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Abstract

As the automotive industry progresses with the development of connected vehicles,
this digital evolution comes with inherent cyber security risks and thus securing
vehicle communication systems, particularly the Controller Area Network (CAN)
bus, is crucial. International regulations such as UN Regulation No 155, necessi-
tate cyber security measures for threat detection, prevention, and mitigation. In
this regard, vehicle manufacturers are mandated to implement measures to detect
and prevent cyber-attacks against vehicles. Thus, onboard Intrusion Detection
Systems (IDSs) for in-vehicle networks, e.g. the CAN bus, can help detect vari-
ous cyber-attacks with different mechanisms such as Fabrication (e.g., Denial of
Service and Fuzzy), Suspension, Masquerade (e.g. Spoofing attack), and Replay.
Network IDSs provide a layer of security by monitoring and analyzing the data
traffic, and identifying suspicious activities that could indicate an intrusion. To
address this, the thesis, first, introduces a tool that generates attack data by ana-
lyzing normal data files, including both open-source and proprietary data provided
by Scania—collected from a test vehicle. Along with that, it uses real-world la-
beled open-source attack datasets to identify realistic patterns that correspond to
various types of attacks. Following this analysis, the process involves altering the
proprietary dataset to mimic real attack scenarios closely. This tool will aid with
testing the IDS’s effectiveness in detecting attacks on the CAN bus. Secondly,
the thesis investigates the viability of a machine learning-based IDS, using two
different supervised deep learning models, Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM), to identify attacks on the CAN bus. An
empirical evaluation of the models is performed—considering sequence inputs with
various lengths—and the results indicate that with a longer sequential input, more
instances of Spoofing and Replay attacks, as more complex attack classes, can be
correctly detected. Moreover, despite showing comparable accuracy, the LSTM
models can lead to a slightly higher rate of misclassified normal states as attacks
compared to CNN. Furthermore, the validity of the synthetically generated data,
the limitations, and the importance of developing models that can adapt to new,
unknown attack types are also elaborated and discussed.
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Popularvetenskaplig sammanfattning

Sa CAN maskininlarning upptacka attacker mot fordon

Med 6kande uppkoppling i fordon vixer risken for cyberattacker, vilket
hotar bade individens och allménhetens sikerhet. Vart examensarbete
forbattrar sikerheten inom fordon genom att utveckla och testa ett
maskininldrningsbaserat intrangsdetekteringssystem fér CAN-bussen,
med syntetiskt genererad och verklig fordonsdata fran Scania.

Vara bilar blir allt smartare, men &ven mer sarbara for cyberattacker. Moderna
fordon &r uppbyggda av manga elektroniska styrenheter (ECUs), som hanterar alla
mojliga typer av funktioner. Dessa enheter kommunicerar med varandra genom
det s& kallade CAN-bussystemet, en teknik som liknar internet dér meddelanden
utbyts mellan varje styrenhet. Till skillnad fran dagens internet, som har avancer-
ade sdkerhetsatgidrder som kryptering och autentisering, saknar CAN ménga av
dessa skydd. Detta 6ppnar upp for en rad potentiella hot, som exempelvis skadliga
meddelandeinjektioner som kan péverka bilens kritiska funktioner. Forskare har
bevisat att det &r mojligt att manipulera bland annat bilens broms och hastighets-
funktioner genom att ta kontroll 6ver ndgon av styrenheterna eller bilens diagno-
suttag (OBD-II) och skicka felaktiga meddelanden.

For att bemota dessa hot har vi utvecklat ett maskininlarningsbaserat intrangsde-
tekteringssystem (IDS) som anvéinder tva typer av djupinldarningsmodeller, CNN
(Convolutional Neural Network) och LSTM (Long Short-Term Memory). En IDS
kan effektivt identifiera anomala monster i CAN-trafiken som kan innebéra att en
meddelandeinjektionsattack har skett.

Genom att analysera CAN-data insamlad fran ett testfordon hos Scania och jam-
féra denna med 6ppen killdata fran ytterligare tre fordon, har vi skapat flera filer
med syntetisk attackdata. Denna data simulerar CAN-kommunikation under olika
typer av cyberattacker och har anvints for att trdna vara modeller. Dessa lar sig
att kinna igen tecken pé att systemet ar under attack, vilket gér det mojligt for
dem att detektera och klassificera olika cyberhot med en noggrannhet péa upp till
99,84 %.
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Chapter ]_

Introduction

As the automotive industry progresses with advancements such as autonomous
and connected vehicles, the complexity and functionality of in-vehicle systems
have significantly increased. Vehicles today are not only modes of transport but
also vast networks of computers forming advanced electronic ecosystems. Modern
vehicles can be equipped with up to 100 of these computers, known as Electronic
Control Units (ECUs), which are interconnected through various communication
networks such as the Controller Area Network (CAN), LIN (Local Interconnect
Network), and Ethernet. These systems support a broad range of functionalities,
from critical ones such as braking to less critical ones like media systems [2].
While the transformation from purely mechanical vehicles to highly connected
ones offers many benefits in terms of safety and features, it also expands the
vehicle’s attack surface, making it susceptible to a variety of cyber threats. The
digitalization involves not only the functionalities of the vehicle but also connects
the vehicle with its surroundings, for example, through WiFi or Bluetooth. This
new development has been implemented with a focus on vehicle safety rather
than security [3]. The CAN bus, which is the standard network protocol within
most vehicles, lacks many of the security measures employed on the internet,
such as encryption and authentication [4]. This makes it susceptible to, for
example, message injection attacks. Over the past decade, several successful
attacks have been conducted by researchers on the CAN bus, through the
OBD-II diagnostics port on the vehicle, and through WiFi and Bluetooth. These
attacks have enabled researchers to control critical functionalities such as the
brakes and the steering wheel [3].

These alarming discoveries have forced the automotive industry to prioritize the
development of robust cybersecurity frameworks. This is reflected in regulatory
standards such as the UN Regulation No. 155 [5], which mandates
comprehensive cybersecurity measures to detect and counteract threats
effectively. In response to these security vulnerabilities, the automotive industry
is turning toward more advanced methods to improve the security of the CAN
protocol. While many approaches have focused on physical security measures like
restricting access and employing simple encryption, these methods are often
insufficient due to the lightweight and basic nature of the ECUs and CAN bus

[6]-



2 Introduction

To tackle this issue more effectively, a solution could be to install Machine
Learning (ML)-based Intrusion Detection Systems (IDSs) in vehicles. An IDS
can analyze network traffic patterns and detect unusual activities that could
indicate a cyberattack. By using machine learning, the IDS can efficiently
identify a wide range of threats [6]. However, one significant challenge with
implementing an IDS in vehicles is that it needs to learn from CAN data to
effectively recognize and respond to cyber threats. The scarcity of available CAN
traffic data, especially datasets that include real attack scenarios, poses a
substantial hurdle. This lack of data limits the ability of an IDS to be effectively
trained and tested [7].

1.1 Goal

The goal of this thesis is to investigate cyber threats to in-vehicle CAN buses
and explore how these threats can be detected using an ML-based IDS. The
study will concentrate on a set of common attacks categorized under the
mechanisms of Masquerade, Suspension, Fabrication, and Replay. By analyzing
the patterns for each attack mechanism along with real CAN data captured from
a test truck in a normal state, the first part of the thesis involves the creation of
a set of synthetic attack files. To mimic the data distribution of attack messages
in real scenarios, open source files of real attacks will be analyzed. Secondly, the
IDS will be implemented by exploring two different deep learning models, which
will be trained and tested with the synthetically created data. For clarification,
in this thesis, real CAN data is defined as data captured directly from a vehicle.
A real attack on a CAN bus includes actual interference, such as modifying a
node to send malicious frames or removing a node that normally transmits.
Conversely, a synthetic attack involves altering CAN logs after collection.

The goal of the thesis is divided into the following two research questions.

1.2 Research Questions

RQ.1 How to generate CAN traffic data with a set of common cyber attacks
e.g., Masquerade, Suspension, Fabrication, and Replay, based on a log file
containing normal traffic data?

RQ.2 How can deep learning anomaly detection techniques be used to
develop an effective IDS?

1.3 Outline

The project has been carried out in two parts which also reflects the outline of
the report. The initial chapter introduces the topic, outlines the thesis objectives,
and poses the research questions. The second chapter provides a comprehensive
background on the CAN bus, IDS, and relevant attack methods. Following this,
the report moves into the first part of the thesis, focusing on the creation and
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implementation of a CAN attack data generator. This section details the process of
synthetically generating attack data. The fourth chapter shifts to the second part
of the thesis, which involves developing and implementing an ML-based IDS by
exploring two different deep learning models and discussing the methods used for
implementing, training, and evaluating these models. The fifth chapter showcases
the outcomes from both sections, with a discussion of these results in the sixth
chapter. The thesis concludes with a final chapter seven.
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Chapter 2

Background

2.1 Controller Area Network (CAN)

The Controller Area Network (CAN) bus is the standard communication network
for reliable, real-time message delivery within a vehicle. Initially intended for
vehicles, the CAN bus standard has been further integrated into various control
systems. It was originally developed by Robert Bosch GmbH in 1983, published
the CAN 2.0 specification A and B in 1991 [§], and in 1993, the protocol was
adopted as an ISO standard (ISO 11898) [9]. The standard CAN protocol
facilitates interaction between the vehicle’s sensors and Electronic Control Units
(ECUs) and supports a data rate of up to 1 Mbps with a maximum payload size
of 8 bytes. CAN Flexible Data-rate (CAN-FD) was introduced in 2012 [10], and
was standardized in ISO 11898-1:2015 [11]], allowing for higher data rates and
larger payload sizes. CAN-FD enables data transmission rates between ECUs
beyond 1 Mbps and increasing the maximum payload size from 8 bytes to 64
bytes. A modern vehicle typically consists of about 70 ECUs, each responsible for
controlling various functions of the vehicle [12]. These include the Engine Control
Module, Airbag Control Module, and Anti-Lock Brake System, among others.

2.1.1 OSlI layers

The message-based protocol standard consists of multiple abstraction layers, with
the most significant being the physical and data link layer of the OSI model.

Physical layer

The physical layer defines the hardware required for a CAN network and holds
for example cables and electrical signal levels. The CAN protocol enables a one-
point-of-entry communication between ECUs that avoids complex wiring. The
CAN network operates as a dual-wire serial bus, connecting each ECU to these two
wires. Data transmission occurs through the CAN High (CAN_H) and CAN Low
(CAN_L) lines, with the dominant bit denoting a logic "zero" and the recessive
bit a logic "one" [13]. In the recessive state, both lines maintain a voltage of
approximately 2.5V. Conversely, in the dominant state, CAN _H rises to a higher
voltage level, and CAN L drops to a lower voltage level. This method allows
ECUs to change the CAN bus to a dominant state for signal transmission, while
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in the absence of signals, terminating resistors automatically revert the bus to a
recessive state.

Data link layer

The data link layer transmits these messages over the CAN bus via CAN frames
and is responsible for example, message framing, arbitration, error detection, and
acknowledgment. A CAN message can transmit up to eight bytes of data and the
length is specified in the data length code (DLC). Two CAN frame formats are
commonly used, the standard/base format (CAN 2.0A) and the extended frame
format (CAN 2.0B), which differ in the bit length of the identifier [§]. The
standard format supports an 11-bit unique identifier while the extended frame
supports a 29-bit, consisting of the 11-bit identifier (the base identifier) and an
18-bit extension (the identifier extension). The CAN-FD frame supports both
the 11-bit identifier and the extended, but the payload size has been increased to
up to 64 bytes. Vehicle manufacturers maintain the detailed semantics of the
CAN ID and data field as proprietary and confidential. The CAN protocol allows
for message prioritization based on identifiers, with lower identifiers receiving
higher priority. The composition of the standard CAN and CAN-FD frame, as
shown in Figure 2.1 and Figure [2.2) includes the following key components:

e Arbitration Field: Includes the ID identifier and RRS bit (Remote
Transmission Request), determining the message priority, with lower ID
values indicating higher priority. The RRS bit determines if it is a data or
remote frame. Data frames transmit data, while remote frames are used to
request data.

e Control Field: Manages various data frame aspects such as Data Length
Code (DLC) indicating the size of the payload.

e Data Field: In standard CAN, this field can carry up to 8 bytes of data,
translating to a limited number of signals. CAN-FD extends this to 64
bytes, indicating a larger number of signals within a single message.

e Cyclic Redundancy Check (CRC) Field: Used for transmission error
detection, it contains a CRC value that the receiving ECU checks against
its own calculation to confirm message accuracy.

o Acknowledgment (ACK) Field: Receivers use this to acknowledge that
the data frame was received.
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Figure 2.1: The Standard CAN (2.0) Data Frame
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Figure 2.2: The CAN Flexible Data-rate (CAN-FD) Data Frame

2.1.2  Vulnerabilities

The CAN standard has multiple advantages, e.g., built-in error detection,
cost-effectiveness due to less wiring, and lightweight design, but it also has
security vulnerabilities. These weaknesses include a lack of mechanisms for
authentication, authorization, and encryption [I3]. The current design assumes
that every message that is sent to an ECU is legitimate. Without authentication
and authorization, it’s impossible to verify the origin of a message, allowing
malicious nodes to impersonate legitimate ECUs using their arbitration IDs.
Implementing authentication, while necessary for security, demands more
advanced hardware, which not only increases costs but may also introduce
latency problems [13]. Furthermore, the lack of encryption means that all CAN
traffic is transparent and allows attackers to easily intercept and analyze the
data. Since messages on the CAN bus are broadcast, a single compromised node
could grant an attacker access to all the information transmitted on the bus.

2.2 Attack Models

The lack of security mechanisms in the CAN bus makes it susceptible to a range
of attacks. This was proven, among others, by Kosher et al. [3] who performed
physical access and non-physical access attacks on the CAN bus where they
could successfully circumvent a wide range of safety-critical systems and control
various automotive functions. There are three representative categories of attack
mechanisms identified by Cho and Shin, Fabrication, Suspension, and
Masquerade, that can severely compromise the functionality of the in-vehicle
system [14]. Therefore, at least one attack from each category has been
considered in this thesis. Additionally, a Replay attack has been included to
increase variation and robustness as it presents challenges in detection. Together,
these attacks provide a broad spectrum of threats, ensuring that the IDS is
tested against both common and severe cyber threats, thus enhancing its efficacy
and reliability in real-world scenarios. The following sections provide an
introduction to the attack models in the literature that are relevant to this thesis.
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2.2.1 Fabrication Attacks

In a Fabrication attack, an attacker, through control of an in-vehicle ECU,
fabricates and injects malicious messages with falsified ID, DLC, and data. This
type of attack typically targets overriding messages sent by a legitimate
safety-critical ECU, leading to potential malfunctions or inoperative states in
recipient ECUs. Using high-priority messages to dominate the CAN network, as
seen in DoS attacks, exemplifies one attack within the spectrum of Fabrication
attacks. In Figure 23h, one simple Fabrication attack is displayed where the
compromised ECU C introduces multiple attack messages with ID A with a high
frequency, usually sent by ECU A. As a result, ECUs expecting messages with
ID A receive these malicious messages more frequently than legitimate ones.

Denial of Service (DoS)

In a Denial of Service (DoS) attack in vehicles, lots of requests overwhelm the
system, potentially disrupting its functionality and causing other ECUs to stop or
delay their transmission. The attacker injects high-priority CAN messages, e.g.
using the 0x000 CAN ID, in a high frequency on the CAN bus [6l [15]. Flooding
the CAN bus with these high-priority messages denies legitimate messages from
being transmitted since ID 0x000 is guaranteed to win arbitration and is rarely
used by legitimate ECUS.

Fuzzy Attack

The Fuzzy attack involves injecting messages with random or semi-random CAN
IDs and data values. Through this method, an attacker can insert malicious data
into the network, using randomly faked identifications.  Furthermore, by
systematically testing with small fuzzy packets and observing the behavior of the
CAN bus, the attacker can gather critical information for creating targeted
attacks [3]. This technique eliminates the need for the attacker to have prior
knowledge of reverse engineering or the specific components of the vehicle.

2.2.2  Suspension Attack

In a Suspension attack, the attacker targets a compromised ECU to prevent it
from transmitting some or all messages, that could cause malfunctions in the
compromised ECU and other dependent ECUs. For example, if the electric power
steering ECU stops sharing steering angle data, the electronic stability control
system, needing that information for traction control, fails to operate correctly
[14]. Figure illustrates the Suspension attack mechanism where ECU C has
been compromised and suspended from transmitting messages.

2.2.3 Masquerade Attack

In a Masquerade attack, two ECUs are compromised: a weaker one, which can
be stopped or suspended from sending messages but cannot inject fabricated
messages, and a stronger one, fully controlled by the attacker for injecting
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malicious messages. The attacker mimics the message pattern of the target
(weaker) ECU, stops its transmissions, and starts sending forged messages using
the stronger ECU. This type of attack can cause significant disruptions, without
changing the frequency of message transmissions, posing a critical threat to
vehicular safety and network integrity. Figure 2.3 shows an example of the
Masquerade attack mechanism where ECU A (weaker) and ECU B (stronger)
have been compromised. ECU A has been suspended from transmitting any
messages and ECU B mimics ECU A by transmitting malicious messages with
ID A.

Spoofing Attack

In a Spoofing attack on the CAN bus, the attacker injects malicious messages
that appear to be from another ECU on the network. The attacker creates and
transmits fake messages with a spoofed ID, which are then interpreted as
authentic by other ECUs within the system. The messages are created to either
mimic the normal communication from a legitimate ECU or to send malicious
commands or data. In this thesis, the Spoofing attack includes the Suspension of
the compromised ECU, classifying it as a Masquerade attack mechanism. This
approach not only introduces malicious activity but also stop the activity from
the legitimate ECU, increasing the attack’s disruption.

2.2.4 Replay Attack

The Replay attack is achieved by capturing real-time CAN messages and then
replaying the message. In this attack, the intruder first listens and records data
packets during normal behavior of the network, here the intruder can analyze
and look into the meaning of the messages and target those that trigger specific
functions on the vehicle. These recorded messages are then replayed at a later time.
In this way, the intruder can cause malfunction to the vehicle without the need for
deep knowledge of the system. Since the Replay attack uses unaltered messages
these attacks can be harder to detect. Figure 2.3d shows ECU B’s messages being
captured and replayed by ECU C, disrupting the intended sequence of operations.
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Figure 2.3: Figures illustrating four examples of CAN bus attack
mechanisms. Each shows normal message flow (the upper green
arrow) and during attacks (the lower red arrow). Compromised
ECUs and injected attack messages are highlighted with a red
border.

2.3 Intrusion Detection System (IDS)

Intrusion Detection Systems (IDSs) are used to identify unauthorized access or
attacks on industrial networks or computer systems [16] I7]. They function by
monitoring the network traffic and system activities, and by analyzing these
parameters they can detect malicious patterns or anomalies that suggest an
attack has happened.

In the context of the security vulnerabilities of the CAN bus system, IDSs have
been identified as a leading defensive mechanism against malicious attacks
[18, 19]. The theory of using an IDS in the automotive system is a widely
researched topic and Lokman et al. have proposed a taxonomy for the categories
of deployment strategies and detection approaches [20]. Deployment strategies
refer to the placement and integration of IDS within the vehicle, i.e., how and
where these systems should be implemented. Meanwhile, detection approaches
describe the various techniques used by the IDS to identify potential threats.
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2.3.1 Deployment Strategies

Lokman et al. present three possible deployment strategies for the IDS in a vehicle:
the CAN bus, the ECUs, and central gateways [20]. These strategies are classified
into two categories: host-based IDS and network-based IDS. Host-based IDS means
installing the IDS directly on an ECU, and since the ECUs broadcast messages
on the CAN bus this allows the IDS to monitor all traffic. Network-based IDS
refers to deploying the IDS either on the CAN bus itself or at a central gateway,
positioning it within the network where it can also monitor all traffic. Each of
these deployment strategies faces limitations, for instance, deployment on an ECU
is constrained by the ECU’s available computational power and memory, limiting
the complexity of the implemented IDS algorithm. Furthermore, deploying an IDS
on an individual ECU limits the monitored traffic to that specific ECU’s CAN bus.
In contrast, placing the IDS on the CAN bus itself or at a central gateway allows
it to monitor traffic across multiple CAN buses, including traffic passing through
gateways.

2.3.2 Detection approaches

The functionality of the IDS depends on its detection approach. The different
detection approaches proposed by Lokman et al. [20] are under the categories of
signature-, anomaly-, and specification-based approaches.

Signature-based approach

The signature-based approach focuses on defined patterns, or signatures, within
analyzed data. By comparing network activity against predefined attack patterns
stored in the IDS, this method predicts well-known attacks very effectively.
However, it is not capable of detecting new, unknown intrusions and must
frequently update its signature database with new attacks. Song et al. [21]
introduced a signature-based approach based on the analysis of time intervals of
CAN messages that detect injection attacks without false positive errors.

Anomaly-based approach

Another approach is to analyze the message traffic of the CAN bus and look for
irregular patterns or behavior. This approach has been widely investigated in the
literature such as in [22, [, 23] 24]. Anomaly-based detection techniques observe
network activity and compare it against recorded normal behavior. If the
deviation reaches a specified threshold, an attack is detected. After an extensive
training phase, this method can effectively detect new attacks but is prone to
generating false positives on normal packets, as it considers anything that
deviates from normal behavior as an intrusion. To establish a model of normal
behavior, earlier researchers have typically employed frequency-based, machine
learning-based, and statistical-based techniques.

Frequency-based method is based on monitoring deviations from known
frequencies and timing of CAN messages. It relies on the predictability of the
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CAN bus, where CAN messages are broadcast at fixed time intervals and
frequency [20]. The method looks for the regularity of packet intervals and any
attack that mimics this behavior will bypass detection. Additionally, irregular or
unpredictable packet frequencies, often caused by noise in the CAN bus, may
result in increased false negatives.

Machine learning-based method refers to when an IDS leverages machine
learning techniques. This method utilizes models trained on specific CAN bus
features, such as message traffic. These models are usually categorized into
supervised, unsupervised, or even semi-supervised types [20]. Each of these types
offers different strengths in detecting and responding to potential threats.
Unsupervised and semi-supervised models are considered anomaly-based
detection, while supervised learning can also be considered signature-based
detection because it relies on predefined labels that can represent known attack
signatures.

Supervised models involve a training process where the model learns from a
labeled dataset that includes both normal and anomaly data.  Multiple
supervised approaches have been proposed in the literature such as Bari et al.
[6], that compared three supervised models including Support Vector Machine
(SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN) to detect and
classify intrusions on the CAN bus. Their approach uses labeled input and
output data. This approach is good at detecting the specific types of attacks for
which it has been trained, which gives it a high accuracy for known threats.
However, since it is only trained on a set of anomaly patterns it has a limitation
in identifying attacks outside of its training data, making it ineffective against
unknown attacks or zero-day attacks [25]. Further, to achieve a good result, the
model requires a large dataset of labeled data to be constructed, which can be
time-consuming [20] 22].

In contrast, unsupervised models are trained on data representing the normal
behavior of the system, without any anomalies. This method enables the model
to learn a baseline of how the system acts in a normal state and can compare
data with anomalies to spot deviations. The advantage of this approach is its
ability to detect a wide variety of attacks, including new and unknown ones [26].
However, the implementation is more complex and difficult due to the need to
establish an optimal threshold for distinguishing between normal state data and
anomaly data. Unsupervised models perform worse because they produce a high
false-positive rate [22].

A semi-supervised model integrates the properties of both supervised and
unsupervised approaches. It combines the high accuracy detection capabilities of
supervised learning for known threats with the new and unknown anomaly
detection capabilities of unsupervised learning. This gives the hybrid model a
high accuracy when identifying familiar patterns with the ability to detect
previously unseen threats without needing a large amount of labeled data [22].
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Statistical-based method uses statistical properties to monitor and identify
deviations from normal patterns in the CAN network. This could involve
assessing parameters such as mean, variance, and standard deviation to detect
attacks. For example, [14] involves analyzing the physical characteristics of the
bus, using variations among ECUs to detect unauthorized modifications or
access. The IDS uses Recursive Least Squares (RLS) to model the expected clock
skews of the ECUs and uses Cumulative Sum (CUSUM) analysis to detect any
significant deviations from these models.

Hybrid-based method integrates multiple detection methods that can
collectively monitor and detect various aspects of the CAN bus, for example
combining specification-based and machine learning-based. This method can
detect a wide range of intrusions but poses challenges such as model training
time and redundancy [20].

Specification-based approach

The specification-based method uses explicit specifications that describe normal
behaviors in terms of system components such as the CAN protocol or ECUs. It
detects attacks when there is a deviation from these designated specifications.
Unlike anomaly-based approaches, which for example use statistical models to
define normal behavior, the specifications in this approach are often manually
defined by human experts. Larson et al. [27] gather information from the
CANopen standard protocol and object directory sections to detect cyber attacks
within the in-vehicle network. They demonstrated that potential attacks could
be identified by analyzing extracted information from specifications, and also
concluded that gateway KECUs are the most likely targets for attackers.
Olufowobi et al. [28] present another specification-based approach that
investigates specific expectations for the timing behaviors on the CAN bus
network. Their paper effectively detects data injection attacks with low false
positive rates.

2.3.3 Deep learning

Deep learning (DL) is increasingly used for anomaly detection in-vehicle security.
DL is a part of machine learning that involves the use of artificial neural
networks (ANNs) with multiple layers, known as deep neural networks [I3].
ANNSs are inspired by the structural and functional aspects of biological brains
and aim to simulate these processes in a computational model, using a layered
architecture of neurons. The architecture is particularly effective due to its
depth, which refers to the number of hidden layers between the input and output
layers. CAN IDS can use deep learning’s ability to autonomously extract data
features and adapt to real-time parameters, improving their accuracy in anomaly
detection. Given the varying characteristics of input data, deep learning offers
different types of architectures, such as convolutional neural networks and
recurrent neural networks.
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Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is one type of deep learning architecture
that is specifically designed to process two-dimensional data, such as images [29].
The basic CNN architecture is made of several layers such as convolutional
layers, pooling layers, and fully-connected layers. The convolution layers use
filters to generate feature maps highlighting spatial features in the input. The
pooling layers reduce feature map dimensions by executing downsampling while
preserving essential features. There are several types of pooling layers, e.g., max
pooling, min pooling, and average pooling. For example, max pooling picks the
maximum value from a narrow window of the feature map and ignores the other
values, making it less sensitive to small changes in the input and spatial
translations. Finally, the fully-connected layers perform linear and non-linear
transformations to produce the final network output. Additionally, CNNs may
have other layers such as dropout and batch normalization layers to enhance
convergence and generalization. The architecture design, including the choice of
the number of layers, filter sizes, and activation functions has significantly
impacted the model’s complexity and generalization abilities. The activation
function introduces non-linearity and decides which neurons that should be
activated, i.e., determine how much information to pass to the next layer. There
are multiple types of activation functions used in CNN systems, such as sigmoid
and Rectified Linear Unit (ReLU). The mathematical formulas for these can be
seen in Equation and For more detail on CNN architectures, see [29).

J@) = e +exlp(_x) (2.1)
f(z) = max(0, x) (2.2)

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN) is a deep learning model that uses sequential
data, such as words, sentences, and audio. RNNs use cyclic connections with
recurrent layers or hidden layers of recurrent cells, which allows updating their
current state based on both past states and current input data [30]. This
sequential memory is important for tasks where context from earlier in the
sequence is necessary to understand or predict later elements. RNNs usually
consist of standard recurrent cells (i.e., sigma and tanh cells). The equations of a
simple recurrent sigma cell are given by Equations [2.3] and [2:4]

ht = O'(Whht_l + met + b) (23)

yr = he (2.4)
where:
e h; represents the recurrent information at time ¢

e o is the activation function (in this example, the sigmoid function)
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W}, and W, are the weight matrices for the hidden state and input state
e 1, is the input at time ¢

e ) is the bias

e y;, is the final output of the network at time ¢, from the current state h;

Despite their advantages, RNNs often encounter difficulties when learning
long-term dependencies due to issues such as error signals that propagate
backward in time and tend to either exponentially increase or vanish. Long
Short-Term Memory (LSTM) is a type of RNN that addresses this issue and can
handle the long-term dependencies in sequential data. It was introduced by
Hochreiter and Schmidhuber in 1997 [3I]. LSTMs accomplish long-term
dependencies by introducing gate functions into the cell structure, including the
input gate, forget gate, and output gate, which regulate the flow of information
through the network. It is important to note that there are variants of the LSTM
architecture. The first version did not include a forget gate, it was introduced by
Gers et al. in 2000 [32]. The input gate controls what new information is stored
in the cell state, the forget gate discards information that is no longer relevant,
and the output gate determines what information is output based on the cell
state [30]. The LSTM cell with a forget gate is given by Equation and is
based on Figure which is adapted of [30].

fi = U(thht71 + Wyt + bf)
iy = o(Winhi—1 + Wize + b;)

& = tanh(Waphe—1 + Wegas + bg)
ct=fr-ci—1+i -G

0r = c(Wonhi—1 + Wogzy + bo)
hy = o4 - tanh(cy)

(2.5)

where:
e h;_ 1 is the hidden state from the previous timestep
e 1, is the input at the current timestep

o Wen, Wi, Wan, W, are the weight matrices for the hidden state from the
previous timestep

o Wiy, Wiy, War, Wy, are the weight matrices for the input at the current
timestep

® by, b;, bz, b, are the biases for each gate
e o is the sigmoid activation function

e tanh is the hyperbolic tangent function, used to normalize cell updates and
output transformations

- is the pointwise multiplication of two vectors
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Figure 2.4: LSTM cell with forget gate

2.4 Previous Research

This section introduces previous research related to this thesis, including existing
datasets with recorded CAN data, attack generation tools, and deep learning IDS.
The section finishes with a contribution statement.

2.4.1 Existing datasets

For effective IDS implementation, it is important to have access to valid and
realistic data. However, the availability of publicly accessible datasets containing
real CAN data of high quality, particularly those including verified and labeled
attacks, is limited. The lack of real attack data for moving vehicles is due to high
expenses, time-consuming processes, and potential safety risks during its
generation.

Verma et al. [I5] present a Real ORNL Automotive Dynamometer (ROAD)
CAN IDS dataset, consisting of over 3.5 hours of one vehicle’s CAN data
including various attacks. These include real attacks such as Fuzzy, Fabrication,
unique advanced attacks, and simulated Masquerade attacks. It further provides
a comprehensive guide of existing CAN IDS datasets, categorizes CAN attacks,
and assesses the datasets’ quality and suitability for research. One of the
disadvantages of this dataset is that attack intervals are labeled rather than each
message, making it difficult to use when creating attack data for this thesis.

The datasets containing labeled attack data come with their own limitations.
The Car Hacking Dataset for Intrusion Detection released by HCRL [33] from
the research in 23], includes normal behavior vehicle data as well as vehicle data
including three types of attacks, namely DoS, Fuzzy, and Spoofing. This dataset
was used to train and build a deep-learning IDS. The normal vehicle data
included around 1 million messages and was obtained during 8 minutes. The
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attack data included around 4 million messages and was collected between 45 to
90 minutes. The reason why this dataset is unsuitable to use to test an IDS is
that the normal behavior data was obtained during a driving session, whereas
the attack data was gathered while the vehicle was stationary, making them
substantially different. Additionally, there is a large time gap, with the longest
being 22 seconds, in the attack data where no messages appear to be
transmitted, indicating the need for dataset pruning before being used. This
observation was made during the evaluation of the data for this thesis and also
noticed by Verma et al. [I5] in their dataset evaluation. The distinct
characteristics of the normal behavior and attack data, coupled with the
significant time gap, led to the decision not to use this dataset for creating the
synthetic attack datasets for this thesis.

The dataset analyzed and used to create the attack datasets for this thesis is the
HCRL Survival Analysis Dataset for Automobile IDS, presented by Han et al.
[1]. This dataset includes Flooding (DoS), Fuzzy, and Malfunction attacks. In
this dataset, normal and attack driving data were obtained from three different
types of vehicles and were used for an anomaly IDS based on the survival
analysis model. Although the dataset’s duration is relatively short, ranging only
from 60 to 90 seconds, it provides real attack scenarios on multiple vehicles,
repetition of the same attacks across these vehicles, and the attack data is
labeled per message, which makes it valuable for the purpose of this thesis.

2.4.2 Attack generation

Many versions of attack generation tools are available, designed to generate
datasets with injected attacks. Huang et al. [7] introduce an Attack Traffic
Generation (ATG) tool that simulates four main types of attacks: DoS, Fuzzy,
Spoofing, and attacks exploiting CAN bus error handling mechanisms. This
attack data is intended for evaluating security mechanisms developed for CAN
systems. It offers dataset generation with support for flexible attack
configuration, as well as reading and replaying of CAN messages. It provides an
open source graphical Python application that uses hardware such as the
primary supported USB2CAN device, one of the cheapest options on the market.
The application is presented as a cheaper option than established CAN tools like
CANoe and CarShark. This ATG tool pre-configures a set of attacks and is
injected into the log files at set intervals. In contrast, the attack generator tool in
this thesis synthetically injects varying attacks into CAN logs based on an
analysis of the given log file and using a DBC file, without the need for hardware.

The Attack Traffic Generation software, described in the thesis by Neelap and
Bhandari [34], is designed to generate synthetic attack traffic for testing
Network-based IDS within CAN environments. This ATG analyzes CAN logs to
generate attack traffic similar to this thesis. The implemented attacks include
Fuzzy, Spoofing, Replay, and Overwrite. It highlights the vulnerabilities of CAN
systems to cyberattacks and the significance of analyzing message patterns,
frequencies, and intervals within CAN system traffic to understand log file
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dynamics for realistic injections of attack. The thesis by Neelap and Bhandari
demonstrates the software’s ability to inject malicious traffic into normal data
using pattern analysis and randomness, mimicking real-life cyberattacks. To
generate data for the IDS in this thesis, a similar approach of extracting
information from log files and using this analysis to generate attack data is used.
This functionality is further extended by analyzing open source files and
obtaining information about the sending ECUs by decoding the messages with a
DBC file and with the addition of a Suspension attack.

2.4.3 Deep Learning IDS

Hossain et al. [35] propose a supervised LSTM-based IDS to detect cyberattacks
on in-vehicle CAN bus systems. The IDS uses the raw payload, CAN ID, and
DLC of CAN messages as input features for the model. To train and test their
model, the authors generated a dataset from an experimental car, injecting DoS,
Fuzzy, and Spoofing attacks. They employed the LSTM model for supervised
binary and multiclass classification, achieving a high accuracy of 99.995%. They
selected an LSTM because it performs well with time-series data and sequence
classification.  Additionally, they compared their LSTM with the Survival
Analysis dataset [I], which is used in this master thesis to create realistic attack
scenarios.  The paper explores different hyper-parameter values, and the
best-performing parameters have been used to develop the LSTM-based IDS
described in this thesis. However, the methods differ as the LSTM in this thesis
processes sequences of messages, while their LSTM model analyzes sequences of
features from a single message.

In a subsequent study, Hossain et al. [36] employed a supervised CNN for a
similar purpose but expanded the testing to three different car models. Like the
LSTM, this CNN-based IDS analyzes the CAN bus data features, payload, CAN
ID, and DLC. Their experiment demonstrated a detection accuracy of 99.99%
and a detection rate (recall) of 0.99. This paper concludes that
deep-learning-based intrusion detection systems are more effective than other
methods. The model achieved a 100% detection accuracy for DoS and Spoofing
attacks while Fuzzy attacks had a slightly lower accuracy. They concluded that
the challenge in detecting Fuzzy attacks stems from the presence of thousands of
random CAN IDs. The CNN model was chosen due to its effectiveness in
processing time-series data and extracting features from raw inputs, thus being
able to detect subtle attack signatures that other methods might fail to notice.
Furthermore, the study showed the importance of filter size in the performance
of the IDS, demonstrating that 256 and 512 filter sizes were more effective than
smaller sizes due to their balance of accuracy and low variance. Based on these
findings, this thesis has adopted a 256-filter setting for the 1D CNN model to
optimize detection capability.

Hoang and Kim [22] introduce an approach to an in-vehicle IDS using
semi-supervised learning through Convolutional Adversarial Autoencoders
(CAA). The proposed model is designed to detect various message injection
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attacks, including DoS, Spoofing, and Fuzzy similar to the investigation into
common cyber threats in this thesis. Their model requires only a small amount
of labeled data—about 10% of the training dataset which reduces the time spent
on data collection. They used CAN IDs as features because the CAN IDs
sequence follows a pattern, and injected messages break this pattern. Therefore,
their model can capture normal and abnormal patterns for correct classification.
The CAN IDs are represented in a 29-bit format, as in this thesis, to enhance
efficiency and ensure the model adapts to any version of CAN messages. The
input is generated by stacking 29 consecutive CAN IDs, each represented in a
29-bit format, to form a 29 x 29 matrix. Their model achieved a F1 score of
0.9984 and a low error rate of 0.1% with limited labeled data.

2.4.4 Contributions
The main contributions of this thesis are summarized as follows:

e Development of an attack generator that synthetically injects various attacks
into CAN logs. The injection pattern for the Fabrication attack scenario is
derived from the analysis of open source real attack datasets. Moreover,
augmenting the attack generation process by using a CAN Database (DBC)
file, which contains information for decoding raw CAN data, enables more
realistic generation of the Suspension and Masquerade attack scenarios.

e Training and testing of two deep learning models using real test truck data
derived from a driving session that includes CAN-FD data, along with
synthetically injected attacks.

e Comparison of two deep learning models, CNN and LSTM, in detecting
attacks against the CAN bus.

e Analysis of how different sequence lengths of CAN bus data impact the
performance of CNN and LSTM models in detecting injected attacks.
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Chapter 3

Attack Generator

This chapter outlines the development of an extended attack generator based on
earlier research [34] including the attack models discussed in section The
attack generator implemented in this thesis further takes into account patterns
from open source log files to inject messages in a realistic way (i.e., introducing a
more variable attack pattern using normal distribution for timing). Developed in
Python, the attack generator tool extracts parameters and patterns, while also
mapping message IDs to the sending Electric Control Unit (ECU) from real
vehicle data. Based on this analysis and attack patterns derived from existing
literature the tool injects messages simulating an attack and outputs a new log
file. The resulting log files, including a wide range of attack scenarios, will be
used in training and assessing the Machine Learning (ML)-based Intrusion
Detection System (IDS). Further, the chapter concludes with an evaluation
methodology to assess the performance of the generator itself. The effectiveness
of the generated attack data is measured by how similar it is to already existing
attack datasets in terms of the ratio of attack messages in the intrusions.

3.1 Design overview

The attack generator, composed of Python scripts, is designed to process normal
behavior in-vehicle Controller Area Network (CAN) data, from both open source
datasets and a proprietary dataset provided by Scania. The initial script
converts different log file formats into a standardized Comma-Separated Values
(CSV) format, ensuring uniform column headers (timestamp, arbitration ID,
DLC, data, type). The attack generator script then parses the CSV files
containing the CAN messages into a DataFrame using the Python library
Pandas. The Pandas library offers several advantages for handling and analyzing
complex and large datasets which is necessary due to the size of the datasets
used in this thesis project. An analysis is carried out using the normal data
datasets, both open source and from Scania, together with labeled open source
attack data to identify realistic patterns that correspond to various types of
attacks. Following this analysis, the process involves altering the Scania dataset
to closely mimic a real attack scenario on that specific dataset. This tweaking is
done by modifying the normal CAN traffic data contained in a CSV file through
the injection of new messages, alteration of existing ones, or the removal of

21
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messages, depending on the specific characteristics of the intended attack.

For every simulated attack, the system generates a corresponding CSV file.
These files contain synthetically produced data that based on the analysis show
how the proprietary data would look under that attack. This manipulation
provides a way of representing an attack without actually simulating it on a real
CAN bus. A visual representation of the design is depicted in Figure 3.1.

Log files Extract parameters Inject attack messages

based on analysis

Open source log files

Analysis of attack

% and normal data patterns
C%

Open source CSV files

A
Convert to CSV
—
A
Analysis of normal Csv file
data patterns
: _—

Scania Log file % Scania CSV file S—

DBC file

Figure 3.1: Attack Generator Design

In the following sections of the chapter, the specifics of each attack generated by the
framework will be discussed. These parts will detail the methods and mechanisms
used to alter the Scania dataset, thereby synthetically simulating these attacks.

3.2 Dataset description

3.2.1 Scania Dataset

The dataset used in simulating synthetic attacks is normal behavior CAN bus
data provided by Scania in the format of an ASCII log file, as well as a CAN
DBC (CAN database) file. The DBC file is used to decode raw CAN bus data
into meaningful physical values, enabling the identification of transmitting nodes
within the network. This proprietary data, collected from a real driving session in
a Scania truck, spans approximately 19 minutes and contains around 12 million
messages. The presence of CAN-FD messages in the log shows that the vehicle’s
CAN bus system is compatible with CAN-FD, supporting larger data payloads up
to 64 bytes and higher data rates compared to the standard CAN protocol. The
data attributes for each message extracted from the log file include a timestamp,
CAN ID, Data Length Code (DLC), and data bytes. Each attribute is briefly
explained as follows:

e Timestamp: The recorded time in seconds
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e CAN ID: The arbitration ID used to identify the CAN message in
hexadecimal format (29-bits)

e DLC: The number of data bytes ranging from 0 to 64

e Data: The payload of the message (byte) in hexadecimal format

This traffic data is valuable due to the limitation of datasets derived from real
driving sessions, offering realistic payload behavior as sensors capture actual values
(e.g., pedestrian crossings, and lane assistance metrics).

3.2.2  Survival Analysis Dataset (KIA, SONATA, SPARK)

The Survival Analysis Dataset for automobile IDS [1], includes real driving data
(normal and attack) that were collected through an in-vehicle OBD-II port from
three types of vehicles. The data is focused on the following attack scenarios:
overloading the network (DoS) and injecting random packets (Fuzzy). The attack
data was generated by injected attack packets for five seconds every 20 seconds for
each of the three scenarios. The amount of messages in every dataset can be seen
in Table The log files only include standard CAN messages with a payload
of up to 8 bytes. The data attributes include a timestamp, CAN ID, DLC, data
bytes, and a flag indicating whether a message is normal (R) or injected (T). The
brief explanations of the attributes are as follows:

e Timestamp: The recorded time in seconds

e CAN ID: The arbitration ID used to identify the CAN message in
hexadecimal format (11-bit, e.g., 018F)

e DLC: The number of data bytes ranging from 0 to 8
e Data: The payload of the message (byte) in hexadecimal format

e Flag: T or R, T defines an attack message while R represents a normal
message

Table 3.1: Number of Messages by Attack Type and Vehicle Model
[1]

Attack Type # of Msg # of Msg # of Msg
(SONATA) (KIA) (SPARK)

Normal data 117,173 192,516 136,934

DoS Attack 149,547 181,901 120,570

Fuzzy Attack 135,670 249,990 65,665
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3.3 CAN Traffic Analysis

The initial phase in the development of the attack generator involved processing
CAN message data. This involved converting the raw ASCII log file (.asc) into a
more accessible CSV format (.csv). Only the essential attributes were preserved
— i.e., the timestamp, arbitration identifier, and data field. All CAN messages in
the log file were decoded using DBC files, and stored in a dictionary format
where each ECU was mapped to its corresponding sending message IDs.

As in the attack traffic generator developed by Neelap and Bhandari [34],
message ID frequencies and timestamps were targeted and analyzed from the
proprietary data. Additionally, analyzing the interval between messages in open
source data, when there is an attack, can reveal patterns that can be applied to
the generator. The proprietary data and the open source data differ significantly
in aspects such as vehicle type, diversity of driver activities, and duration.
Furthermore, the open source data uses a standard CAN protocol while the
proprietary data uses CAN-FD. These variations can, for example, result in
differences in message frequency on the CAN bus. To accurately compare attack
data from both datasets, it’s important to normalize this data relative to the
normal traffic patterns. To achieve this, a scale factor is used to ensure that
comparisons are meaningful and consider the inherent differences between the
datasets.

Table 3.2: Average interval between every message in the normal

datasets
Dataset Proprietary SONATA KIA SPARK
Avg. interval (ms) 0.0952 0.5121 0.4785 0.4351

Table shows that the average interval between all messages is smaller in the
proprietary data than in the open source data. The scale factor is calculated from
the average intervals obtained using the expression in [3.1]

APROP.

Scale Factor = 5
3 (Akia + AsonaTa + ASPARK)

_ 0.0952 (3.1)
~ £(0.5121 + 0.4785 + 0.4351)

~ 0.2

This scale factor is used to find what the mean interval should be for the
synthetically created DoS and Fuzzy attack, i.e., how often messages should be
injected into the normal data. The interval in which the messages should be
injected is calculated by applying the scale factor to the average interval between
attack messages in the open source data. The resulting intervals can be seen in

Table 3.3
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Table 3.3: Average interval between attack messages in Fuzzy and

DoS
Scaled interval SONATA KIA SPARK
DoS 0.1260 0.6183 0.6059 0.6655
Fuzzy 0.1948 1.0142 0.9746 0.9334

For the Replay attack the most frequent arbitration IDs are analyzed and chosen
as target messages for the attack. Figure [3.2] shows the frequency of messages per
ID in decreasing order, five IDs are sending messages with the highest frequency
and these are targeted for the attack.

Top 100 Most Frequent Arbitration IDs

o v o o

Percentage of Total Messages (%)

o
n

0.0

Arbitration ID

Figure 3.2: Top 100 most frequent Arbitration IDs

Additionally the cyclic time differences for each of the most frequent arbitration
IDs are analyzed in order to find a realistic behavior of the timestamps of the
messages that are to be replayed. Figure [3.3] shows the average cyclic time
differences of the top five most frequent IDs, and those are the intervals in which
the messages of each ID will be replayed.
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Figure 3.3: Cyclic time differences for Top 5 Arbitration IDs

For the Spoofing and Suspension attacks a set of DBC files have been used to
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decode messages in the normal data. This is done with the Python library cantools.
Using the decoded messages each message can be mapped to its transmitting ECU
and consequently, every message transmitted from that ECU can be altered or
removed in the normal data, resulting in the Spoofing and Suspension attacks.
Only the unique IDs corresponding to an ECU are considered, excluding those
IDs used by more than one ECU.

3.4 Generating attack data

Following the analysis, the tool proceeds to simulate synthetic attacks according
to the identified patterns and support from the literature. Five types of attacks
are considered i.e., Denial of Service, Fuzzy, Spoofing, Replay, and Suspension.
These attacks span the four attack mechanisms outlined in Section ensuring
a wide range of potential threats.

3.4.1 Denial of Service (DoS)

The script designed to simulate a Denial of Service (DoS) attack creates a series
of messages that mimic a flood of traffic on a CAN network. The functions
simulate the DoS attack by generating bursts of high-priority messages during
specified attack phases, known as intrusions, intended to overwhelm the network.
The intrusions have a randomly chosen duration between 4 to 6 seconds and are
separated by pauses, to reflect the unpredictability of an attack. The mean
interval between messages is approximately 0.13 milliseconds, with pauses
around a mean of 5 seconds, both subject to a standard deviation that
introduces randomness into the timing of these messages. These values are
variables and can be adjusted to add flexibility to simulate a wide range of DoS
attacks, for example, if a higher interval between messages is wanted. The values
chosen can be seen in Table and are based on the analysis of the open source
data to mimic those attack patterns. The calculation using the average intervals
in the normal datasets to derive the chosen interval between messages can be
seen in [3:2 The variability mimics real-world attack patterns and makes it
harder for detection systems to predict and identify the attacks. Each message is
created with a random payload, ensuring a variety of data within the attack
pattern. Each message is assigned the highest priority ID, i.e. 0, and is
integrated in intrusions with normal traffic data between two timestamps to
create a dataset that reflects the network’s state under attack conditions. This
integration is performed with care to adjust timestamps and prevent overlaps to
ensure that the attack messages are correctly distributed.

DoS = - (Akia + Asonata + Aspark) - 0.2

| = W =

3 (0.6183 + 0.6059 + 0.6655) - 0.2

~ 0.13 ms
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Table 3.4: DoS Attack Simulation Parameters

Parameter

Value

Intrusion Duration Range

4 to 6 s (randomly chosen
between these values)

Pause Duration Mean

5 s (with variability)

Message Interval Mean

0.13 ms (with variability)

Standard Deviation for Pauses

Mean Pause (Based on mean pause
duration of 5 s)

Standard Deviation for Message
Intervals

Mean Interval
e nen® (Based on mean

message interval of 0.15 ms)

Arbitration ID Selection

0

Payload

Randomly generated data

3.4.2 Fuzzy Attack

The Fuzzy attack simulation begins by selecting a subset of message IDs from
the normal traffic data, focusing on the most frequent ones to mimic legitimate
traffic patterns. This selection is then used to generate a set of pseudo-random
IDs by applying an XOR operation with a random number, expanding the variety
of IDs in the simulated attack beyond what’s typically observed but keeping the
general pattern of how an ID looks in the normal messages. For each generated ID,
random data payloads are created, simulating the content of each message. The
messages are then merged with normal traffic data in intrusions, like in the DoS
attacks described earlier. The intrusions last between 4 to 6 seconds (randomly
chosen between those values) and with pauses of 5 seconds. The interval and
pauses are both subject to a standard deviation that introduces randomness into
the timing of these messages. The values chosen can be seen in Table [3.5| and are
based on the analysis of the open source data to mimic those attack patterns. The
calculation using the average interval in the normal datasets to derive the chosen
interval between messages can be seen in The timestamps are adjusted to
avoid collisions, and to maintain a realistic traffic pattern the lower arbitration
IDs are prioritized.

Fuzzy = - (Akia + Asonata + Aspark) - 0.2

W] = W[~

-(0.9746 + 1.0142 + 0.9334) - 0.2

~
~

o

.2 ms
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Table 3.5: Fuzzy Attack Simulation Parameters

Parameter

Value

Intrusion Duration Range

4 to 6 s (randomly chosen
between)

Pause Duration

5 s (with variability)

Message Interval Mean

0.2 ms (with variability)

Standard Deviation for Pauses

Mean Pause (Baged on mean pause
duration of 5 s)

Standard Deviation for Message
Intervals

Mean Interval
e Re® (Based on mean

message interval of 0.2 ms)

Arbitration ID Selection Pseudo-random IDs based on top
33% frequent IDs

Randomly generated data

Payload

3.4.3 Spoofing Attack

The Spoofing attack simulation identifies and removes messages from a specific
ECU. It then generates new messages from that ECU, each with a
pseudo-random payload, and inserts these messages in a pattern that mimics
their normal transmission cycle. The pseudo-random payloads are generated
similarly to the IDs in the Fuzzy attack, but instead of using the most frequent
IDs, it uses the data in the messages sent by the specified ECU. To simulate a
natural variation in the timestamps of the messages, a standard deviation is
added. The simulation works by first identifying messages originating from the
target ECU using a mapping of ECUs to their message IDs. This mapping is
created by decoding the normal messages with a CAN Database file. By using
IDs connected to a given ECU the simulation ensures that only messages
relevant to the target ECU are considered for Spoofing. Once the relevant
messages are identified, the payload of the message is replaced with
pseudo-random data during a specific period of time. In this way, the simulation
effectively creates a scenario where the target ECU appears to be sending out
malicious data. Unlike the Fuzzy and DoS attacks, which launch their attacks in
separate intrusions, the Spoofing attack continuously happens over a set period.
The parameters and values can be seen in Table [3.6
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Table 3.6: Spoofing Attack Simulation Parameters

Parameter Value

Target ECU Specified ECU to spoof

Cyclic Behavior Simulation Cyclic Behavior of normal
messages

Standard Deviation for Cyclic 1% of the base cyclic difference

Difference

Arbitration ID Selection IDs of the targeted ECU

Payload Pseudo-random based on original
payload

3.4.4 Replay Attack

The Replay attack is simulated by first identifying specific messages that are likely
targets for an attack, focusing on those IDs that occur frequently in the normal
data. For each selected message, the average interval between its occurrences is
calculated to understand its transmission pattern. This is done to ensure that
the replayed messages are inserted in the normal data in a way that mimics their
natural flow in the network. The Replay messages are generated by duplicating
selected messages and adjusting their timestamps with the calculated intervals to
maintain their cyclic pattern in the normal data. After the messages are created
they are inserted into the normal data during a period of time. The parameters
and values can be seen in Table 3.7

Table 3.7: Replay Attack Simulation Parameters

Parameter Value

Arbitration ID Selection Top 5 most frequent message IDs
Payload Original payload

Standard Deviation for Timing 1% of the base cyclic difference
Variability

3.4.5 Suspension Attack

The simulation of the Suspension attack involves strategically removing messages
from a specific target ECU within a specific time period, aiming to mimic the effect
of the ECU being suspended from the network. This is done by first identifying the
message [Ds associated with a target ECU, using the same mapping of ECUs to
their message IDs as in the Spoofing example. When the IDs have been identified
the simulation filters out these messages from the normal data within the given
time period. This mimics the suspension of the targeted ECU, creating a gap in
the communication from that ECU.
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3.5 Evaluation

The attack generator’s performance was evaluated through the extraction of
specific metrics from the datasets, utilizing Pandas and Numpy for the analysis.
This process was conducted iteratively with the dataset creation to ensure that
the proprietary data aligned with the open source data. The metrics identified as
most relevant included the average ratio of attack messages to normal messages
in each intrusion.

Further, several scattered plots were rendered from the open source data as well
as the proprietary data, which shows the interval between all subsequent

messages for normal data and attack data.

The results of the evaluation can be found in Chapter [5} Section [5.1



Chapter 4

Intrusion Detection System

This chapter presents the methodology behind the implementation of two
different Machine Learning (ML)-based Intrusion Detection Systems (IDS).
These IDSs have been trained and tested on the synthetically created data
described in Chapter The chapter outlines the chosen machine learning
models, together with their relevance and the motivation for inclusion in this
project. This is followed by a detailed view of each model’s architecture and the
specific parameters involved. It then continues with describing the chosen
features, the preprocessing of data, and the training process. Lastly, the methods
of evaluation are discussed.

4.1 Selection of Models and Attacks

For the IDS implemented in this thesis, two types of deep learning models are
evaluated, Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM), for their capabilities in handling CAN bus data. As motivated by
Hossain et al. [35] the LSTM is a suitable choice for CAN messages as it is
known for its efficacy in handling time-series data. The CNN, on the other hand,
is noted for its strong feature extraction capabilities suitable for identifying
distinct patterns in the data, including variations in CAN ID and payload.

Frequency-based IDSs can quite easily identify Fabrication and Suspension
attacks by examining the timing and sequence of each ID [15]. In Masquerade
attacks, one ECU is suspended while another impersonates it by mimicking its
message pattern to send forged messages, leaving the frequency of message
transmissions unchanged. Frequency-based detection systems fail to identify this
type of attack because they do not change the typical frequency patterns of the
network. Therefore, a method capable of analyzing the content within data
frames becomes necessary. An LSTM model is particularly well-suited for this
purpose due to its capability of sequence prediction problems. It makes it ideal
for analyzing time-series data, such as CAN bus messages, which involve
sequences of network traffic data. The LSTM model can learn to recognize the
subtle changes in message content that indicate a Masquerade attack, even when
message frequencies remain unchanged. The CNN can detect even minor
deviations from established patterns, which is effective when subtle changes in
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the payload occur.

This thesis focuses on supervised learning, where attacks such as Fabrication,
Masquerade, and Replay mechanisms are chosen for training and evaluation.
These attacks involve injecting messages into the CAN bus network. Since these
attack files are labeled by message, they are suitable for supervised learning
approaches. Suspension attacks, where messages are removed without injection,
are not labeled and therefore not chosen for the supervised approach.

4.2 Data Preprocessing and Feature Extraction

The dataset used for training and testing the models includes the normal dataset
provided by Scania, as detailed in Section together with the synthetically
created attack datasets. The attack datasets include DoS, Fuzzy, Spoofing,
Suspension, and Replay attacks. The datasets are attributed as timestamp, CAN
ID, DLC, data, and type. The ’type’ attribute is labeled T’ for the injected
attack messages and 'R’ for normal messages. From each dataset, 3 million
messages were chosen, during the same time span, to make the model more
effective. Table [£.1] presents the instances of each class in all of the datasets. The
datasets, both sequences and single combined contain 85.8% of normal class
instances and 6.6%, 4.8 %, 0.3%, 2.5% of DoS, Fuzzy, Spoofing, and Replay
instances, respectively. The percentages of sequences for size 25 marked with the
normal classification are 46.6% for Normal, and 15.8%, 15.1%, 7.1%, and 15.5%
respectively for DoS, Fuzzy, Spoofing, and Replay attack classification in Table
[4.2] For size 50, the percentages are 36.4% for Normal, and 15.8%, 15.1%, 12.6%,
and 21.2% respectively for DoS, Fuzzy, Spoofing, and Replay. The datasets were
combined and shuffled. The dataset is imbalanced reflecting real-world
conditions where normal traffic outweighs anomalous traffic.

Table 4.1: Normal and attack instances

Attack ‘ # of Messages ‘ % of Total Msgs

Normal 10,290,642 85.8%
DoS 796,779 6.6%
Fuzzy 579,770 4.8%
Spoofing | 38,131 0.3%

Replay | 294,678 2.5%
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Table 4.2: Normal and attack instances (Sequences)

Attack # of Sequences for size 25 (Train/Val/Test)

Normal  3,910,820/838,055/837,733 (46.6%)
DoS 1,326,460/284,204 /284,437 (15.8%)
Fuzzy — 1,267,317/271,512/272,027 (15.1%)
Spoofing  592,972/127,345/127,027 (7.1%)

Replay  1,302,363/278,868/278,764 (15.5%)

Attack # of Sequences for size 50 (Train/Val/Test)

Normal  2,971,032/636,650,/636,651 (36.4%)
DoS 1,326,920/284,340/284,341 (15.8%)
Fuzzy — 1,267,984/271,711/271,711 (15.1%)
( )
( )

Spoofing  1,057,144/226,531/226,531 (12.6%
Replay 1,776,780/380,739/380,739 (21.2%

From each dataset, the features extracted that contained adequate information
were the CAN ID and the first eight bytes of the payload data. The CAN ID was
transformed from hexadecimal to a binary format comprising 29 bits, with each
bit being selected as a feature. Additionally, each byte of the payload data,
initially in hexadecimal form, was converted to decimal and normalized using
MinMaxScaler and chosen as a feature. These features were selected to reduce
system complexity and execution time, as using a large number of data points in
the classification could delay overall performance due to increased execution time
[6]. Only the first 8 bytes were selected because choosing all 64 bytes would
increase complexity, especially since the dataset consists of payloads where 90%
are of an 8-byte size. The type label was converted to 0 for normal messages and
1 (DoS), 2 (Fuzzy), 3 (Spoofing), and 4 (Replay) for attack messages.

For both the LSTM and CNN models, two approaches were explored. The first
approach treated each CAN message independently by considering its 37 features
(comprising the CAN ID and payload) as a single-dimensional sequence. This
method primarily focused on the feature-level analysis of individual messages.
The second approach extended the analysis to handle sequences of messages to
capture temporal dependencies across multiple messages. This approach
processed the messages into overlapping sequences, using a sliding window
mechanism that advanced one step at a time. Two different sequence lengths, 25
and 50, were empirically tested to determine the optimal configuration for
anomaly detection. The sequences were labeled as 0 (Normal message) if there
were no attack messages within that sequence and 1 (DoS), 2 (Fuzzy), 3
(Spoofing), or 4 (Replay) if there was at least one attack message. These
sequences were split into training, validation, and testing data. Out of the data,
70 % was used for training, 15 % for validation, and the last 15 % was used as
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testing data.

4.3 IDS Model Architecture

The architecture for the two types of models and their configurations can be seen
in Table[£:3]and [£:4] The architecture was established with parameters inspired by
the two IDS implementations presented in [35] and [36]. In those implementations,
sigmoid was proven to be the most effective activation function and Nadam as
the most effective optimizer, for both LSTM and CNN. A batch size of 256 or
512 was proven to be best, 256 was then chosen for the CNN model but for the
LSTM model, 1024 had to be chosen due to computational time constraints. For
the output activation function, softmax was chosen due to it being standard for
multi-class classification tasks and similar for categorical _crossentropy for the loss
function. The learning rate of 0.0001 was proven to be the most effective of the
two referred implementations and therefore chosen for both LSTM and CNN. A
filter size of either 256 or 512 for the CNN was recommended, thus 256 was chosen.
These models were trained both sequence-wise having sequences of length 25 and
50 and pointwise i.e. a sequence of length 1.

Table 4.3: Parameter Values for 1D CNN Multiclass Classification

Parameters Value
Sequence Length 1, 25 and 50
Activation Function sigmoid
Filter size 256
Epoch 100
Output Layer Activation Function softmax
Optimizer Nadam
Batch Size 256
Learning Rate 0.0001

Loss Function categorical _crossentropy
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Table 4.4: Parameter Values for LSTM Multiclass Classification

Parameters Value
Sequence Size 1, 25 and 50
Activation Function sigmoid

Epoch 100

Output Layer Activation Function softmax
Optimizer Nadam

Batch Size 1024

Learning Rate 0.0001

Loss Function categorical crossentropy

4.4 Evaluation metrics

In this section, the performance measures for the methods are presented. A
variety of metrics are utilized to measure the performance of the models. The
detection accuracy shows how often a classification of a model is correct overall,
as seen in Equation [f.I] When dealing with imbalanced datasets, relying only on
accuracy is insufficient for assessing model performance. Precision, as seen in
Equation measures the accuracy of the attack predictions, i.e., how many of
the positive predictions were true. A high precision means that when the IDS
identifies an event as an attack, it is likely correct. Recall, as seen in Equation
[4:2] measures the ability to detect all actual attacks, ensuring few or any attacks
go unnoticed. The F1 score, as seen in Equation provides a measure to
balance precision and recall. It is an important metric for evaluating machine
learning performance, especially with imbalanced datasets. The False Positive
Rate (FPR), seen in Equation is the proportion of negative instances that
are incorrectly classified as positive and is an important measure when the cost
of a false positive is high. The False Negative Rate (FNR), seen in Equation
is the proportion of positive instances that are incorrectly classified as negative
and is an important measure if missing a positive instance is costly or dangerous.
In the context of anomaly detection, it is especially important to have a low
FNR for the normal class, as generating an excessive number of false alarms,
where normal traffic is incorrectly classified as malicious can overwhelm security
analysis system (e.g., the cyber security management system), leading to alert
fatigue and making it difficult to respond to real threats among the noise of false
positives.

To provide a visual summary of the IDS performance, a confusion matrix will be
included in the analysis. This matrix offers a clear visualization of how the
model performs concerning each class by displaying the counts of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN).

TP+TN
Detection Accuracy (Acc) = TPLTN 1 FPTEN (4.1)
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TP
11 == 4.2
Recall (Rec) TPLFN (4.2)
TP
Precision (Pre) = W (43)

Precision x Recall

F1 F1)=2 4.4

Score (F1) x Precision + Recall (4:4)
FP

False Positive Rate (FPR) = m (45)
. FN

False Negative Rate (FNR) = TP+ FN (4.6)

The results of the IDS performance can be found in Chapter [5 Section [5.2]



Chapter 5

Results

This chapter presents the results obtained in this thesis. The first part focuses
on the results of the synthetically generated attack files and consequently the
evaluation of the attack generator as a whole, presenting the calculated metrics and
plots for the proprietary as well as open source data. The second part focuses on
the results of the evaluation of the implemented ML-driven IDS, i.e., utilizing the
Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM)
models.

5.1 Synthetic Attack Generation

This section presents the results of the synthetically created attack files. These
results include the average ratio of attack messages in intrusions, complemented
by visual plots from both proprietary and open-source data.

The outcomes for the average interval metric are presented in Table 5.1} These
metrics were extracted from the Fuzzy and DoS data and from both proprietary
and open source data. The results show that the interval between the messages
in the proprietary data is around 0.07 ms while the interval in the open source
data is larger and around 0.4 ms.

Table 5.1: Average interval between every message in DoS and
Fuzzy datasets

Proprietary SONATA KIA SPARK
DoS (ms)  0.0725 0.4011 0.3913 0.3546
Fuzzy (ms) 0.0773 0.4438 0.4016 0.3961

The outcomes for the average ratio metric are presented in Table These
metrics were extracted from the Fuzzy and DoS data and from both proprietary
and open source data. The average ratio of messages within an intrusion, i.e., the
percentage of attack messages are of similar values between all datasets. For the
proprietary data and the DoS attack the percentage of attack messages is 38.6 %
and for the open source data and the DoS attack the percentage is between 35.6 -
39.3 %. For the Fuzzy attack, the percentage is around 28 % for all four datasets.
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Table 5.2: Average ratio in intrusion (nbr of T/ nbr of R and T)

Proprietary SONATA KIA SPARK
DoS (%) 38.610 39.269 35.645 35.645
Fuzzy (%) 28.293 28.565 28.170  28.170

The plots presenting the interval between every subsequent message in the DoS
and Fuzzy attack files, for proprietary and open source data can be found in [5.1}
and The red represents the attack messages (labeled T) while the green
represents the normal messages (labeled R), i.e., each attack interval corresponds
to the red sections of the plot. The plots show that an attack leads to a decrease
in the interval between messages in all four files. In each plot, the average interval
between all messages is shown as a dotted line for clarification. For the proprietary
data, a portion of the file has been plotted (100 seconds), which corresponds to the
total time of the open source data files. The x-axis represents the total timestamp
of each message and the y-axis the interval.

(c) KIA data (d) SPARK data

Figure 5.1: DoS: The interval between subsequent messages (s) on
the y-axis and timestamp (s) on the x-axis. Attack messages
(T) are marked in red and normal messages (R) are marked in
green
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Fuzzy Attack (Proprictary) Fuzzy Attack (SONATA)

mmmmmmmmmmm

(c) KIA data (d) SPARK data

Figure 5.2: Fuzzy: The interval between subsequent messages (s)
on the y-axis and timestamp (s) on the x-axis. Attack messages
(T) are marked in red and normal messages (R) are marked in
green

Additionally, the plot in Figure [5.3] presents the interval between every subsequent
message transmitted from the targeted ECU in a Suspension attack. Thus, the
intervals plotted are all between messages sent by the targeted ECU. The gap in
the plot shows where the ECU has been suspended for about 200 seconds and it
is clear that there are no intervals plotted here, i.e., there are no messages sent
during this period of time.
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Suspension Attack (Proprietary)
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Figure 5.3: The interval between subsequent messages for the
Suspension attack, filtered on the targeted ECU

Figure presents the interval between every subsequent message transmitted
from the targeted ECU during a Spoofing attack, the red dots represent the
injected (spoofed) messages, and the green dots correspond to all other normal
messages. For comparison, Figure [5.5] displays data from the normal log file for
the same time frame, where the blue dots indicate messages from the targeted
ECU, and the green dots represent all other messages on the bus.

Spoofing Attack (Proprietary)

. Typer .
000251 o TypeT PR
-~

0.0020
0.0015

0.0010

Interval Between Subsequent Messages (s)

0.0005

0.0000

300 20 340 360 380 400
Timestamp

Figure 5.4: The interval between subsequent messages for the
Spoofing attack
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Normal data with ECU IDs marked in blue (Proprietary)

« All messages except from chosen ECU
000251 o Messages from chosen ECU —

00020 -

00015

0.0010

Interval Between Subsequent Messages (s)

0.0005

0.0000

Timestamp

Figure 5.5: The interval between subsequent messages in normal
data within the time frame for the Spoofing attack seen in

Figure

Lastly, Figure presents a small slice of the dataset during a Replay attack,
showing how the messages are being replayed. ID 1 through 5 are the top 5 most
occurring messages in the file and those targeted for the Replay attack. The green
crosses represent normal messages being sent and the red crosses are those same
messages being replayed.

Messages Over Time for Top 5 Arbitration IDs

N X TR
s Sox—34 2006 % wpet
L %X 20¢
Zi03 ¢ 304>
02 XXX XXX % %
01 ¢ 200¢ 006
2327950 227975 2328000 2328025 2325075 2325100 226125 2328150

232805
Timestamp (s)

Figure 5.6: Normal and Replayed messages during a small timeframe
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5.2 Intrusion Detection System

This section presents the evaluation results of the implemented models for the
IDSs. The chosen metrics to evaluate the model’s performance were accuracy,
recall, false positive rate (FPR), false negative rate (FNR), and F1 score. These
are motivated in Chapter [

5.2.1 LSTM models

Table [5.3] presents the results for the LSTM model trained on sequences of length
1, i.e., trained on individual messages (pointwise). The overall accuracy for the
model was 97.52 %. This model was unable to detect any instances of Replay,
and therefore the model shows very poor results for this class. The result shows
that the model detects instances of DoS very well with perfect scores in all
metrics. Fuzzy can also easily be detected with high values in precision, recall,
and F1 score and low values for FPR. The Spoofing class is slightly more difficult
to detect with a precision of 0.9797 and also a slightly lower recall and F1 score.
The Normal class has the highest FPR of 0.1733 meaning that about 17% of all
messages classified as normal were actually attack messages. The FNR was low
for the normal class 0.0001, meaning that nearly 0.01% of the normal messages
were classified as attack messages.

The confusion matrix (for the LSTM model trained on sequences of length 1) in
Figure shows that most messages are located in the diagonal, i.e. classified to
their correct class. However, all Replay classes have been classified as Normal
messages. All messages of the DoS class are correctly classified as DoS. For
Fuzzy and Spoofing some messages are classified as Normal and some messages
of class Normal are classified as Fuzzy and Spoofing, a few messages of Fuzzy
have been classified as Spoofing.

Table 5.3: Results for LSTM (without sequences)

Attack | Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR ‘ FNR

Normal 0.9720 0.9999 0.9858 0.1733 | 0.0001
DoS 1.0000 1.0000 1.0000 0.0000 | 0.0000
Fuzzy 97.52 % 0.9995 0.9976 0.9985 0.0000 | 0.0024
Spoofing 0.9797 0.9739 0.9767 0.0001 | 0.0261

Replay 0.0000 0.0000 0.0000 0.0000 | 1.0000
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Figure 5.7: LSTM Confusion Matrix for Table (without
sequences)

Table presents the result for the LSTM model trained on sequences of length
25. The overall accuracy for this model was 99.49 %. The model performs very
well on the DoS and Fuzzy classes with high scores on precision, recall, and F1
scores and low scores on low scores on FPR and FNR. The FNR for the normal
class was 0.0037, meaning that about 0.37 % of all normal messages were
wrongly classified as attack messages. The FPR of the normal class was 0.0063,
which shows that about 0.63 % of all attack messages were wrongly classified as
normal messages.

The confusion matrix (of the LSTM model trained on sequences of length 25) in
Figure [5.8] shows that most instances are located in the diagonal, classified to
their correct class. About 2000-3000 sequences of classes Spoofing and Replay
have been wrongly classified as instances of the Normal class, and about 3000
sequences of the Normal class have been classified as instances of the Replay
class. Some sequences of DoS and Fuzzy are incorrectly classified as instances of
Normal, Spoofing, and Replay.
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Table 5.4: Results for LSTM (sequences of 25)

Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR | FNR

Normal 0.9928 0.9963 0.9945 0.0063 | 0.0037
DoS 1.0000 0.9999 1.0000 0.0000 | 0.0001
Fuzzy 99.49 % 0.9999 0.9994 0.9997 0.0000 | 0.0006
Spoofing 0.9968 0.9839 0.9903 0.0002 | 0.0161
Replay 0.9899 0.9861 0.9880 0.0018 | 0.0139
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Figure 5.8: LSTM Confusion Matrix for Table (sequences of size
25)

Table [5.5] presents the result for the LSTM model trained on sequences of length
50. The overall accuracy for this model was 99.84 %. The model performs best
on the DoS and Fuzzy classes with high scores on precision, recall, and F1 scores
and low scores on FPR and FNR. The precision for the Spoofing class is also
high but the recall and F1 score is lower than DoS and Fuzzy. The Replay class
has a lower precision than Spoofing as well as a lower recall and F1 score. The
FNR for the normal class was 0.0009, meaning that about 0.09 % of all normal
messages were wrongly classified as attack messages. The FPR of the normal
class was 0.0019, which shows that about 0.19 % of all attack messages were
wrongly classified as normal messages.

Figure [5.9] presents the confusion matrix for the LSTM model trained on
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sequences of length 50. The majority of instances are predicted in the diagonal
i.e. as the correct class. Few instances of DoS and Fuzzy have been wrongly
classified summing up to barely 50 instances. The Spoofing class has a few more
misclassifications of about 400, however, Replay is worse with around 1800
misclassifications. Almost 570 instances of the Normal class have been classified
as attack instances.

Table 5.5: Results for LSTM (sequences of 50)

Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR | FNR

Normal 0.9965 0.9991 0.9978 0.0019 | 0.0009
DoS 1.0000 0.9999 1.0000 0.0000 | 0.0001
Fuzzy 99.84 % 1.0000 0.9999 0.9999 0.0000 | 0.0001
Spoofing 0.9998 0.9981 0.9990 0.0000 | 0.0019
Replay 0.9986 0.9953 0.9970 0.0004 | 0.0047
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Figure 5.9: LSTM Confusion Matrix for Table (sequences of size
50)
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5.2.2 CNN models

Table presents the results for the CNN model trained on sequences of length
1, i.e., trained on individual messages (pointwise). The overall accuracy for the
model was 97.55 %. This model was unable to detect any instances of Replay,
and therefore the model shows poor results for this class. The result shows that
the model detects instances of DoS very well with perfect scores in all metrics.
Fuzzy and Spoofing can also easily be detected with high values in precision,
recall, and F1 score and low values for FPR.The Normal class has the highest
FPR of 0.1724 meaning that about 17% of all messages classified as normal were
actually attack messages. The FNR was low for the normal class 0.0000, meaning
that nearly 0% of the normal messages were classified as attack messages.

Figure displays the confusion matrix for the CNN model trained on
sequences of length 1. It shows that most messages are located in the diagonal,
classified to their correct class. However, all messages of class Replay have been
classified as Normal messages. All messages of the DoS class are correctly
classified as DoS. For Fuzzy and Spoofing some messages are classified as Normal
and some messages of class Normal are classified as Fuzzy and Spoofing, a few
messages of Fuzzy have been classified as Spoofing.

Table 5.6: Results for 1D CNN (without sequences)

Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR ‘ FNR

Normal 0.9722 1.0000 0.9859 0.1724 | 0.0000
DoS 1.0000 1.0000 1.0000 0.0000 | 0.0000
Fuzzy 97.55 % 0.9990 0.9995 0.9993 0.0000 | 0.0010
Spoofing 0.9988 0.9941 0.9964 0.0000 | 0.0059

Replay 0.0000 0.0000 0.0000 0.0000 | 1.0000
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Figure 5.10: 1D CNN Confusion Matrix for Table (without
sequences)

Table presents the result for the CNN model trained on sequences of length
25. The overall accuracy for this model was 99.44 %. The model performs best
on the DoS and Fuzzy classes with high scores on precision, recall, and F1 scores
and low scores on FPR and FNR. The model is worse at classifying instances of
the Normal, Spoofing, and Replay classes with Replay having the lowest scores.
The FNR for the normal class was 0.0036, meaning that about 0.36 % of all
normal messages were wrongly classified as attack messages. The FPR of the
normal class was 0.0074, which shows that about 0.74 % of all attack messages
were wrongly classified as normal messages.

The confusion matrix (of the CNN model trained on sequences of length 25)
presented in Figure shows that the majority of sequences have been
classified to their correct class as they are located in the diagonal of the matrix.
Approximately 3000 sequences of the Spoofing class and 4000 of the Replay class
have been incorrectly classified as Normal. Very few sequences of DoS are
incorrectly classified while some sequences of Fuzzy are classified as Normal and
DoS. Almost 3000 sequences of class Normal have been classified as either DoS,
Fuzzy, Spoofing, or Replay.
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Table 5.7: Results for 1D CNN (sequences of 25)

Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR ‘ FNR

Normal 0.9916 0.9964 0.9940 0.0074 | 0.0036
DoS 1.0000 1.0000 1.0000 0.0000 | 0.0000
Fuzzy 99.44 % 0.9998 0.9998 0.9998 0.0000 | 0.0002
Spoofing 0.9997 0.9761 0.9877 0.0000 | 0.024
Replay 0.9895 0.9856 0.9876 0.0019 | 0.0144
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Figure 5.11: 1D CNN Confusion Matrix for Table (sequences of
size 25)

Table [5.8] presents the result for the CNN model trained on sequences of length
50. The overall accuracy for this model was 99.72 %. The model performs best
on the DoS and Fuzzy classes with high scores on precision, recall, and F1 scores
and low scores on FPR and FNR. The precision for the Spoofing class is also
high but the recall and F1 score is lower than DoS and Fuzzy. The Replay class
has a lower precision than Spoofing but a higher recall and F1 score. The FNR
for the normal class was 0.0001, meaning that about 0.1 % of all normal
messages were wrongly classified as attack messages. The FPR of the normal
class was 0.0042, which shows that about 0.42 % of all attack messages were
wrongly classified as normal messages.

Figure illustrates the confusion matrix for the CNN model with sequences of



Results 49

length 50. This shows that the majority of sequences are correctly classified, and
located in the diagonal of the matrix. Barely 100 sequences of the Normal class
have been classified as being an attack sequence and only 1 sequence of DoS is
incorrectly classified. The Fuzzy and Spoofing class also shows few
misclassifications while about 4600 instances of Replay have been misclassified as
Normal instances.

Table 5.8: Results for 1D CNN (sequences of 50)

Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ F1 Score ‘ FPR ‘ FNR

Normal 0.9924 0.9999 0.9961 0.0042 | 0.0001
DoS 1.0000 1.0000 1.0000 0.0000 | 0.0000
Fuzzy 99.72 % 1.0000 0.9999 0.9999 0.0000 | 0.0001
Spoofing 0.9999 0.9991 0.9995 0.0000 | 0.0009
Replay 0.9998 0.9878 0.9938 0.0000 | 0.0122
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Figure 5.12: 1D CNN Confusion Matrix for Table(sequences of
size 50)
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5.2.3 Comparative analysis of LSTM and CNN models

To summarize how the LSTM and CNN models adapt to varying sequence lengths,
two important performance metrics, i.e., accuracy and FNR on the Normal class
are highlighted. Table [5.9] shows the overall accuracy of each model at different
sequence lengths, indicating that both models generally improve as the sequence
length increases. The LSTM models had a higher accuracy than the CNN model
with the sequence-based training while the CNN model was slightly better than
the LSTM model with the point-based training. The LSTM model with sequences
of length 50 had the best accuracy of 99.84 %. The model with the lowest accuracy
was the LSTM model with no sequences which had an accuracy of 97.52 %.

Table 5.9: Comparison of LSTM and CNN Model Overall Accuracy
by Sequence Length

Sequence Length | LSTM Accuracy ‘ CNN Accuracy

Pointwise 97.52 % 97.55 %
25 99.49 % 99.44 %
50 99.84 % 99.72 %

Table focuses on the False Negative Rate (FNR) for normal data. The FNR
for the CNN models was lower than the LSTM models in all three cases. The
models with sequence length 25 had the highest FNR.

Table 5.10: Comparison of FNR for LSTM and CNN Models on
Normal Data by Sequence Length

Sequence Length | LSTM FNR | CNN FNR

Pointwise 0.01 % 0.00 %
25 0.37 % 0.36 %
50 0.09 % 0.01 %

Figure presents five diagrams showing the overall results for each class and
the metrics precision, recall, and F1 score for each of the six model configurations.
The diagrams are plotted from 0.8 to 1.0 to get a more clear visualization of the
differences. These diagrams show that all models perform well on Fuzzy and DoS
with scores close to 1 in all three metrics. The models generally have a high recall
on the Normal class but lower values in precision and F1 score. Regarding the
Spoofing class, the models have a higher precision than the Normal class but a
lower recall and F1 score. The diagram presenting the results for the Replay class
shows that the metrics for the models trained on sequences of length 1 is 0, and
accordingly for this attack the trained models perform generally worse than other
attacks.
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Chapter 6

Discussion

This chapter discusses the results of the attack generator and the machine
learning-based IDS used for detecting attacks on the CAN bus data. It explores
the implications, addresses the limitations, and provides suggestions for future
research.

6.1 Attack Generator

This section elaborates on the validity of the synthetic data produced and the
analysis of specific attack mechanisms.

6.1.1 Validity of synthetic data

Synthetically generated attack data, while useful for training and testing an IDS,
presents significant challenges. One major issue is the difficulty in verifying the real
impact of these attacks on a vehicle’s operational behavior. Unlike real attacks,
where the direct effects can be observed and measured on actual vehicle systems,
the synthetic attacks in this thesis can not. This means that while synthetic data
can simulate scenarios, it cannot fully represent what would happen in a real-
world setting. This limitation is due to predicting the specific impacts of these
injected messages on a real vehicle’s systems is too challenging for the scope of
this thesis. Additionally, the normal data on which the attack data was based
had been collected from a single driving session, limiting the data’s variability and
diversity.

6.1.2 Analysis of the generated attack files

The synthetic attack data for the Fabrication mechanism was benchmarked
against the open source datasets, demonstrating a similar average ratio of attack
messages in intrusions, as shown in Table [5.2] This similarity is important for
the effectiveness of the IDS, as it leads the IDS to be tested under conditions
that resemble actual attack scenarios to some extent. For Suspension,
Masquerade, and Replay attacks, the dependency on injection frequency is not as
critical as it is for the Fabrication attack mechanism. The effectiveness of the
Suspension attack mechanism is straightforward to verify, as it involves removing
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messages from a specific Electronic Control Unit (ECU). This can be observed in
Figure which shows the absence of messages from the targeted ECU. For the
Replay attack, verification is similarly direct, where Figure demonstrates that
the messages are being replayed as expected. For the Masquerade attack
mechanism, the Spoofing attack is displayed in Figure [5.4] and the actual normal
activity during the same time frame before the injected attack is shown in Figure
In the Spoofing plot, the injected messages are scattered throughout and
tend to have a wider distribution of intervals between messages, some
overlapping with the normal intervals and some with a noticeably larger gap
compared to the normal activity. The spoofed messages (red) in the attack plot
show more timing variability, indicating a Masquerade attack closer to the
reality. This is consistent with realistic scenarios where it is challenging for an
attacker to duplicate the precise timing of the normal messages.

6.1.3 Attack patterns and open source data

In analyzing the impact of attacks on in-vehicle systems, it is important to
consider the different vehicle types used within the datasets. The open source
data included three different vehicles, each showing distinct responses to the
attacks. This variation is demonstrated in Figures and [5.2] which show
differences in bus load and message frequency distribution across these vehicles.
Moreover, the proprietary dataset differs not only in vehicle type, being sourced
from a truck as opposed to a car, but also in the communication protocol used.
This dataset includes CAN-FD messages, whereas the open source data is limited
to the standard CAN protocol. CAN-FD’s increased payload capacity and higher
data rate could influence the impact of attacks compared to those on standard
CAN systems.

This thesis focuses on generating attack patterns that are important for an IDS
to detect, particularly because they could severely impair in-vehicle functions.
As discussed, the synthetically simulated attacks in the generated files do not
predict or include the actual effects on vehicle operation. Nonetheless, it’s
important to ensure that the simulated attacks would realistically affect a
vehicle. To implement attacks that can severely impair in-vehicle function, an
analysis of open source datasets was used to determine attack frequency and
type of messages to mimic a realistic performed attack for the Fabrication
mechanism. The open source data describe in their paper that the Fuzzy attack
successfully resulted in malfunctions such as unintended activation of vehicle
components. Yet, for the DoS attack no malfunction was mentioned, this absence
in the available data suggests a potential gap in understanding the full impact of
such attacks on the CAN bus.

Furthermore, the attacks in the open source datasets are limited to
approximately 1 minute which does not sufficiently represent the range of
conditions and durations that vehicles may encounter in real-world scenarios.
This limited duration may not capture the long-term effects of attacks or the
vehicle’s response over an extended period. Extending the simulation time could
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provide a more comprehensive understanding of the effects of long or continuous
attacks but for the scope of this thesis, the patterns of attacks are sufficient to
generate realistic attack data.

6.2 Intrusion Detection System

This section discusses the results of the Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) models. Moreover, it addresses the
limitations of the implementation of the IDSs.

6.2.1 Observations from results

The results from testing the IDS, implemented with both LSTM and CNN
models, demonstrated different insights. For example, a high accuracy in
detecting DoS and Fuzzy attacks for both models. These attacks typically
present clear deviations from normal traffic patterns, which the models could
successfully identify and classify. The DoS attack involves injecting messages
with a high-priority arbitration ID, in this case, ID 0. Since this ID deviates
significantly from those of normal messages, the attack can be easily detected.
The normal messages do not use an arbitration ID of 0, which enables the model
to identify the attack messages with high probability. Additionally, the models
are also highly capable of detecting Fuzzy attacks, which involve injecting
messages of random arbitration IDs that, although random, still fall within the
range of normal message IDs.  This capability demonstrates the model’s
effectiveness in identifying a variety of attacks characterized by slight deviations
from the standard range of arbitration IDs.

The LSTM and CNN models trained with input sequence lengths of 25 and 50
showed variations in their detection accuracy. Specifically, shorter sequences or
pointwise tended to be sufficient for detecting straightforward attack patterns
such as DoS and Fuzzy. However, for more complex scenarios like Spoofing and
Replay attacks, extending the sequence length to 50 generally improved detection
capabilities, as shown by the tables in section [5.2] The IDS, both for LSTM and
CNN, only detects Replay attacks when using sequences as input. Replay
attacks, the retransmission of valid messages, are challenging to identify without
a sequence-based model as it need to understand temporal dependencies between
messages. The Replay attack is detected with both sequences of 25 and 50, as
mentioned with slightly better performance for the longer sequence in accuracy.
While the Spoofing attack is detected with better performance for models with
sequences as input, the models with points as input could still detect them.
Since the Spoofing attack uses spoofed IDs i.e. IDs already existing in the
normal data together with a random payload, this shows that the model is adept
at detecting deviations in the payload as well.

The metric identified as one of the most important is the FNR of normal data,
which helps minimize false alarms. As indicated in Table the FNR for
LSTM and CNN are very low at 0.01% and 0.00% respectively for pointwise
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input. With longer sequences, these rates increase, which is due to the model’s
ability to detect Replay messages, with most misclassifications occurring in this
category. The CNN models had a slightly lower FNR for the Normal class than
the LSTM models for all model configurations, i.e. fewer instances of the Normal
class are misclassified by the CNN models. However, the FPR is generally higher
for the CNN models, meaning that more attack instances are missed and
classified as Normal. The FNR is the highest when the models are trained on
sequences of length 25, which can be explained by the difficulty in classifying
Spoofing and Replay. With a longer sequence length, more instances of Spoofing
and Replay can be correctly classified and the FNR becomes lower. This
indicates that a longer sequence length is better for detecting these types of
attacks.

The results showed that the LSTM models performed slightly better than CNN
when trained on sequences, which can be due to the LSTM being particularly
skilled at handling sequential data. While CNNs are great at spatial pattern
recognition, such as in image processing, they can be less efficient at finding the
long-term dependencies needed for sequence processing. LSTMs that are
designed to learn information across time steps, can therefore be a better match
for tasks where historical context influences future outcomes, such as CAN data.
The model that performed best across all classes in terms of accuracy, precision,
recall, and F1 score was the LSTM model trained on sequences of length 50.
However, if the goal is to have a high accuracy together with a low FNR the
CNN trained on sequences of 50 might be the better option.

6.2.2 Limitations

Supervised Learning

Using only supervised learning limits the model’s detection ability to the attacks
that it is trained on. The models proposed in this thesis are only trained on four
types of attacks, which means that it is only able to detect these four types of
attacks. Even though these four attacks are relevant to this topic, there could
be more attacks not yet known or discovered in the literature. Thus, only using
supervised learning for this problem is a limitation, since this means that the IDS
will be unable to detect unknown attacks.

Dependency on Synthetic Data

As discussed earlier, the use of synthetically generated data for training and testing
also poses a limitation. There is a big risk that the models may not perform as well
when exposed to real-world attack scenarios that weren’t adequately represented
in the training data. The synthetically created data does not contain the same
amount of randomness as real scenario data, therefore the patterns for each attack
might be easier to learn for the models.
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CAN-FD

The models use the payload as an input feature, and for reduced complexity, only
the first 8 bytes were considered. However, this approach presents limitations,
particularly because the log file contains CAN-FD messages with payload sizes
of up to 64 bytes. While the majority of messages in the log file are of size 8,
using only the first 8 bytes could potentially result in the loss of some valuable
data contained within the extended payload. Although the models achieve high
accuracy, considering the entire payload or enhanced feature extraction might
improve the results.

6.3 Further research

The research in this thesis has investigated creating synthetic attack data and
detecting these attack patterns with deep neural networks. However, there are
areas for further exploration, particularly in addressing challenges with synthetic
data and supervised learning models.

Generating realistic attack data

While this thesis created a tool for generating synthetic data, there is a need for
more advanced simulation tools that can create highly realistic attack scenarios
in different driving conditions. Currently, the normal data on which the attack
data was based, had been derived from a single driving session. Future research
should focus on enhancing synthetic datasets with data from multiple driving
sessions across diverse conditions. This approach would increase the diversity of
normal data, thereby improving the generalizability of the IDS. By expanding
the dataset, the models trained on this data can better adapt to different driving
behaviors and conditions, improving their ability to detect and respond to cyber
threats in real-world scenarios.  Alternatively, despite being expensive and
potentially risky, getting extensive data from real attacks performed on an actual
driving vehicle would provide greater insights.

Future studies could also explore the use of Generative Al models, such as
Generative Adversarial Networks (GANSs) and Variational Autoencoders (VAEs),
to create more synthetic data. These could generate high-fidelity, realistic
synthetic data that mimic real attack scenarios.

In-depth analysis of normal data

Understanding the underlying signals and the semantic meanings of each message
can improve the model’s ability to detect subtle anomalies, thereby improving
the overall efficacy of the IDS. However, the varying semantic rules across vehicle
models complicate this process, reducing IDS generalizability.
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Unsupervised or semi-supervised learning

As seen in this thesis and related works, supervised learning models are effective
in detecting patterns and anomalies seen during training. However, these types
of models are constrained by their training datasets and therefore have
difficulties identifying novel, zero-day attacks. To be able to detect previously
unseen types of attacks, future research should explore the integration of
unsupervised and semi-supervised learning models. These models, which do not
only rely on labeled data, have the potential to improve the detection capabilities
for attacks without known patterns. Furthermore, unsupervised models, trained
on normal data and capable of detecting anomalies, would be suitable for
identifying Suspension attacks. Suspension attacks, which involve the removal of
messages rather than the injection of malicious messages, can result in
unexpected gaps or irregularities in patterns. Given the difficulty in labeling
Suspension attacks, unsupervised learning approaches could identify anomalies
without the need for labeled examples.

Deployment

There are different strategies for deploying the IDS, as discussed in Section [2:3.1]
For example, the deployment on an ECU is constrained by the ECU’s available
computational power and memory, limiting the complexity of the implementation.
Therefore, it is important that the IDS is lightweight and offers a balance between
efficiency and accuracy, suitable for real-time applications in-vehicle systems. In
this thesis, only a limited number of features were used from the CAN messages
to reduce complexity, and networks with fewer layers were used to make it less
resource-intensive. For further research, methods for reducing model size could be
investigated, such as knowledge distillation, model pruning, or quantization.
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Conclusions

The aim of this thesis was to generate Controller Area Network (CAN) traffic
attack data to develop an effective Intrusion Detection System (IDS) using deep
learning techniques. Four types of attack mechanisms were investigated that can
severely compromise the in-vehicle CAN bus system. These include Fabrication,
Suspension, Masquerade, and Replay attacks. An attack generator was
implemented that synthetically simulated attack files using a log file with normal
driving data from a test truck. The attacks were injected in patterns derived
from both analyzing the log file itself and open source data with real attacks.
The analysis from the open source data helped determine the injection frequency,
resulting in a ratio of injected attack messages compared to normal messages in
every intrusion, similar to the real performed attacks.

The generated attack files were used when training and evaluating two deep
learning models, Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM). These models were chosen based on the time-series-based
nature of the CAN bus messages, as LSTM performs well at handling time-series
data. The CNN, on the other hand, is noted for its strong feature extraction
capabilities suitable for identifying distinct patterns in the data. As input, three
different variations were tested including pointwise and sequences of length 25
and 50. The pointwise input models performed well in detecting Fabrication
attack mechanisms, as both Fuzzy and specifically DoS attacks were detected
effectively. However, for pointwise inputs, neither CNN nor LSTM detected any
Replay messages. The longer the sequence, the better the overall accuracy, as the
Replay attack was also detected, and detection accuracy for Spoofing improved.
In terms of accuracy, CNN showed slightly better results when using pointwise
inputs, with an accuracy of 97.55%, while LSTM showed 97.52%. However, when
using sequences, LSTM demonstrated slightly better results with 99.49% for size
25, and 99.84% for size 50, compared to CNN’s 99.44% and 99.72% respectively.
The CNN models, however, showed slightly better results in the metric False
Negative Rate (FNR) for the Normal class, which is an important measure to
reduce false alarms, where it showed 0% for pointwise and only 0.01% for a
sequence of 50. Both models performed worse for a sequence length of 25, where
LSTM had an FNR of 0.37%, and CNN had 0.36%. These results showed that
LSTM performed slightly better with sequential data in terms of accuracy,
particularly in longer sequences, whereas CNN more effectively managed to

99



60 Conclusions

minimize the false alarms.

This thesis highlights the limitations of using only synthetically generated data
and supervised learning. The synthetic data might not fully represent real-world
scenarios, potentially limiting the IDS’s effectiveness in actual attacks. Moreover,
the models are currently only trained to detect predefined types of attacks,
restricting their ability to identify new, unknown attacks.

Future research could improve the IDS by implementing unsupervised and
semi-supervised learning to improve detection capabilities for novel attacks.
Developing more advanced simulation tools and using data from diverse driving
conditions could also improve the robustness and generalizability of the IDS.
Additionally, creating lightweight models suitable for onboard (ECU-based)
deployment is crucial to integrate an IDS effectively into in-vehicle systems.
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