
 
Department of Automatic Control 

 

Dynamic Offloading of Control Algorithms 
to the Edge using 5G and WebAssembly 

 

Ahmed Dhiaa Tariq Al Bayati



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6231 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2024 Ahmed Dhiaa Tariq Al Bayati. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2024 

 



To God
& my parents





Abstract

The aim of this work was to test if WebAssembly universal byte code and
5G communication technology is suitable in the context of offloading control
mission of real-time systems. To test these tools a new dynamic offloading
framework was implemented and tested on a Furuta pendulum, an inherently
unstable and time-critical process using, among other computing units, an
edge node as the offloading target. The implementation is considered dy-
namic because: 1) The local device which interacts with the I/O of the pro-
cess dynamically send the control application to be used by the edge node.
2) The local device dynamically decides on which controller should control
the process, either the local fallback linear quadratic regulator controller or
the CVXGEN Model Predictive Control solver written in an Ahead-of-Time
WebAssembly format, which is used by the edge node. The work concluded
that Wasm run in interpreted form was too slow to control the process but
AOT compiled Wasm which could be run by WasmEdge runtime worked
well with an execution time close to the native speed. It was also concluded
that data transfer using 5G technology without uRLCC was fast enough to
balance the pendulum and is suitable for offloading, other communication
medium where also tested in this work such as: Wi-Fi and cabled Ethernet.
In the study we also developed a control quality measure for decision making
on when to offload.
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whose support has granted me an extraordinary opportunity of. Karl-Erik
consistently allocates time for updates on my ongoing work and readily offers
assistance during challenging moments.

Special thanks goes to my co-supervisor and examiner Johan Eker for his
continuous support, guidance, and kindness.

My heartfelt gratitude extends to my family, whose enduring support and
genuine interest in my work have been constant since day one. Without the
love, support, and prayers from Dhiaa Al Bayati (my dad), Sundes Al Bayati
(my mom), Zahra Al Bayati (my older sister), Mohammad Al Bayati (my
younger brother), Murtadha Al Bayati (my younger brother), and Fatima
Bahi (my sister’s daughter), I wouldn’t be where I am today.

I would also like to express my thanks to the numerous individuals in
the Department of Automatic Control at LTH, Ericsson, and the Depart-
ment of Electrical and Information Technology at LTH for their invaluable
assistance. Special acknowledgments go to Felix Agner, Anders Blomdell,
Bo Bernhardsson, Fethi Bencherki, Max Nyberg Carlsson, Marko Guberina,
Albin Heimerson, Raihan Ul Islam, Olle Kjellqvist, Yiannis Karayianni-
dis, Anders Nilsson, Haorui Peng, Richard Pates, Marlén Robbani, Emil
Sundström, and all others who supported and wished the best for me.

Financial Support

This work has received funding from Vinnova through the AORTA project.
The author is WASP affiliated and also a member of ELLIIT.

7





Contents

1. Introduction 11
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Context of the Thesis . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Controller Offloading 16

3. Background 20
3.1 Furuta Pendulum . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . 21
3.3 Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . 23
3.4 WebAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Implementation 27
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Conceptual overview . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 CVXGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Local device (Host) . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Remote Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Software overview . . . . . . . . . . . . . . . . . . . . . . . 43

5. Results 44
5.1 Timing for the Control Signal . . . . . . . . . . . . . . . . . 44
5.2 Timing of the File Sending . . . . . . . . . . . . . . . . . . . 54
5.3 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9



Contents

6. Thesis Summary 58
6.1 Weaknesses and Potential Criticism . . . . . . . . . . . . . . 58
6.2 Future Work & Improvements . . . . . . . . . . . . . . . . . 59

Bibliography 62

A. Implementation 66
A.1 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Remote Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3 AOT Wasm MPC Solver . . . . . . . . . . . . . . . . . . . . 109

10



1
Introduction

Most controllers are currently executed physically close to the process they
are controlling. There are several reasons for this. These include the need for
a short round-trip time (RRT), and the simplicity of the implementation.

While these reasons hold merit, a significant constraint of locally imple-
mented controllers arises from the limitations of the device hosting the
controller, e.g., computation and storage constraints. These limitations may
not be a significant issue for processes that do not require an advanced
controller, e.g. low-order processes without challenging specifications. How-
ever, it can become problematic when dealing with processes requiring an
advanced controller that requires substantial computations and/or storage.

To address these limitations, the cloud computing paradigm is a promis-
ing candidate solution for compute or storage intensive applications, e.g.,
optimization-based controllers or learning-based computer vision. Although
cloud computing offers enhanced storage and computing capacity, it also
introduces potential challenges such as high and unpredictable latencies. In
contrast, edge computing, a paradigm situating the execution environment
closer to the data source than traditional cloud computing, presents a com-
pelling alternative [Årzén et al., 2018].

The offloading strategy presented in this thesis has the potential to not
only increase the performance, but also reduce power consumption and
extending the capabilities of the controller by enabling the execution of
advanced services traditionally confined to the cloud in close proximity to
the controller. An additional advantage lies in the potential cost reduction
for local devices, which can be equipped with more economical, less powerful
hardware which can utilise the edge for control or other services that require
additional resources.
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Chapter 1. Introduction

1.1 Research Questions

This work aims to explore dynamically offloading parts of a control algorithm
compiled to Ahead-of-Time WebAssembly to a remote computing unit, usu-
ally called the remote solver, and testing different communication mediums
such as 5G, WiFi, and cabled-Ethernet by controlling a Furuta pendulum in
the upward position. More concretely, this thesis aims to address the follow-
ing research questions:

• How would a dynamic offloading strategy utilizing WebAssembly look
like?

• What are the expected delays and control qualities of the different
communication mediums and computing resources?

• How to evaluate different controllers during runtime?

1.2 Contributions

The outcome of this thesis could be summarised as follows:

• Offloading Strategy: The thesis presents how a dynamic offloading
can be implemented by dividing the Offloading Strategy into different
logical units which could be implemented independently.

• Demonstration: The thesis showcases the feasibility and a proof of the
offloading strategy by implementing it and testing it on a real system.

• Control quality measure: The thesis proposes a simple control qual-
ity measure that can be used to make an informed decision on when to
offload and onload, i.e., to go back to local execution.

1.3 Context of the Thesis

This work is part of a larger project called Advanced Offloading for Real-time
Applications (AORTA), financed by Vinnova. The aim of the project is to
develop and demonstrate the feasibility and advantages of 5G for offloading
to the edge. The partners in the AORTA project are Cognibotics AB, Er-
icsson AB, Lund University, and Mälardalen University working together to
showcase the potential of offloading.
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1.4 Thesis Outline

1.4 Thesis Outline

Chapter 1 introduces the thesis, Chapter 2 motivates the field and this work,
Chapter 3 present an overview of relevant topics used in this work,Chapter 4
presents the offloading implementation,in Chapter 5 the obtained results are
presented and discussed and in Chapter 6 the thesis is concluded.

1.5 Related Work

Some of the related work in the area of offloading and cloud computing are
presented in this section. The related work could be divided crudely into
different sub-sections. Some works, such as the doctoral thesis of [Skarin,
2021] and [Peng, 2023], cover multiple sub-section but for simplicity will
be only included in one of the sub-sections. The different areas that will
be presented in this sections are: Overview, Offloading, Offloading decision,
Infrastructure and WebAssembly.

Overview

In this sub-sections the works that have a more of an overview of the field
and/or investigate multiple areas of the offloading problem are presented.

One notable contribution to this field is the work by Per Skarin [Skarin,
2021]. In his study, Skarin investigated various aspects of offloading and cloud
computing. One of the testbeds used involved controlling a ball and beam
process using 5G and an edge node. Haorui Peng’s work [Peng, 2023] is also
closely related to the thesis. She explores the integration of cloud infrastruc-
ture into traditional systems and investigates the possibilities and limitations
of cloud integration. Kumar et al., [Kumar et al., 2012], did a survey exploring
computational offloading for mobile systems between 1996-2012. The authors
say that the research was focusing on feasibility between 1996-2000, while the
focuses was more on offloading decision and the infrastructure for offloading
between 2001-2010. While Chow et al., [Chow et al., 2009], write in their
paper about the three concerns that are associated with cloud computing,
namely: Traditional security, availability and third-party data control. They
also propose potential solutions to these concerns by using Trusted Com-
puting and encryption. Anagnostou et al. in their paper, [Anagnostou et al.,
2002], writes about different projects in the realm of pervasive computing,
the different necessary building blocks for implementing such system and how
their project fits into the picture to make pervasive computing a reality.

Offloading

Many works focus on formulating an offloading implementation, with differ-
ent offloading strategies and assumptions, some of which are presented here.

13



Chapter 1. Introduction

[Hu et al., 2016] investigated the offloading of computational services
to the edge for mobile devices using WiFi and 4G LTE networks. They con-
cluded that substantial benefits can be gained from edge computing for highly
interactive mobile applications. Umsonst and Barbosa in [Umsonst and Bar-
bosa, 2024] controls a constrained system over a lossy network where there
is a risk of package drops using tube-based MPC control. They also provide
a theoretical guarantees about the recursive feasibility and tracking capa-
bilities in case of a disturbance or packet losses. Cuervo et al. in [Cuervo
et al., 2010] presented a system called MAUI which optimizes the energy
saving of mobile devices by offloading computation dynamically utilizing the
intermediate language version of the code base. Chun et al., in their work
[Chun et al., 2011], developed a system called CloneCloud, which is a flexible
application partitioner and execution runtime. This system enables unmodi-
fied mobile applications running in a virtual machine to offload part of their
execution from the mobile devices onto device clones operating in a cloud. In
[Araújo et al., 2013], Araújo et al. provide a method to do event-based con-
trol in wireless control systems to reduce the energy usage. They also tested
different communication protocols to solve the control problem. [Luo et al.,
2015] discusses the challenges in using small UAVs for disaster sensing due to
limited computing and energy resources. To address this, a cloud-supported
framework is proposed, integrating video acquisition, data scheduling, and
offloading for efficient real-time processing.

Offloading decision

When to offload is a very relevant question which some people have focused
on. In this thesis a simple offloading decision was used but this could be
improved by utilizing a more sophisticated algorithms.

[Gu et al., 2003] focused on implementing an offloading decision mech-
anism, e.i., when to offload and application partitioning policy, e.i., what
to offload. Chen in [Chen, 2014] proposes a game theory-based approach
for efficient computation offloading in mobile cloud computing. It frames
the decision-making problem among users as a decentralized game, ensur-
ing a Nash equilibrium. A decentralized mechanism is designed to achieve
this equilibrium and is shown to be effective and scalable through numerical
results.

Infrastructure

Offloading could be archived using different technologies and infrastructures.
The following works focused on different aspects of that.

[Habak et al., 2015] introduces the femtocloud system, which dynamically
configures multiple mobile devices into a coordinated cloud computing ser-
vice, suitable for various scenarios such as public transit, classrooms, or coffee
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1.5 Related Work

shops. The system architecture is designed to accommodate device churn and
ensure seamless operation. A prototype and simulations are used to evaluate
the system’s performance, demonstrating its efficiency in leveraging available
compute capacity. While [Barbera et al., 2013] explores the costs associated
with communication between devices and the cloud, focusing on mobile com-
putation offloading and data backup scenarios. The study evaluates the feasi-
bility and costs of these processes using real devices and cloud-based clones,
highlighting bandwidth and energy consumption considerations. In [Cheng
et al., 2014] the authors discuss using WiFi offloading in vehicular communi-
cation to address increasing mobile data demand. It highlights challenges like
high mobility and fluctuating channels, examines drive-thru Internet access,
reviews current solutions, and suggests future research directions.Park et al.,
[Park et al., 2017], reviews wireless network design for Wireless Networked
Control Systems (WNCS), covering critical interactive variables, control sys-
tem performance, parameter adaptation, and state-of-the-art approaches. It
also identifies research issues and future directions.

WebAssembly

Some of the works that use WebAssembly in their offloading implementation
are presented in this sub-section.

Thesis of [Hansson, 2021] explores using WebAssembly for computational
offloading at the Edge to improve program performance by reducing execu-
tion time and energy consumption. A proof-of-concept system is developed
and evaluated across different use cases on Raspberry Pi devices, compar-
ing local and offloaded execution, with native executions as baselines. In the
paper written by [Li et al., 2021] the authors uses WiProg to simplify IoT ap-
plication development by enabling programming for device, edge, and cloud
sides in a single language using WebAssembly. It employs an edge-centric
approach with automatic processing and compilation, allowing for efficient
runtime execution through dynamic code offloading. While [Nurul-Hoque and
Harras, 2021] implemented so called Nomad, an interpreter-based environ-
ment for running WebAssembly, capable of live-migrating across operating
systems and hardware architectures. Evaluation results show that migration,
even cross-platform, adds minimal overhead to performance and delays.
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2
Controller Offloading

There are many reasons for executing an application or parts of it in the
cloud or at the edge. The most obvious one is the access to the compute
power that the cloud provides. However, there are also other reasons, e.g.,
access to large storage capacity, access to additional information or sensor
data that can be used to improve the performance, or the possibility to learn
from multiple similar applications that are executing in parallel, e.g., identical
control loops.

For control applications, however, it is often the compute power that is
the focus. This is also the case in this thesis. More compute power means that
it is possible to solve larger control problems or solve the same problem more
often and/or faster. The controller type that is considered here is Model-
Predictive Control (MPC), where a quadratic optimization problem is solved
every sampling period. This can be quite time-consuming if a standard off-
the-shelf optimization solver is used. Moreover, the amount of time it takes
varies from sample to sample. An assumption that one, sometimes implicitly,
make then is that it is simply not possible to execute the controller in the
local device, at least not at the desired frequency. This may be true if one
uses a small micro-controller as local device. However, in our case the local
device is a modern Linux laptop which has almost the same capacity as the
servers in the edge node. Hence, although it would be possible to execute the
MPC at this particular local device, we pretend here that we have a much
less powerful local device.

Offloading a controller can potentially give better control performance
due to the increased compute power. However, this may be counteracted by
the increased latency caused by the communication between the local device
and the cloud or edge. Hence, there is often a sweet spot where the control
performance is maximized. Offloading the controller to a potentially very
powerful cloud data center that is far away will decrease the performance
and executing the controller in the local device, if at all possible, will also
decrease the performance compared to the performance at the sweet spot.
The sweet spot can in many cases be the edge node as shown in Figure 2.1.
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Chapter 2. Controller Offloading

Figure 2.1 Shows an illustrative figure of the sweet spot between high
computational power but longer delays and the control quality.

Whenever a controller is offloaded there is always the risk that no con-
trol action is returned to the local device. There are several reasons for this.
An optimization-based controller may fail to obtain a feasible solution, i.e.,
a solution that meets the optimization constraints. A wireless connection
link can lose the packet being transmitted. Hence, there is a need to have
a fallback controller in the local device to switch to if the control signal is
not returned within a certain deadline. This logic can be illustrated using a
flow diagram as shown in Figure 2.2. In the thesis the fallback controller is a
LQR controller, i.e., a state feedback controller that only requires a few mul-
tiplications and additions to implement, and which without any problem can
execute also on a very resource-constrained local device. The actual switch-
ing can be done in several ways. In the MPC case there is also the possibility
to use the control signal calculated at the previous control instant. When
the MPC optimization algorithm is invoked based on process measurements
available at time k it does not only calculate the corresponding control signal
but also the control signal to be actuated at subsequent control instants, i.e.,
at time k + 1, k + 2, etc.

A major advantage of MPC is the possibility for the MPC to generate
control signals that respect constraints on the process’ states and the control
signal. Without constraints the MPC in fact is quite close to a LQR controller.
In our case the process that is controlled is an inverted Furuta pendulum,
i.e., a rotating inverted pendulum. The objective is to balance the pendulum
in the upward position. Control of the pendulum in the downward position
and control-based swing-up of the pendulum has not been included. For
the pendulum balancing problem, control and state constraints are not so
natural. One may say that it is difficult enough to balance the pendulum also
without constraints. Hence, in our case the difference in control performance
between the offloaded MPC and the LQR in the local device is not very large.

The focus of this thesis is dynamic offloading, i.e., the control applications
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Chapter 2. Controller Offloading

Figure 2.2 Display the offloading logic flowchart, including a fallback
action for the local device if no control signal is received before deadline
during offloading.

can be moved from one node to another at run-time. That is the reason why
WebAssembly (Wasm) is used. Wasm is based on a binary byte code format.
As long as an Wasm interpreter or run-time is available in all nodes it is,
in principle, possible to move the code to any node. However, transmitting
the code over, e.g., 5G takes time and in that case one have to use the
local fallback controller to control the process during the transmission as
illustrated in Figure 2.3, where the local device preforms the I/O of the
process and and the remote solver is the offloading target. There are of course
alternative solutions. Instead of actually transmitting the Wasm code one
could transmit the URL where the code resides.

A key issue in an offloading strategy is how to decide if to offload, when
to offload, and where to offload. In this thesis we assume that we, whenever
the control quality is good, want to execute the MPC solver at the edge
and that we only have one edge node. Hence, during initialization the code
is transmitted to this edge. We also assume that there always is enough
compute resources available at the edge node. In a more elaborate scenario
one would have to include a monitoring agent that monitors state variables
such as the current control performance, and the utilization both at the local
device and at the edge, and uses this information to decide if, when and where
to offload. In the thesis an approach for monitoring the control performance
is proposed.

18



Chapter 2. Controller Offloading

Figure 2.3 A conceptual image of the dynamic offloading implemented in
this thesis. The control application, CVXGEN, written in AOT WebAssem-
bly is transmitted to a different node at run-time while the local device is
controlling the process using a local controller.
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3
Background

The different building blocks used in this work are presented in this chapter.
The chapter does not aim to be exhaustive on the different subjects but more
of an introductory.

3.1 Furuta Pendulum

The Furuta pendulum, as illustrated in Figure 3.1, is a type of an inverted
pendulum used in control theory and robotics . Unlike a traditional inverted
pendulum that moves in a single plane, the Furuta pendulum is a two-link
system where one controls the base in order to balance the pendulum at-
tached to it [Furuta et al., 1992]. It is characterized by the angles θ and ϕ,
representing the pendulum angle and base angle, respectively. The angular
velocities associated with these angles are denoted as θ̇ and ϕ̇.

Figure 3.1 The small desktop Furuta pendulum used in this thesis.

The pendulum can be controlled either in the downward position or the
upward position. The swing-up of the pendulum from the down to the up

20



3.2 Model Predictive Control

position can be done either in closed loop. i.e., using a controller, or in open-
loop using a predefined control sequence. In this thesis it is only the control in
the upward position, i.e., the balancing, that is considered. It is assumed that
a human user holds the pendulum in the correct position when the controller
is started.

The theoretical model of the Furuta pendulum in this work was derived
by Gäfvert, [Gäfvert, 1998], using Euler-Lagrange equations. The system of
equations derived are presented in Equation 3.1. This non-linear model is
valid for all states.

d

dt
θ = θ̇

d

dt
θ̇ =

1

αβ − γ2 + (β2 + γ2) sin2(θ)

(
β(α+ β sin2(θ)) cos(θ) sin(θ)ϕ̇2

+ 2βγ(1− sin2(θ)) sin(θ)ϕ̇θ̇ − γ2 cos(θ) sin(θ)θ̇2 + δ(α+ β sin2(θ)) sin(θ)

− γ cos(θ)τu
)

d

dt
ϕ = ϕ̇

d

dt
ϕ̇ =

1

αβ − γ2 + (β2 + γ2) sin2(θ)

(
βα(sin2(θ)− 1) sin(θ)ϕ̇2

− 2β2 cos(θ) sin(θ)ϕ̇θ̇ + βγ sin(θ)θ̇2 − γδ cos(θ) sin(θ) + βτu
)

(3.1)

The constants α, β, γ, and δ are introduced to simplify the expression.
These constants can be calculated using measurements of the pendulum,
such as mass and length or be identified though a parameter identification
experiment as outlined in Section 3.1.

3.2 Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy which solves
an online optimization problem every control instance to obtain a control
signal. This control signal both respects constraints of the process states, the
control signal and minimizes the cost defined by the problem formulation
[Rawlings et al., 2017].

Mathematical Definition

Consider a discrete-time stabilizable system with dynamics given by

xk+1 = Φxk + Γuk,

where xk is the state at time k, uk is the control input at time k, Φ is
the state matrix, and Γ is the input matrix.
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Chapter 3. Background

The objective of the MPC is to minimize the cost function given by Equation
3.2 over a finite horizon N and not violate the constraints given by Equations
3.3, 3.4 and 3.5 by choosing a sequence of control signals ui given the initial
state x0.

J =

N−1∑
i=0

(
xT
k+iQxk+i + uT

k+iRuk+i

)
+ xT

k+NQfxk+N (3.2)

xk+i+1 = Φxk+i + Γuk+i for i = 0, 1, . . . , N − 1 (3.3)

|uk+i| ≤ umax for i = 0, 1, . . . , N − 1 (3.4)

∥uk+i+1 − uk+i∥∞ ≤ S for i = 0, 1, . . . , N − 2 (3.5)

Q and R are positive definite weighting (cost) matrices, Qf is the terminal
cost matrix, umax upper and lower control signal constraints and S is the
upper constraint on the control signal change between two consecutive time
steps. This results in the MCP formulation given by Equation 3.6 [Rawlings
et al., 2017].

min
{uj}N−1

k

N−1∑
i=0

(
xT
k+iQxk+i + uT

k+iRuk+i

)
+ xT

k+NQfxk+N (3.6)

subject to xk+i+1 = Φxk+i + Γuk+i for i = 0, 1, . . . , N − 1

|uk+i| ≤ umax for i = 0, 1, . . . , N − 1

∥uk+i+1 − uk+i∥∞ ≤ S for i = 0, 1, . . . , N − 2

The variable notation presented in this section will be used throughout this
work.

MPC solver

The MPC optimization problem presented above is a convex quadratic pro-
gram (QP) problem since the model is linear, the constraints are polyhedral
and the cost is quadratic. The solver used in this work was CVXGEN. CVX-
GEN automatically generates a fast solver written in C given a small QP
problem formulation[Mattingley and Boyd, 2012]. More information about
CVXGEN concerning the problem formulation and a code example are pre-
sented in Section 4.4.
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3.3 Linear Quadratic Regulator

3.3 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is also an optimal controller. The
difference between it and the MPC controller is:

• The LQR does not require solving an online optimization problem every
control instance.

• LQR has an analytic solution utilizing the discrete-time (algebraic)
Riccati equation.

• The states and controls signal cannot be constrained [Kwakernaak and
Sivan, 1972].

It is interesting to note that if the MPC had an infinite horizon with no
constraints the solution would coincide with the solution given by an infinite
horizon LQR controller.

Mathematical Definition

Following the same notation introduced in Section 3.2. The objective of the
LQR is to minimize the cost function given by Equation 3.7 over a finite
prediction and control horizon by choosing a sequence of control signals given
the initial state:

J =

N−1∑
i=0

(
xT
k+iQxk+i + uT

k+iRuk+i

)
+ xT

k+NQfxk+N (3.7)

Resulting in the LQR formulation given in Equation 3.8 [Kwakernaak
and Sivan, 1972].

min
{uj}N−1

k

N−1∑
i=0

(
xT
k+iQxk+i + uT

k+iRuk+i

)
+ xT

k+NQfxk+N (3.8)

LQR Solver

The LQR formulation presented in Equation 3.8 could be solved using an
analytic solution utilizing either the discrete-time Riccati equation if the
horizon is finite or the discrete-time algebraic Riccati equation if the horizon
is infinite. The solver returns a state feedback law. If the horizon is short,
the state feedback law is time-varying and depending on the initial state,
while for infinite horizon, the state feedback law is static and independent of
the initial state [Kwakernaak and Sivan, 1972].

There are a few solvers that could be used to derive an analytic solution.
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Chapter 3. Background

The one used in this work was the dlqr function provided by Matlab. dlqr
returns the state feedback law for the infinite horizon problem [MathWorks,
2023].

3.4 WebAssembly

WebAssembly (Wasm) is a binary-code format executed by a stack-based
virtual machine [WebAssembly, 2023]. Initially designed for modern web
browsers, WebAssembly byte-code is obtained by letting programmers write
code in languages like C, C++, and Rust and then compile it to Wasm. The
resulting binary-code modules can be accessed from a JavaScript app using
the WebAssembly JavaScript APIs [MDN, 2023]. Notably, WebAssembly
does not assume any web-specific features, making it applicable beyond the
web when an appropriate API is defined [WebAssembly Community Group,
2023].

There exist a WebAssembly Text Format (WAT) which is a human readable
format of Wasm binary-code. This format could be used by programmers to
write WAT directly and compile it into binary-code but could also be used
for programmers to view Wasm modules.

1 (func $add (param $a i32) (param $b i32) (result i32)

2 get_local $a
3 get_local $b
4 i32.add)

5 (export "add" (func $add))

Listing 3.1 WebAssembly Text Format code example

The code in Listing 3.1 defines a function called ”add”, denoted by (func

$add ...), that takes two parameters, $a and $b, both of type i32, which
stands for a 32-bit integer. Inside the function, it retrieves the values of these
parameters using the get local instruction and then adds them together
using the i32.add instruction. Finally, it returns the result, which is also of
type i32. Additionally, the moudle exports this function so that it can be
accessed from outside the module using (export "add" (func $add)).

WasmEdge

WasmEdge serves as a Wasm runtime. It could be used for executing Wasm
code in cloud-native environments, edge applications or integrated into pro-
grams written in languages such as C, Rust, or Go. WasmEdge runs Wasm
code in a sandbox environment to ensure a secure execution environment
independent of the underlying operating system[WasmEdge Documentation
Overview 2023].
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In addition, WasmEdge features a compiler that translates WebAssem-
bly into native machine code. This capability enables WasmEdge to oper-
ate in Ahead-of-Time (AOT) mode, leading to improved execution speed
[WasmEdge, 2023b].

3.5 Containers

Containers are a virtualization technology that encapsulates executable soft-
ware and enabling it to run inside of the container by invoking system calls to
the underlying operating system (OS) for the executable software. Each con-
tainer possesses its own file system, process space, and network stacks, which
are isolated from the hosting OS. Typically, containers are not executed as
root users; thus, commands requested by the container may be denied if the
container’s permissions are insufficient. A container can package all necessary
software and dependencies required to execute a specific application, allow-
ing it to be exported as a single unit and run on other nodes, provided that
the system calls made by the container are supported [IBM, 2023].

Containers provide an alternative to virtual machines (VMs) by elimi-
nating the need for a hypervisor. This allows for efficient utilization of the
features and resources of the host OS [IBM, 2023]. However, containers are
usually deployed inside of VMs and these two technologies work together
rather than compete.

Kubernetes

Kubernetes, often abbreviated as K8s, is an open-source container orchestra-
tion platform that automates the deployment, scaling, and management of
containerized applications. Kubernetes provides a powerful and flexible in-
frastructure for deploying and managing distributed systems by abstracting
the underlying infrastructure, making it easier to manage complex, multi-
container applications [Kubernetes, 2023b][Kubernetes, 2023c].

3.6 5G

5G is the fifth generation of cellular networks which is said to be up to 100
times faster than 4G, have a low latency and have a greater throughput
capacity [Ericsson, 2023a]. 5G wireless communication system is expected to
support a broad range of newly emerging applications especially since ultra-
reliable and low-latency communications (URLLC) is being introduced.
URLLC is one of the standout features of 5G technology. It is designed to
ensure ultra-reliable and low-latency communication, especially crucial for
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mission-critical applications like factory automation, autonomous driving,
and virtual/augmented reality experiences. URLLC guarantees good quality
of service (QoS), offering low latency of 1 millisecond (ms) along with high
reliability [Inseego, 2023]. URLLC was however not used in this work since
we did not have the equipment for it.

3.7 Edge Computing

Edge computing, which is a distributed framework which brings process-
ing and storage resources for applications closer to where data is generated
and/or consumed, opens up the opportunity for cloud applications to be
more responsive and faster to response. This can make it possible to control
mission-critical systems which require fast sampling [Ericsson, 2023b].
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4
Implementation

This chapter contains an overview of how the experimental setup looked
like, a conceptual overview of how the implementation works, a detailed de-
scription of the five different components making up this implementation:
Model, CVXGEN Solver, Control Quality Measure, Local Device, and Re-
mote Solver. The chapter is concluded by the software overview and in Ap-
pendix A the code is provided.

4.1 Experimental Setup

x

u

x

u

Local device (Host)

Process

Remote solver

Figure 4.1 Simplified experimental setup overview.

Figure 4.1 provides a simplified overview of the experimental setup. The
local device, also referred to as the host, is the computer that controls the
pendulum and preforms the offloading. While the remote solver is either a
lab-computer or an edge node that preforms the offloaded algorithm. The
hardware used in this thesis are:

Furuta Pendulum. A mechanical process developed by Ben Katz and
modified by the Department of Automatic Control at LTH. It takes one input
(control signal), u, which is the base motor voltage and is proportional to the
torque on the base. The system returns also 4 states, the base angle ϕ and
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its time derivative ϕ̇, the pendulum angle θ and its time derivative θ̇ [Pigot,
2021]. To interact with the process the Moberg API was used. Moberg is for
connecting and communicating with various lab processes in the Department
of Automatic Control at LTH [Blomdell, 2019].

Local device (Host). The local device is a Lenovo T15 computer with a
Intel Core i7-10510U CPU @ 1.80GHz with a RAM of 16GB running Fedora
Linux 38.

Remote solver. The remote system was either a lab-computer or an edge
node. The hardware of the lab-computer also called Heron was Intel Core
i5-4590 CPU @ 3.30GHz and two 8Gb RAM. While the edge node have the
hardware presented in 4.1.

Table 4.1 Edge Node Hardware Information

Node CPU # CPUs RAM

1 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
2 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
3 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
4 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
5 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
6 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
7 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G

5G router. The 5G router used to communicate with the edge from the
local device was an Askey 5G Sub6 with model name NDQ1300-RoHS dongel.

Wi-Fi 6 router. The Wi-Fi 6 router used to communicate with the edge
from the local device was an Archer Ax72 AX5400 Wi-Fi 6 Router.

4.2 Conceptual overview

To understand how the offloaded implementation works an overview of how
it run is presented in this section. The details are permitted in this section
to make the basic idea clear. The details are presented in the sections that
follows.

Upon start the remote solver does not have the control application, the
control algorithm, it should use to preform the any offloading tasks, it sim-
ply waits for the local device to send the control application. In the same
time the local device controls the process, using its local LQR controller and
sends the control application to the remote solver as illustrated in Figure 4.2
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4.2 Conceptual overview

When the Remote solver receives the control application, it becomes ready
to receive offloading requests.

Figure 4.2 An overview on what the program does in the start up phase.
CVXGEN.wasm is the control application.

After sending the control application the local device will monitor the
control quality of the pendulum. If the control quality is deemed low the local
device will control the process using the local LQR controller. Otherwise,
if the control quality is deemed good the local device will offload. When
remote solver receives an offloading request it uses the control application,
received previously, to calculate a control signal and sends it back to the local
device. If the response from the remote solver is revived by the local device
within a deadline, defined in the local device, the local device will actuate the
process with that control signal as illustrated in Figure 4.3. Otherwise, if the
deadline is missed the local device will default to the local LQR controller
as illustrated in Figure 4.3. This offloading logic is then repeated until the
program is stopped.

Figure 4.3 An overview of how the program acts if the local device choose
to offload and gets a response within the deadline defined in the local device.
Here, x is the states of the process and u is the control signal for that state.
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Figure 4.4 An overview of how the program acts if the local device choose
to offload and do not get a response within the deadline defined in the local
device.

4.3 Model

The control application mentioned in Section 4.2 is at its core a MPC opti-
mization solver. Since a MPC controller is used, a good model of the process
is necessary to control it. In Section 3.1, the theoretical model of the Furuta
pendulum is presented. The parameters, α, β, γ and δ presented in Equation
3.1 were identified using a parameter identification experiment rather than
using the theoretical expressions of these parameters since it gave a better
model in this case.

The parameter identification experiment involved exiting the system with a
chirp signal, starting with an initial frequency of 0.5 Hz and reaching 12 Hz,
with an amplitude of 0.4 Volts and a sampling frequency of 4 ms as shown
in Figure 4.5.
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V
)

Chirp Signal u

Figure 4.5 Shows the chirp signal used for the model identification ex-
periment.

The parameter identification experiment made on the pendulum while it
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was on the down position, i.e., θ is around −π as can be seen from Figure
4.6. Since the non-linear model is valid for all states the parameters identified
could be used for the upright position without any modification.
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The pendlum angle, , over time

Figure 4.6 Shows the pendulum angle during the model identification
experiment.

In the experiment θ, θ̇, ϕ, ϕ̇ were recorded and the least square method
presented in [Gäfvert, 1998] was performed to get the requested parameters.
One can rewrite the system of equations presented in Equation 3.1 as a torque
formulation as presented in Equation 4.1.ï

τu
0

ò
︸︷︷︸

y

=

ñ
ϕ̈ sin2 θϕ̈+ 2 cos θ sin θϕ̇θ̇ cos θθ̈ − sin θθ̇2 0

0 θ̈ − cos θ sin θϕ̇2 cos θϕ̈ −sinθ

ô
︸ ︷︷ ︸

ΦT


α
β
γ
δ


︸︷︷︸
Θ

(4.1)

where τu is the torque applied to the base of the pendulum while the
second element in the y vector is the torque applied to the pendulum itself
which in our case is 0. θ̈ and ϕ̈ are the accelerations of the pendulum angle
and the base angle respectively. It is important to note that the relationship
between the torque and the voltage input to the pendulum is unknown. It
was assumed that it is a linear proportionality between the voltage input
and the torque, which in that case will result in a scaling of our parameters
and does not effect the overall model.

To perform the least square, the following steps where followed.

1. The states and the corresponding control signals of the model identifi-
cation experiment where collected.

2. They measured variables where passed though a first-order Butterworth
low pass filter.

31



Chapter 4. Implementation

3. The accelerations, θ̈ and ϕ̈, were approximated using central difference
approximation for the internal points and a forward difference and a
backward difference for the edge points.

4. yi and ΦT
i were constructed for each time point i,

yi =

ï
ui

0

ò
&ΦT

i =

ñ
ϕ̈i sin2 θiϕ̈i + 2 cos θi sin θiϕ̇iθ̇i cos θiθ̈i − sin θiθ̇

2
i 0

0 θ̈i − cos θi sin θiϕ̇
2
i cos θiϕ̈i − sin θi

ô
.

5. These points, going from time point 0 to N, where then stacked on top
of each other forming:

 y0
...
yN


︸ ︷︷ ︸

Y

=

Φ
T
0
...

ΦT
N


︸ ︷︷ ︸

A

Θ.

6. The least square formulation gave the requested parameters Θ by cal-
culating,

Θ = (ATA)−1ATY.

7. The nonlinear model was linearized around the unstable stationary
point x = [0, 0, 0, 0]T , and a friction term was introduced to the model
resulting in

θ̇

θ̈

ϕ̇

ϕ̈

 =


−f 1 0 0
αδ

αβ−γ2 0 0 0

0 0 −f 1

− γδ
αβ−γ2 0 0 0



θ

θ̇
ϕ

ϕ̇

+


0

− γ
αβ−γ2

0
β

αβ−γ2

uk.

8. The identified parameters were substituted into the linear continuous
model and then discretized using the zero-order hold method with a
sampling period of 11 milliseconds. This decision came after trying dif-
ferent approaches. Initially, controlling the pendulum within a 15-20
ms period seemed best. However, when we tried this range for dis-
cretization, we couldn’t stabilize the pendulum. We found that using
a discretization period of around 11 ms worked better, allowing stabi-
lization even with sampling periods up to 25 ms. This discretization
resulted in the model presented in Equation 4.2. Which is the model
used throughout this work to stabilise the pendulum in the upright
position.
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θk+1

θ̇k+1

ϕk+1

ϕ̇k+1

 =


1.0064 0.0110 0 0
1.2676 1.0070 0 0
−0.0004 0 0.9995 0.0110
−0.0666 −0.0004 0 1



θk
θ̇k
ϕk

ϕ̇k

+

−0.3163
−57.5884
0.2139
38.9051

u.

(4.2)

4.4 CVXGEN

The MPC solver used in this thesis is the CVXGEN solver. The solver was
obtained by formulating the problem as illustrated in Figure 4.7 in the CVX-
GEN website, where, among other things, the number of states, the horizon
and the number of control signals where defined. The CVXGEN website then
returned an MPC solver written in C.

Figure 4.7 Formulation of the problem for CVXGEN. The prediction
horizon was 60, the number of states was 4, and the process had one input.
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Every time the CVXGEN solver is invoked, one must first define a param-
eter list consisting of the states of the process (x), the state matrix (Φ), the
input matrix (Γ), and the MPC parameters presented in Equation 3.6, such
as the cost on the states (Q), the cost on the control signal (R), the max-
imum and minimum value of the control signal (umax), and the maximum
rate change of the control signal (S). In this formulation, the final cost (Qf )
was omitted since the horizon was deemed long enough. Since the process
and the MPC parameters remain unchanged in our case, they are stored in
a list and reused every time the CVXGEN solver is called along with the
new states. To compile the solver given by CVXGEN using gcc -Wall -Os

takes around 13 minutes, (when the horizon is 40 it takes around 5 minutes
to compile).

Wasm & WasmEdge

The aim with CVXGEN was to compile it to Wasm and use WasmEdge
runtime to run it. To interact with the code in Wasm format, a file named
bridge.c was implemented. This addition acts as a bridge to the CVXGEN
solver. It defines the global structures and creates an interface between the
CVXGEN solver and the program that interacts with it.

Subsequently, the source code of the solver and the complementary
bridge.c where compiled to Wasm using Emcc, which is a compiler toolchain
that can Compile C or any other language that uses LLVM, into WebAssem-
bly [Emscripten, 2024].The compilation process using emcc -Wall -O3 took
around 11 min. When testing the Wasm CVXGEN controller on the process
it was observed that Wasm in interpreted form was too slow for our use case
therefor the CVXGEN Wasm file was further compiled to AOT using the
WasmEdge compiler [WasmEdge, 2023b], this compilation took around 30
seconds, resulting in an a faster execution of the solver/controller.

4.5 Control Quality

In order to make an informed decisions on when to offload, it is important
to implement a mechanism that takes into account the control quality of
the controller and decide on offloading based on that. The underlying logic
follows a straightforward principle : If the cost, a measure of the control
quality, is lower than a predefined threshold the local device will offload the
control task to the remote solver. Else if the cost is higher than the threshold
the local device will onload the controlling task and control the process using
its local controller as illustrated in Figure 4.8.

34



4.5 Control Quality

Figure 4.8 The logic used on when to offloading used in this work

Various measures already exist to quantify the control quality of a con-
troller, such as Integral Square Error (ISE), Integral Absolute Error (IAE),
Integral Time-weighted Absolute Error (ITAE), and Integral Time Square
Error (ITSE) [Schultz and Rideout, 1961]. In the discrete-time case, these
measures are defined mathematically as:

ISE =

T∑
k=0

e(k)2

IAE =

T∑
k=0

|e(k)|

ITAE =

T∑
k=0

k|e(k)|

ITSE =

T∑
k=0

ke(k)2

Here, e(t) = y(t)− r(t), where y(t) is the measured value and r(t) is the
reference value at time t. While these control quality measures are widely
used, they suffer from a limitation relevant for offloading: they integrate the
error over the entire time span. This is suitable for evaluating individual con-
trollers but may not be ideal for our scenario. Implementing this approach
would lead to a monotonically increasing cost which will eventually causing
the remote controller to be unused.

To address this limitation, a potential solution would involve continuously
updating the initial time ti and final time tf so that the control quality is a
sum over a shorter period, hopefully aligning better with the controller used
for pendulum control. However, instead of adopting this approach, we opted
to develop our own control quality measure, represented mathematically as:

J(k) = 0.5(θ2 + θ̇2 + ϕ2 + ϕ̇2) + 0.5J(k − 1). (4.3)
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This cost comprises of two components. Firstly, it incorporates the
squared deviation of the four states from their reference value (which is zero).
Secondly, it includes a fraction of the cost from the previous time. This dual-
component structure ensures the cost function’s responsiveness to dynamic
adjustments while maintaining a degree of stability for noise.

4.6 Local device (Host)

The local device as described in Section 4.2 is the device that is physically
connected to the process, reads the process’ states and actuates the process.
The local device have three functionalities namely:

1. Sending the control application to the remote solver.

2. Monitors the control quality of the process.

3. Controls the process by either offloading or onloading.

These functionalities are realized by 4 Posix threads (pthreads) and writ-
ten in 6 files, namely: main.c, util.c, quality.c, regul.c, sender.c and
controller.c. In this section each functionality is explained together with
which files are used. Every shared resource between the different threads are
protected by mutexes to ensure mutual execution.

The application sender

When the program is started one thread called sender thread is created.
This thread do the following tasks and terminates:

1. Establishes a TCP connection with the remote solver. A TCP connection
was used because the data sent by the sender thread is important to be
delivered in its entirety to the remote solver which is guaranteed by the TCP
connection.

2. Sends the solver file, which in this case is a AOT Wasm compiled CVXGEN
solver to the remote solver.

3. Sends the parameters that are needed by the CVXGEN solver but do not
change between sampling iterations, which are: The state matrix (Φ), the
input matrix (Γ), the cost on the states (Q), the cost on the control signal
(R), the maximum and minimum value of the control signal (umax), and the
maximum rate change of the control signal (S). The Wasm file is around 1.3
MB while the CVXGEN parameters are 200B.

4. When receiving a verification from the remote solver that everything has
been sent successfully it notifies the rest of the program to indicate that the
remote solver is ready to receive offloading requests.
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The sender thread thread is implemented using sender.c. Figure 4.9
shows graphically which files are used by sender thread and how the over
all program structure of the local device program looks like.

Figure 4.9 Shows an overview of which components that are involved
with sender thread, marked with red, which has its primary task of sending
the control application and the model parameters to the remote solver.

The control quality monitor

The control quality monitoring is implemented in control quality thread.
The thread does the following tasks with a frequency of 1000 Hz:1)The states
of the process are sampled. 2) The measured states and the old control quality
measure are used to calculate the new control quality using Equation 4.3.

The control quality thread thread is implemented in quality.c but
it uses util.c. util.c contains functions shared between different threads.
These functions include sleep functions and IO-functions. Figure 4.10 shows
graphically which files are used by control quality thread. The sleep func-
tion in util.c is implemented using the clock nanosleep system call and
the CLOCK MONOTONIC clock. The implementation follows Björn Branden-
burg’s post titled ”Liu and Layland and Linux: A Blueprint for ’Proper’
Real-Time Tasks” [Brandenburg, 2020] to create a sleep function that sleeps
for the correct time period and does not return prematurely.
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Figure 4.10 Shows an overview of which components that are involved
in the control quality thread thread, marked with red, which has its
primary task to measure the control quality using Equation 4.3.

The controller

The controller is implemented in the regul thread thread. This thread does
the following tasked with a frequency of 66.67 Hz.

1. Actuate the process with the previously calculated control signal (at time 0
the ”previous” control signal is 0.).

2. The states of the process are sampled.

3. If the control application and the model parameters are sent and the control
quality is good the thread will offload the control task to the remote solver
using a UDP socket. Otherwise, the thread will onload the control task.

4. If the thread chooses to offload it waits for the response from the remote
solver. If the the thread get a response within 14 ms it will use the control
signal in its next iteration. If the deadline is missed the thread will use the
local controller instead to get a control signal.

Figure 4.11 illustrates the offloading flowchart, i.e. step 3 and 4 in the
above list.

To clarify the timing, two diagrams showing the two outcomes that could
happen when the regul thread thread decides to offload. In Figure 4.12 the
remote solver returns a control signal before the timeout deadline of 14 ms
while Figure 4.13 shows the timing when that deadline is missed. The blocks
in the time line are not drawn to scale and not all details of the program are
presented in the figures.
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Figure 4.11 Shows the flowchart of the logic used in the regul thread

thread on when to offload and when to onload

Figure 4.12 Timing diagram of the offloading when the remote solver
returns a control signal before the timeout deadline of 14 ms after the states
are sent to the remote solver.
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Figure 4.13 Timing diagram of the offloading when the remote solver
does not return a control signal before the timeout deadline of 14ms so the
local LQR controller is used.

The regul thread thread is implemented in regul.c but it uses util.c
much like the control quality thread thread to read the states and to
sleep. Unlike control quality thread thread the regul thread thread also
uses util.c for actuating the process. The regul thread thread also uses
controller.c file which preforms all the offloading and onloading logic.
When regul.c calls controller.c it expects a control signal, it does not
know where that control signal comes from.controller.c provide a control
signal either from the remote solver of from the local LQR. Figure 4.14 shows
graphically which files are used by regul thread.

Figure 4.14 Shows an overview of which components that are involved
in the regul thread thread, marked with red, which has its primary task
to control the process and preform the offloading.
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4.7 Remote Solver

The remote solver is the offloading target for the local device. It starts with-
out the control application it needs to manage offloading requests. The con-
trol application is sent to the remote solver when the local device wants to
starts offloading. The remote solver has 2 functionalities namely.

1. Receive the control application from the local device using a TCP con-
nection.

2. Use the received control application to calculate the control signal for
offloading requests and send it back to the local device using UDP
sockets.

These 2 functionalities are implemented using 4 pthreads and three files
namely: main.c, receiver.c, and main.c.

The application receiver

When the remote solver program is started a thread called receiver thread

is created. This thread blocks the rest of the program until the control appli-
cation, the AOT Wasm compiled CVXGEN MPC solver, and the CVXGEN
parameters, needed to run the CVXGEN solver, are received. The file is
saved locally while the parameters are stored on the program memory. The
receiver thread is implemented in the receiver.c. Figure 4.15 illustrates
which files are used to receive the control application.

Figure 4.15 Shows an overview of which components that are involved in
the receiver thread thread, marked with red, which has its primary task
to receiver the control application, CVXGEN.Wasm, and store it locally.
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The offloading request handler

When the remote solver program receives the control application it starts two
threads namely: intermediary thread and solver thread which together
handle offloading requests.

intermediary thread. This thread acts as the intermediary between the
local device and the CVXGEN solver. It opens a UDP socket and starts
listening for incoming requested from the local device. When a request from
the local device is received it forwards it to the solver thread thread using
UNIX sockets. The thread also forwards the response from solver thread

thread to the local device. This structure was chosen to asynchronously stop
the execution of the solver inside of solver thread when a new request is
revived from the local device. Since the execution of the solver is blocking.

solver thread. This thread invokes the control application and returns the
control signal to the requester. It does it by using the WasmEdge runtime to
run the CVXGEN function inside of the AOT Wasm compiled file.

The intermediary thread is implemented in the main.c file while
solver thread is implemented in the solver.c . Figure 4.16 illustrates
which files to produce the above described functionality.

Figure 4.16 Shows an overview of which components that are involved
in the solver thread and intermediary thread threads, marked with red,
which has its primary task to return a control signal based on the received
states using the control application.

The whole remote solver is encapsulated within a container alongside
the WasmEdge SDK and the WasmEdge library. The container opens two
sockets: one TCP socket for control application reception, and one UDP
socket for the offloading requests. The container could be deployed either
as a standalone container, by building the image from its container file or
by pulling it from the Docker Hub or it could also be deployed inside of
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Kubernetes (K8s). To deploy it inside of K8s one can use the kubectl CLI,
which is a command line tool for communicating with a Kubernetes cluster’s
control plane [Kubernetes, 2024], and YAML files. In the YAML files one
defines a service, a component in K8s responsible for communication between
pods and the rest of the system [Kubernetes, 2023d], and a deployment,
managing the deployment of containerized application [Kubernetes, 2023a].
When a YAML file is run using kubectl CLI, K8s deploys a container that
works in the same way as the standalone deployed container.

4.8 Software overview

Figure 4.17 shows a visual representation of the different elements that makes
up the offloading implementation presented in this work.

Figure 4.17 Implementation overview that shows the components in
both the local device and remote solver.
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5
Results

Different types of experiments were conducted to explore different aspects of
the offloading framework. The results of these experiments are categorized
into four sections: RTT delays for the control signal request, Time for sending
the solver file, Control quality and Demonstration.

• RTT delays for the control signal request. The total time it took
from sending a control request, calculate a control signal, and send-
ing back the control signal to the requester is presented for various
configurations.

• Time for sending the solver file . The time it took to send the
solver file to the remote solver in different configurations is presented.

• Control Quality. A presentation of how the different configurations
affected the control quality of the process.

• Demonstration. Graphs that show the pendulum angle, the control
quality measure and which controller is used are presented for when
the remote solver is the edge node and the communication medium is
the 5G network.

5.1 Timing for the Control Signal

Controlling an unstable system, such as the Furuta pendulum requires short
delays. This section analyses delays across different configurations, classify-
ing them into three categories: Integrated control, Container control, and
Kubernetes control. This section is then concluded with an overview table of
the average RRT delay time and worst case RRT delay time for the different
configurations.

• Integrated control. All controllers tested are implemented in the
local device without offloading. Forming a baseline to how fast the
controllers are.
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• Container control. In this section the results of the implementation
written about in Chapter 4 are presented. Concretely, the offloading
implementation composed of the host and a remote solver is tested. In
this subsection the remote solver is deployed as a standalone container.

• Kubernetes control. The deployments presented in this section are
similar to those of the Container control section. The difference being
that the remote solver is the edge, and the remote solver container is
deployed inside of a Kubernetes cluster.

In Container control and Kubernetes control subsection the RRT delay
time is the duration from when controller.c gets a control signal request
until controller.c returns a control signal, as Illustrated by Figure 5.1.
While in Integrated control subsection the RRT delay time is simply the
execution time of the code since no offloading is preformed.

Figure 5.1 Shows visually what is meant by RRT delay time for Con-
tainer control and Kubernetes control.

Integrated Control

Integrated control refers to the scenario where the pendulum is controlled by
the host computer without any offloading. The local device used in this work,
as mentioned in Section 4.1, was a Lenovo T15 computer with am Intel Core
i7-10510U CPU @ 1.80GHz with a RAM of 16GB running Fedora 38.

In this subsection four controllers are presented: LQR, CVXGEN MPC
written in C, Wasm CVXGEN MPC and AOT Wasm CVXGEN MPC. Each
is explained in its own subsection. Since no offloading is preformed in this
subsection the RRT delay time simply becomes the execution time of the
code.
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LQR. This controller is noteworthy as it will serves as the local controller,
and having a fast fallback controller is essential to ensure stability when a
control signal is needed in a short period of time.

Figure 5.2 Execution time histogram for the LQR controller in nanosec-
onds

As can be seen from Figure 5.2 the LQR controller is fast, the average
execution time is around 120 ns. This performance is expected, given the
simplicity of the controller. It can be implemented by one line of code.

MPC C-code. The CVXGEN MPC controller, written in C, is tested to
determine the best-case scenario for the MPC solver’s execution time.
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Figure 5.3 Execution time histogram of the MPC controller executed as
C-code in miliseconds

The execution time of the MPC solver ran as C-code is presented in
Figure 5.3. The average execution time is 1.3 ms, i.e., much longer than
for the LQR controller. This difference can be attributed to the fact that
the MPC controller must perform a minimization to determine the optimal
control signal every time step while LQR is static. The length of the horizon
plays a crucial role for the execution time. In this work a horizon of 60 was
used, if the horizon were shorter the execution time would decrease. Although
some experiments were conducted with controllers with shorter horizons, they
proved to be unreliable and no further experiments where done.

MPC Wasm. As mentioned in Section 4.4 the CVXGEN solver, together
with bridge.c, was compiled to Wasm. The Wasm file was then integrated
into the control loop using WasmEdge’s runtime. As evident from Figure
5.4, the execution time of the WASM CVXGEN solver in interpreted form
is notably slow, averaging 219 ms. While it might be possible to stabilize
the pendulum by using a better model and/or a shorter horizon, it will be
challenging. For context, the longest period found where it was possible to
stabilize the Furuta pendulum was 50 ms using LQR while for MPC the
longest period was 25 ms.
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Figure 5.4 Execution time histogram for MPC controller executed as
WASM in miliseconds

MPC AOT Wasm. Interpreting Wasm is too slow to stabilise the pen-
dulum. Therefore, Ahead-of-Time (AOT) compilation of Wasm was tested to
stabilize the pendulum. The data presented in Figure 5.5 illustrates a notably
speed improvements of the AOT Wasm execution compared to interpreted
Wasm.

This efficiency gain comes at the cost of increased file size. The AOT
code gets integrated into the Wasm file, allowing it to be executed either as
interpreted Wasm or AOT-compiled code. The initial size of the Wasm solver
is 666 KB, while the AOT Wasm file has a size of 1.3 MB, approximately
twice as large. This have two implications. 1) If the local device that controls
the system has limited memory the solver might be too big to be stored
locally. 2) It will take longer time to send the solver to the remote solver. It
takes on average 1.8s sending the AOT-compiled Wasm solver to the edge
node using the 5G network.
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Figure 5.5 Execution time histogram for MPC controller executed as
AOT Wasm in miliseconds

Container Control

In this subsection offloading was tested. The remote solver was deployed
inside of a container either locally on the local device or remotely on an
another computer. Based on the results presented in the Integrated control
subsection the LQR controller was chosen as the fallback local controller for
its fast execution speed and the AOT-compiled Wasm CVXGEN was used
as the remote solver’s controller. The reason being that as long as a Wasm
interpreter or run-time is available in all nodes it is, in principle, possible to
move the code to any node.

The RRT delay time of the two deployments, explained further in their
own subsection, are shown in Figure 5.6. In the figure one can also see the
threshold of 14 ms is also marked. This threshold is the time controller.c
wait until it abandons the remote solver for that iteration and uses the local
LQR controller instead when offloading.

Local Deployment. The remote solver is deployed in the host computer,
meaning that the container is run on the same computer as the local device
and the loop-back ip address is given to the local device to use when ”of-
floading” to the container. This deployment is a form of a baseline on how
fast the host to remote solver communication can be. It is evident that the
distribution in Figure 5.6 is more spread out and has a longer execution time
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Figure 5.6 RRT delay time histogram for Local and Heron deployments
together with the predefined deadline of 14 ms.

compared to Figure 5.5. This spread could be attributed to the fact that the
computer has multiple processes running and competing for resources.

Heron Deployment. The remote solver is deployed in another computer,
called Heron-01. Heron-01 has an Intel Core i5-4590 CPU @ 3.30GHz and 2
8Gb RAM sticks. The communication medium between the local device and
Heron-01 was Cabled-Ethernet. Similar to Local Deployment, the deployment
on Heron exhibits a comparatively slower execution time compared to the
integrated AOT Wasm solver but fast enough to stabilize and control the
Furuta pendulum.

Kubernetes Control

As previously mentioned, the edge node in the Department of Electrical and
Information Technology (EIT) at Lund University is a bare-metal Kubernetes
cluster connected to the network. The hardware of the edge node used in this
work is presented in Table 4.1. To deploy the remote solver the container
had to be run inside of a Kubernetes cluster. This was done by defining
services and deployments and running them using kubectl as explained in
Section 4.7. These YAML files could be used to deploy the remote solver
on any Kubernetes cluster, enabling the offloading to the cloud or other
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Kubernetes clusters.
Since the only remote solver deployed inside of K8s was the edge node

different communication technologies where tested, namely: 5G, Wi-Fi, and
Cabled Ethernet. The connection to the edge was routed though a router,
namely: Archer AX72 AX5400 Wi-Fi 6 Router for both the Wi-Fi communi-
cation and the cabled Ethernet communication and though the 5G antennas
and a core network server, i.e., with no direct connection between the local
device and the edge. Another detail to mention is that we did not specify on
which server in the edge node that the remote solver was deployed in, it was
assumed that all servers where equally fast. The collected data using the edge
as the remote solver and testing the different communication technologies is
presented in Figure 5.7 together with the deadline of 14 ms mentioned in
Section 5.1.

Figure 5.7 RRT delay time histogram for 5G, WiFi and Cabled Ethernet
deployment inside of a K8s cluster with the predefined deadline of 14 ms.

5G Communication. As shown in Figure 5.7, the majority of the RRT
delay time falls within the deadline defined, making it possible for the lo-
cal device to get back the majority of sent offloading requests in a timely
fashion. On avergae the RRT delay time for the 5G network was 11.6 ms.
The pendulum can be controlled over 5G with a maximum period of 22 ms.
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Allowing us to increase the deadline threshold even more and thus include
all requests before the deadline threshold. We opted not to control it with a
longer period because the pendulum was not robust enough with such long
delays and to showcase how controller.c dynamically switches to the local
LQR when the deadline is missed.

In this work a standard 5G network, rather than 5G Ultra-Reliable Low-
Latency Communication (URLLC) network was used. This is because we
do not have access to URLLC hardware to utilize it. This work, however,
demonstrates that a regular 5G network could be leveraged for offloading,
even though 5G URLLC is often touted for its low-latency capabilities and
most probably will result in a shorter delay allowing for even faster processes
to be offloaded over the 5G network.

Additionally, it is worth noting that the delay also depends on the 5G
router used on the local device. Three different routers where used are: Askey
5G Sub6 model name NDQ1300-RoHS, WNC SKM-5xE, and RUTX50. All
gave different delays indicating that different routers have different imple-
mentations and thus varying speed. None of the 5G routers tested in this
thesis had too long delays for stabilizing the pendulum but the latency vari-
ation was in milliseconds. We opted to present the Askey 5G Sub6 5G router
to simplify the presentation.

Wi-Fi Communication. In this work Wi-Fi 6 with a bandwidth of 1Gbps
was also investigated for offloading, since WiFi is prevalent and accessible
for many industries, making it relevant for scenarios where 5G may not be
available or practical. In the experimental setup, WiFi 6 had lower latency
compared to 5G with an average of 4.8 ms.

In theory, 5G should provide fast communication, even in crowded sce-
narios with numerous users, as highlighted by Ericsson [Ericsson, 2023a]. In
contrast, WiFi may experience slowdowns as the number of devices increases.
This work did not experiment with or test the network for scenarios involving
many end devices and justify this claim.

Cabled Ethernet Communication. While wired Ethernet offers high
data transfer rates of 1Gbps, the trade-off is a limitation on the flexibil-
ity of the local device and the process due to the constraints imposed by the
physical cable. In the experimental setup presented in this work, the mobil-
ity is not crucial for the control task. If, however, the framework have been
tested on a mobile process the cabled constraints would be evident. Cabled
Ethernet is the fastest communication technology with the edge node with
an average of 3.7 ms.

Overview

The different configurations presented above cloud be summarized more vi-
sually using Table 5.1. This naming convention will persist though out this
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work.

Table 5.1 Technology implementation for the different configurations.

Name Remote Solver Com. Technology Controller

LQR none – LQR

MPC C-code none – MPC C-
code

Wasm none – Wasm
MPC

AOT Wasm none – AOT
Wasm
MPC

Local Local device (Container) – AOT
Wasm
MPC

Heron Computer (Container) Cabled Ethernet AOT
Wasm
MPC

5G Edge node (K8s) 5G network AOT
Wasm
MPC

Wifi Edge node (K8s) Wi-Fi 6 AOT
Wasm
MPC

Cabled Ethernet Edge node (K8s) Cabled Ethernet AOT
Wasm
MPC

The variations in the RRT delay time across different configurations,
highlighting both the potential and limitations of various deployment meth-
ods and communication technologies. To facilitate comparison and provide
a centralized location for presenting data, Table 5.2 presents the average
and worst-case execution times for the different configurations, following the
naming convention presented in Table 5.1.
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Table 5.2 Average and Worst-case execution tor RRT delay times

Scenario Average Time (ms) Worst-case Time (ms)

LQR 0.00012 0.032
MPC C-code 1.3 6.4
Wasm 219 424
AOT Wasm 1.5 5.7

Local 1.8 13.1
Heron 2.4 19.6

5G 11.6 15.8
WiFi 4.8 14.2
Ethernet 3.7 8.7

5.2 Timing of the File Sending

As mentioned in Section 4.2, the solver file is sent to the remote solver to
achieve flexibility in choosing which control application to use when offload-
ing. In this section the time it takes for the sender.c to send the AOT Wasm
compiled CVXGEN MPC solver to the remote solver as illustrated by Figure
5.8.

Figure 5.8 Shows visually what is meant by timing of file sending.

In Figure 5.9, the spread of how long it took to send the solver file to
the remote solver is illustrated. For each plotbox in the Figure we collected
around 10,000 data points. An exception was made for the 5G network where
only 1300 data points where collected. It is evident from the plot that sending
the file to the container deployed locally is the fastest, and sending it to the
edge using the 5G network is the slowest. It could be argued that the solver
does not need to be sent to the solver in the local deployments and that
is true. This was still done and included in this work to have a baseline
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on how fast transmitting the file takes. The average and worst-case times
in milliseconds are presented in Table 5.3 following the naming convention
presented in Table 5.1.

10
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2

10
3

Elapsed Time in ms

Local

Heron

WiFi

Ethernet

5G

Boxplot for the time it takes to send the solver-file to the remote solver

Figure 5.9 The time it took to send the the AOT-Wasm file to the remote
solver in milliseconds for the different configurations.

In this implementation, the solver was sent using default TCP sockets (the
TCP NODELAY flag was activated). This is sub-optimal since more optimized
configurations will send the file faster. The bandwidth of the different com-
munication protocols allowed for more data to be sent per second compared
to what is shown here. Another way to increase the speed of transmission is
to compress the solver and send a compressed solver and decompress it at
the remote solver. This is however not a significant issue since the pendulum
is controlled using the local LQR until the file is uploaded, as can be seen
from Figure 5.10 and mentioned in Section 4.2.
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Table 5.3 Average and Worst-case times of sending the AOT-Wasm file
for the different configurations

Scenario Average Time (ms) Worst-case Time (ms)

Local 5 491
Hero 22 463

5G 1791 2336
WiFi 16 94
Ethernet 12 265

5.3 Control Quality

As mentioned in Section 4.5 a simple control quality measure is proposed.
The local device use this control quality measure to decide if to offload. Table
5.4 presents the control quality of the different configurations and the fraction
of times the remote solver controls the process, following the same naming
convection as presented in Table 5.1. For each average value presented in
Table 5.4, we have collected 10,000 data points.

One can see from Table 5.4 that offloading to the control quality measure
seems to fluctuate even if the fraction of offloading is the same and it is the
same controller deployed in the remote solver. Indicating that the control
quality measure used is too simplistic and random noise is effecting the data.
Even though our formulation of the control quality measure aims to decrease
the fluctuation of random noise in the measurement the averaging applied was
too small to create a smooth measure. A more conservative control quality,
normalising the states and including the control signal might result in a
better control quality measure.

Table 5.4 Average values of the custom cost for the different configura-
tions

Scenario Avg. Control Quality Measure Fraction of offloading

LQR 4.3 0%

Local 5.22 97.80%
Heron 5.62 97.78%

5G 2.67 91.05%
WiFi 6.41 97.95%
Cabled Ethernet 2.03 97.55%
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5.4 Demonstration

In Figure 5.10, we illustrate the pendulum angle, θ, during the dynamic of-
floading of the pendulum, using 5G to communicate with the edge. Notably,
the pendulum assumes the upright position, as indicated by θ being close
to zero. From the figure in the middle, it can be seen which controller is
used. Initially, the LQR controller controls the pendulum while the solver
file is being sent to the edge. The third graph shows control quality mea-
sure over time. The red dashed line represents the threshold used to decide
if the remote or the local LQR controls the pendulum. This threshold was
determined through experimentation; it can be observed that the threshold
is violated sometimes, and then the LQR takes over and controls the pen-
dulum. This threshold could be decreased if one desires a more conservative
control of the pendulum. It is also interesting to note two things. First, the
control quality is more oscillatory with more spikes when the LQR controller
is controlling the pendulum, indicating that we achieve better control when
offloading compared to controlling it locally. Second, it is evident from the
pendulum angel, θ, that the pendulum fluctuates more when controlled using
the local LQR compared to the remote MPC which means that the system
is controlled better using the edge node compared to the local control.
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Figure 5.10 The first graph shows the pendulum angle, θ, the second
graph shows which controller is used to control the pendulum, and the
third graph shows the control quality and the threshold used.
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As can be seen from the work, the offloading implementation did work for a
different number of configurations of which some used the edge and/or 5G
network while others did not.

Interestingly the computational power of the host is sufficient for both
the MPC controller and the simple LQR controller. The aim of this work was
not to control a system that can not be controlled by the host computer but
to implement an offloading strategy, develop a control quality measure, and
to demonstrate its capabilities by controlling a process with fast dynamics.

It was determined that WebAssembly in interpreted form was too slow
to control a process with fast dynamics such as the Furuta pendulum, but
that AOT-compiled Wasm made it more suitable for this use-case. This work
also found that, although WiFi and Wired Ethernet were faster, the delays
of offloading to an edge node using a regular 5G network were deemed short
enough for offloading, as it could control the pendulum. Finally, it was also
noted that the control quality measure used in this work could be improved
by introducing weights to the states and by including the control signal in
the control quality measure.

6.1 Weaknesses and Potential Criticism

A careful approach was taken in developing this work to ensure its quality,
but due to time constraints, some implementation choices could be discussed
and potentially viewed as weaknesses. These are as follows:

• The offloading strategy assumes four states and one control
signal. This could be perceived as a limitation, considering that some
systems have more control signals and states. The decision not to im-
plement a dynamic strategy is due to the advanced nature of dynamic
programming in C, which requires a substantial period to implement.
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• Cybersecurity: This work did not emphasize cybersecurity exten-
sively. We developed a simple package ID and a basic ID check to
ensure that the solver can verify that the received package corresponds
to the one sent. But no encryption, firewall and error correcting code
was implemented.

• Timeout Sockets: In the C code, the built-in timeout function of a
socket was used, where a specified number of milliseconds is stated, and
the socket returns if no answer was received in the specified time. The
potential problem with this is that the timer in the timeout function
is a best-effort timer, where the socket might return before or after
the specified time. A solution to this problem is to implement a more
reliable timeout mechanism using different threads.

• No convergence check for the MPC solver: Right now it is not
possible to check if the MPC solver has converged or not. This limita-
tion is imposed by WasmEdge since only one variable is returned from
every function call making it hard to send a flag alongside the control
signal. This could be fixed by implementing a helper function in the
bridge.c that can return the flag.

6.2 Future Work & Improvements

To build upon what was presented in this thesis, several avenues for de-
velopment exist. Below, we outline some ways in which this work could be
extended:

• Use another QP solver: CVXGEN is a good QP solver, but one
downside is that the prediction horizon cannot be changed dynamically.
This is of interest if one wants to adjust the sampling period dynami-
cally. Typically, the horizon is expressed in time units, which translates
to a number of samples. Therefore, if the sampling period changes, the
horizon expressed in the number of samples needs to change accord-
ingly. Currently, to modify the solver’s horizon, one must reformulate
the problem on the CVXGEN website and recompile it for use. An-
other solution is to download multiple solvers with different horizons
and store them on the host, choosing among these solvers when offload-
ing. Since this is impractical, it might be interesting to try out another
QP solver that supports a dynamic horizon.

• Kalman filter: The readings of the states from the Furuta pendulum
proved, at times, unreliable. Due to measurement noise and crude ap-
proximations. Implementing a Kalman filter could mitigate the effects
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of these issues, potentially increasing the period during which the pen-
dulum can be controlled. A Kalman filter was implemented but it was
not prioritized to fine tune it.

• Model identification: A better model would have made the imple-
mentation better and more tolerant for longer delays. Results shown
by simulations indicated that the model does not represent the system
fully, limiting the control of the pendulum. If a better model was used
it might have made it possible to control the pendulum over the cloud
or using interpreted Wasm instead.

• Rust implementation: It would have been interesting to implement
the entire program in Rust instead of C, as WasmEdge have imple-
mented more tools and documentation for Rust. Since sockets are sup-
ported in Rust, this shift would enable the use of WasmEdge containers
instead of a Linux containers [WasmEdge, 2023a].

• Including the time Delay in the MPC formulation: In the MPC
formulation, the incorporation of a one-sample delay was considered
with the aim of enhancing the robustness of the controller. This was
implemented and tested but the outcome was unsuccessful in the real
process but proved successful in the simulation. One plausible reason
for this is that the model does not match the real Furuta pendulum.

• Horizontal offloading: In this study, offloading occurred to a single
remote solver while the pendulum remained stationary. An intriguing
avenue for further exploration is horizontal offloading, where the host
can dynamically offload the solver to different edge nodes based on
predefined metrics. In such scenarios, the solver could be offloaded to
the edge with the optimal measurements, and it could dynamically
switch to a different edge if superior performance is indicated by the
metrics. This dynamic adaptation opens up possibilities for offloading
when the local device is moving.

• Delay and jitter margin: In the thesis whether or not the process is
stable for a certain sampling period was evaluated experimentally. An
alternative would have been to use analytical tools for this. Using the
delay margin one can offline valuate how long constant delay that the
process can tolerate before becoming unstable [Hägglund, 2021]. The
case of jitter in the delay can also be analyzed using the jitter margin
tool [Cervin et al., 2004].

• Dynamic offloading negotiations: In the thesis we assume that
the resources in the edge node are always sufficient for executing the
MPC solver. That is not always the case. The edge node may be a
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shared resource used by several applications. This opens up the issue
of dynamic resource negotiation between the host (local device) and the
edge node. It is often possible to reduce the resource requirements of a
control application, e.g., by reducing the sampling period. Performing
this negotiation requires knowledge of how the control performance
depends on the available resources, e.g., the sampling period.
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jitter margin and its application in the design of real-time control sys-
tems”. English. In: Proceedings of the 10th International Conference on
Real-Time and Embedded Computing Systems and Applications.

Chen, X. (2014). “Decentralized computation offloading game for mobile
cloud computing”. IEEE Transactions on Parallel and Distributed Sys-
tems 26:4, pp. 974–983.

62

https://cps-vo.org/group/TREC4CPS_conference
https://cps-vo.org/group/TREC4CPS_conference
https://gitlab.control.lth.se/anders_blomdell/moberg
https://gitlab.control.lth.se/anders_blomdell/moberg
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/


Bibliography

Cheng, N., N. Lu, N. Zhang, X. S. Shen, and J. W. Mark (2014). “Vehicular
wifi offloading: challenges and solutions”. Vehicular Communications 1:1,
pp. 13–21.

Chow, R., P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J.
Molina (2009). “Controlling data in the cloud: outsourcing computation
without outsourcing control”. In: Proceedings of the 2009 ACM workshop
on Cloud computing security, pp. 85–90.

Chun, B.-G., S. Ihm, P. Maniatis, M. Naik, and A. Patti (2011). “Clonecloud:
elastic execution between mobile device and cloud”. In: Proceedings of the
sixth conference on Computer systems, pp. 301–314.

Cuervo, E., A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chan-
dra, and P. Bahl (2010). “Maui: making smartphones last longer with
code offload”. In: Proceedings of the 8th international conference on Mo-
bile systems, applications, and services, pp. 49–62.

Emscripten (2024). About emscripten. Accessed 2024-02-10. Emscripten.
url: https : / / emscripten . org / docs / introducing _ emscripten /

about_emscripten.html.

Ericsson (2023a). Ericsson - 5g. Accessed: 2023-12-18. url: https://www.
ericsson.com/en/5g.

Ericsson (2023b). Ericsson - edge computing. Accessed: 2023-12-18. url:
https://www.ericsson.com/en/edge-computing.

Furuta, K., M. Yamakita, and S. Kobayashi (1992). “Swing-up control of
inverted pendulum using pseudo-state feedback”. Proceedings of the In-
stitution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering 206:4, pp. 263–269. doi: 10.1243/PIME_PROC_1992_206_
341_02.

Gäfvert, M. (1998). Modelling the Furuta Pendulum. Tech. rep. De-
partment of Automatic Control, Lund Institute of Technology. isrn:
LUTFD2/TFRT–7574–SE.

Gu, X., K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic (2003).
“Adaptive offloading inference for delivering applications in perva-
sive computing environments”. In: Proceedings of the First IEEE In-
ternational Conference on Pervasive Computing and Communications,
2003.(PerCom 2003). IEEE, pp. 107–114.

Habak, K., M. Ammar, K. A. Harras, and E. Zegura (2015). “Femto clouds:
leveraging mobile devices to provide cloud service at the edge”. In: 2015
IEEE 8th International Conference on Cloud Computing. IEEE, pp. 9–
16.
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A
Implementation

In this appendix code developed in the thesis project is presented. Hence the
CVXGEN solver code is not presented here.

A.1 Host

main.c

1 #include <stdio.h>

2 #include <pthread.h>

3 #include <unistd.h>

4 #include "util.h"

5

6 // Shared control quality cost variable

7 volatile double cost = 0;

8 // Shared flag for the file sent

9 volatile int fileSent = 0;

10

11 // Mutex for synchronization of the control quality variable

12 pthread_mutex_t cost_mutex = PTHREAD_MUTEX_INITIALIZER;

13 // Mutex for synchronization for util.c

14 pthread_mutex_t util_mutex = PTHREAD_MUTEX_INITIALIZER;

15

16 // Function declarations

17 extern void *control_quality_function(void *);

18 extern void *regul_function(void *);

19 extern void *sender_function(void *);

20

21 int main()

22 {

23 // Create thread handles

24 pthread_t control_quality_thread , regul_thread , sender_thread

;

25

26 // Initialize util

27 int status = init_util ();

28
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29 if (status)

30 {

31 // Create threads

32 pthread_create (& control_quality_thread , NULL ,

control_quality_function , NULL);

33 pthread_create (& regul_thread , NULL , regul_function , NULL)

;

34 pthread_create (& sender_thread , NULL , sender_function ,

NULL);

35

36 // Wait for threads to finish (this will never happen in

this example as threads run indefinitely)

37 pthread_join(control_quality_thread , NULL);

38 pthread_join(regul_thread , NULL);

39 pthread_join(sender_thread , NULL);

40 }

41 else

42 {

43 printf("Some I/O problems\n");

44 }

45

46 // Finalize util

47 fin_util ();

48

49 return 0;

50 }
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util.c

1 #include "util.h"

2

3 extern pthread_mutex_t util_mutex;

4

5 // Pointer to a structure representing a Moberg device

6 struct moberg *moberg;

7

8 // Structure representing an analog output channel

9 struct moberg_analog_out analog_out_u;

10

11 // Structure representing analog input channels for various

parameters

12 struct moberg_analog_in analog_in_phi;

13 struct moberg_analog_in analog_in_theta;

14 struct moberg_analog_in analog_in_dtPhi;

15 struct moberg_analog_in analog_in_dtTheta;

16

17 // Variables to store current and previous values of ’phi’ and a

count of rotations

18 double newPhi;

19 double oldPhi;

20 int rotationPhi = 0;

21

22 // Function to calculate the sum of two timespec structs

23 void timespec_add(struct timespec *a, struct timespec *b)

24 {

25 // Add seconds and nanoseconds of ’b’ to ’a’

26 a->tv_sec += b->tv_sec;

27 a->tv_nsec += b->tv_nsec;

28

29 // Ensure nanoseconds are less than one billion

30 if (a->tv_nsec >= 1000000000 UL)

31 {

32 a->tv_sec ++; // Increment seconds by 1

33 a->tv_nsec %= 1000000000 UL; // Reduce nanoseconds to less

than one billion

34 }

35 }

36

37 // Function to sleep until a specific time point

38 void sleep_until_next_activation(struct periodic_task *tsk)

39 {

40 int err;

41 // Keep sleeping until the specified time point (’tsk ->

current_activation ’) is reached

42 do

43 {

44 // Perform an absolute sleep until ’tsk ->current_activation ’

45 err = clock_nanosleep(CLOCK_MONOTONIC , TIMER_ABSTIME , &tsk ->

current_activation , NULL);

46 // If the function wakes up due to a signal interruption ,

continue sleeping
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47 } while (err != 0 && errno == EINTR); // Repeat until no error

and errno is EINTR

48 // Ensure no error occurred during sleep

49 assert(err == 0);

50 }

51

52 // Function to initialize communication channels with a Moberg

device

53 int init_util ()

54 {

55 // Allocate memory for a new Moberg device and assign it to ’

moberg ’

56 moberg = moberg_new ();

57

58 // Open analog output and input channels and check for

successful initialization

59 int status = moberg_OK(moberg_analog_out_open(moberg , 41, &

analog_out_u));

60 status &= moberg_OK(moberg_analog_in_open(moberg , 40, &

analog_in_phi));

61 status &= moberg_OK(moberg_analog_in_open(moberg , 41, &

analog_in_theta));

62 status &= moberg_OK(moberg_analog_in_open(moberg , 42, &

analog_in_dtPhi));

63 status &= moberg_OK(moberg_analog_in_open(moberg , 43, &

analog_in_dtTheta));

64

65 // If initialization failed , return status indicating failure

66 if (! status)

67 {

68 return status;

69 }

70

71 // Read initial value of ’phi’ and store it in ’newPhi ’, also

set ’oldPhi ’ to the same value

72 analog_in_phi.read(analog_in_phi.context , &newPhi);

73 oldPhi = newPhi;

74

75 // Return status indicating successful initialization

76 return status;

77 }

78

79 // Function to read process states with signal manipulation to

ensure desired form

80 void read_util(struct stateValues *state)

81 {

82 // Lock the mutex to ensure thread safety during reading

83 pthread_mutex_lock (& util_mutex);

84

85 // Read ’theta ’ value from analog input and adjust it by

subtracting PI

86 analog_in_theta.read(analog_in_theta.context , &state ->theta);

87 state ->theta = state ->theta - M_PI;

88
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89 // Read ’dtTheta ’ value from analog input

90 analog_in_dtTheta.read(analog_in_dtTheta.context , &state ->

dtTheta);

91

92 // Read ’phi’ value from analog input and handle rotation

counting

93 analog_in_phi.read(analog_in_phi.context , &newPhi);

94 if ((0 <= newPhi && newPhi <= 1) && (5.2 <= oldPhi && oldPhi <

2 * M_PI))

95 rotationPhi ++;

96 else if ((0 <= oldPhi && oldPhi <= 1) && (5.2 <= newPhi &&

newPhi < 2 * M_PI))

97 rotationPhi --;

98 state ->phi = newPhi + rotationPhi * 2 * M_PI;

99 oldPhi = newPhi; // Update ’oldPhi ’

100

101 // Read ’dtPhi ’ value from analog input

102 analog_in_dtPhi.read(analog_in_dtPhi.context , &state ->dtPhi);

103

104 // Unlock the mutex after finishing reading

105 pthread_mutex_unlock (& util_mutex);

106 }

107

108 // Function to actuate by sending a control signal to the Moberg

device

109 void actuate_util(double u_c)

110 {

111 // Lock the mutex to ensure thread safety during actuation

112 pthread_mutex_lock (& util_mutex);

113

114 // Write the control signal ’u_c’ to the analog output channel

115 analog_out_u.write(analog_out_u.context , u_c , NULL);

116

117 // Unlock the mutex after actuation

118 pthread_mutex_unlock (& util_mutex);

119 }

120

121 // Function to finalize and clean up resources used by the

utility

122 void fin_util ()

123 {

124 // Close all analog output and input channels and check for

successful closure

125 int status = moberg_OK(moberg_analog_out_close(moberg , 41,

analog_out_u));

126 status &= moberg_OK(moberg_analog_in_close(moberg , 40,

analog_in_phi));

127 status &= moberg_OK(moberg_analog_in_close(moberg , 41,

analog_in_theta));

128 status &= moberg_OK(moberg_analog_in_close(moberg , 42,

analog_in_dtPhi));

129 status &= moberg_OK(moberg_analog_in_close(moberg , 43,

analog_in_dtTheta));

130
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131 // If closure failed , print an error message and exit with

failure

132 if (! status)

133 {

134 printf("%s: Can not close I/O ports\n", __FILE__);

135 exit(EXIT_FAILURE);

136 }

137

138 // Free the memory allocated for the Moberg device

139 moberg_free(moberg);

140 }
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quality.c

1 #include "util.h"

2

3 // Define the period for quality control in nanoseconds

4 #define PERIOD_IN_NANOS_QUALITY (1UL * 1000000 UL)

5

6 // Shared variable to store cost

7 extern volatile double cost;

8

9 // Mutex for synchronization

10 extern pthread_mutex_t cost_mutex;

11

12 // Function responsible for controlling quality

13 void *control_quality_function(void *arg)

14 {

15 // Structure to hold the state values

16 struct stateValues state;

17

18 // Variable to handle errors

19 int err;

20

21 // Structure to define periodic task properties

22 struct periodic_task tsk;

23

24 // Set the initial job ID to 1 to match real -time theory

25 tsk.current_job_id = 1;

26

27 // Indicate that the task has not terminated yet

28 tsk.terminated = 0;

29

30 // Set the desired period for the task

31 tsk.period.tv_sec = 0;

32 tsk.period.tv_nsec = PERIOD_IN_NANOS_QUALITY;

33

34 // Record the time of the first job

35 err = clock_gettime(CLOCK_MONOTONIC , &tsk.first_activation);

36 assert(err == 0); // Ensure clock_gettime operation succeeds

37

38 // Set the current activation time to the first activation time

39 tsk.current_activation = tsk.first_activation;

40

41 // Execute the task until termination is signaled

42 while (!tsk.terminated)

43 {

44 // Wait until the next activation time

45 sleep_until_next_activation (&tsk);

46

47 // Read the state values using utility function

48 read_util (&state);

49

50 // Lock the mutex for accessing the shared ’cost’ variable

51 pthread_mutex_lock (& cost_mutex);

52
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53 // Update the cost using a formula based on state values

54 cost = 0.5 * (state.theta * state.theta + state.dtTheta *

state.dtTheta + state.phi * state.phi + state.dtPhi * state.

dtPhi) + 0.5 * cost;

55

56 // Unlock the mutex after updating ’cost’

57 pthread_mutex_unlock (& cost_mutex);

58

59 // Increment the job ID for the next iteration

60 tsk.current_job_id ++;

61

62 // Update the current activation time for the next iteration

63 timespec_add (&tsk.current_activation , &tsk.period);

64 }

65

66 // Task execution complete , return NULL

67 return NULL;

68 }
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sender.c

1 #include "controller.h"

2

3 // Global variable to store the TCP socket for remote

communication

4 int tcpSocketRemote;

5

6 // Structure representing the server address for TCP

communication

7 struct sockaddr_in serverAddressRemoteTCP;

8

9 // Global variable to keep track of the number of times files

have been sent

10 int count = 0;

11

12 // External declaration of a volatile integer variable ’fileSent ’

and a mutex ’file_mutex ’

13 extern volatile int fileSent;

14 extern pthread_mutex_t file_mutex;

15

16 // Function to send data over TCP

17 void sendTCPData(int tcpSocket , void *data , size_t dataSize)

18 {

19 ssize_t bytes_sent = 0;

20 ssize_t remaining_bytes = dataSize;

21

22 int c = 0;

23 // Loop until all data is sent

24 while (remaining_bytes > 0)

25 {

26 // Send data and handle errors

27 bytes_sent = send(tcpSocket , data + (dataSize -

remaining_bytes), remaining_bytes , 0);

28 if (bytes_sent == -1)

29 {

30 perror("Error sending data");

31 c++;

32 // If sending fails multiple times , exit with failure

33 if (c >= 5)

34 {

35 printf("%s: Could not send the packet .\n", __FILE__);

36 exit(EXIT_FAILURE);

37 }

38 }

39 else

40 {

41 remaining_bytes -= bytes_sent;

42 }

43 }

44 }

45

46 // Function to send a file over TCP

47 void send_file ()
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48 {

49 struct stat file_stat;

50 // Get file statistics

51 if (stat(FILENAME , &file_stat) == -1)

52 {

53 printf("%s: Could not get the file stats.\n", __FILE__);

54 exit(EXIT_FAILURE);

55 }

56

57 // Extract file size from file statistics

58 off_t file_size = file_stat.st_size;

59

60 // Convert file size to a string

61 char file_size_str [20];

62 snprintf(file_size_str , sizeof(file_size_str), "%lld", (long

long)file_size);

63

64 // Send file size and count over TCP

65 sendTCPData(tcpSocketRemote , file_size_str , sizeof(

file_size_str));

66 sendTCPData(tcpSocketRemote , &count , sizeof(count));

67

68 // Send the file contents over TCP

69 FILE *file_ptr = fopen(FILENAME , "rb");

70 if (file_ptr == NULL)

71 {

72 perror("Error opening file");

73 exit(EXIT_FAILURE);

74 }

75

76 char buffer [4096];

77 ssize_t bytes_read;

78 while (1)

79 {

80 // Read from file and send data until the end of file is

reached

81 bytes_read = fread(buffer , 1, sizeof(buffer), file_ptr);

82 if (bytes_read <= 0)

83 {

84 break;

85 }

86 sendTCPData(tcpSocketRemote , buffer , bytes_read);

87 }

88

89 fclose(file_ptr);

90

91 // Receive acknowledgment for file sent

92 int sent;

93 recv(tcpSocketRemote , &sent , sizeof(int), 0);

94 if (sent == count)

95 {

96 // printf ("The file was sent=%d\n", sent);

97 }

98 else
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99 {

100 printf("%s: The file id mismatch , expect: %d got: %d\n",

__FILE__ , count , sent);

101 }

102 count ++;

103 }

104

105 // Function to set the IP address and port for a TCP socket

106 void setIpAddressTCP ()

107 {

108 // Create a TCP socket

109 tcpSocketRemote = socket(AF_INET , SOCK_STREAM , 0);

110 if (tcpSocketRemote == -1)

111 {

112 printf("%s: Could not create a TCP socket for sending the

file.\n", __FILE__);

113 exit(EXIT_FAILURE);

114 }

115

116 // Set TCP_NODELAY flag

117 int flag = 1;

118 int result = setsockopt(tcpSocketRemote , IPPROTO_TCP ,

TCP_NODELAY , (char *)&flag , sizeof(int));

119 if (result < 0)

120 {

121 printf("%s: Could not set no delay flag on the tcp socket .\n"

, __FILE__);

122 }

123

124 // Configure the server address

125 memset (& serverAddressRemoteTCP , 0, sizeof(

serverAddressRemoteTCP));

126 serverAddressRemoteTCP.sin_family = AF_INET;

127 serverAddressRemoteTCP.sin_port = htons(TCP_PORT);

128

129 // Convert IP address from text to binary form and assign to

the server address structure

130 if (inet_pton(AF_INET , REMOTE_IP_ADDRESS , &

serverAddressRemoteTCP.sin_addr) <= 0)

131 {

132 printf("%s: Could not convert the ip address to a network

address .\n", __FILE__);

133 close(tcpSocketRemote);

134 exit(EXIT_FAILURE);

135 }

136

137 // Connect the TCP socket to the server address

138 if (connect(tcpSocketRemote , (struct sockaddr *)&

serverAddressRemoteTCP , sizeof(serverAddressRemoteTCP)) ==

-1)

139 {

140 printf("%s: Could not connect the socket to the network

address .\n", __FILE__);

141 close(tcpSocketRemote);
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142 exit(EXIT_FAILURE);

143 }

144 }

145

146 // Function to set model parameters and send them over TCP

147 void setModelParams ()

148 {

149 // Structure containing model parameters

150 struct ModelParams model = {

151 .Q0 = 250, .Q1 = 10, .Q2 = 240, .Q3 = 90, .R0 = 100, .A0 =

1.00328136052027794 , .A4 = 0.00800821520779518 , .A8 = 0.0, .

A12 = 0.0, .A1 = 0.92094590856619241 , .A5 =

1.00368177128066782 , .A9 = 0, .A13 = 0, .A2 =

-0.00019332764892868 , .A6 = -0.00000051544830440 , .A10 =

0.99960007998933442 , .A14 = 0.00799840021331200 , .A3 =

-0.04836477573415137 , .A7 = -0.00019335342134390 , .A11 = 0, .

A15 = 1, .B0 = -0.16722232812227830 , .B1 =

-41.83679291328630256 , .B2 = 0.11314832814927638 , .B3 =

28.29220011726365414 , .u_max = .2, .S = 1};

152

153 // Send model parameters over TCP

154 sendTCPData(tcpSocketRemote , &model , sizeof(struct ModelParams)

);

155

156 // Shutdown and close the TCP socket

157 shutdown(tcpSocketRemote , 0);

158 close(tcpSocketRemote);

159 }

160

161 // Function for the sender thread

162 void *sender_function(void *arg)

163 {

164 // Set a delay before sending data

165 struct timespec req , rem;

166 req.tv_sec = 3;

167 req.tv_nsec = 0;

168

169 // Sleep for the specified time

170 if (clock_nanosleep(CLOCK_MONOTONIC , 0, &req , &rem) != 0)

171 {

172 printf("%s: Sleep interrupted: %ld seconds %ld nanoseconds

remaining\n", __FILE__ , rem.tv_sec , rem.tv_nsec);

173 }

174 else

175 {

176 printf("%s: Slept for 3 second\n", __FILE__);

177 }

178

179 // Set up TCP connection and send file and model parameters

180 setIpAddressTCP ();

181 send_file ();

182 setModelParams ();

183 printf("%s: the file and the parameters were sent \n", __FILE__

);
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184

185 // Set the ’fileSent ’ flag to indicate file transmission

completion

186 pthread_mutex_lock (& file_mutex);

187 fileSent = 1;

188 pthread_mutex_unlock (& file_mutex);

189

190 // Initialize the controller

191 init();

192

193 // Return NULL to end the sender thread

194 return NULL;

195 }
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regul.c

1 #include "controller.h"

2

3 // Function for the regulation thread

4 void *regul_function(void *arg)

5 {

6 // Structure to hold the state values

7 struct stateValues state;

8

9 // Control signal

10 double u_c = 0;

11

12 // Finalize any pending tasks

13 fin();

14

15 // Variable to handle errors

16 int err;

17

18 // Structure to define periodic task properties

19 struct periodic_task tsk;

20

21 // Set the initial job ID to 1 to match real -time theory

22 tsk.current_job_id = 1;

23

24 // Indicate that the task has not terminated yet

25 tsk.terminated = 0;

26

27 // Set the desired period for the task

28 tsk.period.tv_sec = 0;

29 tsk.period.tv_nsec = PERIOD_IN_NANOS;

30

31 // Record the time of the first job

32 err = clock_gettime(CLOCK_MONOTONIC , &tsk.first_activation);

33 assert(err == 0); // Ensure clock_gettime operation succeeds

34

35 // Set the current activation time to the first activation

time

36 tsk.current_activation = tsk.first_activation;

37

38 // Execute the task until termination is signaled

39 while (!tsk.terminated)

40 {

41 // Wait until the next activation time

42 sleep_until_next_activation (&tsk);

43

44 // Actuate with the current control signal

45 actuate_util(u_c);

46

47 // Read the state values using utility function

48 read_util (&state);

49

50 // Calculate the next control signal

51 u_c = calcU(&state);
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52

53 // Increment the job ID for the next iteration

54 tsk.current_job_id ++;

55

56 // Update the current activation time for the next

iteration

57 timespec_add (&tsk.current_activation , &tsk.period);

58 }

59

60 // Task execution complete , return NULL

61 return NULL;

62 }
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controller.c

1 #include "controller.h"

2

3 // Conditional compilation for collecting data

4 #ifdef collectData

5 // File pointer for CSV file

6 FILE *csvFile;

7 #endif

8

9 // Global variables for cost , fileSent flag , and mutexes for

synchronization

10 extern volatile double cost;

11 extern volatile int fileSent;

12 extern pthread_mutex_t cost_mutex;

13 extern pthread_mutex_t file_mutex;

14

15 // Global variables for UDP communication

16 int udpSocketRemote;

17 struct sockaddr_in serverAddressUDP;

18 int counter = 0;

19

20 // Function to set the IP address and port for a UDP socket

21 void setIpAddressUDP(int *udpSocket , struct sockaddr_in *

serverAddress , char *ipAddress , int port)

22 {

23 // Create a UDP socket

24 *udpSocket = socket(AF_INET , SOCK_DGRAM , 0);

25 if (* udpSocket == -1)

26 {

27 perror("socket");

28 }

29

30 // Configure the server address

31 memset(serverAddress , 0, sizeof (* serverAddress));

32 serverAddress ->sin_family = AF_INET;

33 serverAddress ->sin_port = htons(port);

34

35 // Convert IP address from text to binary form and assign to

the server address structure

36 if (inet_pton(AF_INET , ipAddress , &serverAddress ->sin_addr)

<= 0)

37 {

38 perror("inet_pton");

39 }

40 }

41

42 // Function to send data via UDP

43 void sendUDPData(int udpSocket , struct sockaddr_in serverAddress ,

void *data , size_t dataSize)

44 {

45 ssize_t sentBytes;

46 sentBytes = sendto(udpSocket , data , dataSize , 0,

47 (struct sockaddr *)&serverAddress , sizeof(
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serverAddress));

48 if (sentBytes == -1)

49 {

50 perror("sendto");

51 }

52 }

53

54 // Function to receive data on a socket

55 int receiveData(int socket , void *receivedData , size_t dataSize)

56 {

57 ssize_t recvBytes = recv(socket , receivedData , dataSize , 0);

58 if (recvBytes == -1)

59 {

60 if (errno == EAGAIN || errno == EWOULDBLOCK)

61 {

62 return 1; // No data available

63 }

64 else

65 {

66 perror("recv");

67 return -1; // Error in receiving data

68 }

69 }

70 return 0; // Data received successfully

71 }

72

73 // Function for initialization tasks

74 void init()

75 {

76 // Create a UDP socket

77 int udpSocketRemote;

78 udpSocketRemote = socket(AF_INET , SOCK_DGRAM , 0);

79 if (udpSocketRemote == -1)

80 {

81 perror("Could not create a UDP socket");

82 exit(EXIT_FAILURE);

83 }

84

85 // Configure the server address for UDP communication

86 memset (& serverAddressUDP , 0, sizeof(serverAddressUDP));

87 serverAddressUDP.sin_family = AF_INET;

88 serverAddressUDP.sin_port = htons(UDP_PORT);

89

90 // Convert remote IP address from text to binary form and

assign to server address structure

91 if (inet_pton(AF_INET , REMOTE_IP_ADDRESS , &serverAddressUDP.

sin_addr) <= 0)

92 {

93 perror("Could not create the server address");

94 exit(EXIT_FAILURE);

95 }

96

97 // Set timeout for the UDP socket

98 struct timeval tv;
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99 tv.tv_sec = 0;

100 tv.tv_usec = TIMEOUT_IN_MICRO;

101 if (setsockopt(udpSocketRemote , SOL_SOCKET , SO_RCVTIMEO , (

const void *)&tv , sizeof(tv)) == -1)

102 {

103 printf("Error in setting the socket option\n");

104 }

105 }

106

107 // Function to calculate control signal ’u’ based on state values

108 double calcU(struct stateValues *state)

109 {

110 #ifdef collectData

111 // Record start time for data collection

112 struct timespec start_time , end_time;

113 clock_gettime(CLOCK_MONOTONIC , &start_time);

114 #endif

115

116 // Lock mutex for accessing ’cost’ variable

117 pthread_mutex_lock (& cost_mutex);

118 double current_cost = cost;

119 pthread_mutex_unlock (& cost_mutex);

120

121 // Lock mutex for accessing ’fileSent ’ flag

122 pthread_mutex_lock (& file_mutex);

123 int localFlag = fileSent;

124 pthread_mutex_unlock (& file_mutex);

125

126 // Structure to hold control response

127 struct clientResponse u;

128

129 // Assign counter value to state

130 state ->counter = counter;

131 counter += 1;

132

133 // Check conditions for control source

134 if (current_cost < 50 && localFlag)

135 {

136 struct clientResponse u1;

137 int byte;

138 do

139 {

140 byte = recv(udpSocketRemote , &u1, sizeof(u1),

MSG_DONTWAIT);

141 } while (byte != -1);

142

143 // Send state data via UDP

144 sendUDPData(udpSocketRemote , serverAddressUDP , state ,

sizeof (*state));

145

146 // Receive control response from server

147 if (receiveData(udpSocketRemote , &u, sizeof(u)) == 0)

148 {

149 if (u.counter == (counter - 1))
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150 {

151 #ifdef collectData

152 // Record end time for data collection

153 clock_gettime(CLOCK_MONOTONIC , &end_time);

154 // Calculate elapsed time

155 long long int elapsed_time_ns = (end_time.tv_sec

- start_time.tv_sec) * 1000000000 LL + (end_time.tv_nsec -

start_time.tv_nsec);

156 double elapsed_time_ms = (double)elapsed_time_ns

/ 1000000;

157 // Record data in CSV file

158 fprintf(csvFile , "%.6f,%.6f,%.6f,%.6f,%.6f,Remote

, %.6f, %.6f, %d ?= %d \n", state ->theta , state ->dtTheta ,

state ->phi , state ->dtPhi , u.u_c , current_cost ,

elapsed_time_ms , counter - 1, u.counter);

159 // Check if counter exceeds limit for data

collection

160 if (counter > 10000)

161 {

162 fclose(csvFile);

163 exit (0);

164 }

165 #endif

166 return u.u_c; // Return control signal

167 }

168 }

169 }

170

171 // Calculate control signal using LQR

172 u.u_c = LQR(state);

173

174 #ifdef collectData

175 // Record data in CSV file for LQR control

176 fprintf(csvFile , "%.6f,%.6f,%.6f,%.6f,%.6f,LQR , %.6f,NAN , NAN

?= NAN\n", state ->theta , state ->dtTheta , state ->phi , state ->

dtPhi , u.u_c , current_cost);

177 // Check if counter exceeds limit for data collection

178 if (counter > 10000)

179 {

180 fclose(csvFile);

181 exit (0);

182 }

183 #endif

184

185 return u.u_c; // Return control signal

186 }

187

188 // Function for LQR control calculation

189 double LQR(struct stateValues *state)

190 {

191 // Check if theta is within a specific range

192 if (state ->theta <= 0.75 && state ->theta >= -0.75)

193 {

194 // LQR control equation parameters
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195 double a = -0.3314;

196 double b = -0.0333;

197 double c = -0.0104;

198 double d = -0.0210;

199 // Calculate control signal

200 return -10 * (a * state ->theta + b * state ->dtTheta + c *

state ->phi + d * state ->dtPhi);

201 }

202 return 0; // Return 0 if theta is not within the specified

range

203 }

204

205 // Function to perform finalization tasks

206 void fin()

207 {

208 #ifdef collectData

209 // Open CSV file for appending data

210 csvFile = fopen(DATAFILENAME , "a");

211 if (csvFile == NULL)

212 {

213 printf("Error opening CSV file.\n");

214 }

215 // Write header for CSV file

216 fprintf(csvFile , "Theta ,dtTheta ,phi ,dtPhi ,u,Source ,

current_cost , elapsed_time_ms\n");

217 // Print message indicating file creation

218 printf("%s: File created \n", __FILE__);

219 #endif

220 // Close UDP socket

221 close(udpSocketRemote);

222 }
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util.h

1 #ifndef UTILS_H

2 #define UTILS_H

3

4 // Include necessary libraries

5 #include <stdlib.h>

6 #include <time.h>

7 #include <assert.h>

8 #include <errno.h>

9 #include <moberg.h>

10 #include <math.h>

11 #include <pthread.h>

12 #include <stdio.h>

13 #include <unistd.h>

14 #include <string.h>

15 #include <stdbool.h>

16 #include <sys/time.h>

17 #include <arpa/inet.h>

18 #include <fcntl.h>

19 #include <sys/stat.h>

20 #include <netinet/in.h>

21 #include <sys/socket.h>

22 #include <netinet/tcp.h>

23

24 // Define constants

25 #define FILENAME "../ Wasm/solver_aot.wasm" // Path to the file

26 #define collectData // Define for data

collection

27

28 #define TIMEOUT_IN_MICRO 14000 // Timeout value in

microseconds

29 #define PERIOD_IN_NANOS (15UL * 1000000 UL) // Period in

nanoseconds

30

31 #ifdef collectData

32 #define DATAFILENAME "5GData.csv" // Name of the data file

33 #endif

34

35 // Define structures

36 struct periodic_task

37 {

38 unsigned long current_job_id;

39 struct timespec period;

40 struct timespec first_activation;

41 struct timespec current_activation;

42 int terminated;

43 };

44

45 struct ModelParams

46 {

47 double Q0;

48 double Q1;

49 double Q2;
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50 double Q3;

51 double R0;

52 double A0;

53 double A1;

54 double A2;

55 double A3;

56 double A4;

57 double A5;

58 double A6;

59 double A7;

60 double A8;

61 double A9;

62 double A10;

63 double A11;

64 double A12;

65 double A13;

66 double A14;

67 double A15;

68 double B0;

69 double B1;

70 double B2;

71 double B3;

72 double u_max;

73 double S;

74 };

75

76 struct stateValues

77 {

78 double phi;

79 double theta;

80 double dtPhi;

81 double dtTheta;

82 int counter;

83 };

84

85 // Function prototypes

86 void timespec_add(struct timespec *a, struct timespec *b); //

Add timespec values

87 void sleep_until_next_activation(struct periodic_task *tsk); //

Sleep until the next activation

88 int init_util (); //

Initialize utility functions

89 void read_util(struct stateValues *state); //

Read utility state values

90 void actuate_util(double u_c); //

Actuate utility with control signal

91 void fin_util (); //

Finalize utility functions

92

93 #endif // UTILS_H
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controller.h

1 #ifndef CONTROLLER_H

2 #define CONTROLLER_H

3

4 // Include necessary header files

5 #include "remote.h"

6

7 // Define a structure to represent client response

8 struct clientResponse

9 {

10 double u_c; // Control signal

11 int counter; // Counter value

12 };

13

14 // Function prototypes

15 double calcU(struct stateValues *state); // Calculate control

signal

16 double LQR(struct stateValues *state); // Perform LQR control

17 void init(); // Initialize controller

18 void fin(); // Finalize controller

19

20 #endif // CONTROLLER_H
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remote.h

1 #ifndef REMOTE_H

2 #define REMOTE_H

3

4 // Edge

5 #define REMOTE_IP_ADDRESS "130.235.202.230"

6

7 // Heron -01

8 // #define REMOTE_IP_ADDRESS "130.235.83.87"

9

10 // Heron -02

11 // #define REMOTE_IP_ADDRESS "130.235.83.88"

12

13 // Local

14 // #define REMOTE_IP_ADDRESS "127.0.0.1"

15

16 #define TCP_PORT 32000

17 #define UDP_PORT 31450

18 // #define TCP_PORT 12348

19 // #define UDP_PORT 12346

20

21 #endif

89



Appendix A. Implementation

A.2 Remote Solver

main.c

1 #include "solver.h" // Including header file for solver functions

2

3 // External declaration of functions and thread IDs

4 extern void *receiver_thread(void *arg);

5 pthread_t receiver_thread_id;

6

7 extern void *solver_thread(void *arg);

8 pthread_t solver_thread_id;

9

10 pthread_t intermediary_thread_id;

11

12 // File descriptors for Unix and IP sockets

13 int server_fd_unix;

14 int client_fd_unix;

15 int server_fd_ip;

16

17 // Flag for Multi -Process Communication (MPC) and its mutex

18 volatile int MPC = 0;

19 pthread_mutex_t MPCmutex = PTHREAD_MUTEX_INITIALIZER;

20

21 // Array to hold parameters for loading into the WebAssembly

module

22 WasmEdge_Value ParamsLoadBridge [27];

23

24 // WebAssembly context and async object

25 WasmEdge_VMContext *VMCxt;

26 WasmEdge_Async *Async;

27

28 // String representing a function in the WebAssembly module

29 WasmEdge_String solveBridge;

30

31 // Intermediary thread function

32 void *intermediary_thread(void *arg)

33 {

34 struct sockaddr_in client_addr_ip;

35 socklen_t client_addr_length_ip = sizeof(client_addr_ip);

36

37 // Initialize pollfd structures for polling on sockets

38 struct pollfd fds [2];

39 fds [0].fd = client_fd_unix;

40 fds [0]. events = POLLIN;

41 fds [1].fd = server_fd_ip;

42 fds [1]. events = POLLIN;

43

44 while (1)

45 {

46 int ret = poll(fds , 2, -1); // Poll on both sockets

indefinitely

47
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48 if (ret < 0)

49 {

50 perror("poll failed");

51 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

52 continue;

53 }

54

55 // Check if there is data to read from the Unix socket

56 if (fds [0]. revents & POLLIN)

57 {

58 // Receive data from Unix socket

59 struct clientResponse u_response;

60 if (recv(client_fd_unix , &u_response , sizeof(u_response),

0) == -1)

61 {

62 perror("Failed to get control signal from solver.c");

63 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

64 continue;

65 }

66

67 // Send received data to IP socket

68 if (sendto(server_fd_ip , &u_response , sizeof(u_response),

0, (struct sockaddr *)&client_addr_ip , client_addr_length_ip)

== -1)

69 {

70 perror("Failed to send the control signal to local device

");

71 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

72 continue;

73 }

74 }

75

76 // Check if there is data to read from the IP socket

77 if (fds [1]. revents & POLLIN)

78 {

79 // Receive data from IP socket

80 struct stateValues state;

81 if (recvfrom(server_fd_ip , &state , sizeof(state), 0, (

struct sockaddr *)&client_addr_ip , &client_addr_length_ip) <

0)

82 {

83 perror("Failed to get the state from local device");

84 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

85 continue;

86 }

87

88 // Lock mutex to check MPC flag

89 pthread_mutex_lock (& MPCmutex);

90 int localMPCFlag = MPC;

91 pthread_mutex_unlock (& MPCmutex);
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92

93 // Cancel async execution if MPC flag is set

94 if (localMPCFlag)

95 {

96 WasmEdge_AsyncCancel(Async);

97 }

98

99 // Send received state to solver.c via Unix socket

100 if (send(client_fd_unix , &state , sizeof(state), 0) == -1)

101 {

102 perror("Failed to send state to solver.c");

103 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

104 continue;

105 }

106

107 // Receive and discard any remaining data in the Unix

socket buffer

108 struct clientResponse u_response;

109 int bytes_received;

110 do

111 {

112 bytes_received = recv(client_fd_unix , &u_response , sizeof

(u_response), MSG_DONTWAIT);

113 } while (bytes_received > 0);

114 }

115 }

116 pthread_exit(NULL);

117 }

118

119 // Function to set up Unix sockets

120 void setUpUnixSockets ()

121 {

122 int UNIXsockets [2];

123 if (socketpair(AF_UNIX , SOCK_DGRAM , 0, UNIXsockets) == -1)

124 {

125 perror("%s : Unix socket creation failed");

126 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

127 exit(EXIT_FAILURE);

128 }

129 server_fd_unix = UNIXsockets [0];

130 client_fd_unix = UNIXsockets [1];

131

132 printf("%s: UNIX UDP socket created \n", __FILE__);

133 }

134

135 // Function to set up IP sockets

136 void setUpIpSockets ()

137 {

138 // Create a socket for IP communication

139 if (( server_fd_ip = socket(AF_INET , SOCK_DGRAM , 0)) == -1)

140 {

141 perror("Server IP socket creation failed");
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142 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

143 exit(EXIT_FAILURE);

144 }

145

146 // Set up server address structure for IP communication

147 struct sockaddr_in server_addr_ip;

148 server_addr_ip.sin_family = AF_INET;

149 server_addr_ip.sin_addr.s_addr = INADDR_ANY;

150 server_addr_ip.sin_port = htons(UDP_PORT);

151

152 // Bind server socket to the specified address

153 if (bind(server_fd_ip , (struct sockaddr *)&server_addr_ip ,

sizeof(server_addr_ip)) < 0)

154 {

155 perror("Server IP socket failed");

156 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

157 close(server_fd_ip);

158 exit(EXIT_FAILURE);

159 }

160

161 printf("%s: IP UDP socket created and bound \n", __FILE__);

162 }

163

164 int main()

165 {

166 // Create and join receiver thread

167 if (pthread_create (& receiver_thread_id , NULL , receiver_thread ,

NULL) != 0)

168 {

169 perror("Failed to create the receiver thread");

170 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

171 exit(EXIT_FAILURE);

172 }

173 pthread_join(receiver_thread_id , NULL);

174

175 // Set up Unix and IP sockets

176 setUpIpSockets ();

177 setUpUnixSockets ();

178

179 // Initialize WebAssembly context and configure it

180 WasmEdge_ConfigureContext *ConfCxt = WasmEdge_ConfigureCreate ()

;

181 WasmEdge_ConfigureAddHostRegistration(ConfCxt ,

WasmEdge_HostRegistration_Wasi);

182

183 VMCxt = WasmEdge_VMCreate(ConfCxt , NULL);

184 WasmEdge_String initBridge = WasmEdge_StringCreateByCString("

initBridge");

185 WasmEdge_String loadBridge = WasmEdge_StringCreateByCString("

loadBridge");

186 solveBridge = WasmEdge_StringCreateByCString("solveBridge");
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187

188 // Load WebAssembly file into the program

189 WasmEdge_Result Res;

190 Res = WasmEdge_VMLoadWasmFromFile(VMCxt , FILENAME);

191 if (! WasmEdge_ResultOK(Res))

192 {

193 printf("%s: Loading phase failed: %s\n", FILE ,

WasmEdge_ResultGetMessage(Res));

194 exit(EXIT_FAILURE);

195 }

196

197 // Validate the loaded WebAssembly module

198 Res = WasmEdge_VMValidate(VMCxt);

199 if (! WasmEdge_ResultOK(Res))

200 {

201 printf("%s: Validation phase failed: %s\n", FILE ,

WasmEdge_ResultGetMessage(Res));

202 exit(EXIT_FAILURE);

203 }

204

205 // Instantiate the WebAssembly module

206 Res = WasmEdge_VMInstantiate(VMCxt);

207 if (! WasmEdge_ResultOK(Res))

208 {

209 printf("%s: Instantiation phase failed: %s\n", FILE ,

WasmEdge_ResultGetMessage(Res));

210 exit(EXIT_FAILURE);

211 }

212

213 // Execute the ’initBridge ’ function in the WebAssembly module

214 Res = WasmEdge_VMExecute(VMCxt , initBridge , NULL , 0, NULL , 0);

215 if (! WasmEdge_ResultOK(Res))

216 {

217 printf("%s: initBridge function call failed: %s\n", FILE ,

WasmEdge_ResultGetMessage(Res));

218 exit(EXIT_FAILURE);

219 }

220

221 // Call the ’loadBridge ’ function in the WebAssembly module

with parameters

222 Res = WasmEdge_VMExecute(VMCxt , loadBridge , ParamsLoadBridge ,

27, NULL , 0);

223 if (! WasmEdge_ResultOK(Res))

224 {

225 printf("%s: loadBridge function call failed: %s\n", FILE ,

WasmEdge_ResultGetMessage(Res));

226 exit(EXIT_FAILURE);

227 }

228

229 printf("%s: Starting solver and intermediary \n", FILE);

230

231 // Create solver thread

232 if (pthread_create (& solver_thread_id , NULL , solver_thread , (

void *)&server_fd_unix) != 0)
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233 {

234 perror("Failed to create solver thread");

235 fprintf(stdout , "%s: errno %d at line %d. \n", FILE , errno ,

LINE);

236 exit(EXIT_FAILURE);

237 }

238

239 // Create intermediary thread

240 if (pthread_create (& intermediary_thread_id , NULL ,

intermediary_thread , NULL) != 0)

241 {

242 perror("Failed to create intermediary thread");

243 fprintf(stdout , "%s: errno %d at line %d. \n", FILE , errno ,

LINE);

244 exit(EXIT_FAILURE);

245 }

246

247 // Cleanup: delete strings

248 WasmEdge_StringDelete(initBridge);

249 WasmEdge_StringDelete(loadBridge);

250

251 // Wait for the intermediary thread to finish

252 pthread_join(intermediary_thread_id , NULL);

253

254 return 0;

255 }
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receiver.c

1 #include "solver.h" // Including header file for solver functions

2

3 extern WasmEdge_Value ParamsLoadBridge [27]; // External

declaration of ParamsLoadBridge array

4

5 // Function to receive a file over a TCP socket

6 void getFile(int sockfd)

7 {

8 char file_size_str [20];

9 off_t expected_file_size;

10 ssize_t bytes_received;

11 int c = 0;

12

13 // Receive file size

14 do

15 {

16 bytes_received = recv(sockfd , file_size_str , sizeof(

file_size_str), 0);

17 if (bytes_received < 0)

18 {

19 perror("File size packet not received");

20 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

21 if (c++ > 5)

22 {

23 close(sockfd);

24 exit(EXIT_FAILURE);

25 }

26 }

27 } while (bytes_received <= 0);

28

29 file_size_str[bytes_received] = ’\0’;

30 expected_file_size = atoll(file_size_str);

31

32 // Receive file ID

33 int file_id;

34 c = 0;

35 do

36 {

37 bytes_received = recv(sockfd , &file_id , sizeof(file_id), 0);

38 if (bytes_received < 0)

39 {

40 perror("ID packet not received");

41 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

42 if (c++ > 5)

43 {

44 close(sockfd);

45 exit(EXIT_FAILURE);

46 }

47 }

48 } while (bytes_received <= 0);
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49

50 printf("%s: Received file %d with size: %s\n", __FILE__ ,

file_id , file_size_str);

51

52 // Open file for writing

53 FILE *file_ptr;

54 c = 0;

55 do

56 {

57 file_ptr = fopen(FILENAME , "wb");

58 if (file_ptr == NULL)

59 {

60 perror("The file could not be opened");

61 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

62 if (c++ > 5)

63 {

64 close(sockfd);

65 remove(FILENAME);

66 exit(EXIT_FAILURE);

67 }

68 }

69 } while (file_ptr == NULL);

70

71 // Receive file data

72 char buffer[BUFFER_SIZE ];

73 off_t received_file_size = 0;

74

75 while (received_file_size < expected_file_size)

76 {

77 int num_of_buffs = (expected_file_size - received_file_size)

/ sizeof(buffer);

78 c = 0;

79 do

80 {

81 if (num_of_buffs > 0)

82 bytes_received = recv(sockfd , buffer , sizeof(buffer), 0);

83 else

84 bytes_received = recv(sockfd , buffer , expected_file_size

- received_file_size , 0);

85

86 if (bytes_received < 0)

87 {

88 perror("File data packet not received");

89 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

90 if (c++ > 5)

91 {

92 close(sockfd);

93 remove(FILENAME);

94 exit(EXIT_FAILURE);

95 }

96 }

97 } while (bytes_received <= 0);

97



Appendix A. Implementation

98

99 // Write received data to file

100 size_t written_bytes;

101 size_t total_written_bytes = 0;

102 c = 0;

103 do

104 {

105 written_bytes = fwrite(buffer + total_written_bytes , 1,

bytes_received - total_written_bytes , file_ptr);

106 if (written_bytes > 0)

107 {

108 total_written_bytes += written_bytes;

109 }

110 else

111 {

112 perror("File data could not be written to the file");

113 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

114 if (c++ > 5)

115 {

116 close(sockfd);

117 remove(FILENAME);

118 exit(EXIT_FAILURE);

119 }

120 }

121 } while (total_written_bytes < bytes_received);

122

123 received_file_size += bytes_received;

124 }

125

126 // Close file

127 if (fclose(file_ptr) != 0)

128 {

129 perror("File can not be closed");

130 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

131 }

132

133 // Check if file received completely and send acknowledgment

134 if (received_file_size == expected_file_size)

135 {

136 c = 0;

137 int bytes_sent;

138 do

139 {

140 bytes_sent = send(sockfd , &file_id , sizeof(file_id), 0);

141 if (bytes_sent == -1)

142 {

143 perror("File id could not be sent to the client");

144 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

145 if (c++ > 5)

146 {

147 close(sockfd);
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148 remove(FILENAME);

149 exit(EXIT_FAILURE);

150 }

151 }

152 else if (bytes_sent < sizeof(file_id))

153 {

154 printf("%s: Not all data was sent at line %s\n",

__FILE__ , __LINE__);

155 close(sockfd);

156 }

157 } while (bytes_sent == -1);

158

159 printf("%s: File received and saved as %s\n", __FILE__ ,

FILENAME);

160 }

161 else

162 {

163 printf("%s: File size mismatch. File not saved. The file

received was %ld expected %ld \n", __FILE__ ,

received_file_size , expected_file_size);

164 remove(FILENAME);

165 close(sockfd);

166 exit(EXIT_FAILURE);

167 }

168 }

169

170 // Function to retrieve model parameters over TCP socket

171 void retrieveModelParams(int sockfd)

172 {

173 int c = 0;

174 ssize_t bytes_received;

175 struct ModelParams params;

176

177 // Receive model parameters

178 do

179 {

180 bytes_received = recv(sockfd , &params , sizeof(struct

ModelParams), 0);

181 if (bytes_received < 0)

182 {

183 perror("Parameter packet not received");

184 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

185 if (c++ > 5)

186 {

187 close(sockfd);

188 exit(EXIT_FAILURE);

189 }

190 }

191 else if (bytes_received != sizeof(struct ModelParams))

192 {

193 printf("%s: Parameter packet size not right", __FILE__);

194 close(sockfd);

195 exit(EXIT_FAILURE);
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196 }

197 } while (bytes_received <= 0);

198

199 // Convert received parameters to WebAssembly values and store

in ParamsLoadBridge array

200 ParamsLoadBridge [0] = WasmEdge_ValueGenF64(params.Q0);

201 ParamsLoadBridge [1] = WasmEdge_ValueGenF64(params.Q1);

202 ParamsLoadBridge [2] = WasmEdge_ValueGenF64(params.Q2);

203 ParamsLoadBridge [3] = WasmEdge_ValueGenF64(params.Q3);

204 ParamsLoadBridge [4] = WasmEdge_ValueGenF64(params.R0);

205 ParamsLoadBridge [5] = WasmEdge_ValueGenF64(params.A0);

206 ParamsLoadBridge [6] = WasmEdge_ValueGenF64(params.A1);

207 ParamsLoadBridge [7] = WasmEdge_ValueGenF64(params.A2);

208 ParamsLoadBridge [8] = WasmEdge_ValueGenF64(params.A3);

209 ParamsLoadBridge [9] = WasmEdge_ValueGenF64(params.A4);

210 ParamsLoadBridge [10] = WasmEdge_ValueGenF64(params.A5);

211 ParamsLoadBridge [11] = WasmEdge_ValueGenF64(params.A6);

212 ParamsLoadBridge [12] = WasmEdge_ValueGenF64(params.A7);

213 ParamsLoadBridge [13] = WasmEdge_ValueGenF64(params.A8);

214 ParamsLoadBridge [14] = WasmEdge_ValueGenF64(params.A9);

215 ParamsLoadBridge [15] = WasmEdge_ValueGenF64(params.A10);

216 ParamsLoadBridge [16] = WasmEdge_ValueGenF64(params.A11);

217 ParamsLoadBridge [17] = WasmEdge_ValueGenF64(params.A12);

218 ParamsLoadBridge [18] = WasmEdge_ValueGenF64(params.A13);

219 ParamsLoadBridge [19] = WasmEdge_ValueGenF64(params.A14);

220 ParamsLoadBridge [20] = WasmEdge_ValueGenF64(params.A15);

221 ParamsLoadBridge [21] = WasmEdge_ValueGenF64(params.B0);

222 ParamsLoadBridge [22] = WasmEdge_ValueGenF64(params.B1);

223 ParamsLoadBridge [23] = WasmEdge_ValueGenF64(params.B2);

224 ParamsLoadBridge [24] = WasmEdge_ValueGenF64(params.B3);

225 ParamsLoadBridge [25] = WasmEdge_ValueGenF64(params.u_max);

226 ParamsLoadBridge [26] = WasmEdge_ValueGenF64(params.S);

227 }

228

229 // Function to set up TCP sockets and handle file and parameter

retrieval

230 int setupSockets ()

231 {

232 // Creating a TCP socket for file and parameters

233 int server_fd = socket(AF_INET , SOCK_STREAM , 0);

234 if (server_fd == -1)

235 {

236 perror("Server TCP socket");

237 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

238 exit(EXIT_FAILURE);

239 }

240

241 printf("%s: Server TCP socket created\n", __FILE__);

242 struct sockaddr_in tcpAddr;

243 tcpAddr.sin_family = AF_INET;

244 tcpAddr.sin_addr.s_addr = INADDR_ANY;

245 tcpAddr.sin_port = htons(TCP_PORT);

246
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247 // Binding the socket

248 if (bind(server_fd , (struct sockaddr *)&tcpAddr , sizeof(tcpAddr

)) == -1)

249 {

250 perror("Server TCP socket not bound");

251 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

252 close(server_fd);

253 exit(EXIT_FAILURE);

254 }

255 printf("%s: Server TCP socket bound\n", __FILE__);

256

257 // Listening for connections

258 if (listen(server_fd , 5) == -1)

259 {

260 perror("Server TCP socket not listening");

261 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

262 close(server_fd);

263 exit(EXIT_FAILURE);

264 }

265 printf("%s: Server TCP listening on port %d\n", __FILE__ ,

TCP_PORT);

266

267 int client_fd;

268 int c = 0;

269 struct sockaddr_in client_addr;

270 socklen_t client_addr_len = sizeof(client_addr);

271

272 // Accepting client connection

273 do

274 {

275 client_fd = accept(server_fd , (struct sockaddr *)&client_addr

, &client_addr_len);

276 if (client_fd == -1)

277 {

278 perror("Client TCP not accepted");

279 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

280 if (c++ > 5)

281 {

282 close(server_fd);

283 exit(EXIT_FAILURE);

284 }

285 }

286 } while (client_fd == -1);

287

288 printf("%s: Client TCP socket connected\n", __FILE__);

289

290 // Close the server socket and return client socket

291 close(server_fd);

292 return client_fd;

293 }

294
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295 // Receiver thread function

296 void *receiver_thread(void *arg)

297 {

298 // Setup TCP socket and retrieve file and model parameters

299 int client_fd = setupSockets ();

300 getFile(client_fd);

301 retrieveModelParams(client_fd);

302

303 // Inform user and close the socket

304 printf("%s: File and model parameters are received closing

socket .\n", __FILE__);

305 close(client_fd);

306

307 return NULL;

308 }
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solver.c

1 #include "solver.h" // Including header file for solver functions

2

3 // External declarations

4 extern WasmEdge_VMContext *VMCxt;

5 extern WasmEdge_Async *Async;

6 extern WasmEdge_String solveBridge;

7

8 // Array to store states

9 WasmEdge_Value states [4];

10

11 // External variables

12 extern volatile int MPC;

13 extern pthread_mutex_t MPCmutex;

14

15 // Solver thread function

16 void *solver_thread(void *arg)

17 {

18 // Extracting server file descriptor from argument

19 int server_fd = *(int *)arg;

20

21 // Continuous loop to receive and solve states

22 while (1)

23 {

24 struct stateValues state;

25 struct clientResponse u;

26

27 // Receiving state from server

28 ssize_t bytes_received = recv(server_fd , &state , sizeof(state

), 0);

29 if (bytes_received != sizeof(state))

30 {

31 perror("Failed to get the state");

32 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

33 continue;

34 }

35

36 // Converting received states to WebAssembly values

37 states [0] = WasmEdge_ValueGenF64(state.phi);

38 states [1] = WasmEdge_ValueGenF64(state.theta);

39 states [2] = WasmEdge_ValueGenF64(state.dtPhi);

40 states [3] = WasmEdge_ValueGenF64(state.dtTheta);

41 WasmEdge_Value U[1];

42

43 // Setting MPC flag

44 pthread_mutex_lock (& MPCmutex);

45 MPC = 1; // Set flag

46 pthread_mutex_unlock (& MPCmutex);

47

48 // Asynchronously executing solveBridge function with states

49 Async = WasmEdge_VMAsyncExecute(VMCxt , solveBridge , states ,

4);
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50 WasmEdge_Result Res = WasmEdge_AsyncGet(Async , U, 1);

51

52 // Resetting MPC flag

53 pthread_mutex_lock (& MPCmutex);

54 MPC = 0; // Reset flag

55 pthread_mutex_unlock (& MPCmutex);

56

57 // Checking if execution was successful

58 if (! WasmEdge_ResultOK(Res))

59 {

60 printf("%s: solver got interrupted error with code: %s \n",

__FILE__ , WasmEdge_ResultGetMessage(Res));

61 continue;

62 }

63

64 // Retrieving control response from solver

65 u.u_c = WasmEdge_ValueGetF64(U[0]);

66 u.counter = state.counter;

67

68 // Sending control response to server

69 ssize_t bytes_sent = send(server_fd , &u, sizeof(u), 0);

70 if (bytes_sent == -1)

71 {

72 perror("Failed to send the control signal");

73 fprintf(stdout , "%s: errno %d at line %d. \n", __FILE__ ,

errno , __LINE__);

74 continue;

75 }

76

77 // Clearing any remaining data in the receive buffer

78 bytes_received;

79 do

80 {

81 bytes_received = recv(server_fd , &state , sizeof(state),

MSG_DONTWAIT);

82 } while (bytes_received > 0);

83 }

84

85 return NULL;

86 }
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solver.h

1 #ifndef SOLVER_H

2 #define SOLVER_H

3

4 #define _GNU_SOURCE

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <unistd.h>

8 #include <pthread.h>

9 #include <sys/socket.h>

10 #include <errno.h>

11 #include <netinet/in.h>

12 #include <sys/un.h>

13 #include <sys/types.h>

14 #include <poll.h>

15

16 #include <wasmedge/wasmedge.h>

17

18 #define FILENAME "solver_aot.wasm" // Filename of the WebAssembly

module

19 #define TCP_PORT 12348 // TCP port number

20 #define BUFFER_SIZE 4096 // Size of the buffer for data

transmission

21

22 #define MAX_THREADS 10 // Maximum number of threads

23 #define UDP_PORT 12346 // UDP port number

24

25 // Structure defining model parameters

26 struct ModelParams

27 {

28 double Q0;

29 double Q1;

30 double Q2;

31 double Q3;

32 double R0;

33 double A0;

34 double A1;

35 double A2;

36 double A3;

37 double A4;

38 double A5;

39 double A6;

40 double A7;

41 double A8;

42 double A9;

43 double A10;

44 double A11;

45 double A12;

46 double A13;

47 double A14;

48 double A15;

49 double B0;

50 double B1;
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51 double B2;

52 double B3;

53 double u_max;

54 double S;

55 };

56

57 // Structure defining state values

58 struct stateValues

59 {

60 double phi;

61 double theta;

62 double dtPhi;

63 double dtTheta;

64 int counter;

65 };

66

67 // Structure defining client response

68 struct clientResponse

69 {

70 double u_c;

71 int counter;

72 };

73

74 // Structure for cleanup arguments

75 typedef struct

76 {

77 WasmEdge_VMContext *vmCxt;

78 WasmEdge_ConfigureContext *confCxt;

79 WasmEdge_String loadBridge;

80 } CleanupArgs;

81

82 #endif // SOLVER_H
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Containerfile

1 FROM fedora :38

2

3 # Update and install necessary packages

4 RUN dnf update -y && dnf install gcc python git which -y

5

6 # Install WasmEdge using the provided script

7 RUN curl -sSf https :// raw.githubusercontent.com/WasmEdge/WasmEdge

/master/utils/install.sh | bash

8

9 # Set the working directory

10 WORKDIR /testWasmEdge/

11

12 # Copy the local files to the container

13 COPY . /testWasmEdge/

14

15 # Expose UDP and TCP ports

16 EXPOSE 12346/ udp

17 EXPOSE 12348

18

19 # Compile the solver.c file with WasmEdge libraries

20 RUN gcc solver.c -lwasmedge -I/root/. wasmedge/include -L/root/.

wasmedge/lib -o solver.exe

21

22 # Set the entry point for the container

23 ENTRYPOINT ./ solver.exe
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solver-dep-sol.yaml

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: solver -deployment

5 spec:

6 replicas: 1

7 selector:

8 matchLabels:

9 app: solver

10 template:

11 metadata:

12 labels:

13 app: solver

14 spec:

15 containers:

16 - name: solver -container

17 image: mralbayati/solver

18 ports:

19 - containerPort: 12346

20 name: udpport

21 protocol: UDP

22 - containerPort: 12348

23 name: tcpport

24 protocol: TCP

25

26 ---

27 apiVersion: v1

28 kind: Service

29 metadata:

30 name: solver -service

31 spec:

32 selector:

33 app: solver

34 ports:

35 - protocol: UDP

36 name: udpport

37 port: 12346

38 targetPort: 12346

39 nodePort: 31450

40 - protocol: TCP

41 name: tcpport

42 port: 12348

43 targetPort: 12348

44 nodePort: 32000

45 type: NodePort
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A.3 AOT Wasm MPC Solver

bridge.c

1 #include "./ cvxgen/solver.h" // Include the solver header

file

2 #include "bridge.h" // Include the bridge header

file

3 #include <emscripten/emscripten.h> // Include Emscripten headers

4

5 Vars vars; // Declaration of variables from solver

6 Params params; // Declaration of parameters from solver

7 Workspace work; // Declaration of workspace from solver

8 Settings settings; // Declaration of settings from solver

9

10 int main() { return 0; } // Entry point of the program , currently

empty

11

12 // Function to initialize the bridge

13 EMSCRIPTEN_KEEPALIVE void initBridge ()

14 {

15 set_defaults (); // Set default values for solver parameters

16 setup_indexing (); // Setup indexing for solver

17 }

18

19 // Function to load bridge parameters

20 EMSCRIPTEN_KEEPALIVE void loadBridge(

21 double Q0, double Q1, double Q2, double Q3,

22 double R0,

23 double A0, double A1, double A2, double A3,

24 double A4, double A5, double A6, double A7,

25 double A8, double A9, double A10 , double A11 ,

26 double A12 , double A13 , double A14 , double A15 ,

27 double B0, double B1, double B2, double B3,

28 double u_max , double S)

29 {

30 // Load parameters for solver from the provided values

31 params.Q[0] = Q0;

32 params.Q[1] = Q1;

33 params.Q[2] = Q2;

34 params.Q[3] = Q3;

35

36 params.R[0] = R0;

37

38 params.A[0] = A0;

39 params.A[1] = A1;

40 params.A[2] = A2;

41 params.A[3] = A3;

42 params.A[4] = A4;

43 params.A[5] = A5;

44 params.A[6] = A6;

45 params.A[7] = A7;

46 params.A[8] = A8;
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47 params.A[9] = A9;

48 params.A[10] = A10;

49 params.A[11] = A11;

50 params.A[12] = A12;

51 params.A[13] = A13;

52 params.A[14] = A14;

53 params.A[15] = A15;

54

55 params.B[0] = B0;

56 params.B[1] = B1;

57 params.B[2] = B2;

58 params.B[3] = B3;

59

60 params.u_max [0] = u_max;

61 params.S[0] = S;

62 }

63

64 // Function to solve bridge given state values and return control

signal

65 EMSCRIPTEN_KEEPALIVE double solveBridge(double phi , double theta ,

double dtPhi , double dtTheta)

66 {

67 // Set initial state values for solver

68 params.x_0 [0] = theta;

69 params.x_0 [1] = dtTheta;

70 params.x_0 [2] = phi;

71 params.x_0 [3] = dtPhi;

72

73 settings.verbose = 0; // Set verbosity of solver settings

74 solve(); // Solve the optimization problem

75

76 // Check if the solver has converged and return appropriate

control signal

77 if (work.converged == 1)

78 {

79 if (params.x_0[0] <= 0.75 && params.x_0 [0] >= -0.75)

80 {

81 return 10 * vars.u_0 [0]; // Return control signal

82 }

83 }

84

85 // Return default value if solver has not converged

86 return 0;

87 }

88

89 // Function to return control signal 2

90 EMSCRIPTEN_KEEPALIVE double returnU2 ()

91 {

92 // Check if the solver has converged and return appropriate

control signal

93 if (work.converged == 1)

94 {

95 if (params.x_0[0] <= 0.75 && params.x_0 [0] >= -0.75)

96 {
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97 return 10 * vars.u_1 [0]; // Return control signal

98 }

99 }

100

101 // Return default value if solver has not converged

102 return 0;

103 }
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bridge.h

1 #ifndef BRIDGE_H

2 #define BRIDGE_H

3

4 void initBridge ();

5

6 void loadBridge(

7 double Q0, double Q1, double Q2, double Q3,

8 double R0,

9 double A0, double A1, double A2, double A3,

10 double A4, double A5, double A6, double A7,

11 double A8, double A9, double A10 , double A11 ,

12 double A12 , double A13 , double A14 , double A15 ,

13 double B0, double B1, double B2, double B3,

14 double u_max , double S);

15

16 double solveBridge(double phi , double theta , double dtPhi , double

dtTheta);

17

18 double returnU2 ();

19 #endif
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Containerfile

1 FROM fedora :38

2

3 # Update packages and install necessary dependencies

4 RUN dnf update -y && dnf install gcc python git which -y

5

6 # Install WasmEdge using installation script

7 RUN curl -sSf https :// raw.githubusercontent.com/WasmEdge/WasmEdge

/master/utils/install.sh | bash

8

9 # Set working directory inside the container

10 WORKDIR /testWasmEdge/

11

12 # Copy the local files to the working directory inside the

container

13 COPY . /testWasmEdge/

14

15 # Compile solver.wasm to solver_aot.wasm using WasmEdge

16 RUN /root/. wasmedge/bin/wasmedge compile --interruptible solver.

wasm solver_aot.wasm
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