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Abstract 

This study focuses on the estimation of lake water volume fluctuations using open-source remote 

sensing data and evaluates its accuracy. The research follows a three-step methodology, starting 

with water area estimation from Sentinel-2 imagery, followed by water level estimation using 

ICESat-2 satellite data, and concluding with the calculation of lake water volume differences, 

testing the regression modeling and Triangular Irregular Networks (TINs).  

For the water extent estimation, three different methods are being compared – Normalized 

Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and 

Random Forest machine learning algorithm - against manual digitization. All three methods yield 

accurate results on the quantitative comparison, with performance metrics consistently 

exceeding 0.95, indicating the absence of a clear preference among these approaches. During 

the qualitative comparison, misclassified areas were revealed, indicating the problems caused by 

clouds, shadows and leaves upon the lake which sometime makes the process of accurately map 

the water extent difficult even for the human eye. 

For the water level estimation, ICESat-2 satellite observations were found to be accurate in lake 

water level monitoring, with a standard deviation of approximately 5 cm, surpassing the nominal 

accuracy of 6.1 cm. However, limitations are noted in terms of temporal resolution, impacting 

their use in combination with Sentinel-2 acquisitions. 

Finally, for the estimation of water volume fluctuations, the research explores two distinct 

approaches for calculating water volumes within open water surfaces. The first approach 

employs regression modeling, deriving a regression equation to estimate water volumes based 

on area computations. The second approach involves Triangular Irregular Networks (TINs). 

However, the research discerns that the latter method is not applicable in cases where a 

significant difference in scale between vertical and horizontal changes exists.  

In conclusion, the presented methodology can potentially have benefits for decision-makers and 

water organizations since it utilizing open-source data and tools for the estimation of lake water 

volumes. Future work may explore more sophisticated data-driven approaches, including 

convolutional neural networks, and the incorporation of additional data sources, such as 

altimetric data from platforms like Jason-2, to improve accuracy and address limitations related 

to clouds and temporal resolution. 
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Chapter 1 - Introduction 

1.1 Overview 

Lake water is essential for many human activities, including water provisioning, fisheries, flood 

attenuation, and recreational purposes. Lake water also plays an important role in global 

biogeochemical cycles, and in water, carbon, and nutrient balances. Overexploitation of 

freshwater resources threatens the capacity of ecosystems to fulfill their vital roles in the future 

(Fluet-Chouinard et al., 2017) and can also cause ground subsidence, which can be hazardous to 

anthropogenic environments. Since all domestic, industrial, irrigation, hydropower sectors make 

extensive use of inland water, it is important to have accurate knowledge of the availability of 

these water resources, to better protect and manage them and to understand the climate change 

impacts of their use (Busker et al., 2019). 

The volume of water stored in lakes and reservoirs can vary seasonally with the balance being 

affected by various input and output factors. Input is dependent on precipitation and river inflow, 

and is also correlated with discharge from communities and industries, seepage, groundwater 

etc. On the outflow level, events and processes such as evaporation, groundwater percolation, 

withdrawals, and river outflow greatly affect these volumes (Duan & Bastiaanssen, 2013). 

There are different ways to estimate the volume of lake waters, most of which rely on combining 

information describing the surface area of the water with bathymetry data describing water body 

depth. However, both bathymetry and shore topography data are often difficult to acquire, and 

collecting such information can be a time and resource consuming process (Lu et al., 2013). The 

low cost and high spatiotemporal resolution of remote sensing data should be examined in order 

to understand the advantages and limitations of related approaches with respect to the water 

volume estimation problem. Specifically, water surface level information from altimetry data 

(ICESat-2) and water surface area from multispectral imagery (Sentinel-2) can be used to estimate 

lake water volume changes between consecutive dates.  

Some research has already been done in this field with Duan & Bastiaanssen (2013), Lu et al., 

(2013), Bhagwat et al. (2019) and Busker et al. (2019), estimating inland water volume variations. 

In those studies, area and elevation information has been combined to estimate water volume 

changes, with the former coming from remote sensing and the latter coming either from ground 

measurements or existing datasets. The scientific gap that this project will try to address is the 

feasibility of applying an automated method that will only use open-source remote sensing 

products for the estimation of water volumes in lakes. This research focus on the lake water 

volume estimation problem, by exploiting different state of the art techniques. The project 

consists of three methodological steps. The first step is the extraction of the water area from 

optical satellite imagery. The second step is the extraction of water level using satellite altimetry 

data. The third step is the combination of spatial and height information (the outputs of two 

previous steps) to obtain volumetric information. This is applied to a case study in the Kastoria 

Lake, Greece. 
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1.2 Objectives and research questions 

The overall objective of this research is to develop a methodology based on openly available 

remote sensing data for the estimation of lake water volumes, and to evaluate its accuracy. This 

research will accomplish this via three specific objectives. 

1. The first objective is related to the performance of three remote sensing approaches for 

water spatial extent estimation. Accuracy assessment will be performed on water spatial 

extent estimations extracted from a) the Normalized Difference Water Index (NDWI), b) 

the Modified Normalized Difference Water Index (MNDWI) and c) a supervised machine 

learning algorithm (Random Forest) in respect to water spatial extent extracted by 

manual digitization of Sentinel-2 satellite imagery. 

Research question: 

● What is the relative degree of performance of the aforementioned remote sensing 

indices approaches and the supervised machine learning algorithm, as compared 

to the manual digitization results which are considered as ground truth?  Degree 

of performance is quantified by the following metrics: overall accuracy, precision, 

recall and F1 score (described in Section 3.1.4). 

 

2. Evaluate the potential use of ICESat-2 satellite observations for lake water level 

monitoring. Assess the temporal frequency, the spatial density and the accuracy of the 

lake water level observations. 

Research question:  

● What is the accuracy of lake water level observations (in terms of standard 

deviations) over the lake of interest and how does it compare to the reported 

nominal accuracy? 

 

3. Estimate the lake water volume differences using the established methods of Regression 

analysis (Bhagwat et al., 2019) and GIS-generated TINs (Triangular Irregular Networks) 

(Lu et al., 2013). 

Research question: 

● What is the degree of agreement (in terms of root mean square error) of the lake 

water volume results from the aforementioned lake water volume approaches? 
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Chapter 2 – Study Area, Data and Methods Description 

2.1 Study Area 

This master thesis project will be presented as a case study at Kastoria Lake (Figure1). Kastoria 

Lake is officially called Lake Orestiada and is located in the Kastoria Regional Unit in northwestern 

Greece (40°30′54″N 21°18′00″E). At an altitude of 620 m above sea level , it covers more than 28 

km2, its shoreline is 34 km in length and its mean depth is approximately 9 m (Lakes / Orestiada-

Lake, NaturaGraeca, n.d.). It’s a very important area ecologically, that accommodates a great 

number of various species of birds and fish and it has been declared as a Monument of Natural 

Beauty by the Ministry of Culture. It is also a part of the European environmental protection 

network “Natura 2000” (PDM, Region of Western Macedonia, retrieved on 08-02-2022). The lake 

has several inflows from its west side while it also has one main outflow at the Haliacmon river.  

  

Figure 1:  Overview map (a) and satellite image over Lake Kastoria (b). Source: Google imagery 

2023©  

Besides the importance of the lake for all the aforementioned environmental reasons, it also 

provides the main water resource for various industrial and agricultural applications in the area.  

Other research has taken place due the importance of the lake, mostly concerning the water 

quality by Matzafleri et al. (2009) and Karamoutsou & Psilovikos (2021), hydrological response to 

climate change by Voulanas et al (2021) and the hydrogeological conditions of the general area 

by Gianneli (2009). Yet, no research strictly related to the lake’s water volume was found. 

Additionally, several cases of ground deformation have been reported around the lake and at 

nearby villages, which can be linked with overexploitation of the water resource and the vast 

reduction of its volume (Tzampoglou et al., 2023). This is an indication of the importance of this 

research, and the need for an application for the monitoring of water volume in inland reservoirs. 

 

a b 
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2.2 Data 

The data of interest for this project includes multispectral satellite images from Sentinel-2, and 

an altimetry dataset from the ICESat-2 LIDAR satellite, both of which are open datasets. 

2.2.1 Sentinel-2 

The Sentinel-2 data can be downloaded from https://scihub.copernicus.eu. According to the 

official description at European Space Agency, n.d., accessed on 10/10/2021, Sentinel-2 has 13 

spectral bands, four of which have a 10m spatial resolution, six at 20m and the remaining three 

bands at 60m (Figures 2, 3 and 4). The temporal resolution is defined by the revisit frequency of 

the satellite to a specific location, which is 5 days. The images are released publicly from ESA 

under the Creative Commons Attribution 4.0 International license. Sentinel’s-2 products are a 

compilation of 100x100km2 granules using the UTM/WGS84 coordinate system.  

  

Figure 2: Sentinel-2 10m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4 (665 nm) and 

B8 (842 nm) source: European Space Agency, n.d., accessed on 10/10/2021. 

 
 

 Figure 3: Sentinel-2 20m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a 

(865 nm), B11 (1610 nm) and B12 (2190 nm) source: European Space Agency, n.d., accessed on 

10/10/2021. 
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Figure 4: Sentinel-2 60m spatial resolution bands: B1 (443 nm), B9 (940 nm) and B10 (1375 nm) 

source: European Space Agency, n.d., accessed on 10/10/2021. 

 

A visual inspection was performed to Sentinel-2 data for the time period Nov/2018-Feb/2022, to 

select all images with a clearly visible shoreline, so that they could be manually digitized. This 

resulted in a total of 30 images that have been used for the water area estimation process. 

 

 

2.2.2 ICESat-2 

The ICESat-2 LIDAR data are available at National Snow and Ice Data Center (n.d.), with the data 

product of interest being ATL13, which concerns observations along the satellite’s orbital track 

focusing on surface water features products for inland water bodies. According to the official 

description, water surface heights are provided as both height above the WGS 84 ellipsoid 

(ITRF2014 Reference Frame) and height above the Earth Gravitational Model 2008 (EGM2008) 

mean sea level (MSL). Concerning its accuracy, as the user’s guide mentions:  

“… data quality in this product depends largely on the precision of the georeferenced 

photons input from ATL03 and associated products evaluated prior to use by the ATL13 

algorithm. The overall ensemble error per 100 inland water photons is estimated to be 

6.1 cm”. 

The satellite is equipped with a photon-counting laser altimeter called ATLAS, that captures the 

time it takes for individual photons to travel to the Earth’s surface and back. The instrument 

utilizes 3 pairs of laser beams (6 in total), transmitting 10,000 laser light pulses per second that 

collect observations in the along-track direction. The beams are organized into a 3x2 array 

pattern with 3 left and 3 right ones '1r', '2r', '3r', '1l', '2l', '3l', while each pair contains a weak and 

a strong beam (Figure 5). Those beams of green laser pulses are emitted and received back by 

the ATLAS instrument, where they are counted by the photon-counting detector. This 

information is utilized to reconstruct the surface height along the satellite’s trajectory, with the 

temporal resolution of the data product being 91 days (Smith et al., 2019). 
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Figure 5:  The 6 beams of ICESat-2 (NASA Goddard Space Flight Center, n.d. Accessed on 10/10/2021). 

 

The datasets of Sentinel-2 and ICESat-2 have to be collected at similar dates so that the 

information can be correlated. Thus, out of all the available dates of each dataset, only the 

common ones will be kept, since the water extent and water level information have to be 

combined to estimate the water volume variations. 

The common dates where both an ICESat-2 dataset with information in the lake’s bounding box, 

and a Sentinel-2 image with low cloud coverage, were found on 8 occasions, specifically 2019-

05-18, 2019-09-14, 2019-11-15, 2019-08-15, 2020-02-12, 2020-08-14, 2021-08-12 and 2022-02-

10. Data from these dates were used for the water volume changes estimation. 
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2.3 Methodological flowchart 

The methods for this research project were organized into three stages: water surface area 

estimation, water altimetry estimation, and finally water volume estimation of the inland 

reservoir (Figure 6). 

 

Figure 6:  Methodological Flowchart 
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2.4. Methods Description 

2.4.1 Surface water area estimation 

For the surface water estimation, three methods that concern water detection have been applied 

to the satellite images. Those are NDWI and MNDWI thresholding and a Random Forest machine 

learning algorithm. A manual digitization of the extent of the lake was done on all of the 30 

available Sentinel-2 images with acceptably low cloud coverage for the shoreline to be clearly 

visible. This dataset acted as ground truth for the evaluation of 3 automated methods of water 

detection. The methodology will be thoroughly explained in this chapter and the analytical code 

is also attached in the Appendix.  

• NDWI – MNDWI thresholding 

Two remote sensing indexes, the NDWI and the Modified MNDWI were used, in conjunction with 

a two-class Random Forest machine learning algorithm, trained to distinguish water and non-

water pixels. The band equation, when it comes to water bodies detection for 𝑁𝐷𝑊𝐼 is: 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 −  𝑁𝐼𝑅 

𝐺𝑟𝑒𝑒𝑛 +  𝑁𝐼𝑅
 

while for 𝑀𝑁𝐷𝑊𝐼 is: 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 –  𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 +  𝑆𝑊𝐼𝑅
 

with NIR representing the Near Infrared and SWIR the Short-Wave Infrared bands. These indices 

have been commonly used for water detection purposes (Gabila Buma et al., n.d., Herndon et al., 

2020). It is important to state that the spatial resolution of the calculated 𝑁𝐷𝑊𝐼 and 𝑀𝑁𝐷𝑊𝐼 

indices is 10m. In particular, 𝐺𝑟𝑒𝑒𝑛 (Band 3 in Figure 2) and 𝑁𝐼𝑅  (Band 8 in Figure 2) bands are 

provided at 10m. However, 𝑆𝑊𝐼𝑅 (Band 11 in Figure 3) is provided at 20m, and a nearest 

neighbor interpolation was performed to upscale the 𝑆𝑊𝐼𝑅 to 10 m. This is considered a 

common preprocessing practice for upscaling satellite multispectral imagery (Hemalatha, 2021). 

Firstly, the Sentinel-2 images were imported in QGIS for a visual inspection (Figure 7) and then 

they were loaded in a python function as arrays, with 2 functions being created for computing 

NDWI and MNDWI indices per image. Otsu’s Thresholding was applied for both indices, 

classifying each pixel of the images into water/no-water classes (Figure 8). Otsu's Thresholding is 

a well-known and effective method for selecting a global threshold. The method has been 

extensively used for surface water mapping due to its simplicity and efficiency in maximizing the 

inter-class variance while minimizing the weighted within-class variance (Du et al., 2016). It 

assumes that an image has two classes, which can be separated using an optimal threshold 

obtained through a gray-level histogram of the image (Otsu, 1979). The two dedicated functions 

that were developed to process Sentinel-2 images within a Python environment were used to 
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read the input image as an array and compute pixel-wise NDWI and MNDWI values using the 

above specified equations. 

 

Figure 7:  Example of Sentinel 2 image of the Area of Interest. Date: 16-08-2019 

   

 

Figure 8:  Examples of NDWI (a), MNDWI (b) Otsu thresholding for the same Sentinel-2 

acquisition 

As can be seen, besides the extent of the lake, the method has identified cloud shadows as water, 

which will greatly influence water area estimation. As can be seen in Figure 9, there are no other 

water areas nearby the lake. 

A B 
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Figure 9:  Aerial image of the study area, that indicates the absence of water besides the lake. 

Source: Google imagery 2023©  

For this reason, a bounding box including the lake and nearby areas was created, so that the 

water area estimation will not take into consideration the false positives which are located at the 

right side of the lake (Figure 10) 

    

Figure 10:  Cropped images of NDWI (a), MNDWI (b) Otsu Thresholding, close to the edges of 

the lake. 

A B 
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• Random Forest 

For the machine learning part, a Random Forest algorithm has been trained, to distinguish water 

from land pixels. Random Forest is a supervised classifier that has been generally used for water 

related machine learning applications (Tyralis et al., 2019). 

To construct a robust training dataset, firstly a subset of the lake was chosen for the 'water' label. 

Specifically, pixels from the central region of the lake were selected to ensure consistency across 

all images, providing a representative sample of water characteristics. Respectively, the 'land' 

training dataset was created with a representative bounding box that included diverse land cover 

types surrounding the lake. This box included various textures and land uses such as forest, urban 

areas, mountains, and agricultural regions, ensuring a comprehensive training ‘land’ label for the 

algorithm. The training datasets were selected to be balanced, to prevent any biases in the model 

and can be seen in Figure 11. Throughout the training process, multiple experiments took place, 

using various different parameters and options within the Random Forest algorithm with the 

differences in performance being marginal. Consequently, the default parameters of the 

algorithm, with all the spectral bands of the images were used, achieving a well-balanced and 

effective classification model.  

 

Figure 11. Water (blue) and land (red) training datasets. 

An example of the predicted water no-water values of a Sentinel-2 image can be seen below 

(Figure 12).  
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Figure 12:  Example of a Random Forest predicted image (a), cropped close to the lake’s edges 

(b). 

• Evaluation 

A quantitative comparison (accuracy assessment matrix) has taken place, comparing the test data 

(images created by thresholding and Random Forest) with reference data (manual digitization). 

For this, a function has been developed that compares the reference and estimated raster images 

and results in the calculation of accuracy metrics of overall accuracy, precision, recall, f1_score 

and kappa score: 

● 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / 𝑇𝑜𝑡𝑎𝑙 

● 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

● 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) 

● 𝐹1 𝑠𝑐𝑜𝑟𝑒 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑐𝑎𝑙𝑙)   =  

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙 / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) 

● 𝐾𝑎𝑝𝑝𝑎 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  (𝑇𝑃 ∗ 𝑇𝑁 −  𝐹𝑁 ∗ 𝐹𝑃) / (𝑇𝑃 +  𝐹𝑃) ∗ (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 +

𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁) 

𝑇𝑃 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝑇𝑁 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠, 𝐹𝑃 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑎𝑛𝑑 𝐹𝑁 
=  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

True Positives are correctly predicted water pixels from the automated method compared to 

manual digitization, while True Negatives are correctly predicted land pixels. False Positives and 

False Negatives are incorrectly predicted water and land pixels.  

In addition to the quantitative evaluation, a qualitative sample check took place, with several 

examples being manually investigated to identify differences between the automated methods 

results. 

 

A B 
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2.4.2 Altimetry estimation 

The ICESat-2 dataset was used for the altimetry estimation of the lake. The raw heights above 

the Earth that the ICESat-2 dataset provides have been filtered from outliers, and the along track 

heights were averaged during the internal evaluation (Yuan et al., 2020).  

The altimetry data have been downloaded from National Snow and Ice Data Center, n.d., 

accessed on 10/10/2021, according to the bounding box of the lake of interest, that was 

provided. A total of 54 files have been downloaded, that contained altimetry data and the orbit 

of ICESat-2 that crossed the bounding box of interest. In Figure 13, the altimetry measurements, 

that concern Kastoria Lake can be seen.  

  

Figure 13:  Visualization of ICESat-2 measurements on Kastoria Lake 

According to ICESat-2 Algorithm Theoretical Basis Document (ATBD) for ATL13 version 3, 

(National Snow and Ice Data Center, n.d.).: 
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Inland water heights are processed in segments that contain a minimum of 
approximately 100 signal photons, to ensure the segment accurately characterizes 
the water surface. As such, the segments vary in length from approximately 30m 
to 200m (averaging about 100m), depending on factors such as signal quality and 
water and atmospheric conditions. 

After exploring the data, in all of those beams on the available dates (54), there are 2572 

measurements that have the segment id of interest and concern the 9 distinct dates of interest. 

For the other 45 dates, the satellite’s orbit has crossed the selected bounding box but no 

measurements were available for Kastoria Lake. Additionally, one date was discarded because 

no corresponding Sentinel-2 image with low cloud coverage was available, leaving 8 available 

dates with corresponding altimetry measurements. 

 

2.4.3 Water volume estimation 

For the combination of the two aforementioned datasets and the water volume estimation of 

the lake, two methods were tested. First, a regression analysis took place with a regression 

equation being formed and fit along the area and elevation data, so that the area computation 

in the diagram will lead to the water volumes of the lake, as can be seen in Figures 14 and 15. 

This method requires a linear regression between the depth and area of the lake, to be 

applicable. 

 
   Figure 14:  A regression fit between lake areas and heights (Bhagwat et al., 2019). WA denotes 

the water area and WH the water height of the lake. 
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Figure 15:  Volume differences as estimated from area/height pairs 

According to the above, the formula for volume differences estimation between two different 

timestamps is:  

𝑉2 − 𝑉1 = ((𝐴2 + 𝐴1) ∗ (𝐻2 − 𝐻1)) / 2  

Also, a triangulated irregular network (TIN) method, was tested using QGIS and Meshlab 

software. This method creates triangles between the water area extents of each lake height, 

therefore estimating the volume directly from the created multifaceted object. Figure 16 can be 

further informative about this method. This method failed to produce accurate results in this 

case study as will be evaluated in the next chapter. 

 

 

Figure 16:  The TIN method for water volume estimation. 
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The point resolution of the produced 3D model is determined by the resolution of used 

multispectral imagery. In case of Sentinel-2 imagery, the resolution of the extracted water extent 

layer is going to be 10m. Concerning the vertical resolution of the produced 3D model, it is 

derived by the availability of the ICESat-2 datasets, with a pairing match of a Sentinel-2 image. 

More available dates of height-area pairs result in a denser produced 3D model. 
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Chapter 3 – Results and Discussion 

3.1 Water extent estimation 

3.1.1 Manual digitization - Comparison 

As stated in the introduction, manual digitization was performed to create reference data in this 

research project. During the process, several cases have occurred, depicting peculiarities of the 

lake, where a human operator can distinguish the separation between water and land more 

accurately than automated methods. The most significant example concerns lake areas with 

floating vegetation, where water is present below them, but both index thresholding and 

machine learning approach identifies as land pixels (Figure 17). 

 
Figure 17:  Examples of cases with leaves upon the water, where remote sensing indices can’t 

recognize. 

 

The impact of clouds is again obvious (Figure 18), besides the aforementioned cropping that took 

place close to the edges of the lake. Even some small clouds can be misclassified, while the 

shadows of those also create areas that cause problems to the automated methods. 
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Figure 18:  Examples of cloud and shadow areas that are classified inaccurate by the automated 

methods, but can be distinguished correctly during the manual digitization. 

 

After careful and detailed manual digitization of all of the 30 Sentinel-2 images with low cloud 

coverage and visible shoreline, the water area was computed using the QGIS software package. 

The seasonality of the lake can be seen in Figure 19, with the water extent being lower during 

summer months and higher during spring. It should also be stated that the maximum spatial 

variation that was observed was around 30m which is considered a small variation given the 

spatial resolution (10m) of the Sentinel-2 imagery.  

 

Figure 19: Lake water area over time and rolling mean (window=2), according to manual 

digitization. 
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 3.1.2 Accuracy assessment 

● Quantitative comparison 

Table 1 shows the accuracy metrics of the comparison between the automated surface water 

area estimation methods and manual digitization, for each date.  

Table 1:  Table of accuracy scores of each method, compared to the reference data, per date. 

 Overall Accuracy Precision Recall F1 Score Kappa Score Date Method 

1 0.98 0.97 0.99 0.98 0.96 

5/18/2019 

MNDWI 

2 0.98 0.97 0.99 0.99 0.97 NDWI 

3 0.97 0.98 0.97 0.98 0.95 Random Forest 

4 0.98 0.97 0.99 0.99 0.97 

8/15/2019 

MNDWI 

5 0.98 0.99 0.99 0.99 0.97 NDWI 

6 0.99 0.97 0.99 0.99 0.97 Random Forest 

7 0.99 0.98 0.99 0.99 0.98 

9/14/2019 

MNDWI 

8 0.99 0.98 0.99 0.99 0.98 NDWI 

9 0.99 0.97 0.99 0.99 0.97 Random Forest 

10 0.98 0.98 0.99 0.99 0.96 

11/15/2019 

MNDWI 

11 0.99 0.99 0.99 0.99 0.98 NDWI 

12 0.98 0.96 0.99 0.98 0.96 Random Forest 

13 0.99 0.99 0.99 0.99 0.99 

2/13/2020 

MNDWI 

14 0.99 0.99 0.99 0.99 0.99 NDWI 

15 0.99 0.98 0.99 0.99 0.98 Random Forest 

16 0.99 0.97 0.99 0.99 0.99 

8/14/2020 

MNDWI 

17 0.99 0.97 0.99 0.99 0.99 NDWI 

18 0.98 0.97 0.99 0.99 0.97 Random Forest 

19 0.98 0.97 0.99 0.98 0.97 

8/12/2021 

MNDWI 

20 0.98 0.97 0.99 0.99 0.97 NDWI 

21 0.98 0.97 0.99 0.98 0.96 Random Forest 

22 0.98 0.99 0.96 0.98 0.96 

2/10/2022 

MNDWI 

23 0.99 0.99 0.98 0.99 0.98 NDWI 

24 0.98 0.97 0.99 0.98 0.96 Random Forest 
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All of the metrics (Overall accuracy, Recall, Precision, F1 score, Kappa Score) were above 0.95 for 

all of the 3 automated methods (Figures 20, 21, and 22). 

 

 
Figure 20:  Overall accuracy graph 

    

Figure 21:  Recall (a) and Precision (b) graphs 

   
Figure 22:  F1 score (a) and Kappa score (b) graphs  

A 

A B 

B 
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In this case study, the observed spatial variation of the extent of lake water over time is relatively 

small in comparison with the mean lake water area, which can be a possible reason for the 

observed high values of all the accuracy metrics. 

 

● Qualitative comparison 

In a qualitative assessment, several cases have occurred with misclassified small areas, mostly 

due to floating vegetation, clouds and shadows, as mentioned in the “Manual Digitization - 

Comparison” section. 

Some further examples in the qualitative assessment show that besides the aforementioned 

cases of floating vegetation, clouds and shadows (Figure 23), all of the three methods classified 

water in a very similar way, with only a few pixels differing in the overall extent of the lake for 

the dates 17-05-2019, 14-09-2019, 14-08-2021, 17-08-2019. 

 
Figure 23:  17-08-2019 floating vegetation area and small differences between classification 

methods 

For 13-02-2020, Random Forest seems to have done a better job (Figures 24 and 25), while 

MNDWI is a bit more exaggerated, even with a small area that is totally off. NDWI has also a small 

offset, but is not that far off as compared to the true reference. 
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Figure 24:  False Positives of MNWI for 13-02-2020 

 

Figure 25:  Small offset between NDWI and Random Forest for 13-02-2020 
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For 23-11-2019, NDWI and MNDWI have produced slightly better classification results for the 

shore of the lake, where Random Forests’ shoreline is narrower (Figure 26). Yet, the indexes have 

also classified as water, whole areas that are outside of the lake, which outweighs the minor 

improvement of the shore.  

  

Figure 26:  23-11-2019 Winning (green circle) and losing (red circle) cases of NDWI/MNDWI 

against Random Forest 

The same is the case for 10-02-2022, with the indices matching more accurately the shoreline, 

yet overestimating whole areas totally outside the lake, which are not water according to 

inspection by human eye (Figure 27). 
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Figure 27:  Matched and mismatched cases of NDWI/MNDWI against Random Forest for 10-02-

2022 

 

Considering the above examples per specific date, it seems that the indices have been a bit more 

conservative when trying to classify water pixels. There were cases of minor improvement 

alongside the shoreline, but there were also much bigger areas being misclassified, probably due 

to shadows that were interpreted as water, which is a case where Random Forest had better 

performance. Overall, the presence of leaves upon the lake makes the process very difficult for 

automated algorithms, even for the human eye in many cases, to fully accurately map the water 

extent. 

 

 

 

 

 



25 
 

3.2 Water level estimation 

In Figure 28, all the available measurements from the ICESat-2 datasets can be seen. The dataset 

seems robust, with only a few outliers. Specifically, only for 2020-02-12 two significant outliers 

have been identified, that were deleted before the average water level calculation per date. 

Moreover, we can observe that on 2019-09, 2020-02 and 2020-08 we have higher variation of 

ICESat-2 observations, compared to the other dates. However, even for those dates the standard 

deviation (∼5cm) is considered satisfactory given the nominal accuracy of 6.1 cm. The fact that 

each date contains lots of measurements that are close to each other shows that the dataset is 

precise, can be trusted and further used for this case study. A downside of the dataset is that 

from the 54 available files that were downloaded, according to the provided bounding box, only 

9 had indeed data for the area of interest, since for the rest of them, the trajectory of the satellite 

indeed passed by the area, but there were no altimetry data for Kastoria Lake.  

 

Figure 28:  Distribution of ICESat-2 water level values at selected dates 

Ideally, more distinct dates would be needed to study the seasonality of the lake’s altimetry, yet 

it can be seen that there are low height values in the summer months and winter, while the peak 

is during May. The mean values and standard deviations of the above measurements, after 

outlier cleaning, grouped by the distinct dates, is available in Figure 29, where it can be seen that 

the maximum elevation difference is ∼50cm. We can also observe that the mean elevation 

differences between consecutive dates are larger than the actual precision (standard deviation) 

for all cases, expect for the 09/2019 -11/2019 pair. 
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Figure 29:  Boxplot of lake height values per date of clean altimetry dataset.   

 

Concerning the applicability of ICESat-2 data, the main disadvantage is the actual availability of 

information for a specific area of interest. The main advantage is that they are openly available 

data, that can be used by anyone with no cost. Ideally, there would be available ground truth to 

thoroughly test the accuracy, yet even with the low number of available dates, the results seem 

to be precise and robust, therefore suitable for such applications. In this case study, the mean 

calculated precision (~5cm) of the ICESat-2 data was found satisfactory in relationship with the 

reported nominal accuracy by the National Snow and Ice Data Center (n.d.) (6.1 cm). 
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3.3 Water Volume fluctuations estimation 

3.3.1 Regression 

The area, as calculated from the manual digitized shapefiles has been plotted alongside with the 

altimetry data from ICESat-2 as shown in the following plot (Figure 30). 

  

Figure 30:  Area vs height plot of Kastoria lake 

R-squared was estimated to be 0.96. By fitting a linear regression (Figure 31), the factors are: 

slope=1.54e-06, intercept=581.70, r-value=0.98, p-value=1.63e-05. 

   

Figure 31:  Linear Regression line, depicting the correlation between water area and height of 

the lake 
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Volume differences can be estimated from the regression graph, according to the area of the 

trapezoid, as shown in the image below (Figure 32). 

Considering the first date 2019-05-18, where the area and height values are the highest, as a 

starting point with V=0 km3, the water volume changes can be estimated for the following dates. 

  

Figure 32:  Sequential volume differences over time 
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3.3.2 Triangulated Irregular Network (TIN) 

For the TIN method, two implementations were tested. The first one is provided from QGIS 

software and the second one from the Meshlab software package. 

Firstly, QGIS software has been used with the TIN interpolation tool. There, the input data were 

the points of each date’s digitization polygon of lake’s extent with the corresponding ICESat-2 

altimetry measurement.  For each pair of dates, the TINs were created, to estimate the volume 

of the 3D object. 

Yet, according to the experiments, the method doesn’t work for the specific case study. Each date 

is considered to be a surface, since all the digitized points of the shoreline have the same height. 

In that way, the created TINs were expected to just connect the outer points of the shoreline of 

each date’s polygon with the closest ones of the other date’s shapefile. In the following 

screenshots of the created TINs from QGIS, the shapes are not explainable. The software has 

connected nodes from completely different parts of the lake, while the final shape does not have 

the shape of a parallelepiped (Figure 33). 

 

   

Figure 33:  

Different angles of the produced TINs by qGIS software. It can be seen that the algorithm has not worked 

as expected, since the produced object does not have the shape of a parallelepiped. 
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The procedure was also applied in Meshlab software with a similar TIN creation algorithm and 

the results were again not as expected. The connection of the nodes has not been done in a way 

that can be further utilized to estimate the volume of the geometric object (Figure 34). 

 

Figure 34:  

Different angles of the produced TINs by Meshlab software. The results are similar with QGIS 

and indicate that this methodology cannot be utilized for the specific case study. 

 

A possible explanation for the failure of this method has to do with the vertical scale of the points, 

compared to the horizontal one. The maximum height difference that was met in the dataset was 

some centimeters, while the vertical resolution of Sentinel-2 imagery is 10x10m (order of 

meters). This creates an inconsistency between the z and x-y axes which concludes in the 

unusable created TINS.  
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3.4. Discussion 

In this thesis, a 3-step methodological approach to extract lake water volumes that is based on 

open-source software tools (e.g., python functionalities, QGIS) and free satellite data (Sentinel-

2, ICESat-2) is presented. In the first step, the lake water area estimation is performed with 

Sentinel-2 data. In the second step, the lake water level estimation is performed with ICESat-2 

data. In the third step, the lake water area and level estimation were exploited to calculate lake 

water volume changes with regression-based and TIN-based methodologies. The 

aforementioned approach could greatly benefit a range of stakeholders, including decision 

makers, local communities, and water organizations, at low or no cost.  

The methodology used in this study makes use of free, open data, and can also be modified to 

support other open-source data, such as Landsat 8/9. Even though in this case study there were 

only 8 available pairs between Sentinel-2/ICESat-2, future initiatives will ensure the continuity of 

the data, and it is expected to have access to more data pairs. The proposed methodology can 

also be applied to other altimetry data, such as Jason-2, a U.S.-European series of satellite 

missions designed to measure sea surface height (JPL, Jason2, retrieved on  03-12-2023), and also 

in-situ data from large lakes can be used for validation purposes. The study makes use of open-

source software and tools, and suggest a framework that can be used for future research, 

education, and to gain insights into water volume monitoring from space.  

The water extent mapping methods used in this study showed good accuracy overall, with data-

driven approaches having the greatest potential for improvement in general (Neumann et al., 

2021). All of the 3 methods provided reasonably accurate results, since the problem was not too 

complex for the machine learning techniques employed, as the metrics show. With all the 

accuracy metrics being above 0.95, which are considered very good scores, there does not seem 

to be a clearly preferred method amongst the set of quantitative approaches. The actual 

performance of each method should be further examined in another case study with a set of 

lakes with larger seasonal spatial variations (Ma et al., 2019). Other limitations related to 

misclassifications, spatial resolution, and the effects of clouds and shadows were identified, and 

the use of active remote sensing data such as SAR data can help overcome those (Marzi & Gamba, 

2021). The maximum observed spatial variation of Kastoria Lake was around 30m which is 

considered small, given that the minimum spatial resolution of Sentinel-2 imagery is 10m, with 

SWIR band (used in MNDWI index) being 20m. This minimal change in spatial water variations 

has also caused problems with the TINs creation. In future work, more sophisticated data-driven 

approaches such as convolutional neural networks towards semantics segmentation (Li et al., 

2019), or water detection (Wang et al., 2020)  can be incorporated, to improve the solution. - 

The ICESat-2 datasets were found to be a suitable choice for estimating water level with an 

observed overall precision of ~5 cm, which is better than the reported nominal accuracy of 6.1 

cm (National Snow and Ice Data Center. n.d.). For the all the consecutive dates, we observed 

larger lake height changes compared to the estimated precision, expect for the case of 09/2019 

- 11/2019 pair. However, the absence of ground measurements prevents us from being able to 
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discuss on absolute accuracy. Also, the poor temporal resolution and inconsistent data 

acquisition were limitations in this study. This affects the combinatory analysis with Sentinel-2 

acquisitions, since in this case study, only 8 usable pairs were exploited. The use of several 

altimetry datasets from various sources, such as Jason-2, should be considered in future work 

(Birkett & Beckley, 2010). 

The regression modeling used in this study provided satisfactory results for water volume 

estimation, while TINs were not effective with a possible reason of different scale of vertical and 

horizontal changes. Lu et al. (2013) in their research, used a methodology based on TINs as well, 

with the height differences between the measurement’s dates being within the scale of some 

meters, which could make a significant difference for the algorithm. Kastoria Lake that has been 

studied in this research, seems to have some geometric particularities concerning its sensitivity 

to height and extent differences that do not allow the TINS algorithm to generate accurate 

results. Although TINs were not applicable in this case, they may be a suitable alternative in other 

cases where spatial variations are comparable to vertical ones, such as Lu et al. (2013) case. 

Unfortunately, a comparison between the two proposed methods for water volume estimation 

was not possible due to the limitations of the TIN approach.  
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Chapter 4 - Conclusion 

In conclusion, the next three paragraphs will address the research questions that concern the 

estimation of the water area from optical satellite imagery, the extraction of water level using 

satellite altimetry data and the combination of spatial and height to obtain volumetric 

differences. 

For the first objective related to the accuracy assessment of water spatial extent estimations 

extracted from NDWI and MNDWI remote sensing indexes and machine learning, in respect to 

water spatial extent extracted by manual digitization of Sentinel-2 satellite imagery, all of the 3 

methods provided reasonably accurate results, having >0.95 in all performance metrics, so there 

does not seem to be a clearly preferred method amongst the set of quantitative approaches.  

For the second objective, related to the potential use of ICESat-2 satellite observations in lake 

water level monitoring, the results were encouraging when it comes to the precision of the lake 

water level observations. The precision expressed by the standard deviation in this case study 

was ~5 cm, which is considered acceptable given the nominal accuracy of 6.1 cm. (National Snow 

and Ice Data Center. n.d.). However, concerning their temporal frequency, the temporal 

resolution was found poor which was a limitation in this study, since it affected the combinatory 

analysis with Sentinel-2 acquisitions. 

Finally, for the third objective of comparing the results between regression and GIS-generated 

TINs, it was found that the latter didn’t produce satisfactory results for this case study, due to 

the scale difference between horizontal and vertical changes in the Kastoria Lake so the 

comparison could not be performed. According to the results the regression method may be 

better applicable to lakes that have different scale of vertical and horizontal changes. 
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Appendix 

Code segments 

Water extent estimation functionalities 

# Dictionary of the satellite’s bands  
Dict_S2={'B01':0,  

         'B02':1,  

         'B03':2,  

         'B04':3,  

         'B05':4,  

         'B06':5,  

         'B07':6,  

         'B08':7,  

         'B08A':8,  

         'B09':9,  

         'B10':10,  

         'B11':11,  

         'B12':12}  

 

 

# Function to compute MNDWI values of each pixel  
#MNDWI  

def _compute_10m_mndwi(S2_image):  

      

    '''  

    Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping  

    from Sentinel-2 Imagery with Modified Normalized Difference Water Index at   

    10-m Spatial Resolution Produced by Sharpening the SWIR Band.   

    Remote Sens. 2016, 8, 354.   

    '''  

     
 # Read image as array 

    S2_image_data=gdal.Open(S2_image).ReadAsArray().astype(np.float)  
 

 # Estimate MNDWI pixel values 

    mndwi_10m=np.divide((S2_image_data[Dict_S2['B03'],:,:]-
S2_image_data[Dict_S2['B11'],:,:]),(S2_image_data[Dict_S2['B03'],:,:]+S2_i

mage_data[Dict_S2['B11'],:,:]))  

 

    del S2_image_data  

      

    return mndwi_10m  
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# Function to compute NDWI values of each pixel  
#NDWI  

def _compute_10m_ndwi(S2_image):  

      

    '''  

    Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping  

    from Sentinel-2 Imagery with Modified Normalized Difference Water Index at   

    10-m Spatial Resolution Produced by Sharpening the SWIR Band.   

    Remote Sens. 2016, 8, 354.  

    '''  

     
 # Read image as array  

    S2_image_data=gdal.Open(S2_image).ReadAsArray().astype(np.float)  
 

 # Estimate NDWI pixel values 

    mndwi_10m=np.divide((S2_image_data[Dict_S2['B03'],:,:]-
S2_image_data[Dict_S2['B08'],:,:]),(S2_image_data[Dict_S2['B03'],:,:]+S2_i

mage_data[Dict_S2['B08'],:,:]))  

 

    del S2_image_data  

      

    return mndwi_10m  

  

# Function for Otsu thresholding for the NDWI and MNDWI indexes  
def _compute_water_no_water_mask(S2_index):  

    '''  

    Using thresholding otsu approach create water- no_water mask  

    '''    

      

   # Calculate threshold using automatic otsu approach 

 # Discard invalid pixels  

    S2_index_1d = S2_index.flatten()  

    S2_index_1d_values = S2_index_1d[np.nonzero(S2_index_1d)]  

    thresh = threshold_otsu(S2_index_1d_values)  

    water_mask = np.logical_and(S2_index > thresh, S2_index!=0)  

      

    # Remove small objects   

    water_mask_refined=morphology.remove_small_objects(water_mask.astype(np.

bool), 400)  
  

    return water_mask_refined  
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   # Random Forest train and predict  
 # Create an np array of zeros with the shape of the image  

  water_labels_train = np.zeros(mndwi.shape).astype(np.bool)  
 

  # Set the water area for the training  

  water_labels_train[600:800, 300:500] = True  
  

  # Create an np array of zeros with the shape of the image  

  land_labels_train = np.zeros(mndwi.shape).astype(np.bool)  
 

  # Set the land area for the training  

  land_labels_train[200:400, :500] = True  
  

  n_samples = S2_image_numpy.shape[1] * S2_image_numpy.shape[2]  

  n_bands = S2_image_numpy.shape[0]  

  flat_pixels = S2_image_numpy.reshape((n_bands, n_samples)).T  
  

  # Set the train features for water and land  

  train_features_water = S2_image_numpy[:,water_labels_train].T   

  train_features_land = S2_image_numpy[:,land_labels_train].T  

  train_features = np.concatenate([train_features_w,train_features_l])  

  train_labels = np.zeros(train_features.shape[0])  

  train_labels[:train_features_water.shape[0]] = 1  
  

  # Instantiate model with 1000 decision trees  

  rf = RandomForestClassifier(n_jobs=-1,  

 n_estimators=100, class_weight='balanced')  
  

  # Train the model on training data  

  rf.fit(train_features, train_labels)  
  

  # Prediction  

  predictions_flat = rf.predict(flat_pixels)  

  predictions = predictions_flat.reshape(S2_image_numpy.shape[1],   
S2_image_numpy.shape[2])  
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   # Comparison function  
def Accuracy_metrics_calc(Ground_truth_gdal_raster, Lake_gdal_raster):  
 

    # Load manual digitization rasters (ground truth)  

    Ground_truth=gdal.Open(Ground_truth_gdal_raster).ReadAsArray()  

   Ground_truth=Ground_truth>0  
 

    # Load lake raster from automated method  

    Lake=gdal.Open(Lake_gdal_raster).ReadAsArray()  

    Lake_mask = ~np.isnan(Lake)  
 

    Lake=Lake>0    
 

    cf=confusion_matrix(Ground_truth.flatten(), Lake.flatten())  
 

    # Accuracy is sum of diagonal divided by total observations  

    accuracy  = np.trace(cf) / float(np.sum(cf))  

    precision = cf[1,1] / sum(cf[:,1]) # precision (i.e., user’s accuracy)   

    recall    = cf[1,1] / sum(cf[1,:]) # recall (i.e., producer’s accuracy)  

    f1_score  = 2*precision*recall / (precision + recall)  

    Kappa_score =  cohen_kappa_score(Ground_truth.flatten(), Lake.flatten())  

    accuracy_dict={'Overall_accuracy':accuracy,  

                     'Precision':precision,  

                     'Recall':recall,  

                     'F1_score':f1_score,  

                     'Kappa_score':Kappa_score}  

      

    return accuracy_dict  
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Water level estimation functionalities 

# Loop to check in all ICESat-2 beams to get distinct dates that have measurements.  
# Load all ICESat-2 file names  

FILE_NAMES = glob.glob(mypath+'/*/*.h5')  

df = pd.DataFrame(columns = ['date', 'lon', 'lat', 'segment_id' ,'height'])  

#df = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.lon, df.lat))  
 

# Loop within all files  

for n, FILE_NAME in enumerate(FILE_NAMES):  
 

    with h5py.File(FILE_NAME, mode='r') as f:  

        lats = []  

        lons = []  

        segment_ids = []  

        heights = []  

         
   # Collect measurements from all the beams  

        for beam in ['1r' , '2r', '3r', '1l', '2l', '3l']:   

            latvar = f['/gt{}/segment_lat'.format(beam)]  

            latitude = latvar[:]  

            lats.extend(latitude)  
  

            lonvar = f['/gt{}/segment_lon'.format(beam)]  

            longitude = lonvar[:]  

            lons.extend(longitude)  

              
            dset_name = f['/gt{}/inland_water_body_id'.format(beam)]  

            data = dset_name[:]  

            segment_ids.extend(data)  

              

            height_var = f['/gt{}/ht_ortho'.format(beam)] #segment_geoid   

            height = height_var[:] #stdev_water_surf #water_depth  

            heights.extend(height)              

              

    df_ = pd.DataFrame(zip([FILE_NAME]*len(lons), lons, lats, segment_ids, heigh

ts),columns = ['date', 'lon', 'lat', 'segment_id', 'height'])  

    df_ = df_[df_['segment_id'] == 14533]  

    #df_ = gpd.GeoDataFrame(df_, geometry=gpd.points_from_xy(df_.lon, df_.lat))  

    #df_ = df_.cx[21.2377:21.3613, 40.4599:40.5685]  

    df = df.append(df_)  

      

    #print (n, len(df_), len(df))  

      
df  
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Series from Lund University 

 

Department of Physical Geography and Ecosystem Science 
 

Master Thesis in Geographical Information Science 

 

1. Anthony Lawther: The application of GIS-based binary logistic regression for slope 

failure susceptibility mapping in the Western Grampian Mountains, Scotland (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. Applied 

GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using GIS and 

Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems as an 

analytical and visualization tool for mass real estate valuation: a case study of 

Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: The use of 

GIS functionalities in transport of transformers, as part of maintaining a reliable 

power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation (2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding sites using 

aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome of the 

programme of rehabilitation measures for the river Rhine in the Netherlands (2010). 

9. Samira Muhammad: Development and implementation of air quality data mart for 

Ontario, Canada: A case study of air quality in Ontario using OLAP tool. (2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and temporal 

relationships between photosynthetic productivity of vegetation and malaria 

transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse water 

pollution problems (2011). 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study using GIS 

to monitor the urban growth of Lagos 1990 - 2008 and produce future growth 

prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for Android 

(2011). 
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14. Jeanette McBride: Mapping Chicago area urban tree canopy using color infrared 

imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface temperature and 

vegetation abundance for urban heat island mitigation in Seville, Spain (2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile Application 

(2011). 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power plants - A 

case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi criteria 

evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building rooftop 

integration analysis tool for GIS for Dokki District, Cairo, Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via Site 

Suitability and Spatially Explicit Carrying Capacity Modeling in Virginia’s Chesapeake 

Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing Manchester’s 

Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley (2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in South Africa 

(2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake Flaten 

in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 years. 

How can we predict past landscape pattern scenario and the impact on habitat 

diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity models to 

predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a GIS 

analysis within the Greater London Authority area (2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote sensing and 

GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 (2014). 
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31. Sarah Tressel: Recommendations for a polar Earth science portal in the context of 

Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral Formosat-2 

Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria evaluation 

analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway network 

at the Swedish Transport Administration (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information System 

and analytical hierarchy process: case study Dhaka City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based on MCDA 

and GIS for the decision support of river and floodplain rehabilitation projects (2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of potential 

changes to the public transportation system in the City of Milan (2014). 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using Controlled Burn in 

Australia. Case Study: Logan City, QLD (2015). 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; Geographical 

Distribution, Spatial Analysis and Non-traditional Risk Factors (2015). 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica 

(2015). 

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for agricultural 

purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services using GIS 

(2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility as 

Indicators of Urban Sprawl in Hamilton, New Zealand (2015). 

44. Stefan Arvidsson: Relationship between tree species composition and phenology 

extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in rural Kenya 

(2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in LPJ-

GUESS improve the spatial representation of environmental variables? (2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline in 

Sweden using breaklines extracted from high resolution digital elevation models 

(2016). 
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49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle East for 

the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities A GIS Multi 

Criteria Evaluation based on an MSF Humanitarian Mission in Cameroon (2016). 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 

Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times in 
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53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between emergency 

management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the Net Benefits 

from Urban Forests (2016). 
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