linear registration DL methods, there
exist linear registration DL methods. One recent work
suggested a network design to predict rigid body
transformation parameters that register 3D images of the
brain from different modalities. Results from registration
of 3D brain computed tomography (CT) and MR images
are shown to produce accurate results in comparison to
traditional registration methods. This method uses
supervised training by augmenting data from CT and MRI
with random rotations and translations. The model is then
optimized by a loss function describing the difference
between the predicted parameters and the augmentation
parameters used for the specific image pair. The suggested
CNN is relatively large in comparison to VoxelMorph. It
can be seen as the encoding part of a U-Net, but larger as
shown in figure 6. A complete description of the model can
be found in the original paper.

2.5 Motion Correction

Correcting motion artifacts in MRI is another large field of
research. As previously mentioned, motion artifacts can
lead to several re-examinations which will impact
healthcare availability and cost. Focus on reducing motion
artifacts is highly desired. The two main approaches to
tackling this issue are retrospective and prospective motion
correction (PMC). Retrospective means that correction is
applied after the data acquisition and prospective meaning
that correction is applied during data acquisition. Both
approaches have advantages and disadvantages.

2.5.1 Prospective Motion Correction

One type of method for PMC is iMOCO. It is a navigator-
based approach where information of the patient's motion
is acquired during an examination. Based on this
information, updates to the scanning parameters or
requiring motion corrupted data can be done which will
effectively reduce the risk of motion artifacts. This entire
pipeline can be split up into three parts, a navigator, a
registration, and a correction.

iMOCO depends on acquiring two 3D images fast
during scanning. These images are taken between readout
trains in a sequence, thus are desired to be in the magnitude
of ms to acquire. Sequences able to produce 3D images in

this time are navigators. Navigators are commonly used by
radiographers as fast low-resolution images to determine
an appropriate FOV for the main imaging sequences. The
low resolution is due to the readout technique which is
often used for navigators which is EPI. Acquiring 3D
navigators can be in the order of 350 ms, and an MRI data
collection sense, this is a comparable time. The TI of
FLAIR sequences can be a factor 2 larger than this, such
as in T1W FLAIR sequences where TI can be around
860 ms. This means that navigators can be acquired in
between readout trains of FLAIR sequences and won’t
disturb the desired output image data collection. It is also
possible to acquire navigators with fat-selective
excitations.

THEORY
Motion Correction

14

Once two navigators are acquired at different time
points, image registration is performed. The earliest
navigator is set as the reference image while the other is set
as the moving image. Rigid-body transformation
parameters are determined with an iterative approach,
hence the time it takes to reach a solution is arbitrary. For
registering fat-navigators with iMOCO, it is agreed that it
takes around 250 − 300 ms. This still is in the order of
magnitude for TIs in FLAIR sequences. Together with the
acquisition of a new motion navigator, this process can
take a total of 650 ms, which is squeezed into the TI.

Once the registration is completed, the parameters are
used to calculate a motion score, 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒, using the following
equation

𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒 = 𝛥𝛥𝑅𝑅 + �𝑡𝑡𝑥𝑥
2 + 𝑡𝑡𝑥𝑥

2 + 𝑡𝑡𝑧𝑧
2�

1
2� (32)

Where Δ𝑅𝑅 is the largest displacement a point experiences
on a sphere with a 64 mm radius when rotated by the
magnitude of the rotation ��̂�𝑅�. Δ𝑅𝑅 is given by

𝛥𝛥𝑅𝑅 = 64��1 − 𝑐𝑐𝑐𝑐𝑠𝑠���̂�𝑅���
2 + �𝑠𝑠𝑖𝑖𝑛𝑛���̂�𝑅���

2
�

1
2� (33)

Figure 5: Deep learning network suggested by (Svane Olsen & Nguyen-Cong, 2021). Each image is pushed through a sequence of convolution, batch normalization,
Leaky ReLU and max pooling layers until concatenated and pushed into a fully connected dense layers which outputs the predicted rigid-body transformation
parameters.

THEORY
Motion Correction

15

And ��̂�𝑅� is given by

��̂�𝑅� = �𝑐𝑐𝑐𝑐𝑠𝑠−1
�

1
2 �−1 + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧)

⠀
⠀⠀⠀⠀⠀⠀⠀⠀ + 𝑐𝑐𝑐𝑐𝑠𝑠�𝑟𝑟𝑥𝑥� 𝑐𝑐𝑐𝑐𝑠𝑠(𝑟𝑟𝑧𝑧) + 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑥𝑥) 𝑠𝑠𝑖𝑖𝑛𝑛�𝑟𝑟𝑥𝑥� 𝑠𝑠𝑖𝑖𝑛𝑛(𝑟𝑟𝑧𝑧)��

 (34)

This score is used to decide whether requisition of motion
corrupted data is needed. Today, the integrated iMOCO
technique at the Danish Research Center for Magnetic
Resonance (DRCMR) uses a threshold of 1 mm for
requisition. For scores below this threshold, updates to the
FOV are performed so that the next readout train acquires
data in the assumed new position of the patient.

This entire correction method has been shown to
improve diagnostic quality in T1W-, T2W imaging as well
as in time-of-flight angiography. Furthermore, the
integration to other sequences than FLAIRs which don’t
have an obvious long wait time is shown to be possible.
Figure 7 illustrates this entire process.

Figure 6: iMOCO workflow. Green sequence indicates the main desired sequence, with 3D cubes representing the amount of k-space data that has been acquired. In-
between read-out-trains navigators are acquired to determine the subjects position at these dead-times. A reference navigator is used to register the current navigator
with a rigid body transformation. These parameters are used to calculate a score which determines whether data should be required or if scanning parameters should
be updated.

THEORY
Motion Correction

16

17

3 Method

3.1 Datasets and Environment

The same dataset as in (Svane Olsen & Nguyen-Cong,
2021) was used as the main dataset for model training. This
consisted of 18000 3D fat navigators acquired from 110
subjects, both male and female, with the Philips 7 T MRI
scanner at DRCMR in Hvidovre, Copenhagen. Each
navigator had 23 slices, each with dimensions 48 × 48
pixels. The resolution of each voxel is 7.00 mm ×
5.33 mm × 5.33 mm.

iMOCO from (Andersen, et al., 2019) is already
implemented on the same scanner at DRCMR as a C++
program built into the host computer. Users can select
whether this type of PMC will be used during a scanning
procedure simply by toggling the motion correction
parameters in the main UI of the scanner. Then two arrays
of single-precision floats containing a reference and
current fat navigator are sent to the iMOCO program.
These are quickly sent to an iterative solver which finds a
solution to rigid body transformation parameters which
minimize the difference between the two images. By
default, the time the scanner allows the iMOCO program
to take before continuing to the next read-out train is 300
ms. This restriction can be varied in the scanner UI from
the Edit Scan Parameters category with the parameter
PMC Lead Time. The rigid body transformation
parameters are sent back to the PDF for assessment of
whether updates to the scan FOV or reacquisition should
be made.

The majority of the programs that run on the host
computer of the scanner are written in C++, which include
thousands of lines of code. A simple way to swap the

iterative solver in the iMOCO program won’t be as
straightforward. An optimal method of replacing the
iterative solver would be to avoid the need to rebuild a
larger portion of the scanner's code, and instead just
replace the shared library file of the PMC. This way,
deployment to other scanners will be easier. For this
project, this will be the goal to achieve in implementation.

Another challenge of this host computer is that it does
not have a GPU. Convolutions are known to be a
computational heavy operation. However, GPUs are
designed to be able to perform these operations at quicker
speeds than GPUs. Without a GPU, all predictions will
have to be made on the host computer’s CPU if the method
is to be fully implemented on the scanner.

All training was performed on a system with 2 ×
GeForce RTX 3090s with 24 GB each.

3.2 Initial Data Augmentations

From (Svane Olsen & Nguyen-Cong, 2021; Islam, et al.,
2021), it is clear supervised training can generate models
to predict rigid body transformation parameters. In both
cases, randomly generated transformations were applied to
the data to have an image pair of a reference and
a transformed image that were related via these
transformation parameters. In (Islam, et al., 2021), angles
for rotations were generated randomly between the interval
[−15°, 15°]. A random axis was chosen to perform the
rotation. Then a random distance between the interval
[−5, 5] was chosen to
perform a translation across the coordinate axis. It unclear
whether the researcher performed only one translation on
a single axis or one on each axis. In any case, the

METHOD
Initial Neural Network Design

18

researchers stated that this was not the focus of their study.
In (Svane Olsen & Nguyen-Cong, 2021), angles for
rotations were generated randomly between [−15°, 15°]
and transformations were randomly generated between
[−15 voxels, 15 voxels] for each axis. These were applied
to the datasets using the SimpleITK toolkit (Yaniv, et al.,
2018) in Python.

One concern with rigid body transformations on images
is the method of handling edges in the images after a
transformation. Since the coordinates of an image are
shifted in the same coordinate space, there will appear
undefined pixels. The most common way of handling these
undefined pixels is to set them to zero. For 2D axial MRI
images, this would not cause too much of an issue unless
there is heavy noise, as the skull is shown in the center of
the image. In (Islam, et al., 2021), Otsu thresholding was
applied to all images. This can effectively reduce the noise
of anatomical structure images since the distribution of
voxel intensities is crowded at different intervals, as seen
in Figure 7. However, for 2D sagittal and coronal MRI
images, setting the undefined pixels to zero can introduce
unrealistic edges in the transformed image. It is unclear
how this is addressed in (Islam, et al., 2021). These issues
appeared in (Svane Olsen & Nguyen-Cong, 2021) as well.
The distribution of voxel intensities is not similar to the
distribution present in structural images, as seen in Figure
7. Hence, simple thresholding of the voxel intensities was
made to address noise at the edges.

Since the goal of this project is to register fat navigators,
the initial approach to data pre-processing will be the same
as in (Svane Olsen & Nguyen-Cong, 2021), where a simple
threshold is applied first for reducing noise. The
transformation was then applied using the SimpleITK
toolkit in Python. For each of the 18000 3D fat navigators,
a random rigid body transformation was applied, using the
same random intervals as in (Svane Olsen & Nguyen-
Cong, 2021). Transformations were applied to the center
of the 3D image. Resampling was performed using a B-
spline interpolator. To ensure that the same pre-processing
steps were applied to the reference image, the same
functions were applied but with transformation parameters
equal to zero. In total, 18000 image pairs of a reference and
transformed images were generated with six single-
precision floats of the rotations in degrees and translation
in voxels applied on each axis.

3.3 Initial Neural Network Design

Earlier studies have shown that CNNs can perform
registration tasks (Svane Olsen & Nguyen-Cong, 2021;
Balakrishnan, et al., 2019; Islam, et al., 2021) on medical
images. Both approaches in (Svane Olsen & Nguyen-
Cong, 2021; Islam, et al., 2021) use supervised training,
and present CNN designs where an image pair of a
reference and transformed image were fed into their own
sequence of layers. Figure 5 shows this separate sequence
of layers. Due to the appearance of the network, it will be
named as a Y-branch network. The idea is that for each
layer in each branch of the network, additional folds are
created from the data. The results at the end of the branches
are concatenated. (Islam, et al., 2021) proceeds with
flattening and then with a FCNN which outputs six
numbers. In (Svane Olsen & Nguyen-Cong, 2021), the
concatenated result is pushed through another sequence of
layers before flattened, and then pushed through a FCNN.

The sequence of layers mentioned is a 3D convolution
layer, followed by a batch normalization layer and a ReLU
layer. In the case where the data size exceeds hardware
limits such as in (Islam, et al., 2021), 3D max pooling
layers were added after some ReLU layers to reduce the
dimensions.

Figure 7: Histograms from two 3D images. Top is a histogram
from a publicly available anatomical T1W MRI image and bottom
is a histogram from a fat navigator used in (Svane Olsen &
Nguyen-Cong, 2021).

METHOD
Initial Neural Network Design

19

A Bayesian approach to hyperparameter optimization
was initiated, using TensorFlow 2.7, with search
parameters based on the network designs in the mentioned
studies. The goal of the hyperparameter search was to
minimize a loss function on the validation dataset. The loss
function was defined to be the predefined MSE function in
the Keras library. A summary of these search parameters
is found in Table 1. A Y-branch network was searched for.

The number of convolution layers for a branch was
varied in steps of two between the interval [4, 20]. For each
convolution layer that will be generated in a branch, a
number for kernel size, stride, and filter parameter will be
varied. This selection will be the same in both branches.
Kernel size and stride will be varied between [1, 3] in steps
of one. This number will be applied to each direction of the
kernel size and stride, making it symmetrical. The number
of filters for a convolution layer in the branches varied
between the intervals [2, 1024] in steps of power of twos.
The selection of activation layers used after every
convolution layer in the network was varied between using
a sigmoid, tanh, ReLU, and Leaky ReLU function. Then
the data is pushed through a batch normalization layer. At
every fourth convolution layer, a dropout layer was added.
Max pooling layers were not added due to the already
relatively low dimensions of the input data. Reduction of
the dimensions was thought to

Once each input has been pushed through each layer of
their respective branches, the outputs are concatenated.
Another sequence of convolutions and activation layers are
varied in a similar way as in the branches. However, batch
normalizations and dropout layers are not added. The
output of the final convolution layer is flattened before
being sent into a FCNN. The number of dense layers is
varied between the interval [1, 5] in steps of 1, and the
number of neurons each contains varied between the
interval [2, 512] in steps of the power of two. The last layer
of the entire network will be a dense layer with six neurons

 The network will be trained using the SGD
optimization method, which is pre-defined in Keras. Its
learning rate is varied between the interval [1 ⋅ 10−1, 1 ⋅
10−5] and the momentum is varied between the interval
[0, 1 ⋅ 10−1, 1 ⋅ 10−2] in steps of the power of ten. The
Bayesian hyperparameter optimizer used was the
predefined optimizer in the Keras library, with the alpha
and beta parameter set to 1 ⋅ 10−4 and 2.6 respectively.
20% of the training dataset was used as a validation set,
while the remaining 80% was used to train networks.
Networks with no change greater than 1 in validation loss

Hyperparameter Search Parameter

Number of convolution layers
in a branch

Minimum value: 4

Maximum value: 20

Steps: 2

Symmetrical kernel size for a
convolution layer in a branch

Minimum value: 1

Maximum value: 3

Steps: 1

Number of filters for a
convolution layer in a branch

Minimum value: 2

Maximum value: 1024

Steps: Power of two

Symmetrical stride for a
convolution layer in a branch

Minimum value: 1

Maximum value: 3

Steps: 1

Dropout rate for dropout
layers in a branch

Minimum value: 0.0

Maximum value: 0.5

Steps: 0.1

Activation function for every
convolution layer in the
network

Sigmoid, Tanh, ReLU,
or Leaky ReLU

Leaky ReLU scalar parameter
0.5, 1 ⋅ 10−1, 1 ⋅ 10−2,

or 1 ⋅ 10−3

Number of convolution layers
in concatenated sequence

Minimum value: 1

Maximum value: 6

Steps: 1

Symmetrical kernel size for a
convolution layer in
concatenated sequence

Minimum value: 1

Maximum value: 3

Steps: 1

Number of filters for a
convolution layer in
concatenated sequence

Minimum value: 2

Maximum value: 512

Steps: Power of two

Activation function for every
dense layer in the network

Sigmoid, Tanh, ReLU,
or Leaky ReLU

Number of dense layers in the
FCNN

Minimum value: 1

Maximum value: 5

Steps: 1

Number of neurons for a
dense layer

Minimum value: 16

Maximum value: 512

Steps: Power of two

Learning rate of optimizer 1 ⋅ 10−1, 1 ⋅ 10−2, 1 ⋅ 10−3,

1 ⋅ 10−4, or 1 ⋅ 10−5

Momentum of optimizer 0, 1 ⋅ 10−1, or 1 ⋅ 10−2

Table 1: Search parameters for the initial Bayesian hyperparameter optimization
of a supervised training network design based on (Svane Olsen & Nguyen-Cong,
2021; Islam, et al., 2021) using the same dataset as in (Svane Olsen & Nguyen-
Cong, 2021) with similar augmentations, as described in section 3.2.

METHOD
Deployment of Deep Learning Model

20

after five epochs were aborted in training, and its current
weights are saved on the online toolkit for visualizations of
machine learning experiments Weights & Biases (Biewald,
2020).

Weights & Biases offers an analysis of parameter
importance and correlation with respect to a metric. This
method is inspired by Jeremy Howard, founder of the
machine learning education platform Fast.ai. A more
detailed motivation for this type of analysis is available in
the lecture notes (Howard, et al., 2018). From training
around 200 models based on the Bayesian hyperparameter
optimization initiated, the learning rate was the most
important parameter with respect to the MSE of the
validation set. A summary of other notable hyperparameter
importance and correlation is shown in Table 2. This gives
a more general idea of what type of network design would
yield the lowest MSE. An increase in the learning rate
would increase the loss function. This is most likely due to
Missing the global minimum during the gradient descent.
The number of convolution layers in each branch was
positively correlated to the loss function, meaning that
networks with more convolutions in the branches will
perform better in predictions than networks with fewer.
This is likely due to the that important features, or ‘folds’,
of the initial input data, are extracted the deeper the
network the data is in. Both filter number parameters
presented in the table show a positive correlation to the loss
function. This indicates that it is not the number of feature
extractions that are important for this task. Rather, the
correlation leans towards that well-fined filters to create
relevant ‘folds’ in the data is more important.

From these 200 models, the model with the lowest
validation loss was selected for further training and use. A
summary of the exact network parameters is shown in
Figure 8. This model was trained for 30 epochs with the
training dataset. 20% of this dataset was used as a
validation set. This reached an MSE on the validation set
of 1.3253772 and the interference time was 40 ms on a

GeForce RTX 3090 with TensorFlow 2.7, Cuda 11.2, and
Cudnn 8.1.1.33. The corresponding loss and interference
time is comparable to the results obtained by (Svane Olsen
& Nguyen-Cong, 2021), this shifted the focus of the
project towards deployment of the model onto the 7 T
scanner.

3.4 Deployment of Deep Learning Model

Interference time is the main factor in this deployment
challenge. Since the consensus is that Python performs
slower and occupies more memory in several tasks than
C++ (Zehra, et al., 2020), it was desired to avoid using a
wrapper to Python to call the DL libraries and generate a
prediction. Instead, it was desired to do this entirely inside
the environment of the host computer and the iMOCO
program, which was in C++. Due to the recent popularity
of DL, deployment is a frequently discussed topic, and
there exist several documentation and libraries that tackle
this challenge. Due to time constraints and personal
experience, it was not attempted to use the C++ API
directly.

3.4.1 Cppflow

Cppflow is a C++ library that is publicly available on
GitHub (Izquierdo, 2019), which allows for easy calling of
TensorFlow’s C++ API without the need to build
TensorFlow C. This will automatically enable eager
execution mode for fast training and debugging of
networks.

For easy testing of this approach for implementation, a
Python script will simulate calling the Cppflow program
for loading a pre-trained model. Then the Python side will
load an image pair from the test dataset and send it to the
Cppflow program as an array of single-precision floats in
a similar way to how the iMOCO program receives its
input arrays. The Cppflow program points to this array as

Hyperparameter Importance [1] Correlation [1]

Learning Rate of optimizer 0.217 0.246

Number of convolution layers in a branch 0.146 -0.189

Number of filters for second convolution layer in a branch 0.084 0.111

Momentum of optimizer 0.083 0.271

Symmtrical kernel size for first convolution layer in concatenated sequence 0.052 0.106

Symmtrical kernel size for second convolution layer in a branch 0.038 -0.089
Table 2: Hyperparameter importance and correlation with respect to the MSE of the validation set from the initial Bayesian hyperparameter optimization.
This was

METHOD
Deployment of Deep Learning Model

21

inputs for making a prediction with the pre-trained model.
The predictions are sent back to the Python script so that a
simple timer can be wrapped around this process.
Predictions of the same input images in a C++ and Python
environment using the same model were confirmed to be
the same.

Building the Cppflow library on the host computer
would not be as straightforward. The program written
needed to work in the same C++ environment as in the
host computer. Up to here, it had been built with C++17
since the standard release of Cppflow was written for it.
The majority of the host computer programs had been built
on C++98 and Visual Studio 2008, meaning that several
syntax differences needed to be addressed. Due to time
constraints and experience, syntax changes were made that
made Cppflow compatible with C++14. Further syntax
changes would involve figuring out what type of variable
each auto is creating. This is a time-consuming process.
The Cppflow changes for C++14 are available on GitHub.
Focus shifted then to another approach for deployment.

3.4.2 LibTorch

LibTorch is the official PyTorch C++ API which is
available to the public on the PyTorch website. It is not
clear at first whether this library would be easier to make
compatible with the host computer C++ environment.
Nevertheless, the hyperparameters which gave the lowest
MSE from the Bayesian hyperparameter optimization were
written entirely in PyTorch to generate a LibTorch
compatible model file. This model was trained with the
same training dataset for 30 epochs. The necessary
PyTorch scripts are available on GitHub.

During the development of a working LibTorch script,
it was noted that PyTorch is not compatible with 32-bit
systems, which the host computer runs on. Hence, another
shift of focus was made in the approach for deployment.

3.4.3 keras2c

The final C deployment library attempted to use for
implementation was keras2c (Conlin, 2021). In contrast to
the previous two methods, keras2c avoids the use of the

Figure 8: Model selected for deployment testing from the initial Bayesian hyperparameter optimization described in section 3.3.

METHOD
Deployment of Deep Learning Model

22

C++ libraries distributed by TensorFlow. Instead, core
functionalities that are required to perform an operation
with each layer in a network are written entirely in C99,
using only standard library functions. This would also be
functional on 32-bit systems but would not implement
GPU support out-of-the-box. All layer types from Figure 8
are supported with this library. The workflow of this
deployment method is illustrated in Figure 9.

A Python script is used to load a pre-trained model with
TensorFlow. Then it extracts all the necessary weights,
parameters, and architecture design to make a prediction.
These weights and parameters are saved into a separate
CSV file and the architecture is automatically translated to
the syntax of keras2c. This translation is a C file that
describes the functions to call to make a prediction in C. A
simple test script can call this prediction function and
measure the interference time. In the keras2c paper
(Conlin, et al., 2021), differences in interference times with
respect to model size between TensorFlow and keras2c
were mentioned, as well as differences in prediction
results. Hence, different models from the hyperparameter
optimization in section 3.3 with sizes with comparable
MSE to the model in Figure 8 had their predictions
between TensorFlow and keras2c compared, and their
interference times in keras2c measured.

The paper (Conlin, et al., 2021) presented results of
interference times with TensorFlow, TensorFlow Lite (a
lightweight deployment framework for TensorFlow), and
keras2c with different types of common layer operations.
The measured interference times in our study matched
these trends. The timings increased with increasing model
size, which can be explained by the larger number of
operations. For the model in Figure 8, the interference time
on keras2c was 206.25 s. However, a strange result was

that the difference in predictions between TensorFlow and
keras2c on the same input data was dependent on model
size. For smaller model sizes, this difference increased. It
is unclear what could be the reason for this result, and this
would be the ultimate reason to rethink the approach to
deployment.

3.4.4 Network Interface

One Python library which is included in the default
distribution of Python is socket. Socket enables client and
server to communicate with transmission control protocol
(TCP) and user datagram protocol (UDP). These types of
communications can enable information to be sent between
computers. Client-Server architecture is a standard type of
workflow for these communications in a network. In a
nutshell, the server refers to the computer that offers an
application service to a client. This server creates a socket,
that enables a connection and communication through a
port in the server computer, which goes into a waiting state
which listens for incoming connection requests from other
computers, named clients. The main difference between
TCP and UDP protocols is speed. The reason for this is that
TCP handles multiple clients in a different way than UDP
does. UDP handles all incoming data from multiple clients
through the same socket, whilst TCP assigns a unique
dedicated socket for each incoming connection (Jones &
Ohlund, 2002).

This way that UDP handles multiple connections can
introduce issues with the ordering of the client data.
Incoming data from multiple clients can overlap, which
leads to this issue. Hence, a TCP network type will be used.

At the 7 T scanner in DRCMR, there is exists a
computer on the same network as the host computer. This
computer has a GPU on it and runs Windows 10, and it will
be referred to as the GPU-computer. A TCP connection
between the GPU computer and the host computer can be
established, which can then send the data being sent to the
iterative algorithm to the GPU computer. This eliminated
the compatibility issues of DL frameworks that were
caused by the host computer’s environment. Now the data
could be processed in a 64-bit Windows 10 environment.
The only requirement for the server-side was that it sent an
array of six single-precision floats which describe the
rigid-body registration in the same way as the iterative
algorithm would have outputted it. This was done to reduce
the number of needed changes to the actual PMC program

Load Pre-Trained
TensorFlow Model

Model Weights &
Parameters

Network Architecture keras2c Library

Callable Network
Prediction Function

Written in C
Saved as Loadable File

Figure 9: Diagram showing the workflow of keras2c. (green) indicates Python
environment, (red) indicates datafiles, and (brown) indicates C environment.

METHOD
Deployment of Deep Learning Model

23

and to increase the robustness and deployment to other
scanners of this DL approach.

Due to time constraints, a complete replacement of the
registration method on the host computer was not made.
Instead, the PMC program sends the reference and current
fat-navigator through the TCP connection to the GPU
computer, then it waits for the six single-precision floats
before continuing in the program and generating a
registration with the iterative algorithm. The entire server
side of the TCP connection on the GPU computer was
coded in Python for flexibility, and speed was not
prioritized. In the end, two arrays will exist in the host
computer’s memory, one being the six floats from the TCP
connection and the other being the six floats from the
iterative method. However, the PMC will only continue the
program with the six floats received from the DL approach.
The general workflow of the scripts used is illustrated in
Figure 10. Timings can be measured of the DL approach,
the DL approach, and the iterative approach combined.

One clear obstacle now was the matching of the
coordinate systems. To make sure that the coordinate
system of the scanner matches the coordinate system of the
coordinate system used in the data augmentations, as
described in section 3.2, measurements with a phantom
and of a subject were performed.

For the measurements with a phantom, the standard fat
navigator sequence for the iMOCO program was used. The
server side made no predictions. Instead, after the images
have been received, the server sent to the client six single-
precision floats containing a shift, with a magnitude of 2,
in one of the degrees of freedom for ten fat navigators. This
shift is the same for each of the ten fat navigators. Another
set of ten navigators received another shift in another
degree of freedom. In this way, the PMC will apply these
transformations to the FOV, since it will be below the
threshold of 1 mm in the motion score from equation 32.
Then the way the PMC applies the transformations can be
assessed based on which direction the phantom is
transformed across the ten fat navigators. Since no
predictions are made, the timing for the connection
workflow can be measured. This was measured to be
roughly 15 ms on average across all fat navigator
acquisitions.

For the measurements with a subject, the same fat
navigator sequence was used. The server side made no
predictions, but it sends an array containing six zeros to the
client, meaning no transformations should be made to the
current navigator. The images received from the client side

also saved immediately as binary files on the hard drive of
the GPU computer, and the corresponding registration
computed by the iterative method was saved together with
the binary files. The subject was asked to move their head
corresponding to one of the degrees of freedom in rigid
body transformations at the fifth fat navigator acquisition.
Then the first five navigators will in the reference image
position, and the last five navigators will be located at
another position. Six sets of ten navigators were acquired,
where at each set, the last five navigators had moved in one
of the degrees of freedom. The fourth and ninth navigator
of these sets were inputted into the pre-trained model from
section 3.3. The output predictions are compared to the
corresponding iterative computations. It the dimensions of
the model predictions were shifted and inverted to identify
which order the PMC expected the dimensions to be in the
six floats array.

Based on these phantom and subject measurements, no
major changes to the dimensions needed to be made, other
than that the PMC expects the slice direction dimension to
be first, i.e., 7 mm × 5.33 mm × 5.33 mm. Now knowing
the difference between the coordinate systems, predictions

Figure 10: Workflow of the TCP communication scripts between
the host computer (brown) and the GPU computer (green).

METHOD
In-Vivo Testing

24

on the server-side with the initial model were compatible
with the PMC program by some shift in dimensions.

The 40 ms interference time measured for the initial
model used different hardware than what is available on
the GPU computer. Interference times on the GPU
computer reached roughly 100 ms on average. This
realization prompts the interest in designing smaller
models to reduce computation times. However, even with
the 100 ms time, this network workflow is comparable to
the iMOCO method.

3.5 In-Vivo Testing

One of the most interesting questions to answer in this
project is to determine whether models trained in a
supervised fashion with synthetic transformations can
perform accurate registration with real data. This was
tested on the data gathered for the coordinate system
verification in section 3.4.4. The six parameters from the
iterative method on the scanner and the initial pre-trained
model were used to apply transformations on the ninth

navigator of each set. These were visually inspected. It was
clear that the iterative method produced correct
transformations, i.e., that the transformed and reference
navigators were accurately registered. Registration with
the DL parameters did not lead to any acceptable results,
both visually and numerically by assuming the iterative
method is a ground truth.

It was first assumed that this deviation was due to the
issues mentioned in section 3.2 of the handling noise and
clipping at edges due to transformations. Hence, a new
approach to data augmentations was taken. Rotations were
limited to the interval [−5°, −5°], and translations were
limited to the interval [−2, 2]. This was considered to be
realistic magnitudes of motion within the head coil of the
7 T. Note that the translation interval is denoted in voxels,
thus the maximum amount of motion this would include is
14 mm in the slice direction. Thresholding of setting all
pixels below 10% of the maximum intensity value in the
navigator was set to zero.

One realization was that the network architecture could
be re-designed. Instead of having two branches of
convolution layers, the subtracted image of the reference
and current navigator could be inputted into a single branch
network. This would significantly reduce the number of
operations in the network but keep information from both
images in it.

Based on these new approaches, a new Bayesian
hyperparameter optimization was initiated which searched
hyperparameters with this new dataset and architecture that
optimized an MSE loss function on a validation set. This
was done in the same way as in section 3.3, but with the
following differences based on the results from Table 2 and
intuition. A summary of the hyperparameter search is
available in Table 3.

The total number of convolution layers varied between
the intervals [4, 10] in steps of one. Each convolution layer
had a kernel size of (4, 4, 2) and a stride of (1, 1, 1). The
number of filters varied for a convolution layer between
the intervals [4, 9] in steps of the power of two. The final
parameter that varied for the convolution layers was the
activation function. This was varied between using ReLU
and Leaky ReLU activation function, where the Leaky
ReLU scalar was set to 0.3.

After each convolution layer, the output passes a batch
normalization layer, then a dropout layer. This dropout
layer dropped 10% of the data. At the third and second last
convolution layers, the data passed through a 3D Max
Pooling layer with a pool size of (2, 2, 1).

Hyperparameter Search Parameter

Number of convolution layers
Minimum value: 4

Maximum value: 10

Steps: 2

Number of filters for a
convolution layer

Minimum value: 2

Maximum value: 512

Steps: Power of two

Activation function for every
convolution layer

ReLU, or Leaky ReLU

Number of dense layers in the
FCNN

Minimum value: 2

Maximum value: 6

Steps: 1

Number of neurons for a
dense layer

Minimum value: 16

Maximum value: 512

Steps: Power of two

Optimizer choice SGD, or ADAM

Learning rate of optimizer 1 ⋅ 10−1, 1 ⋅ 10−2, 1 ⋅ 10−3,

1 ⋅ 10−4, or 1 ⋅ 10−5
Table 3: Search parameters for the new Bayesian hyperparameter optimization of
a supervised training network design using a dataset with similar augmentations,
as described in section 3.5.

METHOD
Unsupervised Training

25

After the final dropout layer, the data is flattened before
being sent into an FCNN. The number of dense layers
varied between the intervals [2, 6] in steps of one. The
number of units in a dense layer varied between the
intervals [4, 9] in steps of the power of two. The selection
of activation function for all dense layers, besides the
output layer, was the tanh function.

The optimizer choice varied between using the SGD or
the ADAM algorithms with varying learning rates between
the interval [1 ⋅ 10−1, 1 ⋅ 10−5] in steps of the power of ten.

The model with the lowest MSE was selected for
further training with the training dataset and 30 epochs.
This reached a validation loss of 0.2034, which is at least
a factor 6 less than the loss of the initial Y-branch model.
Predictions were made on the coordinate system
verification data. Visually, these predicted transformations
were more accurate than the Y-branch model. The
numerical differences in the six transformation parameters
from the iterative and the new DL model were less than
with the Y-branch model. However, the magnitude of the
difference was still too large to consider the DL model as
an accurate predictor of registration parameters. This still
leaned towards the conclusion that a more accurate model
could be achieved from the improvement of the
architecture and data pre-processing.

3.6 Unsupervised Training

An unsupervised training approach was attempted with
the same network-style as in Figure 11. However, the
outputs of the network had a spatial transformer layer

(STL) and the six transformation parameters. The idea of
using an STL comes from previous DL registration studies
(Jaderberg, et al., 2016). The STL will apply the predicted
transformation parameters to the input moving image.
Then the loss function can be adapted to minimize the
difference between the STL output and the reference
image. This difference is evaluated by using a normalized
cross-correlation (NCC).

Since the use of synthetic motion data can be avoided,
a new data set was collected from two subjects. Each
subject was instructed to move their head during an
examination. Hence, around 2000 image pairs were
collected. Each pair consisted of a moving image and a
reference image.

In a similar way as in the supervised training
approaches, the network was trained on these 2000 image
pairs with the goal of minimizing the NCC in the data set.
The trained network was used to pass the entire data set
again through the network and evaluate the outputs NCC.
Additionally, the data set used to determine the scanner
coordinate system was also passed through the network
and the outputs NCC was evaluated.

Figure 11: Model selected from the second Bayesian hyperparameter optimization described in 3.5.

METHOD
Unsupervised Training

26

27

4 Results

As mentioned in the methods section, a DL pipeline for
image registration was embedded on the Philips 7 T
scanner at DRCMR. Different approaches to this were
investigated and the findings relevant to the conclusions
made are presented here. Development of a DL network
that accurately registers fat navigators was investigated.
The results from the development stages are presented here
as well.

4.1 Initial Supervised Training Network
Design

The initial supervised network architecture based on
previous studies designs was hyperparameter optimized
using a Bayesian approach to the initial data augmentations
dataset with the goal of minimizing the MSE of the
validation data set. Around 200 models were trained with
this search, as summarized in Table 1. Figure 12 shows the
validation loss calculated at each epoch. Only models
reaching validation losses below 5 are displayed.

The model design that reached the lowest loss was used
and trained further with 30 epochs on the same training
data set. The validation loss calculated at each epoch on
this training is shown in Figure 13. This model will be
named as the supervised trained Y-branch model (SYM).
The model predicted transformation parameters for the
image pairs in the testing data set. The difference between
these predictions and the actual transformations of the
testing data set is plotted as a histogram in Figure 14. A
random image pair in the testing dataset is used to visualize
the DL registration. These results are shown in Figure 15.

Figure 12: MSE on the validation dataset versus epochs of models trained in
the first Bayesian hyperparameter optimization.

Figure 13: The model which reached the lowest MSE in Figure 12 was used
for training with 30 epochs. The results from the training for each epoch is
presented in the plot.

RESULTS
Deployment of Deep Learning Model

28

4.2 Deployment of Deep Learning Model

The interference time of the SYM with Cppflow and
keras2c was tested. Table 4 shows these results. The
dependence of interference time in keras2c with the

number of parameters in a model was investigated. The
SYM and two other models which reach similar MSE with
the validation data set were used to make a prediction on
the same input data using keras2c. This result is presented
in Figure 15.

Figure 14: Histogram of differences in predictions made on the testing dataset with the model trained in Figure 12 and the actual transformation parameters.

Figure 15: Registration example of one of the image pairs in the testing data set of the first data augmentations. The first row of slices in the coronal,
sagittal and transversal planes show the raw input into the SYM, meaning no registration performed. Green shows the randomly generated motion image
and red shows the image without any motion (i.e., reference). The yellow colors indicate where the two images overlap, due to additive blending. The
second row of slices show the same planes, but the green image now shows the suggested transformation by the SYM of the motion image for registration.

RESULTS
Improvements to Supervised Training Network Design

29

Predictions made with SYM on Cppflow were the same
as in TensorFlow using the same input data. However, this

was not the case with keras2c. The same models used
to determine the interference time dependence were used

to calculate the absolute difference in predictions. The
maximum difference is shown in Figure 16 where it is
plotted against of the number of parameters in the model.

The network interface approach for deployment was
benchmarked. The timer on the host computer side
measured the TCP communication speed which includes
sending roughly 4.85 MB. This was found to be around 20
ms. Due to the hardware on the GPU computer, the
interference time was twice as long as measured on the
offline testing environment.

In combination of determining the coordinate system of
the data the PMC program uses, DL registration applied
offline was compared to the scanners registration of known
motion directions. Meaning, data of actual motion. The
difference between the transformation parameters for
registration of an image determined by the scanner and the
SYM is shown in Table 5.

4.3 Improvements to Supervised Training
Network Design

As it was roughly twice as long to make a prediction with
the SYM model on the GPU computer, it was convenient
to discover that the computational cost of the initial
network design could almost be halved by inputting the
difference between the volume pairs into the model instead
of a Y-branch approach. This was confirmed from the
models trained in the second Bayesian hyperparameter
search. This search trained around 200 models on the
second data augmentations (i.e., the data set with less
extreme transformations). Figure 18 shows the validation
loss calculated at each epoch for 20 models which reached
the lowest loss.

As with the SYM, the model reaching the lowest
validation loss was trained further for 100 epochs on the
training data set, and the validation loss calculated at each
epoch is shown in Figure 19. This trained model was used
to predict transformation parameters for registration of an
image pair for an entire test data set, as with the SYM. A
histogram of the differences in transformation parameters
is shown in Figure 20.

Transformation parameters for registering the data set
used for determining the coordinate system in the PMC
program were calculated using this new subtraction style
model. Then, in the same way as with the SYM, the
difference is presented in Table 6. An example of the
extreme motion registration is visualized in Figure 21.

Framework Interference Time [s]
Python TensorFlow CPU ~10
Python TensorFlow GPU ~0.040
C++ Cppflow ~8
C keras2c ~200
Table 4: Interference time of SYM using different DL deployment
frameworks with the same input data.

Figure 17: The absolute maximum difference between TensorFlow
models predictions made on TensorFlow(Python) and keras2c(C) using
the same input data.

Figure 16: Three trained DL TensorFlow models with different number of
parameters used to make a prediction on keras2c with the same input data.
The interference time is plotted.

RESULTS
Improvements to Supervised Training Network Design

30

Figure 20: Histogram of differences in predictions made on the testing dataset with the model trained in Figure 20 and the actual transformation parameters.

Figure 18: MSE on the validation dataset versus epochs of models trained
in the second Bayesian hyperparameter optimization of the subtraction
model.

Table 5: Difference in transformation parameters for registration of image pairs with known motion directions from the scanner and the SYM. Green values indicate
positive values and red values indicate negative values. Golden bars indicate the relative magnitude of the difference between the transformation parameters in a single
degree of freedom.

Motion Registration x rotation [°] y rotation [°] z rotation [°] x translation [mm] y translation [mm] z translation [mm]
Deep Learning -0.3058 0.6716 0.6166 0.8891 -4.7260 9.6780

Scanner -0.9611 -0.0620 -0.4982 0.9349 -0.2397 4.6859
Difference 0.655 0.734 1.115 0.046 4.486 4.992

Deep Learning -2.4686 1.4410 3.9160 9.5846 10.0013 1.3631
Scanner 0.1701 -0.4008 -0.2243 1.2409 5.2418 1.8220

Difference 2.639 1.842 4.140 8.344 4.760 0.459
Deep Learning -3.2371 0.4992 3.7185 11.5507 11.6363 5.4866

Scanner 2.1561 -0.5233 -1.6450 1.6396 7.5922 2.9342
Difference 5.393 1.022 5.363 9.911 4.044 2.552

Deep Learning 1.4212 0.7230 0.3191 7.0169 -2.6217 -2.2353
Scanner 0.0592 -1.3242 -0.4443 2.3815 -0.6369 0.4915

Difference 1.362 2.047 0.763 4.635 1.985 2.727
Deep Learning 0.1554 -2.0589 3.0236 5.1428 3.4053 8.9064

Scanner 3.4745 -0.7812 0.9748 0.4802 2.6974 1.1133
Difference 3.319 1.278 2.049 4.663 0.708 7.793

Deep Learning 1.7253 13.2859 2.6475 12.0396 -1.4133 -17.4395
Scanner -0.0296 4.9990 -0.2260 7.2105 -0.7089 -3.2666

Difference 1.755 8.287 2.874 4.829 0.704 14.173
Deep Learning -0.0683 2.3281 1.2897 3.5457 -5.1324 -0.9067

Scanner -1.0445 1.1430 -3.6544 0.5592 -3.2164 -0.8386
Difference 0.976 1.185 4.944 2.987 1.916 0.068

Looking Right

Right Motion

Forward Motion

Looking up

Anti-Clockwise

rotation

Left to Right

(extreme motion)

Head Towards

Feet

Figure 19: The model which reached the lowest MSE in Figure 18Figure
12 was used for training with 100 epochs. The results from the training for
each epoch is presented in the plot.

RESULTS
Improvements to Supervised Training Network Design

31

Motion Registration x rotation [°] y rotation [°] z rotation [°] x translation [mm] y translation [mm] z translation [mm]
Deep Learning 0.3084 -0.4953 -0.1798 0.6272 0.0288 3.5858

Scanner -0.9611 -0.0620 -0.4982 0.9349 -0.2397 4.6859
Difference 1.269 0.433 0.318 0.308 0.269 1.100

Deep Learning -0.7413 0.0780 2.2470 2.4410 5.6787 1.2223
Scanner 0.1701 -0.4008 -0.2243 1.2409 5.2418 1.8220

Difference 0.911 0.479 2.471 1.200 0.437 0.600
Deep Learning -0.8891 0.0762 1.7563 4.7033 7.2104 2.5639

Scanner 2.1561 -0.5233 -1.6450 1.6396 7.5922 2.9342
Difference 3.045 0.600 3.401 3.064 0.382 0.370

Deep Learning -0.3892 -0.3071 0.3082 2.9211 1.2215 -0.1875
Scanner 0.0592 -1.3242 -0.4443 2.3815 -0.6369 0.4915

Difference 0.448 1.017 0.752 0.540 1.858 0.679
Deep Learning 0.5610 0.1060 1.9804 3.7438 3.8187 2.0148

Scanner 3.4745 -0.7812 0.9748 0.4802 2.6974 1.1133
Difference 2.913 0.887 1.006 3.264 1.121 0.902

Deep Learning 0.0412 1.6048 -1.3230 1.0610 -1.1035 0.7835
Scanner -0.0296 4.9990 -0.2260 7.2105 -0.7089 -3.2666

Difference 0.071 3.394 1.097 6.149 0.395 4.050
Deep Learning -1.5180 0.6999 -1.1210 0.7943 -0.3918 0.6283

Scanner -1.0445 1.1430 -3.6544 0.5592 -3.2164 -0.8386
Difference 0.474 0.443 2.533 0.235 2.825 1.467

Forward Motion

Anti-Clockwise

rotation

Right Motion

Left to Right

(extreme motion)

Head Towards

Feet

Looking Right

Looking up

Table 6: Difference in transformation parameters for registration of image pairs with known motion directions from the scanner and the subtraction style model. Green
values indicate positive values and red values indicate negative values. Golden bars indicate the relative magnitude of the difference between the transformation
parameters in a single degree of freedom.

Figure 21: Registration example of the “Left to Right” image pair of the coordinate system determination data set. The first row of slices in the coronal,
sagittal and transversal planes show the registration made by the scanner. The second row shows the suggested registration by the subtraction style
model. Green shows the transformed image by the respective registration method. The yellow colors indicate where the two images overlap, due to
additive blending.

RESULTS
Unsupervised Learning Network Design

32

4.4 Unsupervised Learning Network
Design

With the goal of minimizing a NCC between a registration
of image pairs, a subtraction model was searched for using
a random search hyperparameter optimization approach.
Around 50 models were trained in this search. Figure 22
shows the NCC at each epoch of 20 of these models which
reached the lowest NCC.

The model reaching the lowest NCC was used for
further benchmarking. First, the entire data set used to train
the model was passed through the trained model to
determine the distribution of NCCs. The same input data
was passed through the FreeSurfer rigid body registration
program. The results of this are presented in Figure 23. To
avoid bias, the small data set used to determine the
coordinate system of the scanner was also passed through
the same registration methods. These results are presented
in Figure 24.

Figure 22: NCC on 200 random images versus epochs of models trained in
the second random search hyperparameter optimization of the subtraction
model.

Figure 23: Box plot of NCC distribution of (left) input data, (center) output registration from FreeSurfer, and (right) output registration from DL. Data is the same
training data used for the training the model.

RESULTS
Unsupervised Learning Network Design

33

Figure 24: Box plot of NCC distribution of (left) input data, (center-left) output registration from FreeSurfer, (center-right) output registration from DL, and (right)
output registration from the scanner. Data is the coordinate system determination data. There are less data points in the scanner distribution due to missing
information of the scanners transformation parameters for registration for 80% of the data set.

35

5 Discussion

The results from this thesis show that DL can accurately
perform rigid-body registration of fat navigators obtained
at 7 T to some extent. The handling of the data and the type
of motion data used for training are shown to be important
in generating a feasible network for registration. This is a
consensus in DL, that data plays a major role in training a
feasible network. Different approaches to manipulation of
the input data in supervised training were investigated, as
well as training on actual motion data in an unsupervised
fashion. Furthermore, the interference times of performing
DL registration of fat navigators outrun the current
iterative method used in iMOCO. Therefore, it is possible
to replace the iterative method in iMOCO with a DL
approach with respect to speed, however several general
DL issues need to be addressed first to be able to count on
the registrations made from the network.

From following approaches that recent DL registration
in MRI researchers have used (Svane Olsen & Nguyen-
Cong, 2021; Islam, et al., 2021), a supervised trained
network was obtained. From the initial hyperparameter
search and data manipulations, Figure 12 shows that out of
around 200 models, the network reaching the lowest
validation loss was used for further training. It would be
interesting to investigate further hyperparameter
optimizations. However, the validation loss reached by the
selected model was comparable to the losses obtained in
the previous study which had the same initial dataset
(Svane Olsen & Nguyen-Cong, 2021), and due to time
constraints, focus on deployment of this network onto the
scanner became a priority. Figure 13 shows this network
trained and that it reaches convergence within in the
number of epochs used. The distribution of errors in Figure
14 agreed with the results obtained in the previous study

(Svane Olsen & Nguyen-Cong, 2021). However, visually
observing the registrations as in Figure 15 shows
unacceptable results of registration to be expected in the
iMOCO workflow.

The conclusion from this poor result was that the data
manipulations to generate fat navigators with motion were
too extreme. Additionally, speed of this DL registration
method was an important parameter to investigate.
Reconsiderations of the suggested network design were
made, and the SYM model reached similar validation
losses with the same input data as the Y-branch model did.
This design choice almost halved the interference time
without the cost of accuracy.

After reducing the distribution of translations and
rotations, the error distribution was reduced by almost a
factor four in translations as shown in Figure 20. This
showed that the generation of motion data played a role in
the accuracy of the DL registration predictions. An
interesting result is that the distribution of errors in
rotations did not decrease at the same grade as in
translations. This shows that the network had a hard time
learning rotation and that only changes to the degree of
transformations in the training data was not enough to
improve this ability. The results from both Table 5 and
Table 6 support this conclusion. When isolating one
rotation degree of freedom, differences between the
iMOCO program and DL network rigid body registration
parameters were larger than when isolating one translation
degree of freedom. To confirm the accuracy of the
registration from iMOCO, registration pairs were visually
inspected as well as the NCC for seven fat navigator pairs
is presented in Figure 24. Both comparisons support the

DISCUSSION
Unsupervised Learning Network Design

36

use of the parameters of the scanner as a comparable
registration.

Still, registration differences after the improvements to
the supervised training data generation were not acceptable
for replacing the iterative method in iMOCO. Reductions
in differences were significant after the change in data
generation, as seen in Table 6. Yet, the differences could
reach 4 mm and 3.3°. These motions presented in the table
were simulated to be as realistic as possible. Therefore,
when the iMOCO program detects motions of around 7.5
mm or 4°, this means that the registration by the DL
method can be expected to be at least 50% incorrect, which
wouldn’t be feasible to use in iMOCO.

One limitation not completely addressed in the
supervised training approach was the clipping that arises
from the transformations applied to the fat navigators. This
was partially addressed by the windowing applied to the
images before inputted into the network. This limited the
effect that noise had on the clipping. Undefined voxels that
appeared due to clipping in the volume were assigned to be
zero. Hence, the noise present outside the skull did exist in
the zero-filled areas. Removal of the noise was successful
to some extent by visually testing different window
settings on a few selected fat navigators. Simulating this
noise was not attempted in this thesis. It would be
interesting to attempt this to improve the accuracy of the
registration network. Since by eliminating noise in the
volumes with windowing, important information for NN
can be lost.

Other DL registration methods for MRI involve some
preprocessing steps for data inputted into the network and
have shown to produce accurate registrations of more
complex geometries compared to fat navigators. One
recent study used these types preprocessing steps as well
as simulating MRI artifacts on images taken with a MR
scanner. Registration networks trained on this data could
match the accuracy of state-of-the-art registration methods
in MRI (Hoffmann, et al., 2021).

Setting a larger FOV for when acquiring fat navigators
was also considered in this thesis. However, the first
dataset was assumed to be enough at first to train an
accurate registration network. The idea of an increase in
FOV was to make it easier to reduce the effects of the
clipping when applying transformations to the volumes.
The issue will still exist in the edges of the volume towards
the body of the subject. Another potential solution would
be to replace the undefined voxels with the actual volume
flipped along that edge. This would hopefully lead to more

accurate registrations on real motion data, since the DL
network would be trained on data set which lacked
unrealistic motion volumes. Other solutions could involve
reducing the FOV of the training data set after
transformations has been applied. Then use the DL
network to acquire transformation parameters which
register a smaller FOV of actual acquired motion data. This
will lower the chance that the network will hunt for
clipping artifacts in actual motion data. Thus, improve the
accuracy of the DL registration. However, this will also
reduce the amount of information fed into the network
which could play a role in accurate DL registration. The
significance of the using the entire FOV in comparison to
using a smaller FOV was not investigated in this thesis.

Additionally, the supervised training data set consisted
of each individual fat navigator volume being assigned a
random transformation once to create a pair. Other studies
(Islam, et al., 2021) have shown that a larger number of
randomly assigned transformations to a single image can
have a positive impact on the accuracy of DL rigid body
registration. By which, the data set increases in size, and
potentially a sufficient number of synthetic motion
volumes are generated for the network to learn accurate
registration.

Up to this point, only the supervised training approach
has been discussed. In principle, common data set issues in
DL have emerged in this project with this approach. The
reasoning for this approach was to acquire some sort of
ground truth in the predictions that we wanted the DL
network to make based on some image pair with motion
and without. Defining a patient’s motion and linking it to
some acquired fat navigator is a difficult task to assure that
it is accurate. One method could be to acquire data on
patient’s head position with lasers or pressure plates.
However, the motion determined here might not accurately
represent the motion of the brain. The accuracy of these
types of methods can also limit the validity of these motion
measurements. In cases where ground truth data is
unobtainable for supervised training, it is common to
consider an unsupervised approach.

Based on previous studies (Balakrishnan, et al., 2019;
Hoffmann, et al., 2021) approach to MRI registration using
DL, an unsupervised training approach was attempted to
solve the lack of ground truth data issue. A network similar
to the SYM was used, with the addition of a spatial
transformer layer (Jaderberg, et al., 2016) at the end. While
being trained on several image pairs only acquired from
two subjects, the network was still able to improve the

DISCUSSION
Unsupervised Learning Network Design

37

correlation of a data set of image pairs from a completely
new and unseen subject, as seen in Figure 24. However,
FreeSurfer’s rigid body registration still outperformed the
DL registration when comparing the change in correlation.

One assumption that needs to be taken into
consideration is whether NCC is a good indicator of
registration efficiency. The previous studies
(Balakrishnan, et al., 2019; Hoffmann, et al., 2021) used
NCC as their loss function when training their networks.
However, these studies performed deformable registration
to MR images with different contrasts. Since the aim of this
thesis was to register exclusively fat navigators to each
other, a simpler loss function could potentially have been
used, such as an MSE. This was rapidly tested when
designing the unsupervised network. It was quickly
concluded that the NCC would result in better
performance. This conclusion could be flawed due to other
limitations of this unsupervised training approach.
Furthermore, observing a random registration visually
from using the DL method or an iterative method as in
Figure 21, it can be assumed that the magnitude of NCC
achieved by the iterative methods corresponds to
acceptable registration since the amount of additive
blending in the iterative method registration dominates and
is greater than in the DL registration. This trend was
observed in all slices of the volumes.

One limitation of the unsupervised training approach is
that fat navigators in the data set were acquired from only
two subjects. The low number of subjects was due to the
time constraints in this project. Typical data set sizes used
for training DL registration networks are around 400
subjects (LaMontagne, et al., 2019). With data sets, this
large, DL registration networks have been trained to match
state-of-the-art registration programs in MRI (Hoopes, et
al., 2021). The limited number of subjects in this thesis
does impair the generalizability of the network to new
subjects. This can be seen in the differences of NCC
between the training data set and a new subject data set, as
seen in Figure 23 and Figure 24 respectively. For the
unseen subject, the network performed worse than on the
training data set. This is generally an expected result in
machine learning, and it could be seen in Figure 13 and
Figure 19 for the supervised training approach as well. One
notable result is that even the iterative methods performed
worse on this unseen subject data set, as seen in Figure 24.
This could indicate that this specific data set was difficult
to perform accurate registration for. Furthermore, the
performance difference between the iterative and DL

registration methods were similar between two data sets.
The unseen data set was initially used to determine how the
scanner defined its coordinate system. Hence, it contained
extreme subject motion in each of the six degrees of
freedom. If this data set contained difficult registration
problems, then a part of the decreased performance of the
DL registration can be associated to this. Assuming this,
then the DL registration performed adequately well for
only being trained two subjects. The need for a relatively
large data set might not be needed to tackle this machine
learning problem. This could be due to the somewhat
simpler geometry of fat navigators that desired to be
registered in comparison to other DL registration studies
where T1W volumes are registered to DWI volumes.

As previously mentioned, a smaller FOV might have
been a solution to the clipping artifacts arising from the
synthetic motion volumes generation in the supervised
training approach. In an attempt to improve the accuracy
of the unsupervised training approach, the calculation of
the NCC was restricted to an inner cube of the original
FOV. Specifically, three voxels inwards from each edge of
the volume became the new volume to be considered in the
NCC. A quick comparison of accuracy by doing this
showed positive results. This could indicate that the
relevant information for DL registration of fat navigators
is contained in the smaller volume.

The spatial temporal profile of MRI images has shown
to be compressible. Thus, hinting that the dimensionality
of this registration problem could be reduced. One possible
solution could be to describe the image at a certain time
point with a low rank approximation or another compact
representation. By predetermining a reasonable
dimensionality reduction of this problem in before-hand
would decrease the number of parameters. This would
potentially speed up the iterative method, but also the
generalizability of trained DL models.

39

6 Conclusion

Overall, the feasibility of replacing the iterative
registration method in the iMOCO framework with a DL
registration method is poor. A method for testing DL
registration network's performance in conjunction with
iMOCO was successfully implemented onto the Philips 7
T scanner at DRCMR. Creating an accurate DL
registration network is heavily dependent on the data set
used. For supervised trained networks, the use of less
extreme random transformations in the generation of
training data improved registration accuracy significantly.
For unsupervised trained networks, it is possible to
generate accurate DL registration networks with a limited
number of subjects. This also showed that the ground truth
of transformations for registration is not essential.

In conclusion, more data acquisition and research are
needed to reach a feasible network. The performance of DL
registration networks generated in this thesis are inferior to
the current iterative method in iMOCO.

41

7 References

Afacan, O. et al., 2016. Evaluation of motion and
its effect on brain magnetic resonance image
quality in children. Pediatric Radiology,
November, 46(12), pp. 1728-1735.
Andersen, M. et al., 2019. Improvement in
diagnostic quality of structural and angiographic
MRI of the brain using motion correction with
interleaved, volumetric navigators. PLOS ONE,
May, 14(5), p. e0217145.
Andre, J. B. et al., 2015. Toward Quantifying the
Prevalence, Severity, and Cost Associated With
Patient Motion During Clinical MR Examinations.
Journal of the American College of Radiology,
July, 12(7), pp. 689-695.
10.1016/j.jacr.2015.03.007.
Balakrishnan, G. et al., 2019. VoxelMorph: A
Learning Framework for Deformable Medical
Image Registration. IEEE Transactions on
Medical Imaging, 38(8), pp. 1788-1800.
Biewald, L., 2020. Experiment Tracking with
Weights and Biases. [Online]
Available at: https://www.wandb.com/
[Accessed 24 12 2021].
Bookwalter, C., Griswold, M. & Duerk, J., 2010.
Multiple Overlapping k-Space Junctions for
Investigating Translating Objects (MOJITO).
IEEE Transactions on Medical Imaging, February,
29(2), pp. 339-349.
Brown, R., 2014. Magnetic resonance imaging:
physical principles and sequence design. 2. ed ed.
Hoboken, NJ: Wiley Blackwell.
Conlin, R., 2021. f0uriest/keras2c: v1.0.2.
[Online]

Available at: https://zenodo.org/record/5708865
[Accessed 26 12 2021].
Conlin, R., Erickson, K., Abbate, J. & Kolemen,
E., 2021. Keras2c: A library for converting Keras
neural networks to real-time compatible C.
Engineering Applications of Artificial
Intelligence, Volume 100, p. 104182.
Godenschweger, F. et al., 2016. Motion correction
in MRI of the brain. Physics in Medicine and
Biology, March, 61(5), pp. R32-R56.
Haacke, E. & Patrick, J. L., 1986. Reducing
motion artifacts in two-dimensional Fourier
transform imaging. Magnetic Resonance Imaging,
January, 4(4), pp. 359-376.
Havidich, J. E. et al., 2016. Preterm Versus Term
Children: Analysis of Sedation/Anesthesia
Adverse Events and Longitudinal Risk. Pediatrics,
March, 137(3), p. e20150463.
Hoffmann, M. et al., 2021. SynthMorph: learning
contrast-invariant registration without acquired
images. IEEE Transactions on Medical Imaging,
pp. 1-1.
Hoopes, A. et al., 2021. HyperMorph: Amortized
Hyperparameter Learning for Image Registration.
arXiv:2101.01035 [cs, eess].
Howard, J., Thomas, R. & Gugger, S., 2018. 4—
Feature Importance, Tree Interpreter. [Online]
Available at:
https://course18.fast.ai/lessonsml1/lesson4.html
[Accessed 25 12 2021].
Islam, K. T., Wijewickrema, S. & O’Leary, S.,
2021. A deep learning based framework for the
registration of three dimensional multi-modal

D
ISCUSSION
r
k

42

medical images of the head. Scientific Reports,
11(1), p. 1860.
Izquierdo, S., 2019. Cppflow. [Online]
Available at: https://github.com/serizba/cppflow/
[Accessed 25 12 2021].
Jaderberg, M., Simonyan, K., Zisserman, A. &
Kavukcuoglu, K., 2016. Spatial Transformer
Networks. Advances in neural information
processing systems 28.
Jones, A. & Ohlund, J., 2002. Network
programming for Microsoft Windows. 2nd ed ed.
Redmond, Wash: Microsoft Press.
LaMontagne, P. J. et al., 2019. OASIS-3:
Longitudinal Neuroimaging, Clinical, and
Cognitive Dataset for Normal Aging and
Alzheimer Disease. Radiology and Imaging.
Olsson, H., 2021. Gradient echo-based qantitative
MRI of human brain at 7T: mapping of T1, MT
saturation and local flip angle. Thesis.
Paszke, A. et al., 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library.
Curran Associates, Inc., pp. 8024-8035.
Qin, L. et al., 2009. Prospective head-movement
correction for high-resolution MRI using an in-
bore optical tracking system. Magnetic Resonance
in Medicine, October, 62(4), pp. 924-934.
Rojas, R., 1996. Neural Networks. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Svane Olsen, O. & Nguyen-Cong, C., 2021. Deep
Learning-based Motion Correction in Magnetic
Resonance Imaging. Copenhagen: Technical
University of Denmark.
Tisdall, M. D. et al., 2012. Volumetric navigators
for prospective motion correction and selective
reacquisition in neuroanatomical MRI:
Volumetric Navigators in Neuroanatomical MRI.
Magnetic Resonance in Medicine, August, 68(2),
pp. 389-399.
Törnqvist, E., Månsson, Å., Larsson, E.-M. &
Hallström, I., 2006. Impact of extended written
information on patient anxiety and image motion
artifacts during magnetic resonance imaging. Acta
Radiologica, June, 47(5), pp. 474-480.
Usman, M. et al., 2020. Retrospective Motion
Correction in Multishot MRI using Generative
Adversarial Network. Scientific Reports,
December, 10(1), p. 4786.

Yaniv, Z., Lowekamp, B. C., Johnson, H. J. &
Beare, R., 2018. SimpleITK Image-Analysis
Notebooks: a Collaborative Environment for
Education and Reproducible Research. Journal of
Digital Imaging, 31(3), pp. 290-303.
Zehra, F., Javed, M., Khan, D. & Pasha, M., 2020.
Comparative Analysis of C++ and Python in
Terms of Memory and Time. preprint.

	1 Introduction
	1.1 Background
	1.2 Aim
	1.3 Goal and Purpose

	2 Theory
	2.1 Essential Principles of Magnetic Resonance Imaging
	2.1.1 General Spin Physics
	2.1.2 Spatial Encoding
	2.1.3 Relaxation Theory
	2.1.4 Ultra-High Field Magnetic Resonance Imaging

	2.2 Neural Networks
	2.2.1 Activation Functions
	2.2.2 Optimization and Training
	2.2.3 Convolutional Neural Networks
	2.2.4 Learning Strategies
	2.2.5 Deep Learning Frameworks
	2.2.6 Hyperparameter Tuning

	2.3 Geometric Transformations
	2.3.1 Rigid-Body Transformation
	2.3.2 Affine Transformation

	2.4 Image Registration
	2.4.1 Deep Learning Methods

	2.5 Motion Correction
	2.5.1 Prospective Motion Correction

	3 Method
	3.1 Datasets and Environment
	3.2 Initial Data Augmentations
	3.3 Initial Neural Network Design
	3.4 Deployment of Deep Learning Model
	3.4.1 Cppflow
	3.4.2 LibTorch
	3.4.3 keras2c
	3.4.4 Network Interface

	3.5 In-Vivo Testing
	3.6 Unsupervised Training

	4 Results
	4.1 Initial Supervised Training Network Design
	4.2 Deployment of Deep Learning Model
	4.3 Improvements to Supervised Training Network Design
	4.4 Unsupervised Learning Network Design

	5 Discussion
	6 Conclusion
	6 Conclusion
	6 Conclusion
	6 Conclusion

