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Abstract

Options, as complex derivative assets, play a crucial role in real life for hedging

risks and speculating profits. Their high volatility and the challenging nature of

price predictions make them not only essential tools for financial markets but also

a compelling research topic for scholars. Building on previous studies, this thesis

focuses on Shanghai Crude Oil options, offering insights into their pricing dynamics.

In addition to traditional pricing features, such as strike price, time to maturity, and

volatility, this thesis explores the impact of macroeconomic factors on crude oil prices

to determine whether these factors can also influence option pricing. By employing

machine learning algorithms, the performances of these models are compared with

the Binomial Tree model. The findings show that XGBoost model outperforms the

benchmark in both cases of Call and Put options, while other models’ performance

shows less robustness.

Key words: Options Pricing, Shanghai Crude Oil, Machine Learning, Macroeco-

nomic Factors
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1 Introduction

Derivatives are important financial instruments for market participants to hedge

and speculate. The dynamic and high volatility nature of derivatives also presents

a compelling research area, particularly in developing effective pricing strategies.

Among various derivative products, options stand out due to their complexity and

high-dimensional features, making accurate and fast pricing models essential for

market participants.

The Black-Scholes (BS) model introduced by Black and Scholes (1973) provides a

foundational understanding of options pricing. This model is designed for European-

style options and has some constraints due to the ideal assumptions. Later, the

revised version and improvements have been conducted by scholars over the years

(Merton, 1973; Cox et al., 1979; Engle, 1982; Heston, 1993; Hull and White, 1987)

and the improved model has widely adopted in the industry (Li, 2022). American

options, which can be exercised at any time prior to and including the expiration

date, present additional complexities over the European types. This flexibility makes

the valuation of American options more challenging and more sophisticated, where

the Binomial Tree model by Cox et al. (1979), the Trinomial tree model by Boyle

(1986) and Finite Difference Methods and Least Squares Monte Carlo simulation

(Longstaff and Schwartz, 2001) can be used to address the early exercise problems.

With the development of artificial intelligence and significant advancements in

computational technology, the potential to enhance these models through machine

learning has opened new avenues for research, specifically in improving predictive

accuracy and optimizing algorithmic trading strategies. The integration of large

datasets and sophisticated programming techniques can substantially contribute to
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improving the precision and speed of pricing models, offering substantial benefits to

traders and speculators. The earliest study is from Hutchinson et al. (1994), who

utilized the Artificial Neural Networks (ANN) models to pricing options, and proved

this neural network worked effectively in the case of S&P 500 futures options. Sub-

sequent research has focused on deep learning techniques for more accurate price

prediction, with Long Short-Term Memory (LSTM) networks showing particularly

strong performance (Bennell and Sutcliffe, 2004; Culkin and Das, 2017; Buehler

et al., 2019; Zhang and Huang, 2021; Liu and Zhang, 2023).

While prior studies have investigated more from the cases of the index options,

this thesis aims to narrow down to a specific commodity and analyze Shanghai Crude

Oil (SC) options. Choosing SC option as a research target can be particularly in-

teresting and beneficial for several reasons. First, SC options are American-type,

adding complexity and making them suitable for testing machine learning tech-

niques. Additionally, China plays a crucial role as one of the largest consumers

and importers of crude oil globally (Yi et al., 2021). Then from the perspective of

derivatives asset, since its launch, SC options have seen significant growth in trading

volume and the future price is highly correlated with the global market, including

West Texas Intermediate (WTI) Crude Oil and Brent Crude Oil (Shanghai Interna-

tional Energy Exchange (INE), 2024). Therefore, studying these options provides

insights into Chinese market dynamics regarding oil consumption and trading.

For the factors influencing oil prices, although the Organization of Petroleum

Exporting Countries (OPEC) occupies a dominant role. By establishing production

quotas for its member countries, OPEC can influence oil prices through supply con-

trol, although its control over the market is not absolute, other factors including

the rise of alternative energy sources, the varying economic needs of its member

countries, and oil production from non-OPEC countries also contribute to the pric-

ing volatility (Colgan, 2014). Other than OPEC’s influences, research on oil prices

is a comprehensive and detailed field of study. Hamilton (2003), Bennell and Sut-

cliffe (2004) and Kilian (2009) demonstrated that economic growth has a positive

influence on oil price. Golub (1983), Amano and Van Norden (1998) and Jo (2012)
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confirmed the fluctuations in the US dollar (USD) exchange rate and central banks’

monetary policies, which influence interest rates and liquidity, also affect oil prices.

Uncertainty factors including the economic and geopolitical may increase supply

disruptions, then affect global oil prices (Yi et al., 2021).

Building on the prior research basis, deep learning techniques such as ANN and

LSTM have demonstrated robust predictive capabilities. This thesis aims to uti-

lize machine learning techniques to explore the option pricing model, incorporating

factors from traditional pricing theories and macroeconomic conditions to broaden

the understanding of how global economic events and policy changes influence the

Chinese oil markets. The benchmark model is the Binomial Tree model without

macroeconomic factors. The algorithms to be tested include Random Forest, Sup-

port Vector Machine, eXtreme Gradient Boosting, Artificial Neural Network, Long

Short-Term Memory, and Gate Recurrent Unit. It seeks to identify and refine the

most effective computational models for enhancing predictive accuracy in this SC

option case.

The outline of the thesis is as follows:

• Chapter 2: Literature Review – This chapter discusses the previous re-

search of both traditional and machine learning-based option pricing methods,

highlighting key developments and findings in the field. The traditional models

are mainly demonstrated from the models designed for American options.

• Chapter 3: Data – This chapter focuses on data utilized in this thesis,

detailing the resources from which the data was sourced, and describing the

preprocessing procedures.

• Chapter 4: Methodology – This chapter details the benchmark model and

machine learning techniques used in this thesis, including model selection, and

evaluation criteria.

• Chapter 5: Results and Discussion – This chapter presents the findings

from the empirical analyses, comparing the performance of machine learning

models against traditional approaches.
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• Chapter 6: Conclusion – This chapter summarizes the research outcomes,

and discusses the implications for practitioners.
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2 Literature Review

The evolution of option pricing models has been significantly influenced by advance-

ments in both financial theory and computational technologies. From the nature of

reliance on predefined assumptions, these models have been classified into two prin-

cipal categories: parametric methods and non-parametric models. In this part,

previous papers are analyzed with such structures, in addition to the specific crude

oil price analysis.

2.1 Traditional models

Traditional option pricing models are built on predefined mathematical equations

and assumptions about market behaviors and the statistical properties of asset

prices. Black and Scholes (1973) introduced the BS with seven ideal assumptions,

which revolutionized financial markets with its analytical approach. Originally de-

veloped to price European options, which are exercisable only at maturity, the BS

model presumes constant volatility—a condition often unrealistic in actual market

settings. This critical limitation was addressed in the same year by Merton (1973)

through introducing stochastic volatility by a jump-diffusion term. This extension of

the BS model, now known as the BSM model, accommodates more realistic market

conditions and suits options with features and exercise rights that are more diverse.

Brennan and Schwartz (1977) demonstrated how to use the Finite difference

method (FDM) to price American options. FDM is a numerical approach that uti-

lizes partial differential equations to predict the option’s value. The method applies

boundary conditions through discretizing the equations on a grid in both price and

10



time. Therefore, it is appropriate for American options, considering the payoff con-

dition and early exercise feature.

Boyle (1977) pioneered to adopt Monte Carlo simulation for option pricing. This

method employs a random sampling approach to estimate the expected payoff of an

option, which is then discounted to the present using the risk-free rate. Monte Carlo

simulation excels in handling complex derivative structures that are not easily ad-

dressed by traditional models, such as path-dependent and American options which

require the flexibility to model multiple sources and sequences of randomness. The

method’s inherent flexibility allows it to manage exotic options and calculate var-

ious valuation metrics, including the Greeks, which quantify the sensitivities of an

option’s price to key underlying factors. While Monte Carlo simulations provide

significant adaptability and precision, they do come with a higher computational

burden. They require extensive simulations to capture the full range of potential

future paths for the underlying asset’s price, significantly increasing computational

time and resource usage, especially as the complexity of the financial instrument

increases.

Later, Cox et al. (1979) introduced a Binomial Tree model for American option

pricing by allowing the early exercise of options before expiration. As the name in-

dicates, each node in the model represents a possible price of the financial assets at

a given time, and each node branches into two possible future nodes, reflecting the

potential upward or downward movements of the price. This branching structure

enables the model to simulate the various paths that the stock price might take over

the life of the option, which is suitable for American options as it may be exercised

at any time before the expiration date. Although the model is simple and easy to

apply, the computational costs become expensive as the number of steps rise. Devel-

oped from the binomial model, Boyle (1986) extends the tree model by introducing

a third possible state: stay the same at each step. The trinomial model allows for

better adjustments to the probabilities of different price movements, making it bet-

ter suited to capture the skewness and kurtosis of price distributions.
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2.2 Machine learning models

Emerging with the advances in computer science, particularly in the areas of machine

learning and data processing capabilities, non-parametric models do not assume a

previously specified functional form and instead rely on data to model complexities

in market dynamics. Techniques such as neural networks, decision trees, and kernel

regression have been employed to estimate the underlying distributions without the

constraints of parametric assumptions. These models are particularly valuable in en-

vironments where the underlying asset characteristics are not adequately described

by traditional parametric models. Researchers have employed non-parametric meth-

ods to investigate pricing techniques for various types of options, primarily focusing

on European and American options.

The study by Hutchinson et al. (1994) was among the first to apply non-parametric

techniques to pricing options. The primary goal of Hutchinson et al. (1994) was to

determine whether neural networks could effectively learn the patterns and com-

plexities in financial markets without relying on the strict assumptions required

by traditional economic models. By analyzing options on S&P 500 futures, it has

been concluded that ANN models demonstrate superior accuracy and computational

efficiency compared to the BS model. This landmark study challenged the tradi-

tional models which relying on strict assumptions, indicating that the data-driven

approaches could perform robust and accurate predictions.

Following Hutchinson’s work, a number of researchers have further studied this

topic. Yao et al. (2000) examined the volatility structures of the market, enhancing

the predictive power of these models under various market conditions. Meanwhile,

Gençay and Salih (2003) focused on refining regularization techniques to improve

model stability and performance. In a comparative study, Bennell and Sutcliffe

(2004) demonstrated that neural network models could effectively compete with

and sometimes outperform various configurations of the BS model in predicting

market movements. More recently, Culkin and Das (2017) replicated and extended

Hutchinson’s initial findings by employing a feed-forward neural network to model
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BS pricing mechanisms, confirming the robustness and applicability of neural net-

works in financial modeling.

Given the sequential nature of financial time-series data, RNN—and specifically

LSTM —have been adopted to capture temporal dependencies that other mod-

els might overlook. Buehler et al. (2019) explored LSTM for developing hedging

strategies, demonstrating their effectiveness in managing risk in dynamic trading

environments. Zhang and Huang (2021) applied LSTM networks across various mar-

ket datasets, contrasting their performance with traditional models under different

conditions. Their research concluded that LSTM generally outperforms traditional

models in scenarios characterized by low to medium market volatility, specific levels

of moneyness, and within certain risk thresholds. These findings underscore the

potential of advanced RNN to transform financial prediction and risk management

strategies, offering a significant upgrade over more rigid, less adaptive models. A

newly released study by Liu and Zhang (2023) examined a LSTM model with real-

ized skewness. For the dataset, they used the ETF50 option in China and concluded

that the model with realized skewness performs better than the benchmark models,

including classical and other machine learning methods in all metrics.

2.3 Oil price influencer

Extensive researches have been conducted on oil prices, since it is a critical and

highly valued commodity. Previous studies have explored various macroeconomic

factors influencing oil prices from multiple perspectives.

Supply and Demand: OPEC, a cartel consisting of 13 of the world’s major

oil-exporting nations, aims to manage the supply of oil to set the price on the world

market. The organization has its dominant role, but external factors such as the

rise of alternative energy sources, the varying economic needs of its member coun-

tries, and oil production from non-OPEC countries (Colgan, 2014). Fattouh and

Sen (2016) examined OPEC’s influence considering non-OPEC oil production and
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shifting global demand dynamics, concluding that OPEC’s role as a price maker is

not absolute.

Economic Growth: Hamilton (2003) and Bennell and Sutcliffe (2004) found

that oil prices tend to rise in periods of robust economic growth, reflecting higher

energy demand. Kilian (2009) further distinguished this relationship between supply

and demand shocks, emphasizing how global economic growth pushes up oil demand

and prices.

Exchange Rates: Golub (1983) established a strong correlation between ex-

change rate fluctuations and oil prices in the application of USD movement to

global oil prices. This relationship was further supported by Amano and Van Nor-

den (1998), who discussed the implication of on monetary policy on oil-importing

economies.

Interest Rate: Basher et al. (2012) highlighted that higher interest rates tend

to depress the oil prices by influencing the speculators’ behaviors. Jo (2012) sug-

gested that volatile interest rates have a continuous effect on oil price, which in turn

affect the inflation and broader economy.

Economic Policy Uncertainty (EPU) and Geopolitical Risk (GPR):

Aloui et al. (2016) and Antonakakis et al. (2017) found that higher EPU or increased

market volatility, leading to higher level of risk aversion among investors and affected

the crude oil price. This sentiment was extended by Balcilar et al. (2017), suggesting

how increased GPR negatively affects oil prices. Wei et al. (2017) and Cunado et al.

(2020) also analyzed these factors from behavioral finance perspective, confirming

high levels of EPU and GPR make investors more cautious about the crude oil fu-

tures, leading to worse liquidity. For the long-term effect, Hu et al. (2020) found

that investors required more risk premium with the sustained high EPU and GPR.
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3 Data

Previous studies on the factors influencing oil prices demonstrate that incorporating

economic and geopolitical indicators can enhance the accuracy of price predictions.

Based on this, this thesis focuses on five key aspects: the benchmark price of oil,

interest rates, foreign exchange rates, and indexes of economic and geopolitical un-

certainty. The international derivatives oil price is benchmarked by WTI Crude Oil

traded in New York, and Brent Oil traded in London (Scheitrum et al., 2018). In this

thesis, only WTI Crude Oil is used as global price reference, consistently, macroe-

conomic factors relevant to the US market, including the exchange rate between the

USD and CNY, and the economic conditions of both countries. In addition, GPR

is included to be used to analyze the broader external factor, such as the impact of

war on oil supply.

Data used in this thesis is from open source, including the INE, SHIBOR, Yahoo

Finance, Market Watch, and Economic Policy Uncertainty index website. Since SC

options opened to the market on 21 June 2021, the time span of the dataset ranges

from the inception of SC options is from then to 31 December 2023.

3.1 Future and option price

Data containing the SC futures and options prices were obtained from INE 1. The

main dataset downloaded from INE is a full package of all commodities traded on

the annual basis, so the primary step is the extraction of the SC-specific contracts,

1SC Future and Option Price, Available online: https://www.ine.cn/statements/option/

thisdownload/ (accessed March 25, 2024)
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then categorize them into distinct datasets for futures and options. For example, the

contract name ”sc2109C455” is an option, and ”sc2109” indicates it is a future. Still

working with the contract name, for options, it was deconstructed into three parts,

the underlying contract (”sc2109”), type of options for call (C) or put(P), and strike

price (K). In this example, it is a call option that can be exercised at the price of 455.

Another important aspect is the computation of time to maturity. Utilizing the

trading guidelines listed on INE 2, the last trading day is the thirteen-to-last trading

day of the month before the delivery month of the underlying SC contract, subject

to the changes in national holidays. The dates of official holidays that conflicts with

normal working days are also listed on INE 3. In this case, after introducing the

holidays and applying the rule to the dataset, time to maturity in days is obtained.

For the future dataset, there are two steps. The first is to calculate the histor-

ical volatility by computing the logarithm of the daily percentage changes in the

‘Settle’ prices of the futures data. For the use of logarithm, here it refers to Raudys

and Goldstein (2022), who found that logarithmic transformations have stronger

volatility predictions as measured by mean squared error and accuracy. After that,

a rolling window of 30 days is applied to these log returns, and the standard devia-

tion of the values within this window is calculated. This standard deviation is then

annualized to represent an annual volatility rate. Annualization is accomplished by

multiplying the standard deviation by the square root of 252, which is the typical

number of trading days in a year. The second step is to match the volatility and

settle price with each option’s trading records. Since the option’s underlying future

contracts has been extracted, future contracts are used to be matched with its settle

price. Based on dates and future contracts, settle price on the trading day was

matched.

The WTI Crude Oil Price dataset containing the WTI Crude Oil prices was

2Contract Specifications, Available online: https://www.ine.cn/eng/market/options/sc/

contract/129388.html (accessed March 28, 2024)
3Trading calendar, Available online: :https://www.ine.cn/eng/search/?queryString=

holiday (accessed March 28, 2024)
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sourced from Market Watch4, and is matched with the SC option dataset by trading

dates. Due to the unavailability of the settle price from the platform, the closing

price is used as a substitute in the dataset to accurately reflect market sentiment

for the next trading day. Although not a perfect substitute for the settle price, the

closing price still provides valuable information on market conditions at the end of

the trading day.

3.2 Interest rate and exchange rate

SHIBOR is the borrowing costs between prime banks in the Chinese inter-bank mar-

ket and is often used as a benchmark rate for a variety of financial instruments within

China, including loans, mortgages, and other derivatives. The rates include short-

to long-term rates, which align closely with the underlying dynamics and pricing

mechanisms of these instruments. SHIBOR’s transparency and accessibility make it

a reliable indicator of the money supply relationship among banks and its quotation

process reflects its strong stability (Xu, 2014). Therefore, SHIBOR is adopted as a

reference rate for building the option pricing models in this thesis, similar to how

LIBOR has been used in financial models globally.

The data for SHIBOR 5 is available across various time scales, including 1-week,

2-week, 1-month, 3-month, 6-month, 9-month, and 1-year intervals. With the cal-

culation of time to maturity from the previous section, SHIBOR is allocated based

on the time interval, for example, if the option expires in 81 days, then it will use

the rates of 3-month SHIBOR based on the trading date.

Similarly, the exchange rate data for USD to CNY was obtained from Yahoo

Finance6. The exchange rate is key in examining the cross-market comparisons and

for assessing the impact of currency fluctuations on commodity pricing.

4WTI Crude Oil Price, Available online: https://www.marketwatch.com/investing/future/

cl.1/download-data?mod=mw_quote_tab (accessed March 25, 2024).
5SHIBOR, Available online: https://www.shibor.org/shibor/dataservices/ (accessed

March 25, 2024).
6Exchange rate data, Available online: https://finance.yahoo.com/quote/CNY=X/history/

(accessed March 25, 2024).
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3.3 EPU & GPR

EPU used in this thesis for China 7 and US8 are both news-based indexes on monthly

basis and are downloaded from Economic Policy Uncertainty. The methodology of

this index is based on the research of Baker et al. (2016), where newspaper content

is used to quantitatively capture shifts in policy-related economic uncertainty. From

the website8, the US EPU is constructed using various media sources, including anal-

yses of reports by the Congressional Budget Office that cover tax aspects, and data

from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters,

which encompasses the Consumer Price Index (CPI) and government expenditures.

While the China EPU primarily sources its data from news articles that mention

specific terms associated with economic uncertainty and policy decisions. From this

point, US EPU is used from the news-based index.

The China EPU index uses the South China Morning Post (SCMP) with a

monthly frequency count of containing specific terms related to China and economic

uncertainty since 1995, and further narrowing these by including terms associated

with policy discussions (Baker et al., 2013, 2016). The methodology aligns with

that of the US by normalizing article frequency against the total articles published

each month, standardizing this measure to an index where the average value is set

to 100 for the period between January 1995 and December 2011. For validating the

process, a manual check was conducted with sampling period from January 1995 to

February 2012. It demonstrated that 492 out of 500 samples are correct, presenting

a high accuracy with very low false positive and negative rates. This automated

classification correlates strongly with manual classifications by human readers, indi-

cating robustness in measuring policy-related economic uncertainty through media

analysis.

For the US EPU, the index is broader, including 10 major newspapers, including

7China EPU, Available online: https://www.policyuncertainty.com/scmp_monthly.html

(accessed April 3, 2024)
8US EPU, Available online: https://www.policyuncertainty.com/us_monthly.html (ac-

cessed April 3, 2024).
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USA Today and The Wall Street Journal. The index is constructed by searching for

articles that contain combinations of terms related to ‘uncertainty’, economic con-

ditions, and political entities or policies. To adjust for variations in the volume of

published articles over time, the count of relevant articles is normalized by the total

articles published each month per paper, with these normalized values standardized

to have a unit standard deviation for the period from January 1985 to December

2009.

Since EPU is monthly based, to match the daily trading data, the EPU values

are matched based on the trading month but adjusted to reflect a one-month lag.

For example, the trading date is June 21, 2021, then the corresponding index is May

2021.

The GPR index is downloaded from the same source as EPU9. Caldara and

Iacoviello (2021) at the Federal Reserve Board have developed a GPR to measure

the impact of adverse geopolitical events by analyzing newspaper coverage since

1900. Similar to the EPU, the index is generated through automated text searches

in the archives of 10 major newspapers, counting articles related to geopolitical

tensions as a proportion of total news coverage. The primary GPR index uses data

starting from 1985 and fully covers the thesis period. GPR is matched using the

same one-month lag data merging method.

3.4 Comparative analysis

After combining all datasets as a whole, some trends can be observed from the plots.

Figure 3.1 compares the SC and WTI future prices, where WTI closing prices are

presented in CNY. At first glance of the plot, the SC settle price and WTI closing

prices in CNY are generally moving at the same pace. If not, then there might be

arbitrage opportunity for speculators. For example, during periods of April to July

2022, when a significant price gap emerges, it presents a potential arbitrage oppor-

tunities for speculators to buy SC and sell WTI, exploiting these discrepancies with

9GPR, Available online: https://www.policyuncertainty.com/gpr.html (accessed April 3,

2024)
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minimal risk management challenges. Such trends can also be quickly captured by

quantitative programmatic trading systems. Additionally, the strike price (K in the

figure) exhibits less fluctuation and often tracks closely with SC future, suggesting

a range in which the options are frequently in-the-money. In particular, Figure 3.2

shows that although WTI price is in USD, it presents a very close pattern with the

option price, indicating WTI price can be a stable reference for SC option pricing.

Figure 3.1: Comparative Analysis of Options and Futures of SC and WTI
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Figure 3.2: Comparative Analysis of Price of SC option and WTI Future

Figure 3.3 illustrates EPU indices for China and the US. The overall trend in

both countries does not show a consistent direction over time, but rather a series

of peaks and troughs that could be reactions to specific events or changes in the

political-economic conditions in each country. In general, China has a more volatile

policy environment as the EPU value and degree of changes are larger than the

US, indicating greater sensitivity to policy-related news. In contrast, the US EPU

remains relatively lower and exhibits less volatility, suggesting a more stable policy

condition or less variation in policy uncertainty.

GPR measures the risk posed by geopolitical events and generally shows stable

values. However, two notable spikes can be observed in April 2022 and October 2023,

which may coincide with the escalation of conflicts between Russia and Ukraine, and

Israel and Pakistan respectively. These spikes reflect the index’s responsiveness to

geopolitical tensions and their impacts on global stability.
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Figure 3.3: Historical Trends of EPU and GPR
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4 Methodology

The methodology involves four parts to detail the processes for building models and

comparing the performance. First, the stationarity test is conducted to ensure the

time series data is appropriate for subsequent modeling. Then it explains the model

performance metrics. The final part focuses on the models implemented, including

the benchmark model and machine learning algorithms.

4.1 Stationarity test

A time series dataset is considered stationary when its statistical properties, includ-

ing mean and variance, are constant over time. Testing stationarity is important for

the application of many modeling techniques, as not all machine learning algorithms

inherently handle time-series data. For models like RF, SVM, and XGBoostoost,

stationarity is not strictly required but can help in time-series forecasting (Probst

and Boulesteix, 2018; Smola and Schölkopf, 2004; Chen and Guestrin, 2016). For

neural network-based models of LSTM and GRU, which can manage sequence data

including non-stationary, transforming data to be stationary can enhance training

efficiency and model performance (Cho et al., 2014).

To assess the stationarity of a time series, the Augmented Dickey-Fuller (ADF)

test, an extension of the original Dickey-Fuller test introduced by Dickey and Fuller

(1979), is employed. The ADF test extends the original approach by including

higher-order regressive processes by incorporating lagged differences in the series

(Said and Dickey, 1984). The null hypothesis of the ADF test is that the time series

has a unit root, in other words, it is non-stationary. Conversely, the alternative

hypothesis is it is stationary. For interpreting the test results, the more negative the
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test statistic, the smaller the p-value, and the higher the possibility of rejecting the

null hypothesis, indicating the series can be considered stationary. For the critical

value, there are 1%, 5%, and 10% significance levels, offering benchmarks against

which the test statistic is compared. If the test statistic is more negative than the

critical value, the null hypothesis is rejected at that significance level.

From Table 4.1, only strike price, time to maturity, and option settle price are

stationary. To transfer the non-stationary into stationary, Box et al. (2015) state

the importance of making a time series stationarity through differencing to address

trends and seasonal effects, while Gujarati and Porter (2009) demonstrated log trans-

formations are helpful for data that exhibit exponential growth, thereby stabilizing

variance over time. As shown in Appendix A, Settle fut and wti close show clear

upward or downward trends, then differencing method is applied. While Volatility

and fx close show exponential growth or non-constant variance, a log transforma-

tion followed by differencing is more proper. For the China EPU and the US EPU

have p-values higher than 0.01 but lower than 0.05, variables are converted with

difference calculation for the robustness.

Table 4.1: ADF Test Results Summary

Variable Test Statistic p-value Critical Value (1%) Stationary

K -4.374 0.00033 -3.430 Yes

T -14.07952 2.845e-26 -3.430 Yes

Settle opt -17.55898 4.106e-30 -3.430 Yes

Settle fut -2.130 0.232496 -3.430 No

Volatility -2.415 0.137472 -3.430 No

fx close -1.168 0.687276 -3.430 No

wti close -2.145 0.226869 -3.430 No

China EPU -2.994 0.035456 -3.430 No

US EPU -3.190 0.020583 -3.430 No

GPR -2.258 0.185929 -3.430 No

After transformation, the dataset satisfies the stationarity test. The results and
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corresponding plots are shown in Appendix A.”

4.2 Model performance

To evaluate the predictive accuracy and generalization ability, Mean Absolute Error

(MAE), Mean Squared Error (MSE) and R-squared (R2) are adopted.

MAE is the average of the absolute differences between prediction and actual

values. This measure is straightforward and easy to interpret, but less sensitive to

the outliers due to the absolute value.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.1)

MSE is the average of the squares error, which encounter the outliers better than

the MAE, as it enlarges the effect of the large differences by squaring.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.2)

R2 is the coefficient of determination, which measures the percentage of the

variance in the dependent variable that is explained by the independent variables in

a model. It indicates how well the data fits to the model.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(4.3)

4.3 Benchmark model

According to Cox et al. (1979), the Binomial Tree model assumes that at each

time step, the price of the underlying asset can either go up or down, represented

by the factors u and d. These values are derived from the volatility σ and time

increment per step ∆t. To calculate each branch value, the risk-neutral probability

p is introduced to represent the likelihood that the price of the underlying asset will

increase in the next time step. This probability is based on risk-neutral assumption,

which assumes that all investors are risk-neutral and expect to earn at least the

risk-free rate r on their investments. In this case, the expected or binomial value of
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the option is calculated as the weighted average of the option values at the following

binomial nodes, using the probabilities p and 1 − p, then discounted back to the

present using the risk-free rate. For the exercise value for a call option, the payoff

is the maximum of zero or the asset price minus the strike price, and conversely for

put options, which is the maximum of zero or the difference between the strike price

and the asset price. Investors make decisions by comparing the binomial value and

exercise value.

u = eσ
√
∆t (4.4)

d = e−σ
√
∆t =

1

u
(4.5)

p =
e(r−div yield)∆t − d

u− d
(4.6)

Binomial Value = [p×Option up + (1− p)×Option down]× e−r∆t (4.7)

where

• r - Risk-free interest rate.

• σ - Volatility of the underlying asset.

• T - Time to expiration of the option, in years.

• N - Number of time steps in the binomial model.

• div yield - Dividend yield of the underlying asset.

• ∆t = T
N

is the time increment per step.

This model offers simplicity and interpretability, particularly considering the

condition of early exercise. Therefore, it is used as a benchmark model in this

thesis. To implement the model, N is set to 100, providing a balance between

sufficient iterations for accuracy and manageable computational demand. The risk-

free rate is determined using SHIBOR, which aligns with market conditions, and

for commodities like SC, no dividends are considered. After calculating the option
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value using this model, its accuracy is assessed by comparing it with actual market

prices (Settle opt) through metrics of MAE, MSE, and R2.

4.4 Machine learning algorithms

The traditional machine learning algorithms used in this thesis include Random For-

est (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost).

The deep learning algorithms adopted are Artificial Neural Network (ANN), Long

Short-Term Memory (LSTM), and Gate Recurrent Unit (GRU). The adoption of

these algorithms is motivated by previous research that demonstrated the effective-

ness of deep learning techniques in handling complex and high-dimensional data.

Tree-based models are good at dealing with non-linear relationships and can avoid

overfitting problems if properly tuned. For evaluating model performance, MAE,

MSE, and R2 are adopted for all models.

RF, introduced by Breiman (2001), is an ensemble method that through a bag-

ging technique by building multiple trees and combining them to get accurate pre-

diction. Each tree is built with a random sample of data points, and each node is

determined by a random selection of features. By averaging trees, RF can reduce

the possibility of overfitting and due to the randomness, it is able to fit non-linear

datasets. For building the model for this thesis dataset, hyperparameters tuning

is employed. The process begins by defining a grid of hyperparameters, including

combinations of the number of trees, the maximum number of features for splitting a

node, the maximum depth of the trees, the minimum number of samples required to

split a node, and the minimum number of samples required at each leaf node. After

finding the best hyperparameters for call and put options separately, the model is

trained and tested.

SVM is an algorithm primarily used for classification tasks, but it can also be

effectively adapted for regression, known as Support Vector Regression (SVR). The

purpose of SVR is to find a hyperplane that fits most data points within a certain

distance. To handle the non-linear data, SVR employs the kernel trick including
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linear, polynomial, radial basis function (RBF), and sigmoid to transform the data

into a higher-dimensional space where linear separation is possible. In the model,

a regularization parameter (denoted by C) presents a trade-off between reducing

training error and enhancing model generalization. A higher C forces the regression

line to move more closely to the training data, potentially reducing the margin but

risking overfitting. In this model, the hyperparameters tuning includes adjusting C

and the kernel type among linear, polynomial, and RBF.

XGBoost, developed by Chen and Guestrin (2016), is an advanced implemen-

tation of gradient boosting algorithms. This method employs a series of decision

trees, and each is designed to address and correct the errors made by previous ones,

thereby improving prediction accuracy. To enhance model accuracy and prevent

overfitting, it introduces regularization techniques including tree pruning, L1 and

L2 regularization, and learning rate to avoid overfitting. Tree pruning is the process

of growing the tree in full depth, and then prunes it backward to remove splits that

have no additional value. L1 and L2 are helpful for adjusting the weights of the

decision trees. The learning rate controls the contribution of each tree added to the

model, where the smaller the value, the more gradual learning speed, and avoids fit-

ting too closely to the training data. In this thesis, hyperparameter tuning involves

searching the number of trees, the depth of the trees, and the learning rate.

ANN is a simple type of neural network architecture, which consists of input,

hidden, and output layers with interconnected nodes. The input layers receive all

information, and pass it to hidden layers, where a weighted sum is used through a

non-linear activation function. The output layer is the one that produces predic-

tions. For the activation function, there are sigmoid, Rectified Linear Unit (ReLU),

and tanh. This structure allows ANN to capture complex patterns and relationships

in data. In this thesis, the model is built into four layers in total with dropout lay-

ers. For the model tuning, the number of units, dropout rates, and learning rate are

examined. In the training process, early stopping is added for mitigating overfitting

problems.
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LSTM, developed by Hochreiter and Schmidhuber (1997), is a type of RNN that

is good at handling sequence predictions. While standard RNN is able to handle the

sequence prediction, but not for long sequences due to the vanishing gradient, as it

is hard to retain information from earlier time steps. LSTM solves this problem by

including gates that can regulate the flow of information by retaining or discarding

the information. The gate includes input, forget and output, in this case, LSTM can

preserve long-term dependencies and mitigate the vanishing gradient problem. The

basic model architecture is the same as ANN of four layers, while hyperparameter

tuning involves selecting the number of units in each layer, and the dropout rate to

prevent overfitting.

Similar to LSTM, GRU is another type of RNN that aims to solve the vanish-

ing gradient problem by adopting gating mechanisms to control and manage the

flow of information between cells in the network, but with fewer parameters. GRU

combines the input and forget gates into a single gate, making it simpler and often

faster to train than LSTM, particularly on smaller datasets. The model is tuned and

evaluated using the same method as LSTM to ensure consistency and comparability.

The hyperparameter tuning for the models is summarized in the tables below:

29



Model HyperparametersDescription Range

RF n estimators Number of trees in the forest. 50, 100, 200, 500

max features Number of features to consider

when looking for the best split.

’auto’, ’sqrt’

max depth Maximum depth of the tree. 10, 20, 30, 50

min samples split Minimum number of samples

required to split an internal

node.

2, 5, 10, 20

min samples leaf Minimum number of samples

required to be at a leaf node.

1, 2, 4, 10

SVR C Regularization parameter. The

strength of the regularization is

inversely proportional to C.

0.1, 1, 10

kernel Specifies the kernel type to be

used in the algorithm.

’rbf’, ’linear’, ’poly’

XGBoost n estimators Number of gradient boosted

trees.

50, 100, 200, 500

learning rate Step size shrinkage used in

update to prevent overfitting.

0.01, 0.05, 0.1, 0.5

max depth Maximum depth of a tree.

Increasing this value will make

the model more complex and

more likely to overfit.

10, 20, 30, 50

Table 4.2: Hyperparameters for RF, SVR, and XGBoost models.

30



Model Layer 1 Layer 2 Layer 3 Output

Layer

Learning

Rate

ANN Units 30-100

(step=10)

Dropout

0-0.5

(step=0.1)

Units 30-100

(step=10)

1 1e-4 to 1e-2

LSTM Units 30-100

(step=10)

Dropout

0-0.5

(step=0.1)

Units 30-100

(step=10)

1 1e-4 to 1e-2

GRU Units 30-100

(step=10)

Dropout

0-0.5

(step=0.1)

Units 30-100

(step=10)

1 1e-4 to 1e-2

Table 4.3: Hyperparameter tuning for ANN, LSTM, and GRU models.

31



5 Results and Discussions

5.1 Hyperparameters tuning

The optimized hyperparameters after tuning are summarized in Table 5.1. For the

RF model, the max depth for Call options is greater than for Put options, which

may indicate a more complex pattern within the Call options data. In contrast, the

SVR parameters are the same for both Call and Put options, suggesting a similar

complexity in the decision boundaries. The use of the RBF kernel in both cases

helps capture non-linear relationships effectively. For XGBoost, both models main-

tain consistent parameters: a learning rate of 0.1, 500 estimators, and a maximum

depth of 10. This uniformity suggests a balanced approach to managing model

complexity and training efficiency across both types of options. In particular, the

number of estimators and units in all models tend to reach the upper limits set

within the tuning process, which could potentially influence the final performance.

However, due to computational efficiency constraints, adjustments to these tuning

parameters were not further explored.

5.2 Performance comparasion

In the case of LSTM, there is a slight difference in the number of units between Call

(80 units) and Put (100 units) options, indicating a need for additional capacity to

handle more complex temporal patterns in Put options. The GRU models have 100

units for both option types, suggesting that this level of complexity is sufficient.

While the LSTM models present different learning rates, the GRU and ANN
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Table 5.1: Parameters for Machine Learning Models

Model Parameters

RF Call max depth : 50, max features : sqrt , min samples leaf : 1,

min samples split : 2, n estimators : 500

RF Put max depth : 30, max features : sqrt , min samples leaf : 1,

min samples split : 2, n estimators : 500

SVR Call C : 10, kernel : rbf

SVR Put C : 10, kernel : rbf

XGBoost Call learning rate : 0.1, max depth : 10, n estimators : 500

XGBoost Put learning rate : 0.1, max depth : 10, n estimators : 500

ANN Call units : 80, dropout : 0.0, learning rate : 0.000338

ANN Put units : 80, dropout : 0.0, learning rate : 0.000338

LSTM Call units : 80, dropout : 0.0, learning rate : 0.0056

LSTM Put units : 100, dropout : 0.0, learning rate : 0.0097

GRU Call units : 100, dropout : 0.0, learning rate : 0.0057

GRU Put units : 100, dropout : 0.0, learning rate : 0.0057
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models keep the same, indicating the learning processes are varied. Despite this,

all deep learning models show a dropout rate of zero, implying no regularization

through dropout. In contrast to the deep learning models, RF and XGBoost man-

age model complexity through adjustments in tree depth and the number of trees,

directly influencing how the models handle overfitting.

For the model performance of Call options, XGBoost presents the lowest errors

and highest R2 score among all models, showing superior predictive accuracy than

the benchmark Binomial Tree model. RF presents robustness with moderate error

metrics and a solid R2 score, and is slightly better than the benchmark. ANN has

better performance than LSTM and GRU but still does not reach the effectiveness

of RF or XGBoost. SVR exhibits the poorest performance with significantly high

error and low R2 score.

Table 5.2: Performance Metrics of the Benchmark Binomial Tree Model

Metric Call Options Put Options

Mean Absolute Error 10.1891 9.1592

Mean Squared Error 218.779 194.130

R2 Score 0.7807 0.8093

Table 5.3: Performance of Machine Learning Models for Call Options

Model MAE MSE R2

RF 8.093491 207.292088 0.795333

SVR 16.882048 786.933709 0.223031

XGBoost 4.023227 90.589526 0.910558

ANN 13.479388 342.052246 0.662279

LSTM 11.815427 398.892242 0.606159

GRU 12.670074 434.812042 0.570694

For the model performance of Put options, all models present stronger perfor-

mances with lower errors and a higher R2 score than Call options, implying it is

more effective at capturing the patterns of Put options. The top performance model
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maintains to be XGBoost that exceeds other models and outperforms the bench-

mark. Within the deep learning group, this time is LSTM that has a better metrics

than ANN and GRU, implying a stronger predictive ability and accuracy.

Table 5.4: Performance of Machine Learning Models for Put Options

Model MAE MSE R2

RF 6.944702 155.179787 0.855177

SVR 11.781617 395.767961 0.630646

XGBoost 3.179414 57.824661 0.946035

ANN 11.914616 290.482483 0.728905

LSTM 8.497591 205.748596 0.807983

GRU 9.858852 251.656342 0.765140

For the model predictive ability, the results can also be interpreted visually (Ap-

pendix B). Time-series plots for RF, SVR and XGBoost display the predicted and

actual prices over time. Consistent with the performance metrics, XGBoost presents

a high overlap between the predicted and actual points including the outliers. RF

also shows a rather robust performance but this is not the case for SVR, where it

shows significant discrepancies. For the deep learning algorithms, LSTM and GRU

present close results for the capturing main trends but are not consistent at value

extremes. The ANN model, in this case, has a downward tail away from the ac-

curacy line. This divergence likely contributes to the observed higher error rates

and lower R2 score, indicating specific areas where the model’s predictions are less

accurate.

For deep learning algorithms training and validation loss trends (Appendix B),

the maximum epochs are set to 50, while with early stopping, all models stopped

under 10 epochs. Generally, LSTM models show more stable learning curves with

less variability in validation loss, especially for Call options. In contrast, ANN and

GRU models exhibit more dramatic fluctuations in validation loss, indicating issues

with overfitting at various points during training. In addition, the spikes in valida-

tion loss for the ANN and LSTM models on Put options might suggest that these
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models are more sensitive to the specific characteristics or noise within the training

data for Put options.

Overall, XGBoost and RF are the most robust and high-performing models.

XGBoost consistently outperforms the benchmark across both Call and Put op-

tions, suggesting its strong adaptability and accuracy in financial modeling. RF

also generally performs comparably to or better than the benchmark, especially in

Put options. Deep learning models tend to underperform against the benchmark

in Call options but show competitive or better performance in Put options. SVR,

despite its generally poor performance, improves in Put options but remains below

the benchmark and other models.

36



6 Conclusion

This thesis explores the application of machine learning techniques to SC options

pricing by involving traditional model features and macroeconomic factors. By con-

structing and analyzing a Binomial Tree model for American options as the bench-

mark model and comparing the outcomes from machine learning algorithms, this

thesis tried to evaluate the potential improvement in option pricing using macroe-

conomic factors.

The machine learning algorithms employed include tree-based and deep learn-

ing techniques. While models share some similarities, the results varied from the

performance metrics. Among all, XGBoost outperformed the benchmark Binomial

Tree model across both Call and Put options. This superior performance highlights

XGBoost’s robustness and its ability to capture complex, non-linear relationships

that traditional models might miss. However, other models did not consistently out-

perform the benchmark, leading to a question regarding the direct contribution of

macroeconomic factors to enhance the predictive accuracy of pricing models. This

suggests that while the macroeconomic factors can enrich model inputs to some ex-

tent, it is unclear how effectively specific algorithms can utilize this information.

In conclusion, this thesis provides insights into how macroeconomic factors in-

fluence option pricing, demonstrating that XGBoost significantly outperforms the

benchmark model. Although not all models showed significant performance results,

future improvements could involve adopting alternative data sources or expanding

the range of hyperparameters tuned to further enhance model performance.
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A ADF Test Results

Figure A.1: Time Series Plot of Features
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Figure A.2: Time Series Plot of Transformed Features
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Table A.1: ADF Test Results for Differentiated and Log-Differentiated Data

Variable Test Statistic p-value Critical Value (1%) Stationary

Settle fut diff -34.944491 0.000000 -3.430 Yes

Volatility log diff -33.480714 0.000000 -3.430 Yes

fx close log diff -253.475411 0.000000 -3.430 Yes

wti close diff -253.471897 0.000000 -3.430 Yes

China EPU diff -253.472197 0.000000 -3.430 Yes

US EPU diff -253.471978 0.000000 -3.430 Yes

GPR diff -253.472172 0.000000 -3.430 Yes
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B Model Performances Plots

Figure B.1: RF Call Options Actual vs. Predicted Values

Figure B.2: RF Put Options Actual vs. Predicted Values

Figure B.3: SVM Call Options Actual vs. Predicted Values
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Figure B.4: SVM Put Options Actual vs. Predicted Values

Figure B.5: XGBoost Call Options Actual vs. Predicted Values

Figure B.6: XGBoost Put Options Actual vs. Predicted Values
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Figure B.7: LSTM Call Options Actual vs. Predicted Values

Figure B.8: LSTM Put Options Actual vs. Predicted Values

Figure B.9: GRU Call Options Actual vs. Predicted Values
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Figure B.10: GRU Put Options Actual vs. Predicted Values

Figure B.11: ANN Call Options Actual vs. Predicted Values

Figure B.12: ANN Put Options Actual vs. Predicted Values
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Figure B.13: LSTM Call Options - Training and Validation Loss Over Epochs

Figure B.14: LSTM Put Options - Training and Validation Loss Over Epochs

Figure B.15: GRU Call Options - Training and Validation Loss Over Epochs

50



Figure B.16: GRU Put Options - Training and Validation Loss Over Epochs

Figure B.17: ANN Call Options - Training and Validation Loss Over Epochs

Figure B.18: ANN Put Options - Training and Validation Loss Over Epochs
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