
“output” — 2024/5/15 — 16:15 — page 1 — #1

Hitting the Nail on the Head - Exploring the
Post-Quantum Potential of Rowhammer

Vincent Palmer, Hannes Ryberg

Department of Electrical and Information Technology
Lund University

Supervisor: Qian Guo, Alexander Nilsson

Examiner: Thomas Johansson

May 15, 2024

“output” — 2024/5/15 — 16:15 — page 2 — #2

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2024/5/15 — 16:15 — page i — #3

Abstract

The dense arrangement of memory cells in modern computing systems introduces a
significant concern known as read disturbance errors, stemming from the electrical
properties of the capacitors within memory cells. When a memory cell is read,
there exists a probability that it may inadvertently discharge its stored electrical
charge to neighbouring cells, potentially altering their state from uncharged to
charged.

This phenomenon poses a significant threat to the security of systems and the
integrity of data in memory, as these errors can lead to unintended alteration in
stored information, potentially compromising the confidentiality of sensitive data.

One attack that uses this vulnerability is called Rowhammer. In this attack,
memory rows above and below a targeted memory row are repeatedly accessed.
Through this repeated access, bit-flips can be induced in the targeted row. This
discovery has led to many different applications of the attack, including one de-
tailed in a paper by Michael Fahr Jr. et al. called When Frodo Flips: End-to-End
Key Recovery on FrodoKEM via Rowhammer. In their work, the Rowhammer
attack is utilized to compromise a cryptographic algorithm called FrodoKEM,
rendering it vulnerable to exploitation.

The question arises: How does the attack perform on other platforms? Can we
get a more detailed evaluation, and can it be further modified in order to target
other cryptographic algorithms? That is what we aim to investigate.

We successfully implement the attack in the programming language Rust and show
that the attack is indeed reproducible. Furthermore, we discuss the potential of
using the attack on other algorithms, and argue that it’s theoretically possible if
the attack can be made faster or the victim algorithm can be made slower.

i

“output” — 2024/5/15 — 16:15 — page ii — #4

ii

“output” — 2024/5/15 — 16:15 — page iii — #5

Acknowledgements

We first and foremost want to thank our supervisors, Qian and Alexander for
their support during our work with the thesis. Without their thoughts and ideas
this thesis would not be possible in the first place. We also want to thank the
employees at Advenica for their help and support when problems arose or when
we had questions.

iii

“output” — 2024/5/15 — 16:15 — page iv — #6

iv

“output” — 2024/5/15 — 16:15 — page v — #7

Popular Science Summary
Rowhammer: The Mischievous Patron Cracking Quantum Tomes

Vincent Palmer, Hannes Ryberg

Have you ever wondered how the memory in your computer works? Think of it
like a vast library, its rows of memory cells resembling shelves filled with essential
pieces of data, much like books. Yet, just as accidents can occur in libraries so
too can they happen in computer memory. One such mishap is known as “read
disturbance errors”.

When your computer accesses data from
one location, there’s a risk of unin-
tentionally altering data in neighboring
memory cells. Think of it as pulling out
a book from a shelf in the library and
inadvertently causing books on a neigh-
bouring shelf to topple. This vulnera-
bility poses a significant security risk to
computer memory, potentially leading
to altering of sensitive information. En-
ter “Rowhammer”. In this attack, mem-
ory rows are repeatedly accessed, result-
ing in the alteration—or “flipping”—of
data in neighbouring rows. Almost like
a mischievous patron repeatedly pulling
out and pushing back the same book
on a shelf, eventually causing books on
neighbouring shelves to fall.

Recent research has demonstrated how
Rowhammer can be used to compro-
mise FrodoKEM, a cryptographic algo-

rithm employed for securing communi-
cation. Essentially, its like finding a
way to tamper with the lock of a secure
vault, putting sensitive information at
risk.

Our investigation delved into imple-
menting this attack on other platforms
and its potential to target other cryp-
tographic algorithms. Using Rust as
the programming language for our im-
plementation, we successfully managed
to reproduce the attack and argued for
its theoretical viability on other algo-
rithms.

Understanding and mitigating vulnera-
bilities like this is paramount as our re-
liance on digital data grows. Like a vigi-
lant librarian safeguarding the books on
the shelves, we must ensure that our
sensitive information remains secure in
an ever-evolving digital landscape.

v

“output” — 2024/5/15 — 16:15 — page vi — #8

vi

“output” — 2024/5/15 — 16:15 — page vii — #9

Table of Contents

1 Introduction 1

1.1 Purpose and Goal of this Thesis . 2

1.2 Contributions . 2

1.3 Limitations . 3

1.4 Disposition . 3

2 Background and Theory 5

2.1 Cryptography . 5

2.1.1 Encryption and Decryption 5

2.2 Key Algorithms . 5

2.2.1 Symmetric-Key Algorithms 6

2.2.2 Asymmetric-Key Algorithms 6

2.3 Post-Quantum Cryptography . 6

2.3.1 Lattice-Based Cryptography 7

2.4 Key Encapsulation Mechanisms . 7

2.5 Learning with Errors Problem . 7

2.6 FrodoKEM . 8

2.7 CRYSTALS-Kyber . 9

2.8 Understanding Rowhammer Vulnerabilities 10

2.9 Rowhammer . 10

2.10 Dynamic Random Access Memory (DRAM) 10

2.10.1 Memory Refresh Period 11

2.10.2 The Row Buffer 11

2.10.3 Electrical Charge Leakage 12

2.11 Memory Massaging . 12

2.12 Performance Degradation . 13

vii

“output” — 2024/5/15 — 16:15 — page viii — #10

3 Rowhammering (Method) 15

3.1 Objective of the Attack . 15

3.2 Threat Model . 16

3.2.1 Inherent Requirements of Rowhammer Attacks 16

3.2.2 Threat Model for Our Experimental Setup 16

3.3 Setup . 17

3.4 Mapping Virtual to Physical Addresses 18

3.4.1 Memory Pages 18

3.4.2 Row Index 18

3.4.3 DRAM Bank Mapping 18

3.5 Memory Profiling . 19

3.6 Filtering Pages . 19

3.7 Memory Massaging . 20

3.7.1 The Linux Page Allocator 20

3.7.2 Coercing the Location of the E-matrix 20

3.8 Performance Degradation . 21

3.9 Running the Attack . 22

3.10 Checking for an Induced Error in the E-matrix 22

4 Results 25

5 Discussion 27

5.1 Future Research . 29

5.1.1 DDR3 vs DDR4 29

5.1.2 Rowpress 30

5.1.3 Attacking Kyber 30

6 Conclusion 33

viii

“output” — 2024/5/15 — 16:15 — page ix — #11

List of Figures

2.1 Error matrix of the FrodoKEM algorithm, where R ∈ {640, 976, 1344}
and e is a pseudorandomly generated 16-bit value. 9

2.2 A model of a bank inside DRAM. Each cell corresponds to a single bit
in memory [12]. 11

2.3 Rowhammer. Repeatedly accessing bits marked with X could poten-
tially flip bits marked with O. 11

3.1 Illustration of possible induced errors in the error matrix. The high-
lighted 1 in each column indicates a targeted 256-bit flip, with each
induced bitflip ending up in a unique column. 20

3.2 The set pattern for halfwords in the attacking rows (bit at index 8 set
to 1 and all other bits set to 0). 20

4.1 Box plot illustrating the distribution of bitflip occurrences in mapped
memory pages, showcasing median values, interquartile ranges, and
potential outliers. 26

ix

“output” — 2024/5/15 — 16:15 — page x — #12

x

“output” — 2024/5/15 — 16:15 — page 1 — #13

Chapter 1
Introduction

Nearly all cryptographic algorithms rely on one of three computationally hard
to solve mathematical problems; factorizing an integer, the discrete logarithm
problem and the elliptic curve discrete logarithm problem, these problems all have
one thing in common and that is that they can all be said to be forms of "one-way
functions".

One-way functions are mathematical functions that are easy to compute in one
direction but computationally difficult to reverse. In other words, given an input,
it’s easy to compute the output, but given the output, it’s computationally infea-
sible to determine the original input. Thus making these kinds of functions ideal
for ensuring data security.

For an ordinary computer solving these problems is very computationally inten-
sive, and cannot be solved by any other method than essentially brute-forcing the
solution. A sufficiently powerful quantum computer, however, could disrupt this,
as there is an algorithm for quantum computers called Shor’s algorithm which
potentially could solve any of these problems easily.

To combat this potential future disruption of known cryptography systems, efforts
have been made to develop so-called post-quantum cryptographic algorithms. These
are algorithms which instead rely on problems that—as far as we know—cannot
be easily solved on a quantum computer. In order to allow for a standardization
of which post-quantum algorithms to use in the future, the National Institute
of Standards and Technology (NIST) initiated an “algorithm competition” called
NIST PQC standardization. This took place 2022 and resulted in the algorithm
CRYSTALS-Kyber (or just Kyber) being chosen as the proposed future standard
to use when working with public-key encryption and key-establishment [19].

During roughly the same time as the competition took place, a paper was published
which described a successful attack on the post-quantum algorithm FrodoKEM.
The attack used an exploit called Rowhammer to induce flips of single bits in
working memory. By flipping specifically chosen bits, an error could be induced
into the generated public key, which in turn made it possible to retrieve information
about the private key generated by FrodoKEM.

1

“output” — 2024/5/15 — 16:15 — page 2 — #14

2 Introduction

Even though FrodoKEM didn’t win the NIST PQC standardization effort it still
remained a strong contender for standardization, as it lasted until round 3 of 4
of the competition. This is further proven by the German authority BSI recom-
mending the use of FrodoKEM [9]. Furthermore FrodoKEM as an algorithm is
very similar to Kyber and even though it is a slower algorithm it is more conser-
vative in its implementation.

Fahr et al. concludes their paper When Frodo Flips: End-to-End Key Recovery on
FrodoKEM via Rowhammer with mentioning that they believe other NIST PQC
algorithms could be broken using a similar attack as the one presented in the
paper, and specifically names Kyber as one of the potential targets [8]. The aim
of this master’s thesis is therefore to explore that claim and hopefully shed some
light on the possibility of breaking Kyber.

1.1 Purpose and Goal of this Thesis

In this master’s thesis, we investigate the impact and usability of Rowhammer
attacks on post-quantum algorithms. Our primary goal is to reproduce the attack
discovered by Fahr et al. by implementing it in the programming language Rust. In
addition, we aim to explore the feasibility of implementing such attacks specifically
using the Rust programming language as our sole implementation language.

The claim made by Fahr et al. that a similar attack should theoretically be able to
target Kyber forms the basis of the secondary goal of this thesis. We aim to modify
and expand our implemented attack to be able to target Kyber, which is proposed
as the future standard of post-quantum algorithms by NIST. Specifically, we seek
to investigate whether Kyber is susceptible to a Rowhammer attack similar to
the one described in the paper When Frodo Flips: End-to-End Key Recovery on
FrodoKEM via Rowhammer.

1.2 Contributions

The primary contribution of this thesis lies in the development, implementation
and exploration of a novel attack methodology targeting the FrodoKEM crypto-
graphic algorithm, as initially developed and proposed by Fahr et al.. Through
rigorous experimentation and analysis, we demonstrate the feasibility of inducing
bit-flips by employing a Rowhammer attack on the FrodoKEM key generation
process. Specifically, this attack targets the error matrix of the FrodoKEM pub-
lic key, potentially compromising the integrity of the generated keys and leading
to security vulnerabilities. Additionally, our investigation extends to exploring
the potential applicability of the attack methodology to other cryptographic al-
gorithms, such as Kyber. By highlighting the importance of protecting memory
against Rowhammer attacks, our findings contribute to a broader understanding
of hardware-based-attack and memory vulnerabilities.

“output” — 2024/5/15 — 16:15 — page 3 — #15

Introduction 3

1.3 Limitations

Developing and implementing an attack of this complexity is a significant under-
taking. It requires an in-depth understanding of various hardware and software
specifications, as well as extensive experimentation and iteration. While devel-
oping an entirely new theoretical attack from scratch would be an impressive
achievement, it exceeds the practical scope of this thesis. Instead, our goal will be
to implement and modify an existing attack methodology as a proof of concept.

It is important to note that the proposed attack methodology has certain techni-
cal prerequisites. For the purposes of our theoretical analysis, we’ll assume that
the attack process will be executed with elevated privileges, and that ASLR1 is
disabled on the target system. There exists known techniques to bypass these re-
quirements [6, 23], but incorporating them was deemed too complex for the scope
of this thesis. However, a more comprehensive attack scenario could potentially
incorporate such techniques to address these limitations.

The primary objective of this thesis is therefore to provide a theoretical framework
and a practical demonstration of the proposed attack methodology, highlighting
its potential impact and implications. By modifying an existing attack, we aim
to contribute to the understanding of these complex security vulnerabilities and
foster further research in this field.

1.4 Disposition

Chapter 2 aims to present important background information needed to under-
stand the problem at hand, present the scenario as well as the necessary theory
that is included in the thesis. The contents of this chapter ranges from post-
quantum cryptography to Dynamic Random Access Memory (DRAM). Chapter 3
covers the methodology used to be successful in the attack i.e. how is the attack
carried out, what steps have been taken and what needs to work in order to ex-
tract the correct information from the targeted system. Chapter 4 is then used to
present the results of our investigation and what information was extracted from
our attack. Chapter 5 aims to discuss the relevance of the results and if they
are meaningful enough. Lastly Chapter 6 is used as a conclusion to wrap up the
thesis.

1ASLR stands for Adress Space Layout Randomization and is used to randomize the
locations of data loaded into memory.

“output” — 2024/5/15 — 16:15 — page 4 — #16

4 Introduction

“output” — 2024/5/15 — 16:15 — page 5 — #17

Chapter 2
Background and Theory

2.1 Cryptography

Cryptography is a very important field in today’s day and age. Since messages
and data is almost always sent over the internet and through networks where it
might be readable for unauthorized users we want to have some way of making
data readable only to the intended recipient of the message. This problem is solved
by cryptography. Say that we have two people Alice and Bob that wants to send
a message between each other that they do not want a third person Eve to be
able to read. To achieve this secure communication Alice can encrypt the message
she wants to send to Bob with a key or secret that only they know, then Bob will
be able to decrypt the message once received, but Eve who does not know the
secret cannot decrypt the transmitted message and in turn can’t read the actual
message.

2.1.1 Encryption and Decryption

Encryption and decryption are processes that are used in cryptography to achieve
confidentiality in messages. This confidentiality can be achieved in many different
ways but the most common way is through cryptographic key algorithms.

Encryption is the process of turning readable data (plaintext) into unreadable data
(ciphertext). This is achieved by using said key algorithms on the data to turn
the plaintext unreadable. Decryption is the exact opposite process, turning the
ciphertext into plaintext by using the decryption method provided by the employed
cryptographic algorithm.

2.2 Key Algorithms

Modern day cryptographic algorithms can be broadly classified in two different
ways, depending on the type of the used keys: Symmetric-key algorithms and
Asymmetric-key algorithms (public-key algorithms).

5

“output” — 2024/5/15 — 16:15 — page 6 — #18

6 Background and Theory

2.2.1 Symmetric-Key Algorithms

Symmetric-key algorithms, also referred to as private-key or secret-key algorithms,
constitute a significant component of modern cryptography. These algorithms op-
erate by utilizing a shared secret key, known to both the message sender and
receiver. This secret key serves as the basis for both the encryption process (per-
formed by the sender) and the decryption process (performed by the receiver).
Symmetric key algorithms stand out for having high efficiency and speed, render-
ing them well-suited for the encryption of big volumes of data. However, a big
challenge accompanying the use of these algorithms relates to the secure distri-
bution and management of these secret keys to facilitate efficient communication
between parties. This is particularly challenging in situations where safeguarding
the process of key exchange is of paramount concern.

One of the most pervasive symmetric-key algorithms in use today is the Advanced
Encryption Standard (AES). The AES algorithm supports various key lengths,
offering a robust level of security. Its versatility is evident in its widespread appli-
cation across contemporary information systems.

2.2.2 Asymmetric-Key Algorithms

Asymmetric-key algorithms, also referred to as public-key algorithms, introduce
a novel concept in cryptography. In contrast to symmetric-key algorithms, which
use a single key for both encryption and decryption, asymmetric-key algorithms
utilize a pair of keys: one for encryption (public key) and another for decryption
(private key), collectively known as a public-private key pair. The security of
asymmetric-key algorithms is rooted in the intricate mathematical relationships
behind these key pairs. These relationships render it computationally unfeasible
to deduce the private key from the public key, despite their inherent connection,
i.e. making the algorithms act as one-way functions. This fundamental structure
allows anyone to encrypt data by using the recipient’s public key, but only the
intended message recipient can decipher it by using their private key. Because of
these mathematical relationships asymmetric algorithms are also not suitable for
bulk data due to the computational overhead and slower speed when compared to
symmetric algorithms.

Unlike symmetric-key algorithms, asymmetric-key algorithms offer a secure means
of communication over insecure networks. This advantage arises from the ability
to openly exchange public keys without directly jeopardizing the security of the
corresponding private key within the pair.

2.3 Post-Quantum Cryptography

With the likely arrival of quantum computers in the future a new problem arises.
“How will our current cryptographic systems stay secure?”. The answer is; they
won’t. With sufficiently powerful quantum computers currently used crypto-
graphic algorithms will most likely be broken and rendered insecure. For that
reason new quantum-safe cryptographic algorithms are needed. This is where

“output” — 2024/5/15 — 16:15 — page 7 — #19

Background and Theory 7

post-quantum cryptography (PQC) comes in. Post-quantum cryptography refers
to cryptographic algorithms that are thought to be secure against cryptographic
attacks by a quantum computer. The problem with current cryptographic algo-
rithms is that they mostly rely on one of three computationally hard to solve
mathematical problems. Integer factorization, the discrete logarithm problem or
the elliptic-curve discrete logarithm problem. Every single one of these problems
could be relatively easily solved by a quantum computer running an algorithm
called Shor’s algorithm [5]. This is what post-quantum cryptography aims to
prevent.

2.3.1 Lattice-Based Cryptography

A solution to this problem are cryptographic systems based on lattices. These
lattices are in a way multidimensional grids that extends infinitely in all direc-
tions. The lattices used in cryptographic systems are defined by sets of vectors
and are characterized by a lattice basis. The relationships between these vectors
then give rise to computationally challenging problems which is what lattice-based
cryptography is based upon.

As mentioned lattice-based cryptography relies on the difficulty of lattice prob-
lems, especially the Shortest Vector Problem (SVP) and the Learning With Errors
(LWE) problem. These problems when solved efficiently would present significant
security concerns to lattice-based schemes. But due to the underlying structure
of lattices these problems are believed to be computationally unfeasible to crack,
even for quantum computers [20].

2.4 Key Encapsulation Mechanisms

Key encapsulation mechanisms are a way of being able to use symmetric keys
for communication but transmitting the used symmetric key with asymmetric-key
algorithms. Thus giving us the security of asymmetric-key algorithms while still
having the efficiency and speed of symmetric-key algorithms. The way this works is
by first generating a random symmetric key and then encrypting it using a chosen
public-key algorithm. The recipient of the public key encrypted message then
decrypts it and in turn receives the symmetric key to be used in the communication.
This is very efficient since the only real efficiency downside of this mechanism is
when first key establishment is computing. After this, both the recipient and
sender share the same symmetric key to use in their communication and can send
long messages with much smaller computational overhead due to using symmetric
encryption as opposed to asymmetric encryption [7].

2.5 Learning with Errors Problem

The Learning With Errors (LWE) problem is one of the mathematical problems
that lattice-based cryptography is based on. It uses the idea of representing the
secret information as a set of equations with errors in them, i.e. LWE is a way of
hiding the value of secrets by introducing noise to them. Furthermore LWE can

“output” — 2024/5/15 — 16:15 — page 8 — #20

8 Background and Theory

be reduced to lattice problems making it fall into the lattice category of crypto-
graphical problems. The LWE distribution is defined as:

Let n, q be positive integers, and let χ be a distribution over Z. For an s ∈ Zn
q ,

the LWE distribution As,χ is the distribution over Zn
q × Zq obtained by choosing

a ∈ Zn
q uniformly at random and an integer error e ∈ Z from χ, and outputting

the pair (a, ⟨a, s⟩+ e mod q) ∈ Zn
q × Zq [1].

In essence, the goal of the LWE problem is to solve a system of linear equations
despite the presence of errors in the equations.

When it comes to computational LWE problems there are two kinds of problems:
search which has the goal of recovering a secret s ∈ Zn

q given a certain num-
ber of samples drawn from the LWE distribution As,χ; and decision which is to
distinguish a certain number of samples drawn from the LWE distribution from
uniformly random samples. For both of these variants of the problem, there are
two distributions to consider. The first is the uniform distribution of the secret
s ∈ Zn

q and the distribution χn mod q where each coordinate is drawn from the
error distribution χ and reduced modulo q. This form is called the "normal form"
of LWE [24].

2.6 FrodoKEM

FrodoKEM is a family of IND-CCA2 secure key-encapsulation mechanisms that
are built to be conservative yet practical post-quantum constructions. IND-CCA2
or "indistinguishability under chosen-ciphertext attack" is a security property in
cryptography that ensures an adversary cannot distinguish encryptions of two
different plaintexts, even when having access to an "decryption oracle" capable of
decrypting arbitrary ciphertexts [4].

The security of the mechanisms comes from the usage of LWE on algebraically
unstructured lattices. The core building block of FrodoKEM is a public-key en-
cryption scheme called FrodoPKE whose IND-CPA security is tightly related to the
hardness of the LWE problem. IND-CPA or "indistinguishability under chosen-
plaintext attack" is like IND-CCA2, a security property in cryptographic algo-
rithms, but unlike IND-CCA2, IND-CPA means that if an adversary has access to
two messages of the same length and once one of the messages is encrypted, the
adversary has a hard time telling which one of the two messages was encrypted
[4].

FrodoKEM further enhances this security by using a so called Fujisaki-Okamoto
(FO) [11] transform to the existing FrodoPKE scheme, thus making it IND-CCA2
secure.

In FrodoKEM the key pair generation process involves the utilization of three
distinct matrices: the secret matrix (S), the error matrix (E) and the public key
matrix (A). The secret matrix is comprised of secret values known only to the
key owner and serves as the foundation for the private key while the public key
matrix is a pseudorandomly generated matrix of size n × n with coefficients in

“output” — 2024/5/15 — 16:15 — page 9 — #21

Background and Theory 9

e1,1 . . . e1,8
...

. . .
...

eR,1 . . . eR,8

Figure 2.1: Error matrix of the FrodoKEM algorithm,

where R ∈ {640, 976, 1344} and e is a pseudorandomly gener-
ated 16-bit value.

Zq [1]. Finally we have the error matrix, this consists of random noise values that
are added to the public key to enhance its security. This enhancing of security
is due to the error matrix aiming to obscure the relationship between the public
and private keys, along with making it more computationally difficult to derive the
private key from the public key. Additionally, it’s worth noting that the dimensions
of the error matrix depends on the parameters employed in FrodoKEM. However,
the number of rows in the matrix is either, 640, 976 or 1344, while the number of
columns is set to 8. A visual representation of the error matrix can be found in
Figure 2.1.

The error matrix plays a crucial role in ensuring the security of the mechanisms
behind FrodoKEM. However, if an attacker can somehow manipulate or modify
the values in the error matrix, it has the potential of compromising the security
of the system. The consequences of such an attack can be severe. By modifying
the error matrix in specific ways an attacker may be able to derive the private key
from the public key, allowing them to decrypt messages encrypted by the public
key. This should be computationally difficult to do, but by manipulating the error
matrix in specific ways, the relationship between the public key and private key is
made more clear.

With its careful usage of LWE and leveraging its computational hardness FrodoKEM
aims to create a secure and robust cryptographical system that is resilient to both
classical and quantum attacks. Furthermore the design behind FrodoKEM uses
conservative parameterization and aims to be quite secure while still remaining as
simple to use as possible.

2.7 CRYSTALS-Kyber

CRYSTALS-Kyber, or simply Kyber is quite similar to FrodoKEM since it is also
a family of cryptographic algorithms designed for post-quantum security. While
both Kyber and FrodoKEM share similarities in their construction and reliance on
the LWE problem, there are fundamental differences in their underlying mathemat-
ical structures. Unlike FrodoKEM, which is based on the standard LWE problem
on algebraically unstructured lattices, Kyber instead uses the Ring-LWE problem,
operating over the algebraic ring Rq = Zq[X]/(Xn + 1) instead of the finite field
Zq. This algebraic structure offers Kyber several advantages, including efficient

“output” — 2024/5/15 — 16:15 — page 10 — #22

10 Background and Theory

polynomial arithmetic and modular reduction, critical for cryptographic construc-
tions. Consequently, Kyber demonstrates a greater efficiency over FrodoKEM.
By leveraging the inherent properties of the ring to facilitate faster cryptographic
operations, allowing reduced computational overhead and improving performance
in resource-constrained environments [3].

2.8 Understanding Rowhammer Vulnerabilities

In the upcoming sections, we aim to provide the reader with insight into the foun-
dational concepts and theory that underlie the attack explored in this thesis. By
shedding light on necessary key concepts required for the successful implementa-
tion of the attack, our objective is to offer a comprehensive understanding of the
mechanisms underlying these sorts of attacks on RAM memory and why they are
possible in the first place.

2.9 Rowhammer

Rowhammer is a memory exploit first presented in 2014 by Kim et al. [16]. By
targeting physically adjacent memory addresses in RAM with rapid memory reads
it is possible to have electrical charge “leak” from one memory cell to another. The
effect of this is that physically adjacent bits have the potential of “flipping”, i.e.
changing their value from 0 to 1, or 1 to 0. This was the foundation for the attack
on FrodoKEM presented by Fahr et al. [8].

The exploit in itself poses quite a significant security risk since it can lead to unex-
pected changes to data stored in memory, potentially compromising the integrity
and security of systems and processes on a host. By using Rowhammer to induce
bit flips in memory an attacker could manipulate sensitive information, undermine
cryptographic protocols or even gain unathorized access to systems.

A graphical look at how Rowhammer works in memory banks can be found in
Figure 2.3.

2.10 Dynamic Random Access Memory (DRAM)

The working memory of a computer—so-called random access memory, or RAM—
is currently often of the dynamic type, namely dynamic RAM, or DRAM. This
memory is split up into multiple banks, and these banks each contain a matrix-like
formation of single bits (see Figure 2.2). Each of these bits consist of a capacitor
and a transistor. The capacitor can be either discharged or charged, and these
two states each correspond to the two possible values of a bit; 0 and 1 respectively.
The operating system of a computer interacts with the RAM to perform several
tasks essential for the operation of the computer. When a program is executed, its
instructions and data are loaded into the RAM from storage devices like hard drives
connected to the computer. This allows for faster access to the data compared to
fetching it directly from the storage device.

“output” — 2024/5/15 — 16:15 — page 11 — #23

Background and Theory 11

Figure 2.2: A model of a bank
inside DRAM. Each cell cor-
responds to a single bit in
memory [12].

Figure 2.3: Rowhammer. Re-
peatedly accessing bits
marked with X could poten-
tially flip bits marked with
O.

As the CPU processes instructions it reads and writes data to and from the RAM.
This data transfer is facilitated by the RAMs random access nature hence the
name RAM, allowing multiple memory cells to be accessed at the same time and
in any order. Dynamic RAM needs to be periodically refreshed in order to preserve
to data over time hence the term “dynamic”. The refreshing of data is managed by
the memory controller in the computer and is performed automatically requiring
no intervention from the CPU or OS.

2.10.1 Memory Refresh Period

As stated, the memory in DRAM needs to be refreshed over time in order to
keep data in the memory. The reason for this is that the electrical charge in
the capacitors behind each memory cell quickly diminishes over time. To prevent
data loss it therefore necessitates the existence of a memory refresh circuit, which
periodically reads and rewrites the memory contained in the entire bank. By doing
this, the electrical charge in each capacitor is restored to their fully charged or
fully discharged state. The time between each refresh is called the memory refresh
period. This period varies between models, but as per the JEDEC standard it’s
usually 64 ms or less [15]. The operation of the circuit involves accessing each row
of the memory cells and reading the contents, followed by immediately writing the
same data back. This effectively rejuvenates the charge stored in the capacitors
of each memory cell, restoring them to their original state.

2.10.2 The Row Buffer

Each time a bit in a bank is read, the entire row containing that bit is put into
a row buffer. This means that every time a cell is read the entire row is read as
well, and subsequently, the entire row is refreshed. When reading other memory

“output” — 2024/5/15 — 16:15 — page 12 — #24

12 Background and Theory

close by one can access the currently checked out row instead of having to access
individual bits of the RAM again.

2.10.3 Electrical Charge Leakage

Reading cells in a dynamic memory bank is a destructive action, i.e. reading a
storage cell causes that cell to discharge, effectively wiping the memory stored.
Therefore, each cell must be recharged after every read. When reading the cell
there is also the phenomenon of electrical charge leakage to take into account.
Since the charges are stored in capacitances the electrical charge needs somewhere
to go once discharged. Because of the compact nature of modern RAM the memory
cells are in close proximity to each other. This leads to electrical charge leakage
becoming more and more of a problem and poses a challenge to the integrity of
the data stored on RAM.

As stated, the stored electrical charge in a memory cell can leak into neighboring
memory cells and have the potential of modifying the data contained within. This
phenomenon is what lead to be the foundation of Rowhammer. One could success-
fully charge up neighboring cells by accessing a row multiple times until electrical
charges in the accessed row dissipated into neighbouring rows. This without ever
accessing the neighbouring row directly, i.e. allowing a user to modify bits in data
without having direct access to them. This breaks a fundamental security rule of
the modern memory model, where processes should not ever be able to read from
or write to unauthorized memory.

2.11 Memory Massaging

For Rowhammer to be effective the attacking process needs to have allocated
memory physically adjacent to memory of the victim process. This is achieved
with memory massaging, and is done using a technique called “Frame Feng Shui”,
described by Kwong et al. [18].

This is achieved by manipulating how the memory is allocated in the operating
system. In Linux, the memory allocator keeps a list of recently deallocated memory
pages in a so-called page cache. This cache operates on a last-in-first-out basis,
meaning, that when a program requests a memory page it will receive the most
recently deallocated page [22]. By allocating a number of so-called “dummy pages”
and then deallocating them right before the target process is run this behaviour
can be exploited to control the position and order of the allocated memory pages.

To successfully execute this exploit, an attacker must first analyze the victim
process to determine how many memory pages are allocated before the specific
memory region they intend to target with Rowhammer. Once that information
is obtained the attacker can utilize Frame Feng Shui to manipulate the memory
allocation of the victim process. By allocating the number of needed pages before
the specific memory region an attacker can force the target memory to be allocated
at an arbitrarily chosen page.

“output” — 2024/5/15 — 16:15 — page 13 — #25

Background and Theory 13

2.12 Performance Degradation

To be able to succeed with the attack it is required that there is a large enough
time window where the targeted memory is stored in memory. The amount of time
needed for a successful attack is, in this case, far greater than the time available,
as the attack window is about 8 ms while the attack itself needs around 530 ms to
be successful close to 100% of the time. To increase the time window where the
attack can be run a technique is used called performance degradation. This paper
mainly uses the method described by Allan et al. [2].

The goal of using performance degrading techniques is to intentionally increase
the execution time of the victim process. By deliberately impeding the victim
processes execution one could increase the time window needed for the attack to
be successful and increase the likelihood that the rowhammer attack has induced
bitflips in the memory allocated to the victim. In this paper a technique is used
where the instruction cache is repeatedly flushed, with the hope that the target
process will spend exponentially more time fetching instructions.

“output” — 2024/5/15 — 16:15 — page 14 — #26

14 Background and Theory

“output” — 2024/5/15 — 16:15 — page 15 — #27

Chapter 3
Rowhammering (Method)

This chapter presents a comprehensive methodology for implementing and exe-
cuting the Rowhammer attack against the FrodoKEM cryptosystem. We outline
the detailed steps involved in conducting the attack, including the selection of the
target hardware and software. Our goal being to provide a detailed overview of
the attack methodology, aiming to offer transparency and reproducibility of the
implemented techniques, hopefully facilitating future findings and investigations
into the implications and efficiency of Rowhammer as a potential attack vector.

3.1 Objective of the Attack

In the event of the Rowhammer attack on FrodoKEM being successful, the at-
tacker’s primary objective is to recover the private key generated by the compro-
mised key-generation process. This process of key recovery is facilitated by the
manipulation of the error matrix, which is a crucial component in obfuscating the
relationship between the private and public keys.

The error matrix plays a vital role in FrodoKEM’s key generation mechanism,
introducing randomness to enhance security of the key pair by obfuscating the
relationship between the private and public keys. However, if an attacker can ma-
nipulate the error matrix by inserting specific values through a Rowhammer at-
tack, this security measure becomes compromised. Manipulating the error matrix
effectively weakens the obfuscation process, exposing a more direct relationship be-
tween the private and public keys. By exploiting this vulnerability, an attacker can
discern certain patterns and correlations that would otherwise remain obscured,
making it significantly easier to derive the private key from the modified public
key.

One potential technique an attacker might employ to extract the private key is a
decryption failure attack. In this approach, the attacker attempts to decrypt ci-
phertexts using the modified public key and observes the failures in the decryption
process. By carefully analyzing the patterns of successful and failed decryptions,
the attacker can gradually extract information about the private key. This type
of attack leverages the weakened obfuscation caused by the manipulation of the

15

“output” — 2024/5/15 — 16:15 — page 16 — #28

16 Rowhammering (Method)

error matrix, allowing the attacker to gain insights into the private key that would
not be possible under normal circumstances.

More specific details on the key recovery process can be found in [8].

With the objective of the attack established, we now delve into the methodology
used when executing the Rowhammer attack against the FrodoKEM algorithm.

3.2 Threat Model

Rowhammer attacks can have severe implications on the security of a system, po-
tentially giving attackers unauthorized access to sensitive data or escalated privi-
leges on a system. However, the consequences and impact of a Rowhammer attack
depend on the threat model and the setup of the system the attack is performed
on. In order to accurately assess the risks and potential consequences on our sys-
tem from our implementation of the Rowhammer attack, it is crucial to define
a threat model tailored to our specific system and the hardware running on it.
By establishing this threat model, we can try to better understand the scope and
limitations of our attack implementation, as well as the potential impact it may
have on our system.

3.2.1 Inherent Requirements of Rowhammer Attacks

Many Rowhammer attacks share a common threat model, regardless of the specific
setup of the system the attack is run on. These requirements can be defined as
follows:

- The attacker is assumed to have unprivileged code execution on the target
machine.

- The attacker process and the targeted process must run on the same physical
hardware.

- The system must use DRAM memory (e.g., DDR3 or DDR4) susceptible to
bit flips caused by repeated memory row activations.

3.2.2 Threat Model for Our Experimental Setup

In order to allow for an easier time when implementing the attack, time con-
straints, and our setup being experimental, we made the following assumptions
and introduced some constraints:

- The target machine is running Ubuntu and the attacker and victim are
running in two different processes.

- Address space layout randomization (ASLR) is disabled in order to simplify
the implementation of the attack. While disabling ASLR may be an unre-
alistic assumption, it has been demonstrated that ASLR can be bypassed
in certain scenarios [6], theoretically making Rowhammer attacks possible
even with ASLR enabled.

“output” — 2024/5/15 — 16:15 — page 17 — #29

Rowhammering (Method) 17

- The attacker has root privileges (sudo access) to allow gathering of memory
allocation information from
/proc/self/pagemap. This information gathering could alternatively be
accomplished using a technique like the one proposed by [23], eliminating
the need for root access.

- The victim process is the FrodoKEM-640 key generation algorithm running
with no compiler optimizations and using the reference code implementation.
The goal being to induce a known error into each column of its error matrix
(see 2.1).

We also want to bring to light that we are running the attack on DDR3 memory,
which has been proven susceptible to Rowhammer attacks. However, it is also
worth noting that attacks on more modern systems using DDR4 memory may
yield larger effects and higher rates of bitflips. For instance, the attack proposed by
Haocong Luo and Mutlu [13] uses a similar but different technique called Rowpress,
and seems to be able to induce significantly more bitflips when compared to many
Rowhammer attacks. This approach was tested on DDR3 memory but yielded
no results at all. Nonetheless, we anticipate that using this approach instead
of a regular Rowhammer attack on DDR4 could potentially give us a significant
improvement to the effectiveness of our implementation. The Rowpress approach,
while effective, comes with the downside of having to use mlock, which necessitates
the usage of root privileges (sudo).

3.3 Setup

The computer the attack was performed on contained a 4GHz i7-4790K CPU and
two Corsair DDR3 8GB 1333MHz non-ECC DIMMs (part number:
CMZ16GX3M2A1600C10).

The OS that was running on the system was Ubuntu 22.04.2 LTS with some
slight modifications. As mentioned earlier, address space layout randomization
(ASLR) was disabled in order to simplify the attack. ASLR randomizes the mem-
ory locations of processes with the aim of making memory corruption attacks—like
Rowhammer—harder to execute successfully. ASLR has previously been breached
by, for example, Canella et al. [6], making it theoretically possible to design an
attack that does not require ASLR to be disabled.

Furthermore, the attack process itself was also running as root. This was needed in
order to gather information about the allocated memory from /proc/self/pagemap,
as if the process is not running as root the relevant data in the file is zeroed [21].
There is, however, an attack by Tobah et al. [23] which instead uses the unre-
stricted /proc/buddyinfo file, theoretically eliminating the need for root access.

With our established threat model and the experimental setup of our system in
mind we now present the method that was used in order to accomplish the attack.

“output” — 2024/5/15 — 16:15 — page 18 — #30

18 Rowhammering (Method)

3.4 Mapping Virtual to Physical Addresses

When interacting with the computer’s working memory virtual addresses are used,
which are free to be mapped to physical addresses in any way the operating sys-
tem desires. Two adjacent virtual addresses are therefore not guaranteed to be
physically adjacent, and because this is a requirement for Rowhammer to have
any effect it presents a problem.

3.4.1 Memory Pages

When a program running in user space requests memory from Linux it is only ever
given memory in 4KiB-sized chunks, so-called memory pages. These pages each
have a page frame number (PFN), which is equal to its physical address divided
by the page size in bytes, i.e. 4096.

Prior to Linux 4.0 this could be easily obtained via the virtual file
/proc/self/pagemap, which is part of the Linux Process API. Since Linux 4.0,
however, this information is—as a direct consequence of the discovery of Rowhammer—
restricted to superusers by either zeroing the data out or by failing unauthorized
processes attempting to access the pagemap file [21]. This is why the attack process
needs to be run as root.

After obtaining the PFN, the physical address can then be easily calculated by
multiplying the PFN by 4096.

3.4.2 Row Index

Each bank in a RAM stick has an amount of rows, and this is different for each type
of RAM. For the RAM used in this paper the number of rows was 216 (= 65536).

The row index was calculated by dividing the physical address by the row size
in bytes, which in our case was 218 (= 262144). This is practically the same as
collecting the 14 most significant bits of the 32-bit physical address, i.e. bits 18-
31 (inclusive, zero-indexed). This process allows us to precisely identify the row
containing the targeted memory cells.

3.4.3 DRAM Bank Mapping

This analysis of the memory layout in the RAM is not enough to facilitate the
execution of the attack in itself. Each brand of CPU has a unique way of mapping
physical addresses to different memory banks in RAM. This is done to more evenly
divide work between different banks, as they have a delay after reading or writing
where they cannot be used. The bank index is obtained by XOR’ing different bits
of the physical address together to obtain the different bits of the bank index.

This memory mapping is, unfortunately for us, proprietary and therefore not pub-
licly available. However, thanks to Wang et al. [25] the exact sequence of XOR
operations to obtain the bank index could be found. For our setup (Haswell North-

“output” — 2024/5/15 — 16:15 — page 19 — #31

Rowhammering (Method) 19

bridge with 2 DDR3 DIMMS of 16 GB total memory) the sequence was

{{14, 18}, {15, 19}, {16, 20}, {17, 21}, {7, 8, 9, 12, 13, 18, 19}}

meaning you XOR bit 14 and 18 of the physical address to obtain bit 0 of the
bank index, XOR bit 15 and 19 to obtain bit 1, and so on.

3.5 Memory Profiling

Rowhammer is repeatable, meaning a bit that has flipped once is very likely to
flip the same way again given the same circumstances [16]. This enables us to
profile the computer’s memory in advance in order to predict the exact locations
of future bitflips with high accuracy. This is needed as the error induced must be
known in order to apply a potential decryption failure attack on the cryptographic
algorithm. To profile the RAM for bitflips the following approach was used.

Firstly, a large amount of memory was allocated using the syscall mmap. Then,
the virtual address of each page mapped was collected, and—by using the data
in /proc/self/pagemap—the physical address and row index of each page was
obtained.

Once information for all pages in the mapping was collected the actual profiling
was done by picking three physically adjacent rows and collecting all pairs of pages
above and below the middle row which were in the same bank. By initializing the
middle row to all zeroes and the outer rows to all ones, we could hammer rows in
the same bank and check which bits had flipped, i.e. had a value of 1. This was
used as a initial test to get a quick overview of which pages had a sufficient number
of bitflips. More detailed tests were run later to determine the exact location of
the flips.

3.6 Filtering Pages

After finding rows with sufficient amounts of bitflips we needed to find specific
memory pages with bitflips in specific locations from our attack. Looking to the
attack by Fahr et al. [8] they argue that the 8th bit—called a 256-bit—of each
value in the matrix is a good target for the attack. According to the authors
one 256-bit flip in each column of the error matrix is desired in order to achieve
the highest chance of succeeding with the decryption failure attack while still
remaining unnoticed. An illustration on what the error matrix might look like
after a successful attack can be found in Figure 3.1

We therefore set a memory pattern in our attacking rows. This pattern consisted
of a 1 in each 256-bit position for each halfword (2 bytes) in the pages on that
row, with the rest of the memory zeroed (see Figure 3.2). The resulting flips in the
error matrix can then be figured out, since if a flip was achieved in the matrix the
256-bit will be set to a value. Filtering the memory pages with this logic in mind
resulted in 3 pages with 9 reproducible bitflips in total, all in the 256-bit spot.

“output” — 2024/5/15 — 16:15 — page 20 — #32

20 Rowhammering (Method)

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8
R1 1 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 1
R50 0 0 0 1 0 0 0 0
R170 0 1 0 0 0 0 0 0
R400 0 0 0 0 0 1 0 0
R500 0 0 1 0 0 0 0 0
R630 0 0 0 0 1 0 1 0

Figure 3.1: Illustration of possible induced errors in the error matrix.
The highlighted 1 in each column indicates a targeted 256-bit
flip, with each induced bitflip ending up in a unique column.

Index of bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 3.2: The set pattern for halfwords in the attacking rows (bit
at index 8 set to 1 and all other bits set to 0).

3.7 Memory Massaging

To be able to modify the memory of the victim process exactly as we want, we
need full control of where the process allocates its memory. More specifically, we
need it to allocate the memory where the E-matrix is located in the pages chosen
during the profiling stage. This is done via an exploitation of how the Linux page
allocator works.

3.7.1 The Linux Page Allocator

The Linux page allocator works by keeping a list of all available memory blocks in
a so-called free list. This list operates on a last-in-first-out basis, and so returns
the most recently freed page whenever a page is requested. We can therefore place
a requested page wherever we want if the victim process requests a predictable
number of pages before requesting the target page.

3.7.2 Coercing the Location of the E-matrix

In order to place the E-matrix in our allocated victim pages the following approach
was used. Let n be the number of memory pages requested by the victim process
before the pages used for the E-matrix are requested. The attack process first
starts by allocating a large amount of pages. Afterwards n pages from the large
allocation are unmapped in order to place them at the top of the memory allocators
free list, followed by the deallocation of the victim pages. Afterwards the attack
process induces the victim process to run its algorithm. This will make the victim

“output” — 2024/5/15 — 16:15 — page 21 — #33

Rowhammering (Method) 21

process allocate its first n memory pages in the large allocation, followed by the
memory of the matrix being allocated in our chosen memory pages susceptible
to bit-flips from Rowhammer. This will then allow us to run our Rowhammer
implementation to induce bit-flips in the E-matrix.

The E-matrix in memory will be an array of arrays, in the form
R1

R2

R3

...
R640

where Ri is an array of 8 16-bit values. The total memory footprint of the matrix
is therefore 640 × 8 × 2 = 10240 bytes, which is equivalent to 10240/4096 = 2.5
memory pages. Therefore, the E-matrix will span 3 or 4 memory pages, depending
on its offset within the first page. In our case, the E-matrix spanned 3 pages.

By carefully controlling the memory allocation process, the attack ensures that the
error matrix is allocated in the three memory pages that was previously identified
as being susceptible to bit-flips. This strategic allocation allows the attack to
induce the necessary bit-flips in those specific memory pages, which will, in turn,
enable the attacker to succeed by modifying the values of the error matrix in a
controlled manner.

3.8 Performance Degradation

For the attack to be successful, a wide attack window was needed to be able to flip
the targeted bits. For our implementation of the attack and on the hardware in
question we needed about around 530 ms in order for the Rowhammer attack to
be successful. Unfortunately, the reference implementation of the FrodoKEM al-
gorithm and the time needed for allocation of the E-matrix takes about 8 ms. This
timing of the attack window was without using compiler optimization and building
the FrodoKEM implementation with the setting “OPT_LEVEL=REFERENCE ”.
Because of this short attack window and us needing more time to achieve our bit-
flips we therefore needed to run a performance degradation on the FrodoKEM
process in order to make the timing window large enough for our attack to be
successful.

In our case the performance degradation attack used involved finding the most
frequently executed instruction in the code and flushing the cacheline associated
with that instruction using the CLFLUSH instruction as presented by Allan et al.
[2]. Analyzing the FrodoKEM algorithm and the key generation process found
that the usage of a Shake-128 function involves a loop that frequently executes a
store64 instruction. Targeting that instruction and using CLFLUSH on the offset
associated with the instruction made it then possible to increase the attack window
enough for our attack to be effective. When running the degradation process we
ran the degradation on 4 different processor cores in total. One running on the

“output” — 2024/5/15 — 16:15 — page 22 — #34

22 Rowhammering (Method)

same core as the FrodoKEM process, one on the sibling core of the FrodoKEM
process and two on other virtual cores. This gave us an attack window of around
1300ms leaving us with more than enough room for our attack to be successful
and induce the bitflips in the error matrix.

3.9 Running the Attack

With every detail needed for the attack in place, it’s time for the most crucial
part: executing the attack. First we need to run the performance degradation and
leave it running for the entirety of the attack. Once that’s done, we also need
to run the actual implementation of the attack. This is done with the command
attack along with a sufficient amount of memory (measured in percent of total
RAM) and the amount of “dummy” pages that was found in section 4.6.2. When
the attack program is up and running, it first allocates the required amount of
memory until it has the victim pages in its memory space. Afterwards, it collects
data about the required dummy pages needed in the attack, followed by forking
to spawn two different processes on the system.

The first process starts by going through all the dummy pages and setting a
value at their addresses to ensure they remain in memory and are not removed
by the memory controller. Afterwards, it runs the a Rowhammer attack on each
of the victim pages until instructed to stop. The second process first deallocates
all the dummy pages, followed by deallocating the victim pages that will be tar-
geted for bit-flips to make sure that the memory controller gives these deallocated
pages to the victim process. Once this is done, it induces the system to run the
FrodoKEM key-generation algorithm. This causes the algorithm to start gener-
ating its keys and allocate the memory for its error matrix in our victim pages.
Once the FrodoKEM process is generating its key-pair, the other process running
the Rowhammer attack continuously tries to induce bit-flips in the victim pages
where the error matrix is placed, allowing us to induce extra errors in the matrix.

After the FrodoKEM key-gen algorithm is done, we stop the processes running
the attack, perform some cleanup, and the attack is complete. Hopefully, we have
managed to induce bit-flips in the error matrix.

3.10 Checking for an Induced Error in the E-matrix

Once the attack has finished its execution and the FrodoKEM key-gen algorithm
is complete, it is important to verify the actual results. This was done by using the
modified FrodoKEM code provided by Fahr et al. [8], enabling the printing of the
entire error matrix of the generated key pair. Given that the victim in the attack
was the FrodoKEM-640 key generation algorithm, the size of the error matrix was
640 × 8 of uint16_t values. This allowed for the utilization of a simple Python
script to inspect all integer values in the error matrix for the presence of a set 8th
bit, resulting in an incremented value of 256. Since our attack targeted the 8th

“output” — 2024/5/15 — 16:15 — page 23 — #35

Rowhammering (Method) 23

bit in every halfword1 contained in the victim pages, the presence of a bit-flip was
therefore confirmed if any integer value in the error matrix had its 8th bit set to
1.

The finalization of the method then primarily involves determining the locations
within the error matrix where the induced bit-flips occurred. By following the
steps outlined earlier, we have successfully implemented and executed an attack
aimed at inducing bit-flips in the error matrix of the public key associated with
the FrodoKEM-640 algorithm.

1Halfword = 16 bits

“output” — 2024/5/15 — 16:15 — page 24 — #36

24 Rowhammering (Method)

“output” — 2024/5/15 — 16:15 — page 25 — #37

Chapter 4
Results

With everything established and running our implementation written in Rust man-
aged to induce errors into the error matrix used in the public key for FrodoKEM.
Our implementation of the attack required around 530ms to induce the desired
bit-flips in our victim pages. On our system the attack window (when the E-
matrix remains in memory and is not yet added to the public key) was found to
be around 8ms. This attack window was too short for our attack to have any
chance of inducing bit-flips and for this reason we also employed a performance
degradation attack. By employing this attack the attack window was increased
from 8ms to around 1300ms, giving us the appropriate amount of time to attack
the FrodoKEM keygen algorithm and induce our bit-flips in the E-matrix.

For our machine, the victim pages were chosen to be 0x3b4bf1, 0x3dd31e, and
0x400b3a. These pages gave us 7 desired flips without flipping any other bits very
close to 100% of the time. Each of these bits needs to be 0 at the start of the
attack for the flip to have any effect, as the attack can only flip bits from 0 to 1.
Assuming the probability for a bit being either 0 or 1 is the same we can conclude
the expected success rate for the attack to be 1 out of every 2N attempts, where
N is the number of targeted columns in the error matrix. This gave us a success
rate of 1/28 = 1/128.

Furthermore, our investigation revealed several mapped memory pages having an
inherent susceptibility to bit-flips, as depicted in Figure 4.1. This finding suggests
that while individual pages may not exhibit a high number of bit-flips, they are
distributed relatively evenly across the entirety of the RAM. This distribution of
bit-flips further underscores the importance of mitigating Rowhammer vulnerabil-
ities in RAM in order to maintain system stability and data integrity.

When it comes to our investigation of attacking Kyber, our implementation faced
challenges hindering its effectiveness against the algorithm. Several factors con-
tributed to this outcome, with a significant obstacle being the optimized and robust
implementation of Kyber compared to FrodoKEM. Kyber’s optimization gives it
a superior performance, rendering it significantly faster and consequently less sus-
ceptible to performance degradation attacks. This obstacle thwarted our attempts
to slow down the algorithm sufficiently to enable Rowhammer to induce bit-flips

25

“output” — 2024/5/15 — 16:15 — page 26 — #38

26 Results

Figure 4.1: Box plot illustrating the distribution of bitflip occur-
rences in mapped memory pages, showcasing median values,
interquartile ranges, and potential outliers.

effectively. Thus it was deemed not possible in the time frame of the thesis to
successfully attack Kyber, this does not make it impossible however, as we will try
to discuss further.

To foster deeper exploration into Rowhammer-related vulnerabilities, we are com-
mitted to transparency and collaboration. As such, we will be sharing our attack
implementation on GitHub, providing a valuable resource for researchers to delve
into this critical area of study. By making our work openly accessible, we aim to
catalyze further investigations and contribute to the ongoing efforts to understand
and mitigate Rowhammer threats.

The code is available on https://github.com/CodeyBoi/kyber-not-it.

https://github.com/CodeyBoi/kyber-not-it

“output” — 2024/5/15 — 16:15 — page 27 — #39

Chapter 5
Discussion

With the continuous increase in RAM capacities, the possibility of read distur-
bance errors in RAM will probably not cease to exist anytime soon. With every
new generation of RAM we see new attempts to try to mitigate the effects of
these vulnerabilites on RAM, but more often than not these mitigations are cir-
cumvented by new attack techniques and methods. [10, 13]. In light of these
challenges, the observed distribution of bit-flip occurrences in Figure 4.1 under-
scores the inherent vulnerability of memory cells to Rowhammer-induced bit-flips.
The figure reveals a concerning pattern of bit-flips across various memory pages,
indicating a systemic susceptibility to Rowhammer attacks. Furthermore, this in-
herent vulnerability poses significant risks to the reliability of systems and data
integrity.

Our efforts in implementing the attack have yielded us significant progress, par-
ticularly in our ability to target FrodoKEM effectively. By aiming to replicate the
results outlined in Fahr et al. [8], we successfully managed to induce 256 bit-flips
across 7 out of 8 columns of the error matrix. Although we did not go as far as to
actually produce failing ciphertexts and in turn completing the decryption failure
attack, our replication of the induced errors in the error matrix signals the correct-
ness of our attack implementation for FrodoKEM. This achievement underscores
the potential effectiveness of our approach and furthermore demonstrates the fea-
sibility of using Rust as the programming language for such attacks. Despite the
necessity of having to employ some "unsafe" calls in our code, the majority of it
still remains memory-safe and more comprehensible than one written in C.

However, transitioning our attack to instead target Kyber presented us with more
challenges than we initially anticipated. Kyber’s optimized and robust implemen-
tation posed a significant obstacle, as its efficiency minimizes the window of oppor-
tunity to induce significant bit-flips in the error matrix. Compared to FrodoKEM,
Kyber is almost 85 times faster [17]. This made it considerably harder to achieve
a successful performance degradation of the process. As mentioned earlier, for
our implementation of a performance degradation attack we targeted the store64
operation in the binary. Using this approach against the implementation of Kyber
yielded us close to no results and only slowed down the process to a fraction of

27

“output” — 2024/5/15 — 16:15 — page 28 — #40

28 Discussion

what was actually needed. It therefore appears that employing a more efficient
and drastic performance degradation attack against Kyber may be necessary. How-
ever, given that the key generation is already very fast, achieving a sufficient level
of performance degradation without potentially alerting the user of the system’s
compromise seems implausible. This suggests that while a more efficient perfor-
mance degradation may be required, it comes with the downside of potentially
raising suspicion from the user of the targeted system. Balancing effectiveness
with stealth in attacks like these then becomes crucial to be able to maintain the
integrity of the overall strategy.

Working with our implementation, we faced numerous challenges that required
meticulous attention to detail and extended periods of troubleshooting. One such
challenge involved identifying memory regions susceptible to bit-flips, a process
that proved to be exceedingly time-consuming and tedious. Finding the number
of allocated memory pages of the victim process also proved to be a difficult task as
we did not find any fool-proof way to do it. Therefore we had to go through many
numbers of allocated "dummy" pages and look at the error matrix of FrodoKEM
to see if our attack successfully induced any bit-flips, a process that took a long
time to complete.

Looking back, some things could have been optimized and streamlined in order to
efficiently develop our implementation. Developing efficient methods for identify-
ing vulnerable memory regions and accurately mapping the allocated pages of the
victim process could have improved the workflow immensely but no efficient way of
doing this was found during the implementation phase. We explored various tech-
niques to try to gather this vital information, such as analyzing memory dumps
and leveraging debugging tools, but none of them provided us with a fool-proof
solution, forcing us to resort to a time-consuming trial-and-error approach.

Worth noting is that performing an attack like the one described is a compli-
cated task and not quite as feasible practically as it is theoretically. While our
implementation managed to successfully induced bit-flips in the error matrix of
FrodoKEM, translating these kinds of attacks into a genuine concern in realistic
environments poses substantial practical challenges. The attack’s success relied
on specific conditions, such as disabling ASLR and requiring root privileges to
facilitate gathering information on memory allocation. Additionally, the necessity
for a performance degradation attack to extend the attack window highlights the
difficulties in targeting optimized and high-performance cryptographic implemen-
tations like FrodoKEM.

In practical settings where ASLR is enabled and root access is restricted, executing
a Rowhammer attack like this one becomes significantly more complex and poten-
tially infeasible. Furthermore, the estimated success rate of 1 in 128 attempts in
our controlled environment may be lower in real-world scenarios due to additional
security measures, unpredictable system behaviors and the inherent variability of
the Rowhammer phenomenon.

It’s also important to acknowledge the limitations of our study, including the
controlled nature of our experimental setup and the potential variability of the

“output” — 2024/5/15 — 16:15 — page 29 — #41

Discussion 29

results in different hardware and software configurations. By recognizing these
limitations, we can better understand the scope and implications of our findings
and work towards more robust and comprehensive solutions for protecting against
Rowhammer attacks in practical environments.

Overcoming these practical hurdles and developing more advanced techniques
would be crucial to realizing the potential vulnerability of FrodoKEM and other
cryptographic implementations to Rowhammer attacks in genuine operational en-
vironments.

Executing Rowhammer attacks effectively requires a deep understanding of the
low-level system mechanics involved in memory management and processor opera-
tions. Specifically, a comprehensive grasp of virtual-to-physical address translation
mechanics, memory caching policies and the intricate interactions between hard-
ware and software components is crucial. Without this knowledge, it becomes
exceedingly difficult to pinpoint the exact memory regions that are susceptible to
bit-flips and to accurately predict the potential impact of induced bit-flips on the
target algorithm’s execution.

Our choice of Rust as the implementation language also proved to be quite a viable
option, offering a good balance between memory safety and performance. While
our progress with FrodoKEM was promising, addressing the challenges posed by
Kyber will require further refinement of our approach and an exploration of po-
tential strategies to overcome its robust defences.

5.1 Future Research

In this section we will discuss the potential future discoveries, and other factors
which has not been further explored in this paper.

5.1.1 DDR3 vs DDR4

In our system the type of RAM used was DDR3. DDR3 lacks some of the defences
implemented in DDR4 to directly combat Rowhammer-related vulnerabilities –
such as Target Row Refresh (TRR)—and is therefore easier to design an attack
for. In a paper by Frigo et al. [10] a method for bypassing TRR was presented,
called TRRespass. This was furthermore extended by Jattke et al. [14] to positive
results. TRRespass makes use of non-uniform attack patterns which bypasses the
TRR’s detection of the attack. This is bad news, as the memory cells in DDR4
are much closer together (to accommodate for more memory) and therefore more
vulnerable to memory corruption attacks. This make DDR4 a good candidate in
future investigations into Rowhammer-related vulnerabilities.

Furthermore this also points to a more general problem. As memory cells gets
smaller and more tightly packed it increases the effect of discharging the electricity
to the nearby cells, which means that RowHammer likely will become even more
of a threat as time goes on. Developing an efficient counter-measure for this is
difficult, as any monitoring at the hardware level of, for example, the number or

“output” — 2024/5/15 — 16:15 — page 30 — #42

30 Discussion

sequence of recent memory accesses introduces overhead, lowering performance.

5.1.2 Rowpress

During the development phase of our implementation, we wanted to explore the
potential of Rowpress [13] as an alternate attack method. The reason being that
Rowpress seems to have a huge potential in increasing the amount of induced bit-
flips in memory compared to Rowhammer. However, our experimentation revealed
that it did not have a significant effect on DDR3 memory as opposed to DDR4
memory that it was created for. Furthermore, employing Rowpress necessitates
the use of the CLFLUSHOPT instruction, unfortunately for us our system’s hard-
ware constraints makes this instruction unavailable, as it was first introduced with
the Intel Broadwell architecture. Consequently, we were therefore unable to use
Rowpress in our implementation.

Despite our inability to employ Rowpress in our attack, it’s potential still remains
substantial. Rowpress has demonstrated a capability to drastically reduce the
minimum number of required aggressor row activations to induce at least one bit-
flip (ACmin). In some instances, this requirement was observed to be as low as
a single activation, albeit with the caveat of having to keep the aggressor row
open for 30ms [13]. This underscores the efficiency and potential effectiveness of
Rowpress in inducing bit-flips.

Furthermore with the introduction of TRR on DDR4 memory, Rowpress faces
the challenge of having to circumvent these mitigations. To overcome this hurdle
Rowpress employs a strategy utilizing specific memory access patterns. These
patterns involve accessing a number of "dummy" aggressor rows along with the
real aggressor rows. The goal being to trick the TRR mechanism to identify only
the dummy rows and not the real aggressor rows.

Despite the mitigations posed by mechanisms like TRR, the impact of the Row-
press attack remains significant. As such, for systems utilizing DDR4 memory, we
consider the use of Rowpress the preferred attack method to potentially achieve
desired results.

5.1.3 Attacking Kyber

As mentioned earlier, Kyber stands out for its robustness and highly optimized
implementation. This efficiency is exemplified by its key generation process, which
is approximately 85 times faster when compared to FrodoKEM [17]. This makes
it apparent that one might need to employ a more rigorous performance degrada-
tion attack in order to actually be able to induce bit-flips in the error matrix of
Kyber. Attacking Kyber from our perspective might be fully feasible if one were
to overcome this hurdle. But then one could argue about the relevance of the
vulnerability for Kyber seeing that it might be fast enough to not be susceptible
to Rowhammer attacks.

While Kyber’s speed may offer some resistance to traditional Rowhammer at-
tacks, it’s important to acknowledge that susceptibility to other variants, such as

“output” — 2024/5/15 — 16:15 — page 31 — #43

Discussion 31

Rowpress attacks, still remains a possibility. Even though Kyber may not be as
vulnerable to standard Rowhammer techniques, the emergence of alternative at-
tack methods like Rowpress underscores the ongoing need for vigilance in assessing
and addressing security vulnerabilities across cryptographic algorithms.

“output” — 2024/5/15 — 16:15 — page 32 — #44

32 Discussion

“output” — 2024/5/15 — 16:15 — page 33 — #45

Chapter 6
Conclusion

In this thesis our primary objective was twofold. Firstly we aimed to implement the
attack detailed in [8] using the Rust programming language. Secondly we sought
to extend and adapt our implementation of the attack to target Kyber. This was
further motivated by the persistent nature of Rowhammer vulnerabilities, which
are likely to remain a significant concern in RAM due to the close proximity of
memory cells.

While we successfully managed to implement the attack using Rust we encountered
some challenges when attempting to accomplish the second goal. Despite our
best efforts this objective was not fully achieved within the scope of this thesis.
Nonetheless, the insights gained from our implementation provide some valuable
lessons for future research in Rowhammer-related vulnerabilities.

Rowhammer, as a phenomon, is still quite new in the research world. Despite
continuous efforts to mitigate these vulnerabilities, it is evident that they will per-
sist as a significant concern in RAM, particularly as memory technologies used in
computers continue to advance and memory densities increase. While a complete
removal of these risks might not be achievable, it remains crucial to deepen our
understanding of these vulnerabilities and to continue exploring effective ways of
mitigating them.

33

“output” — 2024/5/15 — 16:15 — page 34 — #46

34 Conclusion

“output” — 2024/5/15 — 16:15 — page 35 — #47

References

[1] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan,
and Douglas Stebila. Frodokem, learning with errors key encapsulation, al-
gorithm specifications and supporting documentation. https://frodokem.
org/files/FrodoKEM-specification-20210604.pdf, 2021.

[2] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and
Yuval Yarom. Amplifying side channels through performance degradation. In
Proceedings of the 32nd Annual Conference on Computer Security Applica-
tions, ACSAC ’16, page 422–435, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450347716. doi: 10.1145/2991079.2991084.
URL https://doi.org/10.1145/2991079.2991084.

[3] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documenta-
tion (version 3.02), 2021. URL https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf.

[4] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography,
Chapter 5: Symmetric Encryption, 2005. URL https://web.cs.ucdavis.
edu/~rogaway/classes/227/spring05/book/main.pdf.

[5] Daniel J. Bernstein. Introduction to post-quantum cryptography, pages 1–14.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-88702-
7. doi: 10.1007/978-3-540-88702-7_1. URL https://doi.org/10.1007/
978-3-540-88702-7_1.

[6] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. Kaslr: Break it, fix it, repeat. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security, ASIA
CCS ’20, page 481–493, New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450367509. doi: 10.1145/3320269.3384747. URL
https://doi.org/10.1145/3320269.3384747.

35

https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://doi.org/10.1145/2991079.2991084
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1145/3320269.3384747

“output” — 2024/5/15 — 16:15 — page 36 — #48

36 REFERENCES

[7] Sofía Celi and Goutam Tamvada. Deep dive into a post-quantum key
encapsulation algorithm, 2022. URL https://blog.cloudflare.com/
post-quantum-key-encapsulation.

[8] Michael Jr. Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob
Lichtinger, Dana Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray
Perlner, Arkady Yerukhimovich, and Daniel Apon. When frodo flips: End-
to-end key recovery on frodokem via rowhammer. Cryptology ePrint Archive,
Paper 2022/952, 2022. https://eprint.iacr.org/2022/952.

[9] Federal Office for Information Security (BSI). Migration to post quantum
cryptography, recommendations for action by the bsi, 2020. URL https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_
to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2.

[10] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Ex-
ploiting the many sides of target row refresh, 2020.

[11] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999. doi: 10.1007/
3-540-48405-1_34.

[12] HandigeHarry. Dynamic ram, March 5 2008. URL https://commons.
wikimedia.org/wiki/File:DRAM.svg. Public Domain.

[13] Abdullah Giray Yağlıkcı Yahya Can Tuğrul Steve Rhyner M. Banu Cavlak
Joel Lindegger Mohammad Sadrosadati Haocong Luo, Ataberk Olgun and
Onur Mutlu. RowPress: Amplifying Read Disturbance in Modern DRAM
Chips. In ISCA, 2023.

[14] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh
Razavi. Blacksmith: Scalable rowhammering in the frequency domain. In
2022 IEEE Symposium on Security and Privacy (SP), pages 716–734, 2022.
doi: 10.1109/SP46214.2022.9833772.

[15] JEDEC. JEDEC Manual of Organization and Procedure.
https://web.archive.org/web/20060308100413/http://www.jedec.org/Home
/manuals/jm21l.pdf, 2002.

[16] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of dram disturbance errors.
In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 361–372, 2014. doi: 10.1109/ISCA.2014.6853210. URL https:
//ieeexplore.ieee.org/document/6853210.

[17] Manish Kumar. Post-quantum cryptography algorithms standardization and

https://blog.cloudflare.com/post-quantum-key-encapsulation
https://blog.cloudflare.com/post-quantum-key-encapsulation
https://eprint.iacr.org/2022/952
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://commons.wikimedia.org/wiki/File:DRAM.svg
https://commons.wikimedia.org/wiki/File:DRAM.svg
https://web.archive.org/web/20060308100413/http://www.jedec.org/Home\/manuals/jm21l.pdf
https://web.archive.org/web/20060308100413/http://www.jedec.org/Home\/manuals/jm21l.pdf
https://ieeexplore.ieee.org/document/6853210
https://ieeexplore.ieee.org/document/6853210

“output” — 2024/5/15 — 16:15 — page 37 — #49

REFERENCES 37

performance analysis, 2022. URL https://arxiv.org/ftp/arxiv/papers/
2204/2204.02571.pdf.

[18] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 695–711, 2020. doi: 10.1109/SP40000.
2020.00020. URL https://ieeexplore.ieee.org/document/9152687.

[19] National Institute of Standards and Technology (NIST). Post-Quantum Cryp-
tography Standardization. https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization, 2022.

[20] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), sep 2009. ISSN 0004-5411. doi: 10.1145/
1568318.1568324. URL https://doi.org/10.1145/1568318.1568324.

[21] The Kernel Development Community. Examining Process Page Tables.
https://www.kernel.org/doc/html/v4.18/admin-guide/mm/pagemap.html,
2022.

[22] The Linux Kernel Organization. Physical Page Allocation.
https://www.kernel.org/doc/gorman/html/understand/understand009.html.

[23] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G.
Shin. Spechammer: Combining spectre and rowhammer for new speculative
attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pages 681–
698, 2022. doi: 10.1109/SP46214.2022.9833802. URL https://ieeexplore.
ieee.org/document/9833802.

[24] Vinod Vaikuntanathan. Cs 294: The learning with errors problem: Intro-
duction and basic cryptography. Course notes for CS 294-5: Learning The-
ory and Algorithms, 2005. URL https://people.csail.mit.edu/vinodv/
6876-Fall2018/lecture1.pdf.

[25] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. Dramdig:
A knowledge-assisted tool to uncover dram address mapping. In Proceedings
of the 57th ACM/EDAC/IEEE Design Automation Conference, DAC ’20.
IEEE Press, 2020. ISBN 9781450367257. URL https://arxiv.org/abs/
2004.02354.

https://arxiv.org/ftp/arxiv/papers/2204/2204.02571.pdf
https://arxiv.org/ftp/arxiv/papers/2204/2204.02571.pdf
https://ieeexplore.ieee.org/document/9152687
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1145/1568318.1568324
https://www.kernel.org/doc/html/v4.18/admin-guide/mm/pagemap.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://ieeexplore.ieee.org/document/9833802
https://ieeexplore.ieee.org/document/9833802
https://people.csail.mit.edu/vinodv/6876-Fall2018/lecture1.pdf
https://people.csail.mit.edu/vinodv/6876-Fall2018/lecture1.pdf
https://arxiv.org/abs/2004.02354
https://arxiv.org/abs/2004.02354

	Introduction
	Purpose and Goal of this Thesis
	Contributions
	Limitations
	Disposition

	Background and Theory
	Cryptography
	Encryption and Decryption

	Key Algorithms
	Symmetric-Key Algorithms
	Asymmetric-Key Algorithms

	Post-Quantum Cryptography
	Lattice-Based Cryptography

	Key Encapsulation Mechanisms
	Learning with Errors Problem
	FrodoKEM
	CRYSTALS-Kyber
	Understanding Rowhammer Vulnerabilities
	Rowhammer
	Dynamic Random Access Memory (DRAM)
	Memory Refresh Period
	The Row Buffer
	Electrical Charge Leakage

	Memory Massaging
	Performance Degradation

	Rowhammering (Method)
	Objective of the Attack
	Threat Model
	Inherent Requirements of Rowhammer Attacks
	Threat Model for Our Experimental Setup

	Setup
	Mapping Virtual to Physical Addresses
	Memory Pages
	Row Index
	DRAM Bank Mapping

	Memory Profiling
	Filtering Pages
	Memory Massaging
	The Linux Page Allocator
	Coercing the Location of the E-matrix

	Performance Degradation
	Running the Attack
	Checking for an Induced Error in the E-matrix

	Results
	Discussion
	Future Research
	DDR3 vs DDR4
	Rowpress
	Attacking Kyber

	Conclusion

