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Abstract

Machine learning models can analyze physiological data, such as electroencephalog-
raphy (EEG), for various classification tasks. One such task is Auditory Attention
Decoding (AAD), aimed at identifying the sound a person is actively attending to,
offering significant benefits for users of hearing aids. However, EEG data often ex-
hibits a low signal-to-noise ratio, and its collection is often expensive, cumbersome
and requires trained specialists. Additionally, gathering EEG data over prolonged
periods of time presents challenges. The resulting scarcity of available EEG data
to train models can be alleviated by using generative models, which generate new
examples from the data they were trained on.

Diffusion Probabilistic Models (DPMs) have in recent years emerged as the
state-of-the-art of generative models within the image domain, showing widespread
success in models such as Stable Diffusion and DALL-E. This work investigates
whether this success can extend to the domain of multichannel time series data,
specifically EEG data. The diffusion models were trained on 1-second EEG data
segments and were used as a data augmentation tool for 3 different classification
tasks, including AAD. Our findings indicate that diffusion models can effectively
generate realistic EEG data, supported by both a visual comparison and a measure
of Jensen-Shannon divergence to the real EEG data distribution. In addition to
this, a significant improvement in mean performance was achieved in our Locus of
Attention (LoA) task, where we classify between a test subject attending to a left
or right speaker. Here an approximate classification accuracy of 71% was achieved
compared to our baseline of 70.4%.



Sammanfattning

Maskininlärningsmodeller kan analysera fysiologisk data, t.ex. elektroencefalografi
(EEG), för rad olika klassificeringsproblem. Ett sådan problem är Auditory Attention
Decoding (AAD), som syftar till att identifiera det ljud som en person aktivt ägnar
sig åt, vilket kan ge betydande fördelar för användare av hörapparater. EEG data
har dock ofta ett lågt signal-brusförhållande, och insamlingen är ofta dyr, besvärlig
och kräver utbildade specialister. Dessutom är det svårt att samla in EEG data under
längre tidsperioder. Den resulterande bristen på tillgänglig EEG data för att träna
modeller kan lindras genom att använda generativa modeller, som genererar nya
exempel från den data som de tränades på.

Diffusion Probabilistic Models (DPM) har under de senaste åren framkommit
som den mest framgångsrika generativa modellen inom bilddomänen och har visat
stor framgång i modeller som Stable Diffusion och DALL-E. I detta arbete under-
söks om denna framgång kan utvidgas till domänen för flerkanalig tidsseriedata,
specifikt EEG data. Vi tränade flera diffusionsmodeller på 1-sekunders segment av
EEG data och använde dem som ett dataförstärkningsverktyg för 3 olika klassifi-
ceringsproblem, inklusive AAD. Våra resultat visar att diffusionsmodeller effektivt
kan generera realistisk EEG data, vilket stöds av både en visuell jämförelse och ett
mått på Jensen-Shannon divergens till den verkliga EEG-datadistributionen. Utöver
detta uppnådde vi en betydande förbättring av den genomsnittliga prestandan för
vår Locus of Attention (LoA) uppgift, där vi klassifiercerar mellan att ett testsubjekt
aktivt ägnar sig åt en höger eller vänster högtalare. Där uppnådde vi ett medelvärde
i klassificeringsnoggrannhet på 71% jämfört med vår baslinje på 70.4%.



Abbreviations

AAD Auditory Attention Decoding
AUC Area Under the Curve
CNN Convolutional Neural Network

DDIM Denoising Diffusion Implicit Model
DDPM Denoising Diffusion Probabilistic Model
DPM Diffusion Probabilistic Model
ECoG Electrocorticography
EEG Electroencephalography
ELU Exponential Linear Unit
GAN Generative Adversarial Network
KL Kullback–Leibler
LoA Locus of Attention
MEG Magnetoencephalography
MSE Mean Squared Error
NN Neural Network

ReLU Rectified Linear Unit
ROC Receiver Operating Characteristic
SD Standard Deviation

SiLU Sigmoid-Linear Unit
SPL Sound Pressure Level

STFT Short-Time Fourier Transform
VAE Variational Autoencoder

VQ-VAE Vector Quantised-Variational AutoEncoder
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1
Introduction

In recent decades, hearing aids have increasingly become a crucial assistant for
people with hearing loss, aiding in their ability to carry out everyday tasks that
require auditory attention. Many of these tasks occur in environments where multiple
audio sources compete for attention, as often is the case at various social events.
At such events, the occurrence of background conversations that interfere with a
primary conversation of interest are common. Traditional hearing loss compensation
strategies, such as amplification of all incoming sounds, fall short in these scenarios
as the amplification of unwanted background noise often leads to such discomfort
that users will forgo the use of a hearing aid entirely. This highlights a need for
more complex strategies that can differentiate and enhance relevant sounds while
suppressing background noise.

1.1 Background & Context

The problem of selectively attending to a speaker of interest amidst other competing
speakers has been recognized for decades and was named the cocktail party problem
by Colin Cherry in 1953 [Cherry, 1953]. Recognizing the complexity of the cocktail
party problem, hearing aid manufacturers have become increasingly focused on
developing signal-processing technology designed to alleviate this issue.

Modern hearing aids have made significant advances in reducing discomfort
produced by background noise through the use of sophisticated signal processing
algorithms. These algorithms attempt to discern and amplify relevant sounds while
suppressing background noise. However, their effectiveness is inherently limited by
the inability of the hearing aid to decode a user’s audio attention. While individuals
with normal hearing can naturally filter out sound sources the listener is not attending
to, this is a significant challenge for those with hearing impairments, which is well-
documented in the literature [Marrone et al., 2008].

Recent studies have shown the possibility of using electroencephalography
(EEG) to non-intrusively extract attention-related information [O’sullivan et al.,
2015; Mirkovic et al., 2016; Alickovic et al., 2019; Geirnaert et al., 2021; Crosse
et al., 2021; Alickovic et al., 2020; Alickovic et al., 2021; Puffay et al., 2023]. In con-
trast to other methods such as Electrocorticography (ECoG), EEG is a non-invasive
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Chapter 1. Introduction

procedure that indirectly captures information from the firing of neurons within the
brain, offering a temporal resolution in the millisecond range [Gevins et al., 1999],
making it ideal for real-time applications.

Auditory attention decoding (AAD) can utilize EEG data to decode the listener’s
attention, i.e., identify and track attended sound in environments with competing
sound sources. Recent research has focused on developing frameworks for non-linear
approaches to AAD, specifically emphasizing stimulus (i.e., speech) reconstruction,
as seen in [Taillez et al., 2020], or directly decoding the direction of attention of
the listener, termed Locus of Attention (LoA) [Vandecappelle et al., 2021; Wilroth
et al., 2023].

According to Geirnaerts et al.’s review, while linear models excel with larger
time windows, non-linear models tend to outperform linear models when using
shorter time windows. They speculate that non-linear models achieving limited
generalization across multiple datasets could be attributed to the limited size of
training dataset available for AAD, suggesting a need for larger and more diverse
datasets. [Geirnaert et al., 2021]

One note of importance is that the data used for studying AAD is often recorded
with participants of normal hearing and in controlled listening environments. Two
publicly published datasets use normal hearing participants attending one of two
sound streams coming from equipped in-ear headphones, not fully simulating a
cocktail party environment [Das et al., 2020].

The dataset used in this work attempts to more closely simulate a cocktail
party environment from the perspective of a listener with hearing impairment. The
dataset has participants being exposed to background babble noise, while also trying
to attend to one of two primary audio sources. Differences and the availability of
datasets for AAD make comparing published models difficult, and a standard dataset
for testing AAD models has not yet been introduced [Geirnaert et al., 2021]. As such,
comparing results from different papers needs to be done with caution.

1.2 Purpose & Project Objectives

This thesis aims to investigate the viability of utilizing Diffusion Probabilistic Models
(DPMs) for the synthetic generation of EEG data and to evaluate the potential value
of such synthesized data for augmenting existing EEG datasets. The motivation
for this study originates from prior successful work in EEG data synthesis using
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
[Sun and Mou, 2023]. Given the proven competitiveness of DPMs in image synthesis
when compared to GANs and VAEs [Bond-Taylor et al., 2022; Dhariwal and Nichol,
2021], there is interest in their potential applicability in the EEG domain. The specific
objectives arising from this primary aim include:

1. Investigate the viability of generating EEG data using DPMs traditionally
trained on image data.
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1.3 Delimitations

As a first step, we aim to assess whether DPMs, traditionally designed and utilized
for image data, are suitable for EEG data. In this case, we represent a multichannel
EEG-signal as a grayscale 2D image.

2. Evaluate the quality of the synthetically generated EEG data through both
visual inspection and objective metrics.

If generating EEG data proves viable, the subsequent goal is to assess the quality of
the synthetic data and its sensitivity to the loss function used during training. This
assessment will involve visual inspection as well as objective metrics to evaluate the
quality of the generated EEG data.

3. Quantify the benefits of using generated EEG data for data augmentation in
three different classification tasks.

Lastly, to align with the initial purpose, this objective involves exploring the perfor-
mance of synthetically generated EEG data in data augmentation. This evaluation
includes three different classification tasks characterized by different class ratios and
variations in the amount of added synthetic data. These tasks are as follows:

a. A Locus-of-Attention (LoA) task with balanced classes.

A classification model classifies EEG data as either belonging to a “Left” or “Right”
label. Here, an equal amount of segments are allocated to each label, resulting in a
balanced dataset.

b. A Passive vs. Active listening task with imbalanced classes.

c. A Passive vs. Active listening task with artificially balanced classes.

The same underlying EEG data segments, which correspond to “Passive” or “Active”
listening during an experiment, are used for these tasks. The natural class imbalance
is reflected in the first sub-task. The final task addresses the class imbalance through
oversampling, aiming to evaluate the effect of balancing on model performance.

1.3 Delimitations

There are some delimitations for the project, which are to be viewed in connection
to the stated objectives.

• We limit ourselves to using existing diffusion frameworks and models designed
and primarily utilized for image data.

As the main goal is to investigate the feasibility of using DPMs to generate EEG
data rather than finding the optimal approach, we restrict ourselves to using existing
diffusion models. Instead, the focus lies on modifying only the loss function to
improve performance.
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• We only consider one classification model with fixed parameters for evaluating
the performance of using diffusion generated EEG data for data augmentation.

The use of only one classification model with fixed parameters was necessitated
by the limited processing time available. Conducting hundreds of tests for different
configurations of the classifier model when adding generated EEG data would have
been impractical within the time constraints of the thesis.

• We only consider one EEG dataset for all tasks.

We constrained ourselves to a single EEG dataset for all tasks. As our primary
aim was to investigate the viability of generating realistic EEG data using DPMs,
the inclusion of multiple datasets becomes more relevant once initial viability is
confirmed.

4



2
Theory

This chapter goes over the foundational theories underpinning our project, providing
a comprehensive overview of the most important concepts. This includes the struc-
ture of EEG data, AAD, and DPMs. Later in Chapter 3, we will introduce specific
changes or adaptations made to some of these for the project.

2.1 Electroencephalogram

First recorded from the human scalp by Hans Berger in 1924, the EEG represents
one relatively non-invasive way to record brain activity. This was made possible by
earlier discoveries of measurable electrical activity within the brain in the late 1800s
by Richard Caton [Silva, 2010]. Modern EEG recordings are usually done with an
array of electrodes placed at specific locations on the scalp. The locations differ
depending on the number of measurement electrodes and the system used, but an
often used one is known as the International 10-20 system [Klem et al., 1999], which
is illustrated in Figure 2.1. While EEG is one of several methods used for measuring
brain activity, the non-invasive nature makes it possible to record in a wide range of
everyday settings.

2.2 Auditory Attention Decoding

AAD refers to the task of decoding (i.e., identifying) a speaker that a listener is
attending to in a multi-talker environment. Research has extensively shown that the
information required to decode this attention can be found by measuring cortical
activity [Mesgarani and Chang, 2012; Ding and Simon, 2012; O’Sullivan et al.,
2015]. The cortical activity can be measured in different forms such as by ECoG
[Mesgarani and Chang, 2012; O’Sullivan et al., 2019], Magnetoencephalography
(MEG) [Puvvada and Simon, 2017], or EEG [O’Sullivan et al., 2015; Alickovic
et al., 2019].

The measurements taken can then be used in various algorithms that perform the
actual decoding of attention. Specifically, in the context of LoA, the task involves
determining the direction towards which the attended speaker is located. This could
be either “Left” or “Right” for example.
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Chapter 2. Theory

Figure 2.1 A representation of the International 10–20 system electrode locations used to
record EEG data on a top-down view of the human scalp. The top of the image corresponds
to the front of the head.

Research indicates that non-linear models, such as neural networks, are partic-
ularly effective for decoding attention in short time windows [Taillez et al., 2020;
Ciccarelli et al., 2019], often surpassing classical linear methods in performance.

2.3 Denoising Diffusion Probabilistic Models (DDPMs)

Diffusion models are a class of generative models that have recently seen widespread
success in image generation tasks. Text-to-image models, which generate images
from a given prompt, such as DALL-E 2 [Ramesh et al., 2022], often use the
Denoising Diffusion Probabilistic (DDPM) version of diffusion models.

In diffusion models, noise is iteratively added to data in small steps, known as
forward diffusion, to disrupt the underlying distribution. This is illustrated in figure
2.2. The task of the model is to learn and predict the noise added at each iteration,
referred to as time steps. Essentially, the model aims to learn to restore the data
distribution disrupted by the forward process through a reverse diffusion process.
This modeling approach, introduced in [Sohl-Dickstein et al., 2015], addresses the
tradeoff problem encountered by machine learning models between tractability and
flexibility. They use a Markov chain to define the model, where each step in the
Markov chain is a small transformation of the data that is easy to calculate and
evaluate. The full chain of the model converts the unknown distribution of a dataset
to a known distribution, making the model able to adapt to different types of data
inputs. Recent research has demonstrated that this method of generating data can
generate images of higher quality compared to GANs [Dhariwal and Nichol, 2021].
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2.3 Denoising Diffusion Probabilistic Models (DDPMs)

Figure 2.2 Example of the forward diffusion process, where an image gets progressively
more disrupted by the added noise, by [MrAlanKoh, 2022]

Diffusion Model
As described in the original paper on diffusion models [Sohl-Dickstein et al., 2015],
the diffusion process is modeled as a Markov chain. The forward diffusion process
gradually adds noise to the data by stepping forward in the Markov chain by multi-
plication with the Markov transition kernel 𝑞(x𝑡 |x𝑡−1). The full forward process is
defined as:

𝑞(x1:𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1) (2.1)

where 𝑡 = 0 represents the original data distribution 𝑞(x0), and 𝑡 = 𝑇 , the final in-
stance of the chain represents the converted data distribution 𝑞(x𝑡 ). The distribution
the data is converted to can be any distribution as long as it is tractable, however,
many implementations of the diffusion model use the Gaussian distribution [Ho et
al., 2020; Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021]. Thus, the Markov
transition kernel, or in this case, diffusion kernel as described in [Sohl-Dickstein
et al., 2015] is expressed as:

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I). (2.2)

Here, 𝛽𝑡 represents the variance of the noise introduced at time 𝑡. While 𝛽𝑡 can be
learned by parameterization, by setting them to constants shown in [Ho et al., 2020],
determined by some schedule, the forward process will not contain any learnable
parameters. Another notable property of the diffusion model, as highlighted in [Ho
et al., 2020], is the ability to perform the forward step for any arbitrary time step 𝑡

in a single step, as it is otherwise necessary to repeatedly apply Eq. (2.2) up to time
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step 𝑡 in the Markov chain. This is done by introducing 𝛼 and its cumulative product
as �̄�, 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏𝑡
𝑠=1 𝛼𝑠 , making it possible to represent the forward

diffusion kernel Eq. (2.2) in closed form:

𝑞(x𝑡 |x0) = N(x𝑡 ;
√︁
𝛼𝑡x0, (1 − 𝛼𝑡 )I). (2.3)

This expression can be rewritten with the parameterization trick seen in [Kingma
and Welling, 2022] to be a linear combination of the mean, standard deviation, and
noise sampled from a Gaussian distribution 𝜖 ∼ N(0, I), expressed as:

x𝑡 (x0, 𝜖) =
√︁
�̄�𝑡x0 +

√︁
1 − �̄�𝑡𝜖 . (2.4)

If the reverse translations for the Markov chain are known, it will be possible to
sample from the Gaussian distribution and, through this reverse process, generate
data with the same distribution as 𝑞(x0). Starting at the tractable distribution 𝑝(x𝑇 ),
the full reverse process is defined by [Sohl-Dickstein et al., 2015] as:

𝑝𝜃 (x0:𝑇 ) = 𝑝(x𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 |x𝑡 ) (2.5)

where 𝑝𝜃 (x𝑡−1 |x𝑡 ) is the reverse Markov transition kernel. Given a small size of
the variance 𝛽𝑡 , the reverse Markov transition kernel will be of the same functional
form as the forward process:

𝑝𝜃 (x𝑡−1 |x𝑡 ) = N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)). (2.6)

Here, the mean 𝜇𝜃 (x𝑡 , 𝑡) and covariance Σ𝜃 (x𝑡 , 𝑡) are unknown parameters, which
are estimated by a neural network. However, in [Ho et al., 2020], instead of approxi-
mating Σ𝜃 (x𝑡 , 𝑡) with a neural network, it is set to be time-dependent constants 𝜎2

𝑡 𝐼

defined by the values of 𝛽𝑡 . The probability of obtaining the original distribution
𝑞(x0), also known as the model probability, from the Gaussian distribution 𝑝(x𝑇 ) is
modeled by [Sohl-Dickstein et al., 2015] as:

𝑝𝜃 (x0) = E𝑞 (x1:𝑇 |x0 )

[
𝑝𝜃 (x0:𝑇 )
𝑞(x1:𝑇 |x0)

]
, (2.7)

which in turn is used to define the loss function for training the model to estimate
the parameters. In [Ho et al., 2020], the loss function is defined as the negative loss
likelihood of the model probability. Training using this loss is done by optimizing
the evidence lower bound (ELBO):

E𝑞 (x0 ) [− log 𝑝𝜃 (x0)] ≤ E𝑞 (x0:𝑇 )

[
− log

𝑝𝜃 (x0:𝑇 )
𝑞(x1:𝑇 |x0)

]
=

E𝑞 (x0:𝑇 )

[
− log 𝑝(x𝑇 ) −

∑︁
𝑡>1

log
𝑝𝜃 (x𝑡−1 |x𝑡 )
𝑞(x𝑡 |x𝑡−1)

]
=: 𝐿. (2.8)
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2.3 Denoising Diffusion Probabilistic Models (DDPMs)

By further reduction, this equation can be written using Kullback–Leibler divergence
(KL-divergence), which reduces the variance in the loss:

𝐿 = E𝑞 (x0:𝑇 ) [𝐷𝐾𝐿 (𝑞(x𝑇 |x0) | |𝑝(x𝑇 ))

+
𝑇∑︁
𝑡>1

𝐷𝐾𝐿 (𝑞(x𝑡−1 |x𝑡 , x0) | |𝑝𝜃 (x𝑡−1 |x𝑡 )) − log 𝑝𝜃 (x0 |x1)], (2.9)

where 𝐷𝐾𝐿 is the KL-divergence. However, as the forward process vari-
ances 𝛽𝑡 are set by a scheduler and have no learnable parameters, the term
E𝑞 (x0:𝑇 ) [𝐷𝐾𝐿 (𝑞(x𝑇 |x0) | |𝑝(x𝑇 )) of the loss function is a constant and can be ig-
nored, as neither 𝑞(x𝑇 |x0) nor 𝑝(x𝑇 ) contains variables. The term log 𝑝𝜃 (x0 |x1),
which models the step 𝑡 = 1 to 𝑡 = 0 in the reverse diffusion process, is in [Ho
et al., 2020] approximated using a neural network when training. This essentially
means that while generating data using the reverse diffusion process, otherwise
known as sampling, no noise is added at time step 𝑡 = 0. The last term of the loss
function

∑𝑇
𝑡>1 𝐷𝐾𝐿 (𝑞(x𝑡−1 |x𝑡 , x0) | |𝑝𝜙 (x𝑡−1 |x𝑡 )), compares with KL divergence the

probability distribution of the forward process kernel in reverse 𝑞(x𝑡−1 |x𝑡 , x0), with
the reverse process kernel 𝑝𝜃 (x𝑡−1 |x𝑡 ), which both have known, time-dependent
constants as variances. Therefore, the KL-divergence of the probabilities can be
simplified to:

𝐿𝑡−1 = E𝑞 [
1

2𝜎2
𝑡

| | �̃�𝑡 (x𝑡 , x0) − 𝜇𝜃 (x𝑡 , 𝑡) | |2] + 𝐶 (2.10)

resulting in the Mean Squared Error (MSE) loss between the means, where �̃�𝑡 (x𝑡 , x0)
is the known and calculateable mean of 𝑞(x𝑡−1 |x𝑡 , x0) and 𝜇𝜃 (x𝑡 , 𝑡) is the mean of
𝑝𝜃 (x𝑡−1 |x𝑡 ), which needs to be approximated using a model. The constant C contains
the variances and other constant terms and can therefore be ignored. However,
further simplifications by [Ho et al., 2020] using Eq. (2.4), the mean �̃�𝑡 (x𝑡 , x0) can
be rewritten in terms of added noise 𝜖 . Repameterization of 𝜇𝜃 (x𝑡 , 𝑡) using this
knowledge leads to a simplified loss function that predicts the added noise 𝜖 :

𝐿 = E𝑡 ,x0 , 𝜖 [| |𝜖 − 𝜖𝜃 (
√︁
�̄�𝑡x0 +

√︁
1 − �̄�𝑡𝜖, 𝑡) | |2] . (2.11)

Where 𝜖𝜃 is the predicted noise given the sample x𝑡 . Note that the scaling term is
removed, as [Ho et al., 2020] found that this gave better results. Training the diffusion
model now amounts to optimizing this simplified loss function. When a model has
been trained, the sampling using the reverse process is described by:

x𝑡−1 =
1
√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − �̄�𝑡

𝜖𝜃 (x𝑡 , 𝑡)
)
+ 𝜎𝑡z (2.12)

where z ∼ N(0, I). This formula is derived using the same method as in Eq. (2.4) to
rewrite the Gaussian distribution function of the reverse process as a linear equation.
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3
Method

3.1 Dataset

The dataset used in this project to train the neural network classifier and the diffusion
models was provided by Eriksholm Research Centre, part of Oticon A/S. This dataset
has been previously analyzed using different analysis methods [Alickovic et al., 2021;
Andersen et al., 2021]. In particular, [Alickovic et al., 2021] showed the benefits of
using noise reduction schemes in hearing aids, improving the neural representation
of target and masker speech while attenuating undesired background noise. The full
setup of the methods for the data acquisition can be read at [Alickovic et al., 2021].
This section will highlight some of the important parts most relevant to the thesis,
e.g., the EEG data and the general idea of the setup.

Participants
The study involved 24 male and 10 female Danish-speaking participants between the
ages of 21 and 84, with an average age of 64.2 and a standard deviation of 13.6. All
participants were experienced hearing aid users, had no documented background of
neurological disorders, dyslexia, or diabetes, and had normal or corrected-to-normal
vision. The participants had symmetrical sensorineural hearing loss, with an average
of 4-frequency pure-tone audiometry average of 47.5 dB hearing loss [Alickovic et
al., 2021].

Experiments Setup
Both the hearing aid fitting for each participant and the signal processing algorithms
used are outlined in [Alickovic et al., 2020] for the noise reduction scheme ON/OFF.
[Andersen et al., 2021] used similar signal processing algorithms. Recordings of
the EEG were done using the BioSemi Active Two recording system (Amsterdam,
Netherlands). Each participant was equipped with 64 electrodes using the interna-
tional 10-20 system layout placement over the scalp, with two additional electrodes
placed on the mastoid for reference. Sampling of the electroencephalography data
was done at 1,024 Hz. The experiment was performed in a sound-proofed booth,
with the participant sitting in the center. The room was equipped with six speakers,
arranged in a circular arrangement, with a screen in front of the participant. The
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loudspeakers were positioned at ±30◦, ±112.5◦, ±157.5◦ from the perception of the
front-facing participant, see A in Figure 3.1. The two loudspeakers in front were
used to broadcast the speech stimuli, the target, and the masker sound, using news
clips with neutral content to avoid emotional responses. The news clips included
both male and female newscasters. The remainder of the loudspeakers introduced
background noise to the environment, simulating 16 (4 × 4) people in conversa-
tion. The sound stream coming from the loudspeakers in front was normalized to
the root-mean-square intensity and set to 73 dB Sound Pressure Level (SPL). The
loudspeakers presenting the background noise were set at 64 dB SPL, resulting in
a total of 70 dB SPL background noise, which gives a difference of 3 dB between
foreground and background noise.

Figure 3.1 Figure taken from [Alickovic et al., 2021]: A. Shows the experiment setup used
when recording the EEG. A participant is seated in the middle and prompted to listen to
one speaker, ignoring the other. Multi-babel simulating background noise from 16 different
people is played from the rear speakers. B. Shows the timeline of each trial procedure, namely
when each sound starts playing. C. Shows the setup and division of the data, 20 trials are done
for both noise reduction schemes, where each trial is divided into sections of “Left Male”,
“Right Male”, “Left Female”, and “Right Female”.

During each trial of the experiment, participants were presented with background
noise for five seconds prior to the speech stimuli. They were instructed to attend to
either the left or right speaker while ignoring the other speaker, with the background
noise playing from the rear loudspeakers. After 38 seconds, including the initial
5 seconds of background noise, participants were asked to answer a two-choice
question about the content of the attended speech.

11
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In total, 84 trials were conducted. Four trials were used to familiarize each
participant with the task and were excluded from the analysis, leaving a total of 80
trials per subject analyzed in the project. Each trial consisted of a male and female
talker from the front speakers. The trials were divided into four sessions, with each
session using a different hearing aid setting and comprising 20 trials. Two different
noise reduction algorithms were used, either activated or deactivated, resulting in
a 2x2 design. Within each session, the 20 trials were divided into 4 blocks of 5
consecutive trials. Each block maintained the same direction and gender for the
target speaker but used a randomized selection of sound files. For each block, a
new combination of direction and gender was selected that had not been chosen
previously.

Data pre-processing
The dataset was already pre-processed before its use in this project. This was primar-
ily done to remove noisy and irrelevant components, such as artifacts arising from
eye movement, muscle movement, or heartbeats. The preprocessing steps included:

• Bandpass filtering between 0.5 Hz and 70 Hz using an FIR Hamming window.

• Notch filtering with bandwidths 49-51 Hz, removing power line noise.

• Downsampling from 1024 Hz to 256 Hz

• Removal of noisy channels via visual inspection, where interpolation was used
to replace the removed data.

• Independent component analysis to remove additional artifacts.

Note that from the original 34 subjects in the dataset, only 31 of these made it
through all pre-processing steps. Missing subjects were removed due to persistent
artifacts, alongside similar issues.

Usage
Since the dataset simulates a cocktail party situation, the diffusion models should
aim to produce realistic EEG responses for AAD. In an everyday environment, a
short response time (<1 second) when performing AAD is desirable, and for this
reason, the EEG data is segmented into 1-second chunks for our models.

Our Preprocessing
All the project’s models were implemented in Python, using the PyTorch library as a
base. Since the dataset was originally in the MATLAB .mat format, it was converted
to the more python accessible HDF5 format [The HDF Group, 2023], which was
selected due to the large amount of data that needed to be grouped and labeled.
Interfacing with the HDF5 format was done with the h5py package [Collette, 2014].
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Additionally, the Python library MNE [Gramfort et al., 2013] was used to load and
process raw EEG data, as well as segment and label it. These are the steps performed
during the construction of the HDF5 dataset:

1. Mastoid reference channels are dropped (2 channels), leaving 64 channels.

2. The trials for each subject are split into “Passive” (0-5 seconds) and “Active”
(5-38 seconds) listening sections.

3. “Passive” and “Active” listening sections are labeled depending on the trial
conditions accordingly:

• “Passive” Section → 0
• Attending to “Male Left” → 1
• Attending to “Male Right” → 2
• Attending to “Female Left” → 3
• Attending to “Female Right” → 4

4. Trials are labeled according to the noise reduction algorithm used during each
trial.

This results in a dataset organized in a hierarchy with the noise reduction algo-
rithm used being at the top level, followed by the trial subject, and finally split into
two inner datasets. These two inner datasets are of the array form (Trial, Channels,
Samples), with trials ranging from 1 to 20, channels being fixed at 64, and the
number of samples depending on whether it is the “Passive” or “Active” listening
section. This inner split into two datasets was done for performance reasons, since
it allows us to easily skip reading the labels for some tasks.

During training, additional transformations were performed on the constructed
dataset, which will be covered in the relevant task training section.

Segmented into 1-second samples, the full data set consists of 91960 samples,
divided into 12100 passive listening samples and 79860 active listening samples.
The active listening labeled data is evenly split with 39930 left labels and 39930
right labels, used for the LoA task.

Dataset split. The dataset was divided into three sets when training the models:
Training set, test set, and validation set. The training set was used to estimate the
model’s parameters, while the test set was used for evaluating the model during
training. The validation set could be used to evaluate a final version of the model
when training on both the train and test sets.

The division of the dataset is done differently depending on the task. For the
Active vs. Passive task, the first 12 trials for each noise reduction scheme were
assigned to the training set, the trials 13-16 to the test set, and the remaining trials
17-20 to the validation set. This was done for all subjects. In the case of the LoA
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task, trials were grouped in sets of 5, all with the same “Left” or “Right” label.
In these sets the split was done by allocating the first three to the training set, the
fourth to the validation set, and the fifth to the test set repeatedly. This was done to
make sure each set had a similar distribution of “Left” and “Right” examples. This
resulted in a 60/20/20 split:

• Training set trials [1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17]

• Test set trials [4, 9, 14, 19]

• Validation set trials [3, 8, 13, 18]

Due to a late discovered programming error, trial 20 was not used here. Since this is
not a large part of missing data, we do not believe it had a major impact on the later
results.

Normalization. To normalize the data, standardization was performed using the
mean and standard deviation (SD) of the training data.

x :=
x − E(x)√︁
𝑉𝑎𝑟 (x)

(3.1)

The mean and variance are calculated with reduction on all dimensions, in this
case, our EEG channels. As the training set is divided differently for the tasks, the
mean and SD for both training set splits were calculated. Standardization is used for
numerical stability during the training process while keeping the form of the data
intact.

3.2 Diffusion Model

The implementation of the diffusion models can be divided into three main blocks:

1. Inner model

2. Scheduler

3. Data generation

Inner Model
In diffusion models, an inner network implements the estimation of parameters
required for sampling. The model takes a noisy sample as input, together with the
corresponding time step, and outputs a prediction. Different prediction types exist,
which will be mentioned in the training section, however, all prediction types estimate
the mean 𝜇𝜃 (x𝑡 , 𝑡) in the reverse diffusion kernel 𝑝𝜃 (x𝑡−1 |x𝑡 ) shown in Eq. (2.6).
The type of inner model used in this project is a version of the original UNet
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structure implemented in [Ronneberger et al., 2015], which is a model frequently
used for image domain diffusion. The implementation of UNet is taken from the
HuggingFace diffusers library, which is built upon the more known transformers
library [Wolf et al., 2020], which has open-source code for a wide range of machine
learning models.

The UNet model utilizes the structure of an encoder and decoder, downsampling
the input data to a lower dimension which inputs to a small network aptly named
bottleneck, before upsampling the output back to the original input size. The input
to UNet is in the form of (𝑁 , Channel/Depth, Height, Width), which in our case
becomes (𝑁 , 1, 64, 256). 𝑁 here represents the number of examples in one batch of
input. As the EEG data is processed as an image, the height represents the channels
of the EEG data and the width of the time axis. Channel/Depth represents the number
of color channels when used with images, since we only have one value for each
EEG channel at a specific time, we leave it as 1. The implemented UNet uses a
base of six convolution blocks each for the encoder and decoder, where the number
of filters used, in order are 128 → 128 → 256 → 256 → 512 → 512. This is
reversed for the decoder part. For each step in the encoder blocks, the feature maps
are downsampled with two, e.g., the input data of size (64, 256) is downsampled to
(32, 128), etc. Downsampling is done using convolution and is used in all encoder
blocks except the last one. In the same fashion, the decoder upsamples the feature
maps by a factor of two using convolution except for the last block, which does not
use upsampling. The output layer consists of a convolution with one filter to reduce
the amount of channels to the original size. All convolutions in the network use a
3 × 3 kernel, and the activation function used is the Sigmoid-Linear Unit (SiLU)
activation function. As UNet does not have any knowledge of the current time steps
in the diffusion model, it is added as an additional input to the model with sinusoidal
positional embeddings in the same way used in the original DDPM [Ho et al., 2020].

The basic model structure can be seen in Figure 3.2, which shows how each block
in the encoder is connected to the corresponding block in the decoder with a skip con-
nection. This implementation is similar to the one found athttps://huggingface.
co/docs/diffusers/tutorials/basic_training. The complete list of layers
can be found in Listing 6.1 in the Appendix.

Scheduler
The scheduler has two primary tasks in the implementation of the diffusion model.
The first is to add noise to the data during the training loop, while the second is
to sample the data for the generative process. The choice of scheduler determines
how these two tasks are implemented, as each scheduler uses different equations,
each with its advantages and disadvantages. This project uses Denoising Diffusion
Implicit Models (DDIMs) when implementing the scheduler [Song et al., 2022].
The DDIM scheduler adds noise to the data in the same way DDPM does during
training, which is shown in Eq. (2.4). However, during sampling DDIM leads to a
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Figure 3.2 The image shows the structure of the UNet used as the inner model used for
approximating the parameters of the reverse process. The boxes represent one convolution
layer. The output features are provided under the boxes, where ·2 indicates the number of
convolutional layers.

faster generative process compared to DDPM, as it does not require sequential time
steps to produce a new sample. This is possible due to a redefinition of the forward
process done by [Song et al., 2022] to instead represent a family of non-Markovian
forward distributions indexed by 𝜎:

𝑞𝜎 (x1:𝑇 |x𝑡 , x0) = 𝑞𝜎 (x𝑇 |x0)
𝑇∏
𝑡=2

𝑞𝜎 (x𝑡−1 |x𝑡 , x0) (3.2)

where 𝑞𝜎 (x𝑡−1 |x𝑡 , x0) = N
(√

�̄�𝑡−1x0 +
√︃

1 − �̄�𝑡−1 − 𝜎2
𝑡 ·

x𝑡 −
√
�̄�𝑡x0√

1 − �̄�𝑡−1
, 𝜎2
𝑡 I

)
. This

family of forward distributions now depends on the variances 𝜎𝑡 and is conditioned
on both the previous step x𝑡−1 and the initial data x0. This differs from the Markovian
forward process in Eq. (2.1) that is only conditioned on the previous step x𝑡−1.
However, [Song et al., 2022] proves that training can still be done using the same MSE
loss function between the added noise 𝜖 and predicted noise 𝜖𝜃 seen in Eq. (2.11).
The training loop of DDIM is identical to that of DDPM as it models the same
parameter 𝜖𝜃 and uses the same forward diffusion for adding noise. Since the reverse
diffusion process is determined by the forward diffusion process, it is possible to use
another forward diffusion 𝑞𝜎 defined on a subset of the latent variables x𝜏1 , . . . , x𝜏𝑆
during sampling, thereby reducing the number of steps from 𝑇 to 𝑆. Sampling using
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this algorithm is defined by [Song et al., 2022] as:

x𝜏𝑖−1 (𝜂) =
√︁
�̄�𝜏𝑖−1

(
x𝜏𝑖 −

√︁
1 − �̄�𝜏𝑖 𝜖

(𝜏𝑖 )
𝜃
(x𝜏𝑖 )√︁

�̄�𝜏𝑖

)
+

√︃
1 − �̄�𝜏𝑖−1 − 𝜎𝜏𝑖 (𝜂)2𝜖

(𝜏𝑖 )
𝜃
(x𝜏𝑖 ) + 𝜎𝜏𝑖 (𝜂)𝜖𝑖 (3.3)

where 𝜎𝜏𝑖 (𝜂) =
√︄

1 − �̄�𝜏𝑖−1

1 − �̄�𝜏𝑖

√︂
1 −

�̄�𝜏𝑖

�̄�𝜏𝑖−1

and 𝜂 is a hyperparameter that sets the

stochasticity of the process. This is the sampling function that is used in the imple-
mentation. Note that this reverse process is similar to Eq. (2.12) in that it uses the
same prediction of 𝜖𝜃 from the trained model.

The variances (𝛽) of the diffusion model are set when initializing the DDIM
schedule using a 𝛽 scheduler. Our implementation uses the squared cos scheduler
proposed by [Nichol and Dhariwal, 2021]. This 𝛽 scheduler results in noise being
added more slowly in the noise scheduler. Each 𝛽𝑡 is now set to the value of:

𝛽𝑡 = 1 − 𝛼𝑡

�̄�𝑡−1
(3.4)

where

𝛼𝑡 =
𝑓 (𝑡)
𝑓 (0) , 𝑓 (𝑡) = cos

(
𝑡/𝑇 + 𝑠
1 + 𝑠 ·

𝜋

2

)2
. (3.5)

The 𝑠 is a small number added to prevent 𝛽𝑡 to be too small when 𝑡 = 0. The max
value of 𝛽 is limited to 0.999.

An estimation for x0 ∼
(
x𝜏𝑖 −

√︁
1 − �̄�𝜏𝑖 𝜖

(𝜏𝑖 )
𝜃
(x𝜏𝑖 )√︁

�̄�𝜏𝑖

)
, shown in Eq. (3.3) is done

for each step in the sample process. The estimation is bound to the same interval as
the normalized data to ensure that the sampling process uses an x0 estimation within
normalized values. This is done with dynamic thresholding in our model, proposed
by [Saharia et al., 2022], which helps prevent saturation of samples produced.
Dynamic thresholding is done by calculating the quantile of the absolute value of
the predicted x0 at time t. This is done to get the edge value 𝑠, with the percentile
used as a hyperparameter. The values are then thresholded using the interval [−𝑠, 𝑠]
and divided by 𝑠 to result in a boundary of [−1, 1]. This method avoids saturating the
values near the boundary of the data, which occurs in static thresholding. However,
as the EEG dataset is not normalized to [-1, 1], and instead standardized, the code
is modified to not divide by 𝑠, giving the sample the bound of [−𝑠, 𝑠]. While the
data is not bounded, the values outside [-5,5] after standardization contain most-
to-only outliers. The percentile used for dynamic thresholding was experimentally
determined to fit most of the data while excluding outliers.
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Spectral Loss
The MSE loss used does not capture the spectral properties of the dataset, as the data
is expressed in the time domain. Therefore, an additional loss function to complement
the MSE loss was introduced which considers these spectral components of the data,
named spectral loss. It is defined as:

𝐿𝑠𝑝𝑒𝑐 =
1
𝑁
∥|𝑆𝑇𝐹𝑇 (x) | − |𝑆𝑇𝐹𝑇 (x̂) |∥22 (3.6)

where x is the data, x̂ is the predicted data and N is the amount of elements in x. It is
inspired by the spectral loss used as a reconstruction loss of a VQ-VAE in [Dhariwal
et al., 2020] to consider mid and high frequencies.

Magnitudes of the MSE and Short-Time Fourier Transform (STFT) losses are
taken into consideration by normalizing the STFT loss to the interval [0, 1]. As the
loss has no set max and min values and will never be negative, the function:

1 + 𝑥
2(1 + |𝑥 |) − 0.5 (3.7)

is used for scaling the data. In contrast to the MSE loss function that uses the noise,
data, or v-prediction depending on the prediction type, the loss that uses STFT
needs the prediction from the model to be in the original data format. In the case of
the model predicting noise, the noisy images would be denoised with the predicted
noise using the scheduler in reverse. The transformation of the data from the time
domain to the frequency domain is done using PyTorch’s torch.STFT function.
This function uses the discrete STFT which is then clamped so that the output is
never lower than 1e−8 for numerical stability. The resolution in frequency against
the time of the short-Fourier transformed data depends on three arguments: The
size of the FFT, the length of the window used, and how far the window jumps for
each calculation. This causes the loss to depend on set hyperparameters, resulting in
vastly different loss. To reduce this dependency, the mean of multiple resolutions of
the STFT is taken, preventing overfitting to one STFT representation and allows the
model to consider different time-frequency characteristics of the data [Yamamoto
et al., 2020]. The full implementation of the losses is a modified version of the code
available from [Steinmetz and Reiss, 2020].

Training
Prediction type. The standard for diffusion models is to predict the noise (𝜖) added
to the sample. This can be changed to predicting the sample (x) itself or using a
combination of both, called v-prediction introduced by [Salimans and Ho, 2022].
They define the new prediction target v as:

v ≡ 𝛼𝑡𝜖 − 𝜎𝑡x (3.8)

meaning the prediction target becomes a weighted sum of the added noise and the
data. The math for the diffusion has small differences in these cases, however, the loss
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will still be the MSE of the target and prediction, albeit with the data or v-prediction
used instead of the noise.

Training loop. During the training of the model, the amount of steps used in the
diffusion process is set to 𝑇 = 1000 similar to [Sohl-Dickstein et al., 2015], [Ho
et al., 2020]. The input data is a one-second segment from the recorded EEG data
with the shape [𝑁 ,1,64,256], where 𝑁 is the number of examples in a batch. The
𝑁 was varied depending on which platform was used to train the model. The final
diffusion models were trained with 𝑁 set to 64.

For a batch of the training data, noise is sampled from a standard normal dis-
tribution with the same dimension as the input data ([𝑁 ,1,64,256]), and a random
time step t is chosen for each data sample in the batch. Every time step t determines
how much noise progression should be made for that image. Noise is then added
to each EEG data in the batch with the noise scheduler using the time steps t and
sampled noise. These noisy images are fed to the model, which tries to predict the
noise added to each image, the original image, or v-prediction depending on the set
prediction target. The MSE loss is calculated using this prediction and ground truth.
If spectral loss is used then this will be calculated with the original image and the
predicted one, which in case the model predicts noise is extracted by reversing the
addition of noise on the images using the predicted noise. The full loss would then
be a linear combination of the MSE loss and spectral loss:

𝐿 = 𝐿𝑀𝑆𝐸 + 𝐿spec. (3.9)

The model parameters are updated using the default values of the PyTorch AdamW
optimizer, with the learning rate set to 1e-4.

Several models with different loss functions and prediction targets were tested.
The full combinations of tests can be seen in Table 3.1.

Table 3.1 The table shows every combination of prediction type and loss function tested
for the diffusion model. The 𝐿𝑀𝑆𝐸 is the MSE loss, 𝐿spec is the Spectral loss. In the target
column, x means that the loss function uses the EEG data itself as the target, while 𝜖 means
that the target is the noise added to the image. v from Eq. (3.8) is the weighted combination
of both.

Model label Loss function Target
Epsilon 𝐿𝑀𝑆𝐸 𝜖𝑡
V-pred 𝐿𝑀𝑆𝐸 v𝑡
Spectral 𝐿𝑀𝑆𝐸 + 𝐿spec x𝑡

The shared hyperparameters for training the models are seen in Table 3.2. For
all trained models, a cosine learning rate with warmup was used. This learning rate
scheduler is tested in [He et al., 2018], showing a small improvement in performance
for their tested models. The idea is to use a smaller learning rate in the beginning
(in this case 0), and linearly increase it to the maximum value, where the incline
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depends on the number of warmup steps used. This ensures stability in the learning
process, as the starting parameters set initially in the model may have values far from
the solution, where having a high learning rate may introduce instability. When the
initial learning rate is reached, the values decay according to a cosine function. The
learning rate 𝜂𝑡 is computed at batch 𝑇 as:

𝜂𝑡 =
1
2

(
1 + cos

𝑡𝜋

𝑇

)
𝜂 (3.10)

where 𝜂 is the learning rate set as a hyperparameter. The implementation uses only
half a cosine cycle, which means the learning rate only decays and never increases.
The amount of warmup steps used is 500.

Algorithm 1 Training
1: The target z is set to one of x, 𝜖 , v
2: for x0 in Batch do
3: 𝜖 ∼ N(0, I)
4: 𝑡 ∼ Uniform(1, . . . , 𝑇)
5: 𝑛𝑜𝑖𝑠𝑦_𝑖𝑚𝑎𝑔𝑒𝑠← DDIMScheduler(x0, 𝜖 , 𝑡)
6: ẑ← UNet(𝑛𝑜𝑖𝑠𝑦_𝑖𝑚𝑎𝑔𝑒𝑠, 𝑡)
7: 𝐿 ← 𝐿𝑜𝑠𝑠_ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(ẑ, z)
8: Update UNet weights using AdamW optimizer with L
9: end for

Table 3.2 The standard parameters used when training the diffusion models

Hyperparameter Value
Time steps 1000
Batch size 64
Learning rate 1e-4
Learning rate scheduler Cosine with warmup and decay

Data generation
The synthetic data is generated using the diffusers’ DDIM pipeline, which uses the
noise scheduler and streamlines the full reverse diffusion process. Normal distributed
noise, with the same shape as the EEG data, is sampled and input with the time
step T to the trained neural network. The neural network’s prediction, the Normal
distributed noise, and the time step are input to the scheduler which denoise the image
one step. The partly denoised image is then used as input to the model together with
time step 𝑇 − 1 and the resulting prediction is used with the scheduler to denoise the
partly denoised image. This is done for a set amount of sampled time steps from the
𝑇 = 1000 time steps used during training.
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Since the diffusion models are not given any information about the underlying
sample label, a separate model is trained for each label. In the LoA task, 25000
samples of EEG data are generated for each label. This is changed to 45000 samples
for the Passive vs. Active listening task due to the larger training set. The generated
data for the different tasks are saved in separate files.

Algorithm 2 Sampling
1: x𝑇 ∼ N(0, I)
2: Subsample time steps 𝜏𝑆 ⊂ [𝑇, . . . , 1]
3: for 𝑡 = 𝜏𝑆 do
4: ẑ← UNet(x𝑡 , 𝑡) ⊲ Predict the target ẑ
5: x𝑡−1 ← DDIMScheduler(ẑ, x𝑡 , 𝑡) ⊲ Compute previous image x𝑡−1

6: end for
7: return x0

The default diffusion pipelines implemented in the diffusers library clamp the
generated data to [-1,1]. Due to the use of standardization, this was not desired for
our synthetic EEG data. To circumvent this, a custom pipeline was made, using the
original implementation, but skipping the clamping step.

Evaluation
For evaluating the data quantitatively, Jensen-Shannon divergence was used, which
is a measure of similarity between two probability distributions. It is a symmet-
ric version of the KL-divergence which uses the average of its output using both
distributions as reference and is defined as:

𝐷𝐽𝑆 (𝑃∥𝑄) =
1
2
· 𝐷𝐾𝐿 (𝑃∥

𝑃 +𝑄
2
) + 1

2
· 𝐷𝐾𝐿 (𝑄∥

𝑄 + 𝑃
2
). (3.11)

Where 𝑃 and 𝑄 are distributions. The distributions of the EEG dataset and the
generated data are difficult to calculate due to the interdependency of the data points,
as such, the distributions were approximated. This was done using histograms, which
removes the temporal and spatial information of the data. When calculating the
histograms, 15000 random samples are drawn from the real and generated EEG
data for each label. The histograms are calculated for each channel using 200 bins,
using of a range of [-10,10]. The resulting histograms are then used in calculating
the Jensen-Shannon divergence. The 𝑃 and 𝑄 in Eq. (3.11) are therefore histograms
for each channel of the data. The overall Jensen-Shannon Divergence score is the
mean score calculated over all channels. For inspecting the distribution of the data,
the channel distributions are pairwise overlaid in a plot, where each pair forms the
corresponding real and synthetic distribution.
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3.3 Classifier Network

For the classification tasks, LoA and Passive vs. Active listening, the classifier EEG-
NeX from [Chen et al., 2024] was used. The original paper’s implementation was
done in TensorFlow, which had to be re-implemented in PyTorch for use in this
project. EEGNeX was chosen as the classifier model due to the improved perfor-
mance on a wide range of classification tasks compared to previous convolutional
neural network (CNN) models used for EEG data, e.g EEGNet [Lawhern et al.,
2018; Chen et al., 2024].

Model structure
The CNN structure used is a PyTorch implementation of EEGNeX which uses 5
convolutional blocks and a fully connected layer. The full setup can be seen in
Figure 3.3. This CNN uses the Exponential Linear Unit (ELU) activation function
instead of the more common Rectified Linear Unit (ReLU) and includes dropout in
two layers to prevent overfitting along with average pooling. The most noticeable
difference compared to a regular CNN is that the middle layer utilizes depth-wise
convolution. This means that convolution is done on each channel separately, im-
proving the extraction of spatial features in the EEG data [Chen et al., 2024]. We
leave out the final softmax activation layer in our implementation due to the use of
PyTorch.

The original version of EEGNex by [Chen et al., 2024] uses a depth of 2 for the
depth-wise convolution, while our implementation uses 4 instead, which adds to the
number of filters used. The training is done using a batch size of 64, running for 100
epochs, with a fixed learning rate of 5e-4. To prevent overfitting on the training set,
the model with the lowest loss on the test set across all epochs is saved at the end of
training.

Evaluation
The main evaluation metric used for the classifier tasks is accuracy. Accuracy mea-
sures the ratio of correctly classified samples out of the total number of samples
classified. This metric is one of the main evaluation methods used in papers com-
paring LoA models. However, on an imbalanced dataset, classification accuracy can
often give a misguided view of the models’ performance. As an example, in an 80/20
class split, a model could classify everything as the dominant class to achieve an
accuracy of 80%, while not having learned anything about either class. In our Passive
vs. Active listening task, wrong classifications of the Passive listening labels have
a much smaller effect on the accuracy. Therefore, an additional metric in the form
of the F1-score is taken into consideration for the unbalanced case. The F1-score is
defined as the harmonic mean of recall and precision:

F1 =
2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3.12)
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3.3 Classifier Network

Figure 3.3 Figure 4 taken from [Chen et al., 2024] showing the EEGNeX-8,32 architecture.
(a) Shows an overview of the general structure, (b) Gives a view of a single unit, (c) is an
illustration of the depthwise convolution operation and (d) illustrates the effect of padding.

where recall and precision are defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 . (3.13)

The metrics of recall and precision provide insight into the model’s performance from
different perspectives. True Positives (TP) represent instances correctly identified
as belonging to the positive class, while False Negatives (FN) are instances that
belong to the positive class but are incorrectly classified as negative. Conversely,
False Positives (FP) refer to instances that are wrongly identified as the positive class.
The ’positive’ designation is relative and can refer to either class when calculating
precision and recall, with each class taking a turn as the ’positive’ in separate
calculations. Specifically, “recall describes how large a proportion of the positive
data points are correctly predicted as positive” and “precision describes what the
ratio of true positive points are among the ones predicted as positive” [Lindholm,
2022]. In the context of amplifying and attenuating sound in a hearing aid, such
as when using the models in the Passive vs. Active listening task, precision could
arguably be more crucial than recall. Since amplifying noise (Passive) could be
considered worse for the user in contrast to a failure in amplification for attended
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sound (Active). However, since this could be argued in both directions, we settled
on using the F1-score, giving an equal weight to both metrics.

As F1-scores are calculated for the classes separately, their weighted mean is
taken as the final score. By weighting the F1-score based on the occurrences of each
class, the F1-score of the dominant class impacts the mean F1-score more than the
other class by the fraction of the distribution.

The last measurement, supporting accuracy and the F1-score, is the AUC-ROC
score. This score is obtained by calculating the Area Under the Curve (AUC) of the
Receiver Operating Characteristics (ROC) curve. This gives a measure of the overall
model for using different decision thresholds, where the one used in our model is
0.5. The ROC curve is plotted for recall against the false positive rate (FP/N where
N is the total amount of the negative class) [Lindholm, 2022]. For the Passive vs.
Active listening task, the Active class is considered the positive, which becomes the
Right class in the LoA task.

Pipeline. Testing of the classification model was done using identical parameters
and adding the synthetic data generated by the different diffusion models listed in
Table 3.1. The model was trained with synthetic data constituting a predetermined
percentage of the training set, and the performance was assessed using the evaluation
metrics combined with prior knowledge about the quality of the generated data by
the Jensen-Shannon divergence.

To accommodate model variance, we trained 20 iterations of both the baseline
classifier models and those supplemented with synthetic data. This approach allowed
us to calculate confidence intervals for our metrics and estimate the mean perfor-
mance of the models. We tested augmenting the training data by 15%, 30%, 60%,
and 100% with the generated synthetic data, to evaluate how the ratio of synthetic
data would affect performance.

Testing for the Active vs. Passive listening tasks used both the inherently un-
balanced dataset and a version adjusted for balance through oversampling of the
Passive class. We employed a sliding window approach with a window length of
256 (equivalent to a 1-second sample) and a stride of 32, yielding an approximately
eightfold increase in Passive class samples to balance the dataset.

Classifier training adhered to a data split ratio of 60% for training, 20% for
testing, and 20% for validation. The models were trained on the training data set and
evaluated on the test set. While models were trained and assessed using the training
and test sets, a final model could be trained on the combined training and test sets
and then evaluated on the validation set. However, due to the time constraints of the
thesis, this was not performed.

As the diffusion models produce samples using normal distributed noise, another
prospect to examine would be adding similar noise to the original EEG samples.
Therefore, an additional 20 models of the classifier having 15% added noise of the
total training set were trained. This is referred to as the noise addition model, which
provides a comparison to a simpler data augmentation method that a degenerate
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diffusion model might mimic.
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4
Results

The results are split into two different subsections: Diffusion and Classifier. The Dif-
fusion section mainly presents how well the generated synthetic EEG data matches
the training set, based on the loss function used during training. The impact on
classification performances is not considered here. Some results are also presented,
which are considered training set “agnostic”, meaning the underlying label is not the
main focus. Instead, the focus is on general EEG synthesis.

In the Classifier section, the performance of the classifiers on the LoA task and
the two different Passive vs. Active listening tasks is presented. The main focus here
is to determine if there was a significant improvement when using generated EEG
data for data augmentation, contrasting it with a baseline model as well as with a
simple noise addition approach.

4.1 Diffusion

The first objective metric assessing the performance of our diffusion models in
generating synthetic EEG data is presented in Tables 4.1 and 4.2. The underlying data
label appears to have a minimal effect on the divergence, with similar values across
both task labels. The Epsilon and Spectral models exhibit comparable divergences,
particularly for the Passive vs. Active listening labels, with a slight difference for the
LoA labels. Notably, the v-prediction model shows the highest divergence for both
sets of labels, except for the Passive listening label.

Table 4.1 Jensen–Shannon divergences for the LoA task. Lower values indicate a better fit
to the cross-channel value distribution of the real normalized data.

Model Label Jensen–Shannon divergence

Epsilon Left 0.026
Right 0.028

V-pred Left 0.064
Right 0.072

Spectral Left 0.042
Right 0.047
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4.1 Diffusion

Table 4.2 Jensen–Shannon divergences for the Passive vs. Active listening task. Lower
values indicate a better fit to the cross-channel value distribution of the real normalized data.

Model Label Jensen–Shannon divergence

Epsilon Active 0.032
Passive 0.042

V-pred Active 0.067
Passive 0.037

Spectral Active 0.030
Passive 0.037

A visual comparison of the Jensen-Shannon divergences is provided in Fig-
ures 4.1 and 4.2. Figure 4.1 shows the difference between diffusion models, while
Figure 4.2 shows the difference based on the underlying label. For most channels
and values, the distributions exhibit a close match, making it visually challenging
to see the difference. Most of the differences can be seen around 0, where the real
EEG data distributions show more occurrences. Overall, the differences in the diver-
gence between models or labels are minimal. Additional plots of the Jensen-Shannon
divergence showing all channels are available in the Appendix.

(a) Spectral diffusion model (b) Epsilon diffusion model

Figure 4.1 Jensen–Shannon divergences for a selection of individual channels for two
different diffusion models. Red histogram bars represent the real data distribution, blue the
synthetic. The largest difference is visible around 0.

A more direct visual comparison between real EEG and synthetic EEG can be
seen in Figures 4.3 and 4.4. A randomly picked 1-second segment of real EEG
data is compared with synthetically generated EEG data. Overall, the synthetic data
closely resembles real EEG data, matching longer frequencies and showing channel
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(a) Epsilon model (Active) (b) Epsilon model (Passive)

Figure 4.2 Jensen–Shannon divergences for a selection of individual channels for Passive
and Active listening classes. Red histogram bars represent the real data distribution (for the
class), blue the synthetic. The largest difference is visible around 0.

correspondence. Values around 0 are somewhat less well represented, although it
might be challenging to observe this in a single sample. A 2D representation of the
same type of comparison is illustrated in Figure 4.3. This is achieved by scaling the
EEG data across channels between -1 and 1 before applying a colormap, with -1
shown as dark blue, 0 as white, and 1 as dark red. In this representation, it is easier
to see patterns across channels, as well as the comparative amplitudes of the channel
signal. It is subtle, but here we can also see a slight tendency of the real EEG data
to have more values close to 0, as well as a smoother gradient between high and low
values.

(a) Real EEG data (b) Synthetic EEG data

Figure 4.3 2D image plot comparing real and synthetic EEG. 1 second of EEG data is
treated as an image with channels corresponding to each horizontal line of pixels. Values are
mapped to colors using the ’seismic’ colormap from matplotlib.
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(a) Real EEG data (b) Synthetic EEG data

Figure 4.4 Comparison between a segment of real EEG data and synthetic EEG data
generated with diffusion. A random selection of 1 second of data is plotted using MNE with
a subset of all 64 channels shown. Real EEG data is normalized in the same way as when
training the diffusion model, as such the units are arbitrary.

4.2 Classifier

In this section, we will go over the 3 different classification tasks and the respective
value of adding synthetic EEG data from the different diffusion models. These are
the LoA task and the two Passive vs. Active listening tasks.

Locus of Attention
In Figure 4.5 we can see a comparison of the classification accuracy between the
baseline, the noise addition model and the different diffusion models. Most notable
is the performance of the noise addition model compared to the baseline, where
we see an approximate 3% drop in the mean accuracy. In contrast, most diffusion
models are on par with the baseline, with some performing slightly above and below
the baseline.

To see if any model has a significant difference in classification accuracy com-
pared to the baseline, an independent Welch’s 𝑡-test is performed. The results of this
can be seen in Table 4.3. In the table we can see that only 3 models significantly
differ from the baseline:

• Noise addition

• Epsilon with 60% added data
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Figure 4.5 A box-plot comparison of classification accuracy results for the different classi-
fier models in the LoA task, where each dot represents a single model run result. Outliers are
represented as circled dots outside the confidence intervals.

• Spectral with 100% added data

The significance of the noise addition can also be seen in Figure 4.5 and from it we
know it imparts a negative effect on the accuracy.

Table 4.3 P-values for an independent 𝑡-test between the baseline and the different models
at different ratios of generated data added (𝑛 = 20).≪ 0.01 signify values less than 10−4.

Model Generated data P-Value (Acc)

Epsilon (LoA)

0.15 0.599
0.3 0.491
0.6 0.079
1.0 0.219

Spectral (LoA)

0.15 0.808
0.3 0.908
0.6 0.454
1.0 0.035

V-pred (LoA)

0.15 0.363
0.3 0.720
0.6 0.243
1.0 0.238

Noise Addition 0.15 ≪ 0.01

For the other two significant models their estimated improvement compared to
the baseline can be seen in Table 4.4. Since the confidence intervals significantly
overlap it is not clear one is better than the other for this sample size. We can
however note that the confidence interval for the classification accuracy mean is
entirely positive for the spectral model.
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Table 4.4 Mean improvement (𝑛 = 20) for models with significant P-values (< 0.10).

Model Generated data Mean Improvement 95% CI
Epsilon (LoA) 0.6 0.44% -0.02% to 0.90%
Spectral (LoA) 1.0 0.58% 0.18% to 0.98%

Exact mean values for classification accuracy, the F1-score and AUC can be seen
in Table 4.5. Accuracy for all models except noise addition is around 70-71%, with
spectral at 100% added data achieving the highest at almost 71%. We can note that
all three metrics have good correspondence, which is expected with a 50-50 class
split.

Table 4.5 Mean statistics (𝑛 = 20) for the LoA task, best results for each augmented model
marked in bold.

Model Generated data Accuracy (%) F1-score AUC
Baseline 0 70.40 0.7033 0.7815

Epsilon

0.15 70.27 0.7019 0.7818
0.30 70.55 0.7048 0.7834
0.60 70.84 0.7074 0.7877
1.0 70.69 0.7060 0.7858

V-pred

0.15 70.58 0.7054 0.7819
0.3 70.32 0.7027 0.7818
0.6 70.11 0.7002 0.7790
1.0 70.11 0.7001 0.7793

Spectral

0.15 70.46 0.7041 0.7827
0.3 70.43 0.7033 0.7846
0.6 70.62 0.7054 0.7870
1.0 70.98 0.7088 0.7908

Noise 0.15 67.33 0.6727 0.7445

Passive vs. Active listening
The Passive vs. Active listening task is a bit more complex with an unequal class
split of 5-33. For this reason we consider the weighted average F1-score first in
Figure 4.6 and then the classification accuracy in Figure 4.7

Figure 4.6 shows that none of the models significantly improved compared to
the baseline, with many having a slight negative impact on the F1-score. Of note is
that it might appear that many models show a much higher variance for the F1-score
compared to the baseline. However, the scale for the score is quite slim, only being
plotted between 0.83-0.86.

In Figure 4.7 we can see that classification accuracy becomes worse for most
models compared to the baseline, with noise addition being the only one comparable
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in performance. We can note that a classifier only predicting Active listening here
would achieve a classification accuracy of just under 87%, which all models surpass.

Figure 4.6 A box-plot comparison of F1-score values for the different classifier models
for the Passive vs. Active listening task. Each dot corresponds to a single model run result.
Outliers are represented as circled dots outside the confidence intervals.

Figure 4.7 A box-plot comparison of classification accuracy results for the different clas-
sifier models in the Passive vs. Active listening task. Each dot corresponds to a single model
run result. Outliers are represented as circled dots outside the confidence intervals.

Table 4.6 shows that several models indeed significantly differ from the baseline,
which is also visually clear in Figures 4.6 and 4.7. Unfortunately from the box-plot
we can infer that this is a negative effect. This is further seen in Table 4.7, where only
noise addition has a higher mean accuracy compared to the baseline. The F1-scores
and AUC scores also don’t see any significant positive improvement compared to
the baseline, including the noise addition model.
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Table 4.6 P-values for an independent 𝑡-test between the baseline (Passive vs. Active lis-
tening Task) and the different models at different ratios of generated data added (𝑛 = 20).
≪ 0.01 signify values less than 10−4.

Model Generated data P-Value (F1) P-Value (Acc)

Epsilon

0.15 ≪ 0.01 ≪ 0.01
0.30 0.008 ≪ 0.01
0.60 0.078 ≪ 0.01
1.0 0.015 ≪ 0.01

Spectral

0.15 0.713 0.004
0.30 0.960 0.004
0.60 0.272 0.004
1.0 0.576 0.104

V-pred

0.15 0.038 0.001
0.30 0.556 0.011
0.60 0.275 ≪ 0.01
1.0 0.122 ≪ 0.01

Noise Addition 0.15 0.137 0.497

Table 4.7 Mean statistics (𝑛 = 20) for the statistics for the Passive vs. Active listening task,
best results for each augmented model marked in bold.

Model Generated data Accuracy (%) F1-score AUC
Baseline 0 87.89 0.8501 0.7915

Epsilon

0.15 87.65 0.8452 0.7854
0.3 87.62 0.8459 0.7870
0.6 87.56 0.8472 0.7858
1 87.54 0.8468 0.7860

V-pred

0.15 87.73 0.8478 0.7901
0.3 87.77 0.8495 0.7935
0.6 87.68 0.8486 0.7902
1 87.60 0.8480 0.7909

Spectral

0.15 87.78 0.8497 0.7896
0.3 87.76 0.8502 0.7896
0.6 87.67 0.8489 0.7855
1 87.81 0.8495 0.7860

Noise 0.15 87.91 0.8486 0.7884

Passive vs. Active (Balanced)
For the Passive vs. Active listening (Balanced) task, we oversample the Passive
listening class by using overlapping time windows on the EEG data. This achieves a
balanced 50-50 class split for our class labels.

Figure 4.8 shows that an increase in generated data seems to be correlated with a
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decrease in overall classification accuracy across all diffusion models. Variance also
increases for most models, except for the v-prediction model at 15% generated data
added. Visually, it is clear that none of the models improved classification accuracy
compared to the baseline. Noise addition is comparable here to the baseline, since
there is still a significant overlap of confidence intervals.

Figure 4.8 Box-plot comparison of accuracy between the different classifier models for the
Passive vs. Active listening (Balanced) task where each dot represents a single model run
result. Outliers are represented as circled dots outside the confidence intervals.

Looking at Table 4.8 we can see that an increase in generated data added generally
increases the significance of being different from the baseline. In this case, we know
it has a negative effect on the classification accuracy from Figure 4.8. We can also
confirm that the noise addition model is not significantly different from the baseline.

Finally, in Table 4.9 we can see that while both the noise addition model and
the epsilon model at 15% added generated data show a higher mean classification
accuracy compare to the baseline, we know from the 𝑡-tests in Table 4.8 that they
cannot be considered significant. Since the rest of the models do not show an increase
in the mean classification accuracy compared to the baseline, their significance point
to a negative effect on the mean.

34



Model Generated data P-Value (Acc)

Epsilon (PvA)

0.15 0.929
0.3 0.596
0.6 0.016
1.0 0.012

Spectral (PvA)

0.15 0.283
0.3 0.002
0.6 0.041
1.0 0.006

V-pred (PvA)

0.15 0.775
0.3 0.944
0.6 0.022
1.0 0.003

Noise Addition 0.15 0.392

Table 4.8 P-values for an independent 𝑡-test between the baseline (Passive vs. Active lis-
tening (Balanced) task) and the different models at different ratios of generated data added
(𝑛 = 20)

Model Generated data Accuracy (%) F1-score AUC
Baseline 0 70.60 0.7516 0.7920

V-pred

0.15 70.44 0.7503 0.7857
0.3 70.55 0.7508 0.7858
0.6 68.73 0.7366 0.7870
1.0 68.26 0.7329 0.7854

Epsilon

0.15 70.65 0.7519 0.7837
0.3 70.12 0.7473 0.7849
0.6 68.82 0.7374 0.7817
1.0 68.38 0.7337 0.7816

Spectral

0.15 69.87 0.7457 0.7859
0.3 68.27 0.7330 0.7855
0.6 68.94 0.7383 0.7859
1.0 67.88 0.7295 0.7850

Noise 0.15 71.12 0.7557 0.7907

Table 4.9 Mean statistics (𝑛 = 20) for the statistics for the Passive vs. Active (Balanced)
task, best results for each augmented model marked in bold



5
Discussion

The Discussion and Conclusion sections will interpret the significance of thesis
results, and assess the extent to which the objectives of the thesis were accomplished.
At the end, we will suggest potential improvements, as well as outline future research
directions to build upon the findings of this project.

5.1 Diffusion Models

The results demonstrate that the diffusion models tested demonstrate a strong ca-
pability to learn to generate synthetic EEG data. This assertion is supported by the
Jensen-Shannon divergence presented in Tables 4.1 and 4.2, which indicate a close
match between the distribution of values in synthetic and real data. In addition,
since the Jensen-Shannon divergence does not consider any temporal relation be-
tween data points, Figures 4.4 and 4.3 provide visual evidence that the synthetic
data also closely resembles the real data temporally, suggesting that the models have
effectively captured many frequency components of the EEG data.

However, as noted in the results, the diffusion models encounter challenges in
achieving a matching distribution for values around 0. The reasons for this are
not entirely clear, but may be related to the inherent train-test mismatch of the
sampling process for the diffusion models. As discussed in [Saharia et al., 2022],
while their dynamic thresholding approach mitigates the issue of oversaturation
for images, it does not fully resolve the train-test mismatch. Since we adopted the
dynamic thresholding to work for values beyond the described normalization range
of [−1, 1], it is plausible that this modification could contribute to the slight tendency
towards extreme values observed in the generated synthetic data.

Data Duplication
Another aspect that we have not looked into is the degree of duplicated EEG data
being produced by the diffusion models. Duplication of training data has been a
large topic of discussion in the image generation domain, with [Somepalli et al.,
2023] showing that this is an issue for many diffusion models. Relevant to this work
are the results that the number of training examples directly impact the possibility
of duplication occurring, which is a risk for the Passive listening class. This issue
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is further compounded by the fact that many performance metrics, such as the MSE
loss, will by design favor models that replicate data.

The effect this has had on the results is hard to interpret, since we have no measure
of the degree of replication for the implemented models. We could speculate that a
larger degree of replication could cause a classifier to overfit faster on the training
set, due to the addition of duplicated examples in each epoch. This could then lead
to a loss in generalization performance, since duplicated examples will increase
the training set bias. Whether this has happened for the models tested is worthy of
further investigation.

Differences Between Models
Another area of interest is how the metrics change between the different diffusion
models. As mentioned in the results, which can also be seen in Tables 4.1 and 4.2,
v-prediction showed the highest divergence, with the two other targets being much
more comparable.

One potential reason why v-prediction had a harder time fitting the underlying
distribution could be the mismatch when compared to the original paper’s training
setup. In the paper introducing v-prediction [Salimans and Ho, 2022], they primarily
use it for their teacher-student model. Although they do some testing using v-
prediction for standard single-model diffusion training, the metrics they report are
only interpretable for the image domain.

Epsilon and spectral models are quite similar in terms of Jensen-Shannon di-
vergence. This makes sense since the spectral model in theory only adds additional
losses for mismatches in frequency components, while the Jensen-Shannon diver-
gence does not take these into account.

Differences Between Class Labels
We can also consider the differences between labeled EEG data. In Tables 4.1 and
4.2 we can see that the Jensen-Shannon divergence changes little between labels,
with one exception for the v-prediction model trained on the Passive label.

Why v-prediction performs much better on the Passive label is not clear. The v-
prediction model might require more training to reach a similar level of convergence
compared to the other models. This observation, coupled with the fact that the Passive
label constitutes the smallest subset of the EEG data, may suggest that v-prediction
only had sufficient training time to converge on this label.

As to why the labels in general appear to have little impact on the divergence,
most likely this is because more general EEG-characteristics make up the majority
of the value distribution. This could imply that the differences between labels are
not primarily found in the value distribution and instead appear in the frequency
domain.
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5.2 Classification Tasks

From the results, we observe an increase in classification accuracy for two different
diffusion models on the LoA task. The epsilon model with 60% added data and the
spectral model with 100% added data, seen in Table 4.4. The spectral model achieved
the largest mean improvement, with an increase of 0.58% over the baseline accuracy
of 70.4%. This leaves the best model just under a 71% classification accuracy on
the LoA task for a 1-second time-window, with values up to 71.4% being inside the
confidence interval. This indicates that the diffusion models likely generated EEG
data with novel information about the underlying labels not previously learned by
the baseline model.

Looking at the trend for epsilon in Figure 4.5, the models seem to improve with
higher ratios of added data up to a certain point. The same cannot be said for both
the v-prediction and spectral models, where v-prediction models trend downwards
and the spectral models see a slight decrease at 30% added data. However, it is clear
that a significant difference for this effect cannot be seen or claimed for the amount
of runs we have, but it is something that could be investigated in future work.

Impact of Class Split
The diffusion models struggled to achieve any increase in performance on the Active
vs. Passive listening tasks. This can be seen in both Tables 4.7 and 4.9, where most
diffusion models were on par with the baseline or performed worse. This holds for
both the imbalanced case and the balanced case achieved through oversampling of
the minority class. This shows that the underlying class split in this case seems
important to achieve any performance increases by using diffusion generated EEG
data.

Even when considering the weighted average F1-score, which takes into account
the recall and precision of both classes, no improvements in performance compared
to the baseline can be seen. This coupled with a decrease in accuracy suggests that
the performance decrease across models was not offset by a performance gain for
the opposite class.

One possible cause is that there was not enough of the Passive listening EEG
data for the diffusion model to learn the features of Passive listening. In addition
to this, as mentioned in Section 5.1, data duplication is a possible risk that is more
likely to occur on a smaller subset of the data.

The way generated EEG data was added could also be suboptimal for the im-
balanced case, as we base the amount added on the underlying number of class
examples in the training set. This results in a much smaller number of generated
Passive listening examples being added compared to the Active listening examples.
It might be the case that another scheme, such as adding more synthetic examples
for the minority class, might be more optimal.
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5.2 Classification Tasks

Comparison to Noise Addition
The introduction of a noise addition model as a comparison to the diffusion models
was important to make sure the diffusion models were not comparable to the addition
of noisy data.

From the results, it is clear that the diffusion models differ from the noise addition
model, especially in the LoA task. As seen in Figure 4.5, noise addition was the
only model with a decrease in classification accuracy compared to the baseline. This
strongly suggests that the diffusion models differ from the noise addition method,
and are not comparable to adding noise to the original data.

In the Passive vs. Active listening tasks, the noise addition model seems more
comparable in performance compared to the diffusion models. However, we do
not see any significant improvements compared to the baseline for both the noise
addition and diffusion models. For this reason, it is no longer of interest whether the
noise addition is comparable to the diffusion models since neither performs above
the baseline.

There is an exception to the noise addition model being comparable to the
diffusion models in the imbalanced Passive vs. Active listening task. In Figure 4.7,
the noise addition model is the only model comparable to the baseline, with the
diffusion models all performing worse. It is likely that the noise addition model
caused the classifier to become slightly more biased towards the majority class
Active listening, which would have had a minor effect on the accuracy due to the class
imbalance. The diffusion models here instead seem to influence the classification of
both classes similarly, causing a decrease in the overall accuracy. We can also observe
the weighted average F1-score comparison in Figure 4.6 again shows comparable
performance between the noise addition model and diffusion models, with none
performing above the baseline.

Statistical Significance
As mentioned in Chapter 3, 20 models of each type presented in the Results were
trained to enable a statistical comparison against the baseline. These are not a large
number of samples, and it is possible some significant findings would change if more
runs had been performed. In addition to this, we only used a pairwise independent
Welch’s 𝑡-test between the baseline and the augmented models, instead of using a
more rigorous method.

In the case that the explored diffusion augmented models happen to not be signif-
icantly different from the baseline, this would nonetheless imply that the generated
data is comparable to the original. This follows from the fact that the classifier must
be classifying the generated synthetic data with at least the same accuracy as the
original, otherwise a decrease in performance would occur. Therefore, the generated
samples must contain features of the labels that are identifiable to the same degree
as the original data. A more in-depth statistical analysis could be explored in future
work.
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6
Conclusion

Throughout this project, we have successfully implemented and evaluated the perfor-
mance of multiple diffusion models in generating synthetic EEG data. The synthetic
data, as verified by our selected metrics, demonstrates a high degree of similarity to
real EEG data. This conclusion is supported by both the matching value distributions
across each EEG channel, as quantified by Jensen-Shannon divergence, and visual
comparisons with real EEG data.

Additionally, our findings suggest the potential of incorporating diffusion gen-
erated EEG data in data augmentation for LoA tasks. Particularly, augmenting our
classifier model with an additional 100% synthetic EEG data generated by the spec-
tral diffusion model led to a significant improvement in classification accuracy.
Specifically, an average increase of 0.58% was observed, improving the classifica-
tion accuracy to approximately 71% from a baseline of 70.4% for the LoA task,
based on 1-second EEG time-windows.

6.1 Connection to Project Objectives

As outlined in the Introduction, our thesis project aimed to achieve the following
objectives:

1. Investigate the viability of generating EEG data using DPMs traditionally
trained on image data.

2. Evaluate the quality of the synthetically generated EEG data through both
visual inspection and objective metrics.

3. Quantify the benefits of using generated EEG data for data augmentation in
three different classification tasks.

The first objective has been met through the successful implementation and training
of multiple diffusion models for EEG data synthesis. A high degree of similarity
between the generated synthetic EEG data and real EEG data was observed, as
shown by our selected metrics. These outcomes not only underscore the potential of
DPMs in synthesizing EEG data but also address our second objective by affirming
the realistic qualities of the produced synthetic data.
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6.2 Future Work

While the application of diffusion-generated EEG data in the three classifica-
tion tasks yielded mixed outcomes, the results from the balanced LoA task stand
out. For the imbalanced task, no significant improvements were observed in average
classification accuracy or F1-score, even with the implementation of oversampling
to balance the class label split. However, the notable success in the LoA task demon-
strates the value of diffusion-generated synthetic EEG data as a data augmentation
tool, particularly in scenarios where class balance can be achieved.

The implications of these findings are especially relevant to the advancement
of neuro-steered hearing aids. By effectively enhancing classification accuracy in
the LoA task through the use of synthetic EEG data, we lay foundations for future
developments in hearing aid technologies that employ AAD algorithms.

6.2 Future Work

Building upon our findings in this project, several areas for future work emerge. This
section will go over a few areas we find particularly relevant and in need of further
research. This could be within the area of AAD, aimed at improving future hearing
aids, or any number of sub-fields within the study of EEG.

Different inner diffusion model
As outlined in our Delimitations, we chose not to implement an inner denoising
model specifically tailored for multichannel time series data. Instead, we used a
variant of the UNet neural network architecture, which is standard for most modern
diffusion models working in the image domain. However, optimizing the inner model
to effectively differentiate noise from the distinctive features of the training data,
adopting it to excel with EEG data, or multichannel time series data in general, could
lead to significant improvements in generation quality.

Conditional EEG-generation
Training our diffusion models separately for each different class label reduced the
overall availability of training data for each model and required substantial processing
power. An alternative approach would involve designing a conditional DPM, capable
of incorporating additional information of interest. This information could be class
labels, text, audio or any other relevant feature to condition the EEG generation
process.

During the initial stages of the project, attempts to train a conditional model
on our EEG data proved unsuccessful, leading us to abandon this in favor of the
unconditional approach. However, we recognize this as a notable area for future
improvements, particularly in terms of reducing processing costs when training
models.
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Chapter 6. Conclusion

Continuous data generation
Given that our models were trained to specifically generate 1-second segments
of EEG data, adapting them to tasks that requiring longer time windows poses a
challenge. One potential solution could involve generating continuous data instead
of discrete segments. Such an approach would expand the usability of synthesized
EEG data across a broader range of tasks that operate on varying time scales.
Furthermore, it could by design improve the temporal consistency of the generated
data, as each new sample would be conditionally linked to the previous one.
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Appendices

Listing 6.1 Full list of layers for the used diffusers’ UNet implementation when summarized
with the python library torchinfo. An input with batch size of 1 is used here.
===================================================================================================
Layer ( t yp e : depth−i dx ) Outpu t Shape Param #
===================================================================================================
UNet2DModel [ 1 , 1 , 64 , 256] −−

Times t ep s : 1−1 [ 1 , 128] −−
TimestepEmbedding : 1−2 [ 1 , 512] −−

L i n e a r : 2−1 [ 1 , 512] 66 ,048
SiLU : 2−2 [ 1 , 512] −−
L i n e a r : 2−3 [ 1 , 512] 262 ,656

Conv2d : 1−3 [ 1 , 128 , 64 , 256] 1 ,280
Modu leL i s t : 1−4 −− −−

DownBlock2D : 2−4 [ 1 , 128 , 32 , 128] −−
ModuleL i s t : 3−1 −− −−

ResnetBlock2D : 4−1 [ 1 , 128 , 64 , 256] 361 ,344
ResnetBlock2D : 4−2 [ 1 , 128 , 64 , 256] 361 ,344

Modu leL i s t : 3−2 −− −−
Downsample2D : 4−3 [ 1 , 128 , 32 , 128] 147 ,584

DownBlock2D : 2−5 [ 1 , 128 , 16 , 64] −−
ModuleL i s t : 3−3 −− −−

ResnetBlock2D : 4−4 [ 1 , 128 , 32 , 128] 361 ,344
ResnetBlock2D : 4−5 [ 1 , 128 , 32 , 128] 361 ,344

Modu leL i s t : 3−4 −− −−
Downsample2D : 4−6 [ 1 , 128 , 16 , 64] 147 ,584

DownBlock2D : 2−6 [ 1 , 256 , 8 , 32] −−
ModuleL i s t : 3−5 −− −−

ResnetBlock2D : 4−7 [ 1 , 256 , 16 , 64] 1 ,050 ,368
ResnetBlock2D : 4−8 [ 1 , 256 , 16 , 64] 1 ,312 ,512

Modu leL i s t : 3−6 −− −−
Downsample2D : 4−9 [ 1 , 256 , 8 , 32] 590 ,080

DownBlock2D : 2−7 [ 1 , 256 , 4 , 16] −−
ModuleL i s t : 3−7 −− −−

ResnetBlock2D : 4−10 [ 1 , 256 , 8 , 32] 1 ,312 ,512
ResnetBlock2D : 4−11 [ 1 , 256 , 8 , 32] 1 ,312 ,512

Modu leL i s t : 3−8 −− −−
Downsample2D : 4−12 [ 1 , 256 , 4 , 16] 590 ,080

AttnDownBlock2D : 2−8 [ 1 , 512 , 2 , 8 ] −−
ModuleL i s t : 3−11 −− ( r e c u r s i v e )

ResnetBlock2D : 4−13 [ 1 , 512 , 4 , 16] 3 ,935 ,744
Modu leL i s t : 3−12 −− ( r e c u r s i v e )

A t t e n t i o n : 4−14 [ 1 , 512 , 4 , 16] 1 ,051 ,648
Modu leL i s t : 3−11 −− ( r e c u r s i v e )

ResnetBlock2D : 4−15 [ 1 , 512 , 4 , 16] 4 ,984 ,320
Modu leL i s t : 3−12 −− ( r e c u r s i v e )

A t t e n t i o n : 4−16 [ 1 , 512 , 4 , 16] 1 ,051 ,648
Modu leL i s t : 3−13 −− −−

Downsample2D : 4−17 [ 1 , 512 , 2 , 8 ] 2 ,359 ,808
DownBlock2D : 2−9 [ 1 , 512 , 2 , 8 ] −−

ModuleL i s t : 3−14 −− −−
ResnetBlock2D : 4−18 [ 1 , 512 , 2 , 8 ] 4 ,984 ,320
ResnetBlock2D : 4−19 [ 1 , 512 , 2 , 8 ] 4 ,984 ,320

UNetMidBlock2D : 1−5 [ 1 , 512 , 2 , 8 ] −−
ModuleL i s t : 2−12 −− ( r e c u r s i v e )

ResnetBlock2D : 3−15 [ 1 , 512 , 2 , 8 ] −−
GroupNorm : 4−20 [ 1 , 512 , 2 , 8 ] 1 ,024
SiLU : 4−21 [ 1 , 512 , 2 , 8 ] −−
LoRACompatibleConv : 4−22 [ 1 , 512 , 2 , 8 ] 2 ,359 ,808
SiLU : 4−23 [ 1 , 512] −−
LoRACompat ib leLinear : 4−24 [ 1 , 512] 262 ,656
GroupNorm : 4−25 [ 1 , 512 , 2 , 8 ] 1 ,024
SiLU : 4−26 [ 1 , 512 , 2 , 8 ] −−
Dropout : 4−27 [ 1 , 512 , 2 , 8 ] −−
LoRACompatibleConv : 4−28 [ 1 , 512 , 2 , 8 ] 2 ,359 ,808

Modu leL i s t : 2−11 −− −−
A t t e n t i o n : 3−16 [ 1 , 512 , 2 , 8 ] −−

GroupNorm : 4−29 [ 1 , 512 , 16] 1 ,024
LoRACompat ib leLinear : 4−30 [ 1 , 16 , 512] 262 ,656
LoRACompat ib leLinear : 4−31 [ 1 , 16 , 512] 262 ,656
LoRACompat ib leLinear : 4−32 [ 1 , 16 , 512] 262 ,656
Modu leL i s t : 4−33 −− 262 ,656

Modu leL i s t : 2−12 −− ( r e c u r s i v e )
ResnetBlock2D : 3−17 [ 1 , 512 , 2 , 8 ] −−

GroupNorm : 4−34 [ 1 , 512 , 2 , 8 ] 1 ,024
SiLU : 4−35 [ 1 , 512 , 2 , 8 ] −−
LoRACompatibleConv : 4−36 [ 1 , 512 , 2 , 8 ] 2 ,359 ,808
SiLU : 4−37 [ 1 , 512] −−
LoRACompat ib leLinear : 4−38 [ 1 , 512] 262 ,656
GroupNorm : 4−39 [ 1 , 512 , 2 , 8 ] 1 ,024
SiLU : 4−40 [ 1 , 512 , 2 , 8 ] −−
Dropout : 4−41 [ 1 , 512 , 2 , 8 ] −−
LoRACompatibleConv : 4−42 [ 1 , 512 , 2 , 8 ] 2 ,359 ,808

Modu leL i s t : 1−6 −− −−
UpBlock2D : 2−13 [ 1 , 512 , 4 , 16] −−

ModuleL i s t : 3−18 −− −−
ResnetBlock2D : 4−43 [ 1 , 512 , 2 , 8 ] 7 ,869 ,440
ResnetBlock2D : 4−44 [ 1 , 512 , 2 , 8 ] 7 ,869 ,440
ResnetBlock2D : 4−45 [ 1 , 512 , 2 , 8 ] 7 ,869 ,440

Modu leL i s t : 3−19 −− −−
Upsample2D : 4−46 [ 1 , 512 , 4 , 16] 2 ,359 ,808

AttnUpBlock2D : 2−14 [ 1 , 512 , 8 , 32] −−
ModuleL i s t : 3−24 −− ( r e c u r s i v e )

ResnetBlock2D : 4−47 [ 1 , 512 , 4 , 16] 7 ,869 ,440
Modu leL i s t : 3−25 −− ( r e c u r s i v e )
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A t t e n t i o n : 4−48 [ 1 , 512 , 4 , 16] 1 ,051 ,648
Modu leL i s t : 3−24 −− ( r e c u r s i v e )

ResnetBlock2D : 4−49 [ 1 , 512 , 4 , 16] 7 ,869 ,440
Modu leL i s t : 3−25 −− ( r e c u r s i v e )

A t t e n t i o n : 4−50 [ 1 , 512 , 4 , 16] 1 ,051 ,648
Modu leL i s t : 3−24 −− ( r e c u r s i v e )

ResnetBlock2D : 4−51 [ 1 , 512 , 4 , 16] 6 ,558 ,208
Modu leL i s t : 3−25 −− ( r e c u r s i v e )

A t t e n t i o n : 4−52 [ 1 , 512 , 4 , 16] 1 ,051 ,648
Modu leL i s t : 3−26 −− −−

Upsample2D : 4−53 [ 1 , 512 , 8 , 32] 2 ,359 ,808
UpBlock2D : 2−15 [ 1 , 256 , 16 , 64] −−

ModuleL i s t : 3−27 −− −−
ResnetBlock2D : 4−54 [ 1 , 256 , 8 , 32] 2 ,690 ,048
ResnetBlock2D : 4−55 [ 1 , 256 , 8 , 32] 2 ,034 ,176
ResnetBlock2D : 4−56 [ 1 , 256 , 8 , 32] 2 ,034 ,176

Modu leL i s t : 3−28 −− −−
Upsample2D : 4−57 [ 1 , 256 , 16 , 64] 590 ,080

UpBlock2D : 2−16 [ 1 , 256 , 32 , 128] −−
ModuleL i s t : 3−29 −− −−

ResnetBlock2D : 4−58 [ 1 , 256 , 16 , 64] 2 ,034 ,176
ResnetBlock2D : 4−59 [ 1 , 256 , 16 , 64] 2 ,034 ,176
ResnetBlock2D : 4−60 [ 1 , 256 , 16 , 64] 1 ,706 ,240

Modu leL i s t : 3−30 −− −−
Upsample2D : 4−61 [ 1 , 256 , 32 , 128] 590 ,080

UpBlock2D : 2−17 [ 1 , 128 , 64 , 256] −−
ModuleL i s t : 3−31 −− −−

ResnetBlock2D : 4−62 [ 1 , 128 , 32 , 128] 706 ,048
ResnetBlock2D : 4−63 [ 1 , 128 , 32 , 128] 541 ,952
ResnetBlock2D : 4−64 [ 1 , 128 , 32 , 128] 541 ,952

Modu leL i s t : 3−32 −− −−
Upsample2D : 4−65 [ 1 , 128 , 64 , 256] 147 ,584

UpBlock2D : 2−18 [ 1 , 128 , 64 , 256] −−
ModuleL i s t : 3−33 −− −−

ResnetBlock2D : 4−66 [ 1 , 128 , 64 , 256] 541 ,952
ResnetBlock2D : 4−67 [ 1 , 128 , 64 , 256] 541 ,952
ResnetBlock2D : 4−68 [ 1 , 128 , 64 , 256] 541 ,952

GroupNorm : 1−7 [ 1 , 128 , 64 , 256] 256
SiLU : 1−8 [ 1 , 128 , 64 , 256] −−
Conv2d : 1−9 [ 1 , 1 , 64 , 256] 1 ,153

===================================================================================================
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(a) Left class

(b) Right class

Figure 6.1 Epsilon Jensen-Shannon divergence graphs for the epsilon model
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All implemented models have a large set of parameters to use. The tables show
the parameters that have been changed, the others are the standard parameters set by
the implementation in the diffusers’ library.

Hyperparameter Value
Batch size 64
Learning rate 5e-4
Learning rate scheduler Constant
Overlap percent 0.25
Normalize with train True

Table 6.1 Standard parameters used for the classification tasks
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