
IMAGE RETRIEVAL

RE-RANKING USING GRAPH

NEURAL NETWORKS

GUSTAV HANNING

Master’s thesis
2024:E18

Faculty of Engineering
Centre for Mathematical Sciences
Computer Vision and Machine Learning

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

Image retrieval is the task of finding images in a database similar to a given query
image. The retrieved images, typically a small subset of the entire database, are
initially ordered based on their similarity with the query. They can subsequently
be re-ranked to improve the retrieval accuracy. Database images that are relevant
to the query should increase in rank and vice versa.

In this thesis the re-ranking process is modeled as a graph neural network. The
nodes of the graph are the query and retrieved database images. For each node
an affinity vector is computed which encodes the visual similarity between the
image and a set of anchor images. The vectors are refined by message passing
between nodes, using self-attention. Database images are re-ranked according to
the similarity between their refined affinity vector and that of the query.

The network is trained on a large-scale dataset and evaluated against three other
re-ranking algorithms. Results show that the method proposed in the thesis
achieves significantly higher precision.

2

Acknowledgements

I would like to thank my supervisors Viktor Larsson and Gabrielle Flood for their support
and guidance throughout the work on the thesis.

The computations were enabled by the Berzelius resource provided by the Knut and Alice
Wallenberg Foundation at the National Supercomputer Centre.

Figures 1.1, 3.1 and 4.1 contain images from the "Mapillary Street-level Sequences Dataset" by
Mapillary, licensed under CC BY-NC-SA 4.0.

3

https://www.mapillary.com/dataset/places
https://www.mapillary.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Problem Formulation . 8
1.3 Purpose and Goals . 8
1.4 Limitations . 9
1.5 Related Work . 9
1.6 Report Outline . 9

2 Theory 11
2.1 Retrieval using Image Descriptors . 11
2.2 Image Retrieval Re-ranking . 12

2.2.1 Query Expansion . 12
2.2.2 SuperGlobal . 12
2.2.3 Geometric Verification . 13
2.2.4 Neighborhood Similarity . 13

2.3 Affinity Features . 13
2.3.1 Positional Affinity . 14

2.4 Graph Neural Networks . 14
2.4.1 Attention and Message Passing . 14

2.5 Evaluation Metrics . 15
2.6 AP Loss . 16
2.7 Contrastive and MSE losses . 18

3 Method 19
3.1 Dataset . 19
3.2 Network Architecture . 20
3.3 Training Details . 22

4 Evaluation 23

5

CONTENTS

4.1 Experimental Setup . 23
4.2 Results . 24
4.3 Ablation Study . 25
4.4 Discussion . 26
4.5 Future Work . 27

References 31

6

Chapter 1

Introduction

This chapter gives the background of the thesis and introduces the problem of image re-
trieval re-ranking. The purpose, goals and limitations of the thesis are stated followed by a
description of related work in the area.

1.1 Background
Content-based image retrieval (CBIR) is the task of finding images in a database that are
similar to a given query image. Similarity can be defined in terms of color, texture, shape
or other features. Since the number of images in the database may be large it is not feasible
to compare the pixel data of the query image directly with all the database images. Instead

Database

Query image

Initial retrieval

Re-ranking

Figure 1.1: Image retrieval re-ranking. The images most similar to
the query are retrieved from the database and then re-ranked to im-
prove accuracy. The images are from the Mapillary SLS dataset [18].

7

1. Introduction

an efficient representation is computed from each image and the search is performed using
these image descriptors. Popular applications of image retrieval include place recognition
and visual localization, where the goal is to find images of the same place and in the case of
localization estimate the camera pose of the query image.

Image retrieval re-ranking, exemplified in figure 1.1, is performed by re-ordering the top
images found in the database to further improve the results. Database images that are relevant
to the query should increase in rank and vice versa. Recent advancements show that the re-
ranking process can successfully be modeled as a graph neural network (GNN). The query
image and the retrieved database images are nodes in the network and their descriptors are
refined with message passing using self-attention.

1.2 Problem Formulation

Query
image DatabaseCNN

Global feature
extraction

Image retrieval GNN re-ranking

Image
descriptor

Image attributes

Figure 1.2: The image retrieval process, divided into three phases.

In this thesis the image retrieval process, depicted in figure 1.2, can be divided into three
separate phases:

1. Extract a global image descriptor from the query image.

2. Retrieve the most similar descriptors from the database.

3. Re-rank the retrieved database images using a GNN.

In the first phase a convolutional neural network (CNN) computes a global descriptor for
the query, describing the contents of the whole image. The same CNN has also been used
to generate descriptors for all database images and in the second phase the descriptors best
matching that of the query are retrieved. Finally in the third phase a GNN re-ranks the
retrieved database images. If the database contains additional attributes like image positions
they can be added to the nodes to increase the re-ranking accuracy.

1.3 Purpose and Goals
The purpose of the thesis is to explore the use of graph neural networks in the area of content-
based image retrieval re-ranking. A GNN architecture suitable for re-ranking should be pro-
posed and details given on how the network can be trained on one or more datasets.

8

1.4 Limitations

The primary goal is to implement and train the proposed GNN and to evaluate it against
other methods in terms of accuracy. A secondary goal is to include database image attributes
to help guide the re-ranking process, as this can help disambiguate challenging cases.

1.4 Limitations
The focus of this thesis is the re-ranking of database images, i.e. the last phase in figure 1.2.
A pre-trained CNN is utilized for creating the global descriptors and it is not fine-tuned to
the specific dataset used in the thesis or trained together with the GNN.

1.5 Related Work
The problem of image retrieval dates back to the 1990s. In a survey Zheng et al. [21] show
how models based on hand-crafted local descriptors such as SIFT have been replaced by CNN
based models. One such CNN architecture is NetVLAD [1], which is considered to be among
the current state-of-the-art methods for computing compact image representations.

Chum et al. [2] present a method for re-ranking using so-called query expansion. A new query
descriptor is constructed by taking the average of the original descriptor and the descriptors
retrieved from the database. Gordo, Radenovic and Berg [4] propose a GNN model (LAttQE)
that learns the weights of the query expansion, consisting of a stack of self-attention encoders.

As a part of their SuperGlobal CBIR system Shao et al. [16] design a re-ranking procedure
where database and query descriptors are refined in two different ways. Similarity scores are
computed between the refined database descriptors and both the original and refined query
descriptor. Database images are then re-ordered according to the average of the two scores.

Most similar to this thesis is the work of Ouyang et al. [11], in which image retrieval re-
ranking is performed using a graph neural network with self-attention. This thesis simplifies
the architecture of their network and utilizes a more efficient loss function for training. Ad-
ditionally their concept of affinity features is extended to include positional data.

1.6 Report Outline
Chapter 2 presents the theory behind GNN based image retrieval re-ranking.

Chapter 3 describes the dataset used to train the GNN, the network architecture and the
training process.

Chapter 4 contains the evaluation of the proposed GNN re-ranking method, along with re-
sults from several ablation experiments. The chapter ends with a summary of the findings of
the thesis and ideas for future work in the area.

9

1. Introduction

10

Chapter 2

Theory

This chapter contains the theoretical background of the proposed GNN re-ranking method.
First, the basic image retrieval setup is presented. Re-ranking is introduced as a way to im-
prove the retrieval results and four types of re-ranking algorithms are discussed. The concept
of affinity features is explained and it is shown how the features can be extended with posi-
tional information.

Next, GNNs and message passing using attention to refine the features are described. Rele-
vant metrics to evaluate an image retrieval system are stated and a loss function to maximize
one of these metrics is derived. Lastly, the losses used to train the model [11] are given.

2.1 Retrieval using Image Descriptors
A global image descriptor is a feature vector d of dimension d that encodes the contents of
an image. It is extracted from the image I by a function f such that d = f (I) ∈ Rd . The
function f can be either hand-crafted or learned from data.

The cosine similarity

s(di, d j) =
dT

i d j

∥di∥∥d j∥
(2.1)

is used as a measure of the similarity between two images with descriptors di and d j . If the
feature vectors are normalized to unit length, which is often the case, the cosine similarity
can efficiently be computed as

11

2. Theory

s(di, d j) = dT
i d j . (2.2)

Now let {Ii}
N
i=1 be a database of images with corresponding descriptors {di}

N
i=1, and let d0 be

the descriptor of a query image I0. Image retrieval is performed by computing the cosine
similarity between d0 and all database image descriptors, followed by sorting of the database
images in descending order of similarity. The top K database images make up the retrieval
results and the indices of the retrieved database images are denoted r1, ..., rK . The best match
for the query image is thus Ir1 , the second best Ir2 and so on. For ease of notation we set r0 = 0.

2.2 Image Retrieval Re-ranking
Retrieval of the top K images from the database may be followed by a re-ranking step where
retrieved images are re-ordered for higher accuracy. Since K is typically much smaller than
N a more thorough analysis of the images is possible.

2.2.1 Query Expansion
Query expansion (QE) is a class of re-ranking methods that computes a new query descriptor
d̂0 as a weighted average of the original query and the retrieved database descriptors. A
second retrieval is then performed using the new descriptor. The simplest form of QE is
average query expansion (AQE) [2] which uses the mean of the descriptors:

d̂0 =
1

K + 1

K∑
i=0

dri . (2.3)

In α-weighted query expansion (αQE) [13] the database descriptors are weighted by their
cosine similarity with the query descriptor raised to the power of a parameter α:

d̂0 =
1∑K

i=0(s(d0, dri))α

K∑
i=0

(s(d0, dri))αdri . (2.4)

The expansion weights can also be learned from data like in the LAttQE model [4].

2.2.2 SuperGlobal
In the re-ranking stage of SuperGlobal [16] the descriptors of the top K database images are
refined by taking a weighted average over their respective P nearest neighbors:

d̃ri =
dri +

∑P
j=1 s(dri , dri

j
)βdri

j

1 +
∑P

j=1 s(dri , dri
j
)β
, 1 ≤ i ≤ K. (2.5)

12

2.3 Affinity Features

Here d̃ri is the refined descriptor, ri
1, ..., r

i
P the indices of the nearest neighbors of image Iri

and β a scale factor for the similarity values. Element-wise max pooling of the top P database
images is used to refine the query image descriptor. With di, j denoting the j:th element of
the vector di it can be written as

d̃0 =
[
max1≤i≤P d̃ri ,1 max1≤i≤P d̃ri ,2 · · · max1≤i≤P d̃ri ,d

]T
. (2.6)

The database images are re-ranked according to the averaged similarity score

s̄i =
s(d0, d̃ri) + s(d̃0, d̃ri)

2
, 1 ≤ i ≤ K. (2.7)

2.2.3 Geometric Verification
Another way to re-rank the retrieved database images is by geometric verification [12]. Local
point features are extracted from the query and database images and feature matching with
RANSAC [3] is used to estimate a geometric transform between each query-database image
pair. Re-ranking is done based on the number of inlier features. Geometric verification is
considered to be a relatively expensive method as it requires both local feature extraction and
pairwise matching.

2.2.4 Neighborhood Similarity
Other methods [20] [11] consider the neighborhood around the given descriptors in feature
space and re-ranks based on neighborhood similarity. For instance if a database image de-
scriptor shares many neighbors with the query descriptor it is typically more likely to be rel-
evant for the query. The methods generate a new set of descriptors {d̃ri }

K
i=0 and the database

images are re-ordered according their similarity with the query in this embedding space.

2.3 Affinity Features
The affinity feature [11] of an image is a vector with the cosine similarities between its de-
scriptor and those of a set of anchor images. Now, assume that we want to compute affinity
features for a query image and its top K matches in the database. As in [11] the top L matches
of the query in the database, and the query image itself, are used as anchors. The affinity fea-
ture can be expressed as

ai =
[
s(dri , dr0) s(dri , dr1) · · · s(dri , drL)

]T
, 0 ≤ i ≤ K. (2.8)

The vector ai is hence of dimension L+ 1 and represents the visual similarity with images in
a neighborhood around the query image I0. This information is very informative for the task
of re-ranking.

13

2. Theory

2.3.1 Positional Affinity
If the positions of the database images are known the affinity concept can naturally be ex-
tended with positional affinity, which captures the geometrical properties instead of the vi-
sual. With p(Ii, I j) being a measure of the positional affinity of two database images the
positional affinity vector is

pi =
[
p(Iri , Ir1) p(Iri , Ir2) · · · p(Iri , IrL)

]T
, 1 ≤ i ≤ K. (2.9)

For the query image we simply set p0 = 0. To create the full affinity vector pi is appended
onto ai . See section 3.1 for an example of how p(Ii, I j) can be computed for a dataset with
positional information.

2.4 Graph Neural Networks
A GNN is a special type of neural network where each node has a feature that is updated via
message passing from its neighbors [19]. In this work the nodes of the graph are the query and
top K database images and the graph is fully connected, meaning that all nodes are connected
to each other (see figure 2.1). The node feature xi is initially set to the affinity vector ai of
the image (potentially with included positional affinity), and the feature is gradually refined
by exchanging information with the other nodes.

Ir0 : x0

Ir1 : x1

Ir2 : x2Ir3 : x3

Ir4 : x4

Figure 2.1: A graph neural network for re-ranking. The nodes rep-
resent the query and top K = 4 database images. Each node has
a feature xi , initially set to the affinity vector ai , that is refined by
message passing, symbolized by the arrows.

2.4.1 Attention and Message Passing
A fast and powerful technique for message passing is scaled dot-product attention [17]. A
number of query, key and value vectors are packed into matrices Q, K and V , respectively,

14

2.5 Evaluation Metrics

and the attention is computed as

Attention(Q,K,V) = softmax
(
QKT
√

dk

)
V , (2.10)

where dk is the dimension of the keys. The softmax function, defined by

softmax(z)i =
ezi∑m

j=1 ez j
, 1 ≤ i ≤ m (2.11)

for a vector z =
[
z1 z2 · · · zm

]T
, is applied row-wise. The attention can be split into

h heads where the queries, keys and values are projected to a lower dimension via learned
projection matrices WQ

i , WK
i and WV

i . The projections are passed through the attention
function (2.10) followed by concatenation of the outputs of all heads and multiplication by
another learned projection matrix WO:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO, (2.12)

where

headi = Attention(QWQ
i ,KWK

i ,VWV
i), 1 ≤ i ≤ h. (2.13)

In the case of our GNN the queries, keys and values are all equal to the node feature vectors
xi (so-called self-attention):

Q = K = V =
[
x0 x1 · · · xK

]T
. (2.14)

The message mi is given by the i:th row of the multi-head attention (2.12). A node feature is
updated by adding the message:

xi ← xi + mi. (2.15)

The GNN has one or more layers of self-attention, each with its own set of learned projection
matrices.

2.5 Evaluation Metrics
There are several relevant metrics for evaluating the performance of an image retrieval system.
Let y be a vector of length N with elements yi ∈ {0, 1} indicating whether image Ii in the
database is a relevant match for a query image and let r1, ..., rK denote the indices of the top
K images retrieved by the system. The number of relevant database images is

15

2. Theory

n =
N∑

i=1

yi, (2.16)

and the recall of the first k (1 ≤ k ≤ K) images is calculated as

Recall@k =
1
n

k∑
i=1

yri . (2.17)

It measures the fraction of relevant images that have been retrieved. Computing the propor-
tion of relevant matches among the first k images gives the precision:

Precision@k =
1
k

k∑
i=1

yri . (2.18)

The average precision (AP) is the mean of the precision, but only terms corresponding to a
positive match in the database are included:

AP@k =
1
n

k∑
i=1

yri Precision@i. (2.19)

It is common to use a slight modification of equation (2.19) to better handle the case where
k < n:

AP@k =
1

min(k, n)

k∑
i=1

yri Precision@i. (2.20)

Lastly the mean average precision (mAP) is the AP averaged over a set of M query images:

mAP@k =
1
M

M∑
i=1

APi@k. (2.21)

Here APi@k is the average precision at k for query image i.

2.6 AP Loss
The average precision as defined by equation (2.19) is not differentiable and hence cannot
be used directly to train a neural network. It is however possible to approximate it with a
smooth, quantized version [14].

For brevity let Rk and Pk denote the Recall@k and Precision@k respectively and let the
change in recall from k − 1 to k be denoted

16

2.6 AP Loss

∆Rk = Rk − Rk−1 =
yrk

n
. (2.22)

The average precision at N can now be written as

AP@N =
N∑

i=1

Pi∆Ri. (2.23)

Next, we note that the element yri indicating whether the retrieved image at the i:th position
is relevant can be computed as

yri =

N∑
j=1

y j1[ri = j], (2.24)

where 1 is the indicator function and it follows that

Pk =
1
k

k∑
i=1

N∑
j=1

y j1[ri = j], (2.25)

∆Rk =
1
n

N∑
j=1

y j1[rk = j]. (2.26)

The quantization is performed by splitting the interval [−1, 1], i.e. the range of the cosine
similarity, into B partially overlapping bins and computing the precision and incremental
recall at each bin. A bin i, 1 ≤ i ≤ B, has its center at bi = 1 − (i − 1)∆bin and covers the
interval

b̄i = [bi − ∆
bin, bi + ∆

bin], (2.27)

where ∆bin = 2/(B−1) is half the bin width. With si = s(d0, di) being the similarity between
the query and database image i the binned precision measure is given by

Pbin
k =

∑k
i=1

∑N
j=1 y j1[s j ∈ b̄i]∑k

i=1
∑N

j=1 1[s j ∈ b̄i]
. (2.28)

The definition is analogous to that of equation (2.25) but instead of counting the number of
relevant database images out of the top k ranked it computes the precision in the top k bins,
which are given in descending order of similarity. The corresponding binned incremental
recall function is

∆Rbin
k =

1
n

N∑
j=1

y j1[s j ∈ b̄k]. (2.29)

17

2. Theory

By replacing the indicator function with the triangle function

Λi(x) = max
(
1 −
|x − bi |

∆bin , 0
)

(2.30)

Pbin
k and ∆Rbin

k can be made differentiable. If we by Λi(s) denote the vector

Λi(s) =
[
Λi(s1) Λi(s2) · · · Λi(sN)

]T
(2.31)

representing the soft assignment of the cosine similarities to bin i the quantized average
precision can now be calculated as

APQ@N =
B∑

i=1

P̂bin
k ∆R̂bin

k , (2.32)

where

P̂bin
k =

∑k
i=1 Λi(s)T y∑k
i=1 Λi(s)T1

, (2.33)

∆R̂bin
k =

Λk(s)T y
n
. (2.34)

In practice the neural network is trained to maximize APQ@K rather than APQ@N by se-
lecting the appropriate subsets of Λ(s) and y.

2.7 Contrastive and MSE losses
The re-ranking model [11] is trained with the contrastive loss

LC = − ln
(∑K

i=1 yri exp(s(d0, dri)/τ)∑K
i=1 exp(s(d0, dri)/τ)

)
, (2.35)

where τ is a temperature parameter. It is combined with the mean squared error (MSE) loss

LM =

K∑
i=0

∥ai −MLP(d̃ri)∥2 (2.36)

to form the full loss function

L = LC + λLM . (2.37)

MLP denotes a multilayer perceptron with two layers and a Gaussian error linear unit (GELU)
[5] non-linearity and λ is a scale factor for the MSE loss.

18

Chapter 3

Method

In this chapter the implementation details of the GNN are given. First the dataset used to
train and evaluate the network is described. Then follows a recount of the network architec-
ture. The chapter ends with an overview of the training process.

3.1 Dataset
Mapillary Street-Level Sequences (SLS) [18] is a large dataset consisting of 1.53 million street-
level images, 640 pixels in width. The images have been collected in 30 different cities which
are split into training (22 cities), validation (2 cities) and testing (6 cities) categories. For
each city the images are divided into queries and a database, see table 3.1. The training set
contains 93.7% of the total number of images compared to 2.0% and 4.3% for the validation
and test set, respectively. Figure 3.1 displays two example images from the dataset, taken in
Amsterdam.

The images of the training and validation cities are geo-located with GPS position (x, y) and
heading angle α but for the test cities this data is not available. Instead an online evaluation
service [10] is used for the test set. The criteria stated in [18] for determining if a database
image is a positive match for a given query image given is that the distance between them
should be less than 25 m and the difference in heading angle smaller than 40°.

The 2D field-of-view (FoV) overlap between images [7] is chosen as the positional affinity
measure p(Ii, I j) for the dataset. Following [7] we use FoV radius r = 50 m and angle θ = 90°.
Figure 3.2 shows the parametrization of the FoV and the overlap between two nearby images.
The positional affinity is computed by dividing the area of the overlap with the FoV area for
a single image, resulting in a value in the [0, 1] range.

19

3. Method

Category City Database images Query images

Tr
ai

ni
ng

Trondheim 5015 4136
London 3291 2692
Boston 14 024 6724
Melbourne 101 827 88 118
Amsterdam 11 539 7893
Helsinki 33 248 15 228
Tokyo 34 823 26 310
Toronto 12 789 7352
São Paulo 35 096 18 989
Moscow 171 878 77 496
Zürich 2991 2193
Paris 9503 8480
Bangkok 74 620 40 125
Budapest 153 321 45 800
Austin 28 462 14 222
Berlin 42 965 28 197
Ottawa 69 756 53 517
Phoenix 106 221 50 243
Goa 5722 5362
Amman 953 835
Nairobi 437 427
Manila 6064 5378

Va
l. Copenhagen 12 601 6595

San Francisco 6315 4525

Te
st

in
g

Miami 5900 5673
Athens 3355 2466
Buenos Aires 3710 3238
Stockholm 12 007 6819
Bengaluru 11 731 7026
Kampala 2067 1870
Total 982 231 547 929

Table 3.1: Number of images per city in Mapillary SLS.

3.2 Network Architecture
The network design largely follows that of [11]. As input the network takes the set of image
descriptors {di}

max(K,L)
i=0 and optionally the positional affinity vectors {pi}

K
i=1. The output is a

set of refined descriptors {d̃i}
K
i=0.

First the descriptors are passed through a fully connected layer followed by L2 normalization
before computing the affinity features {ai}

K
i=0 as given by equation (2.8). This fully connected

layer is not included in the model [11]. If positional affinity is used then each pi is concate-
nated onto the corresponding ai :

ai ←
[
ai ∥ pi

]
. (3.1)

20

3.2 Network Architecture

Figure 3.1: Two example images from the Mapillary SLS dataset [18].

r

θ

α

N

(x, y)

Figure 3.2: Left: The 2D field-of-view is parametrized by the posi-
tion (x, y), heading angle α (clock-wise from north), FoV radius r
and FoV angle θ. Right: A FoV overlap of 49.2% between two im-
ages.

Next follows another fully connected layer after which features are refined by message passing
in a graph with K + 1 nodes, where the node features are initialized with the affinity vector:

x0
i ← ai. (3.2)

Now let X l be the node features packed into a matrix:

X l =
[
xl

0 xl
1 · · · xl

K

]T
. (3.3)

In each layer of the GNN the messages are computed using multi-head self-attention:

M l = MultiHead(X l, X l, X l). (3.4)

21

3. Method

With ml
i being the i:th row of M l the node feature is updated as

xl+1
i ← xl

i +MLP(xl
i + ml

i) (3.5)

where MLP is a multilayer perceptron with two layers and the GELU activation function. The
output of the final GNN layer is L2 normalized to create the output of the whole network
{d̃ri }

K
i=0.

Re-ranking is performed by re-ordering the database images according to the cosine simi-
larity between the refined query descriptor d̃0 and the refined database image descriptors
{d̃ri }

K
i=1.

The network is trained with the quantized AP loss function (section 2.6) instead of the com-
bination of contrastive and mean squared error (MSE) losses used in [11] (section 2.7). As a
result the multilayer perceptron applied to the refined descriptors when computing the MSE
loss can be removed, reducing the number of parameters.

3.3 Training Details
The GNN is trained using the Adam [6] optimizer and the quantized AP loss function. Binary
labels for the loss function are created by thresholding the positional affinity p(I0, Ii) between
the query and the database images. If the affinity is greater than 1/3 then the database image
is considered relevant for the query.

NetVLAD [1] is chosen as the global descriptor and is of dimension d = 4096. The descrip-
tors are extracted beforehand using the hloc toolbox [15] and are kept in memory during
training. The output dimensions of the two fully connected layers are set to 512 and 768
respectively, leading to refined descriptors d̃i of dimension 768.

The number of database images to re-rank is K = 319 and affinity vectors are computed
from the top L = 127 images (see section 4.3). The GNN has one layer with 12 heads in
the multi-head attention unit. Dropout is applied with probability 0.2 to the input of the
network and also to the attention weights. The learning rate is initialized to 10−4 and is
multiplied by 0.9 after every epoch and a batch size of 32 is used.

The network is trained in two steps. First the initial fully connected layer is trained sepa-
rately, with K = 255, and the loss is applied directly to its output (after L2 normalization).
Next the weights of the layer are fixed and the rest of network is trained. The fully connected
layer is trained for 10 epochs and the GNN for 5 epochs. All other settings are identical in
the two training steps.

In total the neural network has 9.4 million trainable parameters. Pre-training the fully con-
nected layer, with 2.1 million parameters, takes around 3 hours on a NVIDIA TITAN V GPU.
Without positional affinity the second step is finished in approximately 4 hours. Computing
pair-wise positional affinity between database images is CPU intensive and adds significantly
to the training time: with positional affinity the second phase takes roughly 16 hours.

22

Chapter 4

Evaluation

This chapter holds the evaluation of the proposed GNN re-ranking method. First the exper-
imental setup is described. Next the results are presented and the GNN is compared against
the baseline of image retrieval without re-ranking and three competing re-ranking methods.
The design choices of the GNN are validated in a number of ablation experiments, followed
by a concluding discussion and suggestions for future work in the domain.

4.1 Experimental Setup
The graph neural network is trained on the Mapillary SLS training set and evaluated on the
validation and test sets. As outlined in section 3.3 the network is trained for 10 or 5 epochs
however the weights are saved after each epoch and we choose the ones maximizing mAP@10
on the validation set.

Panorama images are excluded from both training and evaluation, as is done in Mapillary’s
own code [8]. The number of panorama images in the training and validation sets combined
is just 16 437 or 1.1%.

A database image is considered relevant to the query if it is within 25 m. The angle criterion
mentioned in section 3.1 is not used. This is again in line with Mapillary’s code [8]. It is not
known if the online evaluation website [10] considers the heading angle or not.

GPS positions and heading angles for the test set database images are downloaded with an
API [9] provided by Mapillary. These attributes are not given as a part of Mapillary SLS but
are needed to compute the positional affinity.

The main evaluation metric is mAP@k but we also report Recall@k, at k = 1, 5, 10, 20. The
average precision is computed using equation (2.20). For consistency the definition of recall

23

4. Evaluation

from [8] is adopted:

Recall@k = min
 k∑

i=1

yri , 1
 . (4.1)

Note how this is different from equation (2.17), being equal to one if there is any relevant
database image among the top k retrieved and zero otherwise. With this definition Recall@1
is equal to mAP@1 and only the latter is reported.

Queries with no relevant database images (n = 0) are excluded when computing the metrics.
In contrast to [18] we use all other query images and not just the center frame in each sequence.
This only applies to the validation set, for the test set the online evaluation service [10] is
employed.

Image retrieval without re-ranking (i.e. simply taking the top K database images based on co-
sine similarity) is used as the baseline. Additionally we compare against the query expansion
methods AQE and αQE and the re-ranking procedure of SuperGlobal.

A grid search is performed to find the best values of QE parameters K and α. The ranges
used in the search are 1 ≤ K ≤ 5 and 1 ≤ α ≤ 3 (for αQE, in steps of 0.5) and the parameters
maximizing mAP@10 for the validation set are selected. For AQE the result is K = 1 and
for αQE K = 1, α = 1.

For SuperGlobal we try all combinations of K ∈ {200, 400, 800}, P ∈ {1, 2, 3, 4} and β ∈
{0.15, 0.3, 0.6} and again choose the settings that maximize mAP@10 on the validation set.
The optimal parameters in this grid search are K = 800, P = 1 and β = 0.6.

4.2 Results
Table 4.1 contains the results for the Mapillary SLS validation set. By using query expansion
techniques the mAP can be improved significantly compared to the baseline of no re-ranking.
However the methods suffer from low recall. SuperGlobal achieves similar precision and
recall to these methods.

Training only the initial fully connected (FC) layer as described in section 3.3 gives a large im-
provement over the baseline, raising the mAP and recall by more than 10 percentage points.
It also performs better than the QE methods.

The graph neural network is trained both without (GNN) and with (GNN+PA) positional
affinity. Both versions get notably higher mAP compared to the fully connected layer, and
we can see that using positional affinity is beneficial.

The results for the test set (table 4.2) paint a similar picture. Both QE methods and Super-
Global improve the precision but at the cost of lower recall. The simple model with only a
fully connected layer achieves considerably higher mAP than AQE, αQE and SuperGlobal
but also has greater recall than the baseline. A GNN without positional affinity beats the
fully connected layer on all metrics but by a smaller margin than on the validation set. Again

24

4.3 Ablation Study

the GNN with positional affinity attains the highest precision, with mAP@10 almost twice
that of the baseline.

Figure 4.1 shows two examples of GNN re-ranking. In the first example there is only one
relevant image among the top five retrieved from the database. After re-ranking the top
database images with a GNN the first five are all relevant. The second example also illustrates
a case with a single relevant database images in the top five, but after re-ranking it has been
moved down and no relevant images remain. A GNN with positional affinity was used to
generate both examples.

mAP Recall

Method @1 @5 @10 @20 @5 @10 @20
No re-ranking 55.9% 36.0% 30.8% 29.5% 68.1% 72.6% 77.0%
AQE [2] 55.9% 43.0% 38.0% 36.6% 60.3% 62.5% 65.1%
αQE [13] 55.9% 41.0% 35.7% 34.3% 62.7% 67.1% 72.0%
SuperGlobal [16] 54.6% 41.5% 37.3% 36.1% 63.1% 65.1% 67.0%
FC 67.4% 47.3% 41.9% 40.4% 80.1% 83.6% 86.4%
GNN 68.5% 52.3% 47.5% 46.1% 80.3% 83.6% 86.3%
GNN+PA 69.3% 60.4% 55.4% 52.9% 78.3% 81.8% 85.0%

Table 4.1: Results on the Mapillary SLS validation set.

mAP Recall

Method @1 @5 @10 @20 @5 @10 @20
No re-ranking 34.5% 22.4% 19.7% 18.6% 45.4% 50.7% 55.8%
AQE [2] 34.5% 27.5% 24.4% 23.1% 39.0% 41.4% 44.5%
αQE [13] 34.5% 25.8% 22.7% 21.5% 42.2% 46.1% 51.1%
SuperGlobal [16] 33.5% 26.0% 23.8% 22.6% 40.7% 42.3% 45.4%
FC 46.7% 32.2% 28.8% 27.4% 60.9% 67.3% 72.1%
GNN 48.1% 35.6% 32.7% 31.6% 61.8% 67.3% 72.2%
GNN+PA 48.4% 40.9% 38.2% 36.8% 59.7% 65.3% 72.3%

Table 4.2: Results on the Mapillary SLS test set.

4.3 Ablation Study
Figure 4.2 (left) shows how the mAP varies when the value of K is changed. Increasing K ,
i.e. letting the network re-rank a larger number of database images, generally improves the
precision up to K = 319. Using a too small K leads to significantly lower mAP (except for
mAP@1).

The network performance is less sensitive to the choice of L, as seen in figure 4.2 (right). For
example the mAP@10 is within 1% of the maximum for all values of L tested.

Adding more layers to the GNN does not improve precision (figure 4.3). The number of
parameters also grows quickly with the number of layers: the networks with one, two and

25

4. Evaluation

three layers have 9.4, 16.5 and 23.6 million parameters, respectively. We therefore choose the
variant with a single layer.

Table 4.3 displays the effect of training the network with different loss functions. The quan-
tized AP loss improves both precision and recall greatly compared to the combination of
contrastive and mean squared error losses utilized in [11]. We use the same parameter values
as in that work, τ = 2 and λ = 0.2.

The importance of the initial fully connected layer and the two-step training process is val-
idated in table 4.4. Here "FC" indicates whether the model includes the layer and "Locked
weights" specifies whether the weights are locked in the second training step. The precision
and recall both decrease by around two percentage points if the weights of the fully connected
layer are not locked while training the GNN attention unit. Excluding the layer results in an
even larger drop in the evaluation metrics.

GNNs with positional affinity were used for all ablation experiments. The results are re-
ported on the Mapillary SLS validation set.

mAP Recall

Loss function @1 @5 @10 @20 @5 @10 @20
AP 69.3% 60.4% 55.4% 52.9% 78.3% 81.8% 85.0%
Contrastive+MSE 48.9% 44.0% 42.3% 41.5% 68.9% 73.7% 77.5%

Table 4.3: The effect of training with different loss functions.

mAP Recall

FC Locked weights @1 @5 @10 @20 @5 @10 @20
Yes Yes 69.3% 60.4% 55.4% 52.9% 78.3% 81.8% 85.0%
Yes No 67.2% 58.7% 54.0% 51.7% 76.1% 80.0% 83.6%
No – 60.9% 53.9% 49.7% 47.7% 69.1% 73.5% 77.3%

Table 4.4: Ablation experiments for the initial fully connected layer.

4.4 Discussion
In this thesis we have studied the problem of image retrieval re-ranking using a graph neural
network. A GNN design based on existing work [11] was simplified by using a more effective
loss function and the concept of affinity features extended to incorporate positional affinity.
The GNN was trained and evaluated on the large-scale Mapillary SLS dataset.

The goal of the thesis, "to implement and train the proposed GNN and to evaluate it against
other methods", can thus be be considered fulfilled. The evaluation shows that GNN re-
ranking improves the accuracy significantly both in terms of precision and recall, compared
to the baseline of not re-ranking the database images and also compared to standard query
expansion methods and the re-ranking procedure of SuperGlobal.

26

4.5 Future Work

A somewhat suprising result is that the fully connected layer performs so well. With relatively
few parameters and short training time it can be considered an light-weight alternative to
the full GNN model, although with lower accuracy.

Adding positional affinity to the affinity vector lets the network utilize the spatial relation-
ship between database images. Evaluation on the Mapillary SLS validation and test sets shows
that this further boosts the re-ranking precision.

The advantage of directly optimizing the average precision, using the quantized AP loss, can
be seen in the experimental results of table 4.3. By having a single loss function instead of
combining the contrastive and MSE losses we also avoid the problem of weighting the two
losses.

4.5 Future Work
There are many aspects of the re-ranking problem that would be interesting to study in more
detail. One example is the generalization performance of the GNN. Can a network trained
on Mapillary SLS be used to re-rank images from another dataset? Perhaps re-training only
the initial fully connected layer is sufficient to make it work on the new data.

Another direction could be to explore additional types of positional affinity measures. In
[7] a 3D field-of-view overlap metric based on the number of shared points in a sparse 3D
reconstruction is considered for an indoor dataset. It should be straight-forward to use as
the positional affinity p(Ii, I j) for the GNN.

The GNN model presented in the thesis has potential to exploit other types of sensor data.
For example if the heading angle is known for the query image, which is a reasonable as-
sumption in some scenarios, one can compute a type of "heading affinity" between the query
and database images. The heading information is then appended onto the affinity vector the
same way as the positional affinity.

Future work might also include a more comprehensive evaluation of the proposed GNN re-
ranking method. In this work it is only compared to the relatively simple query expansion
techniques AQE and αQE and the re-ranking stage of SuperGlobal. It would be interesting
to see how well it performs relative to other learned methods like LAttQE [4], or comparing
it to a NetVLAD [1] model fine-tuned to Mapillary SLS.

27

4. Evaluation

Query image

Initial retrieval

GNN re-ranking

Query image

Initial retrieval

GNN re-ranking

Figure 4.1: Two examples of GNN re-ranking from the Mapillary
SLS dataset [18]. Database images relevant to the query are marked
with a green border.

28

4.5 Future Work

127 191 255 319 383

50%

55%

60%

65%

70%

K

mAP@1
mAP@5

mAP@10
mAP@20

63 127 191 255

55%

60%

65%

70%

L

mAP@1
mAP@5

mAP@10
mAP@20

Figure 4.2: Ablation results for K and L. Left: Varying K while
keeping L = 127 fixed. Right: Varying L while keeping K = 319
fixed.

1 2 3

55%

60%

65%

70%

Number of layers

mAP@1
mAP@5

mAP@10
mAP@20

Figure 4.3: Ablation results for the number of layers in the GNN.
Models are trained with K = 319 and L = 127.

29

4. Evaluation

30

References

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5297–5307, 2016.

[2] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman. Total
Recall: Automatic Query Expansion with a Generative Feature Model for Object Re-
trieval. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8. IEEE,
2007.

[3] Martin A Fischler and Robert C Bolles. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography. Com-
munications of the ACM, 24(6):381–395, 1981.

[4] Albert Gordo, Filip Radenovic, and Tamara Berg. Attention-Based Query Expansion
Learning. In European Conference on Computer Vision, pages 172–188. Springer, 2020.

[5] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[6] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

[7] María Leyva-Vallina, Nicola Strisciuglio, and Nicolai Petkov. Generalized Con-
trastive Optimization of Siamese Networks for Place Recognition. arXiv preprint
arXiv:2103.06638, 2021.

[8] Mapillary. mapillary/mapillary_sls GitHub repository. https://github.com/
mapillary/mapillary_sls, 2020.

[9] Mapillary. Mapillary API. https://www.mapillary.com/developer/
api-documentation, 2024.

[10] Mapillary and CodaLab. MSLS Place recognition challenge. https://codalab.lisn.
upsaclay.fr/competitions/865, 2021.

31

https://github.com/mapillary/mapillary_sls
https://github.com/mapillary/mapillary_sls
https://www.mapillary.com/developer/api-documentation
https://www.mapillary.com/developer/api-documentation
https://codalab.lisn.upsaclay.fr/competitions/865
https://codalab.lisn.upsaclay.fr/competitions/865

REFERENCES

[11] Jianbo Ouyang, Hui Wu, Min Wang, Wengang Zhou, and Houqiang Li. Contextual
Similarity Aggregation with Self-attention for Visual Re-ranking. Advances in Neural
Information Processing Systems, 34:3135–3148, 2021.

[12] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In 2007 IEEE conference on
computer vision and pattern recognition, pages 1–8. IEEE, 2007.

[13] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning CNN Image Retrieval
with No Human Annotation. IEEE transactions on pattern analysis and machine intelligence,
41(7):1655–1668, 2018.

[14] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning
with Average Precision: Training Image Retrieval with a Listwise Loss. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5107–5116, 2019.

[15] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From
Coarse to Fine: Robust Hierarchical Localization at Large Scale. In CVPR, 2019.

[16] Shihao Shao, Kaifeng Chen, Arjun Karpur, Qinghua Cui, André Araujo, and Bingyi
Cao. Global Features are All You Need for Image Retrieval and Reranking. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 11036–11046, 2023.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances in
neural information processing systems, 30, 2017.

[18] Frederik Warburg, Soren Hauberg, Manuel Lopez-Antequera, Pau Gargallo, Yubin
Kuang, and Javier Civera. Mapillary Street-Level Sequences: A Dataset for Lifelong
Place Recognition. In Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 2626–2635, 2020.

[19] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A Comprehensive Survey on Graph Neural Networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

[20] Xuanmeng Zhang, Minyue Jiang, Zhedong Zheng, Xiao Tan, Errui Ding, and Yi Yang.
Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective.
arXiv preprint arXiv:2012.07620, 2020.

[21] Liang Zheng, Yi Yang, and Qi Tian. SIFT Meets CNN: A Decade Survey of Instance
Retrieval. IEEE transactions on pattern analysis and machine intelligence, 40(5):1224–1244,
2017.

32

Master’s Theses in Mathematical Sciences 2024:E18
ISSN 1404-6342

LUTFMA-3531-2024

Computer Vision and Machine Learning
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Background
	Problem Formulation
	Purpose and Goals
	Limitations
	Related Work
	Report Outline

	Theory
	Retrieval using Image Descriptors
	Image Retrieval Re-ranking
	Query Expansion
	SuperGlobal
	Geometric Verification
	Neighborhood Similarity

	Affinity Features
	Positional Affinity

	Graph Neural Networks
	Attention and Message Passing

	Evaluation Metrics
	AP Loss
	Contrastive and MSE losses

	Method
	Dataset
	Network Architecture
	Training Details

	Evaluation
	Experimental Setup
	Results
	Ablation Study
	Discussion
	Future Work

	References

