
Privacy preserving biometrics authentication in

IoT devices using homomorphic encryption

AMIR DAWD SEID
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

A
M

IR
 D

A
W

D
 SEID

Privacy preserving biom
etrics authentication in IoT

 devices using hom
om

orphic encryption
LU

N
D

 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-970
http://www.eit.lth.se

Privacy preserving biometrics authentication in
IoT devices using homomorphic encryption

Amir Dawd Seid
am4801se-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Qian Guo

Examiner: Thomas Johansson

May 23, 2024

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This thesis investigates the application of the Cheon-Kim-Kim-Song (CKKS) scheme
in designing a privacy-preserving biometric authentication system in line with ISO
24745:2022 standard. Utilizing the Microsoft SEAL library the thesis integrates
state-of-the-art facial recognition models to design client-to-cloud and cloud-to-
client authentication systems. The solution is implemented in C++ and is tailored
for IoT devices with constrained resources as a client while leveraging cloud com-
puting for scalability and enhanced computational power. Given optimal security
parameters, the implementation demonstrates that the system can authenticate
users within five seconds.

Keywords: Homomorphic Encryption, Privacy-preserving, Biometric authenti-
cation, Microsoft SEAL, CKKS, DeepFace, OpenCV

i

ii

Populärvetenskap

Föreställ dig att du närmar dig en dörr och den låser upp sig automatiskt utan
att någonsin veta exakt vem du är? I examensarbetet har vi utforskat huruvida
detta är genomförbart och vilka tekniska finesser möjliggör att en användare kan
autentisera sig på ett säkert och integritetsbevarande sätt.

I takt med att vår värld blir alltmer digitaliserad ökar även behovet av säker-
hetssystem som skyddar användares personliga information. Mitt examensarbete
med titeln Privacy preserving biometrics authentication in IoT devices using ho-
momorphic encryption har fokuserat på att utforska hur kryptering kan användas
för att skapa en ny typ av autentiseringssystem som både är säkert och som re-
spekterar användarnas integritet. Krypteringstekniken är revolutionerande på ett
sätt att man faktiskt kan göra beräkningar medan data är i krypterad form. Låter
för bra att vara sant... men hur är detta möjligt?

Tekniken heter homomorfisk kryptering och vars namn kommer från antika
grekiskan. Det översätts till ”homo” samma och ”morf” form eller struktur. Alltså,
datan bibehåller sin struktur även när den är i krypterad form. Homomorfisk
kryptering är banbrytande teknik som möjliggör operationer på krypterade data
utan att någonsin avkoda den. Detta innebär att känslig information såsom per-
sonnummer eller biometrisk information kan bearbetas utan att någon obehörig får
tillgång till den faktiska datan. Den nya krypteringstekniken utvecklas hela tiden
och öppnar dörren för diverse användarfall och appliceringsmöjligheter. Det finns
olika implementationer av krypteringstekniken. CKKS är en sådan implementa-
tion och är optimerad för beräkningar på reella tal, vilket passar oss perfekt då vi
arbetar med reella-tal när vi får ut biometrisk information ur ansiktsigenkännings
modeller.

Studiens resultat visar att detta tillvägagångssätt inte bara höjer säkerhet-
snivån utan också erbjuder en unik lösning på det klassiska dilemmat mellan in-
tegritet och tillgänglighet. Med CKKS kan vi utföra komplext autentiseringsar-
bete på ett sätt som tidigare inte varit möjligt och detta öppnar dörren för säker
biometrisk autentisering.

Examensarbetet har tagit ett steg närmare att lösa några av de mest pressande
digitala säkerhetsutmaningarna som vårt samhälle står inför idag. Det är en spän-
nande tid för både teknik och integritetsbevarande åtgärder. Framtiden ser ljus
ut för vidare utveckling och implementering av dessa avancerade kryptografiska
metoder.

iii

iv

Acknowledgement

I want to express my gratitude to my supervisor Marie Åkesson, who listened to
my initial proposal ideas and provided invaluable guidance and dedicated support
throughout my thesis project. I am also thankful to Qian Guo for his supervision
and continuous support. Last but certainly not least, I am grateful to my family
for always being by my side and supporting me unconditionally.

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Objectives . 3
1.4 Contribution . 3

2 Theoretical background 5
2.1 Preliminaries . 5
2.2 Cryptography . 7
2.3 Notion of security . 8
2.4 Fully Homomorphic Encryption . 9
2.5 CKKS encryption scheme . 10
2.6 Biometric authentication . 15
2.7 Biometric evaluation . 17

3 Approach 19
3.1 Architectural overview . 19
3.2 Dataset and tools . 19
3.3 Key generation and distribution . 21
3.4 Admin . 21
3.5 IoT device . 23
3.6 Cloud system . 24
3.7 Access Control Unit . 26

4 Results 29
4.1 Biometric evaluation . 29
4.2 Run-time and memory storage . 32

5 Discussion 37
5.1 Method . 37
5.2 Threat analysis . 39
5.3 Ethics . 39

6 Conclusion and Future Work 41

vii

6.1 Conclusion . 41
6.2 Future work . 41

References 43

A CKKS encoding and decoding 47
A.1 CKKS . 47

B Code examples 49
B.1 Feature extraction. 49
B.2 Key generation . 49
B.3 Encryption . 50
B.4 Dot product . 50
B.5 Squared Euclidean Distance . 51
B.6 Decryption . 51

viii

List of Figures

2.1 Overview of the CKKS scheme. 10
2.2 Feature extraction. 16

3.1 Architectural overview. 20
3.2 Key generation and distribution. 21
3.3 Enrollment process. 22
3.4 Revocation process. 23
3.5 Renewal process. 24
3.6 Identification process. 25
3.7 Cloud computation process. 25
3.8 Authentication process. 28

4.1 Cosine: True Positive and False Positive Distribution. 31
4.2 Cosine: FRR, FAR and EER. 31
4.3 Euclidean: True Positive and False Positive Distribution. 32

ix

x

List of Tables

4.1 Feature extraction for a recognition model in seconds. 29
4.2 Cosine similarity and observed accuracy of recognition models. 30
4.3 Distance and observed accuracy of recognition models. 30
4.4 Hardware specifications of Raspberry Pi 4 and stationary Desktop. . 32
4.5 Encryption parameters. 33
4.6 Key generation in seconds with 100 iterations. 33
4.7 Encryption in seconds with 100 iterations. 33
4.8 Cosine operation in seconds with 100 iterations. 34
4.9 SED operation in seconds with 100 iterations. 34
4.10 Decryption in seconds with 100 iterations. 35

5.1 Threat analysis. 40

xi

xii

Chapter 1
Introduction

Across many jurisdictions, privacy is a fundamental human right protected by data
privacy regulations like the General Data Protection Regulation GDPR. GDPR
encompasses a wide range of personal data for regulatory protection. That includes
biometric data such as fingerprints, facial recognition, iris and retina, and other
unique biological characteristics. Additionally, GDPR protects information that
can directly or indirectly identify an individual, including but not limited to details
like name, age and home address[1]. In today’s data-driven world, ensuring user
data privacy is not just a regulatory compliance matter but an absolute priority
for organizations and businesses [2]. Therefore, privacy-enhancing technologies are
needed to prevent sensitive data from being breached. A way to preserve the pri-
vacy of sensitive data is through encryption, which in turn requires cryptographic
schemes [3].

1.1 Background

In 2019, a major data breach was discovered by security researchers in a biometric
system. The system was mainly used by government firms, defence contractors,
and banks. The belongings of the biometric system such as fingerprints, facial
recognition information, personal details, and passwords of over 1 million people
were found to be accessible in public databases. The biometric system was designed
as an access control solution to secure facilities such as warehouses and office
buildings. It was later revealed that user information was unprotected and mostly
stored in unencrypted form. Furthermore, researchers stated that the scale of
the breach was alarming due to its widely deployed service located in 1.5 million
locations across the globe [4].

In early 2022, the ISO and IEC revised their standards and guidance on pro-
tecting biometric information, such as fingerprints and facial data, during the
storage, transmission and processing phase. The ISO standard outlines guidelines
and best practices to protect biometric information from unauthorized access, data
breaches, or misuse. The standard proposes methods and tools for ensuring confi-
dentiality, integrity and availability for secure user authentication. The standard
is intended to be used by a wide range of organizations in the public and private
sectors as well as technology vendors and service providers [5].

Homomorphism is a function that holds the same underlying condition given

1

2 Introduction

an arbitrarily performed operation. The word homomorphism is of ancient-greek
origin, homo (same) and morph (form) and roughly translates to same-form. The
concept of privacy homomorphism was first coined by Rivest et al. in 1978, a year
after the well-known crypto algorithm RSA was published [6]. Rivest et al. were
aware of the RSA algorithm’s multiplicative homomorphic property and suggested
some potential applications. However, it took more than 30 years after its initial
introduction to become applicable.

Homomorphic Encryption HE is an encryption method that supports arith-
metic operations in the encrypted domain and is thus used in applications where
privacy-preserving techniques are needed. Assuming m1 and m2 are plaintexts we
want to encrypt, and f(x) is the encryption function. An encryption scheme is
said to be homomorphic if f(m1)∗f(m2) = f(m1∗m2). The first generation of HE
was proposed in 2009 and supported additions and multiplications of encrypted
data. Since then, HE has continuously improved, and its application has been
extensively broadened.

Most asymmetric cryptosystems support one arithmetic operation homomor-
phically like RSA and Elgamal and are called a partial or somewhat homomorphic
scheme. Furthermore, a cryptographic scheme that supports addition and multi-
plication is called fully homomorphic encryption FHE.

Privacy-preserving is a set of techniques and methods used to protect privacy
when collecting, processing, analysing, or storing information of an individual or
organizational entity. This thesis will mainly utilize homomorphic encryption to
preserve data privacy while allowing for cloud-based computations.

1.2 Related work

In recent years, homomorphic encryption as a privacy-preserving technique for bio-
metric authentication has been an active research area. However, most research
papers have focused mainly on partial homomorphic encryption rather than fully
homomorphic encryption. Upmanyu et.al proposed an efficient biometric verifica-
tion system in an encrypted domain by utilizing the multiplicative homomorphic
property of RSA. The system is therefore only limited to multiplication in the
encrypted domain and addition is thus not possible [7].

Blaton et al proposed a biometric authentication protocol that employed a
partially homomorphic encryption scheme, called the DGK encryption scheme.
Their methodology centred around the computation of the Hamming distance be-
tween two iris feature vectors, resulting in remarkable performance outcomes with
a computation time as low as 150 ms. Nonetheless, the protocol was constrained
due to the additive-only nature of the employed encryption scheme [8].

After Gentry’s introduction to the FHE scheme, the first example of biometric
authentication based on the FHE scheme was published by Troncoso-Pastoriza
et.al. The authors proposed a model that outsources the computation of encrypted
facial templates using quasi-fully homomorphic encryption [9].

Later on, Boddeti presented a paper on how to execute secure face matching
using the Fan Vercauteren FHE scheme and obtained practical results by packing
the ciphertexts in a certain way [10]. With the advancements in fully homomorphic

Introduction 3

encryption schemes, including the development of the TFHE library. Pradel and
Mitchell’s research improved the performance and practicality of FHE, making
it more feasible for real-world applications. The proof-of-concept implementation
in the paper used the TFHE library and showcased the underlying operations
necessary for privacy-preserving biometric matching [11].

Jascha Kolberg presented in his PhD dissertation paper extensive research
regarding Biometric Information Protection by utilising HE, building upon the
foundational experiment by Drozdowski et al. (2019) [12]. Kolberg’s study fur-
ther advances the application of HE in biometric systems, particularly on facial
identification leveraging FaceNet, ArcFace and the CKKS encryption scheme in
comparison to other HE schemes, demonstrating the evolving field of secure bio-
metric processing.

1.3 Objectives

The main objectives of the thesis are to conduct a research-oriented literature study
and consequently implement a proof-of-concept end-to-end privacy-preserving access-
control solution tailored for IoT devices. Furthermore, the thesis will evaluate ob-
tained end-to-end results based on performance, and real-world applicability and
then discuss the threats that pose to its security.

The security requirements for the proposed biometric authentication system
in this thesis will be based on ISO:24745/2. Additionally, privacy requirements
are presented to ensure that our solution is privacy-preserving.

1. Security requirements

(a) Protect against unauthorized access (confidentiality).

(b) Guard the consistency and accuracy of biometric data (integrity).

(c) Deny access if required. (revocability).

(d) Issue a new authorization access (renewability).

(e) Accessible when resources are requested by an authorized entity (avail-
ability).

2. Privacy requirements

(a) Biometric template information cannot be traced back to an individual
(irreversibility)

(b) Two biometric templates across different platforms deployed on the
system shall not be linkable (unlinkability).

(c) Prevent unauthorized access that threatens privacy leaks (confiden-
tiality).

1.4 Contribution

Privacy-preserving authentication using HE is a research topic that has already
been established. However, this thesis proposes a practical device-to-cloud and

4 Introduction

cloud-to-device proof-of-concept implementation using the CKKS scheme. The
thesis will evaluate the presented solution by studying the run-time performance,
accuracy and most importantly how secure the system is. Consequently, the the-
sis proposes algorithms to perform computation on the cloud for secure privacy-
preserving biometric authentication. Results presented in the thesis will also con-
tribute to a better understanding and grounded implementation strategy when
designing a privacy-preserving biometric system.

Chapter 2
Theoretical background

This chapter will introduce the basics and ground elements of abstract algebra
and cryptology. Hence, the concepts are essential to understanding the contents
of this paper. After introducing the core concepts, the theoretical background
of homomorphic encryption, particularly the CKKS scheme, will be described
in detail. Lastly, this chapter will conclude with the theoretical background of
biometric authentication.

2.1 Preliminaries

2.1.1 Number theory

1. N: Represents all natural numbers such as {0, 1, 2, 3, ...}.

2. Z: Denotes whole numbers i.e. {..., -2, -1, 0, 1, 2, ...}.

3. Q: Represents a number that can be expressed as the quotient of two integer
numbers, assuming a and b ∈ Z, Q := a

b , where b ̸= 0.

4. R: A number that can be expressed as a continuous decimal expansion.

5. C: A number that can be expressed as a + bi, where a and b ∈ R and i is
defined as

√
−1 that satisfies i× i = −1.

2.1.2 Abstract algebra

Abstract algebra is a field study of algebraic structures, in which for instance
groups, rings, fields, and lattices are included. In this section sets, groups, and
rings will be described briefly.

Set

A Set S is a collection of objects called elements or members and is noted using
a curly bracket. Assuming S = {1, 2, 3, 4, ...}, properties of S can be noted as
S = {x ∈ Z | 1 divides x} and is read as S consists of integer elements such that
each element is divisible by one.

Assuming T is a set and each element in T is an element in S, we denote that
as T ⊂ S, meaning T is contained in or is a subset of S [13].

5

6 Theoretical background

Map

A map f is a rule that assigns each element of T to an element in S. A map
f is denoted as, f : T → S, whereas T is the domain and S codomain. For a
specific element x in T , a value that gets mapped to an element in S is denoted
as x 7→ f(x), where f is the rule or function and f(x) is the resulting output.

Group

A group G is a map of sets that operates two elements in G and results in the
third element within G, meaning ∗ : G ∗G→ G.

For a set to be defined as a group, it needs to fulfil the following requirements:

• G is closed, a ∗ b ∈ G, ∀a, b ∈ G.

• G is associative, meaning a ∗ (b ∗ c) = (a ∗ b) ∗ c. ∀ a, b, c ∈ G.

• Identity element exists in G i.e. ∃ 1 , 1 ∈ G, 1 ∗ a = a ∗ 1 = a. ∀a, a ∈ G.

• There is an inverse in G, a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 = 1

A group that has commutative property meaning, a ∗ b = b ∗ a is called an Abelian
group, ∀a, b ∈ G. If we assume G = Z, an integer group that has additive operation
is denoted as (Z,+) [13].

Ring

A ring R is a set that is equipped with two binary operations referred to as addition
+ and multiplication ∗. A ring has to satisfy the following conditions.

• R is an abelian group under additive operation, meaning a + b = b + a,
∀a, b,∈ R and the identity element is 0, where 0 ∈ R and satisfies a + 0 =
0 + a = a, ∀a ∈ R.

• R is associative under multiplication, a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ R and
there exists an identity element under multiplication, 1 ∈ R, 1∗a = a∗1 = a
∀a ∈ R.

• Distributive property applies under addition and multiplication, meaning
a ∗ (b+ c) = a ∗ b+ a ∗ c∀ a, and a, b, c ∈ R.

Homomorphism

Homomorphism is a map or a function that preserves the same operation and
structure between groups, rings, or vector spaces. Assuming we have two groups
i.e. G and H, and f as a function, f : G→ H. A map is said to be homomorphic
if it fulfils the following equivalence: f(x ∗ y) = f(x) ∗ f(y) ∀x, y ∈ G. Addition-
ally, the function must preserve the same underlying structure under addition and
multiplication for rings, furthermore vector addition and scalar multiplication for
vector spaces [14].

Theoretical background 7

Embedding

An embedding is a function that maps elements from one mathematical structure
into another while preserving structural properties. Assuming G and H are groups,
then an embedding σ : G → H would ensure that for any g1, g2 ∈ G, then the
relation σ(g1∗g2) = σ(g1)∗σ(g2) still holds in H and the homomorphic property is
still preserved. Furthermore, if σ is bijective then there is an isomorphism between
G and H.

Polynomial ring

A polynomial in one variable over a ring is defined as f(x) =
∑n

i=0 aix
i, where

an ̸= 0 and each coefficient ai ∈ R and the degree of f(x) is determined by n.
The set of all such polynomials forms a polynomial ring, denoted as R[X]. A
polynomial is said to be monic if its leading coefficient is 1. For instance, the
polynomial ring with integer coefficients is denoted as Z[X] [14].

Cyclotomic polynomial

A cyclotomic polynomial is a monic irreducible polynomial over Q with integer
coefficients whose roots are the primitive nth roots of unity. The complex nth
roots of unity are defined as the solution to xn = 1, represented as e2iπ

k
n for

k = 0, 1, 2, ..., n− 1. The n-th cyclotomic polynomial is defined as follows:

Φn(x) =
∏

1≤k<n
gcd(k,n)=1

(x− e2iπ
k
n) (2.1)

Where k and n are relatively prime numbers [15].

2.2 Cryptography

Cryptography is the study and the techniques required for two parties to communi-
cate securely in the presence of a third party often referred to as an adversary. The
importance of protecting information has been a priority since ancient times. The
Scytale was a tool used by ancient Spartans to transmit information concerning
their military campaigns. Another notable method is the Ceasar Cipher, one of
the earliest cryptographical schemes that can be dated back to 100 BC and was an
encryption scheme that used the alphabet system, wherein each letter was shifted
to the right or left N times to produce a ciphertext and is referred as shift-cipher
[16].

Building upon these foundational principles of safeguarding information, modern-
day cryptographic techniques have evolved to be significantly more advanced and
secure. There are two main types of cryptographic schemes, symmetric and asym-
metric key-based cryptography.

8 Theoretical background

2.2.1 Symmetric cryptography

In symmetric key cryptography, the same key is used to encrypt and decrypt a
message. This means that the sender and the receiver must both possess the same
key to communicate securely. Examples of symmetric key algorithms include AES
and DES [17].

Symmetric key algorithms are prevalent due to their speed and memory effi-
ciency and are well-suited for bulk data encryption. However, one major limitation
of symmetric key cryptography is the need for the sender and receiver to share a
secret key. This can be problematic when the parties do not have initiated secure
communication channels.

2.2.2 Asymmetric cryptography

Asymmetric key cryptography also referred to as public key cryptography, uses a
pair of keys. The public key is used to encrypt a message, while the private or secret
key is used to decrypt the message. This allows for secure communication without
the need for the sender and receiver to share the same secret key. Examples of
asymmetric key algorithms include RSA, ElGamal and ECC.

Asymmetric key algorithms are slower and less efficient than symmetric ones,
though they offer several advantages. One major benefit is the public key can be
shared openly, while the private key remains secret. This enables secure commu-
nication without the need for a pre-existing relationship between the sender and
receiver. Asymmetric key algorithms are used for digital signatures, which are
utilised to authenticate the identity of the sender and the integrity of the message.

2.3 Notion of security

The notion of cryptographic schemes refers to the mathematical foundations that
underlie the various algorithms and protocols used in cryptography. These schemes
are designed to be computationally difficult, requiring significant time and re-
sources to solve. This makes it difficult for adversaries to break the encryption
and access the protected information [17].

2.3.1 Factoring problem

One well-known cryptographic challenge is the Integer Factoring Problem. This
involves finding the prime factors of a large composite integer. The security of
many modern cryptographic algorithms in public-key cryptography is based on the
assumption that factoring large composite integers is computationally infeasible.
This computational difficulty ensures that an adversary cannot easily determine
the original message from its encrypted version. For instance, the RSA scheme is
based on this problem.

2.3.2 Discrete Logarithm Problem

Another critical challenge in cryptography is the Discrete Logarithm Problem.
This involves determining an integer x that satisfies the equation y = gx mod p,

Theoretical background 9

where g and p are known constants, and y is a given value. The security of cryp-
tographic algorithms such as the Diffie-Hellman key exchange and the ElGamal
encryption system relies on the assumption that solving the Discrete Logarithm
Problem is computationally infeasible for large values of p.

2.3.3 Lattice Problem

A third example within cryptographic foundations is the Ring Learning with Er-
rors RLWE problem. This problem is not about finding an integer x but rather
involves solving for polynomial rings over finite fields that satisfy an equation
of the form a(x) · s(x) + e(x) = b(x) mod q, where a(x), e(x), b(x), and q are
known, and s(x) is the secret polynomial to be determined. The security of vari-
ous post-quantum cryptographic algorithms leverages the assumption that solving
the RLWE problem is computationally infeasible. RLWE-based schemes are funda-
mental in constructing modern cryptographic algorithms and protocols, especially
if aiming for security against quantum computer-based attacks. RLWE is based
on a hard lattice problem and is viewed as post-quantum secure.

2.4 Fully Homomorphic Encryption

Fully homomorphic encryption is a public key-based encryption scheme that en-
compasses arbitrary homomorphic properties. In 2009 Craig Gentry introduced
the first FHE scheme in his Ph.D. thesis titled A FULLY HOMOMORPHIC EN-
CRYPTION SCHEME [18]. Before Gentry’s breakthrough, HE schemes could
either perform addition or multiplication, but not both operations simultaneously.
FHE schemes are defined through the following key generation, encryption, de-
cryption and evaluation circuit algorithms.

• KeyGen(λ): Probabilistic algorithm that takes in a parameter λ and out-
puts sk and pk.

• Encrypt(m, pk): Probabilistic algorithm that takes in a message m, the
public key pk and results in a ciphertext c.

• Decrypt(c, sk): Deterministic algorithm that takes in c, sk and produces
m.

• Evaluate(f , c1 ... cn; pk): Takes in pk, n amounts of ciphertexts c1...cn
and a computational circuit f .

2.4.1 First Fully Homomorphic scheme

The first FHE scheme starts by constructing a somewhat-HE scheme, which is lim-
ited to low-degree polynomials. The limitation is mainly due to some noise added
to the ciphertext for security purposes and the noise grows after each computa-
tion which results in a larger overhead and affects the performance. Furthermore,
the scheme has limited multiplicative depth, meaning there is a limitation on how
much computation one can perform and when the noise reaches a certain threshold,
the decryption algorithm will not yield the correct result.

10 Theoretical background

To tackle the issue of increasing noise overhead, Gentry proposed a method
called bootstrapping. Bootstrapping is a technique used to refresh the ciphertext
by encrypting the secret key and running the decryption evaluation homomorphi-
cally. This procedure is performed iteratively and recursively to reduce the noise
overhead of the ciphertext, thus allowing unlimited computation on encrypted
data.

Although Gentry’s FHE scheme was groundbreaking, it took about 30 mins
to perform two-bit operations and therefore was impractical to be applied in real-
world applications [18].

There have been many refinements and improvements after Gentry’s first in-
troduction to FHE. Researchers have proposed improved FHE schemes that are
much more efficient, and some of them are now practical enough for specific real-
world applications. Some of them are NTRU, BGV, BFV TFHE and the CKKS
scheme. In the upcoming section, we will describe the CKKS scheme extensively
as it is our underlying choice for implementation.

2.5 CKKS encryption scheme

Cheon-Kim-Kim-Song CKKS is an encryption scheme that offers arithmetic oper-
ations on encrypted messages. Although other homomorphic encryption schemes
can only operate on integers, CKKS allows the process of floating point num-
bers and supports approximated operations such as addition, multiplication and
scaling. The scheme operates by encoding and scaling up input floating-point
numbers using a pre-chosen scaling factor parameter ∆ to transform them into
integers. The resulting output of the encrypted message is then scaled down using
the same scaling factor ∆−1 to produce an approximated plaintext [19].

Figure 2.1: Overview of the CKKS scheme.

CKKS suits our application because biometric templates are often represented
as floating point vectors.

Theoretical background 11

2.5.1 Simple encoding

CKKS uses polynomial rings with complex coefficients to encode input vector
messages, called plaintext. The vector consists of floating-point numbers and is
mapped into a cyclotomic polynomial ring that facilitates arithmetic operations
on encrypted data. The scheme takes in input vector z of size N/2, denoted as
z = [z1, z2, ..., zN/2] ∈ CN/2, where N is a power-of-two integer.

The input vector z ∈ CN/2 is then mapped into a cyclotomic polynomial ring
m(X) = C[X]/ΦM (X) = C[X]/(XN+1), where N in this case the degree modulus
of m(X).

The encoding procedure takes the input vector message z and the scaling factor
α > 1. The choice of α influences the precision and the number of homomorphic
operations that can be performed due to the growth of noise within the ciphertext.

Embedding

An embedding is a mathematical structure contained within another structure that
still preserves its algebraic properties. We will start by embedding the polynomial
m(x) into an input vector for a better understanding. In this section we assume,
m(x) ∈ C[X]/(XN + 1).

σ : C[X]/(XN + 1)→ CN (2.2)

The embedding process is done by evaluating the encoded polynomial m(X)
on values that are the roots of unity for ΦM (X) = XN+1, where M = 2N and the
N-th root is given such as e2iπ

K
M , where K = {1, 3, ..., 2N − 1} is an odd exponent

that ensures that all N distinct roots of unity that are needed for the canonical
embedding are used.

σ(m) = (m(e2iπ
K0
M),m(e2iπ

K1
M), ...,m(e2iπ

Kn
M) = [z1, z2, ..., zn] = z (2.3)

The embedding process is isomorphic, meaning the input vector will be mapped
to a unique polynomial and the polynomial will be mapped to a distinct input
vector.

Inverse embedding

To map the input vector z ∈ CN into cyclotomic polynomial m(X) we use the
following inverse embedding:

σ−1 : CN → C[X]/(XN + 1) (2.4)

To encode the input vector into a polynomial we need to find a polynomial
m(X) such that m(X) =

∑N−1
i=0 αiX

i ∈ C[X]/(XN + 1), given the input vector
z ∈ C[X] and that satisfies σ(m) = z. This entails that we need to find the
coefficients αi and thus solve the following equation.

N−1∑
k=0

αk(e
2iπ 2n−1

M)k = zn, n = {1, .., N} and M = 2N. (2.5)

12 Theoretical background

This results in a linear equation that can be solved as Aα = z, A representing the
Vandermonde matrix of (e2iπ

2n−1
M)n=1,...,N . We define ζ = (e

iπ
n) and α being the

polynomial coefficient and z the input vector to be encoded.

A =

ζ0 ζ1 ζ2 · · · ζn

(ζ3)0 (ζ3)1 (ζ3)2 · · · (ζ3)n

1 (ζ5)1 (ζ5)2 · · · (ζ5)n

...
...

...
. . .

...
1 (ζ2n−1)1 (ζ2n−1)2 · · · (ζ2n−1)n

 (2.6)

To obtain the coefficients we solve the following equation.

α = A−1zT (2.7)

In this section we mapped complex input vectors z ∈ CN/2 into a cyclotomic
polynomial ring C[X]/(XN + 1). However, we need to do more steps to map
z ∈ CN/2 into Z[X]/(XN+1). In the upcoming steps we will denote Z[X]/(XN+1)
as R.

2.5.2 Full encoding

Full encoding ensures that the encoded polynomials have integer coefficients, which
is necessary for the CKKS scheme to leverage the properties of polynomial integer
rings. Therefore, we will map the input values of z ∈ CN/2 to R.

Inverse projection

Assuming H satisfying the following condition H = {(zj)j∈Z∗
M

: zj ∈ C, zj =
z−j ,∀j ∈ Z∗

M}. The set H defines the conjugate symmetry when evaluating polyno-
mials at the roots of unity. Then we define the natural projection as π : H→ CN/2.

The inverse projection is then π−1 : CN/2 → H, such that [z1, ..., zn
2
] →

[z1, ..., zn].

Scaling

To adjust the precision and scale of the plaintext coefficients, the vector z is scaled
by a factor ∆ ∈ Z+.

z′ = ∆ · ẑ (2.8)

where z′ ∈ ∆ · CN/2.

Lattice projection

Direct projection σ : R = Z[X]/(XN + 1) → σ(R) ⊆ H is not possible, as not
every element of H is in σ(R). Although σ defines an isomorphism from R to
σ(R), it is not surjective onto H.

However, we can project the vector z′ ∈ V onto the lattice of the ring R.
The isomorphism V is given by

V : L(Z[X]/(XN + 1))→ Z[X]/(XN + 1) (2.9)

Theoretical background 13

and is expressed in terms of the orthogonal lattice basis. The vector z′ is
denoted as z′ = [z′1, . . . , z

′
n] and is represented as a linear combination of the basis

vectors Ai, with each Ai being the i-th column of the Vandermonde matrix A.
The coordinate vector a = (a1, a2, . . . , an) is obtained by computing the dot

product of z′ and Ai, shown below.

a =

(
(z′, A1)

(A1, A1)
, . . . ,

(z′, An)

(An, An)

)
(2.10)

The projection is completed by rounding each coordinate value in a to the
nearest integer.

a→ ⌈a⌋ (2.11)

Decoding

For decoding, we apply the inverse of the encoding process.

z = π ◦ σ
(
m(X)

∆

)
(2.12)

where the canonical embedding σ is applied to m(X) divided by the scaling
factor. The natural projection π reduces the resulting vector to CN/2, giving us
the approximated input vector.

See Appendix A.1 for the full encoding and decoding procedure. A.1

2.5.3 Key generation

Before delving deeper into the key generation process, let’s introduce the following
distributions. First, consider the discrete Gaussian distribution DG(σ2), where the
standard deviation σ is positive. We sample a vector in ZN , where each coeffi-
cient is independently chosen from the discrete Gaussian distribution based on the
variance σ2. Another distribution is the hamming weight sampling distribution
HWT (h) that is represented as the set of vectors in {−1, 0, 1}N , whose hamming
weight i.e. non-zero values are exactly h. Furthermore, we have the distribution
ZO(ρ), where ρ ∈ R and 0 ≤ ρ ≤ 1. The distribution picks each entry in the
vector {−1, 0, 1}N , for picking {±1} the probability is ρ/2 and 1− ρ for {0}.

The cyclotomic polynomial ring is R = Z[X]/(XN +1), as denoted in previous
section. Furthermore, RqL = ZqL[X]/(XN + 1).

Initialization

Based on a security parameter λ, we pick M , where M = 2k and is function of
M = M(λ, qL), pick h = h(λ, qL) and P = P (λ, qL) where h and P are integers.
Choose σ = σ(λ, qL), where σ ∈ R.

Secret key

We sample s← HWT (h). The secret key sk is then sampled as sk ← (1, s).

14 Theoretical background

Public key

Sample a← RqL , e← DG(σ2) and b← −a ∗ s+ e mod qL. Then the public key
pk is sampled as pk ← (b, a) ∈ R2

qL .

Evaluation key

Sample a′ ← RPqL , e′ ← DG(σ2) and b′ ← −a′ ∗ s+ e′ + Ps2 mod (PqL). Then
the evaluation key evk is sampled as evk ← (b′, a′) ∈ R2

PqL
. P is the same value

as chosen in the initialisation phase.

2.5.4 Encryption

The encryption algorithm encrypts the message m with the public key pk, a value
v sampled from v ← ZO(0.5) and error values e0, e1 ← DG(σ2) .

The ciphertext c = Encpk(m) = v ∗ pk + (m+ e0, e1) (mod qL)

2.5.5 Arithmetic operation

Considering the following ciphertexts c1, c2 ∈ R2
qℓ

, addition is then simply done
by summing the ciphertexts under mod qℓ. However, both ciphertexts must have
the same scaling factor α with the following assumption: α < ℓ < L.

add(c1, c2) = c1 + c2 mod qℓ (2.13)

For multiplication, we use the evaluation key evk. The evaluation or relin-
earization key as it is also referred to is mainly used to minimise the growth of
noise during multiplication. Also here, we assume the scaling factor is the same
for c1 and c2. Furthermore, we consider that c1 = (b1, a1) and c2 = (b2, a2). If we
multiply c1 and c2 component-wise, we get the following.

x0 = b1b2 (2.14)
x1 = b1a2 + a1b2 (2.15)

x2 = a1a2 (2.16)

multevk(c1, c2, evk) = (x0, x1) + ⌊P−1 ∗ x2 ∗ evk⌉ mod qℓ (2.17)

P−1 is the multiplicative inverse of P introduced in 2.5.3 and is used to adjust
the scaling of the result after multiplication.

2.5.6 Rescaling

The rescaling procedure decreases the ciphertext by one level. For c ∈ R2
qℓ

.

RSℓ→ℓ′(c) =

⌊
c · qℓ

′

qℓ

⌉
mod q′ℓ (2.18)

where ℓ′ = ℓ− 1

Theoretical background 15

2.5.7 Decryption

The ciphertext c, represented as as c = (b, a) is decrypted using the secret key
sk ← (1, s). The decryption process is as follows:

decsk(c) = b+ as mod qℓ (2.19)

2.6 Biometric authentication

Biometrics encompasses data that uniquely identify an individual based on their
physical traits and behavioural characteristics, such as fingerprints, facial pat-
terns, iris structure, and voice [5]. Biometric authentication, involves using these
biometric credentials for identity verification in various security applications.

Biometric systems are built upon three main processes: enrollment, identifi-
cation and verification.

2.6.1 Enrollment

Enrollment is the first process an individual presents biometric data such as facial
patterns. The system extracts specific features from the raw biometric data to
create a unique biometric template using recognition models.

Recognition models

This thesis will utilise four recognition models as our underlying biometric facial
recognition models, GhostFaceNets, ArcFace, SFace and FaceNet. The recognition
model’s accuracy is based on the LFW dataset.

• GhostFaceNets, published in 2023 is a model tailored for devices with
limited memory and computational resources with state-of-the-art accuracy
of 99.8667% [20].

• ArcFace is a model built upon deep neural networks through an angu-
lar margin loss, significantly improving face verification and identification
performance. The model was published in 2018 and has 99.83% accuracy
[21].

• SFace is a privacy-friendly recognition model trained on synthetic data.
The model was made public in 2022 and scored 99.13% [22].

• FaceNet is a model from 2015 that is trained on mapping facial images to
their respective representations in Euclidean space. The model reported an
accuracy of 99.63% [23].

Feature extraction

Feature extraction in recognition models involves a deep learning model, used to
identify and isolate key attributes from raw facial images. This step transforms
high-dimensional image data into a one-dimensional vector space [12].

16 Theoretical background

Figure 2.2: Feature extraction.

Feature normalization

Feature normalization is a pre-processing step that transforms the biometric tem-
plate vector into a normalized vector that maintains its original direction but is
scaled to lie on the unit sphere. This step helps standardize the range of feature
values.

X̂ =
X

∥X∥
(2.20)

where ∥X∥ =
√

X2
0 +X2

1 + ...+X2
n and is defined as the euclidean norm of X.

2.6.2 Identification and verification

The identification process searches the biometric features collected from a user
against a database of enrolled biometric templates. This step determines if the in-
dividual’s features match any of the profiles in the database. The system identifies
the individual directly or lists potential matches if multiple individuals are found
[5]. The verification process challenges the identity claim by providing raw data
to match a specific template enrolled in the system. Consequently, the outcome of
both identification and verification processes in biometric systems is based on the
degree of similarity between the incoming biometric data and the stored templates.

Cosine similarity

Cosine similarity measures the cosine of the angle between two vectors in a multidi-
mensional space, a metric used to determine how similar the vectors are regardless
of their length or magnitude. In biometric systems, cosine similarity is used to
compare normalized vectors of extracted features. The outcome of cosine similar-
ity ranges between [−1, 1], where -1 indicates that the vectors are diametrically
opposite of each other, 0 orthogonal thus no correlation and 1 means they have
the same orientation therefore full correlation [23].

cos(θ) =
X · Y
∥X∥∥Y ∥

(2.21)

where ∥X∥ and ∥Y ∥and are the euclidean norms of X respective Y . Alternatively,
the cosine function can be reformulated as:

cos(θ) = X̂ · Ŷ (2.22)

Theoretical background 17

When X and Y are normalised.

Euclidean distance

Euclidean distance measures the distance between two points in a multidimensional
space. The Euclidean distance is often used to assess the dissimilarity between
feature vectors representing different individuals.

d(X,Y) =

√√√√ n∑
i=1

(Xi − Yi)2 (2.23)

City Block distance

The City Block distance, also referred to as the Manhattan distance measures the
sum of the absolute differences between two points and their Cartesian coordinates.
The Manhattan distance is useful for comparing features that require aggregation
of linear distances rather than geometric distances.

dManhattan(X,Y) =

n∑
i=1

|Xi − Yi| (2.24)

2.7 Biometric evaluation

Biometric evaluation is the process that assesses the performance of a biometric
system. It involves verifying how well the system can recognize and confirm a user
by studying the key metrics described below.

2.7.1 False Acceptance Rate

False Acceptance Rate FAR quantifies the probability that the system will incor-
rectly authorize an access attempt by an unauthorized user.

FAR =
Total False Acceptance
Total False Attempts

(2.25)

2.7.2 False Rejection Rate

False Rejection Rate FRR is a measure of the likelihood that the system will
incorrectly reject an access attempt by an authorized user.

FRR =
Number of false rejections

Total number of genuine authentication attempts
(2.26)

2.7.3 ROC curve

The Receiver Operating Characteristic ROC curve is a graphical plot that illus-
trates the diagnostic ability of a binary classifier system as its threshold is varied.
The curve plots the True Positive Rate TPR against the False Positive Rate FPR

18 Theoretical background

at various threshold settings. The ROC curve is used to illustrate the trade-off
between the system’s sensitivity TPR and specificity 1− FPR, which provides a
comprehensive overview of the system’s performance across different thresholds.

TPR =
True Positives

True Positives + False Negatives
(2.27)

FPR =
False Positives

False Positives + True Negatives
(2.28)

Chapter 3
Approach

This section will start by describing the architectural overview of the overall mod-
ules in our system, inspired by the ISO/IEC 24745 standard on biometric infor-
mation protection. Moreover, this section will showcase the design and structural
interplay between different modules in our biometric system to preserve data pri-
vacy security.

3.1 Architectural overview

The solution in our thesis is largely inspired by the Model K store distributed/-
compare distributed framework, as described in the ISO/IEC 24745:2022 stan-
dard. This model serves as the foundation for our system’s design, ensuring that
the storage and comparison of biometric data are distributed across client and
server entities to maintain the privacy of user information. By leveraging the
CKKS scheme, our architecture enables secure computations on encrypted data
by ensuring that sensitive biometric information remains encrypted throughout
the process. The decision is based on the cosine similarity and Euclidean dis-
tance, computed homomorphically on the cloud side. See Figure 3.1 for a detailed
illustration.

3.2 Dataset and tools

3.2.1 LFW

We utilize the Labeled Faces in the Wild LFW dataset to evaluate our biometric
authentication system. This dataset provides a collection of facial photographs of
celebrities and contains 13233 images of 5749 unique individuals and is designed for
facial verification. The photos were collected from the web and represent a broad
range of real-world conditions with variations in lighting, pose and background
[25]. The LFW dataset is thus a suitable resource for testing the robustness of
our privacy-preserving biometric authentication system under varied and realistic
conditions.

19

20 Approach

Figure 3.1: Architectural overview.

3.2.2 SEAL

Simple Encrypted Arithmetic Library SEAL is an open-source, cross-platform
homomorphic encryption library in modern standard C++. The library is easy to
compile and integrate into different platforms and applications and supports the
BGV, CKKS and BFV homomorphic schemes [26].

SEAL will be used as an underlying library in our project for both key gen-
eration and the execution of homomorphic computations required by the CKKS
scheme.

3.2.3 Blake3

Blake3 is a cryptographic hash function that builds on Blake2 and the enhance-
ments of the Chacha stream cipher. Blake3 was announced in 2020 and is designed
to be secure and fast, outperforming SHA-3 and Blake2 in terms of speed. Con-
sequently, we have chosen Blake3 as the hash function to hash the static UUID
in our solution. The library is implemented in C and Rust and is licensed under
CC0 and Apache Licence [27].

3.2.4 OpenCV

Open Source Computer Vision Library OpenCV is a real-time computer vision
library developed by Intel. The library is under an open-source BSD license and
supports Windows, Linux, Mac OS, and Android. OpenCV is written in C++ and
has Python, Java, and MATLAB interfaces. The library supports a wide range

Approach 21

of applications in machine vision, including facial recognition technology, gesture
recognition, and motion tracking [28].

The IoT device in our biometric authentication system utilizes OpenCV to
process real-time video, captured through its onboard camera that mainly focuses
on detecting faces and then triggering other subprocesses.

3.2.5 DeepFace

DeepFace is an open-source lightweight facial recognition library wrapped in state-
of-the-art models such as GhostFaceNet, Google FaceNet, Facebook DeepFace,
SFace and ArcFace [29].

3.3 Key generation and distribution

The key generation and distribution is an integral part of our solution and handles
the creation, storage and distribution of the private, public, relinearisation and
galois keys of the CKKS scheme. The key generation process is therefore performed
upon the initialisation phase of the system by the Access Control Unit ACU. The
ACU stores the private key within its secure element, while CKKS parameters
such as scaling factor, context and public keys are sent to the IoT device and
Admin over secure TLS communication. Furthermore, relinearisation and galois
keys as well as the CKKS parameters are distributed to the Cloud System to
enable computations on encrypted data.

Figure 3.2: Key generation and distribution.

3.4 Admin

The Admin has a pivotal role in our solution and ensures that the enrollment pro-
cess adheres to the guidelines set by ISO/IEC 24745, safeguarding the integrity and
confidentiality of biometric data from the initial stages of user registration. The
Admin also manages the revocation of user access to protect against unauthorized

22 Approach

access and ensures that resources are only accessible to authorised users. More-
over, the renewability of credentials is also handled by the admin for maintaining
system security and user access legitimacy over time.

We have proposed a Unique User Identifier UUID to identify users with dis-
tinct letters or numbers that distinguish them from others. The identifier can for
instance be a card serial number.

3.4.1 Enrollment

The enrollment process in our biometric authentication system starts with the
user providing a UUID to the Admin. This identifier is then securely hashed
using Blake3, enhancing user anonymity. Following this, the user’s facial image
is captured via OpenCV and forwarded to DeepFace for feature extraction. The
extracted features are normalized by the Admin and encrypted using the SEAL
library with a public key.

The encrypted data and the hashed identifier are transmitted securely over
TLS to the Cloud System, which forwards it to the Database for storage. The
database confirms the outcome of the storage operation back to the Cloud System,
which then informs the Admin of the success or failure of the process.

Figure 3.3: Enrollment process.

3.4.2 Revocation

The revocation process is a crucial security measure designed to remove access
permissions, for instance, events of a security breach or simply the user no longer
encompasses access rights. The sequence begins with the Admin, who holds a
hashed version of the user’s UUID.

When the revocation process is initiated, the Admin instructs the Cloud Sys-
tem to revoke the user’s access permissions. The Cloud System then communicates

Approach 23

with the Database to remove all records associated with the user’s UUID.
The Database executes the removal of the user data and returns a success or

failure message to the Cloud System, which then forwards this outcome back to
the Admin.

Figure 3.4: Revocation process.

3.4.3 Renewability

When there is a need for biometric updates, the renewal process is initiated by
the Admin. The User then confirms the update and provides new biometric char-
acteristics. The Admin verifies identities and coordinates with the Cloud System
to check eligibility through the Database. If the user is eligible, meaning the
user is already enrolled on the system. The Cloud System updates the biometric
credentials and notifies the Admin of the outcome.

Credential renewal is a key requirement that the system needs to fulfil, which
helps to protect against vulnerabilities and adapt to ongoing changes in biometric
data, as people age and their biometric characteristics change with time.

3.5 IoT device

The IoT device is the primary interface for user identification claims and access
control. The IoT device runs on a Linux operating system equipped with a camera
and a subsystem that grants access if the identification process is successful.

3.5.1 Identification

The identification process is initiated when a user approaches the IoT device for
an identity claim. The user provides its UUID and biometric characteristics to

24 Approach

Figure 3.5: Renewal process.

the device. Subsequently, the device employs a model to extract features, nor-
malises the data, and then encrypts it using the public key. The encrypted data
is transmitted to the cloud over TLS communication.

3.6 Cloud system

The Cloud System’s role is to store user credentials such as biometric references
and perform homomorphic computations during identity authentication. Utiliz-
ing a cloud-based architecture allows scalability, where the biometric system can
easily adapt to an increasing number of users and data without compromising
performance. Moreover, the architecture ensures continuous availability whenever
in need of access.

3.6.1 Operation under encryption

Performing operations under encryption allows us to calculate affinity and similar-
ity metrics between encrypted vectors represented by the extracted and normalised
biometric data. This approach is essential in preserving the confidentiality of user
data throughout the computational process.

The CKKS scheme implemented on the SEAL library allows us to perform
vector addition, subtraction and multiplication, corresponding to polynomial op-
erations of encrypted numbers. It is possible to divide encrypted data by a constant
value by multiplying it with its multiplicative inverse. However, SEAL inherently
does not support division directly on encrypted data due to the lack of a method to
translate the division of polynomials into corresponding operations under encryp-
tion. Some research papers try to solve this issue mathematically by approximating
the division operation.

Approach 25

Figure 3.6: Identification process.

Figure 3.7: Cloud computation process.

26 Approach

Cosine Similarity

We employ cosine similarity to measure the orientation, meaning the angle be-
tween biometric references to assess their closely relatedness. To simplify cosine
similarity computation under encryption, we have normalised the feature vectors
representing user biometric reference before encryption. Namely, we only have to
compute the dot product of the two encrypted vectors homomorphically and thus
we don’t have to perform division under encryption. The algorithm is presented
below.

Algorithm 1 Dot Product
1: procedure dotProduct(x, y) ▷ x and y are encrypted vectors.
2: initialize: encProducts
3: for i = 0 to size(x)− 1 do
4: encProducts[i]← x[i] ∗ y[i]
5: relinearize(encProducts[i])
6: rescale(encProducts[i])
7: end for
8: encSum← encProducts[0]
9: for i = 1 to size(encProducts)− 1 do

10: rotated← rotate(encProducts[i], i)
11: encSum← encSum+ rotated
12: end for
13: return encSum
14: end procedure

Squared Euclidean Distance

Microsoft SEAL does not support the computation of square roots on encrypted
data, which leads us to apply alternative approaches for operations that tradition-
ally require this function. An alternative approach for calculating the Euclidean
distance is to compute the Squared Euclidean Distance (SED) instead. This ap-
proach still achieves the primary objective of determining the magnitude or dis-
tance between two vectors in space and implies that we can compute the proximity
between encrypted vectors. However, the ACU still needs to calculate the square
root after decryption.

3.7 Access Control Unit

The Access Control Unit (ACU) handles the key generation described in 3.3,
and the authentication process, which are the most pivotal parts of our privacy-
preserving solution.

Approach 27

Algorithm 2 Squared Euclidean Distance
1: procedure SED(x, y) ▷ x and y are encrypted vectors.
2: encDistSquared← encrypt(0)
3: for i← 1 to n do
4: encDiff ← x[i]− y[i]
5: encSqDiff ← encDiff2

6: relinearize(encSqDiff)
7: rescale(encSqDiff)
8: encDistSquared← encDistSquared+ encSqDiff
9: end for

10: return encDistSquared
11: end procedure

3.7.1 Authentication

The authentication process is designed to ensure secure and controlled access based
on encrypted data verification and threshold comparisons. This step plays a pivotal
role in our access control solution, hence it controls what, when and where users
should have access. The sequence begins with the Cloud System transmitting
encrypted computed data to the ACU.

The ACU then checks the integrity and confidentiality shared by the Cloud
System and proceeds with decryption. The ACU, utilising the SEAL library com-
municates with the Secure Element over a secure D-BUS communication to fetch
the private key, which is provided with a limited duration to enhance security.

The core of the authentication mechanism is the threshold comparison per-
formed by the ACU. It measures whether the decrypted data meets the predefined
criteria. Depending on this evaluation, the ACU sends an outcome to the con-
nected IoT Device, OK if the outcome is below the threshold or a Fail if above.

Upon receiving the result from the ACU, the IoT validates the integrity of the
message and delegates a command to the Lock/Unlock subsystem within the IoT
device. The subsystem either unlocks for a limited time, if the result is OK or
remains in its default locked state if Fail. Subsequently, the subsystem provides
feedback and informs the user of the current status.

The IoT device logs all identity claims and their respective outcomes to main-
tain a detailed audit trail, which can be used for troubleshooting.

28 Approach

Figure 3.8: Authentication process.

Chapter 4
Results

This chapter aims to evaluate the performance of the biometric verification process
by analysing the accuracy and reliability, operational efficiency and resource uti-
lization. The evaluation will focus on key metrics such as the runtime for key gen-
eration, feature extraction and encryption, template retrieval and overall system
runtime. Memory usage will also be analysed, given its significance in determining
the scalability and deployability of biometric systems in different environments.

4.1 Biometric evaluation

4.1.1 Feature extraction

Feature extraction is done at the initial stages of the authentication process. This
phase involves analyzing and converting an image containing facial features into
a biometric template represented as a vector z. Therefore, using 100 images from
the LFW dataset we have presented the average run-time and standard deviation
for the used recognition model in 4.1.

Model µIoT σIoT µAdmin σAdmin

GhostFaceNet 8.34 · 10−1 1.39 · 10−1 1.07 · 10−1 2.18 · 10−2

SFace 1.56 · 10−1 3.56 · 10−2 1.91 · 10−2 2.70 · 10−3

ArcFace 1.01 1.95 · 10−1 8.57 · 10−3 1.62 · 10−2

FaceNet 1.04 1.67 · 10−1 1.22 · 10−1 2.46 · 10−2

Table 4.1: Feature extraction for a recognition model in seconds.

4.1.2 Verification

The verification process is supervised and is based on a set of labelled image pairs.
Each pair is marked with a binary identifier indicating whether the images are of
the same person (True) or different (False). We then used the recognition models
to extract features and computed the cosine similarity distance. We calculated
the mean distance value and the standard deviation for the true positive and false
positive predictions.

29

30 Results

• True Positives TP ∼ N (µTP , σ
2
TP)

• False Positives FP ∼ N (µFP , σ
2
FP)

Where N represents the Normal or Gaussian distribution and µ, σ mean re-
spective standard deviation.

The threshold x is the value at the intersection between the probability density
functions of the TP and FP used to decide the authenticity of a user. It can be
computed by solving the equation where the probability density functions are
equal:

1

σTP

√
2π

e
− (x−µTP)2

2σ2
TP =

1

σFP

√
2π

e
− (x−µFP)2

2σ2
FP (4.1)

However, this is a difficult equation to solve numerically, thus we approach it
empirically by optimising the threshold x that minimizes the absolute difference
between the Gaussian distributions as:

xthreshold = argmin
x

∣∣∣∣∣ 1

σTP

√
2π

e
− (x−µTP)2

2σ2
TP − 1

σFP

√
2π

e
− (x−µFP)2

2σ2
FP

∣∣∣∣∣ (4.2)

After obtaining the threshold we determine the accuracy of the chosen models.

Accuracy =

(
Number of Correct Predictions
Total Number of Predictions

)
× 100% (4.3)

Cosine similarity

Model µTP σTP µFP σFP xthreshold Accuracy
GhostFaceNet 0.344 0.105 0.950 0.089 0.670 99.03%

SFace 0.297 0.093 0.862 0.101 0.569 99.35%
ArcFace 0.330 0.119 0.961 0.097 0.674 99.67%
FaceNet 0.19 0.058 0.909 0.139 0.41 99.67%

Table 4.2: Cosine similarity and observed accuracy of recognition
models.

Euclidean distance

Model µTP σTP µFP σFP xthreshold Accuracy
GhostFaceNet 26.18 4.15 45.59 3.61 36.46 99.35%

SFace 8.109 1.127 13.76 1.25 10.81 98.06%
ArcFace 3.342 0.6654 6.0551 1.3903 4.455 99.03%
FaceNet 7.148 1.1383 15.7423 1.6176 10.772 99.35%

Table 4.3: Distance and observed accuracy of recognition models.

Humans can correctly distinguish faces with 97.53% accuracy [30].

Results 31

(a) GhostFaceNet. (b) SFace.

(c) ArcFace. (d) FaceNet.

Figure 4.1: Cosine: True Positive and False Positive Distribution.

(a) GhostFaceNet. (b) SFace.

(c) ArcFace. (d) FaceNet.

Figure 4.2: Cosine: FRR, FAR and EER.

32 Results

(a) GhostFaceNet. (b) SFace.

(c) ArcFace. (d) FaceNet.

Figure 4.3: Euclidean: True Positive and False Positive Distribution.

4.2 Run-time and memory storage

The run-time benchmark was performed on Raspberry Pi 4 for key generation
and encryption. The cloud homomorphic operations were done on a stationary
desktop. The hardware specification of the machines used in this thesis looks as
in 4.4.

Machine Type CPU RAM
Raspberry
Pi 4

IoT client and
ACU

ARM Cortex-A72
64-bit 4-Core @
1.5GHz

8GB
LPDDR4-
3200
SDRAM

Desktop Admin and Cloud
System

AMD Ryzen 9
5900X 64-bit
12-Core Processor
@ 3.7 GHz

64GB
DDR4 3200

Table 4.4: Hardware specifications of Raspberry Pi 4 and stationary
Desktop.

Results 33

4.2.1 Key generation

The ACU mainly handles the key generation process in our proposed solution.
The parameters for the encryption scheme are experimentally chosen. 4.5

N max bit-length coeff-size ∆

1024 27 {27} -
2048 54 {27,27} -
4096 109 {27,27,27,27} 240

8192 218 {60,40,40,60} 250

16384 438 {60,60,40,40,40,40,60,60} 260

32768 881 {60,60,60,60,40,40,40,40,40,40,40,40,60,60,60,60,60} 260

Table 4.5: Encryption parameters.

The results of the key generation for the secret, public, Galois and relinearisa-
tion are shown in the table below. 4.6

N µACU σACU SK PK ReKey GalKey
1024 - - - - - -
2048 2.92 · 10−2 6.80 · 10−4 17KB 35KB 35KB 688KB
4096 5.9 · 10−2 1.64 · 10−3 69KB 137.6KB 412.6KB 9MB
8192 5.46 · 10−1 6.9 · 10−3 235KB 469KB 1.4MB 33.5MB
16384 4.971 2.71 · 10−1 918KB 1.8MB 12.8MB 336MB
32768 27.689 1.044 3.6MB 7.3MB 110MB 3.09GB

Table 4.6: Key generation in seconds with 100 iterations.

4.2.2 Encryption

Encryption run-time for the IoT device and Admin are illustrated in 4.7.

N µIoT σIoT µAdmin σAdmin Ciphertext
1024 1.82 · 10−3 3.42 · 10−4 3.48 · 10−4 4.08 · 10−6 8.6KB
2048 4.81 · 10−3 2.20 · 10−3 8.43 · 10−4 5.12 · 10−6 17.3KB
4096 1.36 · 10−2 1.73 · 10−3 2.36 · 10−3 1.89 · 10−4 103KB
8192 2.69 · 10−2 2.27 · 10−3 4.89 · 10−3 9.07 · 10−5 334KB
16384 1.07 · 10−1 6.19 · 10−3 1.68 · 10−2 9.92 · 10−4 1.5MB
32768 3.30 · 10−1 3.49 · 10−2 4.64 · 10−2 1.02 · 10−3 6.8MB

Table 4.7: Encryption in seconds with 100 iterations.

34 Results

4.2.3 Computation under encryption

This section shows the computational run-time for the dot product and Squared
Euclidean Distance measurements under encryption.

Cosine similarity

We performed the dot product between the normalised and encrypted vectors to
perform cosine similarity and the outcome is presented in 4.8.

N µCloud σCloud Ciphertext
1024 - - -
2048 - - -
4096 2.525 2.08 · 10−2 69.3KB
8192 5.318 6.06 · 10−2 235KB
16384 20.815 1.7 · 10−1 1.3MB
32768 153.441 2.89 · 10−1 6.3MB

Table 4.8: Cosine operation in seconds with 100 iterations.

Squared Euclidean Distance

The results of the SED computation are shown in 4.9.

N µCloud σCloud Ciphertext
1024 - - -
2048 - - -
4096 1.780 1.43 · 10−2 69.3KB
8192 3.512 4.46 · 10−2 235KB
16384 11.834 1.03 · 10−1 1.3 MB
32768 67.612 4.64 · 10−1 6.3MB

Table 4.9: SED operation in seconds with 100 iterations.

4.2.4 Decryption

The ACU executes the decryption process during user authentication and the run-
time results are presented in 4.10.

Results 35

N µACU σACU

1024 - -
2048 - -
4096 4.07 · 10−3 5.57 · 10−5

8192 1.20 · 10−2 2.11 · 10−4

16384 4.38 · 10−2 5.36 · 10−4

32768 1.45 · 10−1 1.57 · 10−3

Table 4.10: Decryption in seconds with 100 iterations.

36 Results

Chapter 5
Discussion

This chapter will discuss the architectural design and implementation of a privacy-
preserving biometric authentication system based on the Microsoft SEAL library
and CKKS as an underlying homomorphic scheme. Moreover, we will reflect on
utilising the ISO 2474:2022 standard as an outline for our client-to-server and
server-to-client implementation and evaluate the biometric system.

5.1 Method

Implementing a client and server-based privacy-preserving biometric system as
demonstrated in this thesis is feasible. The main challenge encountered during this
thesis project is that it requires an extensive study to fine-tune which recognition
model to choose. Also, selecting appropriate parameters for the CKKS scheme
that give accurate results and acceptable run-time for user verification.

5.1.1 ISO:24745/2 objectives

Security

The CKKS scheme enables computation on encrypted biometric data without
exposing the underlying biometric template. This ensures that the data remains
encrypted throughout its lifecycle and thus protects against unauthorized access
and maintains its confidentiality. Moreover, we rely on the TLS protocol for our
client and server-based communication for data integrity.

The UUID proposed earlier works as a tool to enroll, identify, revoke, and
renew user credentials. The UUID plays a pivotal role during the verification pro-
cess, hence it is crucial when looking for a specific user already enrolled in the
database. Furthermore, we rely on a cloud solution with reliable and distributed
availability to mitigate risks such as DDoS attacks, power outages, and natural
disasters. By leveraging cloud infrastructure, we ensure that the biometric in-
formation remains accessible across multiple geographic locations and operational
environments.

37

38 Discussion

Privacy

Feature extraction models offer a degree of irreversibility for biometric data. How-
ever, using the DeepFace library it’s still feasible to deduce characteristics like
gender, race, and age. Therefore, we rely on the CKKS scheme to provide a more
secure form of irreversibility. This ensures that even if someone accesses the en-
crypted ciphertext, they cannot retrieve the original biometric template without
the correct decryption key.

Furthermore, the scheme will result in two different ciphertexts when the same
biometric input is provided. Hence, infeasible to link two encrypted templates
belonging to the same individual and thus unlinkability is ensured.

The CKKS scheme also ensures that the biometric template remains encrypted.
Only authorized entities with decryption keys can access the original data, securing
personal information against unauthorized access and potential privacy breaches.

5.1.2 Dataset

We have chosen the LFW as our main dataset. Although the LFW dataset repre-
sents photos not taken in controlled environments there is still a lack of variability
in lighting, poses, and expressions compared to recently created datasets such as
Flickr-Faces-HQ FFHQ. Moreover, the LFW is getting outdated and contains
images with low resolution.

Therefore, we evaluated the biometric system by combining images from the
LFW dataset, photos from the DeepFace library and celebrity images freely avail-
able on the web in addition to the two datasets.

5.1.3 Facial recognition

We have chosen four facial recognition models with reported high accuracy to
benchmark the biometric system. GhostFaceNet and ArcFace produce a vector z
of size 1× 512, while SFace and Facenet yield a vector of size 1× 128.

We have obtained a high accuracy rate using the recognition models. However,
this result should be taken with a grain of salt because we have used about 30
celebrities with labelled tests that verify the pairs. Altogether, we had 310 tests
each test containing image pairs and a binary label indicating if the pairs are of
the same person or not.

Furthermore, we actively chose not to implement VGG-Face because it outputs
a vector of size 1 × 4096 and other facial recognition models were not selected
because they had lower reported accuracy rates. GhostFaceNet is as of 2023 state-
of-the-art recognition model tailored for IoT devices, which is reflected in table
4.1 when compared with other models.

5.1.4 Authentication

As mentioned earlier, it is feasible to implement a privacy-preserving biometric au-
thentication system that can verify a user within five seconds, given the hardware
setup described in the thesis. We have selected a polynomial degree of N = 4096,

Discussion 39

and the scaling factor ∆ is set to 240. Additionally, GhostFaceNet has been cho-
sen as the recognition model. Below, we provide an estimate for the verification
process.

verification = feature extraction + encryption + computation + decryption (5.1)

cosine = 0.834 + 0.136 + 2.525 + 0.00407 = 3.49907 ≈ 3.5 seconds (5.2)

euclidean = 0.834 + 0.136 + 1.780 + 0.00407 = 2.75407 ≈ 2.76 seconds (5.3)

We have also concluded that N = 1024 and N = 2048 are not feasible to select
as a polynomial degree due to their insufficiency for z = 1× 128 and 1× 512.

5.2 Threat analysis

The threat analysis discusses some threats and the proposed countermeasures and
is presented on 5.1.

5.3 Ethics

Ethical considerations in this thesis is of high importance due to the sensitive na-
ture of facial information. Although CKKS enhances privacy by encrypting data,
the recognition models applied can still pose risks of privacy invasion if misused.
Therefore, it’s crucial to ensure that users explicitly consent to their participation
in biometric systems and understand fully how their data will be used. Further-
more, organisations providing the authentication system must uphold transparent
data handling practices to ensure user data privacy is respected.

40 Discussion

Type Threat Countermeasure
T1 Access of private key The private key is stored within a secure

element and leased to the main process
during the verification process.

T2 Fake biometric data
during enrollement

Revoke and renew biometric reference for
the compromised user.

T3 Spoofing facial detec-
tion procedure dur-
ing identification.

Implement liveness detection algorithms
to authenticate the presence of an actual
person rather than an image representa-
tion.

T4 Compromised Admin The ACU performs new key generation
and all previous biometric templates are
revoked.

T5 Compromise of
stored data

Revoke and renew biometric template.

T6 Manipulation during
comparison

Protect the comparison process using a se-
cure TLS channel.

T7 DDoS Analyse data traffic and limit the number
of requests the system will accept from ad-
versaries.

T8 Replay attack Secure TLS channel.
T9 Man In The Middle

Attack
Secure TLS channel.

T10 Biometric hill climb
attack

Secure TLS channel.

Table 5.1: Threat analysis.

Chapter 6
Conclusion and Future Work

6.1 Conclusion

This thesis has successfully demonstrated the feasibility of a privacy-preserving
biometric authentication system utilizing the CKKS homomorphic encryption
scheme and the Microsoft SEAL library. We have structured a framework for
both client-to-server and server-to-client communications by adhering to the ISO
2474:2022 standard for ensuring confidentiality, irreversibility, renewability, un-
linkability and availability that is maintained throughout the biometric data’s
lifecycle. The thesis provided key findings in terms of the run-time benchmark for
computation under encryption and also the accuracy metric of different recognition
models.

6.2 Future work

Future work is to optimise the efficiency of the CKKS scheme, especially com-
putation under encryption. More work is also needed to make approximations
of non-linear functions like square roots for the CKKS scheme. Further research
is needed to explore the integration of multimodal authentication methods that
could enhance security and user convenience. This could include combining facial
recognition with other biometric modalities such as fingerprint scanning or with
multifactor authentication mechanisms like one-time passwords or traditional pass-
words.

41

42 Conclusion and Future Work

References

[1] THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. 2016. on the
protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation.. EUR-Lex. Available at: https://eur-
lex.europa.eu/eli/reg/2016/679/2016-05-04

[2] Krzysztofek, M. 2021. GDPR: Personal Data Protection in the European
Union. Wolters Kluwer Law International. ISBN: 9789403532707. EBOOK
ISBN: 789403532714.

[3] Heinz, C. et al. 2021. Privacy, GDPR, and Homomorphic Encryption. Cham:
Springer International Publishing. Available at DOI: https://doi.org/
10.1007/978-3-030-45316-9_8

[4] Taylor J. 2019. Major breach found in biometrics system used by banks,
UK police and defence firms. The Guardian Media. Available at: https:
//www.theguardian.com/technology/2019/aug/14/major-breach-found-
in-biometrics-system-used-by-banks-uk-police-and-defence-firms

[5] ISO/IEC. 2022) ISO/IEC 24745:2022 Information security, cybersecurity and
privacy protection — Biometric information protection. International Orga-
nization for Standardization (ISO) and International Electrotechnical Com-
mission (IEC)

[6] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. ON
DATA BANKS AND PRIVACY HOMOMORPHISMS. Massachusetts In-
stitute of Technology. Available at: http://people.csail.mit.edu/rivest/
pubs/RAD78.pdf

[7] Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V. 2009. Effi-
cient Biometric Verification in Encrypted Domain. In: Tistarelli, M., Nixon,
M.S. (eds) Advances in Biometrics. ICB 2009. Lecture Notes in Computer
Science, vol 5558. Springer, Berlin, Heidelberg. Available at DOI: https:
//doi.org./10.1007/978-3-642-01793-3_91

[8] Blanton, M., Gasti, P. 2011. Secure and Efficient Protocols for Iris and Fin-
gerprint Identification. In: Atluri, V., Diaz, C. (eds) Computer Security – ES-
ORICS 2011. ESORICS 2011. Lecture Notes in Computer Science, vol 6879.

43

https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1007/978-3-030-45316-9_8
https://doi.org/10.1007/978-3-030-45316-9_8
https://www.theguardian.com/technology/2019/aug/14/major-breach-found-in-biometrics-system-used-by-banks-uk-police-and-defence-firms
https://www.theguardian.com/technology/2019/aug/14/major-breach-found-in-biometrics-system-used-by-banks-uk-police-and-defence-firms
https://www.theguardian.com/technology/2019/aug/14/major-breach-found-in-biometrics-system-used-by-banks-uk-police-and-defence-firms
http://people.csail.mit.edu/rivest/pubs/RAD78.pdf
http://people.csail.mit.edu/rivest/pubs/RAD78.pdf
https://doi.org./10.1007/978-3-642-01793-3_91
https://doi.org./10.1007/978-3-642-01793-3_91

44 References

Springer, Berlin, Heidelberg. Available at DOI: https://doi.org/10.1007/
978-3-642-23822-2_11

[9] J. R. Troncoso-Pastoriza, D. González-Jiménez and F. Pérez-González. 2013.
Fully Private Noninteractive Face Verification. in IEEE Transactions on In-
formation Forensics and Security, vol. 8, no. 7, pp. 1101-1114, July 2013.
Available at DOI: https://doi.org/10.1109/TIFS.2013.2262273.

[10] V. Naresh Boddeti. 2018. Secure Face Matching Using Fully Homomorphic
Encryption 2018 IEEE 9th International Conference on Biometrics Theory,
Applications and Systems (BTAS), Redondo Beach, CA, USA, 2018, pp. 1-10.
Available at DOI: https://doi.org/10.1109/BTAS.2018.8698601.

[11] G. Pradel and C. Mitchell. 2021. Privacy-Preserving Biometric Matching
using Homomorphic Encryption. IEEE 20th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom).
Shenyang, China, 2021, pp. 494-505. Available at DOI: https://doi.org/
10.1109/TrustCom53373.2021.00079.

[12] Kolberg J. 2021. Security enhancement and privacy protection for biometric
systems. Doctoral dissertation, Hochschule Darmstadt, University of Applied
Sciences. [online] pp.99-103. Available at: https://opus4.kobv.de/opus4-h-
da/frontdoor/deliver/index/docId/234/file/PhDThesis_Kolberg.pdf

[13] Drozdowski P, Buchmann N, Rathgeb C, Margraf M, and Busch C. 2019.
On the Application of Homomorphic Encryption to Face Identification. 2019
International Conference of the Biometrics Special Interest Group (BIOSIG),
Darmstadt, Germany. Available at: https://christoph-busch.de/files/
Drozdowski-FaceHE-BIOSIG-2019.pdf

[14] Paulin A. 2019. Introduction to Abstract Algebra (Math 113). University of
California, Berkeley. Available at: https://math.berkeley.edu/~apaulin/
AbstractAlgebra.pdf

[15] Bin Zhang. 2019. A Remark on the Coefficients of Cyclotomic Polynomials.
Southeast Asian Bulletin of Mathematics. Vol. 43 Issue 4, p 615-618.

[16] Johansson T. 2006. LECTURE NOTES IN CRYPTOGRAPHY 2006.
Lund University. Available at: https://www.eit.lth.se/fileadmin/eit/
courses/edi051/lecture_notes/LN2.pdf

[17] Nigel P. Smart. 2016. Defining Security. Cryptography Made Simple.
Available at: Doi https://doi-org.ludwig.lub.lu.se/10.1007/978-3-319-
21936-3_11

[18] Craig Gentry. 2009. A FULLY HOMOMORPHIC ENCRYPTION SCHEME.
Available at: https://crypto.stanford.edu/craig/craig-thesis.pdf

[19] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Ho-
momorphic Encryption for Arithmetic of Approximate Numbers. Advances in
Cryptology. (ASIACRYPT 2017). Springer. pages 409-437. Available at DOI:
https://www.doi.org/10.1007/978-3-319-70694-8_15

https://doi.org/10.1007/978-3-642-23822-2_11
https://doi.org/10.1007/978-3-642-23822-2_11
https://doi.org/10.1109/TIFS.2013.2262273
https://doi.org/10.1109/BTAS.2018.8698601
https://doi.org/10.1109/TrustCom53373.2021.00079
https://doi.org/10.1109/TrustCom53373.2021.00079
https://opus4.kobv.de/opus4-h-da/frontdoor/deliver/index/docId/234/file/PhDThesis_Kolberg.pdf
https://opus4.kobv.de/opus4-h-da/frontdoor/deliver/index/docId/234/file/PhDThesis_Kolberg.pdf
https://christoph-busch.de/files/Drozdowski-FaceHE-BIOSIG-2019.pdf
https://christoph-busch.de/files/Drozdowski-FaceHE-BIOSIG-2019.pdf
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf
https://www.eit.lth.se/fileadmin/eit/courses/edi051/lecture_notes/LN2.pdf
https://www.eit.lth.se/fileadmin/eit/courses/edi051/lecture_notes/LN2.pdf
https://doi-org.ludwig.lub.lu.se/10.1007/978-3-319-21936-3_11
https://doi-org.ludwig.lub.lu.se/10.1007/978-3-319-21936-3_11
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://www.doi.org/10.1007/978-3-319-70694-8_15

References 45

[20] Mohamad Alansari, Oussama Abdul Hay, Sajid Javed, Abdulhadi Shoufan,
Yahya Zweiri, Naoufel Werghi. 2023. GhostFaceNets: Lightweight Face
Recognition Model From Cheap Operations. Available at Doi: https://
www.doi.org/10.1109/ACCESS.2023.3266068

[21] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia,
Stefanos Zafeiriou. 2018. ArcFace: Additive Angular Margin Loss for
Deep Face Recognition. Available at Doi: https://www.doi.org/10.1109/
tpami.2021.3087709

[22] Al-Taie, N. Azeez, A. Basbrain and A. Clark. 2017. The Effect of Dis-
tance Similarity Measures on the Performance of Face, Ear and Palm Bio-
metric Systems.pp. 1-7. Available at Doi: https://www.doi.org/10.1109/
DICTA.2017.8227495

[23] Fadi Boutros, Marco Huber, Patrick Siebke, Tim Rieber, Naser Damer.
(2022). SFace: Privacy-friendly and Accurate Face Recognition using Syn-
thetic Data. Available at Doi: https://doi.org/10.48550/arXiv.2206.10520

[24] Florian Schroff, Dmitry Kalenichenko, James Philbin. 2015. FaceNet: A
Unified Embedding for Face Recognition and Clustering. Available at: Doi:
https://doi.org/10.48550/arXiv.1503.03832

[25] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. La-
beled Faces in the Wild: A Database for Studying Face Recognition in Un-
constrained Environments. University of Massachusetts, Amherst, Technical
Report 07-49, October, 2007. https://vis-www.cs.umass.edu/lfw/

[26] Microsoft Research. 2023.Microsoft SEAL. Version 4.1. Available at: https:
//github.com/Microsoft/SEAL

[27] Jack O’Connor, Samuel Neves, Jean-Philippe Aumasson, Zooko. 2020. Blake3.
Available at: https://github.com/BLAKE3-team/BLAKE3

[28] OpenCV. 2022. Open Source Computer Vision Library. Version 4.7.0. Avail-
able at: https://github.com/opencv/opencv

[29] Serengil, S.I. and Ozpinar A. 2020. LightFace: A hybrid deep face recognition
framework. In: 2020 Innovations in Intelligent Systems and Applications Con-
ference (ASYU), [online] pp.23-27. Available at: https://doi.org/10.1109/
ASYU50717.2020.9259802

[30] NADIA WHITEHEAD. 2014. Face Recognition Algorithm Finally Beats Hu-
mans . [online] Available at: https://www.science.org/content/article/
face-recognition-algorithm-finally-beats-humans

https://www.doi.org/10.1109/ACCESS.2023.3266068
https://www.doi.org/10.1109/ACCESS.2023.3266068
https://www.doi.org/10.1109/tpami.2021.3087709
https://www.doi.org/10.1109/tpami.2021.3087709
https://www.doi.org/10.1109/DICTA.2017.8227495
https://www.doi.org/10.1109/DICTA.2017.8227495
https://doi.org/10.48550/arXiv.2206.10520
https://doi.org/10.48550/arXiv.1503.03832
https://vis-www.cs.umass.edu/lfw/
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/BLAKE3-team/BLAKE3
https://github.com/opencv/opencv
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://www.science.org/content/article/face-recognition-algorithm-finally-beats-humans
https://www.science.org/content/article/face-recognition-algorithm-finally-beats-humans

46 References

Appendix A
CKKS encoding and decoding

A.1 CKKS

In this section, we will give an example of the full encoding and decoding procedure
of the CKKS scheme.

A.1.1 Encoding

We want to encode the vector z = [1, 2] and the scaling factor ∆ is 32.

Natural inverse projection

π−1 : z→ ẑ = [z1, ..., zn
2
]→ [z1, ..., zn

2
, z n

2 +1, ..., zn] (A.1)

and thus ẑ = [1, 2, 2, 1]

Scaling

Here we multiply z with the scaling factor ∆.

z′ = ∆ · ẑ = [32, 64, 64, 32] (A.2)

Lattice projection

The Vandermonde matrix A, found in 2.6 can be constructed using ζ = e
2iπ
2n =

e
iπ
4 , hence the length n of our projected and scaled input vector z′ is 4.

A =

1 1√

2
+ 1√

2
i i − 1√

2
+ 1√

2
i

1 − 1√
2
+ 1√

2
i −i 1√

2
+ 1√

2
i

1 − 1√
2
− 1√

2
i i 1√

2
− 1√

2
i

1 1√
2
− 1√

2
i −i − 1√

2
− 1√

2
i

 (A.3)

Consequently, we obtain the coordinate vector a by using the formula given in
2.10.

a =

(
192

4
,−45.2548

4
,
0

4
,
45.2548

4

)
= (48,−11.3137, 0, 11.3137) (A.4)

47

48 CKKS encoding and decoding

We round a to the nearest integer and get:

a ≈ [48,−11, 0, 11] (A.5)

Thus, we get encoded integer polynomial m(X) = 48− 11X + 11X3

A.1.2 Decoding

Inverse scaling

We re-scale m(X) by diving with ∆.

m(x)′ =
m(X)

∆
= 1.5− 0.3438X + 0.3438X3 (A.6)

Embedding

We evaluate the encoded polynomial m(X)′ on values that are roots of unity, i.e.
ζ = (e

iπ
4).

ẑ = [m(ζ1),m(ζ2),m(ζ3),m(ζ4)] = [1.0138, 1.9862, 1.9862, 1.0138] (A.7)

Projection

In this step we reduce π : ẑ→ z

[1.0138, 1.9862, 1.9862, 1.0138]→ [1.0138, 1.9862] (A.8)

Thus, we get our approximated input vector z = [1.0138, 1.9862].

Appendix B
Code examples

This chapter will demonstrate code examples for the feature extraction using Deep-
Face and then example applications of the CKKS scheme using Microsoft SEAL.

B.1 Feature extraction.

Listing B.1: Feature extraction example in Python.
from deepface import DeepFace
def ext rac t_fea ture (path_to_image) :

return DeepFace . r ep r e s en t (path_to_image , "GhostFaceNet"
) [0] [’ embedding ’]

z = ext rac t_fea ture ("path_to_image")

B.2 Key generation

Listing B.2: Key generation in C++
#include <iostream>
#include <vector>
#include " s e a l / s e a l . h"
void generate_keys () {

EncryptionParameters parms (scheme_type : : ckks) ;

s i z e_t poly_modulus_degree = 4096 ;
parms . set_poly_modulus_degree (poly_modulus_degree) ;
parms . set_coeff_modulus (CoeffModulus : : Create (

poly_modulus_degree , {27 ,27 ,27 ,27})) ;
auto context = SEALContext (parms) ;
KeyGenerator keygen (context) ;
PublicKey public_key ;
keygen . create_public_key (public_key) ;
SecretKey secret_key = keygen . secret_key () ;

49

50 Code examples

RelinKeys re l in_keys ;
keygen . c reate_re l in_keys (re l in_keys) ;
GaloisKeys gal_keys ;
keygen . create_galo i s_keys (gal_keys) ;

}

B.3 Encryption

Listing B.3: Encryption in C++
#include <iostream>
#include <vector>
#include " s e a l / s e a l . h"
Ciphertext encrypt (SEALContext context , PublicKey

public_key) {
CKKSEncoder encoder (context) ;
P l a in t ex t p l a i n t e x t ;
Ciphertext c i ph e r t e x t ;
Encryptor encryptor (context , public_key) ;
double s c a l e = pow (2 . 0 , 40) ;
vector<double> z = {1 , 2 , 3 , 4} ;
encoder . encode (z , s ca l e , p l a i n t e x t) ;
encryptor . encrypt (p l a in t ex t , c i ph e r t e x t) ;

return c i ph e r t ex t ;
}

B.4 Dot product

Listing B.4: Dot product in C++
Ciphertext dotProduct (vector<Ciphertext> enc_v1 , vector<

Ciphertext> enc_v2) {
/∗ CKKS parameters and necessary keys are generated ∗/

/∗ Compute the element−wise product s o f the v e c t o r s ∗/
vector<Ciphertext> encrypted_products (enc_v1 . s i z e ()) ;
for (s i ze_t i = 0 ; i < enc_v1 . s i z e () ; i++) {

eva luato r . mul t ip ly (enc_v1 [i] , enc_v2 [i] ,
encrypted_products [i]) ;

eva lua to r . r e l i n e a r i z e_ i np l a c e (encrypted_products [i
] , r e l in_keys) ;

eva lua to r . resca le_to_next_inplace (
encrypted_products [i]) ;

}

Code examples 51

/∗ Sum up the product s us ing r o t a t i on ∗/
Ciphertext encrypted_sum = encrypted_products [0] ;
for (int i = 1 ; i < encrypted_products . s i z e () ; i++) {

Ciphertext ro ta ted ;
eva lua to r . rotate_vector (encrypted_products [i] , i ,

gal_keys , ro ta ted) ;
eva lua to r . add_inplace (encrypted_sum , ro ta ted) ;

}
return encrypted_sum ;
}

B.5 Squared Euclidean Distance

Listing B.5: SED in C++
Ciphertext squaredEuc l ideanDistance (vector<Ciphertext>

enc_v1 , vector<Ciphertext> enc_v2) {
/∗ CKKS parameters and necessary keys are a l r eady

generated ∗/

/∗ Compute squared d i f f e r e n c e s ∗/
vector<Ciphertext> squared_di f f s ;
for (s i ze_t i = 0 ; i < enc_v1 . s i z e () ; i++) {

Ciphertext d i f f ;
eva lua to r . sub (enc_v1 [i] , enc_v2 [i] , d i f f) ;
eva lua to r . square_inplace (d i f f) ;
eva lua to r . r e l i n e a r i z e_ i np l a c e (d i f f , r e l in_keys) ;
eva lua to r . resca le_to_next_inplace (d i f f) ;
squared_di f f s . push_back (d i f f) ;

}

/∗ Sum the squared d i f f e r e n c e s ∗/
Ciphertext tota l_squared_dist = squared_di f f s [0] ;
for (s i ze_t i = 1 ; i < squared_di f f s . s i z e () ; i++) {

Ciphertext temp ;
eva luato r . add (total_squared_dist , squared_di f f s [i] ,

temp) ;
tota l_squared_dist = temp ;

}

return tota l_squared_dist ;
}

B.6 Decryption

52 Code examples

Listing B.6: Decryption
vector<double> decrypt (SEALContext context , SecretKey

secret_key) {
Decryptor decryptor (context , secret_key) ;
P l a in t ex t p l a i n t e x t ;
decryptor . decrypt (c iphe r t ex t , p l a i n t e x t) ;
vector<double> r e s u l t ;
encoder . decode (p l a in t ex t , r e s u l t) ;
return r e s u l t ;

}

Privacy preserving biometrics authentication in

IoT devices using homomorphic encryption

AMIR DAWD SEID
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

A
M

IR
 D

A
W

D
 SEID

Privacy preserving biom
etrics authentication in IoT

 devices using hom
om

orphic encryption
LU

N
D

 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-970
http://www.eit.lth.se

	Amir_Dawd_Seid_EITM01.pdf
	Introduction
	Background
	Related work
	Objectives
	Contribution

	Theoretical background
	Preliminaries
	Cryptography
	Notion of security
	Fully Homomorphic Encryption
	CKKS encryption scheme
	Biometric authentication
	Biometric evaluation

	Approach
	Architectural overview
	Dataset and tools
	Key generation and distribution
	Admin
	IoT device
	Cloud system
	Access Control Unit

	Results
	Biometric evaluation
	Run-time and memory storage

	Discussion
	Method
	Threat analysis
	Ethics

	Conclusion and Future Work
	Conclusion
	Future work

	References
	CKKS encoding and decoding
	CKKS

	Code examples
	Feature extraction.
	Key generation
	Encryption
	Dot product
	Squared Euclidean Distance
	Decryption

