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Abstract

Failure detection algorithms are used to identify unhealthy nodes in distributed
systems. The goal of this study was to improve Neo4j’s use of failure detection
algorithms by exploring two paths: either optimising their existing Lighthouse
algorithm or by implementing a new algorithm.

Existing algorithms were surveyed and the SWIM algorithm was implemented.
A baseline was established and evaluated against parameter-optimised versions
of SWIM and Lighthouse in a simulated network. The results show that Baseline
is scalable and reliable but slow, Lighthouse is fast but less accurate, and SWIM
is moderately fast and the least accurate but generates the least network load.

In conclusion, the chosen parameters of a failure detector are to a great extent
more important than the algorithm itself. Furthermore, to successfully optimise
parameters it is crucial to have a scalable simulator and precise system require-
ments to manage the trade-off between speed, accuracy, and network load.

Keywords: Distributed Systems, Graph Databases, Failure Detection Algorithm, Mem-
bership Protocol, SWIM
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Chapter 1

Introduction

Internet-based services are today a vital part of society as they provide the tools, services,
and infrastructure that we have grown accustomed to. In 2024, Forbes reported that over
5.35 billion people around the world are frequent internet users as they spend over six hours
of their days connected to the internet [1]. Hence, it is now more important than ever for
digital services to be fast, reliable, and scalable to handle the surging demand.

Distributed systems are commonly used to host more demanding applications as they di-
vide the computing power across a set of distributed machines instead of relying on a single
machine [2]. However, managing distributed systems faces a set of engineering challenges
that grows in complexity as the number of machines increases. One of the main challenges is
coordination as each machine has its own perception of the system’s status as a whole [3]. To
tackle this challenge, failure detection algorithms are crucial as they identify and communi-
cate failures, e.g. that a machine has crashed.

This thesis work was carried out at Neo4j, a world leader within the field of graph
databases and whose software is trusted by 75% of the Fortune 100 companies [4]. Neo4j
leverages distributed systems and is currently detecting failures by using the Akka library.
However, due to increasingly expensive licensing costs, lack of customization, and trou-
bleshooting issues, Neo4j is currently developing an in-house replacement for Akka called
Lighthouse. Even though Lighthouse already has the functionality to detect failures, Neo4j
wishes to conduct this study to further explore how it can be improved.

1.1 Research Goals and Project Scope
On a high level, the goal of this thesis is to research how the distributed systems that host
Neo4j’s graph databases can become more reliable. As distributed systems is a wide topic
there are undeniably multiple parts of Neo4j’s existing architecture that could be optimized
to improve the overall reliability. To reduce the scope of this study, we will solely focus on
failure detection algorithms as they have the potential to contribute to a more reliable dis-
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1. Introduction

tributed system in multiple ways. For example, by detecting failures faster, by determining
the state of the machines more accurately, or by reducing the network load. Ultimately, the
goal of this project is to provide Neo4j with a recommendation of how they can improve the
performance of their current failure detector by either optimizing its current implementa-
tion or by replacing it with a new algorithm. In order to accomplish this goal, the existing
failure detection algorithm in the current version of Lighthouse will be used as a baseline to
answer the following research questions:

1. What are the strengths and weaknesses of Baseline?

2. Which alternative algorithms exist and how do they compare to Baseline?

3. How can Neo4j improve their usage of failure detection algorithms?

1.2 Related Work
The decisions that steered the development of the algorithm improvements in this study were
mainly based on insights derived from previous research. Therefore, this chapter will provide
an overview of what has already been studied in the field of failure detection algorithms.

Classification of Failure Detectors
A classification of failure detectors was presented by Tushar Deepak Chandra and Sam Toueg
in 1996 [5]. The authors proposed a new unique solution to the consensus problem that has
paved the way in the field of failure detectors since then. More specifically, their so-called
“unreliable failure detector” was allowed to make mistakes while the other failure detectors
at the time forcefully stopped members that were suspected, but not proven, to be faulty.
Furthermore, Chandra and Toueg introduced two key concepts to classify failure detectors:
completeness and accuracy. With different strengths of completeness and precision of accu-
racy, Chandra and Toueg made it easier to compare failure detectors by classifying them into
eight different classes.

The SWIM Algorithm
Das et al. [6] introduced three extensions to improve an algorithm that they refer to as basic
SWIM. The new extensions were evaluated in three configurations, where the first config-
uration had one extension, the second one had two extensions, and so forth. The authors
evaluated the extensions by using multiple PCs where there was one node per PC and they
were connected via Ethernet. The main focus of the study was scalability as they evaluated
first detection speed and message load (number of received and sent messages) while chang-
ing the cluster size. In conclusion, the study found that the false positive rate was decreased
with one of the extensions and the first detection speed and message load per node are inde-
pendent of the cluster size.
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1.2 Related Work

The Lifeguard Improvements
Dadgar et al. [7] proposed three improvements to the updated SWIM algorithm presented in
the previous section, called Lifeguard. A node’s time-outs in SWIM are updated to change
during the execution depending on events that occur to the node, e.g. an unsuccessful ping or
the number of received messages. Therefore, in Lifeguard, the nodes are adapting their time-
outs based on their health. The last improvement made by them was a new prioritisation
of which messages to propagate first. The improvements are compared against the SWIM
algorithm in two ways, one by one and as a group. The result of the study showed that the
false positive rate is decreased when the extensions are applied individually and the biggest
decrease is when all three improvements were activated at the same time.

The Phi Algorithm
The failure detector φ (phi) created by Hayashibara et al. [8] is a heartbeat-based algorithm,
i.e. a node sends information regarding itself that it is healthy to the other nodes on decided
occasions. The new detector is compared against two other ones, Chen-FD and Bertier-FD.
The parameters for the algorithms compared in the study are optimised by varying them and
plotting the combinations on a two-dimensional graph based on the achieved detection time
and mistake rate, see Figure 1.1. For each algorithm, the optimal combination of parameters
is the one whose combination on the graph is the closest to the origin, as both a low detection
time and a low mistake rate are two desired characteristics. The study’s result shows that the
new φ failure detector achieves a comparable result to Chen-FD and Bertier-FD.

Figure 1.1: The original graph from [8] where each combination of
parameters is plotted for the three investigated failure detectors.
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1. Introduction

1.3 Scientific Contribution
The scientific contribution of this thesis is mainly to provide a holistic overview of the process
of choosing, implementing, simulating, and evaluating failure detection algorithms. Hence,
it is not to go into the finer details of the algorithms per se as this has already been done
in previous work. Instead, the focus of our thesis is to understand how the algorithms’ key
characteristics influence their performance. Furthermore, when starting this project and
studying related work, we experienced a lack of transparency into how to actually structure
and develop both the failure detection algorithms and the simulation engine in order to make
quantitative evaluations and data-driven decisions. Hence, we were motivated to fill this gap
by contributing with the information that we wished that we had ourselves when starting
this journey. Additionally, the contribution to Neo4j has been to apply previous research
about failure detectors in their codebase and evaluate them in Neo4j’s particular domain.

1.4 Disposition
The aim of the following chapters is to provide a holistic overview of how to implement and
evaluate failure detectors. Hence, the disposition of the thesis is as follows:

• Introduction: We start off by introducing the problem description from Neo4j and
which research questions we aim to answer. Furthermore, we introduce related work,
our scientific contribution, and how we have divided our work.

• Theory: This chapter aims to provide all of the necessary theory to understand the
upcoming method, implementation, results, discussion, and conclusion.

• Method: This chapter will describe our approach to solving the given problem so that
it can be replicated by someone else. More specifically, the three phases of the project
will be described in greater detail: research, implementation, and evaluation.

• Implementation: As a major part of this thesis project consisted of practical work, this
chapter will in greater detail describe what was implemented and why. More specif-
ically, the chapter will be divided into two parts. Firstly, the overall architecture of
the implemented algorithms will be described. Secondly, how the Testbed, i.e. the
experimental setup, was adjusted to be able to evaluate the algorithms.

• Results: This chapter will provide the quantitative results that were achieved from
running the experiments on the implemented algorithms in the Testbed.

• Discussion: After the results have been presented, this chapter will interpret and dis-
cuss them. More specifically, the focus of the discussion is to understand the impact
that different implementations had on the end result. Furthermore, the limitations of
the study and threats to its validity will be discussed.

• Conclusion: Lastly, the thesis will be concluded by answering the original research
questions and presenting potential ideas for future work.
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1.5 Contribution Statement

1.5 Contribution Statement
The work of the thesis has been divided equally between the two authors and it has been a
close collaboration. During the literature review, both authors studied the key papers needed
for conducting the research. Further on, the authors also read multiple different papers to
expand the research. The majority of the implementation was performed with pair program-
ming but the authors occasionally implemented different features alone. Throughout the
writing process, the authors were assigned responsibility for different areas but it has been
an iterative collaboration process. Therefore, several sections have more or less been written
together. More details about individual contributions are available in Table 1.1.

Table 1.1: Estimated individual contribution.

Phase Task Hannes Johan

Implementation Algorithms 55% 45%
Testbed 35% 65%

Report Abstract 40% 60%
Acknowledgements 80% 20%
Introduction 50% 50%
Theory 40% 60%
Method 50% 50%
Implementation 60% 40%
Results 30% 70%
Discussion 50% 50%
Conclusion 50% 50%
Popular Science Summary 50% 50%
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Chapter 2

Theory

In this chapter, an overview of the theoretical concepts that are important to understand the
use-case, importance, and evaluation of failure detection algorithms are presented.

2.1 Graph Databases
As mentioned in the first chapter, Neo4j has developed a graph database that is used by a lot
of companies. In order to understand the realm of databases, a brief overview of different
approaches is presented in this section.

There are many different ways to store data, e.g documents in JSON, graph databases,
and relational databases [9]. Relational databases leverage several tables to store data and
utilise keys (primary and foreign keys) to create relationships across tables, see Figure 2.1 [9].

Figure 2.1: Illustration of a relationship in a relational database.
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2. Theory

A graph database consists of nodes and relationships, see Figure 2.2 [10]. Labels can be
assigned to a node and a node may also include properties [10]. A relationship between two
nodes is formed with an edge with optional properties [10]. The strength of a graph database
is that the relationships do not have to be calculated, since they are saved [10]. Unlike, in a
relation database where the relations have to be calculated using a costly operation [10].

Figure 2.2: A relationship in a graph database inspired by [10].

2.2 Distributed Systems
To develop efficient failure detection algorithms it is important to have a basic understanding
of the context in which they operate in, i.e. distributed systems. Van Steen and Tanenbaum
define a distributed system as a “collection of autonomous computing elements that appears
to it’s users as a single coherent system” (p.2) [11]. As the systems are often geographically
distributed, they communicate with each other through network-based messages [12]. Fur-
thermore, Neo4j leverages distributed systems to host their graph databases, see Figure 2.3.

Figure 2.3: Simplified architectural overview of how Neo4j leverages
distributed systems to host their graph databases.
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2.2 Distributed Systems

The benefits of a distributed system are many, e.g. scalability potential, decreased costs
due to shared resources, and increased reliability as it is less dependent on the failure of a
single machine [2]. However, as the number of machines increases in a distributed system,
so does its complexity. Some common challenges of distributed systems are unreliable net-
works and collaboration as every system has its own view of the system as a whole [2, 3]. The
remainder of this chapter will introduce two core components of a distributed system, the
consensus protocol and the membership protocol, to give context to why, where, and when
failure detectors are needed.

Consensus Protocol
A so-called consensus algorithm is used to allow the members in a distributed system to agree
on the state of the system as a whole [13]. While the focus of this study is not consensus algo-
rithms per se, it is important to understand the consensus problem as both the membership
protocol and the failure detector are underlyingly used to solve it. There exist multiple types
of consensus algorithms that take different approaches to solving this issue and Neo4j uses the
Raft protocol. In simple terms, the Raft protocol reaches consensus through voting, where
each system’s vote is based on their view of the system [13], see example in Figure 2.4.

Figure 2.4: Simplified example of the consensus protocol in action
when a Neo4j user gets the age from a person named Carl.

Membership Protocol
In order for the consensus algorithm to reach consensus, it must know which members ex-
ist and which ones that are working properly [14]. The membership protocol provides the
consensus algorithm with this information as it tracks and updates the current states of the
various members, e.g. when they leave, join, or crash [15]. As a result, the user experience
of products that are built on top of distributed systems arguably “depends critically on the
reliability and scalability of the membership maintenance protocol” (p.1) [6].
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2. Theory

There exist a myriad of variations of membership protocols which over time has led to
multiple ways to structure it [6]. However, on an abstract level, there are three major common
components of a membership protocol that one should be aware of: a membership list, a
failure detector, and a dissemination component [6]. Firstly, each machine stores its own view
of its own, and the other machines, current status in a local membership list [6]. Secondly, this
membership is updated based on which failures that was detected [6]. Lastly, the information
stored in the membership list is communicated, i.e. disseminated, to the other machines via
the dissemination component [6].

The focus of this study is membership protocols based on gossip-based dissemination.
The unique characteristic of such a protocol is that the members are spreading the informa-
tion together [16]. More specifically, a member spreads information by either sending a new
message or forwarding a previously received one, to a random number of neighbours [16].

2.3 Failure Detection
This section will discuss common failures in distributed systems and how a failure detector
can detect them. Furthermore, key properties and evaluation metrics will be introduced.

2.3.1 Failures
By design, software in a simple single system is either functioning perfectly or not at all
because it is complicated for a developer to handle nondeterministic behaviour [14]. In dis-
tributed systems, however, it is inevitable that a failure will occur in some part of the system
when communicating over the Internet as messages may be lost or delayed [14]. This makes
failures in distributed systems more challenging as it is difficult to identify what, where, and
why something failed [14]. Therefore, it is crucial to implement mechanisms that can identify
and handle failures so that the system does not crash when a failure inevitably occurs [14].

Before introducing the various failure detection algorithms, it is important to understand
which types of failures that they should be able to detect. To limit the scope of this project,
Neo4j has identified and categorized three common types of failures in their systems that
they wish to investigate: crash, link, and delay failures.

• Crash Failure: when a fully functional node abruptly stops working forever [5].

• Link Failure: when messages are lost because the link between nodes failed [17].

• Delay Failure: when timing issues occur due to delayed network requests [14].

2.3.2 Key Properties and Classes
In 1996, Chandra and Toueg introduced two key properties and eight classes that are com-
monly used to objectively compare and categorize different failure detectors, see Figure 2.5
[5]. In simple terms, completeness is a measurement of whether or not each crash failure is
eventually detected by all nodes or just some [5]. Meanwhile, the accuracy property describes
how trustworthy the failure detector is [5]. For example, a failure detector that fulfills the
strong accuracy property never suspects a node before it actually failed [5].
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2.3 Failure Detection

Figure 2.5: Chandra and Toueg’s eight classes of failure detectors [5].

2.3.3 Evaluation Criteria
To iteratively improve a failure detector, and compare alternative implementations, it is im-
portant to be able to identify its strengths and weaknesses through measurable metrics. For
example, there are inevitably design choices that can be made as a failure detector could be
considered “conservative”, i.e. extremely accurate, or “aggressive”, i.e. extremely fast [8, 18].
While there exist multiple different metrics to evaluate failure detectors, the most common
ones could be grouped into three categories: speed, accuracy, and network load [6, 7]. The
following six evaluation metrics were chosen to evaluate the failure detectors in this study:

• First Detection: The time it takes for the first node to detect that another node has
crashed [6, 7].

• Full Dissemination: The time it takes from a crash failure has occurred until all nodes
have received the information [7].

• Undetected Failure Rate: The percentage of all crash failures that were undetected by
all nodes that are working properly.

• False Positive Rate: The percentage of all claimed crashes where the node was actually
working properly [6].

• Total Messages Sent: The accumulated number of messages that the failure detector
transmitted over the network [7].

• Message Load: The average number of bytes that the failure detector transmits over
the network per second [6].

2.3.4 Algorithms
This section provides an introduction to how the investigated failure detection algorithms
in this study work internally. Before diving into the various algorithms, let’s introduce which
algorithms popular vendors use. The authors of Lifeguard [7] implemented their own ver-
sion of the SWIM algorithm called Memberlist and it is used by vendors like Serf, Nomad,
and Consul [7]. Akka is also a vendor that provides failure detection capabilities with their
product Akka Cluster which uses the φ failure detector for detection and a gossip protocol
to disseminate information [19]. Therefore, while different vendors may have made minor
modifications to the original SWIM algorithm, it is arguably a popular choice by some of the
most established vendors within the industry.
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2. Theory

2.3.5 SWIM
Since the first Basic SWIM algorithm was introduced in 2001 by Gupta et al. [20] it has
been extended by Das et al. [6] with three extensions. The focus of this study is the SWIM
algorithm with the three extensions. From now on when referring to SWIM, the basic SWIM
algorithm together with the three extensions is meant and the rest of this subsection will
explain the algorithm in greater detail.

The algorithm can be divided into two separate parts: the failure detection module which
pings peers to see if they are alive, and the dissemination module which spreads updates from
the failure detection module [6]. To understand how the failure detection module pings its
peers, it is important to comprehend the states that the nodes can transition between [6].
More specifically, they are alive, suspected, and unhealthy, and a node can transition between
these states through Suspect, Alive, and Confirm messages [6].

One of the key characteristics of the SWIM algorithm is that if it does not receive an
answer from the initial ping, it asks its peers for help [6]. More specifically, this is done
by sending a new type of request, a ping-req, to k random nodes [6]. The k random nodes
themselves try to contact the concerned node and send the ack back to the original node in
the event of a reply [6].

SWIM needs three parameters to operate, the protocol period T , the k number of peers
to ask for help, and λ that limits how many times the dissemination module sends a message
[6]. Furthermore, the authors also emphasise “(...) that the protocol period T’ has to be at
least three times the round-trip estimate” (p. 4) [6].

Now that the states and pinging mechanisms have been introduced, the workflow of the
failure detection module can be understood in its entirety, see Figure 2.6.

Figure 2.6: Flowchart of the failure detection module’s workflow as
interpreted by [6].

A key characteristic of the dissemination module is that it uses piggybacking which means
that updates from the failure detection module are added on top of the existing messages [6].

Once a node becomes Suspected in another node’s membership list, a timer is started [6].
A Confirm message is issued, which transitions the node from suspected to unhealthy, if the
time expires [6]. On the contrary, if the timer has not yet expired and a node that is alive
receives an accusation that it has failed, it will issue an Alive message [6].

18



2.3 Failure Detection

As a node can repeatedly transition between states, the most up-to-date state is derived
based on the priority of the message and the incarnation number of the node, see Formula
2.1 [6]. More specifically, an incarnation number keeps track of the most up-to-date message
regarding an individual node [6].

Alive j , Suspect j < Confirmi ∀i, j
Alive j , Suspect j < Alivei ∀ j < i

Alivek , Suspect j < Suspecti ∀ j < i , ∀k ≤ i
Illustration of the messages’ priority from [6] with subscripted incarnation number.

(2.1)

2.3.6 Lighthouse
This section explains Neo4j’s current failure detection algorithm which is inspired by the
SWIM algorithm. This section will introduce the key similarities and differences to under-
stand the Lighthouse algorithm. Furthermore, the text and figures in this subsection are
based on internal documents and the source code.

The Lighthouse algorithm comprises of the same two modules as the SWIM algorithm.
The purpose of the pinging algorithm is to check whether a node is alive and disseminate the
information. Unlike SWIM, Lighthouse does not ask its peers for help. Instead, the pinging
algorithm works as follows:

1. Select a node from the membership list in a round-robin way.

2. Send a ping to the selected node and attach the membership list as a payload. 1

3. Wait for the protocol period, T.

(a) Ack received before T, merge the payload’s membership list with the local list.

(b) Otherwise, transition the selected node to Suspected.

4. Return to step 1.

Lighthouse introduces additional states: Unreachable and Left, see Figure 2.7 for the full
state transition graph. The Removed state is the same as unhealthy in SWIM. Left is the state
in which a node transitions itself to when it wants to leave the cluster of its own will, i.e.
gracefully. More specifically, Unreachable is a pit-stop between Suspected and Removed to give
the node a second chance to refute the suspicion at a later time. An important note, from now
on when referring to a failed, crashed, unhealthy, etc node in Lighthouse, the Unreachable
state is meant.

1Note when a node receives a ping it merges the payload of the membership list with its local one.
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Figure 2.7: Illustration of the state transitions in Lighthouse.

Similar to SWIM, the states in Lighthouse also have a priority which determines if a
node’s state in the local membership list should be overwritten or not. Firstly, the states are
based on the incarnation number. A higher incarnation, the higher priority of the state. In
the case of equal incarnation numbers, the state determines the priority, see Formula 2.2.

Alive < Suspected < Unreachable < Left < Removed (2.2)

Similar to SWIM, all nodes have timers for state transitions that either can be expired
or invoked. However, additional timers have been added for each of Lighthouse’s new states,
see Figure 2.7 and Table 2.1.

Parameter Time

Protocol period 1s
Suspicion duration 30s
Unreachable duration 24h
Left duration 24h

Table 2.1: Parameters that were initially used in Lighthouse.

Similar to SWIM, Lighthouse utilises piggybacking to spread updates around the cluster.
However, an important difference is that Lighthouse always sends its full membership list
while SWIM only sends the updated states.
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Chapter 3

Method

The project was divided into three phases: research, implementation, and evaluation. The
aim of this chapter is to describe each phase in greater detail to provide a clear overview of
what has been done and why.

3.1 Phase 1: Research
The first phase of the thesis was spent on researching the area and further specifying the
scope of the project. The related work that was presented in Section 1.2 was identified and
closely studied to survey new potential algorithms. Furthermore, internal documentation
and source code of the existing Lighthouse implementation were studied to better identify
strengths and weaknesses. After discussing the literature and limitations of the existing solu-
tion with Neo4j, it was decided that the focus of the study should be on developing the SWIM
algorithm presented in [6] as it showed great synergy potential with Neo4j’s existing code-
base. Furthermore, based on the parameter tuning approach presented in [8], it was decided
that we should try to improve Baseline by finding the best parameters for both Lighthouse
and SWIM.

3.2 Phase 2: Implementation
In the second phase of the thesis, the new SWIM algorithm was implemented and the existing
test environment, i.e. the Testbed, was modified. The SWIM algorithm was implemented in
Java (Temurin-17.0.10+7) inside of Neo4j’s existing codebase. The functionality of SWIM
was verified by developing unit tests and by manually simulating different scenarios and
inspecting logs to verify the intended behaviour. An evaluation engine was developed in
Python 3.9 on top of Neo4j’s existing Testbed to be able to handle identified issues with the
test environment that was identified in Phase 1.
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3.3 Phase 3: Evaluation
The evaluation phase consisted of five parts. Firstly, an evaluation criteria was defined. Sec-
ondly, an experimental setup was defined to allow consistent simulations. Thirdly, a Baseline
configuration was established. Fourth, two additional configurations were established by
optimising the parameters for SWIM and Lighthouse, named Optimal SWIM and Optimal
Lighthouse. Lastly, the three configurations were compared.

3.3.1 Evaluation Criteria
An evaluation criteria was established by identifying multiple relevant metrics in related
work and selecting the most appropriate ones for Neo4j’s use-case, see Table 3.1.

Table 3.1: Evaluation criteria.

Evaluation Category Evaluation Metric

Speed Average Full Dissemination
Average First Detection

Accuracy Undetected Failure Rate
False Positive Rate

Network Load Total Messages Sent
Message Load

3.3.2 Experimental Setup
All of the experiments were run on an Apple MacBook Pro M1 Max from 2021 with 64 GB of
memory. During the experiments, unnecessary programs were terminated to minimise the in-
ference with the simulator. Discussions with Neo4j guided the definition of the experimental
setup to mimic the real networks that they operate in, see Table 3.2.

Table 3.2: Parameters used for the experimental setup. Note that the
values within brackets are randomly generated within the interval.

Parameter Tested Values

Number of nodes 10
Nodes to kill (%) 40
Interval between kills (ms) [2500, 5000]
Interval between disturbance (ms) [3000, 5000]
Interval disturbance length (ms) [1000, 2000]
Latency (ms) 800
Jitter (ms) [300, 500]
Probability of link failure (%) 10
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3.3.3 Establishing a Baseline
A Baseline was established to be able to compare the impact of our work and make a data-
driven recommendation. More specifically, Baseline was established by running three simu-
lations for the original Lighthouse failure detector and calculating the average score for each
metric. The parameters used for Baseline were taken from the original source code and are
displayed in Table 3.3.

Table 3.3: Baseline configuration based on the original Lighthouse
failure detection algorithm in the original source code.

Parameter Tested Values

Protocol period (ms) 1000
Suspicion duration (ms) 30000

3.3.4 Parameter Tuning
The best parameters for Lighthouse and SWIM were derived by simulating and evaluating
different combinations of parameters, see Table 3.4. The tested parameters were decided
together with Neo4j based on the previously defined experimental setup, see Table 3.2.

Table 3.4: Overview of the parameters that were evaluated during
the parameter tuning process. In total, there were 33 tested combi-
nations, 15 for Lighthouse and 18 for SWIM.

Configuration Parameter Label Tested Values

Lighthouse Protocol period (ms) Tl {1000, 1500, 2000}
Suspicion duration (ms) Sl {10000, 15000, 20000, 30000, 40000}

SWIM Round-trip time (ms) RTT {1000, 1500, 2000}
Nodes to probe k {2, 4}
Lambda λ {5, 10, 15}

The best parameters for each algorithm were decided based on which combination that
generated the lowest parameter optimisation score based on the average first detection speed
and false positive rate from three simulations. More specifically, the parameter optimisation
score was a slight modification of the formula used in [8] as we chose to introduce importance
weights, see Formula 3.1.

score(x, y,wx,wy) =
√

wx · x2 + wy · y2 (3.1)

After multiple discussions with Neo4j, the two most important metrics for their use
case were the average first detection speed and the rate of false positives. Hence, x is the first
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detection speed and y is the false positive rate. Furthermore, the average first detection speed
was considered to be three times more important than the rate of false positives. Therefore,
we want to penalise large values of false positives by selecting wy = 3 and wx = 1. Note
that a lower score indicates a better result as a low rate of false positives and an average fast
detection time is desired. In order for both metrics to have the same order of magnitude, the
false positive rate was changed to decimal form and the detection speeds were divided by the
maximum detection speed.

3.3.5 Evaluating Optimal Configurations
After finding the optimal configurations of Lighthouse and SWIM, they were evaluated
against Baseline in three ways. Firstly, all metrics from the evaluation criteria presented in
Table 3.1 were compared. Secondly, the limits of the algorithms were evaluated by simulat-
ing them in a network more prone to link failures, from an occurrence rate of 10% to 50%.
Thirdly, the scalability of the various algorithms was evaluated by varying the number of
nodes in the cluster from 10 to 75. During the scalability investigations, VisualVM was also
used to analyse the number of active threads. For the three types of evaluations mentioned
in this section, three simulations were run and average metrics were calculated to mitigate
outliers.
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Chapter 4

Implementation

The implementation of Lighthouse by Neo4j is explained in this chapter. Further on, the
chapter provides an overview of how SWIM was implemented and how the existing Testbed
was improved to be able to simulate failures and provide essential evaluation metrics.

4.1 Lighthouse
The implemented Lighthouse failure detector by Neo4j consists of three main parts that each
member has: incoming traffic, outgoing traffic, and protocol clients, see Figure 4.1.

Figure 4.1: Lighthouse node structure.

The incoming traffic and outgoing traffic components run in two separate threads and
are connected by a list of protocol clients which all implement a common interface. The two
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most important functions of the protocol clients are apply and newMessage. Apply is used by
the incoming and outgoing traffic components to apply the payload elements to a protocol
client. Note that the implementation of the function can be different for each protocol client.
The purpose of newMessage is to ask a protocol client if it has a payload element to send.

Lighthouse has a membership list implemented as a protocol client that keeps track of
the node’s local view of other nodes’ states and schedules state transitions. The protocol
client membership list also implements other interfaces to support more functionality. The
function newMessage for this protocol client returns a copy of the local full-state view of the
node. The apply function on the other hand requires a full state view and merges it with its
own local view based on the priority of the states and incarnation number.

The incoming traffic’s responsibility is to receive messages, decode them, apply the cor-
rect function depending on the message type, and respond with an acknowledgement (ack).
The component of incoming traffic iterates through the payload elements of the message, see
Figure 4.2 for message structure, and calls the apply method on the correct protocol client.

The role of the outgoing traffic component is to ping other nodes in the cluster. The
outgoing traffic has reference to the protocol clients, a selection strategy, and a listener for
suspected nodes. The previously mentioned protocol client acts as the listener for suspected
nodes. The outgoing traffic starts by asking the selection strategy for which node to ping.
The selection strategy keeps track of the recently picked nodes and therefore has a connection
to the membership list to be able to know what nodes exist. Before sending the ping, the
outgoing traffic iterates through the protocol clients and asks if they have something they
want to send (by calling newMessage) and encodes it. After the ping is sent, it waits for an
ack and if it receives the ack, the payload is processed by the correct protocol client. If not,
it forwards the information to the suspect listener, the membership list, that the node is
Suspected.

When a Lighthouse node starts, the membership list is initialised with the addresses of
the nodes in the initial cluster and the outgoing and incoming traffic threads are started.
However, before that, a thread tries to send join requests to the other nodes and continues to
do so until it has information regarding all nodes’ states from the initial cluster. During a join
request, the sending node sends its entire membership list and the receiving node responds
with its entire membership list.

The payload sent in Lighthouse follows a specific structure and consists of three fields,
see Figure 4.2. Payload elements are sent in the payload by Lighthouse and the content of the
payload elements is shown in Figure 4.3.

Figure 4.2: Structure of payload sent by Lighthouse.
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Figure 4.3: Structure of payload element.

4.2 SWIM
In Section 2.3.6 it is explained that Lighthouse is to a large extent based on SWIM. However,
they differ in the way pinging is performed, the states, and what information is sent through
the cluster. During this thesis project, the SWIM algorithm was implemented in the existing
codebase where Lighthouse already existed. Hence, the architecture and code of the existing
Lighthouse were re-used as a foundation for the new SWIM algorithm. In the following
sections, it is explained what changes were made in order to implement SWIM. The structure
of the coming subsections corresponds to the parts of a Lighthouse node.

4.2.1 Outgoing Traffic
Lighthouse had already implemented the functionality of selecting members to ping in round-
robin. A new function was added to the selection strategy class to be able to pick an arbitrary
number of random members. A seed was added to the selection strategy to ensure that the
same nodes are pinged in different simulations.

The outgoing traffic component was updated to implement the feature of probing k
neighbours if the first ping was unsuccessful. A new parameter for the SWIM algorithm was
introduced called round-trip time, RTT , and it is defined as the maximum time to wait for
an ack after sending the first ping. If RTT expires then the process of probing k neighbours
starts. We defined the protocol period as 3.1 · RTT based on the recommendation from the
SWIM paper[6], that it should be more than three times bigger. The probing of neighbours
was implemented by creating a new thread for each ping-req sent and the maximum time of
waiting for an indirect ack is the remaining time of the protocol period.

After each thread has terminated, it returns a boolean value indicating if it received an
ack, and the threads were examined if at least one of all the threads received an ack. In the case
of no threads receiving an ack, then the node is determined to be Suspected and the suspect
function of the suspect listener is executed. However, if the first ping or the indirect pings
are successful, the node is alive and a new function called alive on the suspected listener is
executed.

The ping-req messages required a new message type and modification of the structure of
the payload, see the new structure in Figure 4.4. To solve the problem of knowing what node
to ping a new optional field was added to the payload containing the address of what node
to ping.
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Figure 4.4: Structure of payload element in SWIM.

4.2.2 Incoming Traffic
The incoming traffic component of SWIM is similar to Lighthouse’s except for the fact that
SWIM has to handle a new ping-req message. A new case was added to match the new message
type that applies the payload to a new function. The new function consists of several steps.
The first step is to get the target address of the node to ping, with the new field of the
payload element. The function builds a ping message by asking the protocol clients if they
have anything to send, pings the target address, and waits RTT for the ack. If an ack message
is received before the timeout expires, the payload of the ack is applied to the correct protocol
client, and an ack response is formed for the node that sent the ping-req message in the first
place.

4.2.3 Membership List
The original Lighthouse membership list was modified for the SWIM algorithm. Firstly, the
states were updated by removing the Unreachable state, but the Left state was kept despite the
fact it is not part of the SWIM algorithm, see Figure 4.5. The reason behind keeping the Left
state was to support the graceful leave. In the implementation, the full membership list is
not passed around, but rather selected messages. The states correspond to the different types
of messages sent in the SWIM algorithm, except Left. Alive corresponds to an Alive message,
Suspected to a Suspect message, and Removed to a Confirm message. A new compare function
between the states was implemented to support the priority of the messages from SWIM.

Figure 4.5: State transition graph in SWIM implementation.

The Alive message that is created when successfully pinging a suspected node was imple-
mented by introducing a new function alive in the member listener interface. Every time the
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outgoing traffic successfully pings a node it executes the alive function on the membership
list. The membership list creates this message only if the pinged node is suspected in its lo-
cal list. The new message was implemented by introducing an additional field in the class
regarding the state of a node, to indicate this type of message. When this message is received
by a node’s membership list it overrides every state except a removed state.

The SWIM algorithm propagates selected messages around the cluster instead of sending
the whole local membership list around the cluster as in Lighthouse. It is implemented using
a wrapper class around a priority queue with a custom comparator regarding the number of
times the message has been sent, as instructed by [6]. The authors of SWIM used a buffer for
their implementation [6]. When either the incoming or outgoing traffic calls the function
newMessage that function in turn calls another function that iterates through the queue, in-
crements the messages that are sent, and removes messages that have been sent the maximum
number of times.

The authors of the SWIM algorithm [6] explained that the number of times a message
is sent is λ log n. However, during the evaluation, the following was used by the authors
3⌈log(n + 1)⌉, and they defined the suspicion duration in seconds as that value [6]. Based on
the previous, the suspicion duration in seconds and the number of times a message is sent
were defined by Formula 4.1.

λ · ⌈log10(n + 1)⌉ (4.1)

With the new membership list and the priority queue, when the incoming and outgo-
ing traffic calls apply to the membership list, the state messages are merged with the local
membership list if the state from the message has a higher priority. If the latter applies, the
messages are added to the local priority queue and the messages will be forwarded in the
future.

4.2.4 Configuration and Building
During the implementation of SWIM, we wanted to structure the implementation in the
same way as Lighthouse and try to reuse as many parts as possible for easier maintenance
and less duplicated code. To achieve it, we reused the same interfaces that were used for con-
figurations of parameters for Lighthouse and added optional fields for the SWIM-specific
parameters. Further on, selected interfaces were updated to be generic to support the dif-
ferent types of the two algorithms. In the same spirit, the builder class for Lighthouse was
updated so that it could build both algorithms. This was primarily done for the reason of the
Testbed. Instead of having two different types for the algorithms, one common type was used
and it limited the changes that had to be made to accommodate the new SWIM algorithm
to run in the existing Testbed.

4.2.5 Verification of SWIM
The verification of SWIM was completed in two parts. Firstly, the membership list for SWIM
was tested with modifications of Lighthouse’s unit tests along with new unit tests specific to
SWIM. Secondly, the communication between the nodes, the pinging, was verified manually.
The source code was changed during the verification so that all ack messages from a selected
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node in the first ping always resulted in probing k nodes, to force the indirect pings. The logs
were examined so that the picked node was not determined to be Suspected or Removed, since
it was healthy. A second run was made in which the picked node was killed via an HTTP
request, and the logs were examined once again to see that the node was removed by the
nodes in the cluster.

4.3 Testbed
The aim of this section is to provide an overview of how a testing environment can be struc-
tured to simulate a distributed system and evaluate failure detection algorithms. To provide
a transparent overview of the work that was made, we will first describe the original Testbed
and then the modifications that were made.

4.3.1 The Original Testbed
On an abstract level the original Testbed consisted of four main parts: a Configuration gen-
erator, Test cluster, Disruption generator, and a Monitor, see Figure 4.6. The purpose of the
Configuration generator is to generate all of the configuration files needed by the Test cluster
whose job is to start an HTTP server for each individual node. Furthermore, the Test cluster
has an API that allows the nodes to be killed through HTTP requests. The nodes communi-
cate with each other via a middleman, the Disruption generator, whose job is to simulate a
real network with latency, jitter, etc [21]. Meanwhile, the monitor collects data from the test
cluster and visualises it through Prometheus, a time-series database that scrapes the collected
data from the test cluster and visualises them in real-time [22].

Figure 4.6: Overview of the original Testbed’s architecture.

The primary goal of the original Testbed was basic debugging and verification that the
system behaved as expected. E.g. by killing a node through an HTTP request and then look-
ing inside Prometheus if the number of alive nodes was decreased by one. However, three
weaknesses were identified in the existing Testbed that needed to be improved: scalability,
consistency, and metrics.
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Weakness 1: Scalability
Running a simple simulation in the original Testbed was cumbersome and error-prone as it
required a lot of manual steps. In simple terms, the original workflow was as follows:

1. Build the project to include the latest version.

2. Start Prometheus via Docker to monitor the processes.

3. Enable and start-up Toxiproxy, the disruption service.

4. Build the configuration.

5. Start the cluster.

Performing these steps may not look too complex. However, all these five steps had to
be done to run a single test. Furthermore, the original Testbed only had support for run-
ning Baseline as it was hardcoded in the source code. If you wanted to try other parameters
you had to manually change it in the source code, build the code, and re-run the Testbed,
i.e. re-do all five steps mentioned above. The original Testbed lacked scalability as it only
allowed one, pre-defined, configuration to be evaluated. Furthermore, running simulations
was an extremely time-consuming process which would make it difficult to simulate multiple
configurations to find the optimal parameters for each algorithm.

Weakness 2: Consistency
In the original Testbed, it was not possible to run the exact same simulation multiple times.
Therefore, it was difficult to evaluate different algorithms under equal conditions which
made it impossible to draw an objective conclusion. More specifically, this was because the
original Testbed required manual HTTP requests to kill nodes.

Weakness 3: Evaluation
The original Testbed was mainly used for manual troubleshooting, not evaluation. The col-
lected metrics that were visualised in Prometheus did not provide sufficient information to
calculate all of the evaluation metrics described in Section 2.3.3. More specifically, the col-
lected data was more related to the total network load and the number of nodes in each state,
not which node was in which state at what time.

4.3.2 The Modified Testbed
Several modifications were made to the original Testbed, see the architectural differences in
Figure 4.6 and 4.7. This section will in greater detail describe the modifications that were
done to solve the previously identified weaknesses: scalability, consistency, and evaluation.
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Figure 4.7: Overview of the modified Testbed’s architecture.

Solution for Weakness 1: Scalability
A Test generator was built on top of the original Testbed to improve the user experience and
allow systematic testing. More specifically, it automatically started up all processes by start-
ing the program by just running the program and removing the need to re-do the five steps
described in Section 4.3.1. The Test generator also allowed the user to define which algo-
rithms and parameters they would like to run. To allow this, modifications were done to the
Configuration generator and Test cluster so that parameters could be sent to the Configura-
tion generator via the terminal and that the Test cluster could read these parameters in the
configuration files and apply them to the builder of the algorithms. As a result, it was now
possible to do multiple simulations in one click so that one could start a longer simulation
and let it run in the background.

Solution for Weakness 2: Consistency
A Simulation generator was developed to systematically trigger failures in the network that
simulated Neo4j’s real networks. More specifically, it allowed the triggering of crash, link,
and delay failures systematically instead of sending manual HTTP requests. The occurrence
and duration of each simulated failure were defined so that they appeared consistently in all
runs of the simulation, see the pre-defined experimental setup variables in Table 3.2. For all
randomly generated values, a seed was used to make sure that the same random value was
generated every time the simulation ran to ensure an equal testing environment.

The crash failure and the delay failure were executed in two separate threads in the sim-
ulation generator to allow multiple failures to occur simultaneously. To simulate a crash
failure, a random node is killed by sending a kill request to the Test Cluster’s API. After the
request is sent, the threads wait for a random time and repeat until the pre-defined number
of nodes that should crash have been killed. The delay failure was implemented in a similar
way as HTTP requests were sent to Toxiproxy which instructed it to add a random jitter to
the latency for a random node. After a random time, another HTTP request is sent to Tox-
iproxy to reset the jitter. Lastly, the thread waits a random time before it repeats the process
for another node.

The link failure was implemented by modifying the network protocol used by the nodes
in the Test Cluster to send messages to other nodes. More specifically, the function used for
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sending the messages was updated to only send the packets if a random value between 0 and
1 was smaller than the probability of link failure, otherwise, no message was sent at all.

Solution for Weakness 3: Evaluation
Member state logs were added by modifying the protocol client of both algorithms so that
they logged their local membership lists on every state change. Further on, logging was also
made when a suspicion duration expired, i.e. when a node transitioned from Suspected to
Removed. Finally, A Post-processor was implemented that consisted of two sub-components:
a state log processor and a Metric calculator. The state log processor reads all of the new logs
and derives them into more tangible data that the Metric calculator can use to calculate the
six key evaluation metrics, see Figure 4.8.

33



4. Implementation

(a) Actual kills table. Registers the time a kill request was sent from the
Simulation generator to the Test cluster API.

(b) Suspicion expiration table. Each node has its own table where it saves
the timestamp and node that it has personally removed.

...

Alive

Alive

Alive Alive

Suspected

Removed

...

...

...

...

...

Timestamp

2024-04-18 14:34:59

2024-04-18 14:35:02

...

Node 1 Node 2 ... Node N

2024-04-18 14:35:05

Alive

Alive

Alive

...

(c) Membership list table. Each node has its own table where it saves its lo-
cal view of the other nodes. The information in this table is not necessarily
detected by the node itself as it may have been gossiped from peers.

(d) Detected kills table. Data from a) and c) are compiled to see differences
in actual kill time and detected kill time. E.g Node 1 detected that Node 2
was killed 4 seconds after it was actually killed.

Figure 4.8: Data structures created by the State log processor.
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With the help of the data structures from the State log processor and the queried network
data from Prometheus, the Metric calculator calculated the key evaluation metrics in the
following way:

• Average First Detection: For each actual kill, i.e. for each row in Figure 4.8d, get the
earliest detected kill time and subtract the actual kill time. Calculate the average first
detection time by taking the sum of all first detection times and dividing it by the
number of kills, i.e. number of rows.

• Average Full Dissemination: For each actual kill, i.e. for each row in Figure 4.8d, get
the latest detected kill time and subtract the actual kill time. Calculate the average full
dissemination time by taking the sum of all full dissemination times and dividing it by
the number of kills, i.e. number of rows.

• Undetected Failure Rate: The number of undetected failures is equal to the number of
rows in Figure 4.8d where no node detected the kill, i.e. where all detected kill times
are empty. Hence, the undetected failure rate is the total number of undetected failures
divided by the total number of kills, i.e. rows in Figure 4.8a.

• False Positive Rate: The number of false positives is the number of occurrences where
an identified kill in Figure 4.8b was actually not reported dead in Figure 4.8a or if
the timestamp from the identified kill in Figure 4.8b happened before the node was
actually killed in Figure 4.8a. Lastly, the rate of false positives is the number of false
positives divided by the number of times the suspicion duration expired.

• Total Messages Sent: The original Testbed periodically submits the number of mes-
sages sent by each node to Prometheus. Hence, the total message sent by each node is
calculated by calculating the difference between the number of messages sent before
the simulation has started and the number of messages sent after the simulation has
finished. Lastly, the total messages sent is calculated by adding the total number of
messages sent by each node.

• Message Load: The original Testbed periodically submits the number of bytes sent by
each node to Prometheus. To derive the message load, i.e. the bytes sent per second, the
total bytes sent are first calculated by deriving the difference from the number of bytes
sent by each node at the start and end of the simulation. Afterward, the total bytes
sent for all of the nodes are summarised and divided by the length of the simulation.
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Chapter 5

Results

This chapter will present the results from evaluating SWIM against Lighthouse. The results
will be divided into two parts: parameter optimisation and further investigations. In part
one, the most suitable parameters for SWIM and Lighthouse will be derived. In part two,
Optimal Lighthouse and Optimal SWIM will be further evaluated against Baseline by inves-
tigating how well they perform in networks more prone to link failures and in clusters of
various sizes.

5.1 Parameter Optimisation

There were in total 18 parameter combinations tested for SWIM and 15 for Lighthouse, see
Table 3.4 for more details. As described in the methodology in section 3.3, each parameter
combination was evaluated based on their average first detection speed and false positive rate.
The obtained values for each parameter combination are plotted in Figure 5.1. A noteworthy
observation in Figure 5.1 is that the majority of the Lighthouse parameter combinations have
a false positive rate close to zero while SWIM shows greater variation.

While Figure 5.1 visualises the average obtained values for each of the two key metrics,
Table 5.1 displays the actual result from the parameter optimisation. More specifically, the
identified parameters that formed the two optimal configurations, Optimal SWIM and Op-
timal Lighthouse, are based on the best score. A lower score is desired as it means that the
algorithm is fast at detecting failures while generating a low rate of false positives, see For-
mula 3.1. Both Optimal Lighthouse and Optimal SWIM achieved a better score than Baseline,
see Table 5.1.
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Figure 5.1: False positive rate and average first detection time for
each unique parameter combination presented in Table 3.4. The
scores are based on the average from running three simulations.

Table 5.1: The chosen parameters for Baseline, Optimal Lighthouse,
and Optimal SWIM. The parameters for Baseline were gathered
from the original source code. Meanwhile, the parameters for Op-
timal Lighthouse and Optimal SWIM were chosen based on which
combination of parameters that yielded the lowest score, see For-
mula 3.1.

Algorithm configuration Parameter Label Value Score

Baseline Protocol period (ms) Tb 1000 0.70835
Suspicion duration (ms) Sb 30000

Optimal Lighthouse Protocol period (ms) Tl 1000 0.285499
Suspicion duration (ms) Sl 10000

Optimal SWIM Round trip time (ms) RTT 1000 0.585061
Nodes to probe k 2
Lambda λ 10

The scores for each of the six key evaluation metrics that were obtained by Baseline,
Optimal Lighthouse, and Optimal SWIM are presented in Table 5.2. Two noteworthy obser-
vations are that all three algorithm configurations detected all failures and that only Baseline
achieved a 0% false positive rate.
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Table 5.2: Average scores for each key metric based on three simu-
lations for each optimal configuration.

Algorithm configuration

Evaluation Category Evaluation Metric Baseline Optimal Lighthouse Optimal SWIM

Speed Average Full Dissemination (ms) 32455 13984 32292
Average First Detection (ms) 30297 11627 22265

Accuracy Undetected Failure Rate 0.0 0.0 0.0
False Positive Rate 0.0 5.0 15.4

Network Load Total Messages Sent 363 362 252
Message Load (Bps) 52245 53934 40018

While Table 5.2 displays the actual values for each of the six key metrics, Figure 5.2 dis-
plays Optimal Lighthouse and Optimal SWIM’s relative performance compared to Baseline.
Two highlights from Figure 5.2 are that both Optimal SWIM and Optimal Lighthouse out-
perform Baseline in nearly all metrics. Noteworthy achievements are that Optimal Light-
house is nearly 57% faster at disseminating information than both Optimal SWIM and Base-
line. Furthermore, Optimal Lighthouse is 61.6% faster at detecting failures than Baseline
while Optimal SWIM is only 26.5% faster. For the two metrics related to network load, total
messages sent, and message load, Optimal Lighthouse is more or less achieving the same re-
sults as Baseline. Meanwhile, Optimal SWIM sends 30.7% less messages than Baseline while
reducing the bytes sent per second by 23.4%.

Figure 5.2: Relative performance of Optimal Lighthouse and Opti-
mal SWIM compared to Baseline which is represented by the dotted
line. The result is the average score from three simulations for each
algorithm configuration.

When running three experiments for each optimal algorithm configuration, it is evident
that SWIM’s performance varies more than its competition as a wider interquartile range
(IQR) is observed in five out of six metrics, see Figure 5.3. More specifically, the metrics that
vary the most are average full dissemination, average first detection, and false positive rate,
see Figure 5.3a, 5.3b, and 5.3c.

39



5. Results

(a) Average Full Dis-
semination (ms)

(b) Average First De-
tection (ms)

(c) False Positive Rate
(%)

(d) Undetected Failure
Rate (%)

(e) Total Messages Sent (f) Message Load (Bps)

Figure 5.3: Variation in result for Baseline, Optimal Lighthouse, and
Optimal SWIM. The result is the average score from three simula-
tions for each algorithm configuration.
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5.2 Further Investigations
This section will provide further investigations of the previously identified optimal configu-
rations in regard to link failures and scalability.

5.2.1 Link Failure
The result from exposing the three algorithm configurations to a network more prone to
link failures is displayed in Figure 5.4. It shows that the average full dissemination speed is
stable for both Baseline and Optimal Lighthouse when increasing the number of link failures.
Meanwhile, Optimal SWIM is faster at disseminating information, see Figure 5.4a. Similarly,
both Baseline and Optimal Lighthouse show a stable, but slight decrease, in their average first
detection time while Optimal SWIM is becoming a lot faster, see Figure 5.4b.

(a) Average Full Dis-
semination (ms)

(b) Average First De-
tection (ms)

(c) False Positive Rate
(%)

(d) Undetected Failure
Rate (%)

Figure 5.4: Baseline, Optimal Lighthouse and Optimal SWIM’s abil-
ity to handle networks more prone to link failures. The result is the
average score from three simulations for each algorithm.
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Furthermore, when increasing the probability of link failure, undetected failures remain
at 0%, see Figure 5.4c. However, the rate of false positives is increasing rapidly for both
Optimal Lighthouse and Optimal SWIM while Baseline remains stable, see Figure 5.4d.

5.2.2 Scalability
Figure 5.5 visualises the three algorithm configurations’ scalability potential as the cluster
size varies from 10 to 75 nodes. For most cases, the three algorithm configurations show
similar trends but there are a couple of observations that deserve to be highlighted. Firstly,
the dissemination speed is slower for all three configurations when increasing the cluster
size, see Figure 5.5a. Secondly, the average first detection speed is faster for both Optimal
Lighthouse and Optimal SWIM while it remains similar for Baseline, see Figure 5.5b. Thirdly,
Optimal SWIM and Optimal Lighthouse are a lot more sensitive to larger cluster sizes as the
number of false positives increases rapidly up to over 80%, see Figure 5.5c. Fourth, the first,
and only, undetected failures are reported by Optimal SWIM when there are over 25 nodes,
see Figure 5.5d. Fifth, both Baseline and Optimal Lighthouse show a tremendous increase of
Bytes sent per second when the size of the cluster increases. Meanwhile, Optimal SWIM is
relatively stable as it does not increase at the same pace, see Figure 5.5f.

(a) Average Full Dis-
semination (ms)

(b) Average First De-
tection (ms)

(c) False Positive Rate
(%)

(d) Undetected Failure
Rate (%)
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(e) Total Messages Sent (f) Message Load (Bps)

Figure 5.5: Scalability potential for Baseline, Optimal Lighthouse,
and Optimal SWIM by varying the number of nodes in the cluster
from 10 to 75. The result is the average score from three simulations
for each algorithm configuration.

Lastly, while running experiments on scalability, the number of threads that were used
by arbitrary nodes was observed, see Figure 5.6. Note that there is not much variation in the
number of active or daemon threads as the number of nodes increases for any algorithm.

(a) Live Threads (b) Daemon Threads

Figure 5.6: Active threads in one randomly selected node for each
algorithm configuration while varying the number of nodes in the
cluster. The number of threads is the average count from three sim-
ulations for each algorithm configuration.
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Chapter 6

Discussion

This chapter will discuss the results in a bigger context by explaining the impact of the un-
derlying design decisions and threats to their validity.

6.1 Analysis of Results
This section will discuss four aspects of the result: parameter optimisation, variation, link
failures, and scalability.

6.1.1 Parameter Optimisation
Even though parameter tuning shows great potential to increase speed while maintaining rea-
sonable accuracy, it has a couple of pitfalls that should not be neglected. Firstly, performing
parameter optimisation is an extremely time-consuming and computationally heavy process.
In our test environment, a single simulation took roughly 5 minutes. As a result, for the pa-
rameter optimisation, we only ran three simulations for each configuration which ultimately
resulted in 99 experiments that took nearly 8 hours.

Secondly, due to the time-consuming nature of the parameter-tuning process, we had to
reduce the number of tested parameters for both the algorithms and the experimental setup.
For example, we only simulated a cluster with 10 nodes and a network with a 10% probability
of link failure. Limiting the scope of the parameter tuning turned out to have a larger impact
than expected as we accidentally ended up tuning the algorithms too hard on the specific
environment. On one hand, Optimal Lighthouse and Optimal SWIM initially showed great
potential to replace Baseline as they outperformed it in all metrics except message load, see
Figure 5.2 and Table 5.2. However, when varying the size of the cluster and the probability
of link failure, there is a completely different story as Baseline is a lot more stable, see Figure
5.5 and 5.4. In conclusion, while parameter tuning shows great potential, it is crucial to tune
the system in an experimental setup as close to the real world as possible.
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6.1.2 Variation
In regards to variation, it is evident that Baseline is the most stable configuration as it shows
a low variety in results, see Figure 5.3. This section will discuss three reasons why some
algorithms generate more variety than others to better understand the algorithm’s strengths
and weaknesses.

Firstly, Optimal Lighthouse varies about as little as Baseline while Optimal SWIM is
varying a lot for the two-speed metrics, see Figure 5.3a and 5.3b. One explanation for this
behavior is that SWIM either succeeds on the direct ping or it chooses to probe k members
for help. Meanwhile, Optimal Lighthouse and Baseline only directly ping another member,
i.e. it does not ask anyone for help if the ping fails. Therefore, SWIM has two alternative
outcomes while Baseline and Optimal Lighthouse only have one which ultimately leads to
more variation for SWIM.

Secondly, both Optimal SWIM and Optimal Lighthouse produce false positives while
Baseline does not, see Figure 5.3c. One of the reasons for this is arguably, as described in
Section 6.1.1, that both Optimal SWIM and Optimal Lighthouse was tuned too hard in the
parameter optimisation which causes them to be more aggressive.

Lastly, Optimal SWIM sends a lot fewer messages and bytes per second compared to Base-
line and Optimal Lighthouse, see Figure 5.3e and 5.3f. However, even though Optimal SWIM
puts less pressure on the network, its pressure still varies more than its competitors. One of
the explanations why Optimal SWIM sends fewer messages per second is that Optimal SWIM
only sends the delta, i.e. only the identified changes in membership state, while Baseline and
Optimal Lighthouse always send the full state. That means that Optimal SWIM will send
more data when a change has occurred compared to when nothing has changed which leads
to more variety.

6.1.3 Link Failure
Optimal SWIM shows promising results in a network that is more prone to link failures,
see Figure 5.4. First of all, it is once again important to note that both Optimal SWIM and
Optimal Lighthouse had a narrow suspicion duration which ultimately makes them fast, but
have some false positives, see Figure 5.4c. Furthermore, one of the reasons why SWIM is better
in a network more prone to link failures is that it probes k members, i.e. asks neighbouring
nodes for help if the first direct ping fails. Meanwhile, Optimal Lighthouse and Baseline will
suspect the node on the other side of the failed link, and there is a race against suspicion
duration if the suspected node is able to refute the suspicion. This trend is visible in Figure
5.4c as Optimal SWIM’s false positive rate is not increasing as rapidly as Optimal Lighthouse.

6.1.4 Scalability
As Neo4j aims to support larger cluster sizes in the future it is important to consider how
well each algorithm scales as the number of nodes increases. All algorithms have a decreased
average full dissemination speed when increasing the cluster size. This trend is reasonable as
there are more nodes that have to receive the update and more pings that have to be made to
propagate the information across the cluster, see Figure 5.5a.
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One observation in Figure 5.5b is the fact that the first detection speed for the optimised
algorithms decreases below its suspicion duration while Baseline’s detection time remains
somewhat constant. The suspicion duration is 10s for Optimal Lighthouse and 20s for Op-
timal SWIM. This happens due to the fact a node is suspected before the crash actually hap-
pened and since it died it will not oppose the suspicion, as it would do in the case that the
node was alive. This contributes to the fact that the suspicion duration is started before the
crash occurred and better detection time is observed. The situation becomes more apparent
when the number of nodes increases and more pings are made by more nodes. To summarise,
the algorithms’ detection speed does not become worse when varying the cluster size and
they can therefore be considered scalable.

The parameter optimisation used two metrics, first detection speed, and false positives
rate, to determine the optimal parameters for each algorithm. The first detection speed of
the algorithms was shown to be scalable. However, the false positives rate in Figure 5.5c
presents another perspective on whether or not the chosen parameters are scalable. The false
positive rate increases from 0% to above 20% for Baseline when increasing the cluster size.
But, for the optimised algorithms the false positive rate ends with a value above 80%. A false
positive rate above 80% is unacceptable in this context, where a majority of the determined
kills are incorrect. That shows that the optimised algorithms do not scale well regarding the
false positive rate. This is due to the fact that the suspicion duration of the Optimal SWIM
and Optimal Lighthouse is too narrow. Earlier on in the section, it was concluded that the
dissemination speed became slower while increasing the cluster size, i.e. that it takes a longer
time to propagate information around the cluster. It results in that it takes a longer time
for a node to receive the suspected state, oppose it, and propagate its alive state back to the
node that was originally suspecting it. This behavior is observed when comparing Optimal
Lighthouse and Baseline, and the only difference between them is the suspicion duration.
With Baseline’s suspicion duration, it has a false positive rate above 20% when cluster size is
75 and Optimal Lighthouse has a rate above 80%. Nodes have a chance to refute the suspicion
with Baseline and not with Optimal Lighthouse.

Considering the network load, it is reasonable that the total messages sent increase with
the cluster size, as Figure 5.5e shows. All the algorithms roughly send the same number of
messages, even with the fact that Optimal SWIM has a longer protocol period, which means
that Optimal SWIM makes fewer direct pings per second to the selected node. Since Optimal
SWIM sends an indirect ping to two other nodes and they in turn send ping requests, the
number of messages sent by the SWIM algorithm increases.

Even though the number of messages sent by the algorithms is the same, there is a big
difference in the message load between Optimal SWIM and the Lighthouse-based algorithms
when varying the cluster size, see Figure 5.5f. Baseline and Optimal Lighthouse’s trend is
an exponential increase with the cluster size and on the contrary for Optimal SWIM, the
trend is more a linear increase. Since the number of sent messages is approximately the
same between the algorithms, the only thing that can differ is how much data is sent. The
difference between the SWIM and Lighthouse algorithms regarding what is data sent is that
Lighthouse sends the full state list, the length of it increases with the cluster size, and SWIM
only propagates update messages around the cluster. This means that SWIM shows great
potential for scalability regarding message load.

To summarize, all algorithms show scalability when considering full dissemination and
first detection speed. However, regarding the false positive rate, Baseline is the only algo-
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rithm that has a reasonable rate, the other ones have too narrow suspicion duration which
contributes to a large false positive rate. Looking at the network load, Optimal SWIM is
the only algorithm whose message load does not increase exponentially. Since the optimised
algorithms’ rate of false positives is insufficient, Baseline remains the only choice when con-
sidering the best algorithm that is scalable.

As seen in Figure 5.5d, SWIM reports a lot of undetected failures when the cluster size
increases. This is alarming since it is does not satisfy the requirements of a scalable failure
detector. On the other hand, Neo4j does not use larger clusters at the moment so it is cur-
rently not a problem, but it will be in the future. One possible hypothesis is that it was not
run long enough so that the failures are detected. However, due to a lack of time and granular
logs, we have not yet been able to identify what causes this behaviour and we leave this for
future work.

6.2 Limitations and Threats to Validity
When evaluating algorithms it is important to identify threats that can affect the validity of
the results. During the evaluation of the algorithms, we identified three threats.

The first threat of the results is that the parameter tuning was made too narrow, i.e.
too few combinations were tested. As a result, the obtained results may not portray the
algorithms accurately as the chosen parameters may not have been realistic enough.

Secondly, due to time-consuming and computationally heavy simulations, the test had
to be relatively short which ultimately made the results more vulnerable to outliers. For
example, the false positive rate in a small test may appear larger than it actually is as it is
heavily dependent on the random seed. Let’s say that we detect 4 crashes in a small test and
1 is a false positive. Then we get a 25% false positive rate. Meanwhile, this may just have
been unlucky as we might also just have gotten 1 false positive in a test with 100 crashes.
However, it is also important to note that perhaps it could have been the other way - perhaps
we were lucky. We tried to mitigate this by running three simulations for each test but we
were limited due to time.

Lastly, while running the simulation, each node had roughly 40 active threads regardless
of the cluster size, see Figure 5.6. When increasing the cluster size to 75 nodes this results in 3
000 threads in total. The effect of this is that there will be a lot of context switches between
threads since the computer used for evaluation cannot run all those threads concurrently.
A computer can run a specified number of threads concurrently and when the number of
threads exceeds that number, the computer switches between the threads on which one to
execute. It may appear that the threads are running concurrently but in reality, they are to
some extent running sequentially. This behavior may result in delays and timing issues as the
threads that need to refute suspicion allegations could be idle. This is why it would be a wise
decision to migrate the simulation engine to the cloud where each node could be run on a
separate server.
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Chapter 7

Conclusion

This chapter will present our conclusions to the research questions and provide ideas on
possible future work.

7.1 Research Questions
RQ 1: What Are the Strengths and Weaknesses of Baseline?

Baseline, i.e. the Lighthouse failure detector with the initial parameters, shows great stabil-
ity and high accuracy in clusters with 10 to 75 nodes. However, the parameters have not yet
been optimised for Neo4j as they are solely based on the pre-defined parameters in Akka.
Therefore, it is arguably slow due to the long suspicion duration of 30s.

RQ 2: Which Alternative Algorithms Exist and How Do They Compare to Baseline?

After researching related work it was discovered that well-established vendors in the industry
leverage the SWIM algorithm and the φ failure detector. Neo4j is also using SWIM as Light-
house is a modification of it. Compared to Baseline, the optimised SWIM and Lighthouse
reduced the detection and dissemination speed while maintaining a reasonable accuracy for
clusters with 10 nodes. Furthermore, SWIM generates a considerably lower network load
compared to its competitors. While investigating the scalability potential it was evident that
both Optimal Lighthouse and Optimal SWIM were tuned too hard which gave an insuffi-
cient false positive rate. Therefore, Baseline could be considered a conservative choice while
both Lighthouse and SWIM are more aggressive.
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RQ 3: How Can Neo4j Improve Their Usage of Failure Detection Algorithms?

While the Lighthouse-based algorithms show potential of great speed and accuracy, they gen-
erate a lot of network load. Therefore, a simple improvement can be to propagate state up-
dates rather than the full membership list similar to SWIM. Meanwhile, there are two more
demanding ways that Neo4j can improve its use of failure detectors: by finding each algo-
rithm’s optimal parameters and by developing a more advanced evaluation engine. Firstly,
it shows that parameter tuning has great potential to improve a failure detector’s perfor-
mance. Perhaps even better potential than the choice of algorithm. Secondly, to find optimal
parameters, a testing environment that allows more systematic and consistent real-world
simulations is required.

7.2 Future Work
Due to the limited scope of this thesis, there are five additional ideas that we identified to be
interesting topics for future work as we did not have time to complete them.

Firstly, migrate the simulation engine to the cloud and run each node on its own server.
Not only would this more accurately simulate a real network, but it would also allow more
comprehensive testing and parameter tuning as simulations could be run over a longer time
in the background. As a result, outliers could potentially be mitigated as their impact on the
final result is minimized when more tests are conducted.

Secondly, investigate how more input could be added to the parameter optimisation pro-
cess to be able to find the optimal configurations that are performing better on more aspects,
not only first detection speed and false positive rate. For example, by considering more met-
rics and several experimental setups, e.g. varying latency and cluster sizes, in order to find
parameters that perform well in different environments.

Thirdly, while Optimal SWIM shows great potential, it still lags behind Optimal Light-
house. However, SWIM could be improved further which may make it even better than
Optimal Lighthouse. For example, SWIM can be less dependent on its defined parameters
and more adaptable to varying networks by implementing the Lifeguard extension. More
specifically, Lifeguard adapts its timeouts during the execution based on the node’s health.

Further on, to provide a more accurate experiment setup a further improvement would
be to monitor Neo4j’s real networks to create an experimental setup that is more similar
to the real world. E.g. by measuring the actual number of lost packets, round-trip time,
and the usual number of nodes that fail. In the current approach, the parameters of the
experimental setup were solely based on discussions with the team and not a decision based
on data. A more realistic experimental setup would contribute to a more accurate evaluation
of the failure detection algorithm.

Lastly, Neo4j has the ambition to support clusters with up to 100 nodes and their cus-
tomers may want clusters with varying sizes, from 5 to 100 nodes. Hence, it would be in-
teresting to further research how to dynamically adjust the algorithms to the cluster size to
avoid the need for tuning parameters for different deployments.
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Hur hittas fel i distribuerade system?

POPULÄRVETENSKAPLIG SAMMANFATTNING Hannes Brinklert, Johan Åkerman

Distribuerade system används idag allt mer för att köra applikationer som ställer högre
krav på prestanda och pålitlighet. Denna studie har undersökt hur Neo4js världs-
ledande grafdatabaser kan bli mer pålitliga med hjälp av feldetetekteringsalgoritmer.

Distribuerade system består av geografiskt åt-
skilda noder som är ihopkopplade med länkar över
ett nätverk. Vad noderna i fråga faktiskt är vari-
erar på användningsområdet. I Neo4js fall är varje
nod en server som kör en eller flera databaser.
En av de större ingenjörsutmaningarna med dis-
tribuerade system är samarbete då alla noderna
har sin egen syn på systemet som en helhet. Felde-
tekteringsalgoritmer används för att lösa detta
problem genom att hitta noder som inte fungerar
som de ska, se exempel nedan.

I detta examensarbete har vi under fem må-
nader samarbetat med företaget Neo4j som ligger
i framkant inom grafdatabaser. Mer specifikt så
har vi undersökt två alternativa vägar framåt för
att förbättra Neo4js feldetektorer som i sin tur
ökar pålitligheten av databaserna som används av
75% av Fortune 100 företag. Det första alterna-
tivet bestod av att optimera valet av parametrar
i Lighthouse, företagets redan existerande algo-
ritm. Det andra alternativet var att ersätta Light-

house med en ny algoritm med namn SWIM. Den
största skillnaden mellan Lighthouse och SWIM är
att i SWIM tar en nod hjälp av sina grannar och
skickar mindre och mer relevanta meddelanden.

Den ursprungliga Lighthouse-algoritmen använ-
des som en referenspunkt och jämfördes mot en
parameteroptimerad version av både Lighthouse
och SWIM. De tre konfigurationerna utvärderades
i ett simulerat nätverk som utsattes för tre olika
typer av fel: krasch, länk och fördröjningsfel.

Under simuleringen utvärderades de tre algo-
ritmerna utifrån tre perspektiv: snabbhet, träff-
säkerhet och belastning på nätverket. Resultatet
visar att den ursprungliga Lighthouse-algoritmen
är skalbar och pålitlig men långsam. Jämfört med
den etablerade referenspunkten så är den parame-
teroptimerade Lighthouse-algoritmen 61.6% snab-
bare på att hitta fel men något mindre träffsäker
(5%). Samtidigt är den nya SWIM-algoritmen nå-
got snabbare än referenspunkten (26.5%) men be-
tydligt mindre träffsäker (15.4%). En viktig ob-
servation är att SWIM utsätter nätverket för be-
tydligt mycket mindre trafik vilket blir särskilt
uppenbart i distribuerade system med fler noder.
Den något överraskande slutsatsen som kunde
dras från resultatet är att optimering av algorit-
mernas parametrar har större påverkan än själva
valet av algoritm.
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