
Application of deep learning based
methodology for the optimisation of

monolayer classification and white blood
cell localisation in avian blood samples

Erica Andersdotter

Master’s Thesis in
Biomedical Engineering

2024

CellaVision, Department of Biomedical Engineering

Supervisors: Kent Stråhlén (CellaVision)
Christian Antfolk (LTH)

Examiner: Martin Stridh

Abstract

Current automated haematology systems lack the functionality of avian blood
analysis using 10x magnification, which is an important feature as it allows for
faster and more cost-effective blood analysis. The problem originates from the
difference in red blood cell morphology in avian blood compared to mammalian
blood, as the former are nucleated. The project was divided in two objectives,
finding monolayers and localising white blood cells within them. For the first
task, a convolutional neural network was optimised with particular focus on
monolayer precision and the model’s ability to distinguish between classes. This
was trained with a multiclass dataset using semi-supervised learning. The pro-
posed model, including loss concentrating on challenging instances, reported an
overall accuracy of 95.1% as well as recall and precision values over 87%. Monolay-
ers could be found with 79.9% precision. Future improvements could be expert-
based dataset annotations as well as k-fold cross-validation to validate the ro-
bustness of the model. The second task deployed an object detection optimisa-
tion with varying augmentation settings for white blood cells in 333 samples. The
best performing model showed an average precision of 13.7% and a slightly higher
value of 48.6% with an overlap threshold of 50%. This signified that the model
had difficulties with precise localisations of the white blood cells, which might
be explained by the cells having too small relative areas. Future improvements
could hence include alternative base models with more suitable architecture for
distinguishing small objects in dense images as well as techniques to recreate
higher resolution, mimicking images collected with higher magnification.

Keywords: Convolutional neural networks, monolayers, avian, machine learning, object
localisation

2

Acknowledgements

Firstly, I would like to thank Cellavision for giving me the opportunity to carry out my mas-
ter’s thesis project, and for all the support I’ve received. I would especially like to thank Kent
Stråhlén for his work as supervisor. Furthermore, I wish to thank Irme Groothius for her in-
valuable support during the start of my thesis, as well as Måns Jarlskog, for answering some
of my technical questions, and Mats Erikson, for showing me how to collect box coordinates.
I’m also grateful to Susanne Chau and the entire BF Applications Team for their encourage-
ment, warm welcome and many fikas.

I would also like to thank my supervisor at LTH, Christian Antfolk, for his guidance.

Finally, my sincerest gratitude to everyone who helped me progress in this project by provid-
ing support, knowledge and encouragement.

3

4

Contents

1 Introduction 9
1.1 Blood smear . 10
1.2 Red blood cell morphology . 10

1.2.1 Avian red blood cell morphology 11
1.2.2 Extracting avian blood . 12

1.3 Problem statement . 12
1.3.1 Aim of the thesis . 13

2 LiteratureReview 15

3 Theory 19
3.1 Artificial intelligence . 19
3.2 Machine learning . 20

3.2.1 Different types of learning . 20
3.2.2 Training ML models . 21
3.2.3 Evaluating performance of ML models 22

3.3 Deep learning . 25
3.4 Artificial neural networks . 26

3.4.1 The single neuron . 26
3.4.2 Neural networks . 27
3.4.3 Forward propagation and backpropagation 28
3.4.4 Loss functions . 28
3.4.5 Optimisation . 30

3.5 Convolutional neural networks . 32
3.6 Object detection . 34

3.6.1 Principles of object detection . 35
3.6.2 Evaluating performance . 37

3.7 Transfer learning . 39
3.7.1 InceptionV3 . 39
3.7.2 YOLO . 40

5

CONTENTS

4 Method 41
4.1 System overview . 41
4.2 Finding monolayers . 41

4.2.1 Data collection . 41
4.2.2 Pre-processing . 46
4.2.3 General test design . 46
4.2.4 Initial tests with binary dataset . 46
4.2.5 Multiclass testing . 48
4.2.6 Tests with pseudo-labelled multiclass dataset 50
4.2.7 Evaluation of proposed model . 52

4.3 Locating WBCs . 52

5 Results 55
5.1 Finding monolayers . 55

5.1.1 Initial tests with binary dataset . 55
5.1.2 Multiclass testing . 57
5.1.3 Tests with pseudo-labelled multiclass dataset 60
5.1.4 Proposed model . 64

5.2 Locating WBCs . 66
5.2.1 Best performing model . 68

6 Discussion 71
6.1 Finding monolayers . 71

6.1.1 Baseline architecture . 71
6.1.2 Fine-tuning transfer learning models 72
6.1.3 Batch sizes . 73
6.1.4 Loss functions . 73
6.1.5 Learning rates . 75
6.1.6 Optimiser . 76
6.1.7 Dropout and extended model . 77
6.1.8 Image aspect ratio . 78
6.1.9 Augmentation . 79
6.1.10 Class imbalance . 80
6.1.11 L1/L2-regularisation . 80
6.1.12 Binary, multiclass and pseudo-labelled multiclass dataset 81
6.1.13 Proposed model . 81

6.2 Locating WBCs . 82
6.3 Limitations and future research . 84

7 Conclusion 87

References 89

Appendix A Complementary information 101
A.1 YOLOv8 Architecture . 101
A.2 Learning Rate Shapes . 102
A.3 Initial training . 102

6

CONTENTS

A.4 Initial training with dropout . 103
A.5 Testing optimisers . 104
A.6 Training with extended dropout design . 104
A.7 Training with L1/L2-regularisation . 105
A.8 Final ROC . 106

Appendix B Additional tests 107
B.1 Combined neural network and support vector machine classifier 107
B.2 Optimising focal loss . 109
B.3 Multiple learning rate schedulers . 111

7

CONTENTS

8

Chapter 1

Introduction

Blood analysis has been a common diagnostic tool in both human as well as veterinarian
medicine, due to the extent of real-time physiological information that can be conveyed
through the blood [1]. It is therefore an essential step in supporting evaluation of a patient’s
health status [2]. Non-surprisingly, blood samples therefore also have the highest prevalence
in laboratory medical facilities compared to other diagnostic tests [1]. Since rapid and accu-
rate diagnoses are significant for a successful treatment of a disease, it is necessary to perform
the analysis as quickly as possible [3]. Blood can be analysed on both chemical and physical
properties in both qualitative as quantitative approaches, such as the number of red blood
cells (RBCs), white blood cells (WBCs), haemoglobin (Hb) concentration, antigens, activity
of enzymes, viscosity, acidity and clotting abnormalities, among other things [4]. There are
today over one hundred different haematological tests and procedures for a single sample,
many of them possible to perform both manually and automatically [2]. Manual blood anal-
ysis can be performed through conventional light microscopy by an expert in the subject and
has been the standard in modern medicine for decades. But this approach is also time con-
suming and resource intensive and the result can easily be affected by inter- and intraobserver
variability [4, 5]. Automatic and digital analysis methods based on artificial intelligence have
therefore become an important step in making the analysis both more accurate and efficient
[5, 6].

9

1. Introduction

1.1 Blood smear
A peripheral blood film (PBF) or smear (PBS) is a blood test that examines size, shape, the
amount of blood cells and potential foreign bodies in the studied sample and therefore works
as an important haematological diagnostic tool. Ideally, the PBS should contain three observ-
able areas: the head of the smear beginning from the application point, a monolayer and a
feathered edge [6, 7, 8, 9] , which can be seen in Figure 1.1. The head of the PBS is located at
the beginning of the smear on the glass and is usually the thickest part of the test. This means
that most cells overlap. The monolayer is a region of the sample which contains a continuous
layer with one cell thickness, ideally with no overlap of cells, but often with cells lined up
side-by-side. This area can usually be found just adjacent to the feathered edge [8, 10]. The
feathered edge is the region on the outer part of the blood smear consisting of sparsely placed
cells. These cells are prone to being damaged. Normally, the monolayer is the ideal region to
perform RBC and WBC analysis as it enables easier visualisation for the examination, but it
can lack information about denser abnormalities, such as erythrocyte aggregation [7, 8, 9, 11].

Figure 1.1: Example of a blood smear with its basic components.

1.2 Red blood cell morphology
A red blood cell, or an erythrocyte, is responsible for, among other things, transporting gases
such as oxygen and nutrients to and from the tissue [12]. Since blood, and by extension
erythrocytes, carry such an essential functionality in the body and is in close relation with
tissues, it is very easily affected by external factors. Examining the blood of an organism can
therefore relay information regarding potential threats, inflammation and diseases - giving
blood tests a good supportive role in diagnostics [11].

10

1.2 Red blood cell morphology

The hematopoietic cells of vertebrates are derived from pluripotent stem cells in the bone
marrow. These cells are nucleated and can be used to create any cell or tissue the body [13, 14].
In the human species as well as other mammals, erythropoiesis, the development into a ma-
ture red blood cell, includes losing organelles and nucleus during maturation; by the time
RBCs reach the blood, they are therefore mostly enucleated [13, 15, 16].

1.2.1 Avian red blood cell morphology

In contrast to RBCs of mammals, erythrocytes of other vertebrates, including almost all
fish, amphibian, reptile and bird species, mostly remain nucleated throughout their lifes-
pan. Alongside keeping the nucleus, some species also possess organelles such as mitochon-
dria and ribosomes in their mature erythrocytes. This has been demonstrated in fish species
and occasionally in amphibians [15]. Avian species’ RBCs also contain organelles, even if
the investigation regarding functionality of the organelles in RBCs is lacking [15, 17]. This
discovery has been somewhat contradicting common beliefs as birds and mammals both are
endothermic and presumably face comparable selection pressures [18].

The typical avian erythrocyte is described as ovoid with a centrally placed ovoid nucleus. This
appearance is mostly uniform across different avian species, although the size and proportion
of blood cell and nucleus can vary [19, 20]. The nucleus consists of clumped chromatin, which
increasingly condenses as the erythrocyte ages [21]. There is currently no clear evidence as to
why birds keep their nucleus and organelles, and if these are fully functional compared to a
normally nucleated cell. However, there have been some studies investigating this. Opposed
to mammal erythrocytes, avian RBCs seem to have some level of DNA transcription activ-
ity within the nucleus [19]. This is further supported by findings of protein level changes in
the cell depending on different environmental or physiological situations [22]. Studies also
indicate that avian erythrocytes have direct immunological activity, including antigen pre-
sentation and interleukin-like production, but some antiviral functions can to some extent
also be seen in enucleated RBCs. Another hypothesis for the existence of nucleated erythro-
cytes is the lack of Hb-storing in the spleen for birds [23] - suggesting that the functionality
of the RBC can help synthesise and repair Hb de novo [17]. This process can for example be
seen in fish [24]. Avian erythrocytes have also been shown to contain a higher amount of ATP
compared to mammal RBCs, which can indicate that the nucleated RBC takes greater part
of energy production in avian species. Avian mitochondria in erythrocytes have also been
suggested to act as a reservoir of antioxidants to counteract higher production of reactive
oxygen species (ROS), helping to regulate the redox status in the cell, as avian RBCs contain
a lot of catalysts for ROS production including molecular O2 bound to Hb causing autoxi-
dation. Furthermore, considering that flight provides the need to regulate oxygen to adjust
for different altitudes as well as demands a lot of energy, it’s hypothesised that the nucleated
RBCs allows for higher finetuning of Hb-O2 binding affinity [17].

11

1. Introduction

1.2.2 Extracting avian blood
Peripheral blood from birds is collected through venipuncture. For small birds this is most
often collected through the jugular vein while larger birds’ blood is collected from the ulnar
or wing vein. Alongside proper addition of additives depending on the desired analysis, the
blood is prepared on a blood film with the standard two-slide wedge technique also used in
human haematology. The blood film is then stained after desired outcome, for avian medicine
it is common to use Wright’s stain [21].

1.3 Problem statement
Some of the currently most advanced automatic haematology analysers used on the market
are today developed by CellaVision. As a company specialising in developing automated dig-
ital haematology systems, CellaVision today has a number of different systems in use with
different sizes, features and complexities - including DC-1 and DM9600, see Figure 1.2.

Figure 1.2: CellaVision’s automatic haematology systems DC-1(left)
and DM9600(right) [24, 25].

Similar to traditional microscopy, the automatic haematology systems utilise monolayers
when performing blood analysis. However, due to the differences in cell structures between
various animal species previously mentioned, the current haematological analysis methods
used in the existing systems are unreliable for avian blood samples when using microscopic
lenses smaller than 100x, as it is more difficult to find the desired monolayer. Currently, the
DC-1 is the only system that includes some form of analysis for avian medicine. However,
by being the smallest analyser in the product range, this system has limitations; DC-1 can
only analyse one sample at a time, thereby making the process of analysing a large number of
samples very time consuming - considering that it approximately can scan up to 10 individ-
ual slides an hour. Additionally, it does this analysis at a higher magnification than desirable.

12

1.3 Problem statement

In order to make analysis more time efficient, and thereby more useful in laboratories with
high demand, it is essential to use lenses with a lower optical power, preferably at a 10x mag-
nification. Larger systems like DM9600 have the ability to analyse samples in batches and
are thus more efficient. They can furthermore analyse and find monolayers within a range
of different magnitudes, including 10x, for mammalian blood, but they lack this ability for
avian blood analysis.

1.3.1 Aim of the thesis
The aim of this thesis is to demonstrate the application of a deep learning approach, utilising
its strong pattern recognition capabilities, to avian blood smear images in order to find their
monolayers. In further detail, the aim includes using the features of the DC-1 system to
construct a neural network able to determine the existence of a monolayer in images with
lower magnification (10x). This is important to be able to efficiently observe and analyse
the contents of the blood and thereby perform the desired blood analysis. Furthermore, a
secondary aim is to be able to identify and localise the white blood cells in avian samples by
using object detection models. Ideally, this will be able to give an automated differentiation
from the nucleated erythrocytes and by extension make it possible to perform a WBC analysis
in the future.

13

1. Introduction

14

Chapter 2

Literature review

There have been several attempts to make avian blood cell counting more efficient. Meechart
et al. [26] developed a computer vision algorithm based on a threshold selection method while
others tried to achieve the same through image cytometry by manually extracting features
such as shape and intensity [27]. Although giving promising results, both studies mentioned
that further investigations and research were needed to refine the techniques and give more
satisfactory results.

Govind et al. [8] tried to relieve the process of manual examination by using whole slide im-
ages, as it is common practice to scan and archive high resolution images of a full blood smear.
The authors developed a method of finding an optimal area for RBC morphology quantifi-
cation from these whole slide scans for blood smears across several species including reptiles
and one avian species. Similar methods are mentioned to attempt the quantification, such as
excluding overlapping cells from the analysis, morphology-based techniques and automated
analysis such as CellaVision’s Advanced Red Blood Cell Software. However, these techniques
are referred to as either decreasing sample size too much, being non-applicable to abnormal
morphologies or being too economically and computationally expensive. This further meant
that the study was not aimed specifically at finding the monolayer, but argued that inclusion
of all erythrocytes within the defined optimal area would lead to higher accuracy compared
to that in just the monolayer. The study was performed in a two-stage extraction system -
by scanning smears with low resolution and then deciding on decision boundaries with the
help of a quadratic determinant analysis classifier. The decided area was then analysed and
refined with higher resolution. Subsequently, the cells were segmented based on the species’
cell morphology and fed into a convolutional neural network, see Section 3.5, with a SGD
optimiser, see Section 3.4.5, for classification. The study’s proposed method demonstrated
a more sensitive method for cell segmentation performance compared to that of existing
literature. However, the lowest magnification used in the study was 40x, which allows for
easier separation and hence easier classification of cells compared to 10x as is the aim for this
project. Also worth mentioning is that the study did not contain a deep learning approach to

15

2. LiteratureReview

finding the optimal area, as deep learning techniques were confined to classifying individu-
ally cropped out detected cells from the optimal area, which then were classified to a specific
species.

A study conducted by Vogelbacher et al. [28] develops the idea of Govind et al. For the study,
whole slide images at x40 and x100 magnification were captured of avian blood samples,
which were then annotated by an expert. The whole slide image was then tiled and labelled
positive if the cells were evenly distributed, contained no overlapping cells or had high qual-
ity. On the other hand, large free spaces, overlapping cells and low quality were considered
to be negative. Further annotation included individual cells with segmentation boxes, giving
each cell instance a specific mask and label. However, while increasing performance due to
less overlap between segmentation masks, it is also mentioned to be very time-consuming.
The cells were further labelled according to their cell type. The first neural network, based on
EfficientNet, was developed to find an optimal region of blood cell counting, similar to that
of the previously mentioned study, while the second neural network, CondInst instance seg-
mentation model, is used for detecting and classifying blood cells by instance segmentation.
The study provided great results in both AP, see Section 3.6.2, and interference runtimes, but
again, only addressed the problem with a higher magnification.

The effect of magnification of images was addressed in a study conducted by Hoefling, Sing
and Moulin [29]. The study compares different deep learning models in a histopathology set-
ting, more specifically VGG-16, ResNet-50 and Inception-v3, all pretrained with ImageNet,
at different magnification levels. It further discusses challenges of deep learning in computa-
tional pathology particular to whole slide imaging, including large image sizes, artefacts, the
multiscale nature of the data as well as difficulty in obtaining annotations within the field.
The whole-slide images for the study were generated using 40x magnification and manually
manipulated to represent magnification ranging down to 1.25x. The studied objects were
however of tissue-size, which means the object size could vary but generally contained larger
areas compared to cells. Out of the proposed models, Inception-v3 and ResNet-50 outper-
formed VGG-16, with Inception-v3 having superior performance. In general, the tissue pre-
diction was increasingly reliable with lower magnitude, which naturally is a consequence of
having more structures of the tissue present in the image and hence becomes more distin-
guishable.

Kittichai et al. takes a deep learning approach in their study [30], deploying a comparison
between different convolutional neural networks with the purpose of automatically classify-
ing an avian malaria parasite in blood samples and by extension decrease the inter- and intra
examiner variability. Four different CNNs were considered: Darknet, Darknet19, Darknet
19-448 and Densenet201, trained with a dataset of 12761 single-cell images. The study was
performed in two stages by combining the object detection model YOLOv3 with the classi-
fication models. A hybrid solution of two CNNs was argued to demonstrate increased pre-
diction accuracy. Further, it is also said that a hybrid platform in the object detection model
including the YOLO model with a different detector improves the average precision in the
proposed detector. The object detection model YOLOv3 was used to detect individual RBCs
in microscopic images with 1000x oil immersion magnification. The cropped, single RBCs
were then used as inputs for the following classification model. In order to avoid overfitting

16

in the models, augmentation, see Section 3.2.2, such as rotations, brightness, contrast, blur-
riness and Gaussian noise was applied. For this specific dataset, Darknet yielded the highest
accuracy and precision of the proposed models.

17

2. LiteratureReview

18

Chapter 3

Theory

3.1 Artificial intelligence
The idea of making technology think originated as early as 1950 [31], and the field quickly
experienced substantial development into what today is known as artificial intelligence (AI).
AI is based on the concept of understanding human intelligence and, ideally, beyond, as well
as building entire intelligent entities. Primarily, this is focused on computational ability to
solve problems and accomplish set tasks [32, 33]. AI is a general term containing several sub-
fields such as machine learning (ML), deep learning, natural language processing and com-
puter vision.

AI is also becoming increasingly more important to use in medicine and healthcare, even
though the field has higher regulatory conditions to fulfil. AI can be useful in informat-
ics approaches such as electronic health records and omics, but also with medical diagnosis,
medical statistics and robotic [34]. AI is particularly useful in acting as a complement in
diagnosing patients’ health statuses, leading to a more secure and efficient process as well
as advancing the field further. In pathology, AI often uses pattern recognition methods to
incorporate clinical, radiologic and genomic data. Diagnostic pathology mostly utilises mi-
croscopic morphology, but this technique has a large error rate in interobserver variability
with manual use. Introducing algorithms and AI to diagnostic pathology, especially in terms
of segmentation, detection, classification and quantification, to get more consistent and ac-
curate results has hence been proven effective [35].

19

3. Theory

3.2 Machine learning
With the increasing amount of data circulating in our society, machine learning (ML) has
become more and more relevant across multiple fields and industries, such as healthcare,
education, manufacturing and marketing; changing the way technology works over just a
couple of decades. ML is a subfield of AI that uses algorithms to identify patterns, model
data and perform tasks such as classifications and decisions. The goal with ML is to build
systems that automatically can improve its own performance through experience [36]. This is
based on the idea of showing the models real life data with certain inputs and outputs, which
is a far more efficient approach compared to anticipating all possible outcomes manually.
Furthermore, it helps with managing large amounts of data, which can be difficult to tackle
manually. Typically, ML tasks involve extracting domain-specific features from raw input.
This is usually followed by statistical modelling and learning different kinds of models de-
pending on the task at hand. Some common models are tree-based decision models, support
vector machines (SVM) and linear regression models [35].

3.2.1 Different types of learning
There are several ways to learn and train a system. The most frequently employed method
is supervised learning, especially for prediction [37, 38]. Supervised learning is characterised
by utilising annotated training data to instruct the model how to associate the labels with
the input data. Thus, the idea is that unseen data will behave similarly to the distribution
in the labelled training data and therefore make accurate predictions on new unseen data [39].

Another approach to learning is through unsupervised machine learning methods. Here,
the model is trained on non-labeled data to find patterns and relationships. This is for ex-
ample performed through clustering or dimensionality reduction. The method is especially
suitable for description tasks as they lack a variable that can supervise accuracy of for exam-
ple correct predictions. It can be beneficial to identify underlying or unobserved structures
that are difficult to find manually [38].

The two different techniques can also be combined in what is called semi-supervised learn-
ing. Semi-supervised learning (SSL) is especially useful in areas where annotation can be
difficult, such as medicine and agriculture. It is further practical if the labelling processes
are time-consuming, as they in some cases can take too long in order to be beneficial and
are often prone to human error. The community has hence tried to develop alternatives to
supervised learning, where partial sets of data are annotated while the rest is not. A tech-
nique commonly used within the realms of SSL is pseudo-labelling [40]. In pseudo-labeling,
a model is firstly trained with the annotated data. The unannotated data is then iteratively
classified after predictions of the trained model. When both annotated data and unlabelled
data have been divided into categories, the model is further trained while including the new
samples [41].

20

3.2 Machine learning

3.2.2 Training ML models
Training ML models can be a challenging task, both in terms of time spent fine-tuning hy-
perparameters, which form the model configuration settings, to reach desirable performance
and generalisation, but it is also computationally expensive due to the number of parame-
ters needing optimisation. Many ML models inherently support the ability of incremental
learning, which is a methodology to learn and enhance a designed model by remembering
previously learned knowledge [42]. The aim is to learn enough about the data that the model
is being trained on, while also keeping its generalisation and thus be able to adapt to new,
previously unseen data with adequate performance relative to the training performance. In
order to track generalisation, datasets are usually divided into three parts: the training set
the network is being trained on, a validation set used to fine-tune hyperparameters, and a
test set for a final evaluation of the model’s performance [43]. The hyperparameters can be
tuned in two different strategies, either using grid search or random search. With grid search,
a number of possible values of the hyperparameters will be chosen and then models with dif-
ferent combinations of these will be trained to find the optimal configuration of the given
choices. Random search, on the other hand, is, as implied, randomly training models with
randomly chosen combinations of hyperparameters. This gives the advantage of covering a
larger amount of hyperparameters compared to grid search, but is more difficult to repro-
duce [44].

When a model achieves good performance on the training set but not on the validation or
test set, the model is overfitted. One reason for this could be that the dataset doesn’t contain
enough samples. A too small set of samples means that the possibility of the training set con-
taining samples similar to those in the test set decreases, thereby increasing the generalisation
loss, see Figure 3.1.

Figure 3.1: The effect on training and generalisation loss by number
of samples and model complexity.

Another possible reason is the model becoming too complex. A higher number of parameters
are usually able to fit both the true regularities as well as the accidental ones. This means that
if the model has too few parameters, it fails to find the true patterns between the samples,
thereby underfitting the model. However, if given too much complexity, it will completely
learn the training data and fail to generalise, thereby increasing the generalisation loss. It
is therefore of importance to find the optimum between under- and overfitting in order to
receive better performance [45]. These concepts are illustratively explained in Figure 3.1.

21

3. Theory

Regularisation

Another common approach to reducing overfitting is using regularisation. Regularisation
helps to constrain and control model complexity by adding penalty terms to the loss func-
tion. This in turn will regulate the estimated gradients and influence parameter updates,
hence leading to a model with better ability to generalise. The most commonly used reg-
ularisation techniques are Least Absolute Shrinkage and Selection Operator (LASSO), also
called L1 regularisation, Ridge or L2 regularisation, and Elastic Net, also called L1/L2 regu-
larisation. L1 regularisation adds the absolute value of weight magnitude as a penalty term
to the loss function while ridge regularisation instead adds the squared magnitude of the
coefficient. This means the L1 can set coefficients to exactly 0, making the model ignore
features that are of no use to the model learning. This encourages sparsity as it introduces
feature selection, hence working well in models with a high number of features. Penalising
with the squared magnitude will instead reduce the impact that irrelevant features have on
the model without completely removing them, which will stabilise the model while keeping
all information [46, 47]. Elastic Net regularisation (L1/L2 regularisation) is a combination of
the two regularisation techniques, effectively combining the strengths of both. This has been
shown to perform better compared to other linear regression techniques, thereby presenting
as robust while also helping with feature selection and parameter shrinkage [47].

Data augmentation

Although machine learning can solve complex problems today, it also comes with the re-
quirement of a large amount of data in order to perform adequately. This is a big bottleneck
in fields such as medicine, especially while handling visual data [40]. In this situation, data
augmentation can prove itself helpful by artificially introducing random distortions to ex-
isting samples. This technique will hence increase the training set with small variations such
as geometric and colour space transformations, as well as for example combining images and
random erasings. Furthermore, data augmentation will also help models from overfitting, re-
duce bias, and possibly increase the general model performance. Data augmentation is usually
included in the model pipeline [48]. For cell segmentation, data augmentation with random
elastic transformations seem to improve performance, especially when having few training
samples, as it gives the network a possibility to get used to deformations in the data [49].

3.2.3 Evaluating performance of ML models
While it is custom to track ML models’ learning through training and validation accuracy as
well as loss over time, there is also a need to perform a proper evaluation to understand the
performance and capability of the model. Evaluation of machine learning systems is essential
in all applications, especially due to lack of explainability in ML. Quantifying the quality
of performance helps the understanding of the system’s solution [50]. Both qualitative and
quantitative evaluation can be used to determine performance. Qualitative evaluation means
for example asking the users if the result is satisfactory while quantitative evaluation focuses
on statistical and mechanical methods to validate the performance [51].

22

3.2 Machine learning

Confusion matrix
When it comes to classification tasks, the predicted values can be divided into true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN), where the true values
signify a correct prediction and vice versa for the negative examples. In an ideal model, FP
and FN should be zero, as these indicators signify the wrong classification. Based on situa-
tional applications of models, the importance of a non-zero value can vary. In medicine, FN
cases can for example indicate that a patient with an illness has been diagnosed as healthy
which in the worst case scenario can lead to a fatal outcome. These categories of predicted
values are therefore used to calculate metrics with the purpose of measuring model perfor-
mance with varied significance to outcome [52, 53].

The cross classification these categories explain can be represented by a confusion matrix,
also called error matrix, and is commonly used in the area of ML, both for binary and mul-
ticlass classification. The layout allows for easier visualisation of performance measurement
[54]. Each column illustrates instances of predicted values while each row shows the true
instances, as seen in Figure 3.2.

Figure 3.2: Layout of a binary confusion matrix.

Evaluation metrics
Accuracy describes the proportion of true results, that is the number of correct assessments
across all samples. This can be calculated as

Accuracy =
TN + TP

TN + TP + FN + FP
(3.1)

Accuracy might be the most intuitive metric for the model performance, but most often this
can be misleading and not show the true quality of the model, especially in very imbalanced
datasets [55]. For a more fair assessment, recall and precision can be used.

23

3. Theory

Recall, or sensitivity, signifies how well the model can correctly identify the true positives.
Recall can be described as

Recall =
TP

TP + FN
(3.2)

Precision consists of the ratio of identified positive class cases of all positive predictions and
will hence determine how many of the positive identifications actually were correct. Mathe-
matically, it can be expressed as

Precision =
TP

TP + FP
(3.3)

Precision is most often a trade off with recall, as increasing recall might detect all cases but
can also over-classify into that class, thus ending up with potentially affecting unnecessary
cases. On the other hand, if the aim is high precision, there is a higher risk of missing cases,
which can be harmful in for example diagnostic medicine. When both precision and recall
are of importance, the F1 score can combine them using a harmonic mean. This will mean
that maximising the F1 score will maximise both precision and recall in relation to each other.
F1 score can be explained as

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.4)

Which metrics are the most significant depends on the situation of which the model is applied
on [56, 57].

Receiver operating characteristic curve
A receiver operating characteristic (ROC) curve is a different way of displaying model per-
formance, where the true positive rate (TPR), also known as recall, is plotted against the false
positive rate (FPR), which is the proportion of incorrectly classified negative instances. An
illustrative example is shown in Figure 3.3. TPR will measure how well the model correctly
identifies the true instances while FPR measure the rate at which the model incorrectly pre-
dicts negative cases as positive. Ideally the curve aims to the top left corner, where the FPR
is minimised while having a high recall value. This means that the model correctly classifies
all true instances while making no false predictions. Ergo, all positive cases will be predicted
as positive and all negative cases as negative and therefore presents as the optimal balance
between being able to detect all the true instances while avoiding classifying false instances
as true. This will maximise the model performance across all thresholds and will by exten-
sion maximise the area under the curve (AUC). ROC AUC score quantifies the performance
illustrated in the ROC, where a higher value indicates better performance and better ability
in distinguishing between classes. Usually, a ROC AUC above 80% is considered good, and
over 90% excellent. A value of 50% indicates a random classifier.

24

3.3 Deep learning

Figure 3.3: An example of a ROC curve.

3.3 Deep learning

Deep learning (DL) is a subfield in ML and is today considered to be a core technology [58].
DL uses networks composed of multiple nested layers to solve tasks by extracting features
from inputs. The features are extracted according to hierarchy, where simpler features such
as lines and curves form lower levels while more advanced structures form higher levels. The
hierarchical nature gives the system the possibility to learn more complex relationships in
the data as it builds them out of several simpler ones [59]. This gives the opportunity to per-
form learning without the feature modelling step usually necessary in common ML models.
Additionally, it also differs in its efficiency when dealing with larger amounts of data. DL
firstly became popular after its success in visual object recognition [60] and has since been
applied in numerous applications such as healthcare, cybersecurity and text analytics [58].
However, due to it being more complex compared to traditional ML models, explainability
of DL models is extremely challenging as their interpretability may decrease [58, 60]. Fur-
thermore, it can also be very difficult to optimise a model to ideally fit real-world data, due
to its varying nature [58].

25

3. Theory

3.4 Artificial neural networks

3.4.1 The single neuron
Artificial neural networks (ANNs) are based on the function and structure of the biological
natural circuit of neurons that exists in the human brain. Biological neurons are highly inter-
connected and transmit signals using electric excitation or inhibition in order to relay infor-
mation. The neuron can be compared to a step function, as it receives and summarises input
information and, if the threshold limit is reached, generates a full response independently of
the magnitude of the input [61]. Similarly, in ANNs, these electrical signals are represented
by positive and negative weight values in the artificial neurons, and thus, neurons form the
basic unit of computation in ANNs. As seen in Figure 3.4, each neuron receives input, Xi,
from one or several connecting inputs, which for example can contain features of a dataset
or images. The inputs are each associated with specific weights, wi, which are based on the
inputs’ relative significance to the other sending nodes. Apart from inputs and connected
weights, the neuron further needs bias, b, summation function and activation function, f, in
order to form an output, Y.
The activation function is necessary to give the model non-linearity and can be compared to
the biological function that only signals exceeding a certain threshold will be transmitted.
There are several different activation functions, but some of the most common are sigmoid,
tanh, Rectified linear Unit and Softmax [62]. The bias is a constant and works to shift,
adjusting its position, the activation function, and by extension the product of features and
weights. The summation simply sums together the resulting product with added bias and
forms the input to the activation function [61, 63].

Figure 3.4: Example of a neuron with inputs x, weights w, bias and
applied activation function.

26

3.4 Artificial neural networks

3.4.2 Neural networks
Just as ensembles of neurons in the brain can form functional physiological units with specific
functions and qualities - the nodes can also be structured in combinations to form computa-
tional models that can attempt solving different kinds of problems [61]. Typically, the amount
of neurons in a network can range from very few to millions of nodes, arranged in layers. The
single computational layer is called a perceptron [63]. By combining these single units inter-
connectedly and adding non-linearity, the ANN can effectively model complex relationships
between input and output data to simulate real-world problems and solutions [63, 62]. The
neurons can then efficiently form multi-layer networks where the initial input and output
layers are separated by intermediary stages called hidden layers [63, 64], see Figure 3.5. The
input is transformed within these hidden layers, which perform their computation through
their assigned neurons. The output from each neuron and layer will then be received by the
next layer of neurons, where further computation will take place. A network’s architecture
is determined through the number of hidden layers, often referred to as a network’s depth,
and the neurons in each of those layers, called the network’s width. Generally, the deeper the
network, the more complex relationships it can capture and similarly, the wider the network,
the more information about the data can be recorded. However, this comes with drawbacks
like requiring a larger amount of data and more computational power in order to learn. Fur-
thermore, the more information in the data it will capture, the higher the risk of overfitting
to the training data [65].

Figure 3.5: Illustrative example of a network.

27

3. Theory

3.4.3 Forward propagation and backpropagation
To pass information into a network, the most straightforward iteration of a network is called
a feedforward network [63]. A feedforward network utilises forward propagation, which
means that the network flows the data forward through the nodes. This is performed by the
nodes receiving inputs, the weighted sum of inputs in a previous layer (or the first input) and
then compute the output based on the activation functions while incorporating weights and
biases in the receiving layers [66]. Most neural networks combine forward propagation with
backpropagation, both being performed iteratively during the training to increase accuracy
of the predictions. Minimising the function loss in a set task is the main goal of the training
process of a neural network, as a lower error rate means that the network is learning the
data. Backpropagation is a crucial part of the training process for most neural networks, and
means backward propagation of errors. The purpose of this is to adjust and finetune the
weights of the nodes in the network based on the error rate, also known as loss, computed
for each output unit [67]. Despite not being based on a biological function, ANNs trained
with backpropagation have been shown to perform better than existing alternatives [68].

3.4.4 Loss functions
How the weights and biases of nodes are adjusted during the backward propagation heavily
depends on the loss function. The loss function will quantify the error between the predicted
output and the given target label, ergo telling the network how far away from the correct an-
swer it currently is and thereby tracking how far from an accurate prediction the network is.
There are currently numerous loss functions available, each with different methods of calcu-
lating losses and penalising large errors. This will hence mean that different loss functions
affect the model’s performance differently [69].

Cross-entropy loss
For classification tasks, binary and categorical cross-entropy loss are commonly used, also
called negative log-likelihood, softmax loss or log loss. Cross-entropy will measure how much
two distributions differ from each other, in this case the model distribution and the true dis-
tribution. Minimising this loss hence means that the two distributions will be closer to each
other and thus give a higher amount of correct predictions; a perfect model would have zero
in log loss [69]. The loss can be calculated by quantifying the degree of entropy, uncertainty,
in the predicted value, and then summed across all variables. For multiclass classification,
the loss can be explained as

LossCross−Entropy = −

M∑
c=1

log(pt) (3.5)

where M is the number of classes and pt is defined as

pt =

p if y = 1,
1 − p if y = 0.

28

3.4 Artificial neural networks

with y being the binary indicator if the class label is correct. One of the advantages of cross-
entropy loss is that the shape of the function simplifies finding the minimum when using
gradients to optimise the network [70]. However, cross-entropy loss works less well when the
data contains class imbalance, as the majority class features will dominate the loss function,
therefore pushing the adjustment of weights closer to a more confident majority prediction.
The minority classes can thereby easily become neglected [71].

Focal loss

Focal loss was originally developed to address foreground-background class imbalance in ob-
ject detection tasks. Focal loss manipulates standard cross-entropy loss by assigning less im-
portance to examples that are well classified. This leads to predictions of difficult samples
improving with training compared to higher confidence in easily classified samples. Reduc-
ing the influence of well classified examples is done through down weighting, which adds a
modulating factor to the loss. Focal loss can be explained as

LossFocal = −

M∑
i=1

(i − pt)γlog(pt) (3.6)

where (1 − pt)γ is the modulating factor with γ as focusing factor. When γ = 0, it equals
to cross-entropy loss. Higher γ leads to rescaling of the modulating factor and an increase
will lead to more down-weighting of easy examples. Earlier studies have shown that γ = 2
usually leads to the best performance [72].

α-balanced focal loss

Cross-entropy loss can also address class imbalance by adding a weighting factor, α, to each
class - thereby balancing the loss. It is suggested that α could be the inverse class frequency.
Balanced cross-entropy can be explained as

LossBalancedCross−Entropy = −

M∑
i=1

αilog(pt) (3.7)

However, balanced cross-entropy does not address distinguishing between learning easy and
hard examples. Therefore, balanced cross-entropy can be combined with focal loss to create
α-balanced focal loss. This loss function utilise both the weighting factor α as well as the
focusing parameter γ, thus decreasing the previously mentioned issues[72]. α-balanced focal
loss can be described as

LossBalancedFocal = −

M∑
i=1

αi(i − pt)γlog(pt) (3.8)

29

3. Theory

3.4.5 Optimisation
An efficient modern optimisation technique is with the help of gradients, with the goal to
adjust the model parameters during backpropagation in order to minimise the set loss func-
tion. When minimising a function, its derivative can be useful as it will specify how a change
in input will affect the output. The gradient will not only reveal whether the direction should
change or not, but also the relative importance of weights, as some connections are more im-
portant to the network than others for the specific inputs. An optimisation algorithm called
Gradient Descent (GD) utilises this by calculating the gradient at the current position fol-
lowed by taking a step in the direction of the steepest descent. When repeating this, this will
converge the output closer to the local minimum [59].

The learning rate can scale the gradient and thereby control the size of the next step. This is
performed as

Wnew = Wold − α
∂J
∂W
, (3.9)

for the weight update where W represents the weights, alpha the learning rate and J the
averaged loss of the entire dataset. Similarly, the bias update can be explained, with b as bias,
as

bnew = bold − α
∂J
∂b
. (3.10)

The learning rate is one of the most important settings when configuring a neural network
but is also very difficult to balance. If the learning rate is too low, the network might not be
able to reach the minimum fast enough. On the other hand, a too large value can push the
network to set suboptimal weights too fast and create unstable and diverging training [73],
see Figure 3.6.

Figure 3.6: Effects of an optimal and a too high learning rate.

The learning rate can be configured with different approaches to find a better fit for the spe-
cific network. Apart from having constant learning rates, techniques such as decaying learn-
ing rates, which starts with a larger learning rate and then decays it for example exponentially

30

3.4 Artificial neural networks

multiple times [74], and cyclical learning rates, which varies the learning rate between a min-
imum bound and maximum bound throughout the training, have been proven efficient for
some applications [75]. There are several optimisers besides GD that utilise the gradients and
learning rates for a better optimisation. The Stochastic Gradient Descent (SGD) optimiser
is widely used in many approaches and is a variation to the traditional GD algorithm. In
contrast to GD, which uses the gradient calculated over the entire dataset, SGD instead com-
putes the gradient using a single data point. Introducing randomness in this way can make
the training more stochastic but also make it run faster. The advantage of SGD compared to
GD is that it is more memory efficient since it only uses subsets of the data at each calcula-
tion [76]. However, due to its stochastic nature, SGD converges less regularly since it keeps
oscillating towards convergence. This effect can be decreased with the help of momentum.
The purpose of momentum is to accelerate the convergence by smoothing out oscillations
in the gradient. The momentum builds up when the gradient consistently stays in the same
direction for several iterations, and therefore includes not only the current gradient but also
the historical gradients when updating the parameters as a weighted average, thus increasing
the speed to convergence [77].

Although SGD has proven to be very efficient for a long time, and is still in use, it has some
limitations due to fixed parameters. Therefore, techniques using adaptive learning rate were
developed.

Root Mean Square Propagation (RMSProp) is one algorithm that uses adaptive learning rate.
This was originally developed to address the vanishing gradient problem. This problem arises
when the network is very deep, and as the gradients are back propagated the overall gradi-
ent can start to approach zero since the partial gradients can be very small. This results
in very slow convergence and difficulty learning hierarchical data. Additionally, there can
also be a problem with exploding gradients, which occurs when the gradients become very
large in deep networks. This causes the network to diverge and become unstable. RMSProp
normalises the gradients, which means that the step for large gradients will be decreased and
vice versa for smaller gradients. The normalisation is done using a moving average of squared
gradients, where the moving average is calculated as exponentially decaying. This means that
the influence of past gradients depends mostly on the closest gradient and less on the earlier.
By doing this, it is not necessary to accumulate all the historical gradients, thus decreasing
the memory requirement. The gradients are then divided by the square root of these moving
averages, and parameters updated accordingly [78]. RMSProp itself has not been officially
published, but is still included in most deep learning frameworks and very well known.

Another commonly used optimiser is based on the Adaptive Moment Estimation (ADAM)
algorithm. ADAM is very versatile and gives good optimization for a range of different tasks
and is therefore one of the most commonly used optimisers [78]. ADAM combines RMSProp
and momentum, making it more memory-efficient. ADAM adapts the learning rates based
on the first and second momentum, the gradient and the squared gradient, but also smooths
the gradient with the help of momentum [79].

The different optimisers perform differently depending on the input data and the tasks, and
the most fitting one is usually left for experimentation [59].

31

3. Theory

3.5 Convolutional neural networks
Convolutional neural networks (CNN) are widely used with image recognition tasks, as it is
particularly successful with predictions made in grid-like topological spaces. Hence, it has
today become one of the most important types of networks, especially in fields like computer
vision and natural language processing, and has enabled achievements such as face recogni-
tion and intelligent medical treatments. A CNN is based on the idea of using the convolu-
tion operation in one or several layers, instead of using fully connected layers like previously
[80, 81, 82]. This makes it possible to automatically extract features from data into feature
maps. The convolutional operation is an integral expressing how one function is being mod-
ified while shifting another function on top of it; blending the two functions together over
a space [83]. For discrete input signals, the operation can be mathematically explained as

(f ∗ g)[n] =
∞∑

m=−∞

f [m] · g[n − m], (3.11)

where f and g are two discrete or continuous functions and m and n is the position of the
input and the output signal respectively. The asterisk represents the convolution. In the con-
text of neural networks, a convolutional filter or kernel, which is a matrix of weights, slides
across an image with a certain stride value until it traverses the entire image and performs
convolution between the kernel and the image pixels [84], see Figure 3.7.

Figure 3.7: Example of a convolutional operation on an input matrix
with a kernel size 3x3.

The output is then stored in an output feature map. When dealing with multiple channels,
the kernel has the same depth as the input image, which output maps are combined into a
one-depth channel output. Depending on the size of the filter as well as its contents, this can
affect how the features are extracted and consequently affect the prediction. The filter size
is often left for network optimisation while the weights are learnt by the model. To increase
performance, the convolutional operation can be used in several filters and layers, thereby
capturing multiple high-level features [85]. Hence, convolutional layers effectively combine

32

3.5 Convolutional neural networks

local information by a smaller number of pixels in order to extract key information that hi-
erarchically distinguishes images, objects, structural patterns, lines etc. from each other [84].
Due to the nature of CNNs, it is more computationally effective compared to fully connected
layers. This can be explained by the neurons not having connections with all the neurons in
the previous layers, hence reducing the number of parameters. The parameters are further
reduced with the help of sharing weights in groups of connected neurons [86].

In a CNN, a convolutional layer is most often followed by a pooling layer. A pooling layer
is responsible for reducing the dimensionality of the feature map in preparation for the next
convolutional layer, with the aim of reducing the necessary computational expense and de-
creasing the risk of overfitting [87]. The resulting input to the next convolutional layer is
performed on the summarised features after pooling, which means that the model becomes
more robust to variations in position. Similar to convolutional layers, a pooling layer also
slides a filter across each channel of an image. The two most commonly used types of pooling
layers are max pooling and average pooling, see Figure 3.8. In max pooling, the maximum
value across the current field of interest is chosen as output. This means that the resulting
output contains the most prominent features of the previous feature map while discarding
less relevant information. Average pooling instead computes the average of all the elements
covered by the filter area. Consequently, this will present the average of the features, thus
containing more information than max pooling [88].

Figure 3.8: Illustrative example of the max and average pooling.

Apart from the two previously mentioned layers, a CNN also contains a fully connected
(FC) layer. A FC layer, or a dense layer, is usually present at the end of a CNN and works as
a classification layer. A FC layer is used to connect all the neurons between the two different
layers with each other. It utilises the flattened output and hence the extracted features from
all neurons in the previous layer, usually from a pooling layer, in order to generate a final

33

3. Theory

classification or regression to the output layer. This follows the principle used with other
feed-forward ANNs [89]. An example of a simple CNN can be seen in Figure 3.9.

Figure 3.9: Illustrative example of a simple CNN architecture.

Similar to other ANNs, a CNN also contains activation layers in order to add nonlinear-
ity. Additionally, it is also common practice to add batch normalisation and dropout layers.
Dropout is added in order to reduce overfitting, as this can be prominent when all the features
are connected. Here, a number of neurons, determined by the dropout rate, are dropped,
which efficiently reduces the size of the model. In order to prevent vital information loss, the
neurons that are disabled are chosen at random during each training iteration [89]. Generally
with all deep neural networks in supervised learning, they need to train on a large amount
of labelled data to be able to associate features with specific labels. Training is further com-
plicated by the parameters of the previous layers changing during training, thereby changing
the distributions of the current layer’s inputs, and requires careful finetuning of parameters.
Batch normalisation was added as a way to make this process easier as it aims to standardise
activations of the input variables, thereby making the assumptions about the previous layers’
distributions differ less. As a result, it will speed up the training process and stabilise the
network [90].

3.6 Object detection
Computer vision (CV) is another type of AI that focuses on making technological systems
interpret the real world visually. The human visual system can easily identify multiple differ-
ent objects with an incredible speed, and for the sake of automation, among other things, it is
desirable to make systems try to mimic the human way of seeing and understanding their en-
vironment. It has become a wide-spread application in multiple fields, especially industries
based on automation and medical domains[91]. A popular CV technique is object detection,
which aims to locate instances of specific classes in images or videos - answering firstly, if
there is an object in the image and secondly, where in the image these specific objects are
located. It is currently mostly performed with the help of deep learning and CNN, due to
their high performance with complex problems and visual data [92, 93]. Object detection is
well studied within areas such as detection of faces, pedestrians or vehicles, making it useful
for applications such as video surveillance [92].

34

3.6 Object detection

3.6.1 Principles of object detection
The problem of locating objects has earlier been solved with, among other things, machine
learning strategies, for example analysing the colour histogram and clustering of pixels. These
were then used as features into regression models. With a deep learning approach, the general
idea behind object detection is creating so-called bounding boxes that surround objects of
interest. The bounding boxes’ x- and y-coordinates represent where these objects are located
in the image. The bounding boxes are then used as input along with the corresponding im-
ages to the deep learning model of choice, which in turn will be trained and finally result in
refined bounding boxes as outcome [93]. When classifying a single class, it can be considered
an object localisation problem, or a single class object detection, but it can also be extended
into a multi-class problem, where it is necessary to both localise and classify different ob-
jects. This will transform the problem into an object detection problem; object detection is
a combination of both image classification and object localisation [91].

In order to provide a relatively fast solution to a given task with adequate accuracy, most
networks use anchor boxes for detection. Anchor boxes are predefined bounding boxes with
specific measurements in height and width, see Figure 3.10.

Figure 3.10: Anchor boxes tiled over image while being mapped by
CNN output.

The anchor boxes are tiled over the image while the network calculates predictions based on
content in that specific anchor box - such as background, probability of intersection over
the ground truth bounding boxes and their offset, the adjustments of coordinates to align
the anchor boxes more accurately, see Figure 3.11. With further training, the anchor boxes
get refined to better match the bounding boxes with the help of the predictions [94]. The
use of anchor boxes allows for real-time detection, as it can detect multiple objects across
the whole image at once with the help of the spatial awareness of CNNs, as opposed to for
example detectors with sliding windows [95]. After optimising the predictions for anchor
boxes, the anchor boxes predicted to belong to the background are removed while the re-
maining boxes are filtered depending on their prediction’s confidence level. The technique

35

3. Theory

Non-maximum suppression (NMS) is then used to eliminate potential duplicates. This is
performed by choosing the proposed boxes with the highest confidence score and calculating
the intersection over union (IoU), displaying a ratio of overlap, against every other proposed
box. If the IoU is higher than the set threshold, it will be used as output. This process is
repeated until all proposed predictions are analysed, leaving the final output [94].

Figure 3.11: Two different anchor boxes and their tiling over an im-
age.

Object detection was at first proposed with a two stage approach, where the detection process
is divided into firstly recognising regions of interest, usually with the help of the mentioned
anchor boxes, and secondly classifying and refining the regions. This approach includes fa-
mous models such as R-CNN, Faster R-CNN and Cascade R-CNN [96]. As opposed to these
two-staged detectors, one-stage detectors are becoming increasingly more common. They
include a detector using a single pass through the network without using previous compu-
tation. Popular one stage detectors using anchors are Single Shot MultiBox Detector (SSD),
RetinaNet and early versions of You Only Look Once (YOLO) [97]. While anchor boxes can
be helpful in guiding the model into the size range of interest of the objects, more state-of-
the-art models provide an anchor-free detection, allowing for more flexibility in detecting
objects with various sizes and ratios as well as decrease the complexity of the model. This will
in turn allow for a faster computation. This can be seen in models such as Fully Convolu-
tional One-Stage Detector (FCOS) [96]. This is performed by directly predicting bounding
boxes from extracted features, pixel-wise instead of anchor-wise. The models can be divided
into three parts: the backbone, the neck and the head. The backbone is the main feature
extractor, most often consisting of some sort of CNN architecture, providing a hierarchical
representation of the input. The choice of backbone can therefore significantly influence the
performance of the model. The neck will follow by including more contextual information
[98]. Many anchor-free detection models, as well as some models using anchors, rely heavily
on feature pyramids in their neck part. Feature pyramids are feature extractors that stack the
same image several times on top of each other in different scalings, using a bottom-up and
top-down pathway, which can be seen in Figure 3.12. The bottom-up is commonly applied
in CNNs’ feature extraction, where the spatial resolution decreases on higher levels, increas-
ing the abstraction. This means that features with semantic value can be extracted, but they
may be distorted due to manipulations of the image. Thus, layers are reconstructed to give
lateral connections to the semantic layers and thereby increasing the accuracy of the object
locations [99]. Lastly, the head is responsible for the model’s predictions, including bounding

36

3.6 Object detection

boxes and confidence levels [98]. However, despite one-stage detectors normally being faster
compared to two-stage detectors, it usually comes with the cost of worse performance [97].
In order to improve performance of a detector, similar strategies as previously mentioned
can be deployed, including hyperparameter finetuning, data augmentation and optimisation
algorithms.

Figure 3.12: Feature pyramid network with its bottom-up and top-
down pathways.

3.6.2 Evaluating performance
Evaluation metrics in object detection include Intersection over Union, Average Precision
(AP) and Mean Average Precision (mAP). IoU compares the bounding boxes of the ground
truth to the prediction and can be seen as an accuracy of the model for detection tasks. IoU
can be calculated by dividing the area of intersection of the two bounding boxes with their
union area, see Figure 3.13, giving a ratio [100]. Normally, an IoU score of >0.5 is considered
a good prediction, as it is unlikely that an exact match will be predicted. Furthermore, in
most cases, coordinates with a close match will provide equal information when working
with bounding boxes [101].

Similarly to classification, true positives, false positives and false negatives are still highly
relevant in object detection as this can be seen as the model’s accuracy. In object detection
terms, TP will mean that the predicted bounding box of a model exists at a certain position
and that it is correct for the set IoU threshold. Following, a bounding box is FP if the bound-
ing box exists in a certain position but is incorrect. Lastly, FN is used when the model did not
predict an expected bounding box at that particular position when there should have been
one. TP, FP, FN can then act as foundation for calculating precision and recall. Ideally these
should both be high, but is often a tradeoff between the two metrics [102, 103]. Generally,
this can be adjusted with the model’s probability confidence threshold, which will determine
the confidence level of the model’s predictions. A higher confidence level will mean that the
model is more confident in its predictions, which will increase the precision but decrease the
recall.

37

3. Theory

Figure 3.13: Intersection over Union forms a ratio describing the
amount of intersection between two boxes.

On the other hand, a lower confidence threshold will predict more boxes and thus increase
the chance of not missing a ground truth box and therefore increase the recall but lower the
precision as it provides more FP. This can visually be represented in precision-recall curves,
which plots recall over precision at different confidence thresholds. Another approach to
precision-recall (PR) curves can be plotting at different IoU thresholds, as this will affect the
sensitivity of what classifies as TP, affecting both precision and recall [59, 104, 105]. This
approach is for example used to evaluate the large Common Objects in Context (COCO)
dataset [106].

The PR curve can be extended into the metric AP, as it is represented by the area under the
PR curve. This will hence quantify the balance between FP and FN, meaning that a higher
value indicates a better model performance , and also decrease the arbitrariness of considering
different thresholds. Each class has its own AP, but can be summarised in mAP [107]. It can
thereby be argued that this metric gives a more realistic evaluation for real-life applications
[108]. The metric mAP can hence be explained as

mAP =
1
N

N∑
i=1

APi, (3.12)

where N is the total number of classes and APk the AP of class k [107]. Which metric to use
under what circumstances depends on application. For the COCO dataset evaluation, mAP
is calculated in a range of IoU thresholds between 0.5 and 0.95, with a 0.05 step interval. The
PASCAL VOC metric is instead the AP at the IoU threshold 0.5 [106].

38

3.7 Transfer learning

3.7 Transfer learning
Although DL algorithms now show superior performance for image analysis tasks, it also
comes with some limitations. Most DL algorithms are developed under the pretence of a
large amount of data, as it is based on learning common features between data samples. This
is especially true for convolutional neural networks, which today is the top performing DL
technique when it comes to medical image analysis. However, in the medical community, data
scarcity and limited expert-annotated data is a major bottleneck for these approaches, due to
inaccessibility and high expenses. In order to solve this, many practices now involve transfer
learning (TL) and domain adaptation techniques [109]. Traditionally, machine learning as-
sumes the same data distribution and feature space in both the training and testing data. TL
instead mimics the human cognition and experience of learning, where knowledge in similar
contexts can be applied in new settings - thereby giving better performance compared to
that of no previous skills or information. The purpose of TF is hence to improve learning by
transferring knowledge from one domain to a different but similar domain [110], thus reduc-
ing training time for acceptable performances and potentially increasing evaluation metrics
[109].

Models pre-trained with the dataset ImageNet [111], containing millions of labelled natu-
ral images, are commonly used with TL. These models are usually CNNs of different depth
and have led to significant development of performance in natural image analysis tasks. Fur-
thermore, this has also been seen improving tasks in the biological field [112], even though
the distance from natural images to medical imaging dataset is highly influential to the net-
work’s performance. However, as with all ML solutions, setting the hyperparameters is still
of utmost importance in order to achieve satisfactory results. Furthermore, in order to adapt
the pre-trained models to the data of interest, it can be necessary to fine-tune the network -
freezing and retraining some, or all, of the model’s latest layers. Some studies in the subject
of histopathology image classification have however shown that fine-tuning top layers, the
final layers of the model, does not provide significant improvement to justify further training
[113]. The amount of layers to freeze or retrain is left for optimisation, and based on the level
of abstraction decreasing from the lowest level and up [114].

3.7.1 InceptionV3
The Inception network was originally developed by Szgedy et al. [115] as part of GoogleNet
for the ImageNet Recognition Challenge in 2014 . The motivation behind Inception was
to create a network with an increased number of network levels and number of units at
each layer in order to be able to deal with difficult challenges. However, deeper and denser
networks usually entail increased computational expense. This issue was approached by de-
signing a CNN with sparse architecture instead of with fully connected layers like previous
networks. Thus, the network was designed to consist of repeated components called incep-
tion modules. These layers have several parallel convolutional layers with different sizes and
are concatenated into a single output vector. The dimensionality issue was further addressed
by including 1x1 convolutional layers - effectively reducing dimensionality - as well as parallel
max pooling layers in the inception layers. In order to improve performance, further versions

39

3. Theory

were created with an increased number of network levels and number of units at each layer -
with the motivation of a larger network being better at handling difficult challenges. While
deeper networks usually are more computationally expensive, this was solved by decreasing
the convolution size from 5x5 in InceptionV1 to 3x3 in InceptionV3. InceptionV3 also adds,
among other things, an RMSprop optimiser and more batch normalisation [116, 117].

The general architecture of the InceptionV3 can be seen in Figure 3.14.

Figure 3.14: Architecture of InceptionV3.

3.7.2 YOLO
You Only Look Once (YOLO) is a series of open-source computer vision models that cur-
rently are state-of-the-art with superior performance. The given name stands for the ability
of predicting every present object within one forward pass, therefore “only looking once”.
The YOLO models were created as a regression task instead of classification for predicting
box coordinates. The latest iteration of the model series is YOLOv8 [118], released in 2023.
Instead of using anchor-based detection, YOLOv8 predicts object centres which simplifies
the model and decreases the computational complexity. YOLOv8 uses the concept of grid
cells, dividing the image into cells depending on the scale and resolution, where each fea-
ture map or grid cell predicts an object whose centre exists in that cell. The predictions are
then stacked together to create final predictions with the help of feature pyramids. As of
today, YOLOv8 is not published in any official paper, but an architecture, recognised by the
developing team, can be seen in Appendix A.1.

40

Chapter 4

Method

4.1 System overview
To perform the project, a stationary computer with the graphic card NVIDIA GeForce RTX
3060 Ti with 8 GB of memory was used. CUDA toolkit 12.2 and NVIDIA CUDA Deep Neu-
ral Network (cuDNN) 8.9.6 were utilised in order to execute the network training efficiently
with the mentioned GPU. The code was developed in Python 3.9.18 with Keras and Tensor-
Flow 2.8 for the monolayer task. The localisation task was performed in Python 3.10.12 with
Keras and Tensorflow 2.15 using a WSL2 Ubuntu virtual environment.

4.2 Finding monolayers
The following section refer to the first part of the project that focuses on finding monolayers
in avian blood samples.

4.2.1 Data collection
Using the DC-1 system, a number of avian blood samples accessible at CellaVision were anal-
ysed using 100x magnification. The performed analysis included scanning the blood smear
and thereafter providing a monolayer coordinate range, if the monolayer region existed in
the specific sample. The coordinates for the WBC monolayers in relevant samples could then
be extracted from the log file of the system.

Images from the same samples were then collected from the DM9600 system in 10x mag-
nification. As both systems had individual limitations, not all image data of the relevant
samples from the DC-1 system could be collected. Therefore, the data that existed across
both the DC-1 and DM9600 were matched up and the rest of the data was discarded. In

41

4. Method

total, 13020 images could be collected for 110 samples. The collected images were originally
captured with magnification power 10x in 640 x 480 pixels. The sample as a whole can be
represented by a reference system, as seen in Figure 4.1, with the range [5000, 21000] µm in
x-axis and [5000, 50000] µm in y-axis. Each image can be related to the reference system and
the blood smear through its midpoint coordinates.

Figure 4.1: Reference system for blood slide sample.

Initially, the data was labelled in a binary manner, where images within the coordinate range
of monolayer were classified as ‘monolayers’ whereas the rest were labelled as ‘not monolayer’.
The distribution of samples can be seen in Figure 4.2. This configuration of the dataset will
henceforth be mentioned as the binary dataset.

Furthermore, the data was also labelled into a second multiclass dataset, with the classes:
‘too sparse’, ‘monolayer’ and ‘too thick’. A threshold for the monolayer label was set to be
49.5%, ergo an image needed to at least contain 49.5% monolayer in its range to be classified
as a monolayer. This further meant that 35 samples contained no monolayers as it fell below
the threshold, resulting in 75 samples containing at least one image classified as a monolayer.
The other labels were set on a visual basis; the images that were less dense compared to the
monolayers were classified as ‘too sparse’ and the images that were more dense compared to
monolayers were classified as ‘too thick’.

42

4.2 Finding monolayers

Figure 4.2: Class distribution of the binary dataset.

Moreover, there was also a need for manual adjustments of some images, as they, after visual
inspection, were distinctly different to a monolayer even though they were in the monolayer
coordinate range, most likely due to errors of the analysers. Some examples of these types of
misclassifications can be seen in Figure 4.3. No ‘monolayers’ labels were added to any images,
even if they visually could be estimated as one.

Figure 4.3: Examples of images in need of manual adjustments, from
label ‘monolayer’ to ‘too thick’ or ‘too sparse’.

Arbitrary examples of the final dataset with their corresponding labels can be seen in Figure
4.4 and the final distribution can be seen in Figure 4.5.

43

4. Method

Too sparse Monolayer Too thick

Figure 4.4: Examples of images being classified as too sparse, mono-
layer or too thick.

Figure 4.5: Class distribution of entire multiclass dataset.

44

4.2 Finding monolayers

Dataset for semi-supervised learning

With the purpose of trying to lessen the subjectivity of classifying the images, a dataset for
pseudo labelling was also prepared. 164 images were left out of labelling, based on the level of
difficulty to determine which class it belonged to, corresponding to 1.3% of the entire dataset.
Examples can be seen in Figure 4.6.

Figure 4.6: Examples of images with no label.

The dataset distribution used with pseudo labelling can be seen in Figure 4.7.

Figure 4.7: Class distribution of the entire multiclass pseudo dataset.

45

4. Method

4.2.2 Pre-processing
Pre-processing involved downsampling images to the correct dimensions corresponding to
the specific networks, that is 224x224x3 for EfficientNetB0 and ResNet50, 240x240x3 for
EfficientNetB1, and 299x299x3 for InceptionResnetV2 and InceptionV3 [119]. Furthermore,
pre-processing also included normalisation to a pixel value in the range of 0 to 1. Images were
loaded into memory in batches in order to accommodate the memory limitation, and split
into a training, validation and test set in a (0.6, 0.2, 0.2) ratio. Further, different configura-
tions of data augmentation were applied to the images. Both normalisation and augmenta-
tion were built as layers of the model architecture. This limited the possible augmentation
techniques to those available in the Keras Layers API. As a final step of preparing the dataset
for training, the labels were one-hot encoded.

4.2.3 General test design
The general model design included using a pre-trained transfer model as a base model ini-
tialised on the ImageNet dataset with average pooling. As previously mentioned, the model
design also included preprocessing layers in a sequential manner, such as resizing and nor-
malisation of images, as well as the desired augmentation. Additional layers were then added
to make the model better fit the created dataset. The added layers initially consisted of a
flattening layer and a dense layer, with a value equal to the number of classes, giving the out-
put with a softmax activation function. The network was trained for a predefined number
of epochs while monitoring training as well as validation loss. Throughout the process, the
model with the lowest validation loss was consistently saved, in order to ensure preservation
of the best performing model. After training the network for the set number of epochs, the
probabilities associated with each class of the images were computed by the trained model.
The classes were then assigned to the images by selecting the classes with the highest prob-
ability in the predicted outcomes. Finally, evaluation metrics such as accuracy, precision,
recall and F1-score were calculated. In most tests, performance was also calculated in terms
of class precision, specifically the class representing monolayers.

The models in the following tests were created, trained and tuned experimentally, follow-
ing results of previous models and not in a purely sequential manner as presented below. The
presented tests are organised as follows: I relates to the binary dataset, II to the multiclass
dataset and III refers to semi-supervised learning of the multiclass dataset. Additional tests
can be seen in Appendix B.

4.2.4 Initial tests with binary dataset
Test Ia: Selection of baseline architecture
Initially, a smaller exploration of different pre-trained transfer learning models with the bi-
nary dataset was conducted in order to evaluate which transfer learning model architecture
could be the most suitable for the created dataset. The considered transfer learning mod-
els were based on accessibility in Keras Applications, which is part of the library housing
pre-trained deep learning models, as well as successful models identified in the performed

46

4.2 Finding monolayers

literature review. Thus, the selected models were EfficientNetB0, EfficientNetB1, Inception-
ResNetV2, InceptionV3 and ResNet50. These models incorporate diverse architectures with
varying numbers of parameters - ensuring a spectrum of complexities. The test was per-
formed with identical parameter configurations, which included a constant learning rate of
10−5 with a batch size of 32 trained for 50 epochs. The training was optimised with the
optimiser ADAM set to minimise the cross-entropy loss. They all had mild augmentation
applied, presented in Table 4.1. Due to the class imbalance in the binary dataset, the models
were mostly evaluated based on class precision and class recall for the monolayers, on top of
the general evaluation metrics. The best performing model was chosen as the base model for
the following tests.

Table 4.1: Augmentation for testing of transfer learning models with the binary
dataset.

Augmentation Configuration

Random Flip Horizontal & Vertical
Random Rotation 0.4, filled with reflected pixels
Random Translation Height and width factor 0.2, filled with reflected pixels
Random Zoom 0.3
Random Contrast 0.4

Test Ib: Adding generalisation
As a continuation of the previous test, some hyperparameters were changed in order to in-
vestigate generalisation and decrease overfitting of the transfer learning model InceptionV3.
This included adjusting the learning rate as well as adding dropout and an additional dense
layer.

Test Ic: Dropout and batch size with fine-tuned TL models
Generalisation was further tested in combination with fine-tuning of the pre-trained trans-
fer learning models. Fine-tuning was necessary to test in order to find out to which extent
the model needed to be fine-tuned, if at all. The fine-tuning was performed by firstly fixing
the lower layers of the pre-trained network, thereby preserving the previously learnt knowl-
edge of feature representation in ImageNet. The top layers of the model, believed to be more
task-specific, could then be trained with a learning rate of 10−3 for a set number of epochs.
The fine-tuning of top layers was then followed by training of lower layers. The learning rate
was lowered to enable easier adjustment of the learnt weights to the domain of the custom
dataset. For this step, two different learning rates were tested: 10−6 and 10−7, thereby cre-
ating two different configurations of the models with fine-tuning. These two configurations
were further tested with an added dropout layer with two different values, 0.5 and 0.8, to
increase generalisation. Lastly, the batch sizes were varied between three values: 16, 32, 64.
Larger batch sizes could not be considered due to memory limitations in the GPU.

47

4. Method

4.2.5 Multiclass testing
Test IIa: Batch size and effect of fine-tuning in multiclass dataset
Test IIa was performed closely related to test Ic but set in the multiclass environment, in
order to see how the multiclass dataset was affected by the similar parameters and training.
The multiclass testing started based on knowledge learnt from previous tests, and the tests
were thereby based on the best performing models and hyperparameters. As opinions of how
significant it is to fine-tune the pre-trained transfer learning models seemed to be contradict-
ing, as previously mentioned, it was important to test whether this would affect performance
with the given data. Like Test Ic, the top layers were trained with the learning rate 10−3. The
learning rate of the lower layers was set to 10−6. The performances of these models were
then compared to performances of models without fine-tuning, trained for the same amount
of epochs and with the learning rate that the majority of the layers were trained on in the
fine-tuning models, that is 10−6. The models without fine-tuning were still initialised on
ImageNet but set to train all layers at once. This testing was combined with two different
batch sizes.

Test IIb: Optimiser
The model was initially set up with the ADAM optimiser, but it might not be the ideal opti-
miser for all datasets. In order to test the effect of the optimiser, the ADAM algorithm was
compared to the RMSProp algorithm. Furthermore, ADAM contains the epsilon parameter,
which is a constant value added for numerical stability, to avoid dividing by zero when updat-
ing variables at times where the gradient is close to zero. The epsilon value defaults to 10−7.
It is generally desirable to have a lower epsilon as a larger epsilon value will mean smaller
weight updates which in turn makes the training progress slower. However, this might not
be the best value for larger networks such as InceptionV3 initialised on the ImageNet dataset.
For a more efficient convergence less sensitive to minor changes of the denominator for this
type of networks, a value of 0.1 is suggested instead [120]. Therefore, the data is also trained
on the ADAM optimiser with default value as well as with the suggested value to investigate
if this improves model learning. Other parameters were identical between the tested mod-
els in the training phase and based on previous results, including a constant learning rate of
10−6.

Test IIc: Learning rate adjustments
As learning rate is a crucial hyperparameter in network training, it was imperative to evaluate
the impact of different adjustments of the learning rate. Learning rate is to some extent
adjusted by the optimiser, as the RMSProp used in the model design is adaptive, but can be
set to have a specific shape. The effect of learning rates had to some extent been investigated
in earlier tests, but then mainly focusing on constant learning rates. This test instead aims
at figuring out the impact of different learning rate adjusters lowering learning rates in a
controlled manner, as this theoretically should allow the network to learn more details as it
trains in higher levels of the feature hierarchy. More specifically, the test focuses on learning
rate schedulers implementing either step wise lowering of the learning rate or implementing
exponential learning rate decay. Initial values and final values of the schedulers were varied,

48

4.2 Finding monolayers

in order to optimise and find the most beneficial configuration for model performance. The
range of initial values varied between 10-3 and 10-4 and between 10−7 and 10−9 for the final
values. For the exponential learning rate decay scheduler, the decay steps with a decay factor
computed as

LrDecayFactor = (
lr f inal

lrinitial
)

1
epochs (4.1)

and the steps per epoch were calculated as

Stepsepoch =
size of training set

batch size
(4.2)

The general shapes of these learning rate schedulers as well as schedulers in later tests can be
seen in Appendix A.2.

Test IId: Loss functions
Optimisation during training of deep neural networks is based on the specified loss func-
tion, as this guides the model towards better parameter values for the dataset. This makes
the loss function an essential parameter for model performance, and what loss function to use
can vary between different objectives and approaches. Different loss functions have varying
properties, as some for example can be sensitive to noise and specific types of data. Depend-
ing on the nature of the data, it can be necessary to adjust the loss function to account for
data qualities such as class imbalance by for example choosing a loss function that focuses
on samples that are hard to classify. For a clear comparison, three models with different
loss functions were firstly trained with identical configurations. The investigated losses in-
cluded cross-entropy loss, α-balanced focal cross-entropy loss and hinge loss. The models
were trained with default values of loss hyperparameters. For α-balanced focal cross-entropy
loss, this meant values of 0.25 and 2.0 for α and γ respectively.

α-balanced focal cross-entropy loss was further investigated with varying values of the hy-
perparameters α and γ. The two hyperparameters used their default values as starting points
and were then tuned experimentally. α was varied with a single value between 0.005 and 0.4.
The suggested inverse frequency of classes was also tested. On the other hand, γ was varied
between 2.0 and 10.0. As γ controls the focusing effect of the focal loss function, an increased
value will enhance the effect of loss for misclassified samples, in particular hard-to-classify
samples. A value of 0 will mean that the α-balanced focal cross-entropy loss is equal to cross-
entropy loss. The test therefore focused on increasing the value instead of lowering it, with
the goal to increase precision for monolayers considered hard to classify. Most of the models
were trained for 50 epochs, but in some cases they were also trained for 200 epochs to give
the network longer time to learn.

Test IIe: Expansion of the model architecture
The architecture of a neural network plays a significant part when it comes to its ability
to extract relevant information from the data it is applied on. Therefore, it was important
to investigate whether the model performance could benefit from increased model capacity.
This was carried out by expanding the model from its general architecture by adding several

49

4. Method

dropout and dense layers to the existing model, which was the transfer learning base model
as well as a flattening layer and a classifying dense layer consisting of three neurons (equal
to three classes). These two types of layers were added in combination, as dense layers work
to add model complexity and number of parameters while dropout layers add regularisation
and therefore decreases the risk of overfitting the model. The layers were added after the
flattening layer, starting with an added dropout layer and then alternating between the two
different types of layers. Parameters that were tested included varying the number of added
layers, the number of neurons in the dense layers as well as the rate of dropout. The classes
were predicted by an identical dense layer with three neurons as used in previous architec-
tures.

4.2.6 Tests with pseudo-labelled multiclass dataset
Training the multiclass dataset with supervised learning was performed in two steps. Firstly,
the labelled data was trained for a determined number of epochs with a specified model just as
with the other two datasets. The best performing model from this training was then loaded
and used for prediction of the unlabelled data. The images were then sorted according to
their predicted classes and incorporated with the rest of the data. The labelled as well as
the previously unlabelled data was then trained together using the same model and similar
evaluation as previously were performed.

Test IIIa: Learning rates with semi-supervised learning
Learning rate adjustments done in Test IIc, were also tested with the semi-supervised learning
to assess the consistency across the different datasets. A constant learning rate of 10−6 was
used as a baseline for comparison. Two different step wise schedulers were considered starting
from two different values. The first one started with a learning rate of 10−4, trained for 10
epochs and then lowered while the second one started with a higher value of 10−3, lowered to
10−4 after 5 epochs and then lowered again after training for 10 epochs total. A third step wise
scheduler was created, starting with a linear warm-up of the learning rate. This is believed to
help add stability during early training and avoid erratic model behaviour of early training.
The linear warm-up was carried out during the first 5 epochs, and then behaved equal to the
second step wise learning rate scheduler. The general shapes can be seen in Appendix A.2.

Test IIIb: Multiple learning rate schedulers
Once training with semi-supervised learning involves continuing learning after the unla-
belled samples have been classified, this also means that the majority of the network has al-
ready been trained for a while when including the new samples. Therefore, it was of interest
to see whether a scheduler starting from a lower learning rate would improve the perfor-
mance of the model - assuming that the network has already learnt the lower levels of the
dataset also present in the new samples and then focus on learning details.

The data was firstly trained with the same exponential learning rate decay scheduler start-
ing from 10−4 and ending on 10−6. A second scheduler was created with varied initial and
final learning rates, ranging from 10−5 to 10−7. This was compared to the performance of

50

4.2 Finding monolayers

two identical schedulers. The models were all trained with an expanded model architecture
trained to optimise focal loss.

The concept was also applied to a step wise learning rate scheduler. Here, different initial
and final values for both the first and the second scheduler were tested with the aim to find
the optimal combination. The values ranged between 10−3 and 10−6. These models were
trained to optimise performance on categorical cross-entropy loss using a dropout layer with
0.8 as drop out rate, a flattening layer and a classifying dense layer. The models were then
compared to a model trained using the same scheduler for both training phases.

Test IIIc: Image aspect ratio
According to the documentation, pretrained transfer learning models suggest a set image
size with equal height and width. As images were not collected in this ratio, they needed to
be preprocessed to fit the requirements. Two techniques were considered, either cropping
the images to maintain image ratio or distorting them by pushing them to have the same
height and width. Two models deploying the techniques of maintaining image ratio and
distorting image aspect ratio respectively, using an expanded architecture, were trained with
an exponential learning rate decay scheduler between the values 10−4 to 10−6 and 10−5 to
10−7. Performance was evaluated and compared to each other in order to find out which
image aspect ratio benefitted the aim.

Test IIId: Augmentation & Imbalanced data
Augmentation is a crucial step in network training, both in terms of added regularisation
and generalisation to the model, by for example introducing noise and variability, as well as
expansion of the dataset. It was therefore of interest to investigate how different augmenta-
tion techniques and their hyperparameters affected the capability of the model. As previously
mentioned, the augmentation was designed to be included as layers within the Keras model
design, which limited the possible augmentation techniques. The test originated with the
augmentation settings set in Table 4.1, including flipping, rotating, translating, zooming and
adding contrast. Hyperparameters within these were then adjusted and the performance was
then compared to the initial augmentation. The model was trained using a step wise learning
rate scheduler earlier introduced with top layers consisting of a dropout layer with dropout
rate 0.8, a flattening layer, and a classifying dense layer.

Some of the augmentation combinations were also tested with an upsampled dataset. An
imbalance dataset can often lead to bias towards the majority class, and thereby performing
poorly on minority classes. Upsampling can help with creating more samples of the under-
represented classes which then can be used to present these more often to the network. This
can furthermore help with allowing the network to learn classes more efficiently, with less
bias. Another strategy to handle imbalanced data is by downsampling the majority class, but
this can lead to information loss and is less desirable with sparse datasets [121]. Although
oversampling for class imbalance learning is a frequently used technique, some argue that it
is unreliable and ineffective [122]. The ‘too sparse’ class and the ‘monolayer’ class were up-
sampled to the same number of samples as the ‘too thick’ class. This was performed using

51

4. Method

the library Albumentations [123], by creating small variations to the original class samples
with mild augmentation. Two models were then trained with different augmentation settings
similar to previously and compared as they were trained with the same model configurations
besides the mentioned changes.

Test IIIe: L1/L2-regularisation with expanded model architecture
Test IIIe incorporated Elastic Net (L1/L2)-regularisation on the expanded model architec-
ture. Elastic Net-regularisation was used to add generalisation to the architecture in order
to reduce overfitting and provide a more stable training. The strength of regularisation was
optimised by varying values of both the L1 and the L2 kernel. L1 was varied between 10−6 and
10−5 while L2 was varied between 10−4 and 5∗10−5. All were trained using α-balanced focal
loss and compared to a model trained with identical configuration apart from regularisation.

4.2.7 Evaluation of proposed model
After concluding the series of tests, a final model was chosen based on the observed results.
The selection was particularly made with attention to precision of the class ‘monolayer’, con-
sidering the aim of the project. To ensure model stability and generalisation, the model was
then evaluated on the previously unseen test dataset. Besides performance metrics including
accuracy, precision, recall and f1-score as well as more specific metrics such as class precision,
the confusion matrix was calculated and ROC-AUC curve was plotted.

4.3 Locating WBCs
Data for the WBC localisation was extracted from monolayers collected in the previous task.
Box coordinates from these monolayers were calculated by manually circling possible WBC’s
in the images, using internal CellaVision software. The circles were transformed to boxes
using the minimum and maximum x- and y-values. These were then saved in an XML file
for that specific image. The box coordinates could then be extracted with its corresponding
file and saved in a dataframe. In total, 18666 boxes were collected representing WBCs in 333
images and 29 samples. Each image had an area of 480 x 640 = 307200 pixels2 with an average
box area of 216 pixels2.

In order to fit restrictions set by the transfer learning models, the height and width of the
image needed to be equal. As aspect image ratio is important for localisation, considering
the spatial awareness, the images were padded with zero padding to the correct dimensions
of 640x640 pixels. The data could then be divided into a training dataset and a validation
dataset. Similar to the previous task, augmentation was included as layers in the defined
model. Initial augmentation to the training dataset contained random horizontal flipping,
random contrast, jittered resize and random value of hue.

The model consisted of a pre-trained YOLOV8 Detector with a backbone. A range of dif-
ferent backbones were tested by varying different sizes, depths of feature pyramid depths
and architectures. The backbones were further tested by freezing pre-trained weights and

52

4.3 Locating WBCs

only training top layers, as well as training all layers at once. The best performing backbone
was then chosen based on the evaluated results and used in the following tests. The models
were then trained on the training data for 200 epochs, initially using an exponential learn-
ing rate decay scheduler with initial value 10−3, calculating the decay steps and learning rate
decay factor as previously. The training was set to optimise the loss function Complete IoU
(CIoU) using ADAM. Finally, COCO metrics were computed through a callback function
during training. This had to be done to efficiently be able to perform necessary calculations
while minimising storage of previous predictions and thereby consider limitations in system
memory. The model was saved based on the best validation mean average precision and used
for evaluation. Finally, tracked metrics could be extracted and precision and recall could be
calculated at determined thresholds for a more extensive evaluation.

Hyperparameter optimisation was performed in several steps. After the backbone was de-
cided, image and batch size was tested and determined. These hyperparameters had to be
tested in combination, as a larger image size put constraints on the maximum batch size.
The tests were initialised on a batch size of 4, but a batch size of 2 was also considered in
the test. The need to increase image size was to account for the small magnification, and in-
creasing image size would also increase the size of the WBC boxes. Hence, increasing image
size was assumed to help the network find small objects. Therefore, apart from the origi-
nal 640x640 pixels, 800x800 pixels and 960x960 pixels were tested while the batch size was
decreased accordingly. 960x960 was the largest image size possible to test considering the
memory limitations.

Moreover, the loss function was tested by training three models with similar model con-
figurations on three different types of losses. Only the box loss was considered, as there
was no classification problem to solve. The tested losses included Complete IoU (CIoU),
mean squared error and Smooth L1 loss. The learning rate was tested in a similar manner;
four different models with the same configurations were trained using different learning rate
schedulers and varied values of initial learning rate.

The most extensive test in this task included adjusting augmentation settings, which was
deemed important as the dataset was relatively sparse. This included testing more com-
monly used parameters such as hue, brightness, colour channel shift, saturation, and flip.
Elastic transformations suggested to improve performance in cell environments were tested
in the form of shear deformation. More advanced techniques such as grid masks were also
tested. Grid mask was considered as a way of introducing diversity and robustness to the
training data and thus increase generalisation. Grid mask divides the image into a grid in
which certain cells are masked out. As the network then can not learn from the blocked cells,
it forces the model to learn from other features. Thus, the bias of the model might decrease
as it might stop relying on specific patterns, which leads to better performance.

53

4. Method

54

Chapter 5

Results

5.1 Finding monolayers
5.1.1 Initial tests with binary dataset
The following section explains the results following the tests performed in Section 4.2.4

Test Ia: Selection of baseline architecture
Evaluation metrics of the performance of five different transfer learning models trained with
the same hyperparameter configuration following Test Ia can be seen in Table 5.1. Accuracy
and loss over epochs for the training and validation dataset trained with the InceptionV3
network as a base model as well as its related ROC curve can be seen in Appendix A.3.

Table 5.1: Initial exploration of pre-trained transfer architectures presented with their
respective number of parameters.

Model Number of
parameters

Accuracy Class precision
(mono/no mono)

ROC AUC

EfficientNetB0 5.3 M 0.88676 0.00000/0.89258 0.569636

EfficientNetB1 7.8 M 0.89712 0.55000/0.91098 0.58925

InceptionResNetV2 55.8 M 0.92253 0.67014/0.96331 0.82671

InceptionV3 23.8 M 0.91206 0.67949/0.94981 0.82386

ResNet0 25.6 M 0.90015 0.60938/0.93367 0.76986

55

5. Results

Test Ib: Adding generalisation

Shown in Table 5.2 are the performances of Test Ib; models using InceptionV3 as base model
with varying added layers on top, including a dropout layer, one or two dense layers and a
flattening layer and two different learning rates. The training history for the first model can
be seen in Appendix A.4.

Table 5.2: Evaluation metrics of models with changed constant learning rates and added
generalisation in the top layers.

Learning
rate

Top layers Accuracy ROC AUC

10−6 Flatten, Dropout (0.5), Dense(2) 0.91129 0.83110

Flatten, Dense(1024, relu), Dropout(0.5),
Dense (2)

0.90668 0.73310

10−7 Flatten, Dropout (0.5), Dense(2) 0.89977 0.55273

Test Ic: Dropout and batch size with fine-tuned TL models

The results of testing with the transfer learning approach of fine-tuning top layers in the
InceptionV3 network followed by training of lower layers, as defined in Test Ic, can be seen
in Table 5.3

Table 5.3: Parameters and metrics for models with fine-tuned transfer learning approach.

Epochs Dropout Learning rate Batch size Accuracy ROC AUC

50∗2
0.5

10−3+10−6

16 0.92166 0.84167

32
0.91936 0.84834

0.8

0.92628 0.86888

100∗2

16 0.91934 0.85074

64 0.92128 0.84941

10−3+10−7 16 0.91283 0.77312

64 0.91359 0.80854

56

5.1 Finding monolayers

5.1.2 Multiclass testing
Following section refer to tests performed on the multiclass-labelled dataset, explained in
Section 4.2.5

Test IIa: Batch size and effect of fine-tuning in multiclass dataset
Table 5.4 shows how model performance is affected by varying batch sizes between 16 and 32
as well as the effect of fine-tuning top layers of the determined model architecture.

Table 5.4: Effects of fine-tuning with different batch sizes in multiclass dataset.

Epochs Learning
rate

Batch
size

Accuracy Precision Recall F1-score ROC
AUC

50 10−6 16 0.88642 0.75004 0.75978 0.74539 0.82011
32 0.90867 0.78974 0.81858 0.79871 0.84738

50∗2 10−3+10−6 16 0.88411 0.75713 0.75743 0.74266 0.82215
32 0.89985 0.79707 0.82821 0.81095 0.84930

Test IIb: Optimiser
The resulting table for testing two different optimisers and adjusting the epsilon parameter
according to Test IIb can be seen in Table 5.5.

Table 5.5: Evaluation metrics for comparison between ADAM and RMSProp optimisers.

Optimiser Epochs Epsilon Accuracy Precision Recall F1-score ROC
AUC

ADAM
50

10−7 0.90867 0.78974 0.81858 0.79871 0.84930

0.1 0.84996 0.59586 0.46545 0.49215 0.76322

200 0.1 0.89946 0.80049 0.65033 0.66740 0.86782

RMSProp 50 10−7 0.92671 0.81189 0.86814 0.836098 0.87775

Test IIc: Learning rate adjustments
Table 5.6 presents the evaluation metrics obtained from the conducted Test IIc of specific
learning rate adjustments; learning rate schedulers with step wise lowering of the learning
rate and exponential learning rate decay.

57

5. Results

Table 5.6: Performance of models trained with learning rate schedulers. Ep stands
for epochs while s, m and t stands for sparse, monolayer and thick respectively.

Type of
LR

controller

Learning
rate

Accuracy Precision Recall F1-
score

ROC
AUC

Class
precision
(s/m/t)

Scheduler
Ep<=10: 10−2

Ep>10: lr∗e−1
0.91903 0.78881 0.87866 0.82699 0.85068 0.80435/

0.57055/
0.99152

Ep<=10: 10−4

Ep>10: lr∗e−1
0.93553 0.81283 0.86198 0.83545 0.87600 0.76259/

0.68605/
0.98986

Exponential
learning

rate decay

10−3 −→ 10−9 0.92056 0.79295 0.82290 0.80720 0.85925 0.81226/
0.59289/
0.97371

10−4 −→ 10−6 0.93476 0.82207 0.85941 0.83921 0.87973 0.80000/
0.67443/
0.98179

Test IId: Loss functions
Table 5.7 shows the performance of a model trained while minimising three different types of
losses - cross-entropy, α-balanced focal cross-entropy and hinge loss. The attempt to further
adjust parameters within α-balanced focal cross-entropy is presented in B.2.

Table 5.7: Effects of different types of losses trained with default values.

Loss Accuracy Precision Recall F1-score ROC
AUC

Class precision
(s/m/t)

Cross-entropy 0.92517 0.80559 0.83212 0.81828 0.86769 0.81853/
0.62400/
0.97425

α-balanced focal
cross-entropy

0.92594 0.80904 0.80600 0.80602 0.87610 0.77193/
0.69006/
0.96512

Hinge 0.91289 0.77117 0.83700 0.80073 0.84184 0.77580/
0.55634/
0.98138

58

5.1 Finding monolayers

Test IIe: Expansion of the model architecture
Performance following Test IIe can be seen in Table 5.8. This presents effects of expanded
model architecture, referred to as model configuration.

Table 5.8: Performance with expanded model architectures. Dr indicates a dropout layer
while D stands for a dense layer. F stands for flatten. The values within the parentheses
represent the value of dropout respectively the number of neurons.

Model
configuration

Accuracy Precision Recall F1-
score

ROC
AUC

Class precision
(s/m/t)

F, Dr(0.8), D(3) 0.93476 0.82207 0.85941 0.83921 0.87973 0.80000/
0.67443/
0.98179

F, Dr(0.2), D(128),
Dr(0.2), D(64),
Dr(0.2), D(32) ,D(3)

0.93707 0.83997 0.86768 0.85330 0.88870 0.87649/
0.66539/
0.97804

F, Dr(0.4), D(256),
Dr(0.4), D(128),
Dr(0.4), D(64),
Dr(0.4), D(3)

0.92594 0.79594 0.84487 0.81808 0.86234 0.78169/
0.62400/
0.98214

F, Dr(0.8), D(256),
Dr(0.8), D(128),
Dr(0.8), D(64),
Dr(0.8), D(3)

0.81581 0.27194 0.33333 0.29952 - -/-/ 0.81581

F, Dr(0.5), D(256),
Dr(0.5), D(128),
Dr(0.5), D(64),
Dr(0.5), D(3)

0.93208 0.83586 0.87639 0.85290 0.88173 0.89744/
0.62951/
0.98065

F, Dr(0.4), D(1028),
Dr(0.4), D(256),
Dr(0.2), D(128),
Dr(0.2), D(64),
Dr(0.2), D(32), D(3)

0.93208 0.80721 0.86822 0.83480 0.86962 0.79021/
0.64259/
0.98882

F,Dr(0.2), D(1028),
Dr(0.2), D(256),
Dr(0.2), D(128),
Dr(0.2), D(64),
Dr(0.2), D(32), D(3)

0.93937 0.84838 0.87219 0.85977 0.89395 0.88525/
0.68182/
0.97807

59

5. Results

5.1.3 Tests with pseudo-labelled multiclass dataset
The following section refer to tests performed with the pseudo-labelled multiclass dataset,
see Section 4.2.6 based on semi-supervised learning.

Test IIIa: Learning rates with semi-supervised learning
Model performance from training with four different types of learning rate shapes over
epochs, following Test IIIa, can be seen in Table 5.9.

Table 5.9: Evaluation metrics from models trained with three different types of learning
rates.

Type of
scheduler

Values Accuracy Precision Recall F1-
score

ROC
AUC

Class
precision
(s/m/t)

Constant 10−6 0.91524 0.78032 0.80679 0.79293 0.85115 0.77559/
0.59438/
0.97100

Scheduler
Ep<=10: 10−4

Ep>10: lr∗e−1
0.93896 0.83079 0.85768 0.84322 0.88789 0.81226/

0.69748/
0.98263

Ep<=5: 10−3

Ep>5 & <=10:
10−4 Ep>10:
lr∗e−1

0.94984 0.86026 0.87783 0.86875 0.90827 0.84211/
0.75309/
0.98559

Scheduler
with
linear

warm up

Ep<=5: Linear
warm up,
Ep>5& <=10:
10−3, Ep>10
& <=15: 10−4,
Ep>15:lr∗e−1

0.91330 0.77333 0.83975 0.80305 0.84299 0.78067/
0.55670/
0.98260

Test IIIb: Multiple learning rate schedulers
Table 5.10 performance metrics of three different models following Test IIIb. The first model
has identical schedulers for both training with and without the pseudo-labelled samples while
the second and third models have distinctly different schedulers when training including the
pseudo-labelled samples. These employ decreased initial and final values for the learning
rates schedulers.

60

5.1 Finding monolayers

Table 5.10: Evaluation of training with two separate exponential learning rate decay
schedulers with different initial and final values. Trained with α-balanced focal loss.

First
scheduler

Second
scheduler

Accuracy Precision Recall F1-
score

ROC
AUC

Class
precision
(s/m/t)

10−4−→ 10−6 0.93935 0.82153 0.86695 0.84122 0.88264 0.78169/
0.69362/
0.98928

10−4−→ 10−6 10−5−→ 10−6 0.94090 0.84404 0.84858 0.84468 0.89748 0.81081/
0.74419/
0.97712

10−5−→ 10−7 0.95101 0.87460 0.88252 0.87787 0.91529 0.86853/
0.77533/
0.97994

The same concept applied to a step wise learning rate scheduler can be seen in Appendix B.3.

Test IIIc: Image aspect ratio

Following Test IIIc, the effect following two different pre-processing techniques in a model
with expanded architecture can be seen in Table 5.11.

Table 5.11: Performance of expanded model, trained with exponential learning rate decay
scheduler with two different image preprocessing techniques. Trained with learning
rates 10−4−→ 10−6 and 10−5−→ 10−7.

Aspect
ratio

Accuracy Precision Recall F1-score ROC
AUC

Class precision
(s/m/t)

Distorted 0.94751 0.85607 0.88773 0.87081 0.90251 0.86864/
0.71168/
0.98788

Preserved 0.93974 0.85713 0.81882 0.82848 0.90893 0.79105/
0.81212/
0.96821

61

5. Results

Test IIId: Augmentation & Imbalanced data
The effects of changing augmentation hyperparameters can be seen in Table 5.12.

Table 5.12: Evaluation metrics of models with different augmentation settings. F, R, T,
Z, and C stands for Random Flip, Random Rotation, Random Translation and Random
Contrast respectively. H & V means horizontal and vertical flipping while h+w stands
for height and width. Hyperparameters changed from the initial augmentation settings
are marked in bold.

Model
configuration

Accuracy Precision Recall F1-score ROC
AUC

Class
precision
(s/m/t)

F:H&V R:0.4, reflect
T: h+w factor=0.2
Z:0.3 C:0.4

0.94984 0.86026 0.87783 0.86875 0.90827 0.84211/
0.75309/
0.98559

F:H&V R:0.4, reflect
T:h+w factor=0.2
Z:0.3 C:1.0

0.95568 0.86969 0.89411 0.88112 0.91532 0.84047/
0.77824/
0.99037

F:H&V R:0.8, reflect
T:h+w factor=0.2
Z:0.3 C:1.0

0.95373 0.87132 0.90221 0.88570 0.91282 0.85058/
0.85058/
0.98744

F:H&V R:0.8, reflect
T:h+w factor=0.2
Z:0.6 C:1.0

0.95723 0.87774 0.89224 0.88396 0.92098 0.83333/
0.81140/
0.98849

F:H&V R:0.8, reflect
T:h+w factor=0.5
Z:0.6 C:1.0

0.94946 0.86720 0.87789 0.87226 0.91115 0.86179/
0.75848/
0.98134

F:H&V R:1.0, wrap
T:h+w factor=0.2
Z:0.6 C:1.0

0.91641 0.80229 0.81737 0.80564 0.86154 0.86957/
0.56311/
0.97422

Table 5.13 presents performance metrics after training models with an upsampled dataset,
following Test IIId.

62

5.1 Finding monolayers

Table 5.13: Performance of model trained with upsampled dataset using different aug-
mentation settings.

Model
configuration

Accuracy Precision Recall F1-score ROC
AUC

Class
precision
(s/m/t)

F:H&V R:0.8, reflect
T: h+w factor=0.2
Z:0.6 C:1.0

0.92885 0.82678 0.84179 0.83334 0.87946 0.88000/
0.62637/
0.97396

F:H&V R:1.0, wrap
T: h+w factor=0.2
Z:0.6 C:1.0

0.90241 0.76912 0.85756 0.80474 0.83271 0.82308/
0.49858/
0.98571

Test IIIe: L1/L2-regularisation with expanded model architecture

Optimisation of L1/L2 kernel values for elastic net regularisation and its impact of model
performance, related to Test IIIe can be seen in Table 5.14.

Table 5.14: Performance of models with added L1 and L2 regularisation. First model
represents model with no regularisation.

L1 L2 Accuracy Precision Recall F1-
score

ROC
AUC

Class precision
(s/m/t)

- - 0.94518 0.86552 0.86464 0.86508 0.90861 0.87500/
0.74583/
0.97571

10−6 10−5 0.92846 0.80117 0.83434 0.81224 0.86859 0.74748/
0.67633/
0.97969

5∗10−6 5∗10−5 0.93818 0.83131 0.87478 0.85176 0.88481 0.84109/
0.66794/
0.98489

5∗10−5 5∗10−5 0.93468 0.82150 0.82234 0.82094 0.88573 0.80478/
0.68349/
0.97622

10−5 10−4 0.93157 0.82521 0.83359 0.82890 0.88231 0.83133/
0.67249/
0.97182

63

5. Results

5.1.4 Proposed model
The performance for the proposed model can be seen in Table 5.15 with the chosen hyperpa-
rameters and techniques being displayed in Table 5.16. Additionally, the confusion matrix is
plotted in Figure 5.1 with its corresponding ROC curve in Figure 5.2, using predicted classes,
and in Figure A.9, Appendix A.8, using predicted probabilities.

Table 5.15: Performance metrics of proposed model evaluated on the test dataset.

Accuracy Precision Recall F1-score ROC
AUC

Class precision
(s/m/t)

0.95140 0.87256 0.87890 0.87431 0.87430 0.83721/0.79909/0.98138

Table 5.16: Hyperparameters of proposed model design.

Hyperparameter Decision Values

Baseline architecture InceptionV3

Fine-tuning top layers of
TL model

No

Batch size 32

Loss function α–balanced focal
cross-entropy loss

α = 0.25, γ = 0.2

Learning rate Multiple exponential
learning decay schedulers

1:10−4−→ 10−6,
2:10−5−→ 10−7

Optimiser RMSProp Default

Dropout layers Yes, 5 repetitive layers 0.2 ∗5

Model configuration F, Dr(0.2), D(1028),
Dr(0.2), D(256), Dr(0.2),
D(128) , Dr(0.2), D(64),
Dr(0.2), D(32), D(3)

Image aspect ratio Preserved

Augmentation Flip (F), rotation(R),
translation(T), zoom((Z),
contrast(C)

F:H&V R:0.8, reflect T:h+w
factor=0.2 Z:0.6 C:1.0

Oversampling minority
classes

No

L1/L2-regularisation No

64

5.1 Finding monolayers

Figure 5.1: Confusion matrix of proposed model.

Figure 5.2: ROC curve using predicted classes.

65

5. Results

5.2 Locating WBCs
The following section refer to tests performed for attempting to solve the second task of lo-
cating white blood cells in avian monolayers.

Selection of model backbone
Evaluation metrics representing models trained with different backbones and freezing bot-
tom layers can be seen in Table 5.17. Similarly, the models trained on all layers at once can
be seen in Table 5.18. Table 5.19 on the other hand illustrates the model performance using
pre-loaded weights or not.

Table 5.17: Average precision between IoU=0.5 and 0.95 and average precision at IoU=0.5
for YOLOv8 models trained with pre-trained backbones with various depths of feature
pyramid networks(fpn) and frozen bottom layers.

Backbone Number of
parameters

Initialised
weights

Depth of
fpn

mAP@
[0.5:0.95]

mAP@[0.5]

CSPDarkNet, L 27.11 M

ImageNet

3 0.08821 0.34635

EfficientNetV2,B2 8.77 M 2 0.09037 0.34389

EfficientNetV2,S 20.33 M 2 0.09196 0.34618

ResNet50 23.56 M 2 0.10724 0.49726

YOLOv8, XS 1.28 M

COCO

2 0.08008 0.29578

YOLOv8, S 5.09 M 2 0.08552 0.33550

YOLOv8, M 11.87 M 2 0.11055 0.41179

YOLOv8, L 19.83 M 3 0.10868 0.41620

YOLOv8, XL 30.97 M 3 0.09627 0.36000

66

5.2 Locating WBCs

Table 5.18: Average precision between IoU=0.5 and 0.95 and average precision at IoU=0.5
for YOLOV8 models trained with pre-trained backbones with various depths of feature
pyramid networks(fpn).

Backbone Number of
parameters

Initialised
weights

Depth of
fpn

mAP@
[0.5:0.95]

mAP@[0.5]

CSPDarkNet, L 27.11 M

ImageNet

3 0.11078 0.41896

EfficientNetV2,B2 8.77 M 2 0.11562 0.41787

EfficientNetV2,S 20.33 M 2 0.12701 0.47704

ResNet50 23.56 M 2 0.12417 0.45901

YOLOv8, M 11.87 M

COCO

2 0.13117 0.46912

YOLOv8, L 19.83 M 3 0.12303 0.45397

YOLOv8, XL 30.97 M 3 0.11873 0.43411

Table 5.19: Evaluation metrics of models with the same configurations apart from load-
ing pre-trained weights.

Load pre-trained weights mAP@[0.5:0.95] mAP@[0.5]

True 0.13293 0.46977

False 0.11957 0.43377

Image and batch size
Performance of models trained on specific image and batch size can be seen in Table 5.20.

Table 5.20: Evaluation metrics of models with the varying image and batch size.

Image size Batch size mAP@[0.5:0.95] mAP@[0.5]

640x640 2 0.12809 0.46644

640x640 4 0.13031 0.45133

800x800 2 0.11411 0.41908

960x960 2 0.10497 0.38484

67

5. Results

Loss functions
Table 5.21 shows the performance of a model trained while minimising three different types
of losses - CIoU loss, Smooth L1 loss and mean squared error loss.

Table 5.21: Evaluation of three different types of losses.

Loss mAP@[0.5:0.95] mAP@[0.5]

CIoU 0.11949 0.43998

Mean Squared Error 0.11686 0.42199

Smooth L1 0.10558 0.42633

Learning rate
Evaluation metrics of models trained with two different types of learning rate schedulers
with varying values can be seen in Table 5.22.

Table 5.22: Values and types of learning rates with their corresponding performance.

Type of learning rate Values mAP@
[0.5:0.95]

mAP@[0.5]

Exponential learning rate decay
10−4−→ 10−7 0.11045 0.40294

10−3−→ 10−6 0.12809 0.46644

Reduced on plateau
Initial: 10−3 0.13031 0.45133

Initial: 10−1 0.00008 0.00029

Augmentation
The effect of applying different augmentation techniques with varying rates can be seen in
Table 5.23.

5.2.1 Best performing model
Table 5.24 shows evaluation metrics of the best performing model from previous tests, which
performed with general mAP of 0.13407 and mAP@[0.5:0.95] 0.48597 with 50% IoU. The
predictions are further visualised along with their true boxes at different IoU and confidence
threshold values in Figure 5.3.

68

5.2 Locating WBCs

Table 5.23: Evaluation metrics of models with different types of augmentation.B stands
for brightness, C for contrast, CS for channel shift, F for flip, G for gridmask, H for hue,
JR for jittered resize, Sat for saturation and Sharp for sharpness.

Augmentation mAP@[0.5:0.95] mAP@[0.5]

B:(-0.3, 0.3) C:(-0.2, 0.2)
F:Horizontal G:ratio=(0, 0.2),
rot=(0.15) H:(0, 0.1) JR:(1, 1) Sat:(0.3,
0.6) Sharp:(0.1, 0.5) Shear:(0.3, 0.3)

0.00161 0.01239

B:(-0.3, 0.3) C:(-0.2, 0.2)
F:Horizontal H:(0, 0.1) JR:(1, 1)
Sat:(0.3, 0.6) Sharp:(0.1, 0.5)
Shear:(0.3, 0.3)

0.01359 0.05318

C:(-0.2, 0.2) F:Horizontal JR:(1, 1)
Sat:(0.3, 0.6) Sharp:(0.1, 0.5)

0.07648 0.31821

B:(-0.3, 0.3) C:(-0.2, 0.2)
F:Horizontal H:(0, 0.1) JR:(1, 1)
Sat:(0.3, 0.6) Sharp:(0.1, 0.5)

0.08759 0.33682

B:(-0.3, 0.3) CS:(0, 0.2) C:(-0.2, 0.2)
F:Horizontal H:(0, 0.1) JR:(1, 1)
Sat:(0.3, 0.6) Sharp:(0.1, 0.5)

0.10462 0.35320

B:(-0.3, 0.3) CS:(0, 0.2) C:(-0.2, 0.2)
F:Horizontal H:(0, 0.1) JR:(0.8, 1)
Sat:(0.3, 0.6) Sharp:(0.1, 0.5)

0.12616 0.45384

B:(-0.3, 0.3) CS:(0, 0.2) C:(-0.2, 0.2)
F:Horizontal H:(0, 0.1) JR:(0.8, 1)
Sat:(0.3, 0.6)

0.13407 0.48597

Table 5.24: Values and types of learning rates with their corresponding performance.

IoU Confidence Precision Recall

50%
30% 0.32689 0.83713
60% 0.66317 0.38530

30%
30% 0.37406 0.95913
60% 0.74462 0.43424

69

5. Results

a) IoU = 0.3, c = 0.2

b) IoU = 0.3, c = 0.6

c) IoU = 0.5, c = 0.2

d) IoU = 0.5, c = 0.6

Figure 5.3: Localisation of predicted and true WBC boxes with dif-
ferent confidence (c) and IoU thresholds.

70

Chapter 6

Discussion

6.1 Finding monolayers

6.1.1 Baseline architecture
Generally, all models from Test Ia, presented in Table 5.1, have high values of accuracy. For
most models, the ROC AUC score is also considerably high. However, considering that the
distribution is 89.3% of non-monolayers to 10.7% of monolayers, the dataset is imbalanced.
This means that the model can for example consistently predict the dominating class and
still receive high accuracy without finding any of the monolayers. This is the case for Effi-
cientNetB0, which received a class precision of 0.0% for the monolayer class while still having
an accuracy of 88.7%. This architecture also reports the lowest ROC AUC score, just slightly
higher than 50%, which means that its ability to discriminate between the two classes is weak.
Similar findings are discovered for the EfficientNetB1. In contrast, the rest of the models have
higher performance across the evaluation metrics. Considering the enhancement of model
performance in larger networks, it signifies that a more complex architecture is necessary
and that an increased number of parameters is beneficial.

This however is not supported while comparing the performance of ResNet50 to Incep-
tionV3. ResNet50 contains more parameters compared to InceptionV3, 25.6 millions to 23.8
millions, but still reports lower performance. Furthermore, InceptionV3 has almost similar
performance as InceptionResNetV2 while having less than half of the number of parameters.
This might be explained by the architecture of InceptionV3. As previously explained, the net-
work architecture is designed to contain inception modules. These inception modules utilise
multiple filter sizes and allow features in different scales to be found in parallel with each
other. By using parallel branches and multiple filter sizes, the dimensionality can be reduced.
Meanwhile, ResNet50 contains residual connections, which addresses the vanishing gradient

71

6. Discussion

problem by creating skips in the layers and thereby creating a shortcut path for the data dur-
ing backpropagation. This allows for deeper training, making it possible to efficiently create
and learn more complex architectures without losing the gradient. As ResNet50 is slightly
deeper, with slightly more parameters, it is also more prone to overfit, which might explain
the loss in performance. The results hence suggest that InceptionV3 might be a better fit to
the specific dataset, but as they were all trained without much hyperparameter tuning, it is
possible that they eventually could perform equally well with continued optimisation.

InceptionResNetV2 seems to have an overall better performance for the dataset. This is
probably due to the architecture, which is designed to incorporate both the efficient incep-
tion modules from InceptionV3 and the residual connections from ResNet50, allowing for
deeper networks. This however presents itself by a substantial increase in the number of
parameters, which in turn affects the computational expense. Considering that the perfor-
mance was only marginally enhanced using this architecture, it was therefore deemed more
useful to lessen the demand on memory. Thus, InceptionV3 was chosen to be used for further
optimisation of the task.

As the networks were trained without any hyperparameter tuning and somewhat arbitrary
augmentation, InceptionV3, see Appendix A.3, was overfitted seemingly quickly. This high-
lights the need for optimisation. Furthermore, although InceptionV3 received a relatively
high ROC AUC score, the plotted ROC curve, visualising the trade-off between sensitivity
and 1-specificity, shows that the model still struggles with correctly classifying the samples.
This is particularly applicable when it comes to the false positive rate.

6.1.2 Fine-tuning transfer learning models
Following the results in Table 5.4, fine-tuning the transfer learning models show a small
improvement in model performance when using a batch size of 32, but this enhancement is
very slight. The same findings can be found when comparing the first model of Table 5.2
to the fine-tuned version in Table 5.3. One reason as to why fine-tuning seems to be less
effective is that the domain of images differ significantly. The pre-trained learning models
are initialised on ImageNet, which mostly contains larger objects such as animals, plants and
vehicles. This implies that the pretrained weights are less relevant to learning blood samples.
To ensure if this is true, it could be of interest to test the same model configurations but
without preloaded weights - if they perform equally well, the pre-trained weights are not
particularly applicable when learning the dataset, which in turn makes fine-tuning only top
layers less useful. When testing fine-tuning using a batch size of 16, the two models seem
to perform equally well. However, this could be a consequence of the batch size being too
small and the learning being more unstable, leading to inconsistent results. Furthermore, it
could mean that the set learning rates were less appropriate for the batch size. Ultimately,
as the fine-tuning only gave a moderate improvement while making the training time much
longer, the fine-tuning was henceforth excluded. Nevertheless, as the testing of fine-tuning
the top layers to the extent of different learning rates with different batch sizes, it is possible
that for example freezing a different amount of layers could be more beneficial to model
improvement.

72

6.1 Finding monolayers

6.1.3 Batch sizes
The matter of batch size was tested in both Test Ic and Test IIa - testing across three different
values of 16, 32 and 64. When using a smaller dropout rate, there is a slight increase in ROC
AUC score when training with the batch size 32 compared to training a model with batch size
16. Generally, apart from the smaller dropout rate, the batch size of 16 shows lower perfor-
mance compared to the larger batch size. The same trend can also be observed in Test IIa. For
the two presented configurations, a batch size of 32 yields higher accuracy values compared
to a batch size of 16 - 88.6% opposed to 90.9% and 88.4% to 90.0% respectively. Similar differ-
ences can also be seen in the other measured metrics. Among those, recall seems to improve
especially with the larger batch size, with 76.0% compared to 81.9% for the first model and
75.7% to 82.8% in the second. The fact that the accuracy is higher for a smaller dropout rate
could possibly be explained to models usually training in a more erratic behaviour compared
to a larger batch size. Smaller batch sizes can potentially introduce variance in the gradient
estimates. This is due to the model making estimates based on a fewer number of samples,
which makes it more vulnerable to random fluctuations in the data. By extension, the up-
dates of the model parameters can hence become noisy. Too small batch size can therefore
more easily overfit to noise rather than fit to the actual pattern in the data. Contrary to this,
larger batch sizes average over a larger amount of samples, which makes fluctuations affect
optimisation less. This usually provides more reliable and smooth gradient estimates and
faster convergence. A larger batch size allows therefore for a more representative estimation
of the true gradient and better model generalisation. However, this seems to be true only to
a certain extent, as the batch size of 64 performs worse. This might be due to larger batches
having a risk of getting stuck in local minimas or in saddle points, providing overly confident
models with poor accuracy. As they contain more variance and less frequent model updates,
larger batch sizes tend to smooth out variations in the training data which might contain
important details. Hence, performance will worsen. Thus, 32 seemed to be the most optimal
batch size out of the tested alternatives for the data.

6.1.4 Loss functions
The choice of loss functions is vital as the optimisation aims to minimise it and is therefore
directly related to model performance. The investigated losses have differences in how they
calculate deviations in the predictions to the true labels as well as in how they penalise faulty
predictions. This also results in varying model performance but as seen in Table 5.7, they all
perform relatively well. However, they favour different metrics. In terms of accuracy and
precision, both cross-entropy loss and α-balanced focal cross-entropy loss outperform hinge
loss. The former have metrics above 92% and 80% respectively while the latter is slightly
behind with 91% and 77%. This might be explained by the differences in their computation
of penalty. Hinge loss enforces a strict margin between classes with a hyperplane forming a
decision boundary. Incorrect predictions will be placed on the wrong side of this decision
boundary and thereby penalised based on the margin between the predicted class and the
true class, increasing linearly with the margin. That way, it encourages the maximal margin
to the decision boundary and thereby separate positive and negative instances. Contrary to
this, cross-entropy loss has a soft margin, allowing for a more flexible penalisation which is
useful when instances are hard to separate from each other and in need of a non-linear deci-

73

6. Discussion

sion boundary. Worth noticing is that hinge loss is primarily based on the class predictions
as opposed to cross-entropy loss, and by extension also focal cross-entropy loss, which is de-
signed to optimise the predicted probabilities. Since some instances are seemingly hard to
classify, especially between the monolayer class and the ‘too thick’ class, it can mean that the
probabilities for the two classes are similar to each other. A penalty using probabilities might
therefore be more representative as small differences still can result in meaningful losses, ef-
fectively allowing the model to learn more details and recognise smaller variations.

Despite having lower precision, hinge loss has the best performance of the three when it
comes to recall. As previously mentioned, recall and precision are often a trade-off, and a
harsher focus for precision will usually mean a lower value of recall. As hinge loss might have
difficulty in separating the classes well, the margin might be wider. This will allow more
instances to be correctly classified. Moreover, cross-entropy loss has, although lower, simi-
lar recall value while focal loss is presenting an even lower value. Focal loss puts emphasis
on the hard-to-classify samples, and thereby has its strength in classifying challenges. This
can for example be seen in the class precision for the monolayers, where it has a distinctly
higher value compared to the other loss functions. As focal loss focuses on difficult sam-
ples by down-weighting well-classified samples, it seems to have a trade-off with recall even
here. In addition, the challenging instances are potentially not distributed across all samples,
but focused in the monolayer class. The focus of those instances might then lead to a less-
generalised model across the rest of the classes. This can be supported by the class precision
for the thick samples, which is the majority class, being the lowest while using this type of
loss. Hence, focal loss seems to be well suited for minority classes containing a lot of difficult
samples, for example monolayers, if finding all the instances is less important.

In the exploration that followed, focal loss was attempted to be optimised with the pur-
pose of trying to increase general recall while keeping the same class precision. This was
further necessary since the default values are based on experimental studies which might not
be suitable for this dataset. The down-weighting of well-classified samples is controlled by
the modulation factor α, and a too high value can lead to an extreme focus of precision of
challenging instances.

Values represented in Table B.3 show that the default values still provide the highest class
precision for monolayers and give the highest ROC AUC score among the tested models.
This shows that the default values for α and γ provide the most reliable performance when
focusing on correctly classifying monolayers. Using the suggestion of inverse frequency as α
did also not provide any improvements. In terms of accuracy and general precision, α-value
of 0.05 seemed to perform the best with the default γ-value, as seen in Figure B.1. This is to
be expected as the well-classified samples are less down-weighted and the model can there-
fore increase the overall confidence in its predictions. This does however decrease precision
for the monolayer class. On the other hand, recall is also increased from 79.6% to 84.3%,
which could mean that it is still more beneficial to the model performance as it may also in-
clude more instances from the monolayer class. Generally, precision seems to decrease with
increased γ, which can be explained by the down-weighting of easy samples being more ag-
gressive. However, this trend doesn’t seem to be consistent in terms of monolayer precision,
but as the models are also differing in α it is difficult to say if the difference is due to the

74

6.1 Finding monolayers

gamma-value or simply the combination of hyperparameters. When comparing gamma val-
ues for identical α, when α is 0.005 and γ is either 2 or 5, the value 5 gives a better overall
performance in all metrics. This suggests that a lower α and a higher γ provides an enhanced
balance by reducing the emphasis but still allowing for a fast decrease in loss for easy in-
stances. Nonetheless, further explorations are needed in order to conclude whether there are
more suitable configurations than the default values for the focal loss.

6.1.5 Learning rates
Learning rate was tested at several stages during the process of optimisation. Firstly, in Test
Ia, two constant learning rates, see Table 5.2, were applied while training the binary test.
Comparing the models of otherwise identical model configurations, in this case while having
the same top layers, the higher rate of 10−6 performs better compared to 10−7. The same
findings are reported in Table 5.3 in fine-tuned models. As low learning rate means that
the parameters are updated slowly and taking smaller steps towards the minima during data
training, it can mean that the rate of 10−7 simply has not converged during the 50 epochs
that it was trained for. Most often, low learning rates are good to use in the later stages of
training, as it helps to work against oscillations often found when using higher learning rates,
by learning in a more stable way. On the other hand, the lower performance might also be
due to the optimisation getting stuck in a local minima. For this specific dataset, a higher
initial learning rate is beneficial for training.

As the constant values seemed to converge training at an early stage, more advanced learning
shapes were introduced. Firstly, the step wise scheduler decreased the constant initial rate
at a specific epoch. As seen in Table 5.6, the first two models started at a learning rate of
10−2, lowered at different epochs, while the third was initialised with 10−4. The latter in-
creased performance across all metrics, and resulted in the highest accuracy. A particularly
noteworthy improvement was a class precision for monolayers of 68% while reporting a high
recall value, which for the former two models was just above 57%. This improvement was
also reflected in the superior ROC AUC score of the three. Higher initial learning rate hence
seems to only be beneficial to a certain extent, and that an initial learning rate still needs to
be relatively small in order to not miss important patterns in the data.

Secondly, a scheduler using exponential learning rate decay was implemented and tested
across a range of initial and final values. Among the models using exponential learning rate
decay, the best performing model had a slower descending curve across a smaller range, which
points to smaller changes providing more stable training and by extension smoother conver-
gence. A smaller range further allows for the optimal learning rate to work during a longer
time frame compared to a larger range, which will improve the model performance. The need
for a lower initial learning rate is further proven with the model starting at 10−3 performing
better than the model initialised on 10−2.

75

6. Discussion

Testing on the pseudo-labelled dataset, reported in Table 5.9, the stepwise scheduler was ex-
tended with a linear learning rate warm-up. This was meant to add stability and increase
learning during early training as previous models had contained drastic jumps in losses dur-
ing early epochs. However, apart from lowered performance, likely due to not being able to
learn lower hierarchical features because of the low initial learning rate, it also increased the
loss by tenfold. The linear-warm up was hence deemed as not successful.

Generally, the schedulers using exponential learning rate decay seem to report more con-
sistent results compared to the stepwise scheduler, which could be explained by the stepwise
scheduler needing more hyperparameter tuning. This can further be seen in Table 5.9, where
the learning rates are specified in additional steps and resulting in better performance. Given
the flexibility of a stepwise scheduler, it is therefore likely that it eventually could outperform
an exponential decay learning rate scheduler, if optimised correctly. It could therefore be of
interest to for example implement a decreasing learning rate when reaching a plateau, for a
more natural learning controlled by the data instead of being predetermined. Moreover, the
more consistent results could also be explained by the learning rate curve over epochs being
more smooth, thereby manipulating the data in a more continuous manner. The exponential
learning rate decay scheduler also gives a generally better model performance, despite the
scheduler having the best monolayer precision, as they perform overall well over all classes.
This is supported by a superior ROC AUC score. Nonetheless, compared to a constant learn-
ing rate, scheduling the learning rate and decreasing it over a limited range of learning rates
allows the network to learn better by making it possible to learn higher-level features at a
slower speed - thereby optimising the speed to reach the minima of the loss function.

Specific to training using semi-supervised learning was the possibility of using multiple sched-
ulers, presented in Table 5.10 and Table B.4. As mentioned, the idea was that the network
had already learned lower level features and that focus could be put on details, thereby re-
quiring lower learning rates. This hypothesis could be supported by the results seen in Table
5.10providing clear improvements on all fronts. Besides reporting enhancement by adding
slower rates, the slowest tested rate performed best. This signified that enough learning of
the lower features could be achieved during the first training session to be able to improve
learning using lower rates in a second scheduler. Models presented in Table B.4 supported
the enhancement using a second scheduler, but seemed more sensitive to the values set in the
hyperparameters, consistent with previous discussion.

6.1.6 Optimiser
The optimiser to use for the dataset was evaluated in Test IIb. Firstly, the ADAM algorithm
was evaluated based on the suggestion of increasing its epsilon hyperparameter value from
the default 10−7 to 0.1. When training for 50 epochs, the default value performs better across
all evaluation metrics, as seen in Table 5.5. This is particularly noticeable on the recall value
where the model using the increased value has a recall of 46.5% while the default value has
81.8%. However, as previously stated, a larger epsilon value will lead to smaller weight up-
dates, which thereby makes the model converge slower. This can further be confirmed by
looking at the training history, see Appendix A.5. When training for 200 epochs, the recall
value dramatically improves to 65.0%. Improvements can also be seen for the other metrics.

76

6.1 Finding monolayers

However, it would most likely require even longer training to be able to reach similar perfor-
mance as to that of the default value. Using a larger epsilon for the ADAM optimiser could
therefore not be justified. It’s possible that a larger epsilon value than the default could im-
prove the optimisation overall if the increase was smaller than 0.1. As it interacts with other
hyperparameters, it is also possible that another model configuration would interact differ-
ently then the ones tested and hence yield different results. This was however not tested and
will be left for future studies.

Comparing the RMSProp and ADAM algorithm initialised on their default values of 10−7,
the RMSProp performed noticeably better on all metrics, reaching an F1-score of 83.6% com-
pared to 79.9% in the model optimised with ADAM. This difference may be due to the dif-
ference in their adaptive learning rate mechanism. RMSProp adapts the learning rate solely
based on the magnitude of gradients as opposed to ADAM, which bases the mechanism on
both the first and second moments of gradients. This makes the adaptive learning rate more
complex for the ADAM algorithm, and the learning rates will be adjusted more aggressively,
especially considering that it also includes bias correction. As a consequence, ADAM’s addi-
tional complexity can cause instabilities in the optimisation when in presence of variations
such as noisy or sparse gradients. Noise and sparsity is expected in the created datasets, as im-
ages contain variations in for example contrast and density. On the contrary, RMSProp, due
to its simplicity, is usually more robust to the variations present in the dataset. Furthermore,
as ADAM is sensitive to the learning rate settings determined in the model design, there is a
possibility that this type of optimisation could perform better with specific hyperparameter
tuning compared to the RMSProp. However, as this dataset presents itself as sensitive to the
learning rate, stable learning rate updates seem vital for better model performance.

6.1.7 Dropout and extended model
Regularisation like dropout layers are usually added to prevent overfitting of the networks.
As the initial InceptionV3 model quickly failed to generalise, as seen in Appendix A.3, it
seemed likely that the model was in need of higher regularisation. This would make the
model generalise better and hence make the model more robust to various representations of
the data. By dropping out random neurons during training, the model is encouraged to learn
the different instances independently of each other as well as learn the important features as
opposed to noise in the training dataset. Adding a dropout layer, as in the model presented in
Table 5.2, had little effect on accuracy, but increases the ROC AUC score and hence indicates
an improvement of the model. Introducing some form of regularisation thereby implies that
the model can be more prevented from learning inaccurate patterns for example from noise.
Furthermore, looking at the training history in Appendix A.4, the curves are more smooth
and it seems that the overfit of the model is less extreme. Additionally, Table 5.2 also presents
an interesting finding in the placement of the dropout layer. Comparing the first and second
model, it can be seen that the second model contains an added dense layer before the dropout
layer. This addition results in lower performance, both in terms of accuracy but also in ROC
AUC score relating to the models specificity and sensitivity. Apart from implying that an
added dense layer increases the risk of overfitting as a consequence to an increased number of
parameters, it also seems to illustrate that the placement of dropout matters. Early dropout
seems to be more effective.

77

6. Discussion

As the dropout rate determines the proportion of neurons to randomly drop during train-
ing, it is essential to balance this rate well. When comparing a higher rate of dropout in
fine-tuned models presented in Table 5.3, the models using a batch size 32 can be seen to
have an improvement with a higher value of dropout, especially when it comes to the ROC
AUC score. This implies that the model learns to better distinguish between the two classes
with a higher dropout rate. For the model with batch size 16, the accuracy doesn’t increase
when increasing the dropout rate. However, the ROC AUC score still increases with higher
dropout rate, indicating an improvement of the model. On the other hand, this does not nec-
essarily mean that a higher rate is always better. If the dropout rate is set too high, the model
performance can decrease. This can be seen for a model trained with the extended model
architecture in Test IIe, seen in Table 5.8. The model repeatedly drops 80% of its neurons,
albeit randomly chosen, which is a behaviour that results in a ten percentage point reduction
in accuracy. Even more importantly, the other evaluation metrics perform terribly and the
class precisions for class minorities are non-existent. The model performance decreases as the
dropout rate is too high. This will cause the model to underfit and reduce its effectiveness
and capacity. Most likely, the repeated high dropout rate caused too little information in the
data. As the rate is repeated four times at a rate of 80%, the retained information will be
0.24 = 0.0016, which means that only 0.16% of the original information is left, which un-
derstandably is too little to learn any meaningful patterns. Instead, repeated dropout layers
seem to work better with a rate of 0.2. This would mean that 80% of the connections are kept
between each layer, resulting in (1 − 0.2)4 = 40.96% of retained connections during each
run, which is a drastically improved amount of data compared to the previous rate. Thus,
increasing the dropout rate will lead to more generalisation and in turn better performance,
but the rate needs to be set in relation to having an adequate amount of connections between
neurons remaining.

There are benefits to repeated dropout layers, as this acts as a further form of regularisa-
tion as it repeatedly drops random neurons during multiple points in the network. This
means that repeating dropout layers will increase generalisation. This can be seen in Ap-
pendix A.6, where the losses are shown in a model with 0.8 dropout layer compared to a
model with a repeated dropout layer with dropout rate 0.2. Even though the total dropout
is lower with the repeating model compared to the single dropout model, the loss is more
controlled. This implies that the model using repeated dropout blocks responds better to
generalisation. However, this might also be due to, or in combination with, the expanded
model architecture. Having added dense layers increases the model capacity, which allows
for more complex patterns to be captured. By using repeated dropout layers on top, the reg-
ularisation can be designed to be more flexible, learning more advanced data while limiting
the overfit. This is further supported by, if the dropout rate is reasonable, the larger archi-
tectures working better - for example, having six dense layers seem to perform slightly better
compared to four dense layers.

6.1.8 Image aspect ratio
The choice of preserving or distorting the image aspect ratio of the samples were evaluated
in Test IIIc. It can be seen from Table 5.11 that the two techniques had different strengths in
their performance. A distorted aspect ratio gave a higher accuracy of the validation dataset,

78

6.1 Finding monolayers

94.75% compared to 93.98% for the preserved aspect ratio. The same trend was observed in
the recall value, presenting at 88.77% as opposed to 81.88%. However, the preserved image
ratio seemed to perform better in terms of precision. Although the general precision for all
classes were relatively equal for both pre-processing techniques, the precision for the ‘mono-
layer’ class was significantly improved from 71.17% for the distorted image aspect ratio to
81.21% for the preserved aspect ratio. This suggests that maintaining the image aspect ratio
could be important for enhancing the network’s ability to correctly identify cell monolay-
ers. The overall better performance when using a distorted image aspect ratio could be due
to the amount of information the technique keeps. Contrary to distorting the aspect ratio,
the preserved aspect ratio loses information as they are cropped to fit the desired image di-
mensions. In the carried out scenario, 25% of the pixels were removed, which also means
an information loss of around 25%. As this is done on every image in the dataset, this will
lead to a distinct reduction of data, which can affect the features it is capable of extracting.
In addition, deep learning networks rely heavily on having an adequate amount of data in
order to properly learn the features specific to the dataset. Reducing data, especially in an
already relatively small dataset, can decrease the network’s ability to generalise well. On the
other hand, distorting the image aspect ratio can in itself also result in loss of information.
Altering proportions of an image may lead to distortion and deformation of features within
the sample, for example cell boundaries and cell shapes, which in extension can make im-
portant details less distinguishable. This can make regions where the spatial relationship is
important harder to recognise and potentially explain why images containing monolayers
had a higher amount of misclassifications and lower class precision; the distorted image ra-
tio affected crucial features in monolayers, thereby making them harder to identify. As the
preserved aspect ratio kept the integrity of the features and their spatial relationships, the
precision for monolayers could increase with the cost of overall performance.

6.1.9 Augmentation
The number of available augmentation techniques were somewhat limited due to the choice
of performing it through sequential layers in Keras. Yet, the importance of augmentation
could be seen in Table 5.12. Compared to the initial, somewhat mild, values presented in
Table 4.1, increasing the values of the available augmentation yielded higher metrics and en-
hanced generalisation. Increased contrast in particular seemed to improve the model. This
is probably due to variations in the images as they vary in both density and lighting; some
instances naturally have higher contrast. Increasing the possibility of presenting this type of
contrast will hence give the model an opportunity to learn and distinguish those features.
Moreover, a higher value of random zoom increased the class precision for monolayers to
81.1%. This suggests that zooming on images might present the model with images contain-
ing more distinguishable features specific to monolayers, allowing the network to learn and
differentiate to other classes. Although harsher augmentation allows for generalisation, an
increased translation decreases the evaluation metrics. This can also be seen in a too high
value of rotation. This might be due to loss of information that rotation and translation
brings. The methods fill missing pixels after transformation, but in some cases these can
contain important features. Missing these features will hence worsen model performance.
Generally, the network improves with increased data diversity.

79

6. Discussion

6.1.10 Class imbalance
Comparing model performances with identical configurations between the normal dataset
in Table 5.12 to the oversampled dataset in Table 5.13 , it can be seen that oversampling
does not seem to be helpful for improving model learning. In fact, both models performed
worse across the majority of the metrics when using an upsampled dataset. This suggests
that the models might become overfitted and fail to understand meaningful patterns in the
data. The used oversampling method does not add any information, as it simply increases
the occurrence of minority class samples by presenting them more often along with smaller
variations. However, merely presenting instances of minority classes more frequently might
not be enough to understand the underlying pattern in the class imbalance, especially if the
data is too complex. The network might instead be in need of alternative techniques to learn
the details of the minority classes. Additionally, only one method of handling imbalanced
data was investigated. In future studies it could be of interest to explore different strategies,
such as Synthetic Minority Oversampling Technique (SMOTE). SMOTE might be a better
alternative as it creates synthetic diversity by interpolating between existing samples using
the nearest neighbours in the feature space of the minority class. On the other hand, SMOTE
imposes a risk of introducing noise that does not originally exist in the samples, which in turn
will decrease generalisation. This risk is less in the performed technique, as it retains original
data to a higher extent. It is also possible that handling imbalance data in this way is simply
ineffective, as suggested by previously mentioned studies.

6.1.11 L1/L2-regularisation
An addition of regularisation was tested in Test IIe shown in Table 5.14, which is ranged in
order of increased regularisation strength. As seen in Appendix A.7, increasing regularisation
strength provides a more smooth loss curve. This suggests that the learning is more consis-
tent and converging efficiently. It further implies that the regularisation properly prevents
overfitting without affecting the performance too much. Looking at the values presented in
Table 5.14, the model without regularisation has the highest performance. This is however
to be expected as it penalises the model, creating a less complex model and suppresses the
information to some extent. The last three models are however not differing much relative
to their regularisation strength, apart from in the recall value. All the other metrics are seem-
ingly similar. This can indicate that harsher regularisation could be necessary, but as the loss
function is seemingly smooth it might not need additional regularisation. The model with
the smaller regularisation strength, has slightly lower performance, which is most noticeable
in recall as well as precision. This could be due to L1 and L2 having different effects on the
model, and that the suggested combination is less efficient. For example L1 regularisation
favours feature selection and features important for classification and a higher value could
possibly increase performance for minority classes. This is supported by a higher monolayer
precision with an increased L1-value. Nevertheless, as the differences are small, no conclu-
sions can be drawn of specific regularisation values.

80

6.1 Finding monolayers

6.1.12 Binary, multiclass and pseudo-labelled multi-
class dataset

While trained with a constant learning rate of 10−6 , the difference between the binary dataset
and the multiclass dataset are reported slightly higher in accuracy for the binary dataset but
higher ROC AUC value in the multiclass dataset. The loss in accuracy, albeit small as it
stands 91.1% in the binary dataset, shown in Table 5.2, to 90.9% in Table 5.4, could be due to
a multiclass problem being more complex to solve. Having multiple classes means that the
network needs to learn how to distinguish additional classes, and in turn learn more defined
patterns in the data. The model seems, however, more suitable for a multiclass problem, as
the ROC AUC score increases from 83.1% to 84.7%. This might be a benefit of the distinct
patterns of each class, as the model might generalise less well when containing a larger range
of samples in one class; more definition as to what makes up a class seems to increase the
model’s ability to find and discriminate the correct patterns of each class. Furthermore, the
same model configuration applied on the semi-supervised dataset, see Table 5.9, increases
the ROC AUC score even further, to 85.1%. The improvement from the multiclass dataset to
the pseudo-labelled multiclass dataset can not be expected to be dramatic, as the amount of
pseudo-labelled instances are relatively few at 1.3% of the entire dataset. It can however be
seen in later tests that models with superior performance are trained on the pseudo-labelled
dataset. Using semi-supervised learning, there is a risk that all the previously unlabelled
instances are labelled as the majority class according to the present bias, and that the model
performs better due to the new data already fitting into what it’s previously learnt. The
labels were however manually inspected after the labelling and deemed fairly justified. The
better performance might be possible because of errors in the annotation of the fully labelled
multiclass dataset.

6.1.13 Proposed model
The proposed model was based on techniques and values of hyperparameters with superior
performance in performed tests, especially regarding class precision of monolayers and ROC
AUC score. These evaluation metrics were chosen as they are highly responsive to changes in
model performance and thus, sensitive to the choice of hyperparameter values. Class preci-
sion was deemed important as found monolayers are meant to be used for further analysis. A
faulty instance increases the risk that an analysis would fail, thereby wasting end-users time.
On the contrary, if recall was considered to be more crucial in the model performance, it
would most likely mean that a higher amount of images would be classified as monolayer, as
recall often comes with trade-off with precision. The risk of failed analyses increases with a
larger number of incorrectly classified monolayers, which in turn likely results in even more
ineffective time. Hence, the run time for a completed and valid analysis of the entire blood
sample would increase. This would make the system less effective for the intended analysis
and cause delays in the workflow. Furthermore, considering that blood analysis can relay sig-
nificant findings for diagnosis of medical conditions and illnesses, this could potentially have
an effect on treatment and thereby impact patients’ healths. However, it is of course neces-
sary to have an adequate number of correctly classified monolayers to be able to perform the
analysis, for example to find the desired amount of WBCs in the blood sample.

81

6. Discussion

The results for the final evaluation, found in Table 5.15, show similar performance as to ex-
pectations based on tests on the same hyperparameters on the validation dataset. The test
dataset and the validation dataset might contain differences in their dataset as they are not
identical, but they seem to have enough similarities to still yield an adequate performance.
The model hence seems to generalise well. The generalisation could however be improved
using L1/L2-regularisation, as it reported to achieve smoother training. This was however
not included in the final model as it also came with a decrease in performance. As seen in
Table 5.15, the precision is still the highest for denser images, which was anticipated consid-
ering that the data is imbalanced and the model thus has a bias towards that specific class.
On the other hand, the bias does not seem to be especially noticeable in its predictions of the
misclassified monolayers, as they predict ‘too sparse’ and ‘too thick’ almost equally, as seen
in the confusion matrix presented in Figure 5.1. However, with the predicted monolayers,
it seems that the model has a harder time distinguishing between monolayers and denser
images compared to monolayers and sparse images. This could possibly be improved using
even harsher and alternative augmentation. Furthermore, even the ‘too sparse’ have a slightly
better class precision than the ‘monolayer’ class, which probably is due to the more distin-
guishable patterns in the class; ‘too sparse’ is also easier for humans to detect compared to
finding monolayers. The annotation is based upon the monolayer coordinate range provided
by the DC-1 system, and given that this is not yet optimised for avian blood it is possible that
it has incorrectly labelled some monolayers as non-monolayers. Hence, the proposed model
might classify actual monolayers as monolayers but as the label might be wrong, this will be
considered a faulty classification and assumed as decreased performance. The true monolayer
classification might therefore be higher than presented, and needs to be confirmed with an
expert in the area. The ROC curve seen in Figure 5.2 reports similar findings - ‘too thick’
has an almost perfect true positive rate while the other two classes are located slightly below
them, meaning that the dense class is easier to distinguish. However, compared to the initial
ROC curve using the baseline architecture, as seen in Appendix A.3, the performance has
improved significantly. All in all, considering the high reportings of evaluation metrics and
the presented confusion matrix and ROC curve, the model seems to, at least to some extent,
successfully be able to find monolayers within a range of collected images.

6.2 Locating WBCs
For the second task, it can generally be seen that the data adjusts to the task relatively badly,
supported by results in Table 5.17-5.24. Among the initial backbones, YOLOv8 with the size
m reports the highest overall average precision at 11.01% while ResNet50 has the highest aver-
age precision at intersection of 50%. Overall, the average precision at 50% IoU is significantly
higher compared to the AP calculated between thresholds 0.5 to 0.95. This signifies that the
models have difficulty in finding precise, or at least adequate, coordinates of the objects. This
of course poses a greater challenge compared to just locating it with any overlap, probably
due to the objects in question having such a small area compared to the entire image. How-
ever, higher overlap would mean better precision of the model and is thus more desirable.
Similar results can be found in Table 5.18, where the entire model is being trained at once,
as YOLOv8 with size m again has the highest average precision. However, this configuration
presents EfficientNetV2-S as the best performing at a 50% IoU threshold. It can also be seen

82

6.2 Locating WBCs

that the data seems to be less modelled with a backbone with fewer number of parameters.
At the same time, it also does not require the largest amount of parameters that usually in-
dicate more complex architectures. This might be due to a too simple model not being able
to efficiently capture any patterns in the data, which will result in the lower performance
that can be seen for example of YOLOv8-XS and S. On the other hand, too complex mod-
els can generalise less well, as it seems to be the case with YOLOv8-XL and CSPDarkNet.
The decrease in performance could naturally also be caused by how the backbone handles
data, as they have slightly different approaches to this. Furthermore, Table 5.19 shows that
pre-trained weights are beneficial both in overall average precision but also at a lower inter-
section threshold. This indicates that the COCO dataset contains some features similar to
the ones found in the data, and thus provides some knowledge.

The hypothesis of a larger image size being able to provide easier to detect WBC boxes can
not be supported by the results in Table 5.20. Comparing models trained with the same batch
size, the smallest size is still the most optimal of the tested sizes. This might be explainable
by the architecture of the YOLOv8 detector being designed for that specific image size, and
hence is optimised to utilise this size the best. In addition to this, it might point to the re-
sizing technique having difficulty in recreating features found in the original images.
The loss function with results shown in Table 5.21 suggests that the model is better optimised
using CIoU loss compared to Mean squared error and L1 smooth loss. CIoU takes the aspect
ratio of the bounding boxes into account when calculating the error, which means that the
spatial relationship is highly valued. This will of course yield more accurate results for local-
ising WBCs. In contrast, the latter two losses penalise based solely on distance and not on
box overlap, indicating that this functionality is important for better performance.
The results of varying the learning rate schedulers are seen in Table 5.22. Similar to the pre-
vious task, the model performance seems sensitive to learning rate hyperparameters. For
example, decreasing the learning rate when reaching a plateau seems to work well if it is
correctly initialised. This is supported by the fact that the model trained with this type of
scheduler with initial value of 10-3 yielding the highest result for overall AP. As the learning
rate decrease is greatly controlled by the training of the data itself, it can easier get out of local
minima, for example, resulting in better training. On the other hand, a higher initial value
makes the model perform terribly. Initalised on the same well performing value of 10−3, the
exponential learning rate decay scheduler seems to work with similar performance. Smaller
initial values than 10−3 seem to be less advantageous.

As mentioned earlier, elastic transformations can in some cases be useful for cell segmen-
tation, as it mimics cell deformations that can be present in blood samples. This was tested
with the added random shear transformation. However, as seen in Table 5.23, the elastic
transformations seemed to have the opposite effect and instead worsen the model perfor-
mance. This might be due to the value range being less optimal, thus providing exaggerated
deformations. It could further be caused by the elastic deformations not working with the
current resolution, and that a higher magnification would be necessary for decent results.
Another augmentation technique that seemed to worsen the performance was the sharpness
layer. The sharpness layer was assumed to be helpful as it introduces variations that are sim-
ilar to images with lower quality, or if a sharp image for some reason could not be collected.
The sharpness layer hence introduces blurry edges as variations. However, the sharpness layer

83

6. Discussion

might work in a less effective way, for example by blurring in a non-realistic way or blurring
too much, making it more difficult to distinguish individual cells. The grid masks also proved
to not be applicable in this problem. More commonly used augmentation techniques such as
brightness, contrast and colour distortions seemed to be beneficial.

Considering the performed tests, the task presented itself with many limitations and chal-
lenges, and no ideal solution could be found. Looking at Table 5.24, it can be seen that it is
possible to find more boxes, as the recall is as high as 95%. This is however presented at a
low IoU threshold and a low confidence level. Considering that its respective precision is so
low, the model hence creates a great number of boxes, and some of them happen to overlap
true boxes. This can be seen in Figure 5.3. With an increased IoU threshold and confidence
level, the precision increases but also misses a high amount of boxes. As seen in Figure 5.3d,
the predicted boxes seem to be located close to the true boxes, but have difficulties with
finding more exact coordinates with a greater confidence. Furthermore, a high amount of
incorrect boxes will lead to longer runtime when performing analysis, which means that it
might still be more efficient to scan using a larger magnification if the overclassification can
not be remedied. The task hence needs further research to find a more optimal solution.

6.3 Limitations and future research
One major limitation of the project is the annotation of the dataset. The labels are mainly
based on the monolayer range of each sample received when scanning the blood samples using
the DC-1. Although this provided a solid foundation to annotating the dataset, there was a
need to manually adjust some instances, which signifies that the analysis this entire project is
based on in itself is not fully accurate. While manually adjusting the dataset, the decision was
made to not label any images as monolayers even in cases where it seemed warranted. This
was done in order to minimise inaccuracies due to lack of expertise in the subject. How-
ever, this could also mean that monolayers were inaccurately classified as other classes and
thereby confusing the network learning, most likely resulting in worse model performance.
Thus, with the purpose of improving performance, expert annotation of the dataset could
be both advantageous and necessary. Furthermore, as CNNs in particular thrives on higher
amounts of data, and the dataset collected is quite limited in terms of number of monolay-
ers, it could be beneficial to collect a more extensive dataset in the future. It might also be
helpful to divide the dataset into more specific classes, which could differentiate between
distinctly different images, for example those that were too dense, to images located closely
to monolayers - slightly too dense.

Another attempt at improving model performance could be the method of how the mono-
layers are classified. As of now, this project used the images as they were collected, apart from
the mentioned pre-processing. This meant classifying images as monolayers if 49.5% of the
image contained a monolayer region. However, it might improve model performance if the
images were for example cropped to only contain regions of monolayers and avoid mixing
different regions. This could make the patterns in monolayers more distinct and thus easier
for the network to learn and distinguish from other classes. In extension, this would also

84

6.3 Limitations and future research

provide a larger amount of monolayers, as quite a few had to be ignored with the set thresh-
old limit. Another limitation was the timeframe and workforce of the project. This meant
that not all configurations could be tested and that some tests had to be very limited, which
further meant that the most optimal solution might not have been found. Additionally, the
system setup provided some memory limitations which meant that certain parameters and
configurations had to be abandoned as the system could not allocate enough memory in the
GPU to run the training. Additionally, apart from the already mentioned possible improve-
ments, future research should include k-fold cross-validation of the model. Cross-validation
was not considered due to time constraints and computational runtime, but would increase
model robustness as well as reliability and validity.

For the task of locating WBCs, an improvement could probably be found in greater com-
putational power as this yet again proved to be a limitation. This would allow larger batch
sizes in addition to faster training, which in turn would lead to more hyperparameter opti-
misation being able to be performed. This would also allow alternative architectures such as
RetinaNet or single-staged object detection models to be considered. YOLOv8 is a relatively
fast and efficient object detection model, but this also comes at a trade-off with loss in per-
formance. It could therefore be possible that the data, with the dense images it contains, is
in need of that performance increase and a model with greater ability to distinguish objects
in denser images. Furthermore, instance segmentation as suggested in the Literature Review,
could provide better results as it is more precise to the boundaries in the objects. This would
however require a different kind of annotation than what was available to achieve in this
project. Another suggestion for further research would be dividing images into smaller seg-
ments and increasing the resolution of each segment with interpolation - thereby creating
images that look like images collected with higher optical power. This could further be ex-
tended into a combination of the object detection model with for example a neural network
implementing super resolution, which allows for upscaling and sharpening without losing
any important features. The time frame also set a limitation while creating the dataset, as
it only localises and not classifies. For future research it is both beneficial and necessary to
annotate the data with more specific classes, as this is a crucial functionality and could pro-
vide the model with more assistance in its optimisation. It could also prove advantageous to
annotate both WBCs and RBCs, thereby helping the model to distinguish between the two
cell types. Worth mentioning is also that considering that it is the secondary objective, it
could not be investigated to the same extent as the first aim, especially in combination with
the increased run time of the second model.

85

6. Discussion

86

Chapter 7

Conclusion

While focusing on the model’s ability to distinguish between classes and the precision of
monolayer classifications, hyperparameters and architecture could be optimised - resulting
in a final proposed model aimed to find monolayers in blood samples with an accuracy of
95.1% and overall precision of 87.2% as well as a recall value of 87.9%. This corresponded
to a monolayer precision of 79.9%. This was achieved by allowing slower convergence and
emphasising correct classification of challenging blood samples. The greatest limitation to
this task was correct annotation, which was partly remedied with semi-supervised learning -
allowing the network to label part of the data according to learnt knowledge of data-specific
features. However, future research includes basing annotation on expert knowledge. Further
improvements might be possible to investigate more hyperparameter configurations as well
as redefining what is included in a monolayer label, for example by cropping images to only
contain regions of monolayer. Overall, the proposed model was successfully able to correctly
find and classify monolayers to a certain degree. The same can however not be said about
localising the WBCs within the monolayers. While using a YOLOv8 detector combined with
a YOLOv8 backbone of moderate size, it was only able to achieve an average precision in the
range of 50% to 95% IoU of 13.7%. The initial model could be somewhat improved with the
help of optimising hyperparameters and adding harsher augmentation. The average precision
reported a higher value of 48.6% with a lower intersection threshold, signifying that the model
has difficulties with precise localisation. This was further supported by visualisations of the
predicted boxes. Recall could be improved by lowering the confidence level and the IoU
threshold, but came with a trade-off with precision. To improve this, it could be beneficial
to expand the amount of data and annotate it further with RBCs and WBCs as well as specific
types of WBCs. This could potentially help the model to learn better. Future research could
also include alternative models that have higher focus on performance, for example single-
staged object detectors, and ability to distinguish objects in dense images, for example using
RetinaNet. This however demands higher computational power.

87

7. Conclusion

88

References

[1] Lima-Oliveira G, Lippi G, Salvagno G, Pichetch G, Guidi G. Laboratory Diagnostics
and Quality of Blood Collection. J Med Biochem. 2015;34(3):288-94.

[2] Hedge R, Prasad K, Hebbar H, Sandhya I. Peripheral blood smear analysis using image
processing approach for diagnostic purposes: A review. Biocybernetics and Biomedical
Engineering. 2018;38(3):467-80.

[3] Gunčar G, Kukar M, Notar M, Brvar M, Černelč P, Notar M, et al. An application of
machine learning to haematological diagnosis. Scientific Reports. 2018;8:411.

[4] Gulati G, Song J, Florea A, Gong J. Purpose and Criteria for Blood Smear Scan, Blood
Smear Examination, and Blood Smear Review. Ann Lab Med. 2013;33:1-7.

[5] Ohsaka A. Artificial intelligence (AI) and hematological diseases: establishment of a
peripheral blood convolutional neural network (CNN)-based digital morphology anal-
ysis system. The Japanese Journal of Clinical Hematology. 2020;61(5):564-9.

[6] Joubert J, Weyers R, Raubenheimer J. Reducing unnecessary blood smear examina-
tions: can Sysmex blood cell analysers help? Medical Technology SA. 2014;28.

[7] Adewoyin AS, Nwogoh B. Peripheral Blood Film - A Review. Ann Ib Postgrad Med.
2014;12(2):71-9.

[8] Govind D, Lutnick B, Tomaszewski JE, Sarder P. Automated erythrocyte detection
and classification from whole slide images. J Med Imaging. 2018;5(2):027501.

[9] Mohammed EA, Mohamed MMA, Far BH, Naugler C. Peripheral blood smear image
analysis: A comprehensive review. Journal of Pathology Informatics. 2014;5(1):9.

[10] Verma A, Verma M, Singh A. Animal tissue culture principles and applications. Ani-
mal Biotechnology. 2020:269-93.

[11] Joubert J, Weyers R, Raubenheimer J. Reducing unnecessary blood smear examina-
tions: can Sysmex blood cell analysers help? Medical Technology SA. 2014;28(1).

89

REFERENCES

[12] Kuhn V, Diederich L, Stevenson Keller T, Kramer C, Lückstädt W, Panknin C, et al. Red
Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism,
Anemis. Antioxid Redox Signal. 2017;26(13):718-42.

[13] Beug H, Bauer A, Dolznig H, vLindern M, Lobmayer L, Mellitzer G, et al. Avian ery-
thropoiesis and erythroleukemia: towards understanding the role of the biomolecules
involved. BBA - Reviews on Cancer. 1996;1288(3):M35-47.

[14] Moras M, Lefevre SD, Ostuni MA. From Erythroblasts to Mature Red Blood Cells:
Organelle Clearance in Mammals. Front Physiol. 2017;8:1076.

[15] Stier A, Bize P, Schull Q, Zoll J, Singh F, Geny B, et al. Avian eryhtrocytes have
functional mitochondria, opening novel perspectives for birds as animal models in the
study of ageing. Frontiers in Zoology. 2013;10(33).

[16] Pikora K, Kretowska-Grundwals A, Krawczuk-Rybak M, Sawicka-Zukowska M. Di-
agnostic Value and Prognostic Significance of Nucleated Red Blood Cells (NRBCs) in
Selected Medical Conditions. Cells. 2023;12(14):1817.

[17] Yap KN, Zhang Y. Revisiting the question of nucleated versus enucleated erythrocytes
in birds and mammals. Am J Physiol Regul Integr Comp Physiol. 2021;321(4):R547-57.

[18] Grigg GC, Beard LA, Augee ML. The Evolution of Endothermy and Its Diversity in
Mammals and Birds. Physiological and Biochemical Zoology: Ecological and Evolu-
tionary Approaches. 2004;77(6):982-97.

[19] Glomski CA, Pica A. The Avian Erythrocyte: Its Phylogenetic Odyssey. 1st ed. Boca
Raton: CRC Press; 2011.

[20] Clark P. Assessment of avian erythrocytes that exhibit variant nuclear morphology.
Comp Clin Pathol. 2015;24:486-90.

[21] Ritchie BW, Harrison GJ, Harrison LR. Avian Medicine: Principles and Application.
Lake Worth: Wingers Publishing; 1994.

[22] Nombela I, Lopez-Lorigados M, Salvador-Mira ME, Puente-Marin S, Chico V, Ciordia
S, et al. Integrated transcriptomic and proteomic analysis of red blood cells from
rainbow trout challenged with VHSV point towards novel immunomodulant targets.
Vaccines (Basel). 2019;7:63.

[23] John JL. The avian spleen: a neglected organ. Q Rev Biol. 1994;69(3):327-51.

[24] CellaVision. CellaVision DC-1; 2022. [Internet]; [cited 2024]. https://www.
cellavision.com/products/analyzers/cellavisionr-dc-1.

[25] CellaVision. CellaVision DM9600; 2022. [Internet]; [cited 2024]. https://www.
cellavision.com/products/analyzers/cellavisionr-dm9600.

[26] Meechart K, Auethavekiat S, Sa-ing V. An Automatic Detection for Avian Blood Cell
based on Adaptive Thresholding Algorithm. In: BMEiCON; 2019. p. 1-4.

90

REFERENCES

[27] Beaufrere H, Ammersbach M, Tully Jr T. Complete Blood Cell Count in Psittaciformes
by Using High-Throughput Image Cytometry: A Pilot Study. J of Avian Medicine and
Surgery. 2013;27(3):211-7.

[28] Vogelbacher M, Strehmann F, Bellafkir H, Mühling M, Korfhage N, Schneider D, et al.
Identifying and Counting Avian Blood Cells in Whole Slide Images via Deep Learning.
Birds. 2024;5(1):48-66.

[29] Hoefling H, Sing T, Hossain I, Boisclair J, Doelemeyer A, Flandre T, et al. HistoNet:
A Deep Learning-Based Model of Normal Histology. SageJournals. 2021;49(4):49-4.

[30] Kittichai V, Kaewthamasorn M, Thanee S, Jomtarak R, Klanboot K, Naing K, et al.
Classification for avian malaria parasite Plamodium gallinaceum blood stages by using
deep convolutional neural networks. Scientific Reports. 2021;11:16919.

[31] Turing AM. Computing Machinery and Intelligence. Mind. 1950;49:433-60.

[32] McCarthy J. What is artificial intelligence?; 2007. Available from: https://
www-formal.stanford.edu/jmc/whatisai.pdf. Stanford University.

[33] Russel S, Norvig P. Artificial Intelligence A Modern Approach. 3rd ed. Essex: Pearson
Education; 2016.

[34] Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69:S36-40.

[35] Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial Intelligence in
Pathology. J Pathol Transl Med. 2019;53(1):1-12.

[36] Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Sci-
encemag. 2015;349(6245):255-60.

[37] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York: Springer; 2011.

[38] Jiang T, Gradus JL, Rosellini AJ. Supervised Machine Learning: A Brief Primer. Be-
havior Therapy. 2020;51(5):675-87.

[39] Cunningham P, Cord M, Delany SJ. Supervised Learning, Machine Learning Tech-
niques for Multimedia, Cognitive Technologies. Berlin: Springer; 2008.

[40] Ferreira REP, Lee YJ, Dórea JRR. Using pseudo-labeling to improve performance of
deep neural networks for animal identification. Scientific Reports. 2023;13:13875.

[41] Lee DH. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In: ICML 2013 Workshop: Challenges in Representation Learn-
ing. vol. 3; 2013. p. 896-901.

[42] Clearwater SH, Cheng TP, Hirsh H, Buchanan BG. Incremental Batch Learning. In:
Proceedings of the Sixth International Workshop on Machine Learning; 1989. p. 366-
70.

91

REFERENCES

[43] Xu Y, Goodacre R. On Splitting Training and Validation Set: A Comparative Study
of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the General-
ization Performance of Supervised Learning. J Anal Test. 2018;2(3):249-62.

[44] Liashchynskyi P, Liashchynskyi P. Grid Search, Random Search, Genetic
Algorithm: A Big Comparison for NAS; 2019. Available at: https:
//www.researchgate.net/publication/337916821_Grid_Search_Random_
Search_Genetic_Algorithm_A_Big_Comparison_for_NAS. Internet.

[45] Ying X. An Overview of Overfitting and its Solutions. J Phys: Conf Ser. 2019;1168(2).

[46] Demir-Kavuk O, Kamada M, Akutsu T, Knapp EW. Prediction using step-wise L1, L2
regularization and feature selection for small data sets with large number of features.
BMC Bioinformatics. 2011;12:412.

[47] Zou H, Hastie T. Regularization and Variable Selection Via the Elastic Net. Journal
of the Royal Statistical Society Series B: Statistical Methodology. 2005;67(2):301-20.

[48] Shorten C, Khoshgoftaar TM. A Survey on Image Data Augmentation for Deep Learn-
ing. Journal of Big Data. 2019;6:60.

[49] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: MICCAI; 2015. p. 234-41.

[50] Zhou J, Gandomi AH, Chen F, Holzinger A. Evaluating the Quality of Machine Learn-
ing Explanations: A Survey on Methods and Metrics. Electronics. 2021;10(5):593.

[51] Dalianis H. Evaluation Metrics and Evaluation. In: Clinical Text Mining. Springer;
2018. .

[52] Baratloo A, Hosseini M, Negida A, El Ashal G. Part 1: Simple Definition and Calcu-
lation of Accuracy, Sensitivity and Specificity. Emerg(Tehran). 2015;3(2):48-9.

[53] Monaghan TF, Rahman SN, Agudelo CW, Wein AJ, Lazar JM, Everaert K, et al. Foun-
dational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive
Predictive Value, and Negative Predictive Value. Medicina (Kaunas). 2021;57(5):503.

[54] Düntsch I, Gediga G. Confusion Matrices and Rough Set Data Analysis. J Phys: Conf
Ser. 2019;1229:012055.

[55] Wegier W, Ksieniewicz P. Application of Imbalanced Data Classification Quality Met-
rics as Weighting Methods of the Ensemble Data Stream Classification Algorithms.
Entropy (Basel). 2020;22(8):849.

[56] von Stralen KJ, Stel VS, Reitsma JB, Dekker FW, Zoccali C, Jager KJ. Diagnostic meth-
ods I: sensitivity, specificity, and other measures of accuracy. Kidney International.
2009;75(12):1257-63.

[57] Zhu W, Zeng N, Wang N. Sensitivity, Specificity, Accuracy, Associated Confidence
Interval and ROC Analysis with Practical SAS Implementations. NESUG. 2010.

92

REFERENCES

[58] Sarker IH. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy,
Applications and Research Directions. SN Computer Science. 2021;2:420.

[59] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: The MIT Press;
2016.

[60] Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial Intelligence in
Pathology. J Pathol Transl Med. 2019;53(1):1-12.

[61] Hinton GE. How Neural Networks Learn from Experience. Scientific American.
1992;267(3):144–151.

[62] Sharma S, Athaiya A. Activation Functions in Neural Networks. IJEAST.
2020;4(12):310-6.

[63] Aggarwal CC. Neural Networks and Deep Learning. 1st ed. Springer; 2019.

[64] Islam M, Chen G, Jin S. An Overview of Neural Network. American Journal of Neural
Networks and Applications. 2019;5(1):7-11.

[65] Nguyen T, Raghu M, Kornblith S. Do Wide and Deep Networks Learn the Same
Things? Uncovering How Neural Network Representations Vary with Width and
Depth. In: ICLR; 2021. .

[66] Meyer-Baese A, Schmid B. Specialized Neural Networks Relevant to Bioimaging, Pat-
tern Recognition and Signal Analysis in Medical Imaging. 2nd ed.; 2014.

[67] Singh A, Kushwaha S, Alarfaj M, Singh M. Comprehensive Overview of Backpropa-
gation Algorithm for Digital Image Denoising. Electronics. 2022;11(10):1590.

[68] Song Y, Lukasieqicz T, Xu Z, Bogacz R. Can the Brain Do Backpropagation? - Exact
Implementation of Backpropagation in Predictive Coding Networks. In: Adv Neural
Inf Process Syst. vol. 33; 2020. p. 22566-79.

[69] Kerkhof M, Wu L, Perin G, Picek S. No (good) loss no gain: systematic evaluation of
loss functions in deep learning-based side-channel analysis. Journal of Cryptographic
Engineering. 2023;13:311-24.

[70] Wu MT. Confusion matrix and minimum cross-entropy metrics based motion recog-
nition system in the classroom. Scientific Report. 2022;12:3095.

[71] Rezaei-Dastjerdehei M, Mijani A, Fatemizadeh E. Addressing Imbalance in Multi-
Label Classification Using Weighted Cross Entropy Loss Function. In: ICBME; 2020.
p. 333-8.

[72] Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020;42(2):318-27.

[73] Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, et al. Deep
learning for cardiovascular medicine: a practical primer. European Heart Journal.
2019;00:1-15.

93

REFERENCES

[74] You K, Long M, Wang J, Jordan MI. How Does Learning Rate Decay Help Modern Neu-
ral Networks? 2019. [Internet] Available from: https://arxiv.org/abs/1908.
01878.

[75] Smith LN. Cyclical Learning Rates for Training Neural Networks. In: IEEE WACV;
2017. p. 464-72.

[76] Tian Y, Zhang Y, Zhang H. Recent Advances in Stochastic Gradient Descent in Deep
Learning. Mathematics. 2023;11(3):682.

[77] Fu J, Wang B, Zhang H, Zhang Z, Chen W, Zheng N. When and Why Momentum
Accelerates SGD: An Empirical Study. 2023. [Internet] Available from: arXiv:2306.
09000.

[78] Elshamy R, Abu-Elnasr O, Elhoseny M, Elmougy S. Improving the efficiency of
RMSProp optimizer by utilizing Nestrove in deep learning. Scientific Report.
2023;13:8814.

[79] Kingma DP, Lei Ba J. Adam: A Method for Stochastic Optimization. In: ICLR; 2015. .

[80] Ketkar N, Moolayil J. Convolutional Neural Networks. In: Deep Learning with Python.
Berkeley: Apress; 2021. p. 194-242.

[81] Zhang X, Zhang X, Wang W. Convolutional Neural Network. In: Intelligent Informa-
tion Processing with Matlab. Singapore: Springer; 2023. p. 39-71.

[82] Li Z, Liu F, Yang W, Peng S, Zhou J. A Survey of Convolutional Neural Networks:
Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and
Learning Systems. 2022;33(12):6999-7019.

[83] Weisstein EW. Convolution;. From MathWorld–A Wolfram Web Resource. Available
from: https://mathworld.wolfram.com/Convolution.html.

[84] Krichen M. Convolutional Neural Networks: A Survey. Computers. 2023;12(8):151.

[85] Yamashita R, Nishio M, Kinh Gian Do R, Togashi K. Convolutional neural networks:
an overview and application in radiology. Insights into Imaging. 2018;9:611-29.

[86] Li Z, Liu F, Yang W, Peng S, Zhou J. A Survey of Convolutional Neural Networks:
Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and
Learning Systems. 2022;33(12):6999-7019.

[87] Musa N, Gital AY, Aljojo N, Chiroma H, Adewole KS, Mojeed HA, et al. A systematic
review and Meta-data analysis on the application of Deep Learning in Electrocardio-
gram. J Ambient Intell Human Comput. 2023;14:9677-750.

[88] Yani M, Irawan B, Setiningsih C. Application of Transfer Learning Using Convolu-
tional Neural Network Method for Early Detection of Terry’s Nail. In: J. Phys.: Conf.
Ser.. vol. 1201; 2019. .

94

REFERENCES

[89] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Re-
view of deep learning: concepts, CNN architectures, challenges, applications, future
directions. Journal of Big Data. 2021;8(53).

[90] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reduc-
ing internal covariate shift. In: ICML. vol. 37; 2015. p. 448-56.

[91] Pathak AR, Pandey M, Rautaray S. Application of Deep Learning for Object Detection.
Procedia Computer Science. 2018;132:1706-17.

[92] Zou Z, Chen K, Shi Z, Guo Y, Ye J. Object Detection in 20 Years: A Survey. Proceedings
of the IEEE. 2023;111(3):257-76.

[93] Amit Y, Felzenszwalb P, Girshick R. Object Detection. In: Ikeuchi K, editor. Computer
Vision. Cham: Springer; 2021. .

[94] Terven J, Cordova-Esparza DM, Gonzalez J. A Comprehensive Review of YOLO Ar-
chitectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Ma-
chine Learning and Knowledge Extraction. 2023;5(4):1680-716.

[95] Zou Z, Chen K, Shi Z, Guo Y, Ye J. Object Detection in 20 Years: A Survey. In:
Proceedings of the IEEE. vol. 111; 2023. p. 257-76.

[96] Carranza-Garcia M, Torres-Mateo J, Lara-Benitez P, Garcia-Gutierrez J. On the Perfor-
mance of One-Stage and Two-Stage Object Detectors in Autonomous Vehicles Using
Camera Data. Remote Sens. 2021;13(1):89.

[97] Soviany P, Ionescu R. Optimizing the Trade-Off between Single-Stage and Two-Stage
Deep Object Detectors using Image Difficulty Prediction. In: SYNASC; 2018. p. 2029-
214.

[98] Kateb F, Monowar M, Hamid A, Ohi A, Mridha M. FruitDet: Attentive Feature Ag-
gregation for Real-Time Fruit Detection in Orchards. Agronomy. 2021;11:2440.

[99] Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Net-
works for Object Detection. In: CVPR; 2017. p. 936-44.

[100] Rezatofighi H, Tsoi N, JunYoung G, Sadeghian A, Reid I, Savarese S. Generalized
Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In: CVPR;
2019. p. 658-66.

[101] Padilla R, Netto S, dSilva E. A Survey on Performance Metrics for Object-Detection
Algorithms. IWSSIP. 2020.

[102] Jha S, Seo C, Yang E, Joshi G. Real-time Object Detection and Tracking System for
Video Surveillance System. Multimedia Tools and Applications. 2020;80:3981-96.

[103] Padilla R, Passos W, Dias T, Netto S, dSilva E. A Comparative Analysis of Object De-
tection Metrics with a Companion Open-Source Toolkit. Electronics. 2021;10(3):279.

[104] Liu C, Tao Y, Liang J, Li K, Chen Y. Object Detection Based on YOLO Network. In:
ITOEC; 2018. p. 799-803.

95

REFERENCES

[105] Park I, Kim S. Performance Indicator Survey for Object Detection. In: ICCAS; 2020.
p. 284-8.

[106] Tsung-Yi L, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, et al. Microsoft
COCO: Common Objects in Context. CoRR. 2014. [Internet]. Available from:
http://arxiv.org/abs/1405.0312.

[107] Zhao L, Li S. Object Detection Algorithm Based on Improved YOLOv3. Electronics.
2020;9(3):537.

[108] Padilla R, Netto S, dSilva E. A Survey on Performance Metrics for Object-Detection
Algorithms. IWSSIP. 2020.

[109] Kim H, Cosa-Linan A, Santhanam N, Jannesari M, Maros M, Ganslandt T. Transfer
learning for medical image classification: a literature review. BMC Medical Imaging.
2022;22:69.

[110] Weiss K, Khoshgoftaar T, Wang D. A survey of transfer learning. Journal of Big Data.
2016;3:9.

[111] Russakovsky O, Deng J, Su H, et al. Imagenet Large Scale Visual Recognition Challenge.
Int J Comput Vis. 2015;115:211-52.

[112] Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J. Deep Model Based Transfer and Multi-
Task Learning for Biological Image Analysis. IEEE Trans Big Data. 2020;6(2):322-33.

[113] Kieffer B, Babaie M, Kalra S, Tizhoosh H. Convolutional neural networks for
histopathology image classification: Training vs. Using pre-trained networks. In: IPTA;
2017. p. 1-6.

[114] Vrancic G, Podgorelec V. Transfer Learning With Adaptive Fine-Tuning. IEEE Access.
2020;8:196197-211.

[115] Szegedy C, Liu W, Jia Y, Sermanet P. Going deeper with convolutions. In: CVPR; 2015.
p. 1-9.

[116] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Archi-
tecture for Computer Vision. In: CVPR; 2016. p. 2818-26.

[117] Ahn J, Kim S, Ahm K, Cho S, Lee K. A deep learning model for the detection of both
advanced and early glaucoma using fundus photography. Plos one. 2019;14(1).

[118] Ultralytics. YOLOv8; 2024. https://github.com/ultralytics/ultralytics.

[119] Chollet F, et al. Keras; 2024. Internet. Available from: https://keras.io/api/
applications/.

[120] tf.keras.optimizers.Adam; 2024. Internet. Available from: https://www.
tensorflow.org/api_docs/python/tf/keras/optimizers/Adam.

[121] Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: A review.
GESTS Transactions on Computer Science and Engineering. 2006;30.

96

REFERENCES

[122] Hassanat AB, Tarawneh AS, Altarawneh GA. Stop Oversampling for Class Imbalance
Learning: A Critical Review. 2022. Available from: arXiv:2202.03579.

[123] Buslaev A, Parinov A, Khvedchenya E, Iglovikov VI, Kalinin AA. Albumentations: fast
and flexible image augmentations; 2018. Available from: arXiv:1809.06839. https:
//arxiv.org/abs/1809.06839.

[124] Ultralytics, Brief summary of YOLOv8 model; 2024-01-10. https://github.com/
ultralytics/ultralytics/issues/189.

[125] Mavaie P, Holder L, Skinner MK. Hybrid deep learning approach to improve classifi-
cation of low-volume high-dimensional data. BMC Bioinformatics. 2023;24:419.

97

REFERENCES

98

Appendices

99

Appendix A

Complementary information

A.1 YOLOv8 Architecture

Figure A.1: YOLOv8 architecture [124].

101

A. Complementary information

A.2 Learning Rate Shapes

Figure A.2: Shape of different learning rate schedulers includ-
ing step wise learning rate schedulers, schedulers with exponential
learning rate decay, a scheduler including linear warm-up and a con-
stant learning rate.

A.3 Initial training

Figure A.3: Loss (left) and accuracy (right) of training (red) and vali-
dation (green) dataset with the InceptionV3 transfer learning model
as base model.

102

A.4 Initial training with dropout

Figure A.4: ROC curve for initial model using InceptionV3 as base
model. Trained on the binary dataset.

A.4 Initial training with dropout

Figure A.5: Loss (left) and accuracy (right) of training (red) and vali-
dation (green) dataset with the InceptionV3 transfer learning model
as base model with added dropout.

103

A. Complementary information

A.5 Testing optimisers

Figure A.6: Loss (left) and accuracy (right) of training (red) and val-
idation (green) dataset trained for 50 (top) and 200 (bottom) epochs
with the ADAM optimiser initialised with 0.1 epsilon value.

A.6 Training with extended dropout design

Figure A.7: Loss functions of model trained with dropout rate of 0.8
(left) and with four repeated dropout layers with dropout rate 0.2.

104

A.7 Training with L1/L2-regularisation

A.7 Training with L1/L2-regularisation

a) l1=1e-6, l2=1e-5 b) l1=5e-6, l2=5e-5

c) l1=5e-5, l2=5e-5 d) l1=1e-5, l2=1e-4

Figure A.8: Loss of training (red) and validation (green) dataset
trained with focal loss with L1/L2-regularisation.

105

A. Complementary information

A.8 Final ROC

Figure A.9: ROC curve using predicted probabilities.

106

Appendix B

Additional tests

B.1 Combined neural network and support
vector machine classifier

Both deep learning in neural networks and non-deep learning in machine learning methods
have their benefits and drawbacks. As previously mentioned, deep learning has its strength
in being able to model complex relationships in the data features, but also requires a large
amount of data. It is also necessary to optimise the hyperparameters well in order to receive
adequate performance. Some studies have demonstrated that a hybrid solution of a deep neu-
ral network in combination with a ML method can outperform the two models individually
[125]. This was explored in a smaller test in which a neural network was integrated with the
machine learning method SVM, hoping to be able to combine complex features with the effi-
ciency of handling smaller datasets and generalisation inherited in the SVM algorithm. This
was performed by using an InceptionV3 model with expanded architecture and added elastic
net-regularisation. In order to extract features to be used as input to the SVM, top layers
of the InceptionV3 network were removed and the features could be extracted by being pre-
dicted in the network. This was tested with both solely using the ImageNet weights as well as
with weights set after training the model on the dataset. The SVM was initialised with a lin-
ear kernel, using default values with the hyperparameter C set to the value 1.0. The features
were scaled prior to being fed into the SVM model, trained and evaluated. Hyperparameters
such as kernel and C were varied between different models.

The performance of a neural network and SVM combination can be seen in Table B.1 with a
InceptionV3 trained on the data, and in Table B.2, initialised solely with ImageNet weights.

107

B. Additional tests

Table B.1: Performance following training with a combined neural network trained on
the data with a SVM classifier. The first model represents the trained model with a
normal network classifier.

Kernel C Accuracy Class precision
(s/m/t)

- - 0.95 0.88/0.76/0.98

Sigmoid
0.5 0.78 0.34/0.27/0.83
1 0.81 0.15/0.5/0.83

Table B.2: Performance following training with a combined neural network initialised
on ImageNet weights with a SVM classifier.

Kernel C Accuracy Class precision
(s/m/t)

Linear

0.5 0.72 0.24/0.15/0.94
1 0.81 0.18/0.16/0.84
5 0.81 0.47/0.11/0.82
10 0.52 0.01/0.19/0.99

Sigmoid
0.5 0.81 0.14/0.19/.082
1 0.8 0.5/0.18/0.82

10 0.72 0.03/0.10/0.81

Radial basis
function

1 0.82 0.0/0.0/0.82

Poly 1 0.82 0.64/0.0/0.82

Looking at the results from Table B.2 and Table B.1, the combination of a neural network,
previously trained or not, was not able to achieve similar results as to the standard neural
network. Some improvements can be seen while attempting to optimise the network, which
indicates that it needs further adjustments to be able to improve to adequate performance.
Furthermore, optimisation could include Principal Component Analysis to help with the di-
mensionality as well as find the optimal number of top layers to remove. There is a possibility
that this combination simply is not fit for the task and data. The hypothesis of increased per-
formance following a combined ML approach can hence not be supported with these results,
but future research could include further optimisation in order to achieve benefits from this
combination.

108

B.2 Optimising focal loss

B.2 Optimising focal loss

Figure B.1: Impact on accuracy of varying α and γ values for α-
balanced focal cross-entropy loss. The colours represent different
values of γ.

109

B. Additional tests

Table B.3: Effects of different types of losses trained with default values.

Epochs γ α Accuracy Precision Recall F1-
score

ROC
AUC

Class precision
(s/m/t)

2.0 0.005 0.91596 0.76631 0.79084 0.77164 0.84761 0.74098/
0.58730/
0.97064

2.0 0.05 0.93170 0.82082 0.84356 0.83097 0.87569 0.82528/
0.66234/
0.97483

2.0 0.2 0.92709 0.81612 0.84759 0.83111 0.87199 0.84921/
0.62406/
0.97510

50 2.0 0.25 0.92594 0.80904 0.79600 0.79442 0.87610 0.77193/
0.69006/
0.96512

2.0 0.4 0.92671 0.80498 0.82070 0.81112 0.87047 0.80812/
0.63470/
0.97212

2.0 1/0.2,
1/0.2,
1/0.6

0.91251 0.77768 0.84281 0.80570 0.84447 0.81853/
0.52978/
0.98471

3.0 0.2 0.92095 0.78753 0.82694 0.80561 0.85657 0.80073/
0.58537/
0.97649

5.0 0.005 0.92632 0.80334 0.83401 0.81736 0.86737 0.81250/
0.62185/
0.97567

10.0 0.1 0.91328 0.77455 0.79188 0.78239 0.84862 0.80989/
0.54783/
0.96593

200 5.0 0.005 0.91711 0.77103 0.78894 0.76700 0.85152 0.70245/
0.63855/
0.97209

110

B.3 Multiple learning rate schedulers

B.3 Multiple learning rate schedulers
Performance after training with two separate step wise learning rate schedulers can be seen in
Table B.4. Here, different initial and final values for both the first and the second scheduler
were tested with the aim to find the optimal combination. The first model represents the
model trained with the same scheduler for both phases.

Table B.4: Performance of models trained with two distinct step wise schedulers trained
with cross-entropy loss.

First
scheduler

Second
scheduler

Accuracy Precision Recall F1-
score

ROC
AUC

Class
precision
(s/m/t)

Ep<=5: 10−3

Ep>5 & <=10:
10−4

Ep>10:lr∗e−1

0.91019 0.76951 0.79945 0.78338 0.84336 0.79167/
0.54317/
0.97371

Ep<=5: 10−3

Ep>5 & <=10:
10−4

Ep>10:lr∗e−1

Ep<=5: 10−4

Ep>5 & <=10:
10−5

Ep>10:lr∗e−1

0.92535 0.81346 0.83121 0.82187 0.87146 0.83665/
0.63445/
0.96928

Ep<=5: 10−5

Ep>5 & <=10:
10−6

Ep>10:lr∗e−1

0.92691 0.80699 0.80698 0.80599 0.87410 0.81200/
0.63889/
0.97009

Ep<=5: 10−3

Ep>5 & <=10:
10−5

Ep>10:lr∗e−1

Ep<=5: 10−4

Ep>5 & <=10:
10−5

Ep>10:lr∗e−1

0.90941 0.77625 0.87042 0.81450 0.83972 0.82264/
0.51429/
0.99182

Ep<=5: 10−4

Ep>5 & <=10:
10−5

Ep>10:lr∗e−1

Ep<=5: 10−5

Ep>5 & <=10:
10−6

Ep>10:lr∗e−1

0.91757 0.77657 0.84198 0.80589 0.84739 0.77936/
0.56667/
0.98367

111

