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Abstract

This thesis presents the development of a binary classifier, which classifies
homes as occupied or not. This was done using two different types of neu-
ral networks; standard feedforward networks and LSTM-networks. The
input to these networks was sensor data collected from devices created by
Minut AB. Data from previously used automatic alarm feature was used
as ground truth. A major part of the project consisted of preparing and
filtering the ground truth and input data. Once this was done a set of
suitable hyperparameters was found by tuning the hyperparameters one
by one with the other ones fixed. In general the tuning of the hyper-
parameters was too noisy to make any certain conclusions about which
values were optimal.

The classifiers succeeded in identifying some patterns indicative of home
occupancy, outperforming a baseline model, which randomly guesses oc-
cupancy status. Despite this, the classifiers’ performance did not yield
the high accuracy required for their intended applications in heating sys-
tem regulation and other home automation tasks. The feedforward net-
work model got the best results, but LSTM-networks could potentially
be equally good for this task, since the LSTM-networks were trained on
smaller amounts of data and data quality appeared to affect the result
more than model choice. Areas to improve include preprocessing, the
method for choosing hyperparameters and quality of the ground truth
data.
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1 Introduction and Purpose
Minut AB is a company which produces home monitor sensors. The monitoring
is done in a manner which gives the owner of the home or the people renting
it as much privacy as possible. A typical customer is an owner of a property
being rented out at a short term rental site. One feature, which is of interest, is
human presence detection. Knowing whether a space is occupied could aid in,
for instance, regulating heating and usage of electricity. The aim of this project
is to identify relevant data for a human presence detection algorithm and devise
such an algorithm.

In more mathematical terms, the project is a binary classification problem of
points in a multivariate time series. That is, given historical and current sensor
data, the objective is to determine whether anyone is present (denoted as a 1)
or whether the home is empty (denoted as 0). The detection algorithm should
operate in semi-real time. That is, it should be able to classify a time point
shortly after the input data from that point has been collected. Thus methods
using metrics from whole series for classifying the beginning of the series were
discarded.

2 Background

2.1 Presence detection
Human presence detection is a task for which various solutions have been pro-
posed. Some of the more common solutions are passive infrared (PIR) sensors
(often used for automatically turning on the light in a room) and scalar infrared
range-finders (used to keep elevator doors open if someone is about to enter or
exit) [1]. Some of the main issues with these techniques, in terms of presence
detection in a "home", are that they only respond to activity or presence in a
limited area and that they are unable to detect presence without recent move-
ment or activity in the related area. In some applications, larger networks of
sensors, such as the above mentioned examples or pressure tiles in the floor, are
used. This does, however, mean that many devices need to be installed, which
would most likely be both too cumbersome and expensive for the application
areas related to Minut AB.

Another group of approaches is methods utilizing collaboration with the peo-
ple expected to be present in the building of interest. An example of this is
bluetooth low energy (BLE) technology [2], which uses signals sent out from,
for instance, a tag or mobile app. This requires that all possible occupants of a
building install the required app or carry a tag around at all times. For short
term rentals this solution seems too dubious. Another collaborative solution is
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usage of positioning data such as GPS signals. One such solution is geofencing
[3]. In short, this uses the position of mobile devices to determine whether the
device of interest is located within a certain distance from a building. To collect
this data, the users of the property would have to install an app on their mobile
devices. As described later in this report, geofencing data has some additional
problems such as inconsistency between different mobile devices and inability
to register changes in presence status when someone arrives or leaves without
the mobile device.

2.2 A brief history of machine learning
The concept of machine learning stems from the 50s with one important event
being when Rosenblatt proposed the standard perceptron, which is the funda-
mental building block in many machine learning models, in 1958 [4]. Despite
some more work on the topic during the 80s with developments within, for
instance, decision trees and linear regression, funding for machine learning re-
search was decreased during the late 80s and early 90s. This happened partly
due to a lack of computational power and a general opinion among decision mak-
ers that machine learning had been overhyped. However, in the late 90s and
during the 2000s, increased computational power and larger amounts of available
data (following the increased usage of the internet) allowed for more complex
models to be trained, which lead to a rapid development in deep learning and
the development of long short-term memory (LSTM) cells [5]. These have come
to play a vital role in the now very developed area of natural language processing
(NLP). Later this area was developed further through increased computational
power and the introduction of transformer models [6], which were crucial in the
development of large language models, such as chatGPT [7]. With the introduc-
tion of convolutional neural networks (CNNs) [8] in 2012, the set of problems,
which could be tackled by deep learning, increased further to include areas such
as image analysis. With this recent development of more sophisticated models
and an increasing amount of available data within many areas, machine learning
will most likely play an increasingly bigger role in the future.

3 Theory and Definitions

3.1 Neural Networks
Neural networks are used to approximate a function f̂ . This function could for
instance be a mapping from a set of input variables x to a category or class, ŷ.
In the context of this report, x is a vector of recorded sensor values and ŷ is a
0 or 1 depending on whether the data point belongs to a populated or empty
home. The goal of the neural network is to tune a set of parameters θ for a
mapping y = f(x; θ) such that y and ŷ are as similar as possible.
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3.1.1 Standard Perceptrons

The simplest type of neural network is a single standard perceptron, which
works in the following way:

Each element of the input vector xi to the perceptron is multiplied by a weight.
These weights represent the importance of the respective inputs. Mathemati-
cally, this is represented as the product of each input xi and its corresponding
weight wi. The weighted inputs are summed up. This summation process rep-
resents the combined effect of all inputs and their respective weights. The sum
z is calculated as z =

∑
i xi · wi + b, where b is a bias term.

The summed value z is then passed through an activation function, ϕ. This
function often introduces non-linearity to the output, but could also be linear.
Common activation functions include the step function, sigmoid function, hy-
perbolic tangent (tanh), or Rectified Linear Unit (ReLU) [9].

The output of the activation function is the final output of the perceptron.
For instance, if using a step function as activation function, the output could
be binary (0 or 1) depending on whether the computed sum is above or below
a certain threshold. In Fig. 1 a schematic overview of a single perceptron is
presented. In this image a step function is used as activation function, but this
could be replaced by any other function.

Figure 1: A schematic image of a single perceptron with θ(z) as activation
function [10].

A learning algorithm adjusts the weights and biases based on a function of the
difference between the perceptron outputs and the ground truth, ŷ. This func-
tion is called a loss function. This process continues iteratively to minimize the
loss. The loss minimized is the value of the loss function for a certain portion
of the data, called training data. The weights are iteratively tuned to yield the
lowest possible loss value for this data. The weights are tuned once per batch
of data. The data is split into batches, where each batch contains a set number
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of points, to speed up the training and to lower the demands on the computer
performing the training. After all batches have been processed once, an epoch
has passed.

In order to check whether the weights, obtained during and after the training,
are suitable for new data, predictions are made a portion of the not yet used
data, called validation data. These predictions are made during the training
process to monitor the generalization performance of the trained model. Once
the model with the best validation performance has been found, a final test of
the model is made by letting it make predictions on a separate data set called
test data. No tweaks of the model should be done based on the result of this
test. Instead it should serve as an estimate of the generalization capabilities of
the final model.

3.1.2 Feedforward Neural Networks

A natural continuation of the standard perceptron is the usage of multiple per-
ceptrons distributed into multiple different layers. These feed-forward neural
networks, often referred to as multilayer perceptrons (MLPs), consist of an in-
put layer, one or more hidden layers, and an output layer. For the feedforward
neural networks used in this project, each neuron (a perceptron used in combi-
nation with other perceptrons in a neural network) in one layer is connected to
every neuron in the subsequent layer, and information flows only forward from
the input nodes through the hidden nodes to the output nodes. What follows
is a short explanation of the different layers.

The input layer receives the initial data. Each neuron in the input layer rep-
resents a feature or input. Each node in the input layer works as a standard
perceptron. The output from a certain node in the input layer is then fed into
the weighted sum of perceptrons located in a hidden layer. The hidden layer
works identically to the input layer except for the fact that they process weighted
sums of outputs from the input layer and not a weighted sum of the features fed
into the network. A network could contain several hidden layers. The output
of the final hidden layer is then sent to an output layer, which in this case is
a single perceptron with one output value, since the objective of the network
is to output a single boolean indicating whether the home is occupied at a cer-
tain time point. A general outline of how a neural network can be visualized is
presented in Fig.2.
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Figure 2: A small feedforward neural network. The nodes in the leftmost layer
contain one input value each. The middle layer is a hidden layer. There can
be more than one hidden layer. The green node to the right is the output node
[11].

3.1.3 Hyperparameters

Hyperparameters are parameters which are not optimized during the training
process, but instead chosen prior to the training. Examples of hyperparameters
are learning rate (regulating how much the weights are updated) and batch
size. An important part of machine learning is finding suitable values of these
hyperparameters.

3.1.4 Activation functions

As stated in Sec. 3.1.1, activation functions often introduce non-linearities in
the nodes in order to model more complex patterns than a method only using
linearly weighted sums. In this section, the activation functions used in the
project will be defined. ReLU is a commonly used activation function in a wide
range of applications and is defined by Eq. (1)

f(z) =

{
0, z < 0

z, z ≥ 0
. (1)

Calculating the gradient of this function is easy and thus the computational
complexity is low, which leads to fast trainings. Another property of ReLu is
that the gradient never gets small for positive input sums, which could combat
the vanishing gradient problem for deep networks [9]. However, this property
could be a problem, since the unbounded output could lead to instability. An-
other potential drawback of ReLu is that it does not make use of negative values.
Therefore, the inputs to a node with ReLu might become irrelevant when up-
dating the weights during training [9].
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An activation function often used for the output layer of binary classifier is
the sigmoid function defined by Eq. (2). Two reasons why it is often used in
this context are that it yields an output in the range [0, 1] and has a steeper
gradient around 0.5. The output could be interpreted as the estimated prob-
ability of the sample belonging to class 1. The function has good properties
for introducing non-linearity. A drawback is the fact that gradients for output
values close to 0 or 1 get very small, which can result in too small updates of
weights connected to the neuron with a sigmoid activation function. Another
issue is that the output is not centered around zero, which can lead to slower
convergence [9].

σ(z) =
1

1 + e−z
(2)

Finally the tanh activation function is defined by Eq. (3)

tanh(z) =
ez − e−z

ez + e−z
=

1− e−2z

1 + e−2z
. (3)

This function returns a value between -1 and 1. The tanh function could be
seen as a translated and stretched version of the sigmoid function with a steeper
but narrower peak in the first order derivative function. It is also symmetric
around 0, which often leads to quicker convergence. However, tanh suffers from
the same problem as the sigmoid function in terms of gradients getting close to
0 when the input to the function has a large absolute value [9].

3.1.5 LSTM-cells

Recurrent neural networks (RNNs) is a class of networks often used for sequen-
tial data. The basic idea behind a recurrent neural network is that information
stored in a cell (a more complex neuron) while processing data point n in a
sequence is used by that cell to process data point n + 1. LSTM-networks, a
type of RNN, are designed to process sequences of data and are (unlike stan-
dard RNNs) capable of learning long-term dependencies. A cell holds a state,
Ct, which is used as input for data sample t+1 as shown in Fig. 3. The cell also
uses its previous output ht−1 as input. The last input to the cell is the feature
vector for data sample t [5].
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Figure 3: Overview of a typical LSTM-cell.

The LSTM-cell processes the input x and generates an output h using the
following equations:

ft = σ(Wf · [ht−1, xt] + bf ) (4)
it = σ(Wi · [ht−1, xt] + bi) (5)

Ĉt = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (7)
ot = σ(Wo[ht−1] + bo) (8)
ht = ot ∗ tanh(Ct) (9)

where Wf ,Wi and Wo are trainable weights and bf , bi, bC and bo are biases.
Thus, a network of LSTM-cells has more trainable parameters than a standard
feedforward network of the same size, since the LSTM-network also needs to
tune the above mentioned weights [5].

3.1.6 Stateless and stateful LSTM-cells

An LSTM-cell can use the cell state Ct and hidden state ht in two different ways.
The first is to reset the states after each batch of training data. Thus, each batch
is considered independent from the previous batches. These stateless models are
suitable in cases where one wants to model sequential data, but the sequences
in a certain batch are independent from the sequences in the previous batch [12].

If sequence n in a batch is related to sequence n in the previous batch, one
can use stateful cells. This means that the final states of a batch are used as
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initial states for the next batch. If we let sequence n in the first batch contain
input values 1 to k and target value k of a data series, and let sequence n in the
second batch contain input values k+1 to 2k and target value 2k, we may, using
a stateful network, implicitly model dependencies longer than k without using
more than k steps in the backpropagation for each target value. In the case of
presence detection, this can be advantageous for multiple reasons. One reason is
that the feature should work at night. Since a home with everyone asleep most
likely is similar to an unoccupied home, data from the evening most likely is
relevent for the classification of homes during the night. Since LSTM-networks
with long input sequences take much longer to train, the implicit incorporation
of data points further back in time, is a more viable option [12].

3.1.7 Input Normalization

Input normalization is a crucial preprocessing step in machine learning. It in-
volves transforming numerical features to a common scale, without distorting
differences in the ranges of values. This process is important for several rea-
sons. Normalization speeds up the learning and convergence process of many
machine learning algorithms. Algorithms like gradient descent converge faster
when features are on a similar scale because it ensures a smoother optimization
process [13].

In datasets with features having different scales, algorithms that are sensitive to
the scale of data, such as neural networks, might end up attributing higher sig-
nificance to features with larger scales. Normalization ensures that each feature
(if relevant) contributes to the final prediction. Normalization can also reduce
the impact of outliers, as the resulting scale limits the range of values a feature
can take [13].

3.1.8 Label Smoothing

Label smoothing is a widely used technique in classification problems. Simply
put, label smoothing modifies the target values from 0 and 1 to α and 1 − α
respectively. Here α is a scalar in the range [0, 1]. Label smoothing has several
potential advantages. One is that it makes the model take label uncertainty
into account. Thus the model does not train to get overconfident in predictions
based on noisy ground truth. Even if the ground truth is completely free from
noise, label smoothing might be beneficial, since it can prevent overfitting (see
Sec. 3.1.9) and work as regularization, since the model will not go to extreme
lengths to push a prediction close to 0 or 1 a little closer to the target label [14].

3.1.9 Reducing overfitting

An often occuring issue when training a machine learning model is overfitting.
This occurs when the model is too complex and starts fitting to specific data
points in the training set, rather than picking up more general patterns in the
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data, which essentially means that the model is tuned to fit noise. To combat
this, there are several possible approaches. One is to simply add more training
data, since this could make specific samples less important and thus the model
potentially learns more general patterns. A second method is to monitor the
validation performance and stop the training once the validation loss, or another
metric of choice, stops decreasing. Overfitting could also be a result of a too
large or complex network architecture in relation to the size of the dataset being
used, so one could also try reducing the complexity of the neural network.

A slightly more sophisticated approach is the usage of dropout [15]. This es-
sentially means that during each training iteration, each node in a hidden layer
has its contribution to the network set to 0 with probability p. This prevents
units from co-adapting too much, which makes the model more generalizable
and robust.

3.1.10 Binary Crossentropy

In order to update the weights of a model to achieve a good result, a loss
function is required. This is a function of the difference between the output of
the model and the target values. The goal when training a model is to minimize
this function. In this project, the chosen loss function is binary cross-entropy
defined by Eq. (10)

L = −[y ln(p) + (1− y) ln(1− p)], (10)

where p can be interpreted as the predicted probability that the correct class
is class 1 and y is the true class label. Binary cross-entropy is the maximum
log likelihood estimator of the observed data, has a smooth gradient and often
gives a fast and stable convergence for binary classification tasks. Thus it is by
far the most widely used loss function for binary classification [12].

3.2 Optimization
Finding the weights w which minimize the loss function L is a complex task
without an obvious choice of optimization algorithm. Most algorithms utilize
the gradient of L, denoted as ∆θL. A relatively simple optimizer function is
SGD (Stochastic Gradient Descent) [12]. This method simply takes a step along
the negative gradient of the loss function at the point θi, where θi is the current
values of the weights. Mathematically SGD can be expressed as

θi+1 = θi − η ·∆θL(Xi, yi), (11)

where Xi and yi is the input and target variables respectively for batch i and η
is the learning rate, which regulates how much the weights should be updated
in the direction of the negative gradient. It is important to find a suitable value
of η since a value too small might lead to a slow convergence or the optimiza-
tion getting stuck in a bad local minimum. However, using a too large learning
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rate can result in the learning process jumping over or overshooting the minima.

A more advanced method is ADAM (Adaptive Moment Estimation) [16], which
utilizes running averages with exponential forgetting of the first and second or-
der moments of the gradient. Equations (12)-(16) define the ADAM method.
The updates of the weights θ are presented in Eq. (16),

mi+1 = β1mi + (1− β1)∆θLi (12)
vi+1 = β2vi + (1− β2)(∆θLi) (13)

m̂ =
mi+1

1− β1
(14)

v̂ =
vi+1

1− β2
(15)

θi+1 = θi − η
m̂√
v̂ + ϵ

, (16)

where ϵ is a small number ensuring no division by 0 occurs and β1 and β2

are forgetting factors for the first and second order moment of the gradient,
respectively. Throughout this project, a high level python library based on
tensorflow, Keras [17] has been used for building the neural networks. Keras
uses the default values: 10−7, 0.9 and 0.999 for ϵ, β1 and β2, respectively. The
only parameter tweaked throughout this report is η. All variables except for the
hyperparameters mentioned in this section and L are vectors. The squares and
square roots are calculated element-wise.

3.3 Metrics
In this section, the evaluation metrics used in the report are introduced. These
metrics are used to determine which model is the best at distinguishing the two
classes (0 and 1) from each other.

3.3.1 Accuracy

Accuracy is a relatively simple metric for binary classification-problems defined
as

Accuracy =
TP + TN

FP + FN
(17)

where TP, TN, FP and FN stand for true positives, true negatives, false pos-
itives and false negatives, respectively. This metric is simply the fraction of
classifications the model got correct, and contains no information of how cer-
tain the model was on the predictions or whether it was better at identifying
one class than another.

3.3.2 AUC

One of the most used metrics in the report is the AUC (Area Under Curve).
In order to understand this metric, one has to understand the ROC (Receiver
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Operation Characteristic) curve. This curve plots the true positive rate (TPR)
against the false positive rate (FPR) which are defined as follows

TPR =
TP

TP + FN
(18)

FPR =
FP

FP + TN
. (19)

For a model, every point on the ROC curve corresponds to the TPR and FPR
for a certain classification threshold. This threshold is the output value required
by the network to make the final prediction a 1. The AUC is a metric which
measures the area under the ROC [18]. The optimal value is an AUC of 1,
since this is the area achieved if the model can distinguish the classes perfectly
regardless of the threshold. An AUC value of 0.5 corresponds to the case when
the model cannot distinguish the classes at all and is no better than tossing a
coin. Figures 4-5 show two possible ROC curves for a binary classification prob-
lem. Figure 4 displays the ROC curve for a model, which perfectly distinguishes
between two classes. Figure 5 shows a ROC curve based on a model, which has
no ability to separate the two classes. The orange lines are the ROC curves and
the dotted blue lines are the ROC curve for a model with equal TPR and FPR
for all threshold values.

Figure 4: An optimal ROC curve. The orange line is the ROC curve and the
dotted blue line is the ROC curve for a model with equal TPR and FPR for all
threshold values.
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Figure 5: A ROC curve for a model. The orange line is the ROC curve and the
dotted blue line is the ROC curve for a model with equal TPR and FPR for all
threshold values.

To get the AUC value for a model, Keras’ built in metric "AUC" was used.
This metric calculates the area by calculating the ROC points for a number of
threshold values evenly spaced between 0 and 1. Given these ROC points the
AUC is calculated by a Riemann sum.

4 Data

4.1 Devices, Users and Homes
Every Minut device collects data such as humidity, sound level and ambient
light intensity. A device looks like a fire alarm and could be set up anywhere in
a home. Figure 6 displays such a device in a home.

15



Figure 6: A Minut device, which collects data about sound level, motion events,
light intensity and humidity.

There could be more than one device in a home, which means that each home
could potentially have several relevant data series. Every device is linked to a
home and there exists a lookup table containing information on which home
a device belongs to. Another part of the Minut system is users, which is an
account on their user platform. A user is linked to one or more homes.

4.2 Evenly sampled Sensor Data
Most data in the set is collected on a device level and sampled once every 60
seconds. Examples of such data are humidity, light intensity, temperature and
sound level. The values of these data points are continuous in a range defined
by hardware limitations. For instance a sound level of less than 30 dB or more
than 90 dB cannot be measured using the hardware in the devices.

4.3 Event Data
Since part of the service Minut offers is detecting certain events, some data
comes in the form of unevenly sampled "device events". An example of such
events is motion events, which are recorded and sent to the company database
if a device, using a PIR sensor, records motion activity. The event data only
says which type of event has been recorded and when. Thus, no information on
the magnitude of the measured signal is included in the motion data.
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4.4 Geofencing-data
Minut previously provided a presence detection feature based on geofencing
data, but due to a lack of commercial advantages (the home alarm feature this
was used for is not relevant for Minuts’ current customer base of short-term
rental guests) and inconsistent results, the feature was removed. The feature
did, however often work well and thus it might have the potential to work fairly
well as ground truth after some filtering. The data was collected as events
recorded every time a mobile device with the Minut app crossed a virtual bor-
der set around a certain home. When a mobile device enetered the home zone,
it was recorded as a 1 and when it left the zone, it was recorded as a 0. For
each event, the home, which the mobile device had entered or left, was provided.
In addition, an event included information on which mobile device it was and
which account (user) the device belonged to. During some time periods for
some devices (which periods and devices is not known) spurious updates were
sent even if a border was not crossed. To clarify, some devices sent updates of
whether they were located around the home or not even at times at which their
states were not changed. The geofencing data suffered from a few issues, which
are presented below.

The first issue was that the data series contained holes. That is, a long time
could pass between two consecutive data points. Whether a hole was due to no
people entering or leaving a property, or due to bugs in the data collection, was
not possible to decide, since the dataset contained no information of whether
the geofencing-based service was turned on or off and what type of devices were
used to collect the geofencing-data. The latter would have been useful to know,
since IOS and Android devices had different rules for when to send an update
of its position in relation to the geofence. Another issue encountered was users
using the feature for a short amount of time at the beginning of the data se-
ries and after a long break start using it again. Furthermore, homes could get
stuck in one of the two states at the start of the data series, which most likely
was not due to people being more stationary during the first weeks of data col-
lection. Some of the homes never left their initial states. In addition to this,
some series were very short, which might indicate that the service did not work
properly, and both presence detection methods later proposed required multiple
data points in order to make one prediction.

There did also appear to exist errors on device and user level. For instance,
some homes seemed to have reasonable data with the exception of one or few
devices or users, who appeared to always be at home or away. Most other issues
described on a home level could be found on a device or user level as well. In
addition to this, some devices and users would permanently stop recording data
in the middle of the data series. Due to the issues presented in this section, The
geofencing data required a bit of preprocessing, which is described in Sec. 5.1.1.
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5 Method

5.1 Preprocessing
Initially the data was divided by data type and not by device. In order to turn
the data into something useful it had to be sorted by sensor, home and data
type (for instance light intensity). This was done by firstly creating a set of all
devices with geofencing data. Thereafter, the data on humidity, sound level,
motion and light intensity from these devices was collected and saved with the
presence data.

5.1.1 Geofencing data

The presence data for a home was, as described above, a series of events which
had a state (0 or 1), a device, a user and a mobile client ID. Due to errors
related to the geofencing, the fact that the set was unevenly sampled, and that
multiple users, devices and mobile clients were relevant to determine whether
someone was present, the following preprocessing steps were made.

The first issue encountered was that there were holes in the data. In other
words, there could be days or even weeks between consecutive data points.
Since there was no information available about which mobile devices were used
and whether the geofencing service was on or off, the presence series were split
into pieces, which had no holes of more than 3 days. The choice of 3 days was
based on the assumption that longer time periods without any data recorded
has a sufficiently high probability of being a result of the feature being turned
off and thus the labeling being incorrect. Once the time series were split, the
newly created sections lacked suspicious holes, but still contained a sufficient
amount of data to be processed later on their own. This might have introduced
a small bias towards series with much activity, but since it was not possible to
determine if the holes were due to a damaged series or a lack of activity around
the home for devices without spurious updates, the splitting was deemed the
most reasonable choice. Due to this splitting, a home could have several series
related to itself. Another issue encountered was users testing the geofencing
feature for a short amount of time before turning it off for a longer period.
Whether the feature was on or off could not be found in the dataset used in
this project. This was accounted for by the splitting mentioned above and by
removing the first few points from each sequence. Another issue was that some
homes seemed to get stuck at the beginning of the series in either state 0 or
1. Therefore, all events before both a 0 and 1 had been registered were deleted
from the dataset.

Series with less than 5% of the points in one of the states (0 or 1) were re-
moved. This was done since visual inspection of the series indicated that it was
likely that they got stuck in a state and yielded many outputs of one type in a
short amount of time.
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It was still possible that a mobile device or user object was faulty and returned
only one class. Therefore all series with a user or phone only containing zeroes
or ones, were thrown away. The reason why the whole series was thrown away
being that if one user or phone was thrown away, a home only occupied by this
user or phone would be incorrectly labelled as unoccupied.

Some mobile devices would stop being used during the time window of a se-
ries. If the last state of a phone was a 1, then a phone never used by anyone in
the household could potentially label someone as permanently home. To avoid
this, all data points from a mobile after the last 0 were thrown away. The idea
being that a mobile not used would not lock a home in state 1.

Another scenario not covered by the above steps is if a single mobile device
temporarily gets stuck in returning 1. To combat this, a check for sections
where a mobile client returned only 1s for 6 days was labelled as likely incor-
rect and the whole series was removed. The choice of 6 days was based on
the assumption that people tend to leave their property at least once during
6 days. It is also worth noting that there was a trade-off between the risk of
having incorrect labels during a couple of days, losing data and introducing a
bias against data where people do not leave their properties.

Finally the series which passed all the checks in this section was passed through
a final preprocessing step. In all homes an aggregated presence column was cre-
ated using an OR operation on all users in the home. To clarify: if for all users,
the last registered state was 0, a 0 was added to the new column. Otherwise a
1 was added to the column. Thus this new column represents whether a home
is empty or occupied. A summary of the preprocessing for the geofencing data
can be found in Fig. 7.
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Figure 7: Outline of how the presence data was preprocessed.

5.1.2 Merging Data

In order for the collected data to be useful, the series for different sensor values
had to be combined into one structure. This was done by first discarding all
sensor data outside of the the window in which presence data was available.
Thereafter, all data was resampled with a 1 minute interval.
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The motion data was also resampled to have a value for every value in the other
sensor data series. Every motion event was rounded in time to the nearest time
for which other sensor data was recorded. All data points with a rounded mo-
tion event was given a 1 in the motion column. The other points were set to 0
in terms of motion.

5.1.3 Splitting the dataset

Since stateful LSTM-networks in Keras need to have sequences of equal length,
only sequences with more than 100 000 data points were used. These were
then cropped to only contain 100 000 points. Choosing 100 000 data points
per sequence was a result of the trade-off between having long sequences in
the dataset and not removing too many sequences. The former is important,
since these sequences most likely are of good quality, since the service was used
continuously. Having data from many different sensors is important, since it
most likely improves the generality of the model. Another limitation of the
stateful LSTM-networks is that the validation set and training set need to have
the same number of sequences. Thus 310 sequences were randomly selected
for training, 310 of the remaining sequences were randomly selected to be the
validation set, and the remaining 119 sequences were used as the test data set.
Towards the end of the project it was discovered that one could zero-pad the
validation and test sets, which would allow a greater portion of the dataset to
be used for training. Due to time constraints this approach was not employed.

5.1.4 Normalizations and motion interpolations

Various approaches and parameters for normalization of the data were consid-
ered. The one used for humidity and sound level was subtracting the lowest
value the hardware of the sensor allowed and then dividing by the highest al-
lowed value to ensure that inputs were not greater than 1. In the case of light,
using the hardware limit would result in too many very small values and thus a
normalization constant, which tended to yield normalized values similar to the
other data types, was used. In order to make it possible to downsample the
motion signal, and also possibly in order to improve generalization, the motion
signal was interpolated by replacing all zeros with

m = e−0.05·t (20)

where m is the new interpolated value of the motion signal and t is the number
of minutes since the last motion event occurred. The idea behind this interpo-
lation being that a large value indicates that movement activity recently was
registered and a small value means that a longer time has passed. Intuitively,
the interpolation is also useful since it passes potentially relevant information
from data points not included in the input vector for a certain data sample.
More simply put there might be an advantage to differentiating between the
case when motion was recorded a few hours ago and when the last recorded
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motion was a week ago. Since most data points were from houses with someone
present (65%), weighting of the classes was tried for both models. The loss from
a certain data point was multiplied by one weight, if the true state label was a
1, and with another weight if the true state label was a 0. The tried weights
where equal weighting of the two classes and weighting inversely proportional
to the frequency of the classes in the data set.

5.1.5 Downsampling

Downsampling was tested as a means of reducing the amount of input data,
while still capturing long term dependencies. This would allow a model to
look twice as long back in time, without increasing the model size or complex-
ity, which could potentially increase model performance. The hyperparameter,
which determines how much the signal is sampled down, is called "downsam-
pling step" in this report. A value of 2 of this parameter means that every
second data point is used in the input vector.

5.2 Models
5.2.1 Moving window

One approach tried was a moving window approach using standard feedforward
layers. This means that for every state value, the input is the n last values from
the input series (motion, humidity, sound level and light). The idea behind
this approach is that it should be possible to create a classifier which only uses
information from the last h hours, since, intuitively, data from several days ago
should not be of very big importance to detect whether someone currently is
present.

5.2.2 LSTM

The other approach used was a stateful LSTM-network. The reason for this
is that stateless networks would need long input sequences in order to include
data points multiple hours back in time in the classifications. Training LSTM-
networks with long input sequences is very time consuming, which meant that
too few training processes could have been carried out throughout this project
if stateless networks had been used. Stateful LSTM-models were tested, since
these, without increasing the complexity of the model, implicitly use data from
time points further back in time.

For each target output, the input was the n last values from the input se-
ries. The target values for the first batch were presence value n in each device
series and the inputs were thus motion, humidity, sound level and light values
number 1 to n. For the second batch, the target outputs were presence value
2n and the input were thus the input features for the times n+ 1 to 2n, etc.
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5.3 Tuning of hyperparameters
Since the training time per model was more than an hour in general and the
multidimensional space spanned by the possible values of hyperparameters is
very large, the hyperparameters were tuned one at a time. That is, for each pa-
rameter a line search was performed. Once the value, yielding the best AUC on
the validation set, was found, that hyperparameter value was fixed and used in
all subsequent training iterations. The initial parameters were based on less rig-
orous experimentation prior to the line searches. For the network architecture,
four different network structures were considered: The first was a bottleneck
structure with 3 layers where layer 1 and 3 were equally wide and layer 2 had
half the width of the others. The reasoning behind this structure was that it
can enhance the network’s efficiency and performance by forcing it to learn a
compact and informative representation of the input data, thereby improving
generalization and reducing computational cost [19]. The second structure was
a flat structure with 3 layers. The third was a bottleneck structure with 5 layers,
where layers 1 and 5 were equally wide, layers 2 and 4 were of three quarters
the width of the first layer and layer 3 was half as wide as the first layer. Fi-
nally, a flat structure with 5 layers was considered. For each structure, different
widths of the first layer (and therefore of all layers) were tested. This process
was repeated for both the LSTM-cells and for the moving window method.

5.4 Generators
A file which for every state value stores the n last input values would be much
larger than the available RAM on the machine learning computer at Minut.
Thus the input data had to be generated piecewise. This was done by imple-
menting a generator class inheriting from Keras’ sequence class. Due to the fact
that the data points need to be processed in chronological order for LSTMs, but
not for the moving window approach, different generators were implemented.

For the moving window model, random order of the samples of the dataset was
allowed. That is, the order of the subsequences to be classified was random,
but internally in each subsequence the data points remained in chronological
order. When using a generator which does not randomize samples, the network
tended to dive too deep into local minima, since many samples in a row would
be very similar. The generator used picked a row at random, generated its cor-
responding input array, and added the created sample to a list. Once this list
had a length equal to the batch size chosen, it was returned by the generator.
The rows were drawn without replacement, which means that no row was used
twice during an epoch.

Since stateful LSTM-networks do not allow random order of the samples in
the dataset, the data for these was generated deterministically as described in
the last paragraph of Sec 5.2.2.
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6 Results

6.1 Hyperparameter tuning for LSTM-approach
In Fig. 8-18, the validation AUC is plotted as a function of the hyperparameter
tuned in the related line search. The figures are presented in the same order as
the parameters were tuned. When examining the optimization of dropout, it was
noted that there was a flaw in using the best validation AUC as metric, since this
favored hyperparameters which contributed to large variations between epochs.
In order to avoid hyperparameters causing too unstable training processes, the
evaluation metric was changed to the highest value in a smoothed AUC vector.
This smoothed vector is created by applying a moving average filter of length
7 to the vector containing the validation AUC values for every epoch in the
training process.

Figure 8: Best validation AUC plotted against lookback time for LSTM-models.
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Figure 9: Best validation AUC plotted against learning rate for LSTM-models.

Figure 10: Best validation AUC plotted against the factor by which the learn-
ing rate is multiplied after a certain number of epochs without a decrease in
validation loss. This plot is based on LSTM-models.
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Figure 11: Best smoothed validation AUC plotted against dropout factor. This
plot is based on LSTM-models.

Figure 12: Best smoothed validation AUC plotted against class weights. The
leftmost data point has a weight of 1 for both classes. The rightmost point has a
weight of 1.3 for class 0 and 0.7 for class 1. This plot is based on LSTM-models.
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Figure 13: Best smoothed validation AUC plotted against label smoothing fac-
tor. This plot is based on LSTM-models.

Figure 14: Best smoothed validation AUC plotted against the width of the first
layer in a 3 layer bottleneck structure. The plot is based on LSTM-models.
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Figure 15: Best smoothed validation AUC plotted against the width of the layers
in a 3 layer model with constant width. The plot is based on LSTM-models.

Figure 16: Best smoothed validation AUC plotted against the width of the layers
in a 5 layer model with bottleneck structure. The outlier at 0.5 is the result of
a model classifying all samples as state 1. The plot is based on LSTM-models.

28



Figure 17: Best smoothed validation AUC plotted against the width of the
layers in a 5 layer model with constant width. The outliers at 0.5 come from
models classifying all samples as state 1. The plot is based on LSTM-models.

Figure 18: Best smoothed validation AUC plotted against learning rate. This
plot shows the second tuning of the learning rate parameter. The outlier at 0.5
is the result of a model classifying all samples as state 1. The plot is based on
LSTM-models.

In Fig. 9 the result seems to improve as the learning rate increases. This was
realized after all other parameters had been tuned and thus a second tuning of
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the learning rate was performed lastly. The second tuning scanned over a higher
range of values, since the first one did not reach its optimum. The result of the
second tuning is presented in Fig. 18. In some figures, for instance Fig. 17, one
training iteration got stuck on an AUC of 0.5. After closer inspection of these
training processes, it was found that the training algorithm got stuck in a local
minima created by guessing that someone was present at all times. It is notable
that some plots (for example Fig. 13) experience a noisy behaviour. Regardless
of chosen hyperparameters, all models, excluding the aforementioned outliers,
yielded a smoothed AUC in the range [0.65, 0.735].

6.2 Hyperparameter tuning for moving window
In Fig. 20-28 below, the best smoothed validation AUC is plotted as a function
of the hyperparameter tuned in the related line search. The best smoothed AUC
for a model is the maximum value in a vector of smoothed values. The filter
length was shorter for the moving window method, since this method required
much fewer epochs to converge. Due to this, the training was ended after fewer
epochs for this method. Every epoch did, however, take more time to train,
which resulted in a total training time close to the training time for the LSTM-
models depending on the hyperparameters of the specific training session.

Figure 19: Best smoothed validation AUC plotted against the number of minutes
the model looked back in time.
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Figure 20: Best smoothed validation AUC plotted against the number of minutes
between consecutive time points in the input. A lookback of 1440 minutes was
used. The plot is based on moving window models.

Figure 21: Best smoothed validation AUC plotted against the number of minutes
between consecutive time points in the input. A lookback of 2880 minutes was
used. The plot is based on moving window models.
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Figure 22: Best smoothed validation AUC plotted against the learning rate.
The plot is based on moving window models.

Figure 23: Best smoothed validation AUC plotted against the dropout constant.
The plot is based on moving window models.
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Figure 24: Best smoothed validation AUC plotted against the label smoothing
parameter. The plot is based on moving window models.

Figure 25: Best smoothed validation AUC plotted against the number of nodes
in the first hidden layer of a network with bottleneck structure. The leftmost
point is the result of a model with 10 nodes in the first layer. The plot is based
on moving window models.
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Figure 26: Best smoothed validation AUC plotted against the number of nodes
per layer in a network with a flat structure. The leftmost point is the result of
a model with 10 nodes in the first layer. The plot is based on moving window
models.

Figure 27: Best smoothed validation AUC plotted against the number of nodes
in the first hidden layer of a network with bottleneck structure. The leftmost
point is the result of a model with 10 nodes in the first layer. The plot is based
on moving window models.
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Figure 28: Best smoothed validation AUC plotted against the number of nodes
per layer in a network with a flat structure. The leftmost point is the result of
a model with 10 nodes in the first layer. The plot is based on moving window
models.

Given that no downsampling was employed, the model seems to get better as
the lookback time increased. However, no models processing more than 1440
timesteps were considered, since that would require too long training times to
complete the rest of the hyperparameter optimization. The time required to
train a model had a close to linear relationship to the number of time points
the model looked at. Since moving window models took slightly longer to train
than LSTM-models, each line search contained fewer tested values compared
to the LSTM-search. After setting the lookback time to at least 1440 minutes
(24 hours), all tested models yielded a smoothed validation AUC in the range
[0.7, 0.77].

6.3 Final Models
Based on the hyperparameter tuning performed in Sec. 6.1-6.2, two models (one
moving window model and one LSTM-model) were chosen for evaluation on the
test set. The hyperparameters of these models can be viewed in Tab. 1.
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Table 1: The resulting hyperparameters after the tuning in Sec. 6.1-6.2

Parameter LSTM Moving Window
Lookback 31 1440
Downsampling Step Size 1 1
Learning Rate 0.001 0.001
Lr Reduction Factor 0.6 0.6
Dropout 0.1 0.15
Class Weights None None
Label Smoothing 0.05 0.05
Model Structure Bottleneck 5 layers 400 nodes Bottleneck 3 layers 100 nodes

6.4 Results on the test set
In Fig. 29 and 30 the ROC curves for the test set are provided. The resulting
metrics on the test set can be viewed in Tab. 2.

Table 2: Accuracy and AUC for the test set.

AUC Accuracy
LSTM 0.6920 0.6901

Moving window 0.7205 0.6982

The AUCs are slightly lower than for a typical result on the validation set, but
the models are still clearly better than a model which blindly guesses, since such
a model would have an AUC of 0.5.

Figure 29: ROC-curve for the test set. The plot is based on the predictions
made by the LSTM-model. The yellow line is the ROC curve and the dashed
line is a reference line for a model, which blindly guesses its predictions.
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Figure 30: ROC-curve for the test set. The plot is based on the predictions
made by the moving window model. The yellow line is the ROC curve and the
dashed line is a reference line for a model, which blindly guesses its predictions.

7 Discussion
When evaluating the result, one of the most important things to note is that
throughout the tuning of the hyperparameters only one data point per tested
hyperparameter value is available. Since the initial weights of the models are
random and the order in which the data is processed is random for the moving
window model, the method used for choosing the best hyperparameters lacks
some statistical significance. The noisiness of the resulting value of the valida-
tion metric is visible when the default value of a hyperparameter has been tested
in a line search. An example of this is when class weights were tested for the
LSTM-model. The leftmost data point in Fig. 12 has the same parameters as
the third data point in Fig. 11, but the results are slightly different. Intuitively
the curves should be relatively smooth and not have very large oscillations.
Looking at, for instance, Fig. 13, it seems that noise dominates the variations.
This means that it is difficult to make any conclusions based on some of the
line searches made. It is possible to argue that a fixed random seed would solve
this issue, but this could introduce a bias towards hyperparameters suitable for
one specific random seed, which might lead to networks too specialized on the
validation data.

It is possible that a grid search over the hyperparameter space would yield
better results, since the optimal value of one hyperparameter depends on the
value of another. This would have to be done with grids over smaller subsets
of hyperparameters, since a grid search over a high dimensional hyperparam-
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eter space would take too much time with the computational power at hand.
However, fewer values of each parameter would be tested, which could lead to
worse results if the smaller set of tried parameters do not contain a good enough
value. It is also possible that a smaller multidimensional search over the hyper-
parameter space could be done, but since poor data quality appears to be the
main issue, a smarter hyperparameter search would most likely not improve the
result very much.

An important part of this project is how the geofencing data was preprocessed.
This most likely had a large impact on the results, since inaccuarate ground
truth means that the models will only model noise for the inaccurate data
points. One of the least obvious steps in the preprocessing is the splitting of
sequences into more continuous subsequences. Although this might have un-
necessarily deleted data and introduced some biases, it most likely resulted in
a more correct ground truth. If holes had not been removed, homes with the
geofencing feature turned off would contribute with large quantities of wrongly
labeled data points. However, it is possible that this issue could have been
solved in another way or that the choice of 3 days as the maximum allowed hole
size was suboptimal, but it is difficult to find a systematic method to device a
good value for the allowed hole size. Other parts of the preprocessing suffer from
the same problem, since there was no way of testing the preprocessing on its own.

It is notable that the moving window method outperformed the LSTM-method.
This difference could have several explanations: Firstly, this model had longer
input sequence and was therefore most likely able to pick up more complicated
patterns. Another relevant difference between the models is that the LSTM-
model only used 1

17 of the data points, since it was stateful and a subsequence
had to start at the time after the previous subsequence stopped. When mon-
itoring the training process it was evident that the LSTM-networks overfitted
the training data more than the moving window networks. This could partially
be due to the more complex nature of the LSTM-cells, but the effect can also
be attributed to the smaller amount of data points in the training set. Due to
the statefulness, the validation and test sets for the LSTM-models also contain
fewer data points. This means that the evaluation of the LSTM is less statisti-
cally significant and that some differences in terms of performance can depend
on the fact that the data sets were different. Since the number of points in ev-
ery data set was large for both models and the data sets for the LSTM-models
were subsets of the sets for the moving windows, this difference should not have
very large effects. Another interesting observation is that the LSTM-method
was closer to the moving window method in terms of accuracy than AUC. Al-
though the two metrics cannot be directly compared this way, it is a reasonable
conclusion, since LSTM-networks often classified more samples as 1, which is
advantageous in terms of accuracy, but not in terms of AUC. It is also possible
that the moving window model was more confident of its correct predictions,
which affected the AUC, but not the accuracy.
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The results on the test set were slightly worse than a typical result on the val-
idation set. This may depend on the fact that the hyperparameters have been
tuned based on validation performance. However, since the parameter tuning
was very noisy, this effect should be very small. Another possibility is that the
test set is less similar to the training set. This is, however, fairly unlikely, since
the split into training, validation and test set was completely random and the
data set contained many independent sequences.

Since the goal is to create a model good enough for commercial applications, it
is relevant to set the results into context. The most important possible applica-
tions are management of heating systems and other energy conservation based
on presence. For such a feature to be practically useful, the accuracy would
have to be over 95%. Although some correct patterns have been identified and
the result is much better than plain guessing (an AUC of 0.5), the results are
far from good enough for the intended applications of the model. It is not clear
whether this depends on poor ground truth, bad choices of features, hyperpara-
maters, and normalizations, or an inherent difficulty in determining whether
someone is present based on some fairly limited sensor data from a single sensor
in a single room.

8 Future work
Throughout this project several interesting ideas had to be set aside due to a
lack of time. In this section some of these ideas are presented. A possible area
of improvement is the normalization. One technique, which could be tested, is
normalizing the input window based on itself or the values of the n previous
windows. The idea being that it might yield better results to put larger em-
phasis on local differences, rather than the absolute values of the input values.
The exception to this idea might be the motion data, which intuitively should
not be too affected by background noise and varying base levels. One could also
consider normalizing the data in a more sophisticated manner to make the nor-
malized data follow some distribution (e.g normal distribution). For the motion
data more constants could be tested in Eq. (20), since there is no empirical
evidence that −0.05 is the optimal choice. It might also be worth testing other
interpolation methods and to investigate whether interpolation is needed for
this data.

In terms of improving the reliability of the ground truth, it would be helpful
to get information about whether the geofencing was based on IOS or Android
devices. This would make the filtering and interpretation of the data series eas-
ier. If the amount of available data would be large enough, a possible way of
moving forwards is to only use homes which had no android devices connected
to the geofencing service.

39



If one had more time or computational resources, or if the dataset became
smaller due to the point above or any other reason, it might be worth con-
sidering using more of the data for LSTM. This could either be done by using
stateless models, or by using both the sequences starting at time point 1 and the
sequences starting at 2 in batch 1. in the following batch, both the sequences
starting at time n and at n+1 would be used. In order to increase the amount
of training data, one could zero-pad the validation data and thus allow for a
greater proportion of the data to be used as training data.

Something not investigated in this report is the properties of the predicted se-
quences. That is, how does the prediction vector look? Is it noisy or smooth? If
it contains fluctuations between predicted zeroes and ones, a naive, but possibly
effective, solution would be to smoothen the predicted sequences by performing
max pooling on windows moving over the sequences. It is also quite likely that
the predictions have some delay compared to the ground truth. This potential
effect should be investigated further to see if any changes could be made to
combat this.

During the last couple of months, BLE data was collected from a small num-
ber of homes. Since this most likely is a more reliable ground truth, it might
be a good idea to collect more data of high quality and use it to train mod-
els. That would make it possible to make conclusions about which errors can
be attributed to errors in the ground truth and which depend on bad model
choices or an inherent difficulty in predicting presence with only the available
data. As stated above, the collected BLE data comes from a small number of
homes. Should this dataset be too small to train models, it could be used to
test models created using geofencing data. This test could provide information
on how similar the datasets are and could thus say something about the quality
of the geofencing data.

This project also has not investigated different choices of activation functions
and learning algorithms. Although this most likely would not have a huge im-
pact on the end result, it might be worth researching. It could also be worth
trying and researching different network architectures, since only constant width
and bottleneck structure have been tested in this project.

It is not obvious that every input type (e.g humidity) contributes to the clas-
sifications. Therefore it would be a good idea to investigate what happens if a
feature is replaced with noise or if a model is trained completely without one of
the features. If one or more features are deemed irrelevant, it would be possible
to make a smaller and faster model with at least as good performance as the
model with all four input features.
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