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Abstract

In this thesis we discuss and test ways to improve the performance
of inline integration.
Inline integration is a tool used for real-time simulations of complex
dynamical systems. The idea is to relate information about the system
to the numerical method at a model level.
Real-time simulations of complex models have become standard in in-
dustry. This puts high demands on simulation tools with regard to
computational speed.
Mixed mode integration is treating stiff variables and non-stiff variables
with different numerical methods, in doing so we expect to reduce the
dimensions of the non-linear systems that needs to be solved and hence
increase the computational speed. We investigate what mixed mode
integration means with inline integration and elaborate on the idea
using an electrical circuit as an example.
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1 Introduction

In real time simulations one has a predetermined run-time for how long the
numerical solver has to update the solution. One example of when real time
simulations is useful is when connecting a real plant to a simulation of a
controller. The simulation of the plants controller is used to rapidly de-
velop a prototype of the plants real controller. This setting is called rapid
controller prototyping (RCP). In industry RCP is used to reduce the cost
and time required in order to devolop a plants controller [2]. Such settings
puts high demands on computational speed for the simulation tool. This
thesis is done in collaboration with Modelon AB which is a software com-
pany based in Lund. They have developed a powerful tool for real time
simulations called inline integration where the idea is to mix symbolic and
iterative methods.

With the aim to increase the computational speed we investigate an
idea called mixed mode integration that originates from ordinary differen-
tial equations (ODE). Mixed mode integration is treating different state
variables with different numerical solvers, namely explicit or implicit solv-
ers. The symbolic methods behind inline integration is trying to reduce the
dimensions of the equations that needs to be solved to update the solution.
By introducing mixed mode integration into inline integration we expect to
aid the symbolic solver in doing so and hence increase the computational
speed.

Mixed mode integration requires splitting the state variables that appear
in differentiated form into those which will be solved by an explicit method,
we call these ”slow” state variables and those which will be solved by an
implicit method, we call these ”fast” state variables. In Section 3 we look
at such a partitioning on ODE’s.

In Section 4 inline integration is used on the spring pendulum with ex-
plicit Euler’s method and implicit Euler’s method. The symbolic methods
generate a set of equations that needs to be solved to update the solution.
We use the example to get a better understanding of how inline integration
could benefit from mixed mode integration.
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The real time simulation tool is used on a special case of implicit ODEs,
ie

F (ẋ, x, w, t) = 0 (1)

where F : Rnx+nw 7→ Rnx+nw and with ∂F
∂ẋ being singular. These equa-

tions are called differential algebraic equations (DAE) and model dynamical
systems that arise in various field such as multibody dynamics, chemical
process control and electrical circuit design. In Section 5 we discuss the
idea of mixed mode integration using graph theory and present a proposi-
tion that gives us an idea of what changes in terms of the dimensions of the
systems of equations when we mix explicit and implicit solvers. A simple
electrical circuit is then used as an example to build upon the proposition
and to investigate if we can introduce what we call ’a delay of information’
such that we split the system of equations that needs to be solved into two
parts. We formulate the delay of information using Newton’s method. The
delay of information is seen as a change to the Jacobian. We then com-
bine Woodbury’s matrix identity [7] with Banach’s fixed point theorem to
investigate the convergence of the split system.

1.1 Task description

During simulation, time moves forward in discrete steps of equal duration,
meaning that the time step h is fixed. The clock time required for a sim-
ulation tool to update the solution from time tn to tn+1 may be shorter
or longer then h. In real time simulations the simulation tool must give a
sufficiently accurate update of the outputs within the time step duration.
As a matter of fact the time required to update the outputs must be shorter
then the time step, this is called ’the wall time’. With a sufficiently accur-
ate solution within wall time we can permit the needed input and output
operations to and from external devices. If a sufficiently accurate update
isn’t achieved within wall time it is considered erroneous. Such an update
is called an overrun [2].

The task can be described as Modelons real time simulation tool, called
inline integration, needs to update the solution of (1) without overruns. We
will in the next section explain the general idea of inline integration.
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2 Inline integration

2.1 Insert and extend with the numerical method

Consider a differential algebraic equation.

F (ẋ, x, w, t) = 0 (2)

where F : Rnx+nw 7→ Rnx+nw and with ∂F
∂ẋ being singular. The idea

behind inline integration is to closer relate information about the DAE with
the numerical methods. The first step in doing so is to insert the numerical
method at a model level. To explain what this means we need to introduce
some notation. Consider the ODE

ẋ = f(x, t) (3)

and discretize (3) using for example by implicit Euler’s method

xn+1 = h · f(xn+1, tn+1) + xn (4)

in our context we replace f(xn+1, tn+1) by ẋn+1 because the variable only
exists in the model, then for a large class of implicit methods we would have
the same structure for the discretization, namely

x = h · ẋ + old(x) (5)

where for convenient notation we replace ẋ(tn+1) by ẋ, x(tn+1) by x and
old(x) is a function depending on the previous values and the numerical
method. For example, any backward differentiation method (BDF) belongs
to this class of implicit methods. This notation was introduced in [5]. A
general formula for a BDF method is

s∑
k=0

αk · xn+k = h · βf(xn+s, tn+s) (6)

h denotes the step size and tn = t0 + n · h. The coefficients β and ak is
chosen such that the maximum order s is achieved. Rewriting (5) such that
it agrees with the formulation of (4) we put xn+s on one side

xn+s = h · β
αs
f(xn+s, tn+s)−

1

αs

s−1∑
k=0

αk · xn+k (7)
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Where old(x) = - 1
αs

∑s−1
k=0 αk · xn+k, is a known value that depends on

the method and previous values.

Now if we insert the numerical method into the original DAE and extend
the system by the numerical method, we get the augmented system

F∆(ẋ,x,w, tn+1) =

[
F (ẋ,x,w, tn+1)
−x + h · ẋ + old(x)

]
= 0 (8)

The numerical integration algorithm is now applied ”inline” with the
model, this gives rise to its name. Think of this as solving

F (ẋ,x,w, tn+1) = 0

under the constraint that the equation for the numerical method is fulfilled.

Next we treat {ẋ,x,w} as algebraic variables and preform partitioning
of the system.

2.2 Partitioning

Let us consider the DAE in augmented form

F∆(ẋ,x,w, tn+1) = 0

and let us think of this as a system of equations with z = (ẋ,x,w),

h(z) = 0

The aim of partitioning is to reduce the work carried out by the solver. We
want to know if, given that h(z) is very large and sparse, is it possible to
find subgroups of equations such that if the variables in one subgroup are
known, those variables can be treated as known in the next subgroup. Find-
ing such subgroups is called partitioning and the subgroups will be refered
to as algebraic loops. Notice that the algebraic loops are systems equations,
and even though we will reduce the work carried out by the solver the most
time requiring part of updating the solution will still be solving the algebraic
loops. The idea of this thesis is to investigate ways to further reduce the
algebraic loops.
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To give the reader an understanding of the general idea of partitioning
we now explain the principle by an example. Consider a system of equations
h(z) = 0 of the form

h(z) =


h1(z1)

h2(z1, z3)
h3(z1, z2, z3)
h4(z2, z3, z4)


We represent a system by a structural matrix S, defined by

Sji =

{
0 if ∂hi

∂zj
≡ 0

1 otherwise

For the example above,

S =

z1 z2 z3 z4


1 0 0 0 h1

1 0 1 0 h2

1 1 1 0 h3

0 1 1 1 h4

The operations we have at our disposal are interchanging rows or inter-
changing columns. The hope of doing this is to get a strictly lower triangular
matrix. For example if we would interchange column 2 by column 3 we would
get

S̃ =

z1 z3 z2 z4


1 0 0 0 h1

1 1 0 0 h2

1 1 1 0 h3

0 1 1 1 h4

If the structural matrix can be put into strictly lower triangular form
we say that we have found an explicit sequence in which we can solve the
system. Reordering to lower triangular form cannot be done in general. To
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see this just imagine that we have a system with the structural matrix

S1 =

z1 z2 z3 z4


1 0 0 0 h1

1 0 1 0 h2

1 1 1 1 h3

1 1 1 1 h4

S1 cannot be put into a strict lower triangular form, but we can present
one triangular block along the diagonal such that equations in that block
can be solved in an explicit sequence. Such a matrix is called block lower
triangular (BLT) and in this case it looks like

S̃1 =

z1 z3 z2 z4

1 0 0 0 h1

1 1 0 0 h2

1 1 1 1 h3

1 1 1 1 h4

We can now solve h1(z1) = 0 for z1, then we use z1 as known in h2(z1, z3) = 0
and solve for z3, then we use the values for z1 and z3 as known in

h3(z1, z2, z3, z4) = 0 (9)

h4(z1, z2, z3, z4) = 0 (10)

to solve for z2, z4. By doing the partitioning we have consequently gone
from solving one 4 × 4 system to solving two 1 × 1 systems and then one
2 × 2 system.
Modelon’s inline integration tool is used on DAEs that model complex dy-
namical systems using Modelica. Since Modelica is an object oriented de-
scriptive language constructed to easily assemble models by reusing parts
and connecting them by special connector functions, we will often end up
with a sparse structural matrix. The sparsity makes partitioning very effi-
cient.

Next we look at the equations that are possibly rearranged and we will
use that information to further reduce the work carried out by preforming
tearing on the algebraic loops.
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2.2.1 Tearing

The algebraic loops are put into a tearing algorithm, with the aim to reduce
the dimensions of the system of equations that needs to be solved. The
tearing algorithm takes a system of equations

h(z) = 0

where h : Rk 7→ Rk and aim to find a subset z1 ∈ Rk1 of z and a subset
h1 ∈ Rk1 of h such that the remaining variables z2 ∈ Rk−k1 can be calculated
using the remaining equations h2 ∈ Rk−k1 as a function of z1, i.e,

z2 = h2(z1)
0 = h1(z1, z2)

notice that we can just solve h1(z1, h2(z1)) = 0 and then explicitly plug in
for z2. The variable z1 that we need to solve for is called iteration variables,
the function h1 that we need to solve over is called the residual equations.
The variables z2 that gets solved for when knowing z1 are torn away from
the system and therefore called tearing variables.

The tearing algorithm has consequently changed the problem of solving

h(z) = 0

which is a system of equations of dimension k to solving the system

h1(z1, h2(z1)) = 0

which is a system of equations of dimension k1 and then declaring the re-
maining variables z2 by

z2 = h2(z1)

.We will in Section 4 see that the tearing algorithm reduces the dimension
of the system of equations that needs to be solved when inlining the spring
pendulum using implicit Euler’s method.
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3 Mixed mode on ODEs

Consider the ODE

ẋ = f(x, t) ∈ RN , x(t0) = x0 (11)

To solve such an equation numerically we can apply either an explicit
or an implicit method. The simplest explicit method is the explicit Euler’s
method

xn+1 = xn + h · f(xn, tn) (12)

and the simplest implicit method is the implicit Euler’s method.

xn+1 = xn + h · f(xn+1, tn+1) (13)

The main implementation difference between an explicit and implicit
method is that, using an explicit method we can directly calculate xn+1

from xn and using an implicit method we need to solve a system of equa-
tions to get the value of xn+1. Solving a system of equations can be expensive
especially when N becomes large. One might thereforee choose to just use
explicit solvers. However some special problems would require for explicit
methods the step size to be very small. Such special problems are called
stiff and one usually uses implicit methods to solve these.

Making a mathematical definition of stiffness has proven difficult, but
many statements about the phenomena have been made. One example is,
”stiffness occur when stability requirement rather then accuracy constrains
the step length”. Such systems are dynamically very fast or have highly
damped components .

Systems might contain only few very fast or highly damped components,
this leads to the unsatisfactory situation of having to use either very small
step sizes with an explicit method or, to use an implicit method and, to
solve a system of equations [9].

For the sake of argument let us say that we use an implicit method, this
means that we need to solve a system of equations of size N even though
the system only contain, k2 << N very fast or highly damped components.
To reduce the work carried out by the numerical solver we suggest doing
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a row-wise partitioning of the left-hand side into ”fast” and ”slow” state-
variables. Let us denote the ”fast” variables by xF and the ”slow” by xS .
We then split the system into

ẋS = fS(xS , xF , t) ∈ Rk1 (14)

ẋF = fF (xS , xF , t) ∈ Rk2 (15)

We apply explicit Euler’s method on (14) to get

xSn+1 = xSn + h · fS(xSn , x
F
n , tn+1) (16)

The information about xSn+1 is then used when implicit Euler’s method is
used on (15)

xFn+1 = xFn + h · fF (xSn+1, x
F
n+1, tn+1) (17)

To update (17) we only need to solve a system of equations of dimension
k2 instead of N .

3.1 Stability of a numerical method

Absolute stability of a numerical method is an important concept in dealing
with stiff ODEs. Absolute stability is concerned with stability as t→∞ for
a fixed step-size h. Let us look at the initial value problem.

ẋ(t) = λx(t), x(0) = x0, λ ∈ C (18)

Equation (18) with Re(λ) < 0 is called the test equation and is used to study
the stability of numerical methods. An absolute stable numerical method is
one for which the numerical solution of the test equation also exhibits the
same controlled decay as the exact solution.
For example explicit Euler’s method gives

xn+1 = xn + h · xn = (1 + hλ) · xn = (1 + hλ)nx0 (19)

Since the test equation for Re(λ) < 0 has a decaying solution we require
the numerical method to exhibit the same behavior. This means that the
condition | 1 + hλ |< 1 must be fulfilled, hence the step size must satisfy
| h |< −2

λ . When the numerical method has such a condition on the step size
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it is called conditionally stable. If we also study the behavior of implicit
Euler’s method on (18) we find that

xn+1 = xn + h · xn+1 =
1

(1− hλ)
· xn =

1

(1− hλ)n
x0 (20)

The requirement for this method is that it also must exhibit the same de-
creasing behavior as the solution as t→∞, which holds for any h > 0. Such
methods are called unconditionally stable. Unconditionally stable solvers
are usually all that is needed for stiff problems. Such methods are also called
A-stable.

The notion of controlled decay of the numerical method is what motivates
the suggested partitioning of a linear ODE

ẋ = Ax ∈ Rn (21)

We note that the solution of such a system is asymtotically stable if and
only if the eigenvalues of A fullfill Re(λ) < 0. The idea behind doing a
partitioning on a linear ODE comes from that the mixed numerical method
must exhibit the same behavior as t → ∞ as the solution of (21) with
Re(λ) < 0.

3.1.1 Partitioning a linear ODE

The partitioning can be done manually by the user or we can automatically
generate a set of state variables that could be considered as ”slow”. To see
how an automatic partitioning of (22) can be done we partition the linear
ODE.

ẋ = Ax ∈ Rn (22)

We would like to do a row-wise partitioning of (22) into ”fast” and ”slow”
variables, to select rows we multiply A by a diagonal projection matrix,
P = diag(δ1, ..., δn) with δi ∈ {0, 1}. To select row i as ”slow” we set δi = 1.

ẋS = PAx (23)

The remaining rows are selected as ”fast” by multiplying A from the left by
(I − P ), since

A = PA+ (I − P )A (24)
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then we get the system

ẋS = PAx (25)

ẋF = (I − P )Ax (26)

or
ẋ = PAx+ (I − P )Ax (27)

Now perform explicit Euler on (25) and implicit Euler on (26). This
type of method is a mix of an implicit Runge-Kutta method and an explicit
Runge-Kutta method, these methods are suitable for problems containing
stiff and non stiff terms [8].

xSn+1 = Pxn + h ·APxn (28)

xFn+1 = (I − P )xn + h · (I − P )Axn+1 (29)

or

xn+1 = xn + h · PAxn + h · (I − P )Axn+1 (30)

We can then solve for xn+1

xn+1 = (I − h · (I − P )A)−1(I + h · PA)xn (31)

lets call I − h · (I − P )A)−1(I + h · PA) = R(h, P ) then

xn+1 = R(h, P )xn (32)

Hence, to ensure stability for the given step size we require that the ei-
genvalues in absolute value of R(h, P ) are smaller then 1. This means that
the numerical method exhibits the same asymptotic stability as the exact
solution.

Before a simulation is started a test should be preformed, the test con-
sists of choosing δi. All δi start as 0, if δi = 0, then the i’th component
of x is considered as ”fast”. Then in order we set δi = 1 and calculate the
eigenvalues of the iteration matrix R(h, P ). If the eigenvalues of R(h, P ) are
in absolute value smaller then 1 then δi is kept as 1 otherwise it is set to 0.
If δi is kept as 1 then the i’th component of x is considered as ”slow”. This
is done for all i.
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3.1.2 Partitioning a non - linear ODE

For a linear ODE with Re(λ) < 0

ẋ = Ax (33)

we know how to do a partition into ”fast” and ”slow” state variables
such that the mixed method exhibits the same decay as the exact solution.
In the case of a non linear ODE

ẋ = f(x, t) (34)

the idea is to make a linear approximation of f along its trajectory. At the
points where the linear approximation satisfies the condition with Re(λ) < 0
we preform the suggested partitioning for the linear problem. This would
result in a set of ”slow” and a set of ”fast” state variables. The union of
all state variables that were ever considered as ”fast” is chosen as fast, the
rest is chosen as ”slow”. In practice, since we are trying to help a user that
is performing a real-time simulation of their dynamical system, we assume
that the user has enough information about the system such that the user
can provide a set of points along the solutions trajectory.

Below we perform a simulation of a spring pendulum using a formulation
and spring constant such that we before hand have a idea of which variables
will be ”fast” and which variables will be ”slow”.

3.2 Example spring pendulum and a linear ODE

To get a better understanding of mixed mode integration we test it on the
spring pendulum. The partitioning is tried on a linear ODE that satisfies
the assumption that Re(λ) < 0.

A formulation of the spring pendulum is chosen such that we before hand
have an idea of which state variables are ”slow” and which are ”fast”. The
purpose of the example is to investigate the suggested methods strengths
and weaknesses.

Let ẋ, ẏ denote the velocity and acceleration with which the length of
the pendulum changes, and let θ̇, φ̇ be the angular velocity and acceleration
respectively. The constants are m, k, l0 and g, where m is the mass of the
object attached to the spring, k is the stiffens coefficient of the spring, l0
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is the length of the pendulum in equilibrium and g = 9.81 is the gravity
constant. The equations of the spring pendulum are given by

ẋ = y (35)

ẏ = (l0 + x) · φ2 − k

m
· x+ g · cos(θ) (36)

θ̇ = φ (37)

φ̇ =
−g
l0 + x

· sin(θ)− 2 · y
l0 + x

· φ (38)

We initialize the system with values such that we have ”fast” components
present. Let the constants be m = 3, l0 = 1, k = 35 with initial conditions
X0 = [ 1.5 , 0 , π4 , 0 ]T . Since l0 = 1, the initial condition of x0 = 1.5 means
that the spring is stretched out to 1.5 times its resting length. The high k
means that the spring is stiff.

Below we preform simulations of the spring pendulum for t ∈ [0,20] using
mixed mode integration with ẋ, ẏ as ”fast” and θ̇, φ̇ as ”slow” for different
step-sizes and compare the error with explicit Euler’s method and implicit
Euler’s method where the solution generated using CVode with step-size
h = 10−6 and rtol = 10−9 as solver is considered the exact solution.
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Figure 1: Solution using CVode, h = 10−6, rtol = 10−9 .

Figure 2: Solution for mixed mode to the left and explicit Euler’s method
to the right, h = 10−2 .
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Figure 3: Error for mixed mode to the left and explicit Euler’s method to
the right, h = 10−2 .

Figure 4: Solution for mixed mode to the left and implicit Euler’s method
to the right, h = 10−2 .
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Figure 5: Error for mixed mode to the left and implicit Euler’s method to
the right, h = 10−2 .

Figure 6: Solution for mixed mode to the left and explicit Euler’s method
to the right, h = 10−4 .
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Figure 7: Error for mixed mode to the left and explicit Euler’s method to
the right, h = 10−4 .

Figure 8: Solution for mixed mode to the left and implicit Euler’s method
to the right, h = 10−4 .
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Figure 9: Error for mixed mode to the left and implicit Euler’s method to
the right, h = 10−4 .

The above shows the unexpected result of mixed mode integration actu-
ally out-preforming explicit and implicit Euler’s method in terms of accur-
acy. The following code should give the reader the important information
about what happens in every mixed mode step. Two things should be no-
ticed, ySn+1 might act like a predictor and the result can be a consequence
of different nonlinear solvers. In mixed mode we used Scipy’s [6] fsolve as a
non-linear solver, this could outperform Assimulos [1] non-linear solver. A
short argument below is given on why the results are not a consequence of
the two facts described above.
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def Explicit_step( self , y_S_n , y_n ):

y_S_np1 = y_S_n + self.h * self.f_S(y_n)

return y_S_np1

def Implicit_step( self , y_S_np1 , y_F_n ):

def g( y_F ):

"Collect makes sure f get the variable in correct order."

f_F = lambda y_F: f( 1 , self.Collect( y_S_np1 , y_F ) )

"We need to evaluate the whole f and pick out the" "fast" "parts."

yf = np.array( [ f_F(y_F)[ i ] for i in range( len( self.E ) ) \

if self.E[ i ] == 0 ] )

return - y_F + y_F_n + self.h * yf

y_F_np1 = optimize.fsolve( g , y_F_n )

return y_F_np1

Scipy’s optimizing function fsolve uses xtol = 1.49012e-08 as default.
This means that a zero to the function g is assumed to be found if

| xn+1 − xn |< 1.49012e− 08

. In Assimulo’s implicit Euler a relative tolerance of 1e-08 was given to the
Newton solver together with a high number of allowed Newton updates, this
was done to prevent the non-linear solver in mixed mode to outperform the
one used in Assimulo. These precautions prevent the results being a func-
tion of the non-linear solver.

As for ySn acts like a predictor, we checked using a predictor/corrector
code with explicit Euler’s method as a predictor for all variables and then
implicit Euler’s method as a corrector and for the above example the mixed
mode integration code outperformed this code also with almost similar res-
ults. In the simulations above we used the fact that we beforehand had an
idea of which variables to consider as ”slow” and ”fast”.
Next we take a look at the following IVP to investigate the suggested par-
titioning. Let

m · ẍ+ c · ẋ+ k · x = 0, x(0) = 1, ẋ(0) = 0 (39)

and lets set m = 1, c = 1001 and k = 1000. and lets rewrite this to form
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(18). Let x = ẏ and ẏ = −1001 · y − 1000 · x. This gives the system

ż = Az (40)

with z = (x, y)T and A =

(
0 1

−1001 −1000

)
. The matrix A has eigenvalues

λ1 = −1000 and λ2 = −1, that is, they both have negative real part. We
can therefore preform the suggested partition of this. Notice that Explicit
Euler’ method on (40) is unstable for a step-size larger than 10−3. The idea
is therefore to use the partitioning suggested in section 3.1.1 to find a mixed
method that is stable for a step-size larger then 10−3.

Below we present the partitioning code for (40), and investigate which
variables gets put as ”fast” and which are kept as ”slow” using different step-
sizes. Then mixed mode is applied to (40) using the suggested partitioning
and the results is compared to explicit Euler’s method and implicit Euler’s
method in the same way as we did with the spring pendulum.

" The function make E starts as a list of 1's, if variable i is" "fast"

"element i in E is changed to 0"

def Make_E( A ):

E = [ 1 for i in range( 2 ) ]

Set = [ i for i in range( 2 ) ]

for i in range( 2 ) :

R = Make_R( E , A )

S_1 = np.linalg.eigvals( R )

if all( abs( S_1 ) < 1 ):

pass

else:

for k in Set:

if abs( S_1[ k ] ) > 1:

E[ k ] = 0

Set.remove( k )

return E

We preform a partitioning using h1 = 10−1, h2 = 10−2, h3 = 10−3. For h1

and h2 the function gives us the set E = [1,0] and for h3 we generate the
set [1,1].
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Figure 10: Error for mixed mode to the left and implicit Euler’s method to
the right, h = 10−1 .

Figure 11: Error for mixed mode to the left and implicit Euler’s method to
the right, h = 10−1 .
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Figure 12: Error for mixed mode to the left and explicit Euler’s method to
the right, h = 10−2 .

Figure 13: Error for mixed mode to the left and implicit Euler’s method to
the right, h = 10−2 .

3.3 Remarks on the suggested method

When coding the explicit Euler step and implicit Euler step we noticed the
difference between the theoretical idea of going from

ẋ = f(x, t) ∈ RN (41)
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to

ẋS = fS(xS , xF , t) ∈ Rk1 (42)

ẋF = fF (xS , xF , t) ∈ Rk2 (43)

and coding a mixed mode step. The unsatisfactory difference is that
when a user gives an arbitrary function f(x, t) we cannot just evaluate parts
of it, but we need to evaluate the whole function and pick out the ”slow”
and ”fast” parts of the function. This makes a step very slow. A mixed
mode step using inline integration will however work differently.
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4 Mixed mode and inline integration

To investigate how inline integration can benefit from mixed mode integra-
tion we need a better understanding of how inline integration works using
an explicit or implicit numerical solver. We will investigate this using two
examples.

4.1 Two test models

Consider the following equation

ẋ = sin(x) (44)

and let us investigate this using inline integration with both explicit Euler’s
method and implicit Euler’s method.

Modelon’s inline integration tool generates the set of equations that
needs to be solved together with a block lower triangular (BLT) matrix
to update the solution. By comparing the structure of these we hope to give
the reader a better understanding of how inline integration works with expli-
cit and implicit solvers. Since it is not possible to use inline integration with
mixed mode integration we will by hand generate the set of equations when
inlining the spring pendulum. The speed and acceleration of the length is
treated as ”fast” and therefore solved using implicit Euler’s method while
the speed and acceleration of the angle is treated as ”slow” and therefore
solved using explicit Euler’s method. The set of equations is compared with
the set of equations when inlining was done using implicit Euler’s method.

The set of equations that gets generated for (44) using explicit Euler’s
method is

ẋ = sin(x) (45)

t0 = old(t) (46)

time = old(t) + h (47)

xx0 = old(x) (48)

xk0 = sin(xx0) (49)

x = old(x) + h · xk0 (50)

The generated BLT matrix is
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Figure 14: ’o’ means that the variable can be solved analytically if the
other variables are known, ’x’ means that the variable cannot be solved for
analytically even if the other variables are known. The green color indicates
that the equation is a solved equation.

The set of equations that gets generated for (44) using implicit Euler’s
method is

ẋ = sin(x) (51)

t0 = old(t) + h (52)

time = old(t) + h (53)

x = old(x) + h · ẋ (54)

The generated BLT matrix is
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Figure 15: ’o’ means that the variable can be solved analytically if the
other variables are known, ’x’ means that the variable cannot be solved for
analytically even if the other variables are known. The green color indicates
that the equation is a solved equation. The pink indicates an algebraic loop
and the dark pink shows the iteration variables and residual equations of
the pink block.

The main difference here is that in the explicit Euler’s case all the equa-
tions can be solved in a explicit sequence while in the implicit Euler’s case
there is an algebraic loop. This algebraic loop has 2 unknowns, ẋ and x.
This algebraic loop can be torn, using x as iteration variable. The residual
equation needs then to be solved for that variable. This difference leads us
to expect that if both explicit and implicit numerical solvers are used we
can reduce the dimensions of the algebraic loops.

Let us look at the equation and BLT generated when doing inlining on
the equations for the spring pendulum using implicit Euler’s method as a
numerical solver.
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ẏ = (l0 + x) · z2 − k

m
· x + g · cos(θ) (55)

ż =
−9.81

l0 + x
· sin(θ)− 2 · y

l0 + x
· z (56)

t0 = old(t) + h (57)

time = old(t) + h (58)

x = old(x) + h · y (59)

y = old(y) + h · ẏ (60)

θ = old(θ) + h · z (61)

z = old(z) + h · ż (62)

Figure 16: ’o’ means that the variable can be solved analytically if the
other variables are known, ’x’ means that the variable cannot be solved for
analytically even if the other variables are known. The green color indicates
that the equation is a solved equation. The pink indicates an algebraic loop
and the dark pink shows the iteration variables and residual equations of
the pink block.

If we look at the BLT matrix that is generated we can see that we have
a 6 × 6 algebraic block indicated by the pink. The dark pink shows that 4
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of the unknown variables can be solved if z and ẏ are known. This means
that if we use implicit Euler’s method on the spring pendulum we need to
solve a system of equations with 2 unknowns.

We stated in the beginning of this section that we would consider ż and θ̇
as ”slow” and therefore apply explicit Euler’s method on them. If we would
do that we would change (62) to

z = old(z) + h · ż(tn) (63)

This would mean that if ż could be considered a ”slow” variable we
would reduce the iteration variables to just ẏ. We also said that we would
consider θ̇ as ”slow”. This would replace

θ = old(θ) + h · z (64)

by
θ = old(θ) + h · z(tn) (65)

Since using ż as ”slow” z is defined by equation (63), hence there is no
use of also using θ̇ as ”slow”, because it would not reduce the dimensions of
the system of equations that needs to be solved.

This example suggest to us that we could suggest to the user variables
as ”slow” which have more or less impact in terms of reducing the algebraic
loop.

4.2 Reducing algebraic loops and iteration variables

We would like to reduce the size of the algebraic loops and the iteration
variables and residual equations that needs to be solved in order to update
the solution from tn to tn+1 while preserving accuracy.

In the algebraic loop we have variables of {ẋ,x,w}. This means that
either of those variables can be chosen by the tearing algorithm as itera-
tion variables. The tool at our disposal is that we can declare a variable
as ”slow”. We want to know if there exists a set of variables that we could
suggest the user to declare as ”slow” so that this set would guarantee a
significantly smaller set of iteration variables. To get an idea of how we can
suggest such a set we present a proposition in Chapter 5.
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The aim is breaking an algebraic loop by introducing ”slow” variables
while preserving accuracy. However, reducing the size of the algebraic loop
also result in a reduced number of equations that needs to be solved.

5 Graph theory

In this section we talk about the augmented DAE from the perspective of
graph theory. We also look closer at an idea for reducing the algebraic loops,
but first we need to introduce some graph theoretical concepts.

Definition 1. A graph is a ordered triple G = (N,E,Ψ) with a set of
nodes N and a set of edges E disjoint from N and a incidence function Ψ
that associates with each edge a unordered pair of nodes of the graph. If
Ψ(e) = uv then e joins u, v.

Definition 2. Consider the graph G. If for every u, v ∈ N(G) there exists
paths p1 : v ⇒ u and p2 : u⇒ v we say the G is strongly connected.

Definition 3. Consider the graph G and let G̃ be a sub-graph of G.
If G̃ is strongly connected then G̃ is said to be a strongly connected
component (SCC) of G.

The strongly connected components is a representation of the algebraic
loops. It is our goal to reduce or break the strongly connected components
since this would reduce the dimensions for the systems of equations that
needs be solved.

5.1 The structural matrix as a graph

Recall the augmented DAE

F∆(ẋ,x,w, t) =

[
F (ẋ,x,w, t)

−x + h · ẋ + old(x)

]
= 0 (66)

In section 2.2 we mentioned that the augmented system

F∆(ẋ,x,w, t) = 0

is considered as a system of equations on which we preform a partitioning
on its structural matrix. The elements of the structural matrix is either 0
or 1 with the i’th row representing the i’th equation and the j’th column
representing the j’th variable, we recall that if variable j appear in equation
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i element Sji = 1 otherwise it is 0.

The structural matrix is a representation of a graph, the variables and
equations are nodes and if Sji = 1 there is an edge between the node rep-
resenting equation j and the node representing variable i.

The important thing to notice is that if a variable that is in an equation
is removed we remove the edge between that variable and the equation.

5.2 Breaking strongly connected components

We recall that the variables appearing as nodes are {ẋ,x,w} and as dis-
cussed in section 2.1 we use the notation that ẋ = ẋn+1, x = xn+1 and
w = wn+1. If a variable is in an equation there is an edge between the
variable and the equation, but if we would allow the previous value to be
used we would actually remove that edge.

Using the previous value for a variable in an equation in (66) will hence-
forth be referred to as a delay of information.

For example, when we extend the DAE with the implicit Euler’s method
we add equations

x = h · x(tn) + ẋ (67)

and when we say that we allow for a delay of information for ẋ in such
a equation we replace ẋ = ẋn+1 by ẋn. This is the explicit Euler’s method.

Let us represent the algebraic loop for the spring pendulum generated
by Modelons inlining tool as a graph when using the implicit Euler’s method
as the numerical solver.
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Figure 17: vi correspond to the i’th variable and ei correspond to the i’th
equation.

We suggest that we could break the algebraic loop by allowing for a delay
of information in some variables. The variables that we suggest is z and y in
equation 5 and 2 respectively. The reason for choosing these variables was
disucssed in section 3 and 4. In terms of the graph doing so would remove
edges in the graph, namely the edge (v4, e5) and (v6, e2), this gives us the
new graph.

Figure 18: vi correspond to the i’th variable and ei correspond to the i’th
equation.

Notice that in equation 2 and equation 5 there is only 1 variable respect-
ively, this means that these equations define those variables, hence the node
e2, e5, v2 and v5 is removed, together with the edges coming from those
nodes. This gives us the new graph.
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Figure 19: vi correspond to the i’th variable and ei correspond to the i’th
equation.

Notice that there is only variable v1 in equation 1 and only variable v3

in equation 3, this means that that those equations defines those variables,
hence the nodes e1, e3, v1 and v3 is removed, together with the edges coming
from those nodes. This gives the new graph.

Figure 20: vi correspond to the i’th variable and ei correspond to the i’th
equation.

Notice that equation 4 only contains variable v4 hence this is now defined.
We can therefore remove node v4. The only variable appearing in equation
6 is variable v6 therefore the algebraic loop is broken.

In this example we have used a very simple fact to check what changes
in the algebraic loop if an edge is removed. If an equation only contains one
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variable, then that equation defines that variable. In terms of graph theory
we could present it as a proposition

Proposition 1. If a node representing an equation only have one edge, then
the node on the other side of the edge is the only variable in that equation.
Meaning that the equation defines that variable.
Consequently, the nodes representing the equation and the variable is re-
moved together with all the edges coming from those nodes.

In the above example we have iteratively applied proposition 1 on the
graph with the removed edges to see what the consequences would be in the
SCC. Important to notice is that we have not mentioned how convergence
is affected when the value of a variable at tn+1 is changed to the value at
tn. We will try to deal with that later. The code that we used to check
proposition 1 is as follows.
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def Graph_Check(G):

List_to_remove = []

for v in G: ## goes through Nodes in graph

List = []

for nbr in G[v]:

List.append(nbr)

if len(List) == 1 and ('v' in nbr):

List_to_remove.append(v)

if nbr not in List_to_remove:

List_to_remove.append(nbr)

return G, List_to_remove

def Remove_Edges(G,N):

# G is the Graph

# N is the list of edges that we remove

for n in N:

G.remove_edge(n[0],n[1])

G_new , N_new = Graph_Check(G)

while len(N_new) != 0:

G_new , N_new = Graph_Check(G_new)

for n in N_new:

G_new.remove_node(n)

Last_remove = []

for n in G_new:

if G_new.adj[n] == {}:

Last_remove.append(n)

for n in Last_remove:

G_new.remove_node(n)

return G_new

The function Remove edges takes the original algebraic loop as a graph

37



G and a set of edges N that we remove from the graph. Then it iterativly
checks proposition 1 in the function Graph check. Next we want to focus on
the fact that going from implicit Euler’s method to explicit Euler’s method
can be seen as a delay of information and that proposition 1 dose not care
what edge is removed by introducing such a delay.

5.3 Delay of information

We have seen in the previous section that introducing a delay of informa-
tion can reduce the size of the algebraic loop. The aim of this section is to
motivate why we can allow for a delay of information for variables in certain
equations. We also show that a system can be split into smaller subsystems
by introducing a delay of information at the right places. The example we
use to demonstrate the argued method is a simple electrical circuit.

5.3.1 A simple electrical circuit

We investigate a simple electrical system inlined using implicit Euler’s method
with the goal of showing that a system can be broken into parts by introdu-
cing a delay of information in some equations. Proposition 1 is applied on
the graph with the removed edges. The new graph tells us the complexity
of the algebraic loop after the edges is removed. The system we have chosen
is the electrical circuit shown below.

Figure 21: Electrical circuit

This system can be described by the ODE
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E(t)− VA(t) = 0 (68)

VA(t)− VB(t) = R1 · I1(t) (69)

C1 · V̇B(t) = I4(t) (70)

VB(t)− VC(t) = R2 · I2(t) (71)

C2 · V̇C(t) = I5(t) (72)

VC(t) = R3 · I3(t) (73)

I1(t)− I4(t)− I2(t) = 0 (74)

I2(t)− I5(t)− I3(t) = 0 (75)

E is an outside voltage source. Equations (69), (71) and (73) are for the 3
resistors. Equations (70) and (72) are for the capacitors in the circuit. Equa-
tions (74) and (75) are Kirchoff’s current conservation law. After extending
with the numerical method, which is implicit Euler for the variable appear-
ing in differentiated form in the capacitor equations we get the following
BLT matrix.

Figure 22: The electrical circuits BLT matrix when inlined using implicit
Euler’s method.
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Figure 23: The original algebraic loop is here represented using a graph.

Figure 24: The electrical circuit is split into two subsystems, by connecting
the left part with a fictitious voltage generator V and the right part is
connected by a fictitious current generator I.

This is done by using the previous value for VC in Equation (71) and
using the previous value for I2 in equation (75). This removes 2 edges.
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Figure 25: The algebraic loop is split into two parts. The blue loop repres-
ents the left part of the electrical circuit and the red part represent the right
part of the electrical circuit.

We can see from the graph representing the system that we have managed
to split the algebraic loop into two smaller parts.

To simulate this with the notation used in inlining we suggest that we
stay at every time-step and update the values that makes the systems talk
to each other. To illustrate what we mean by this we write up the simulation
using implicit Euler’s method.

5.3.2 Simulating the detached system

Let us think of the connected circuit as an autonomous implicit ODE

F (ẋ, x, w, ω) = 0

We call the algebraic variables in the left system for w = (I1, I2, I4) and
the algebraic variables in the right system for ω = (I3, I5). The variable that
appear in differentiated form is VB in the left system and VC in the right
system. They come from the conductors in the respective parts.

The differential equation for the left and right part of the circuit is non
autonomous. This is because the behavior of the systems is dependent on a
time dependent outside sources that we call uL(t) and uR(t).
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The left part of the circuit becomes

F1(V̇B, VB, w, uL(t)) =


VA − VB −R1 · I1

C1 · V̇B − I4

VB − uL(t)−R2 · I2

I1 − I4 − I2

 = 0

notice uL(t) in equation 3, this is the fictitious voltage generator.

The right part of the circuit becomes

F2(V̇C , VC , ω, uR(t)) =

 C2 · V̇C − I5

VC −R3 · I3

uR(t)− I5 − I3

 = 0

notice uR(t) in equation 3, this is the fictitious current generator.

We insert implicit Euler’s method into our differential equations and ex-
tend with the numerical method to get the augmented differential equations.
We then add a constraint equation. We now treat the system as a system
of equations.

F∆1(V̇B,VB,VC ,w,uL) =

 F1(V̇B,VB,w,uL)

h · V̇B + VB(tn)−VB

uL −VC

 = 0

F∆2(V̇C ,VC ,ω, I2,uR) =

 F2(V̇C ,VC ,ω,uR)

h · V̇C + VC(tn)−VC

uR − I2

 = 0

Let

F∆(ẋ,x,w,ω,uL,uR) =

[
F∆1(V̇B,VB,VC ,w,uL)

F∆2(V̇C ,VC ,ω, I2,uR)

]
= 0

Using this formulation we hope to give the reader a better understanding
of what happens from Newton’s perspective when one introduces a delay of
information such that the system of equations is split into parts. Let us use
Newton’s method with y = (ẋ,x,w,ω,uL,uR)
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F ′∆(y(i))∆y =− F∆(y(i)) (76)

y(i+1) = ∆y + y(i) (77)

Let us write up the Jacobian. Notice that the first 6 rows are from the left
system and the last 5 rows is from the right system. Since the left system
do not depend on variables in the right system except at where we want
to introduce a delay and vice versa for the right part, we will have this
structure.

F ′∆ =

∂f11
∂V̇B

0 ∂f11
∂VB

0 ∂f11
∂I1

∂f11
∂I2

0 ∂f11
∂I4

0 ∂f11
∂uL

0

∂f12
∂V̇B

0 ∂f12
∂VB

0 ∂f12
∂I1

∂f12
∂I2

0 ∂f12
∂I4

0 ∂f12
∂uL

0

∂f13
∂V̇B

0 ∂f13
∂VB

0 ∂f13
∂I1

∂f13
∂I2

0 ∂f13
∂I4

0 ∂f13
∂uL

0

∂f14
∂V̇B

0 ∂f14
∂VB

0 ∂f14
∂I1

∂f14
∂I2

0 ∂f14
∂I4

0 ∂f14
∂uL

0

∂f15
∂V̇B

0 ∂f15
∂VB

0 ∂f15
∂I1

∂f15
∂I2

0 ∂f15
∂I4

0 ∂f15
∂uL

0

∂f16
∂V̇B

0 ∂f16
∂VB

∂f16
∂VC

∂f16
∂I1

∂f16
∂I2

0 ∂f16
∂I4

0 ∂f16
∂uL

0

0 ∂f21
∂V̇C

0 ∂f21
∂VC

0 0 ∂f21
∂I3

0 ∂f21
∂I5

0 ∂f21
∂uR

0 ∂f22
∂V̇C

0 ∂f22
∂VC

0 0 ∂f22
∂I3

0 ∂f22
∂I5

0 ∂f22
∂uR

0 ∂f23
∂V̇C

0 ∂f23
∂VC

0 0 ∂f23
∂I3

0 ∂f23
∂I5

0 ∂f23
∂uR

0 ∂f24
∂V̇C

0 ∂f24
∂VC

0 0 ∂f24
∂I3

0 ∂f24
∂I5

0 ∂f24
∂uR

0 ∂f25
∂V̇C

0 ∂f25
∂VC

0 ∂f25
∂I2

∂f25
∂I3

0 ∂f25
∂I5

0 ∂f25
∂uR
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Rearanging the columns we get

F ′∆ =

∂f11
∂V̇B

∂f11
∂VB

∂f11
∂I1

∂f11
∂I2

∂f11
∂I4

∂f11
∂uL

0 0 0 0 0

∂f12
∂V̇B

∂f12
∂VB

∂f12
∂I1

∂f12
∂I2

∂f12
∂I4

∂f12
∂uL

0 0 0 0 0

∂f13
∂V̇B

∂f13
∂VB

∂f13
∂I1

∂f13
∂I2

∂f13
∂I4

∂f13
∂uL

0 0 0 0 0

∂f14
∂V̇B

∂f14
∂VB

∂f14
∂I1

∂f14
∂I2

∂f14
∂I4

∂f14
∂uL

0 0 0 0 0

∂f15
∂V̇B

∂f15
∂VB

∂f15
∂I1

∂f15
∂I2

∂f15
∂I4

∂f15
∂uL

0 0 0 0 0

∂f16
∂V̇B

∂f16
∂VB

∂f16
∂I1

∂f16
∂I2

∂f16
∂I4

∂f16
∂uL

0 ∂f16
∂VC

0 0 0

0 0 0 0 0 0 ∂f21
∂V̇C

∂f21
∂VC

∂f21
∂I3

∂f21
∂I5

∂f21
∂uR

0 0 0 0 0 0 ∂f22
∂V̇C

∂f22
∂VC

∂f22
∂I3

∂f22
∂I5

∂f22
∂uR

0 0 0 0 0 0 ∂f23
∂V̇C

∂f23
∂VC

∂f23
∂I3

∂f23
∂I5

∂f23
∂uR

0 0 0 0 0 0 ∂f24
∂V̇C

∂f24
∂VC

∂f24
∂I3

∂f24
∂I5

∂f24
∂uR

0 0 0 ∂f25
∂I2

0 0 ∂f25
∂V̇C

∂f25
∂VC

∂f25
∂I3

∂f25
∂I5

∂f25
∂uR
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F ′∆ =

∂f11
∂V̇B

∂f11
∂VB

∂f11
∂I1

∂f11
∂I2

∂f11
∂I4

0 0 0 0 0 0

∂f12
∂V̇B

∂f12
∂VB

∂f12
∂I1

∂f12
∂I2

∂f12
∂I4

0 0 0 0 0 0

∂f13
∂V̇B

∂f13
∂VB

∂f13
∂I1

∂f13
∂I2

∂f13
∂I4

∂f13
∂uL

0 0 0 0 0

∂f14
∂V̇B

∂f14
∂VB

∂f14
∂I1

∂f14
∂I2

∂f14
∂I4

0 0 0 0 0 0

∂f15
∂V̇B

∂f15
∂VB

∂f15
∂I1

∂f15
∂I2

∂f15
∂I4

0 0 0 0 0 0

0 0 0 0 0 1 0 ∂f16
∂VC

0 0 0

0 0 0 0 0 0 ∂f21
∂V̇C

∂f21
∂VC

∂f21
∂I3

∂f21
∂I5

0

0 0 0 0 0 0 ∂f22
∂V̇C

∂f22
∂VC

∂f22
∂I3

∂f22
∂I5

0

0 0 0 0 0 0 ∂f23
∂V̇C

∂f23
∂VC

∂f23
∂I3

∂f23
∂I5

∂f23
∂uR

0 0 0 0 0 0 ∂f24
∂V̇C

∂f24
∂VC

∂f24
∂I3

∂f24
∂I5

0

0 0 0 ∂f25
∂I2

0 0 0 0 0 0 1




Notice what changes when we instead introduce a delay in the corres-

ponding constraint equations, i.e,

F̃∆1(V̇B,VB,w,uL) =

 F1(V̇B,VB,w,uL)

h · V̇B + VB(tn)−VB

uL − VC(tn)

 = 0

F̃∆2(V̇C ,VC ,ω,uR) =

 F2(V̇C ,VC ,ω,uR)

h · V̇C + VC(tn)−VC

uR − I2(tn)

 = 0

F̃∆(y) =

[
F̃∆1(V̇B,VB,w,uL)

F̃∆2(V̇C ,VC ,ω,uR)

]
= 0

F̃ ′∆(y(i))∆y =− F̃∆(y(i)) (78)

y(i+1) = ∆y + y(i) (79)
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the difference in F̃ ′∆ is that we have forced two elements to be zero.
Consequently, all vectors in the blue block are linearly independent to all
the vectors in the red block.

F̃ ′∆ =

∂f11
∂V̇B

∂f11
∂VB

∂f11
∂I1

∂f11
∂I2

∂f11
∂I4

0 0 0 0 0 0

∂f12
∂V̇B

∂f12
∂VB

∂f12
∂I1

∂f12
∂I2

∂f12
∂I4

0 0 0 0 0 0

∂f13
∂V̇B

∂f13
∂VB

∂f13
∂I1

∂f13
∂I2

∂f13
∂I4

∂f13
∂uL

0 0 0 0 0

∂f14
∂V̇B

∂f14
∂VB

∂f14
∂I1

∂f14
∂I2

∂f14
∂I4

0 0 0 0 0 0

∂f15
∂V̇B

∂f15
∂VB

∂f15
∂I1

∂f15
∂I2

∂f15
∂I4

0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 ∂f21
∂V̇C

∂f21
∂VC

∂f21
∂I3

∂f21
∂I5

0

0 0 0 0 0 0 ∂f22
∂V̇C

∂f22
∂VC

∂f22
∂I3

∂f22
∂I5

0

0 0 0 0 0 0 ∂f23
∂V̇C

∂f23
∂VC

∂f23
∂I3

∂f23
∂I5

∂f23
∂uR

0 0 0 0 0 0 ∂f24
∂V̇C

∂f24
∂VC

∂f24
∂I3

∂f24
∂I5

0

0 0 0 0 0 0 0 0 0 0 1




Rewriting the respective Newton iterations in fixed point form we get

ϕ(y) =y− F ′∆(y)−1F∆(y) (80)

ϕ̃(y) =y− F̃ ′∆(y)−1F̃∆(y) (81)

Iterations based on ϕ and ϕ̃ might converge to a fixed point, but not neces-
sarily to the same fixed point. The delay of information that was introduced
has an exchange of information between the time steps. Let us change the
exchange to an exchange between the Newton iterations.
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5.4 On fixed point form

Notice that

F̃ ′∆(y(i))∆y =− F̃∆(y(i)) (82)

y(i+1) = ∆y + y(i) (83)

is the same as

F̃ ′∆1
(y

(i)
1 )∆y1 =− F̃∆1(y

(i)
1 ) (84)

y
(i+1)
1 = ∆y1 + y

(i)
1 (85)

F̃ ′∆2
(y

(i)
2 )∆y2 =− F̃∆2(y

(i)
2 ) (86)

y
(i+1)
2 = ∆y2 + y

(i)
2 (87)

where y1 = (V̇ B,V B,w,uL) and y2 = (V̇ C ,V C ,ω,uR) and

F̃ ′∆1
=

∂f11
∂V̇B

∂f11
∂VB

∂f11
∂I1

∂f11
∂I2

∂f11
∂I4

0

∂f12
∂V̇B

∂f12
∂VB

∂f12
∂I1

∂f12
∂I2

∂f12
∂I4

0

∂f13
∂V̇B

∂f13
∂VB

∂f13
∂I1

∂f13
∂I2

∂f13
∂I4

∂f13
∂uL

∂f14
∂V̇B

∂f14
∂VB

∂f14
∂I1

∂f14
∂I2

∂f14
∂I4

0

∂f15
∂V̇B

∂f15
∂VB

∂f15
∂I1

∂f15
∂I2

∂f15
∂I4

0

0 0 0 0 0 1





F̃ ′∆2
=

∂f21
∂V̇C

∂f21
∂VC

∂f21
∂I3

∂f21
∂I5

0

∂f22
∂V̇C

∂f22
∂VC

∂f22
∂I3

∂f22
∂I5

0

∂f23
∂V̇C

∂f23
∂VC

∂f23
∂I3

∂f23
∂I5

∂f23
∂uR

∂f24
∂V̇C

∂f24
∂VC

∂f24
∂I3

∂f24
∂I5

0

0 0 0 0 1





47



The first system updates the variables (V̇ B,V B,w) and it used uL in-
stead of V C in equation 3 because of the delay of information. In the second
system we update the variables (V̇ C ,V C ,ω) and we used the value uR in-
stead of I2 in equation 3. What we did in the first systems is to estimate
VC by VC(tn) and we estimated I2 by I2(tn) in the second system.

We make one change to this, we change the right hand side in equation
(84) from F̃∆1(V̇B,VB,w,uL) to F∆1(V̇B,VB,w,uL,V C)

and the right hand side in equation (86) from F̃∆2(V̇C ,VC ,ω,uR) to
F∆2(V̇C ,VC ,ω,uR, I2) then we write this Newton iteration as

F̃ ′∆1
(y

(i)
1 )∆y1 = −F∆1(y

(i)
1 ) (88)

y
(i+1)
1 = ∆y1 + y

(i)
1 (89)

F̃ ′∆2
(y

(i)
2 )∆y2 = −F∆2(y

(i)
2 ) (90)

y
(i+1)
2 = ∆y2 + y

(i)
2 (91)

rewriting this to get it on fixed point form

y
(i+1)
1 = y

(i)
1 − F̃

′
∆1

(y
(i)
1 )−1F∆1(y

(i)
1 ) (92)

y
(i+1)
2 = y

(i)
2 − F̃

′
∆2

(y
(i)
2 )−1F∆2(y

(i)
2 ) (93)

Let x = (y1,y2) and let

ϕ(x) =

[
y1 − F̃ ′1(y1)−1F∆1(y1)

y2 − F̃ ′2(y2)−1F∆2(y2)

]
= x (94)

The benefit of the introducing the delay of information is that instead
of solving a linear system of 9 × 9, we solve two systems in parallel which
are 5 × 5 and 4 × 4 respectively. Next we will try to get control over the
convergence of the new method.
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6 Convergence analysis

In this section we use Banach’s fixed point theorem [4] to investigate the
convergence of Newton’s method when forcing very specific elements in the
Jacobian to be zero.

Assume that the iteration matrix B(x) is invertable, then the fixed point
x∗ of

ϕ(x) = x−B(x)−1F (x)

is a root of F (x). If we define the sequence

x(i+1) = x(i) −B(x(i))−1F (x(i))

we can use Banach fixed point theorem to see if this sequence converges to x∗.

Notice that when B(x) = F ′(x) we have Newton’s method. In prac-
tice we often use an approximation B(x) ≈ F ′(x) . One such example is
B(x) = F ′(x(0)), this is known as simplified Newton’s method.

Introducing a delay of information such that we split the electrical circuit
into two parts can be seen as changing B(x) = F ′(x) to a very specific
approximation B(x) ≈ F ′(x). The aim of this section is to investigate when
such a delay can be justified by Banach’s fixed point theorem.

Definition 4. A function ϕ : D ⊆ Rn → Rn. ϕ is called Lipschitz continu-
ous on D0 ⊆ D. If there exists a constant L such that

||ϕ(x)−ϕ(y)|| ≤ L · ||x− y|| ∀x, y ∈ D0

if L ∈ [0,1) we say ϕ is a contraction.

Theorem 1 (Banach’s fixed point). Let ϕ : D ⊆ Rn → Rn be a contraction
on a closed set D0 ⊆ D and suppose that ϕ(D0) ⊂ D0 , then ϕ admits a
unique fixed point x∗ ∈ D0, i.e, ϕ(x∗) = x∗.
Furthermore, for every x(0) ∈ D0 the sequence {x(k)}∞k=0 defined by ϕ(x(k)) =
x(k+1) converges to this fixed point and the a priori error estimate

||x(k) − x∗|| ≤ Lk

1− L
||x(1) − x(0)||

holds.
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6.1 The linear case

Assume that F (x) = Ax + b, then Newton’s method on F (x) converges in
one step. Changing elements in B(x) and then taking an exact inverse can
be generalized using

Theorem 2. Woodbury’s matrix identity
Let A ∈ Rn×n be a invertable matrix and let U ∈ Rn×k, V ∈ Rk×n and

let C ∈ Rk×k be invertable. Then if

(C−1 + V A−1U)

is invertable, we have

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Proof. see [7].

Let us denote the Newton iteration by

ϕ(x) =x− F ′(x)−1F (x) (95)

notice that

ϕ(x)−ϕ(y) = x−A−1(Ax + b)− y +A−1(Ay + b) = 0 (96)

The new method where we force elements in the Jacobian to be zero is a mix
of Newton’s method and a fixed-point method. We define our fixed point
map by

ϕ̃(x) =x− (A+ UCV )−1F (x) (97)

Let us estimate the Lipschitz constant of ϕ̃

||ϕ̃(x)− ϕ̃(y)|| =||x− (A+ UCV )−1F (x)− y + (A+ UCV )−1F (y)|| =
(98)

||ϕ1(x)−ϕ1(y) +A−1U(C−1 + V A−1U)−1V A−1F (x)− (99)

A−1U(C−1 + V A−1U)−1V A−1F (y)|| = (100)

||A−1U(C−1 + V A−1U)−1V A−1F (x)− (101)

A−1U(C−1 + V A−1U)−1V A−1F (y)|| = (102)
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||A−1U(C−1 + V A−1U)−1V A−1(Ax + b)−A−1U(C−1 + V A−1U)−1V A−1(Ay + b)|| =
(103)

||A−1U(C−1 + V A−1U)−1V (x− y)|| ≤ ||A−1U(C−1 + V A−1U)−1V || · ||x− y||
(104)

hence the new method converges if

||A−1U(C−1 + V A−1U)−1V || < 1 (105)

The goal of adding UCV to A is to produce blocks in A + UCV where
all the vectors in one block are linearly independent to all the vectors in the
other blocks. This results in solving smaller linear systems but using more
Newton iterations.
Let us look at how this condition can be applied on a mechanical example
and if the physical interpretation agrees with the results.
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6.2 A mechanical example

We leave the electrical system for a moment and look at a mechanical sys-
tem. Mechanical systems are intuitively easier to get an idea if we can
decouple. The example we look at is two identical pendulums connected by
a spring. The aim is to investigate if we can decouple the pendulums by
introducing a delay of information while still maintaining convergence.

Let L be the length between the pendulums pivot point and the center
of mass , let m be the mass of the object attached to the rod, let k be the
spring constant and let g be the gravity constant. The angular displacement
is denoted xA and xB for the right and left pendulums respectively. The
equations of motion for the spring coupled pendulums is linear if xA and
xB is ”small” and non linear if they are large. We want to investigate the
case when xA and xB is ”small” and use (105) to see when we can justify a
decoupling. The equations of motion is given by

ẍA = − g
L
xA −

k

m
(xA − xB) (106)

ẍB = − g
L
xB +

k

m
(xA − xB) (107)

Notice that the equation for one pendulum with small enough angles is

θ̈ = − g
L
θ (108)

the term k
m(xA− xB) in (106) and k

m(xA− xB) in (107) comes from the
potential energy of the spring connecting the pendulums. When either the
spring constant k → 0 or the mass m → ∞ the term from the potential
energy disappears and the pendulums behave more and more like two de-
tached pendulums. Without loss of generality we will henceforth use m = 1.
We will introduce a delay of information of xB in (110) and xA in (112). We
will check condition (105) to see when this is allowed. Our expectation is
that when the spring constant becomes small enough a decoupling is possible

By order reduction we get

52



ẋA = yA (109)

ẏA = − g
L
xA − k(xA − xB) (110)

ẋB = yB (111)

ẏB = − g
L
xB + k(xA − xB) (112)

We insert implicit Euler’s method into our differential equations and ex-
tend with the numerical method to get the augmented differential equations.
We now treat the system as a system of equations.

F∆(ẋA, ẏA, ẋB, ẏB,xA,yA,xB,yB) =



ẋA − yA
ẏA + g

LxA − k(xA − xB)
hẋA + xA(tn)− xA
hẏA + yA(tn)− yA

ẋB − yB
ẏB + g

LxB − k(xB − xA)
hẋB + xB(tn)− xB
hẏB + yB(tn)− yB


= 0

Decoupling the linear system of equations is done by using the previous
value for xB in equation 2 and the previous value for xA in equation 6.
Then the first 4 equations only depend on variables describing the right
pendulum, i.e, ẋA, ẏA,xA, yA and the last 4 equations only depend on
variables describing the left pendulum, i.e, ẋB, ẏB,xB, yB

F̃∆(ẋA, ẏA, ẋB, ẏB,xA,yA,xB,yB) =



ẋA − yA
ẏA + g

LxA − k(xA − xB(tn))
hẋA + xA(tn)− xA
hẏA + yA(tn)− yA

ẋB − yB
ẏB + g

LxB − k(xB − xA(tn))
hẋB + xB(tn)− xB
hẏB + yB(tn)− yB


= 0

We will not solve F∆(x∗) = 0 using Newton’s method, i.e,

ϕ(x) =x− F ′∆(x)−1F (x) (113)
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but we use the new method which is a mix of Newton’s method and a
fixed-point method. We define our fixed point map by

ϕ̃(x) =x− F̃ ′∆(x)−1F (x) (114)

where

F̃ ′∆(x)−1 = (A+ UCV )−1

and C = I ∈ R2×2, U = (e2, e6)T ∈ R7×2 and V = k(e7, e5) ∈ R2×7.

Since F∆(x) = Ax + b is linear we can use the condition

||A−1U(C−1 + V A−1U)−1V || < 1 (115)

to see if ϕ̃ convergence to the same fixed point as ϕ. We plot

||A−1U(C−1 + V A−1U)−1V ||2 (116)

for different step sizes when we varying the spring constant.

Figure 26: For values below the reference value the pendulums can be de-
coupled.

Figure 26 show the expected result, we can decoupled the pendulums
when the spring constant is small enough.
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7 Mixed mode integration from Newton’s perspect-
ive

Next we present an alternative way of mixing explicit and implicit methods
using the ideas discussed in the previous section. Let

ẋ = f(x, t) ∈ RN (117)

and let us use implicit Euler method to solve this

xn+1 = xn + h · f(xn+1, tn+1) (118)

we rewrite this to

F (xn+1, ) = xn+1 − xn − h · f(xn+1, tn+1) = 0 (119)

and apply Newton’s method on (118) to solve for xn+1. We write New-

ton’s method on fixed point form and define the sequence {x(i)
n }∞i=0 by

ϕ(x(i)
n ) = x(i)

n − F ′(x(i)
n )−1F (x(i)

n ) = x(i+1)
n (120)

then under the conditions in Banach’s fixed point theorem this sequence
converges to xn+1.

Let us change the iteration matrix F ′(x)−1 to an approximation. The
approximation we use is B(x)−1 = I. Define the fixed point

ϕ̃(x(i)
n ) = x(i)

n − F (x(i)
n ) (121)

if we just use a single iteration we get

ϕ̃(x(0)
n ) = xn − (xn − xn) + h · f(xn, tn+1) (122)

The idea then becomes, mix explicit and implicit methods using the
iteration matrix. In inline integration it would work like this.
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7.1 Changing the iteration matrix

Let us think of mixed mode integration in inline integration in terms of
changing the iteration matrix. Notice that if we inline a DAE using implicit
Euler’s method the partitioning algorithm will present us with algebraic
loops, i.e, system of equations. These systems have in general the form

G∆(ẋ,x,w, tn+1) =

[
G(ẋ,x,w, tn+1)
−x + h · ẋ + x(tn)

]
= 0 (123)

This means that some of the equations comes from implicit Euler’s
method. Let us assume that we solve this system using Newton’s method,
i.e,

ϕ(y(i)) = y(i) −G′∆(y(i))−1G∆(y(i)) = y(i+1) (124)

we change one variable ż of ẋ from being solved using implicit Euler’s
method

−z + h · ż + z(tn) = 0

to being solved using explicit Euler’s method.

−z + h · ż(tn) + z(tn) = 0

This would change one element in

G′∆(y)

namely
∂G∆(y)

∂ż
= h

would change to zero. This is a rank-one change to the Jacobian, we call
this approximation B(x). Then define the sequence

ϕ̃(y(i)) = y(i) −B(y(i))−1G∆(y(i)) = y(i+1) (125)

then by Banach’s fixed point theorem we have that, if this sequence
converges to y∗, then G∆(y∗) = 0. We used G∆ from the implicit Euler’s
method, but we changed the iteration matrix to where ż is solved using
explicit Euler’s method. The idea is to zero out very specific elements in
the Jacobian and introduce a variable as ”slow” using the iteration matrix.
This gives the user control over the convergence and the method will not
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introduce an error if it converges.

Thus we have introduced a quantifiable way of declaring a variable as
”slow” or ”fast” using the iteration matrix in Newton’s method when inline
integration is used on

F (ẋ, x, w, t) = 0 (126)

8 Discussion and further work

We used a strongly connected component to represent the algebraic loops
and a delay of information was used to removed edges in the strongly con-
nected component. In the electrical circuit we introduced a delay of in-
formation at two places which removed two edges such that the strongly
connected component was split into two smaller strongly connected com-
ponents. Finding edges that would split the strongly connected component
into parts should perhaps not be done by hand. We would therefore like to
explore a graph theoretical idea for which there exists algorithms for. The
idea is based on the following: an edge e of a graph G is a bridge if its
deletion increases the number of strongly connected components of G.

To clarify, a strongly connected component is a representation of the
system of equations that needs to be solved. Removing a bridge would sep-
arate the system of equations that needs to be solved into two parts of lower
dimensions. One algorithm for finding bridges is Tarjan’s bridge search al-
gorithm.

In Section 5.3 we used an electrical circuit as an example to show that
we could split a system of equations into two parts by introducing a delay
of information. We wrote Newton’s method on fixed point form for the
connected electrical circuit as

ϕ(y) =y− F ′∆(y)−1F∆(y) (127)

and for the detached electrical circuit as

ϕ̃(y) =y− F̃ ′∆(y)−1F̃∆(y) (128)

Notice that this is a delay of information together with a exchange of in-
formation between time steps. We mentioned that ϕ and ϕ̃ might converge
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to a fixed point, but not necessarily to the same fixed point. The idea that
we would like to further explore is that, if ϕ̃ converges to a fixed point ỹ∗

could we in practice test if F̃∆(ỹ∗) = 0.

9 Summary

The task was formulated as, Modelon’s real time simulation tool, called
inline integration, must operate without overruns on the DAE

F (ẋ, x, w, t) = 0 ∈ Rnx+nw (129)

The general idea of inline integration was explained in section 2. We
treat

F∆(ẋ,x,w, tn+1) =

[
F (ẋ,x,w, tn+1)
−x + h · ẋ + old(x)

]
= 0 ∈ R2nx+nw (130)

as a system of equations, on which we preform partitioning and tearing.
This is done to reduce the dimensions of the system of equations that needs
to be solved. These symbolic methods presents us with algebraic loops, i.e,
systems of equations, that needs to be solved. Solving these is the most
time requiring part of updating the solution from tn to tn+1. The aim was
therefore to further reduce the dimensions of the algebraic loops while still
preserving the accuracy. We presented two ideas, mixed mode integration
[9] and a delay of information.

In Section 3 the idea of mixed mode integration was introduced on
ODE’s. The idea was to split

ẋ = f(x, t) ∈ RN (131)

into a ”fast” and a ”slow” part, i.e,

ẋS = fS(xS , xF , t) ∈ Rk1 (132)

ẋF = fF (xS , xF , t) ∈ Rk2 (133)

and apply an explicit solver on the ”slow” part and an implicit solver on the
”fast part.
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In Section 4 we used two examples to get a better understanding of inline
integration and how it works with explicit and implicit numerical methods.
The main example was a spring pendulum, where a formulation was chosen
such that we before hand had an idea of what state variables should be
”slow”. We noticed that declaring variables as ”slow” could have more or
less impact in terms of reducing the dimensions of the system of equations
that needs to be solved. We therefore asked, how to suggest to the user a set
of variables that could be declared as slow such that accuracy was preserved
and the dimensions of the system of equations was reduced. The tool we
used to explore the idea came from graph theory.

In Section 5 the algebraic loops was discussed using graph theory, where a
graph was used to represent the algebraic loop. We noticed that introducing
a delay of information removes an edge in the graph. A simple proposition
gave us a tool to see what happened to the graph after an edge was re-
moved. We used a simple electrical circuit as an example to further explore
the idea and noticed that the algebraic loop could be split into two parts by
introducing a delay of information at two places. We formulated the delay
using Newton’s method. We used this formulation to introduce two types of
information exchanges, exchange between time steps and exchange between
the Newton iterations. The second type was viewed as using a very specific
approximation of the Jacobian where certain elements where put to zero.

In Section 6 we used Banach’s fixed point theorem to look at the con-
vergence of Newton’s method when forcing very specific elements in the
Jacobian to be zero and then taking an exact inverse. Using Woodbury’s
matrix identity we got an upper bound for the Lipschitz constant when the
modified Newton’s method where used to find the root of the linear function
F (x) = Ax+ b. The purpose of the modified Newton’s method on the linear
problem was to produce linearly independent blocks in A by adding a matrix
UCV to A. By doing this we could perhaps solve smaller systems to the
expense of using more then one iteration. Two pendulums connected by a
spring modeled as a differential equation when the angles was ”small” was
used as an example to show that we could make a physical interpretation
of when a delay of information could be used and that this interpretation
actually agreed with the upper bound for Lipschitz constant of the modified
Newton’s method.

In Section 7 we explained the idea of mixing explicit and implicit methods
using the iteration matrix. Using this approach an additional error would
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not be introduced if Newton’s method converged.
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