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Abstract

This study presents an in-depth exploration into the utilization of Varia-
tional Autoencoders (VAEs) for modeling and completing implied volatility sur-
faces within the context of the index equities market, a crucial aspect of option
pricing. Moreover, our study examines the predictive capabilities of neural net-
works concerning �uctuations in spot prices, with a specialized spot model cal-
ibrated to forecast changes in volatility surfaces based on spot price dynamics.
Through comprehensive data processing and structuring of VAEs we created a
model capable of generating accurate and nearly arbitrage-free volatility surfaces
from as little as �� points of information. This model also proved pro�ciency in
generating volatility surfaces for previously unseen underlying assets. Applying
changes in spot price as a conditional variable we successfully created a powerful
risk management tool capable of forecasting volatility surfaces for various future
scenarios.

Although our model can be improved upon, our �ndings underscore the ro-
bustness and generalizability of VAEs, showcasing their potential for broader
application across various �nancial instruments and markets.

Keywords: Variational Autoencoder (VAE), static arbitrage, implied volatility, volatility
surface, index equity options, neural network, machine learning, quantitative �nance
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Chapter �

Introduction

Modeling of the implied volatility surface is an important subject for most quantitative trad-
ing �rms. The volatility surface consists of the implied volatilities from inverting the Black
& Scholes formula for options at di�erent maturities and strikes. The calculations to model
volatility surfaces are very complex, therefore neural networks are looked at as an alternative.
Once neural networks are trained, they possess the ability to rapidly generate new surfaces.
The primary challenge, however, lies in ensuring the accuracy and precision of these newly
generated surfaces, particularly when constrained by the availability of limited input data.
This is where Variational Autoencoders (VAEs) can be useful. Variational Autoencoders is a
type of neural network that is considered a generative network, meaning that once trained, it
can easily output similar patterns to what it has been trained on. Therefore by training it on
historical volatility surfaces, the network should be able to output similar-looking volatility
surfaces.

When modeling a volatility surface, an important consideration is the presence of arbi-
trage. If the surface is not arbitrage-free, competing investors will be able to obtain risk-free
and cost-free pro�ts by a combination of buying and selling di�erent options with di�erent
expiries and strike prices. Therefore a big emphasis when creating models is to ensure that
the generated surface is arbitrage-free. The volatility surfaces generated by the model are in-
tegrated into more comprehensive models that assume an absence of static arbitrage, which
heightens the importance of producing an arbitrage-free surface.

Volatility surfaces play a pivotal role in understanding the dynamics of spot prices in
�nancial markets. The relationship between volatility surfaces and spot price movements is
intricate and multifaceted. Understanding how volatility surfaces interact with spot prices
is something that neural networks could help to investigate.
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1.1 Related Work
A lot of work has been done on producing arbitrage-free volatility surfaces. The most promi-
nent research in this area can be found in [��] where Jim Gatheral and Antoine Jacquier
introduce conditions to the SSVI model, an extension of the SVI model, to completely re-
move static arbitrage. This model has been widely used in the �nance industry since it was
published and is a basis for many research papers regarding the generation of arbitrage-free
volatility surfaces such as [�, ��].

The utilization of neural networks for calculating implied volatility is becoming increas-
ingly common in the calibration of �nancial models. Di�erent types of neural networks have
been applied, and di�erent approaches have been considered for the task of volatility model
calibration and implied volatility surfaces generation [�, ��, �, ��, �]. In [�] a neural network-
based approach is used to calculate rough volatility. In this paper, a two-step approach is
suggested where a neural network is utilized as the �rst step in approximating prices and a
traditional model calibration algorithm as the second step to calculate volatility.

In [��] convolutional neural networks (CNNs) are used to replicate the calibration of the
Heston model to equity volatility surfaces. The input to the CNN is the implied volatility
combined with a �-dimensional tensor featuring additional information, namely, the strike,
the moneyness, and the equity forwards. The target for the model to reproduce is the �
parameters of the Heston model, and the paper shows promising results in doing so.

In papers [�, ��] Variational Autoencoders (VAEs) are trained to generate arbitrage-free
volatility surfaces for the FX market. In [��] a hybrid method is used combining VAEs with
stochastic di�erential equation models (SDE models). In the paper, a VAE is trained using
SDE model parameters from previously known surfaces. To generate IV surfaces a sample
is drawn from the latent space of the VAE which is then decoded to generate SDE model
parameters, which are then mapped to IV surfaces. They then further improve the VAE by
turning it into a conditional variational autoencoder by introducing conditional features, as
�rst introduced in [��].

In Bergeron et al.[�] the input to the VAE consists of a grid of �� volatility points. It
consists of volatility for deltas (�.�, �.��, �.�, �.��, and �.�) for the expiries (one week, one
month, two months, three months, six months, nine months, one year, and three years). The
network is then trained to reconstruct points on the grid using di�erent sizes of the latent
space. The VAE trained can with the help of an external optimizer create reasonable-looking
volatility surfaces being fed as little as � points for the FX market.

In [�] inspired by suggestions in [�], two di�erent approaches for the VAE are presented;
a gridwise, and a pointwise approach. The gridwise approach, as illustrated in Figure �.�a is
a typical VAE that takes a volatility surface with speci�ed maturities and deltas as input and
outputs a volatility surface. However, this lacks the capability of inferring points with di�er-
ent delta and tenor values and instead, the pointwise approach is suggested. As illustrated in
Figure �.�b the delta (K) and maturity (T) are added as extra information to the latent vector
fed to the decoder to have the network output a single point. This now turns the network
from an unsupervised network into a semi-supervised network and enables training and in-
ference on points outside the speci�ed points inputted in the grid. Whereas the gridwise
approach relies on an outside interpolation to compute the implied volatility of arbitrary
deltas and maturities, as discussed in [�].

�



�.� R������W���

There also exists previous work where neural networks have been used to predict volatil-
ity surfacemovements based on changes in spot price combinedwith the underlying volatility
as seen in [�]. Through using � hidden layers with �� nodes each they are able to accurately
predict volatility surfaces and their research strengthens previous theory stating a negative
correlation between volatility levels in the SPX and changes in spot price. They do how-
ever notice exceptions to this theory. While under normal circumstances a positive return
in the underlying asset would lead to a decrease in volatility for the entire volatility surface,
the opposite seems to be true if the spot movements happen during an already low volatil-
ity regime. This is particularly noticeable in the high-delta short-maturity options. These
�ndings would imply that the entire shape of the volatility surface and not only the general
volatility level is highly impacted by changes in the underlying spot price.

Figure �.�: An illustration of the architecture of two Variational Au-
toencoders one implementing the gridwise, and one implementing
the pointwise approach.

�
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1.2 Research Objective
In this master’s thesis, we aim to explore the feasibility of a Variational Autoencoder (VAE)
capable of e�ectively constructing arbitrage-free volatility surfaces within the equities mar-
ket, by utilizing historical SPX option data as training data. We also want to investigate the
applicability and performance of such a model on indices not included in the training data.
Furthermore, we aim to explore the latent space of such a model to acquire knowledge of how
the VAE represents these surfaces. Another goal is to examine the potential for developing a
model that can predict alterations to the volatility surface in response to movements in the
spot price. We place a big emphasis on our models being arbitrage-free since it is important
for practical use.

1.2.1 Contribution to Research
Numerous papers explore the application of neural networks for generating volatility sur-
faces, as evidenced by works such as [�, ��, ��]. Notably, VAEs have been employed to model
volatility surfaces within the FXmarket context, as detailed in studies [�, ��]. With this thesis,
we aim to investigate the extension of these neural networks, speci�cally VAEs on the equi-
ties market which represents a more di�cult problem due to the di�erence in price quoting
and liquidity of the market. We want to further extend the applicability of these models to
accurately predict changes in the volatility surfaces in response to price movements in the
underlying assets similar to [�].

1.2.2 Contribution Statement
During the creation of themodel and data processing, workwas carried out in a pair-programming
fashion. This ensures that both of us have complete knowledge of how our solution works.
This has been a good way to catch mistakes at an early stage and has facilitated discussion
on how problems should be solved. The writing of the thesis has been executed in a similar
fashion with some parts being completely written together and some parts initially written
by one person and rewritten by the other.

��
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Theory

This chapter features all the background theory used to understand the project. It includes
both theory on options, arbitrage, and variational autoencoders.

2.1 Options Theory

2.1.1 Implied Volatility
Options are sophisticated �nancial derivatives that give investors the opportunity to spec-
ulate and bet on price movements among other factors in the underlying asset. This study
focuses on European index options. A European option gives a buyer the right to sell or buy
the underlying asset for a set price at a set time. European options are the most commonly
traded option type in the index space and contrary to American options, the European coun-
terpart can not be exercised prior to its maturity date. An index is a statistical measure that
represents the performance of a collection of assets. The index is constructed by aggregating
the returns of these assets, and each asset is weighed di�erently depending on which method
the index chooses to use. In this project, the focus is primarily on equity indices, especially
the S&P ��� which represents the largest ��� stocks in the U.S. and is the most traded eq-
uity index in the world. The S&P ��� represents the aggregated returns of these ��� stocks
weighed by their total market capitalization [�].

Crucial to options trading is the pricing of these options at any time and moment. The
pricing model most widely used is the Black and Scholes model [�] as seen in Equation (�.�).

C(St, t) = StN(d1) � Ke�r(T�t)N(d2), (�.�)
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where:

St is the price of the underlying asset at time t
C(St, t) is the call option price at time t
N(x) is the cumulative distribution function of the standard normal distribution

d1 =
ln(St/K) + (r + �2

2 )(T � t)
�
p

T � t
d2 = d1 � �

p
T � t

K is the strike price
r is the risk-free interest rate
T is the time to expiration
t is the current time
� is the volatility of the underlying asset

This model takes into account a variety of factors including the spot price of the un-
derlying asset, the interest rate for the maturity period, the options strike price, the time
remaining until expiry, and the volatility of the underlying asset. The parameter that consid-
ers the volatility of the underlying asset is called the implied volatility and can be seen as a
forecast of the future volatility during the options life span. In the Black-Scholes framework,
it is assumed that stock prices follow a geometric Brownian motion, which means that the
logarithm of stock prices follows a normal distribution over time. In reality, stock returns
often exhibit characteristics such as skewness, kurtosis, and volatility clustering that devi-
ate from a perfectly normal distribution [��]. This key assumption is the biggest �aw in the
model and is the reason why accurate option pricing is such a di�cult task. To accommo-
date for real-life assumptions about the options’ probability of exercise, speculators have to
incorporate modi�cations or rely on alternative models for an accurate price. One modi�-
cation is to change the implied volatility parameter of each option depending on its strike
price and maturity date. Since all other parameters are more or less known, selecting the
correct implied volatility becomes the biggest challenge in option pricing, and most profes-
sional trading is done based on di�erent opinions on the correct implied volatility.

2.1.2 Incorporating Dividends
The Black & Scholes formula is not built to incorporate dividends so alterations are required
before using it to price index options. Since this project is concerned with equity indices
consisting of large numbers of underlying stocks we will consider the dividend rate near
continuous. To accommodate for dividends, the forward price of the underlying asset is
calculated by discounting the current spot price with the continuous dividends [��] as in
Equation (�.�).

F = S0 · er�d·T , (�.�)

where:

• F is the forward price.

��
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• S0 is the current spot price of the asset.

• d is the continuous dividend yield (dividend payment rate).

• r is the continuous risk free interest rate .

• T is the time to expiration of the forward contract.

2.1.3 Risk Parameters of Options
Another important aspect of options is the relative ease with which investors can calculate
their risks by using the partial di�erential equation from the Black & Scholes Formula. In
this study, two speci�c risk measurements namely delta and vega will be referred to. Delta is
the measurement of how the option price will move based on price movements in the under-
lying asset [��] and the formula can be seen in Equation (�.�). This paper will mostly refer to
options with speci�c deltas instead of speci�c strikes from this point forward as the delta val-
ues are already normalized which allows for easier use as input to a variational autoencoder.
Modeling based on delta also allows us to consider the full volatility surface which concerns
investors. If the volatility surfaces were modeled o� �xed strike prices it would be di�cult
to capture the high and low delta-valued options at higher tenors when a rectangular grid is
desired.

The delta of a European call option is given by:

� = N(d1), (�.�)

where

d1 =
ln
⇣

S
K

⌘
+
⇣
r + �2

2

⌘
T

�
p

T
. (�.�)

The vega of an option is the �rst derivative of the Black & Scholes formula with regards to
the volatility parameter and represents the option’s price movement based on the change in
volatility in the underlying asset[��]. Vega will be used to invert the Black & Scholes formula
to obtain implied volatilities. The formula for vega can be found in Equation (�.�).

The vega of a European option is given by:

vega = S ·
p

T · N(d1). (�.�)

2.1.4 Volatility Surfaces
Since the implied volatility of an option depends on its strike price and maturity date, a
volatility surface is created by visualizing all possible option prices. The very existence of a
non-�at volatility surface proves that the Black and Scholes formula is far fromperfect. While
looking at historical market data, it can often be observed that market prices fall rapidly but
rise slowly. Due to this, the probability distribution of where the underlying price may end
on the expiration date can not be normally distributed. The exact shape of the surface is
determined by market sentiment at the time. During periods of turmoil, for example, during
the beginning of the covid crisis, investors were constantly on guard for incoming negative
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news which might cause the market to fall rapidly. This led to a volatility smirk as seen in
Figure �.�where investors assigned a higher probability for the underlying asset to �nish with
a spot price closer to the lower strikes [�].

Figure �.�: Volatility smirk of one speci�c tenor. Lower strikes are
assigned a higher probability and therefore the implied volatility
will be priced higher.

The lifetime of the option also has to be considered when pricing the implied volatility.
Suppose the market is in a high volatility period at the moment but investors are expecting
future volatility to be lower. In that case, the options with shorter tenors will have to be
assigned higher implied volatility than the options with longer tenors. The opposite is also
true and more commonly seen in the equity index market. Volatility may be low today, how-
ever, the volatility of the future might increase due to uncertainties and speculators will then
have to price longer tenor options with higher implied volatilities. In Figure �.� volatility
surfaces can be seen that showcase how di�erent the volatility surface of options on the same
underlying asset can look depending on market sentiment.

��
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(a) (b) (c)

Figure �.�: This �gure illustrates three di�erent types of volatility
surfaces on SPX options. Figure a) displays a common volatility sur-
face during periods of high volatility such as during the covid cri-
sis. Figure b) displays a volatility surface common during transition
periods between di�erent volatility regimes. Figure c) displays the
most commonly found volatility surface for periods of usual volatil-
ity levels.

2.2 Modelling of Volatility Surfaces
How each speculator chooses to price their implied volatility surface is di�erent depend-
ing on their own proprietary research, however some baseline models are widely used. The
stochastic volatility-inspired parametrization of the implied volatility smile is one of themost
popular ways to price volatility since it is a rather simple model and can easily be kept free
of calendar spread arbitrage. As seen in [��] the SVI parametrization can also be extended
to be free of butter�y arbitrage. By having the SVI model free of both calendar spread and
butter�y arbitrage, it can also be proved that the model is completely free of static arbitrage
as seen in [��]. The SVI parametrization works by parameterizing the implied volatility for
one speci�c tenor, and once you have the parameters optimized, it is easy to price implied
volatility for all strikes. An issue with the raw SVI model is that the parameters need to be
�tted for each tenor separately which also gives cause to no natural way of pricing options
outside the pre-�tted tenors. Fitting the parameters for each tenor individually can be costly
and computationally heavy as well. Due to there being � parameters per tenor, the model
will require a signi�cant amount of parameters to cover the entire surface which might not
be ideal due to over�tting and computational reasons.

The formula for the raw SVI parametrization of the implied volatility smile is given by:

w(k; �R) = a + b
⇣
⇢ · (k � m) +

p
(k � m)2 + �2

⌘
, (�.�)

where:

w(k; �R) is the implied volatility for strike k and parameters �R

a, b, ⇢,m,� are parameters to be calibrated to market data

While the raw SVI parametrization is usually not extended to �t an entire surface, the
natural SVI parametrization can be. The natural SVI parametrization is the functional form
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that appears from the limit of the Heston model as seen in [��]. This model is however not
as useful as the raw parametrization due to the unaesthetic representations of ! and ⌘ from
the Heston model as seen in Equation (�.�).

The natural SVI parametrization is given by:

w(k; �N ) = � + !2 ⇤ (1 + ⇣⇢(k � µ) +
p

(⇣(k � µ) + ⇢)2 + (1 � ⇢2), (�.�)

where �, !, ⇢, ⇣ , q, and µ are parameters.

2.3 Arbitrage
Arbitrage refers to a cost-free trading strategy resulting in a positive probability of obtain-
ing risk-free pro�table results. Arbitrage occurs due to discrepancies and inaccuracies in
pricing mechanisms between markets. In this project scope, only static arbitrage is consid-
ered. Unlike dynamic arbitrage where investors have to continuously adjust positions to keep
arbitrage, static arbitrage refers to taking advantage of price di�erences without the need
for ongoing adjustments. This is especially relevant in option pricing where inaccuracies in
volatility surfaces or between put and call prices can lead to static arbitrage opportunities.
Static arbitrage is rather rare and very short-lived since investors will quickly exploit these
inaccuracies and prices will revert to non-arbitrage levels. The cornerstone for arbitrage is
the put-call parity which speci�es the relation between the put price, the call price and the
underlying asset as seen in Equation (�.�). Assuming a liquid tradeable underlying asset the
put-call parity has to hold for there to be no tradeable combination of the put, call, and un-
derlying resulting in arbitrage. During conditions where the underlying is not tradeable or
trades at a large spread, many arbitrage opportunities become unfeasible. In this paper, a
tradeable underlying asset with high liquidity is assumed.

Put-Call Parity with Continuous Dividends and Interest Rates:

C � P = S0e�qT � Ke�rT , (�.�)

where:

C is the price of the call option,
P is the price of the put option,
S0 is the current price of the underlying asset,
K is the strike price of the options,
q is the continuous dividend yield,
r is the continuous risk-free interest rate,
T is the time to expiration.

As can be seen in [��] a volatility surface is only free of arbitrage if and only if the following
conditions are met.

(i) It is free of calendar spread arbitrage.

(ii) Each time slice is free of butter�y arbitrage.
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Speci�cally, the absence of butter�y arbitrage guarantees the presence of a probability
density that is non-negative, while the absence of calendar spread arbitrage indicates that
option prices exhibit monotonicity concerning maturity.

Calendar spread arbitrage involves purchasing a call option C2 with a longer maturity date
and simultaneously selling a call optionC1 with a shorter maturity date, where the call prices
are denoted as c1, c2, . . . , cn with assigned strike prices k, k1 < k2 < . . . < kn. Mathemati-
cally, a calendar spread is de�ned as CS = C2 �C1.

Butter�y spread arbitrage involves simultaneously buying two options and selling one op-
tion, all with the same expiration date, but with three di�erent strike prices. Speci�cally, it
entails buying one call option C1 with a lower strike price, buying one call option C3 with
a higher strike price, and selling two call options C2 with a strike price in between C1 and
C3. The call prices are denoted as c1, c2, c3, and the assigned strike prices are k1 < k2 < k3.
Mathematically, a butter�y spread is de�ned as BS = C1 +C3 � 2C2.

As can be read in [�] a rectangular grid of European call prices can be said to be free of
all static arbitrage if all adjacent call spreads and butter�y spreads are non-negatively priced.
Since the calculations for detecting static arbitrage in the implied volatility space are quite
long and very well documented already we refer to [��] [�] for more in-depth explanations,
however, it will be su�cient to convert the implied volatilities into call prices and check for
arbitrage for the scope of our project.

2.4 Arbitrage Repair

Due to the frequent presence of arbitrage when considering mid-prices of options, imple-
menting an arbitrage repair algorithm may be necessary for accurate modeling. A major dif-
ference between arbitrage repairing and arbitrage smoothing is that while arbitrage smooth-
ing generally changes most of the data points, arbitrage repairing aims to change the points
where the issue lies. The major challenges in repairing arbitrage are the number of con-
straints required as well as making sure the algorithm does not alter the data outside rea-
sonable bounds. Due to this, we chose to utilize an algorithm that incorporates the bid and
ask spreads as soft bounds with the arbitrage constraints as hard bounds as seen in [�]. Be-
fore any calculations, all variables are normalized. The use of di�erent norms for measuring
perturbations in option prices is the �rst thing that needs to be decided upon. While the
l2 norm is most commonly used in cases of price repairing due to its convexity and compu-
tational e�ciency it may not always produce sparse solutions. The l0 norm usually leads to
sparse solutions but has the downside of NP-hard optimization problems. Therefore the l1
norm, the convex relaxation of the l0 norm is chosen as an alternative due to its robustness to
outliers and ability to produce sparse solutions. The objective function proposed in [�] aims
to minimize perturbations in option prices while ensuring they remain within bid-ask price
bounds. This objective function is expressed as a sum of individual cost functions for each
option price, where the cost function accounts for the bid-ask price spread and retains the
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ability to be able to be written as an LP problem. The speci�c function can be seen below.

f (✏ ) =
NX

j=1
max
0
BBBBB@�eT

j ✏ � �b
j + �0,�
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�b

j
eT

j ✏ ,
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j ✏ � �a

j + �0

1
CCCCCA , (�.�)

where N is the number of options, ✏ j is the perturbation of the j-th option price, �a
j and

�b
j are the bid and ask reference spreads for the j-th price, respectively, and �0 is a constant

representing the bid-ask spread and is chosen as �0 = 1
N ^ min j=1,...,N (�a

j ^ �b
j ). ej is the

standard basis vector for RN with its j-th element being � and others being �. In practice,
this means that we would rather move every option price by ✏ rather than moving one single
option outside the bid-ask spread.

The repair problem can now be de�ned as the following LP by introducing auxiliary
variables t = [t1, . . . , tN ]T :

minimize ✏ , t
NX

j=1
t j , (�.��)

subject to:

� ✏ j � �b j + �0  t j , ✏ j � �a j + �0  t j , 8 j 2 [1,N],

� �0
�b j
✏ j  t j ,

�0
�a j
✏ j  t j , 8 j 2 [1,N],

� A✏  �b + Ac.

(�.��)

The normalized arbitrage-free call prices can now be calculated by adding ✏ to the orig-
inal normalized call prices. The call prices are then de-normalized and used for further cal-
culations. For further details and proofs, we refer to [�].

2.5 Variational Autoencoders
A variational autoencoder is a type of neural network based on an autoencoder. The struc-
ture of a typical autoencoder is illustrated in Figure �.�. The size of the output layer of an
autoencoder should equal the size of the input layer. That is a very trivial problem to solve
using a neural network with a hidden layer the same size as the input. In autoencoders, the
hidden layer is therefore required to be of a smaller size than the input layer to ensure that
dimensionality reduction is done. The �rst part of the network that does the dimensionality
reduction is called the encoder and the part that reconstructs the output from the encoder
is called the decoder as seen in Figure �.�. The intermediate layer between the encoder and
decoder is known as the latent encoding. The encoder’s objective is to generate a latent en-
coding that enables the decoder to reconstruct the input data with minimal loss.[��]

What di�erentiates the variational autoencoder from an autoencoder is what steps are
performed in this latent encoding. In the VAE as introduced by Kingma and Welling [��]
explicit uncertainty is introduced to the creation of the latent encoding through a reparam-
eterization step. From the encoding layer, the output is now two vectors a mean vector µ,
and a standard deviation vector � as seen in �.�. In the reparameterization step to create the
latent vector z, sampling is done from the distribution created by µ and � vectors. However,
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Figure �.�: An illustration of the autoencoder structure highlighting
the encoder, latent encoding, and decoder.

to be able to use the backpropagation algorithm on µ and� a variable ✏ is introduced, which
is a sample from the unit normal distributionN(0, 1). We get

zn = µn + �n✏ (�.��)

Where �n and µn are the standard deviation and mean for the nth latent variable zn.

Figure �.�: An illustration of the VAE structure featuring the stan-
dard deviation vector � and mean vector µ.

A prior distribution for the latent variables is used. A commonly used prior distribution
is a multivariate normal distribution, denoted as N(0, 1), where the variables are uncorre-
lated, have a mean of zero, and a standard deviation of one. If the loss of the autoencoder is
calculated by only comparing the input and output � would likely converge to zero for all
inputs during training since adding any variation the optimal µ would be worse. Therefore
an additional term is added to the loss function, the Kullback-Leibler divergence (KLD) be-
tween N(µn,�n) and N(0, 1) to penalize disagreement between the two distributions and
train the autoencoder closer to the unit normal distribution. The KLD term is de�ned as
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LKLD =
1
2

NX

n=1

⇣
1 + log(�2

n) � µ2
n � �2

n

⌘
, (�.��)

where �n and µn are the standard deviation and mean for the nth latent variable zn.
The complete loss function therefore is

LRE + �LKLD, (�.��)

where LRE is the reconstruction error, the mean squared error (MSE), and � is a hyper-
parameter used to tune the importance of the KLD loss, LKLD. Adding the KLD term and
training towards a unit normal distribution enables the generation of new reasonable samples
by feeding the decoder a di�erent latent vector z.

Activation Functions
Apopular choice of a non-linear activation function for deep neural networks andVAEs is the
recti�ed linear unit (ReLu). It provides fast calculations and deals with vanishing gradients
well. [��]. The ReLu function is shown below

'(x) = max(0, x), (�.��)

where x is the input to the activation function.
An extension of the ReLu activation function is the Leaky ReLu, which features a small

slope for negative values instead of setting them to zero. It has grown popular in many appli-
cations, not the least in training general adversarial networks (GAN) as in [��]. The formula
for the Leaky ReLu is shown below

'(x) =
8>><
>>:

x if x > 0
↵x otherwise,

(�.��)

where ↵ is a coe�cient set before training and x is the input to the activation function
as �rst introduced in [��]

Optimizers
Minimizing the loss function is done by the backpropagation algorithm using optimizers.
A popular choice for an optimizer is Adam which allows for training in batches. Adam
has three di�erent hyperparameters for learning ⌘ (learning rate), �1, and �2. Tuning these
parameters in addition to batch size is a good way to avoid getting stuck in local minima
when minimizing the loss function.[��]

Overfitting and Regularization
A problem often faced when training neural networks is over�tting. The problem originates
from the network being trained to perform on the training data and as a result, performs
worse on new input outside the training data. Over�tting can become a problem especially
when featuring many di�erent hyperparameters that are tuned to optimize performance on
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the training set. To combat this, several di�erent strategies are used to reduce the loss on
the test set, called regularization, potentially at the expense of higher training loss. [��] A
common regularization method is L� regularization.

L� regularization combats over�tting by modifying the loss function by punishing large
weights using the L�-norm. The new loss function featuring weight decay now becomes

Ẽ(!) = E(!) + ↵�(!) (�.��)

�(!) = 1
2 ||w||

2
2, (�.��)

where ↵ is a hyperparameter to weigh the importance of the weight decay. [��]

L� regularization and weight decay can be used in tandemwith the Adam optimizer. One
algorithm introduced in [��] decouples the weight decay from the optimization steps taken
w.r.t. the loss function. This is shown to improve Adams’s generalization performance signi�-
cantly. This optimizer is referred to as AdamW and in addition to previous hyperparameters,
Adam also features a parameter for weight decay.
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Chapter �

Method

3.1 Data
Our dataset consists of SPX (S&P���) option quotes sampled once per day during the period
����-����. This will be the dataset on which we train our model and validate the results. We
also have similar datasets for options on the indices DAX, NDX, UKX, SX�E which will be
used to test the model’s ability to adapt to surfaces previously not seen. Additionally, we have
�xed interest rates and spot prices for all underlying indices during the same time period.
The consistency in which maturity dates and strikes are quoted for the SPX in our dataset
is varied. Some years quote options with maturity dates as short as a few days while other
parts of the dataset will only quote options with maturity dates longer than a month. The
same is true for longer maturity dates. In the dataset, the amount of options quoted from day
to day also varies. This might be due to a lack of liquidity, however, some days will contain
thousands of options while others merely tens of options. Due to this, we have to �lter the
data heavily before introducing it to our models.

3.2 Filtering of Data and Removing Static
Arbitrage

The �ltering of the data is done based on discoveries throughout the entire method. Firstly,
we remove the tenors not present in every year which was every tenor outside the one month-
two years span. Here we left some options outside the space for interpolation purposes for
the years with a wider array of tenors. We chose to base our implied volatilities on the mid
prices initially, however, that led to issues with static arbitrage when generating surfaces. As
can be seen in [�] the mid prices of index options frequently contain static arbitrage which
we do not wish our model to learn. Due to this, we decided to utilize the arbitrage repairing
function seen in Equation (�.��) on the initial data. To allow this algorithm to converge we
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had to reduce the amount of options for each day. In [�] they use ��� options per day and we
had as many as ���� options for certain days. This creates a problem since the complexity of
the algorithm increases exponentially with the amount of options. Due to this, we removed
all options that were not going to be used in the creation of the input grid. We then altered
our mid prices according to the static arbitrage conditions and removed days where the data
still resulted in static arbitrage. Our theory in doing so was that the VAE would only learn
arbitrage-free surfaces since the training data did not contain any static arbitrage. Removing
days containing arbitrage also automatically �lters out days containing corrupt data and
results in a cleaner dataset.

3.3 Extracting Volatilities
Our next step is to extract the implied volatility which would be used to create the training
set for our model. Firstly we match each option with the risk-free rate associated with the
period until maturity. Since we are working with equities we need to consider the dividends
before extracting the implied volatilities. We use the formula for put call parity seen in
Equation (�.�) to extract the continuous dividends for each option. Since the at-the-money
options are usually the most liquid, we assumed them to have a mid-price rather close to the
fair value of the option after arbitrage repairing and chose to base our dividend values for
each tenor on them. We then extended the dividend values for all options in the speci�c
tenor and calculated the forward spot price as seen in Equation (�.�). We then calculate the
vega of each option as seen in Equation (�.�) to be used when numerically solving for the
implied volatility. To solve for the implied volatilities we invert the Black & Scholes formula
seen in Equation (�.�) and utilize Newton’s method seen in B.� to numerically solve for the
values. The vegas of the options are used as the derivative in Newton’s Method. Since this
is a numerical solution it does not always converge to a realistic value. This often happens
when the bid-ask spread is large leading to unrealistic mid prices. Therefore we remove data
points with unrealistic implied volatilities or where the solution did not converge.

3.4 Creating the Grid
Due to the structure of our model, we chose to have a consistent volatility surface for each
day. This volatility surface will be referred to as our input grid and consists of options at
� �xed tenors and � �xed delta values. The chosen tenors were one month, two months,
three months, six months, nine months, � year, and � years. The chosen deltas were �.�,
�.��, �.�, �.��, �.�. Since there were not always options in the market matching these tenors
and deltas we had to refer to interpolation. Firstly we �nd the options closest to the desired
tenors. If they are not su�ciently close we interpolate all the options between the two closest
tenors using total variance. It is shown in [��] that any monotonic interpolation between two
volatility smiles already free of static arbitrage will also be free of arbitrage. After obtaining
a volatility smile of our desired tenor we calculate the delta values in our volatility smile
according to eq. �.� and do the same procedure as with the tenors to acquire our desired
delta value. The �nal result is a grid consisting of �� arbitrage-free implied volatilities at our
�xed tenor and delta values. The interpolation done in this process is restricted to using delta
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values at a maximum distance of �.�� from the desired value. If the delta value of a found
option is within �.�� of the desired value we chose not to interpolate. There are no such
restrictions when interpolating between tenors. If no acceptable interpolations are found
for a single point in the grid the entire day of data is discarded, although those days were
infrequent.

3.5 Creating the VAE
Before creating the VAE we �rst did an ��/�� split on our data. We split the days in the
dataset randomly. We ensured that all di�erent types of volatility shapes were present in the
training and validation set. For the pointwise approach which uses additional parameters,
we normalized all tenors in the dataset. For each day we included all the points for our �ve
deltas and seven tenors in a grid as a surface.

We had two di�erent approaches. Starting with the gridwise approach we simply fed the
surface to the VAE expecting it to reproduce the same output.

In the pointwise approach, we trained the VAE on each point separately by adding their
tenor and delta values as extra parameters to the decoder and feeding every point’s associated
grid to the encoder. To speed up training in the pointwise approach we had every point
associated with its grid allowing for much faster training in batches.

In both approaches, we used the loss function as seen in Equation (�.��), which features a
term for MSE loss and a term for KLD loss. For both approaches, we use the reparametriza-
tion step seen in Equation (�.��) to generate the latent vector z. We implemented the Leaky
ReLU as an activation function, anticipating that it would address the vanishing gradient
problem in scenarios with a large number of layers. We used the AdamW optimizer (see B.�)
that features regularization to combat overtraining, hoping that it would result in our model
generalizing better.

This gave us many di�erent hyperparameters to optimize; epochs, number of layers, layer
size, dimension of the latent space, learning rate, weight decay, beta to weight the KLD loss,
and batch size.

3.6 Optimizing and Validating the Model
To validate the model we mainly used two di�erent approaches, the �rst approach was sim-
ply feeding the training points of the validation set to the encoder and having the decoder
reproduce the surface and then calculate the MSE. The other approach was closer to how the
model might be used. In this approach, we utilized a range of �� to �� points from the val-
idation set and employed an optimizer, speci�cally employing the Nelder-Mead algorithm
(refer to B.�), to determine the latent vector resulting in the minimum Mean Squared Error
(MSE) for those points within the grid. We then took the entire surface produced and calcu-
lated the MSE as a validation score. The latter way of validating our model we believed to be
superior since this could test how good our model was at generating surfaces from knowing
only a few options of the day. We also devised a method weighing both ways of validating
the model as a third method of validating the model.
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To optimize our parameters we used a library called Optuna�, which is an open-source
library to optimize hyperparameter search. For both the gridwise and the pointwise approach
we let this search run for eight hours to �nd good parameters. As validation, we used our
�rst approach of feeding our validation patterns to the encoder and calculating the MSE
from the decoder, since this approach was less computationally expensive than the second
one featuring the optimizer, allowing us to test more hyperparameters. We believed this
validation method to still be a good indicator of how the network would perform on other
tests.

3.7 Testing the Model
As a �rst test to compare our models (gridwise and pointwise), we calculate the MSE using
our optimizer method as mentioned above for validation with ��, ��, and �� points on our
validation set. We compare this result to that of the SVI model as a baseline. When giving
the models fewer points we made sure that all the tenors had at least one point, to ensure
that the SVI model would work. The exact points tested can be seen in A.�.

After obtaining a model with a good validation score we wanted to test our model in
two speci�c qualities. We wanted to test how much arbitrage, if any, our model generated
for our validation set and its ability to generalize. If our model contained a lot of arbitrage
we wanted to test if adding arbitrage reparing to the output would result in a better output.
Additionally, we intended to test the model’s ability to generalize by producing volatility
surfaces for di�erent indices (SX�E, DAX, NDX, UKX) after training only on the S&P���.

3.7.1 Testing for Arbitrage
To be able to test for arbitrage we had to create a grid of options large enough that arbitrage
could be found. The initial grid of �� points was easily tested to be arbitrage-free, but that
does not mean that all points generated inside the grid would be arbitrage-free. We decided
to create a grid with the same tenors as in our input grid but implied volatilities for every
�� strikes. The lowest strike would be when the delta of the option was equal to �.� and
the highest would be when the delta was equal to �.�. This allows us to test for arbitrage
in a grid consisting of � tenors and a maximum of ��� delta values. The �nal grid would
consist of approximately ��� call prices depending on the year and market conditions. When
testing for arbitrage we require the grid in a format of strike price and tenor. Since our
model produces implied volatilities based on delta values and tenors we would need to �nd
a numerical solution to produce the desired grid. We start by numerically solving the strike
prices for the lowest and highest delta values in our grid using the brentq method as seen in
B.� for each day and each tenor. We then generate a list of strike prices between these two
values that we would like to generate implied volatilities for. To numerically generate option
prices matching our desired strikes we would �rst have to generate implied volatilities for a
starting delta, solve for the strike price of the generated option, and then compare it to our
desired strike. Our objective function can then be stated as below.

L =
���Kg � Kd

��� ,
�Link to Optuna is found here https://optuna.org/
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where:

Kg is the generated strike price,
Kd is the desired strike price.

We then use the brentq method again to numerically solve for a delta value matching
the strike price and minimize our objective function. Since the delta value depends on the
generated implied volatilities and the implied volatility depends on the delta value, this be-
comes a rather computationally heavy process. After generating implied volatilities for all
strike prices and tenors in the grid we convert them to call prices using the Black & Scholes
formula. We now have everything required to test for arbitrage as seen in Section �.�. We also
test arbitrage for other cases, such as di�erent strike intervals while restricting our model’s
access to the number of points on the input grid. To make sure that no arbitrage exists, we
also create an algorithm where we generate the same call prices as earlier but execute the
arbitrage-repair algorithm on them before testing for arbitrage. As a part of this, we also in-
vestigate how much the arbitrage-repair algorithm changed the generated volatility surfaces.

3.7.2 Testing with Other Indicies
For the other indices, we did similar �ltering procedures as for S&P��� to extract volatilities
and create grids. One important di�erence is that we did not run the algorithm to remove
static arbitrage or perform any interpolation for these indices. Instead, we simply solved for
the tenors and delta values closest to the values in our input grid. This allows us to have delta
and tenor values in between the grid points, and we can evaluate how good our model is at
generating implied volatilities for points not speci�cally on the grid.

For all the indices we used the year ���� for testing since it is the most recent and relevant
year. After obtaining the grid for every day, we calculated ourMSEwith the second validation
approach using ��, ��, and �� points. Here we also used the SVI model as a baseline to be
able to compare and see if any of the indices were particularly di�cult to reproduce.

3.8 The Spot Model
For the spot model, we used the same architecture as in the pointwise VAE seen in Figure
�.�b with one key distinction. In addition to adding the strike and maturity, we now added
the change in spot price between the days as a parameter to the decoder. Instead of training
like an autoencoder, we now used day t as input and day t + 1 as the output to reproduce,/
illustrated in Figure �.�. We set the � to � for the spot model since we �gured that any
variation from the optimal µ vector would result in a worse score. We tested the spot model
by feeding the encoder every day in the validation set and calculating the resulting MSE loss
for the following day. When testing for arbitrage we did it in a similar fashion as for the VAE.
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Figure �.�: An illustration of the architecture of the spotmodel using
day t as input and day t + 1 as output.
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Results

This chapter shows the results obtained for two di�erentmodels: one trying to create a volatl-
ity surface using a limited amount of points for a day, and one trying to create a volatility
surface for the following day using a change in spot price. In addition to numerical results we
also present plots of generated surfaces. We also show plots for the latent space visualization
for the pointwise VAE model.

4.1 VAE Results

The following tables show theMSE losses from generating volatility surfaces on the validation
and test sets. These surfaces were generated with a di�erent number of available points while
the MSE loss was calculated on the entire grid of �� points. As can be seen, the VAE models
outperformed the baseline model at all times.

Table �.�: Mean squared error for the SVI, Pointwise, and Gridwise
approach using the validation set (S&P���) (all values aremultiplied
by 106 and rounded to two decimal points).

Points available SVI Pointwise Gridwise
�� ����.�� ��.�� ��.��
�� ���.�� ��.�� ��.��
�� ��.�� ��.�� ��.��
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Table �.�: Mean squared error for various indices and their corre-
sponding SVI approach using the surfaces from the year of ���� (all
values are multiplied by 106 and rounded to two decimal points).

Points available SX�E NDX UKX DAX SX�E_SVI NDX_SVI UKX_SVI DAX_SVI
�� ��.�� ��.�� ��.�� ��.�� ����.�� ����.�� ��.�� ����.��
�� ��.�� ��.�� ��.�� ��.�� ���.�� ���.�� ��.�� ��.��
�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.�� ��.��

The following table illustrates the number of days containing static arbitrage when gen-
erating volatility surfaces for the validation set with a di�erent number of available points.
As can be seen, the percentage of days containing arbitrage is around �.�%.

Table �.�: Number of days containing static arbitrage for a total of
��� days of the validation set.

Points Available Without arbitrage repairing With arbitrage repairing
�� � �
�� � �

Tables �.� �.� showcase the parameters used in the �nal models. As can be seen, the
gridwise approach results in a more complex model with more nodes and twice as many
hidden dimensions. The other parameters, except the batch size, have been kept the same for
the two di�erent models.

Table �.�: The pointwise model parameters

Parameter Value
Epochs ��

Latent Space �
Hidden Dimensions [���,��]

Learning Rate �.��������������������
Beta �.��������������������

Weight Decay �.���������������e-��
Batch Size ��

Table �.�: The gridwise model parameters

Parameter Value
Epochs ��

Latent Space �
Hidden Dimensions [��]

Learning Rate �.��������������������
Beta �.��������������������

Weight Decay �.���������������e-��
Batch Size �
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The following plots illustrate � di�erent volatility surfaces. Figure �.�a represents a com-
monly found volatility surface, Figure �.�a represents a transition period between a high and
a low volatility regime, and Figures �.��a �.�a showcase a volatility surface during a high
volatility period such as during the covid pandemic. Included are the input surfaces that are
fed into the encoder, the � volatility surfaces generated when giving the gridwise model ac-
cess to ��,�� and �� points in the grid, and the volatility smiles for each tenor separately with
the bid-ask spread included. These plots showcase our model’s ability to generate di�erent
types of volatility surfaces accurately.

(a) Input (b) �� points

(c) �� points (d) �� points

Figure �.�: Visualization of a common volatility surface. The input
surface is �rst visualized and the following surfaces are generated by
the VAE when allowed access to ��, ��, and �� points. (Number ���
of validation set).
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Figure �.�: Visualization of volatility smiles generatedwith �� points
along with associated bid-ask spreads. (Number ��� of validation
set)

Figure �.�: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of val-
idation set)

Figure �.�: Visualization of volatility smiles generatedwith �� points
along with associated bid-ask spreads. (Number ��� of validation
set)
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(a) Input (b) �� points

(c) �� points (d) �� points

Figure �.�: Visualization of a volatility surface present during tran-
sitions between low and high volatility regimes. The input surface is
�rst visualized and the following surfaces are generated by the VAE
when allowed access to ��, ��, and �� points. (Number ��� of vali-
dation set).
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Figure �.�: Visualization of volatility smiles generatedwith �� points
along with associated bid-ask spreads. (Number ��� of validation
set)

Figure �.�: Visualization of volatility smiles generatedwith �� points
along with associated bid-ask spreads. (Number ��� of validation
set)

Figure �.�: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of vali-
dation set)
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(a) Input (b) �� points

(c) �� points (d) �� points

Figure �.�: Visualization of a volatility surface during a high volatil-
ity regime. The input surface is �rst visualized and the following
surfaces are generated by the VAE when allowed access to ��, ��,
and �� points. (Number ��� of validation set).
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Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of vali-
dation set)

Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of vali-
dation set)

Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of vali-
dation set)
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(a) Input (b) �� points

(c) �� points (d) �� points

Figure �.��: Visualization of a volatility surface present during a very
high volatility regime such as the covid crisis. The input surface
is �rst visualized and the following surfaces are generated by the
VAE when allowed access to ��, ��, and �� points. (Number ��� of
validation set).
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Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of val-
idation set)

Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of val-
idation set)

Figure �.��: Visualization of volatility smiles generated with ��
points along with associated bid-ask spreads. (Number ��� of val-
idation set)

��



�.� VAE R������

The following �gure displays a generated volatility surface containing arbitrage and how
it changes after being exposed to the arbitrage-repair function.

Figure �.��: Visualization of how the arbitrage-repair function
changes the volatility surface. The �rst image contains � instances
of butter�y arbitrage, and the second image displays the volatility
surface after removing the arbitrage.
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4.1.1 Latent Space Visualization
Our model’s latent space has � dimensions so to visualize it we project to a �D space using
Principal Component Analysis (PCA). The following Figure �.�� shows where samples in
the validation set are projected on a �D surface and the Figure �.�� visualizes the volatility
surfaces for di�erent values of X and Y.

Figure �.��: A visualization of our latent vectors from our validation
set projected to a �D space using PCA. Each point represents a dif-
ferent type of volatility surface depending on the two dimensions.

4.2 Spot Model Results
The results from the spot model can be seen below. In Table �.� we can see the �nal hyper-
parameters for the spot model. As can be seen, the spot model requires the highest amount
of nodes of all models. The validation score of the spot model can be seen in Table �.� and
can be observed to be higher than the validation score of the pointwise model. Furthermore,
visualizations of how the spot model predicts changes to the volatility surface in regard to
large changes in spot price can be seen in Figures �.�� �.��.

Table �.�: The spot model parameters

Parameter Value
Epochs ��

Latent Space �
Hidden Dimensions [���,���]

Learning Rate �.��������������������
Beta �

Weight Decay �.���������������e-��
Batch Size ���
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Figure �.��: Visualization of surfaces produced by the �D projected
latent vectors.

Table �.�: Mean squared error for the spot model using the valida-
tion set (the value is multiplied by 106 and rounded to two decimal
points).

Validation score 69.88

Table �.�: Number of days containing static arbitrage for a total of
��� days of the validation set.

Points Available Without arbitrage repairing With arbitrage repairing
�� �� �
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Figure �.��: The input surface of a normal day and the spot model’s
predicted surface with a change in the spot price by -��%
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Figure �.��: The surface of day T and day T+� with the largest neg-
ative �S found in our validation set and the spot model’s predicted
surface.
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Discussion

5.1 Data
The data handling aspect of this project was one of the most time-consuming and di�cult
parts. All previously published work done on modeling implied volatilities with variational
autoencoders had been done on FX markets where the options are quoted in volatilities for
�xed deltas. This leads to the �rst issue when modeling index equities in the same way as
other papers had modeled FX rates. Without any alterations to the data, we would not be
able to provide our model with a grid of �xed delta values since an option with the delta
needed for our model might not exist for that speci�c day. We then had two choices, either
alter our model to encode arbitrary delta and tenor values or interpolate the data to match
our desired grid. The �rst approach would result in a completely di�erent VAE structure
which would require additional information in the input layer. Due to this, we felt that the
second approach was more true to the nature of VAEs. Interpolation of option prices is a
delicate process as well, which might induce arbitrage if done improperly, however, we felt
that it was necessary to obtain the best possible training data for our model. When interpo-
lating we made sure to do it in an arbitrage-free way as seen in Section �.�. Another issue
with the data was the inconsistency in the range of strikes and tenors quoted each day. Since
we wanted a consistent grid as input we would either have to �lter out the majority of our
data or settle for a smaller grid. We decided to do a combination of both to make sure our
grid was large enough to be useful in practice. In the beginning of our project, we included
one week tenors as well, but since only around half of our dataset actually had options with
tenors shorter than a month, the VAE was not able to process it well. Due to this, we short-
ened our grid to only include tenors longer or equal to one month. For the same reason,
we chose � years as the longest tenor. We had the same issue regarding delta values. Some
days would have quotes spanning the entire space from � to � while some days would cover a
much smaller space. The majority of days would however contain options with delta values
between �.�-�.� which is why we decided to go for that range.
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After training our VAE with the data extracted through this approach we noticed that our
produced volatility surfaces contained arbitrage. We determined that this could be due to two
things. Either our in-data had arbitrage present causing the VAE to learn volatility surfaces
containing arbitrage, or our VAE was inaccurate and that inaccuracy was causing arbitrage.
Through plotting generated volatility surfaces and observing that they matched the input
data almost perfectly we concluded that the problem must lie, at least partly, with the in-
data. We then ran our arbitrage testing algorithms on the mid prices from our option quotes
and discovered that almost every day contained arbitrage, in line with the �ndings of [�].
This would largely be caused by quotes with large spreads, so we attempted to �lter out the
data with too wide bid-ask spreads. This had the unintended e�ect of reducing our grid size
even more since the options trading at delta values of around �.� are rather illiquid, and most
arbitrage was caused by options with deltas close to �.�. Because of this, we decided to run
the arbitrage repair on our mid-prices before interpolating and creating the grid. Our new
input grids would have the same size as before but be arbitrage-free as a result of this. Since
the VAE is trained to reproduce the input, assuming the input data is arbitrage-free, the out-
put should also be arbitrage-free if perfect accuracy is assumed.

5.2 Results
As seen in Table �.� the pointwise approach outperforms both the baseline SVI model and
the gridwise model. This is especially noticeable when generating surfaces with incomplete
information as seen in the MSE loss when only allowing the model access to �� or �� points.
It seems natural that both of the VAE models would heavily outperform the SVI model with
fewer points available since all surfaces produced by the VAE models are similar to surfaces
that have been seen when training on a ��-point grid while the SVI model �ts the parame-
ters from scratch solely based on the �� points available. We can observe from Table �.� that
both VAE models seem to learn the patterns of volatility surfaces excellently, even outper-
forming the standard SVI model. In Table �.� we see that both the pointwise and gridwise
models improved with more points available, as expected. The results obtained show that the
pointwise model outperformed the gridwise model, however, we believe that with even bet-
ter hyperparameters the gridwise model should be able to match the result of our pointwise
model in terms of MSE loss. The reason why we chose the pointwise model as the optimal
model, was not only due to the lowerMSE loss but rather its �exibility in training, and gener-
ation of points. With the pointwise model, we can generate implied volatilities for any delta
and maturity inside the grid while the gridwise is only able to generate volatilities for values
matching the standard grid exactly. In practice, investors might not have access to deltas and
tenors that correspond to our input grid, in which case the gridwise model would be useless
unless investors interpolate in real time to produce values suited for the model. A gridwise
model makes more sense in the FX markets where options are quoted in �xed deltas, there-
fore in the more chaotic equity markets, the adaptability of the pointwise model is preferred.

When testing the model’s capabilities on other indices we can see in Table �.� that it per-
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forms surprisingly well considering it is unseen data for the VAE. The data of the indices
other than the SPX are also in a di�erent form. Since we do not interpolate to create a per-
fect grid, the surfaces contain �� points of arbitrary tenor and delta values. This allows us
to test our pointwise model’s accuracy when generating implied volatilities not exactly on
the grid. A satisfactory outcome in generating surfaces from arbitrary points demonstrates a
practical application for our model, as it re�ects the real-world scenario where investors may
encounter limited and inconsistent option prices when estimating implied volatilities for ex-
otic options. Due to the nature of the di�erent indices, the MSE loss can not be compared
one-to-one with the MSE loss from the SPX. A varying degree of bid-ask spreads depending
on the liquidity of the chosen index may give rise to unrealistic volatility surfaces which our
model has not been trained to generate. The data quality of the di�erent indices was also
wildly inconsistent. The OMX for example had periods where we only had data on as little
as � options per day causing us to discard results on the index completely. Therefore it makes
more sense to compare the MSE loss with the baseline SVI model since the baseline model
gives an indication on how di�cult the volatility surfaces were to model due to incomplete
data or illiquid options. Comparing these models we can see that UKX was the easiest index
for our model. When plotting the surfaces for the UKXwe noticed that the surfaces for every
day looked very similar, which we believe is the reason for an MSE loss even lower than for
the SPX in Table �.�. We believe this is also the reason why the SVI model performed so well
using only �� points. A strange result obtained in Table �.� was that for the UKX, the MSE
loss for �� points was lower than for �� points. We reran this experiment numerous times to
verify the legitimacy of the results and obtained the same result every time. We struggled to
�nd a reason to explain the results, however, we think this has to do with the similarities of
the surfaces for each day, and that with fewer points we create a simpler surface. In Table
�.� we can see that the pointwise model outperforms the SVI model in all metrics proving its
usefulness.

Looking at Figures �.�b �.�b �.��b �.�b we can see several di�erent volatility surfaced mod-
eled accurately. Di�erent volatility surfaces provide di�erent challenges for our model. In
Figure �.�b we can see the most common volatility surface found in our dataset. Due to this,
the model can generate extremely accurate implied volatilities for similar surfaces. Figure
�.�b shows a volatility surface highlighting the transition between a low and a high volatil-
ity period for the underlying asset. These surfaces are quite rare in the dataset leading to a
higher degree of error when generating them with our VAE. The rarest volatility surfaces can
be seen in Figures �.��b �.�b which showcase a period of extreme volatility such as during
the covid crisis. These volatility surfaces typically only last for a few days at a time and are
not present every year leading to only a few surfaces similar to these present in the training
data. Even with the limited amount of training done with these kinds of surfaces, the VAE
is still able to produce accurate recreations, although not quite as accurate as the standard
volatility surface. As seen in Figure �.�� we can generate implied volatilities mostly within
the bid-ask spread. During testing, we found that the accuracy of the VAE was the worst
for the one month tenor and the two-year tenor. In the case of the one month tenor, we
believe that the di�culty can be explained by the higher levels of volatility in options closer
to expiry. In Figure �.��we can see that the bid-ask spread becomes larger with longer tenors
leading to more uncertainty in the mid-price. This may cause inconsistencies in the training
data which seems to be the reason for our model struggling more with the accuracy of the
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two-year tenor than the shorter ones. This is however compensated by the bid-ask spread
being large, so even with less accuracy towards mid-price our generated implied volatilities
are still within the spread. Another observation is that the bid-ask spread is the largest at
delta values around �.� as seen in Figure �.��. This may also confuse our model due to the vast
di�erence in mid prices at delta �.� for otherwise similar volatility surfaces. Two volatility
surfaces should perhaps in theory be more similar than what their mid prices re�ect due to
illiquid option prices. As seen in Figures �.�� �.�� �.�� we can also see that the model strug-
gles more with keeping the generated volatilities within the bid-ask spread with fewer points
available caused by higher inaccuracies as showcased previously.

5.2.1 Latent Space Visualization
When visualizing the latent space we see many interesting things, �rstly visualizing the latent
space after PCA in Figure �.��we seewhere the di�erent surfaces are represented in the latent
space. This combined with plotting the surfaces corresponding to values in the visualized
latent space as in Figure �.�� shows us where certain shapes are projected in the latent space.
We can see in Figure �.�� that most points are very close together, however, some points are
outliers with high X and Y values. When plotting these values we see that those surfaces
correspond to early covid surfaces with very high volatility on short maturities as seen where
X=� and Y=�.� in Figure �.��. In Figure �.��we also see a wide representation of the di�erent
shapes of volatility surfaces produced by our model. Analysing the values of X and Y and
their impact on the surface we note that a larger value of X seems to have the biggest impact
on the overall volatility whereas a change in Y has more of an impact on how the volatility
changes with tenor. With X=� and the Y changing from -�.� to �.� we go from low volatility
on shorter tenors and higher volatility on longer tenors to high volatility on short tenors
and lower volatility on higher tenors. This causes a combination of higher X and Y values
to result in plots resembling the volatility surface during the early days of covid, since this
combination gives high overall volatility with the shortest tenors the most volatile ones.

5.2.2 Arbitrage
Ensuring arbitrage-free surfaces has been one of the most di�cult and time-consuming parts
of this project. Initially, we did not take any action to remove arbitrage and only tested for
it after generating the volatility surfaces. We then discovered that our surfaces contained
arbitrage by a rate of �% and we had to �gure out a way of removing it. Because of this, we
decided to investigate what was causing this arbitrage. Most of the option combinations re-
sulting in arbitrage opportunities included an option with a delta value of around �.� where
the bid-ask spread was large as previously stated. The initial hypothesis posited that if the
training data were arbitrage-free, then the VAE would generate arbitrage-free surfaces pro-
vided its output accurately mirrored the input, as discussed in [�]. We then decided to use
the arbitrage repair algorithm on the initial data to make sure that the input to the VAE was
arbitrage-free. Looking at Table �.� our theory seems to be partly correct. While the number
of arbitrage days generated by the VAE perhaps is negligible from a statistical standpoint,
this would still be a problem for traders looking to implement the model. At this point, we
had two options on how to remove the arbitrage. Either we introduce another loss function
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to the training part of the VAE or we remove the arbitrage after producing the volatility sur-
faces. Since Jim Gatheral and Antoine Jacquier [��] work with mathematic formulas such as
the SVI model to create volatility surfaces they can guarantee their models to be free of static
arbitrage in the continuous case. This is more di�cult for us to achieve, and a one-to-one
implementation of their work is not possible. Punishing arbitrage in the loss function is very
di�cult due to the current structure of our VAE. Had we chosen to generate the parameters
of an SSVI model instead of directly generating volatility surfaces we could have applied the
static arbitrage conditions found in [��]. Since our model only produces �� discrete points
in the training section, we would only be able to ensure that our model was arbitrage-free in
a discrete space and not in a continuous. We would also require many more points than ��
to test for arbitrage in a realistic space. In contrast to the SVI model, there is no easy way
of ensuring an arbitrage-free model in the continuous space. There are also many di�erent
ways we could have tested for arbitrage. We decided to generate option prices for every strike
interval of ��. Surprisingly, when calculating implied volatilities for each strike within a ���-
strike interval, we found no instances of arbitrage whatsoever. However, using intervals of
��might have led to even more instances of arbitrage. Since an interval of �� represents �.�%
of the current spot price we thought that size to be reasonable.
An interesting observation is that we seem to generate fewer days containing arbitrage when
feeding the model only �� points as seen in Table �.�. This might be due to the model gen-
erating a more standardized volatility surface learned from the training data, and since the
training data is arbitrage-free, the more standardized volatility surfaces learned will be as
well. Since only �.�% of our days contained arbitrage, we concluded that the best solution
was to use the arbitrage-repair function on surfaces after generating them. By doing this we
remove all arbitrage in the discrete space. After repairing the surface we investigated which
option prices the algorithm chose to change. We found that usually, it is enough to change the
�.� delta options by a very small amount which barely changes the surface as seen in Figure
�.��.

5.2.3 Spot Model
As we can see in Table �.� the validation score (MSE) for the best spot model was ��.��. This
compared to ��.� for the VAE model as seen in Table �.� suggests that creating a volatility
surface using the previous day and a change in spot price is a much harder problem to solve.
This is especially true since the structure of the networks and the parameters were very similar
as seen in Tables �.� �.�. A big di�erence between themodels, however, is that the spot model
has the beta set to �. This is because we are now only interested in getting the reconstruction
error as low as possible. Since the purpose of the spot model is to make accurate predictions
and not create surfaces from fewer points, we thought that adding any variation � to the
optimal solution µ found would result in a worse prediction.

The result of ��.�� shows us that there is a signi�cant correlation between the spot price
and the volatility surface and that by only using a change in spot price we can accurately
predict what tomorrow’s volatility surface will look like. An example of this can be seen in
Figure �.�� where we display the predicted surface on the biggest �S. This allows our model
to be used as a tool to analyze how volatility surfaces respond to changes in the underlying
spot price. When testing our model we noticed something very interesting as seen in Figure
�.��. We tested a very common volatility surface as input and chose a change in the spot price
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of -�.� (-��%). As an output, we got a volatility surface resembling a surface during the �rst
days of covid. Through analyzing further combinations of volatility surfaces and changes in
spot price we can draw a similar conclusion to the research in [�] where the general level of
a volatility surface and the change in spot price were deemed negatively correlated for the
most part. A negative change in spot price seems to produce a volatility surface with a shape
closer to the shapes seen during the covid era with a higher general level of implied volatility.
Meanwhile, starting with a high volatility level surface as seen in Figure �.��a and generating
a new surface for a large positive change in spot price decreases the general volatility level
and the shape of the surface reverts to the shape seen in Figure �.�a. Looking at Figures �.��a
�.�a we can also observe that the largest changes occur for options of high delta and short
tenors as previously found in[�]. This further highlights the potential use of our model as a
risk analysis tool not only for predicting the general level of volatility but also for the speci�c
shape of the volatility surface.

A practical and intriguing application of our two models is their integration to generate
a volatility surface on days with limited available options. This surface can then be input into
our spot model, allowing us to visualize how tomorrow’s grid will look with di�erent spot
price changes.

In regards to arbitrage, we can see inTable �.� that we had �� days of surfaces that featured
arbitrage. Comparing this to that of the VAE model with �� points containing � days as seen
in Table �.�. With the spot model having a bigger error than the VAEmodel we would expect
it to also generate more surfaces containing arbitrage. After arbitrage repairing we could see
in Table �.� that none of the surfaces contained arbitrage.

We thought that a more interesting application of the model would be to model days
with a big change in the spot price and therefore we looked at weighing the points based on
the price change, the idea being that it would be better at accurately predicting bigger spot
changes. This turned out to be the case but it came at the cost of lower accuracy on smaller
changes in the spot price. Therefore we ultimately decided against using a weighting scheme.

5.3 The Impact of the Model’s Parameters
on the Result

In the process of �nding the best model, we experimented with parameters and some results
we came up with are worth discussing. To begin with, the problem of creating volatility
surfaces seems fairly easy to solve. We draw that conclusion because our best gridwise model
only features one layer as seen in Table �.�. Adding in the extra information (delta and matu-
rity) in the latent space is what made it a harder problem and as a result, we think that is why
our best pointwise model used � layers instead of �, see Table �.�. When experimenting with
even more layers we found the model starting to over�t, performing worse on the validation
and test set.

Another parameter we experimented with was the latent space. The dimension of the
latent space is a tradeo�, the bigger the latent space, in theory, the better accuracy since
patterns can be separated by more dimensions. However, in the case of a VAE when we
want to draw and generate samples, adding dimensions makes it harder since it might result
in worse generalization. We therefore chose to have our latent space set at �, since fewer
dimensions gave us worse accuracy and more dimensions resulted in the model being more
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over�tted. As seen in Table �.� the batch size for the grid-based model is � and in Table �.�
we see that the batch size for the pointwise model is ��. This signi�cant di�erence in batch
size can be easily explained. In the pointwise approach the batch size signi�es the amount
of points used from di�erent days, whereas in the case of the gridwise approach, the batches
are done in days with �� points each. So a batch size of � in the gridwise model correlates to
a batch size of ��� for the pointwise model. Therefore we can see that the pointwise model
used about half the amount of points per batch compared to the gridwise model.

5.3.1 The Beta Tradeo�
The parameter with the biggest impact on our result, both on the training and validation set
was beta. The beta weighs the importance of the KLD Loss compared to our reconstruction
loss. With a higher beta, we would �nd ourselves with a bigger reconstruction error and a
relatively non-existent KLD loss. With a lower beta, we instead found the network working
more like an autoencoder, where we would get much better reconstruction error but at the
cost of a higher KLD loss, and as a result, a harder time sampling the latent space. Since the
patterns would not end up in a unit normal distribution with a higher KLD loss, but rather
in an arbitrary distribution decided during training. When plotting surfaces generated by
models with lower betas we saw that it became better at recreating ourmost common surfaces
however struggled with less common surfaces such as the surface visualized in Figure �.��b.
This is likely due to theMSE loss being minimized by the model performing well on the more
commondays. Higher beta resulted in themodel becoming better at the less common surfaces
at the cost of accuracy. We were simply in a tradeo� with no trivial solution. We believe
however that the beta obtained after running hyperparameter tuning allows the model to
perform well in both aspects. It gives us a low reconstruction error as seen in Table �.� but
also can be easily visualized as in Figure �.��. We can also see that after PCAwe get a pleasant
distribution of points for generating samples as seen in Figure �.��.

5.4 Model Limitation & Future Work
Above we have discussed some of our model’s capabilities and results, however, there are also
some limitations to our models. One negative aspect of the model is that it does not always
generate prices within the bid-ask as can be seen for delta �.� for the one month tenor in Fig-
ure �.�, this is due to us not including the bid-ask anywhere in the loss-function. To enhance
the VAE in the future, we consider incorporating a penalty term to discourage the genera-
tion of numbers outside the bid-ask spread. Another limitation of our VAE is that it does
not perform well at extrapolating deltas and maturities outside of the delta and tenor space
it has been trained on. To improve this in the future we would require additional data so that
we could train the model on shorter maturity dates and delta values outside �.�-�.�. An issue
with our model is that it still is capable of producing volatility surfaces containing arbitrage.
Since we cannot guarantee arbitrage-free volatility surfaces in the continuous space, further
research would be required to �nd a solution. While the results regarding the other indices
outperform the SVI model, further training on more indices than the SPX would lead to the
model learning an even wider variety of volatility surfaces and most likely performing even
better on other indices. This would require cleaning the data for the other indices in the same
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way as we did for the SPX and including them in the training data. This would however result
in a very large training set and it would take a long time to optimize the hyperparameters for
this new dataset. We decided to omit them from our dataset partly due to the low quality
of data and our computing power available. All work was done on an Intel(R) Core(TM)
i�-����H CPU @ �.��GHz �.�� GHz processor, � GB RAM, and an NVIDIA GeForce GTX
����. With access to more powerful computing power, we would most likely have found
better hyperparameters for our model as well. Another idea for future work is that instead
of interpolating a grid and feeding it to the encoder as we experimented with, a di�erent
approach would be to tweak the encoder to be able to handle arbitrary quotes to preserve
our raw data and be able to train it on more points to hopefully get better results.
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Conclusion

In conclusion, our exploration into modeling implied volatilities with Variational Autoen-
coders (VAEs) has yielded promising results and insights. We have demonstrated the use
of VAEs in constructing volatility surfaces in the equities market, particularly focusing on
the SPX. Despite the inherent challenges posed by the equities market’s volatility dynamics
and data irregularities, our models have shown promising performances in generating accu-
rate surfaces, even with limited information. In addition, our model also showed promising
results extending to other indices, proving the robustness of our model and generalization
capabilities beyond the training data.

One notable achievement of our study is the successful adaptation of VAEs from pre-
viously researched usage in FX markets to the context of index equities. Through compre-
hensive data processing and model adjustments, we have overcome challenges such as the
absence of �xed delta quoting in equities options, ensuring that our models are suited to the
characteristics of the index options market.

In addition to volatility surface generation, we have explored the predictive capabilities of
our models in relation to changes in spot prices. The spot model, trained to predict volatility
surface changes based on spot price movements, has shown promising results. By utilizing
historical data and spot price changes, our model is capable of providing insights into how
volatility surfaces may evolve in response to market movements.

Exploring the latent space of our model has allowed us to explore the complex space
of volatility surfaces through only � variables. This has provided insight to how our model
groups the di�erent kinds of volatility surfaces and provides a deeper understanding of the
underlying patterns and structures driving volatility surfaces.

While our models have achieved a satisfactory level of accuracy and a certain degree of
arbitrage-free generation, there remain areas for improvement and future research. Enhance-
ments such as incorporating bid-ask spread constraints and extending the training data could
further enhance the robustness and practical utility of our models.

In summary, our study highlights the potential of the Variational Autoencoder as a pow-
erful tool for modeling and predicting implied volatilities in equities markets. By addressing
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challenges, re�ning methodologies, and leveraging the insights gained from this research, we
aim to contribute to advancements in the use of neural networks in quantitative �nance.
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Appendix A

Additional information

Validation Points Delta Values

��

�M: (�.�, �.�)
�M: (�.�)

�M: (�.�, �.�)
�M: (�.��)
�M: (�.�)
�Y: (�.��)

�Y: (�.�, �.�)
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�M: (�.�, �.�, �.�)
�M: (�.�, �.�)

�M: (�.�, �.�, �.�)
�M: (�.��, �.��, �.�)
�M: (�.�, �.�, �.�)
�Y: (�.��, �.��, �.�)
�Y: (�.�, �.�, �.�)

Table A.�: Validation Delta Values
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Appendix B

Algorithms

Input: �(lr), �1, �2 (betas), ✓0 (params), f (✓) (objective), ✏ (epsilon), � (weight
decay), amsgrad, maximize

Output: ✓t
Initialize: m0  0 (�rst moment), v0  0 (second moment), vmax

0  0 ;
for t = 1 to . . . do

if maximize then
gt  �r✓ ft(✓t�1) ;

end
else

gt  r✓ ft(✓t�1) ;
end
✓t  ✓t�1 � ��✓t�1 ;
mt  �1mt�1 + (1 � �1)gt ;
vt  �2vt�1 + (1 � �2)g2

t ;
m0t  mt

1��t
1
;

v0t  vt
1��t

2
;

if amsgrad then
v̂t

max  max(v̂t
max, v̂t) ;

✓t  ✓t � �m̂tp
v̂t

max+✏
;

end
else
✓t  ✓t � �m̂tp

v̂t+✏
;

end
end
return ✓t

Algorithm �: AdamW Optimization Algorithm

��



B. A���������

Input: Initial guess x0, tolerance ✏
Output: Approximation of root x̂
iter  0 ;
while | f (xiter)| > ✏ do

Compute f (xiter) and f 0(xiter) ;
xiter+1  xiter � f (xiter)

f 0(xiter) ;
iter  iter + 1 ;

end
return x̂ = xiter

Algorithm �: Newton-Raphson Method
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Input: Initial simplex S0, tolerance tol
Output: Approximation of minimum
S  S0 ;
while �(S) > tol do

x  xn+1 ;
xr  x(⇢, n + 1) ; // Reflect

fr  f (xr) ;
if fr < f1 then

xe  x(⇢�, n + 1) ; // Expand

fe  f (xe) ;
if fe < fr then

Accept xe ;
else

Accept xr ;
end

else if f1  fr < fn then
Accept xr ;

end
else if fn  fr < fn+1 then

xc  x(⇢�, n + 1) ; // Outside contraction

fc  f (xc) ;
if fc < fr then

Accept xc ;
else

Compute the points xi = x1 + �(xi � x1), i = 2, n + 1 ; // Shrink

Compute fi = f (vi) for i = 2, n + 1 ;
end

end
else

xc  x(��, n + 1) ; // Inside contraction

fc  f (xc) ;
if fc < fn+1 then

Accept xc ;
else

Compute the points xi = x1 + �(xi � x1), i = 2, n + 1 ; // Shrink

Compute fi = f (vi) for i = 2, n + 1 ;
end

end
Sort the vertices of S with increasing function values ;

end
Algorithm �: Nelder-Mead Algorithm
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Input: Inputs a, b, function f
Output: Root b or s
Calculate f (a);
Calculate f (b);
if f (a) f (b) � 0 then

Exit function because the root is not bracketed;
end
if | f (a)| < | f (b)| then

Swap (a, b);
end
c  a;
Set mf lag;
repeat

if f (a) 6= f (c) and f (b) 6= f (c) then
s a f (b) f (c)

( f (a)� f (b))( f (a)� f (c)) +
b f (a) f (c)

( f (b)� f (a))( f (b)� f (c)) +
c f (a) f (b)

( f (c)� f (a))( f (c)� f (b)) ;
else

s b � f (b) b�a
f (b)� f (a) ; // Secant method

end
if s is not between (3a + b)/4 and b or
(mflag is set and |s � b| � |b � c|/2) or
(mflag is cleared and |s � b| � |c � d|/2) or
(mflag is set and |b � c| < �) or
(mflag is cleared and |c � d| < �) then

s a+b
2 ; // Bisection method

Set mf lag;
else

Clear mf lag;
end
Calculate f (s);
d  c;
c  b;
if f (a) f (s) < 0 then

b s ;
else

a s ;
end
if | f (a)| < | f (b)| then

Swap (a, b) ;
end

until convergence;
Output b or s (return the root);

Algorithm �: Brent’s Method (brentq)
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