
Master’s Programme in Data Analysis and Business Economics

Click Through Rate Prediction Leveraging Machine

Learning Techniques for Mobile Digital Advertisement

by Juliana Rojas Guillen

DABN01
Master’s Thesis (15 credits ECTS)
May 2024
Supervisor: Simon Reese

Abstract
Predicting click-through rates (CTR) is essential for optimizing the effectiveness of mobile

advertising campaigns, where accurate prediction of user interactions can significantly

enhance revenue generation and ad targeting strategies. This thesis investigates the efficacy of

different predictive models, using a dataset composed of impressions and interactions with

mobile ads. The models examined include Logistic Regression, Random Forest, XG-Boost,

CatBoost, and Feed Forward Neural Networks. Additionally, a K-Means Clustering approach

was employed to segment the data into clusters prior to modeling. The findings reveal that

ensemble methods, particularly CatBoost, outperformed the other tested models, delivering

the lowest log-loss (0.5836) and the highest F1-score (0.7093). This superior performance

highlights the robustness of gradient boosting machines in handling mobile ad data, which is

often categorical and highly dimensional. Finally, features such as site_id, app_id, and

device_model were identified as the most influential in the prediction of CTR using the

best-performing model.

Keywords: Click-Through Rate, Machine Learning, Mobile Ads, CatBoost

2

Acknowledgments
I feel thankful to have achieved one of my life goals by completing my master degree

presenting this thesis. I want to express my deepest appreciation to my supervisor, Simon

Reese, for his constant support and valuable advice throughout this study.

I also owe a profound debt of gratitude to my family and friends. whose love and support

have constantly encouraged me to pursue each of my dreams. I dedicate this milestone to each

one of them.

3

Contents
1. Introduction..7
2. Literature Review.. 8
3. Data..9
3.1. Dataset Description...9
3.2. Feature Transformations... 11
3.3. Handling Imbalanced Data... 16
4. Methodology..17
4.1. Models.. 17
4.2. Evaluation Metrics..22
5. Empirical Analysis...23
5.1. Modeling settings..23
5.2. Performance Overview... 27
5.3. Feature Importance... 28
5.4. Discussion...29
6. Conclusion, Limitations and Future Research...30
Appendix A..37
Appendix B..43

4

List of Figures
Figure 3.1: Distribution and CTR of app_category... 10
Figure 3.2: Distribution of num_impressions_user_day... 13
Figure 3.3: Distribution of time_interval_last_visit.. 13
Figure 3.4: Distribution of num_days_user_appears...14
Figure 3.5: Distribution of num_previous_clicks..14
Figure 3.6: Cyclic Representation of Time..15
Figure 3.7: Imbalance Distribution of Click..16
Figure 3.8: Balance Distribution of Click..16
Figure 4.1: Training dataset grouped in clusters..21
Figure 4.2: Elbow Method to determine optimal number of clusters..21
Figure 5.1: Confusion Matrix of Logistic Regression L2..28
Figure 5.2: Feature Importance Bar Plot... 29
Figure B.1: Distribution of variable app_category.. 37
Figure B.2: Distribution of variable app_domain..37
Figure B.3: Distribution of variable app_id...37
Figure B.4: Distribution of variable banner_pos... 38
Figure B.5: Distribution of variable C1...38
Figure B.6: Distribution of variable C14...38
Figure B.7: Distribution of variable C15...39
Figure B.8: Distribution of variable C16...39
Figure B.9: Distribution of variable C17...39
Figure B.10: Distribution of variable C18...40
Figure B.11: Distribution of variable C19... 40
Figure B.12: Distribution of variable C20...40
Figure B.13: Distribution of variable C21...41
Figure B.14: Distribution of variable device_conn_type.. 41
Figure B.15: Distribution of variable device_type.. 41
Figure B.16: Distribution of variable site_category.. 42
Figure B.17: Distribution of variable site_domain.. 42
Figure B.18: Distribution of variable site_id...42
Figure B.19: Distribution of variable device_id.. 43
Figure B.20: Distribution of variable device_ip.. 43
Figure E.1: Confusion Matrix Logistic Regression Dimension Reduction.....................................44
Figure E.2: Confusion Matrix Logistic Regression L2... 44
Figure E.3: Confusion Matrix Random Forest.. 45
Figure E.4: Confusion Matrix XGBoost..45
Figure E.5: Confusion Matrix CatBoost..46
Figure E.6: Confusion Matrix Feedforward Neural Network... 46
Figure E.7: Confusion Matrix KMeans... 47

5

List of Tables
Table 5.1: Parameters for Cross-Validation for Logistic Regression.. 24
Table 5.2: Parameters for Cross-Validation for Random Forest..24
Table 5.3: Parameters for Cross-Validation for XG-Boost..25
Table 5.4: Parameters for Cross-Validation for CatBoost... 25
Table 5.5: Parameters for Cross-Validation for Feedforward Neural Network.........................26
Table 5.6: Best Models for Clusters.. 27
Table D.1: Model Performance Results...27

6

1. Introduction
Mobile devices are now integral to the daily lives of most people. As of 2023, about 68%

of the global population uses mobile devices, a number expected to increase to 74% by 2030

(GSMA Intelligence, 2024). This rise in mobile usage has transformed advertising strategies,

making digital platforms essential for how businesses engage with consumers, particularly

through smartphones. In fact, the mobile advertising industry was valued at $175 billion in

2023, and forecasted to escalate to $1,040 billion by 2032 (Fortune Business Insights, 2024).

Click Through Rate (CTR) serves as a key metric in online advertising and digital

marketing campaigns. It is defined as the ratio of users who click on a specific link or

advertisement to the total number of users who view the page, ad, or any other form of digital

content (Shah & Nasnodkar, 2021). A high CTR suggests that advertisements are

well-targeted, resonating with viewers and often leading to higher conversion rates.

Furthermore, CTR is vital for search engine advertising, influencing ad rank and affecting

visibility on search engine results pages (Haans et al., 2013). This involves placing ads on

search engine results pages to reach users actively searching for related products or services.

Higher CTRs can result in lower costs per click (CPC), which is the amount advertisers pay

each time a user clicks on their ad, consequently maximize return on investment (ROI). This

underscores the importance of optimizing CTR for the success of online advertising platforms

(Yang & Zhai, 2022). In this scenario, accurate prediction of CTR is crucial for advertisers as

it enables more efficient allocation of advertising budgets, improves targeting strategies, and

enhances overall campaign performance.

In this regard, the goal of this thesis is to explore different machine learning algorithms to

predict whether a new ad will be clicked or not, using a large dataset on click-through rates in

mobile ad impressions. Specifically, the study will investigate the efficacy of algorithms such

as Logistic Regression, Random Forest, XGBoost, CatBoost and Feed Forward Neural

Network. Additionally, this study introduces an advanced approach for preprocessing high

cardinal categorical variables using a combination of feature hashing and count encoding, and

a clustering approach using K-Means prior to predictive modeling was tested. By evaluating

the models, this study identified the most accurate method was CatBoost, which achieved the

lowest log-loss (0.5836) and the highest F1-score (0.7093) and the most significant features

influencing CTR are site_id, app_id, and device_model .

7

The structure of this thesis is as follows: Section 2 presents a review of the relevant

literature. Section 3 describes the dataset, feature transformations, and data imbalance

handling. Section 4 details the methodology, including the machine learning algorithms used

and the evaluation metrics. Section 5 outlines the empirical analysis, discussing modeling

settings, results, and performance. Finally, Section 6 presents the conclusion, limitations, and

suggests future research directions.

2. Literature Review
Click Through Rate (CTR) prediction has received considerable attention from research in

the last decades where machine learning models and different approaches were continuously

proposed (Yan et al., 2022). Among the relevant models reviewed in the literature for

predicting CTR, classification algorithms such as Logistic Regression and ensemble methods

like Random Forest, XG-Boost, and CatBoost stand out.

Investigations made by Richardson et al. (2007), Agarwal et al. (2015), and Kumar et al.

(2015) concluded that Logistic Regression was effective in predicting CTR, especially in

requiring minimal data preprocessing makes it suitable choices for scenarios where

computational efficiency is crucial. While Logistic Regression is simple and interpretable, its

limitations in capturing complex, non-linear relationships can lead to suboptimal predictive

performance (James et al., 2022).

Other studies found that tree-based methods had higher performance than linear methods.

For instance, Zhou (2022) compared Logistic Regression and Decision Trees to analyze user

click behavior on ads, finding that Decision Trees outperformed due to their ability to handle

nonlinear and complex relationships. Shi and Li (2016), who analyzed CTR and average cost

per click (CPC) for keywords in Google AdWords, concluded that Random Forest delivered

the most accurate predictions for both CTR and average CPC. He et al. (2014) demonstrated

that a hybrid model combining Decision Trees with Logistic Regression significantly

enhances click prediction accuracy emphasizing the critical role of feature selection​.

In addition, the study of Çakmak et al. (2019), which aimed to predict the number of clicks

for hotel advertisements in a meta-search bidding engine, concluded that XGBoost

outperformed other models such as Random Forest, Gradient Boosting, Ada Boost and

8

Support Vector Machine (SVM), even running over ten times faster. Similarly, AlAli Moneera

et al. (2021) found that XGBoost performance was superior than Logistic Regression and

Random Forest in predicting CTR with reduced computational power and fewer features. On

the other hand, Kulkarni (2022) highlighted CatBoost's advantages compared to XGBoost or

AdaBoost, due to its capacity to handle categorical data which are very common to have in

advertisement datasets that include customer demographics, interests, and behaviors.

Likewise, Yi and Chang (2021) investigated the effectiveness of tabular learning models for

CTR prediction in developing countries, demonstrating that CatBoost provides a

cost-effective alternative to over-parameterized deep learning models.

Finally, an interesting approach using clustering was made by Kumar et al. (2020). Their

study explored the use of clustering techniques, specifically comparing fuzzy c-means (FCM)

and K-means clustering, to predict CTR. Their findings demonstrated that FCM, which allows

ads to belong to multiple clusters, provided more accurate predictions of user clicks.

3. Data
In this section, the dataset description and feature transformations will be presented.

3.1. Dataset Description

The dataset was extracted from Kaggle1, a data science website, which hosted a

competition by Avazu, an online advertising service provider. The dataset contains 40,428,967

rows and consists of 10 days of click-through data corresponding to mobile advertisement

impressions with the following 24 features.

● id: Unique identifier for each ad impression

● click: Indicates if the ad impression was clicked or not (0 for non-click and 1 for

click)

● hour: Hour in the format YYMMDDHH, 14091123 means 23:00 on Sept. 11, 2014

● banner_pos: Banner position

● site_id: Identifier of the site anonymized

1 https://www.kaggle.com/c/avazu-ctr-prediction

9

● site_domain: Domain name or URL anonymized

● site_category: Site category anonymized

● app_id: App identifier anonymized

● app_domain: Domain of app anonymized

● app_category: Category of app anonymized

● device_id: Device identifier anonymized

● device_ip: IP of the device used at the time the ad was shown to the user

● device_model: Model of the device anonymized

● device_type: Type of the device anonymized

● device_conn_type: Connection type anonymized

● C1, C14-C21: Anonymized categorical variables

In addition, due to computational limitations, this study will consider a random sample of 1

million data points. On the other hand, as part of the Exploratory Data Analysis (EDA), bar

plots were created like the one shown in Figure 3.1, which also includes the CTR for each of

the category types related to the specific feature. In this case, we can notice that most app

categories are concentrated in five categories, and the CTR of the most concentrated category

is the second highest, which might suggest that popular categories can still maintain high user

engagement. Additionally, some less populated categories show high CTRs, indicating niche

categories with high user interest. Similarly, the other feature distributions are shown in

Appendix A, revealing that certain categories with high CTRs can be good indicators of

engaging ads. Advertisers can benefit from these insights by developing strategies to improve

the performance of less engaging categories.

Figure 3.1: Distribution and CTR of app_category

10

Another insight from EDA is related to the cardinality of the categorical variables. For

instance, the number of unique values for device_id is around 150 000 and for device_model,

it is around 5 000. These high cardinalities are important to consider when choosing feature

encoding techniques in the preprocessing part of the study. In addition, it is observed that

there is a high number of data points with same device_id. However, there is no concrete

information from the dataset author indicating that this high frequency might constitute

outliers. While removing these data points would significantly reduce the dataset size, we

opted to keep them.

3.2. Feature Transformations

This section presents the feature transformations applied to the dataset. Categorical

variables were encoded to make them suitable for the applied machine learning models.

Furthermore, the time-related variable 'hour' was encoded using sine and cosine

transformations to capture its cyclical nature. Finally, new variables related to user behavior

were created to leverage additional information.

Categorical Encoding Transformations

The dataset used in this study contains mostly categorical variables that need to be properly

encoded before running the machine learning models. Different methods exist to encode

categorical data, such as one-hot encoding, label encoding, count encoding, feature hashing or

hashing trick, etc. These approaches offer distinct advantages and trade-offs in terms of

computational efficiency, and handling of high-cardinality categorical variables. While

one-hot encoding is a straightforward method that preserves the semantic meaning of

categorical variables, the expansion may result in the curse of dimensionality, computational

inefficiency, and increased memory requirements, particularly for large datasets with

numerous categorical features (Potdar et al., 2017). Therefore, it might not be suitable to use it

as the encoding method for this study, since most of the categorical variables in the dataset

have high cardinality, for instance, device_id has around 150,000 unique values. Given this

constraint, it might not be suitable to employ one-hot encoding in this context. Instead, two

alternative methods are considered: feature hashing, and count encoding.

Feature hashing, also known as the hashing trick, is a technique that maps

high-dimensional feature vectors into a lower-dimensional feature space through a hash

11

function. It is particularly effective in multitasking learning settings and helps manage

large-scale datasets (Weinberger et al., 2009). Unlike one-hot encoding, which requires

creating separate binary variables for each category, feature hashing directly computes the

hash value of each category and assigns it to a pre-defined number of hash bins or buckets.

This hashing process effectively reduces the dimensionality of the feature space, as the

number of hash bins is typically much smaller than the total number of unique categories.

Feature hashing works by applying a hash function to each feature, which ensures that similar

features are likely to hash to the same bucket, while still allowing for efficient computation.

The method also handles collisions by using additional information such as a second hash

function or a sign function to differentiate between features that hash to the same bucket. This

allows for efficient storage and retrieval of features, making it highly suitable for large-scale

machine learning applications. Additionally, feature hashing is computationally efficient and

can be implemented with low memory overhead, which is particularly beneficial when

dealing with sparse data. For this study, the following variables have been encoded using the

hashing trick: site_id, site_domain, app_id, app_domain, app_category, device_id, device_ip,

device_model, C14 and C20.

In addition, the method Count Encoding is considered for its simplicity and computational

constraints and can be utilized when multiple categories do not have identical counts of

observations. (Zeng, 2023). This method, transforms the categorical variable into a numerical

feature based on frequency of each category and can be defined with the following equation,

I (Xi = j)
𝑖=1

𝑛

∑

where I is the indicator function, Xi is the evaluated data point and j is the evaluated category

type. The resulting frequency is used as the encoding numerical value for the corresponding

category of the feature. In case of variables C1 and site_category of this thesis, this method

was selected given that the categories have not the same counts and it is more computational

efficient than feature hashing. Finally, categorical variables with numeric values such as

“banner_pos”, “device_type”, “device_conn_type”, “C21” and “hour” are utilized directly in

the model without need for transformation.

12

Creation of user behavior variables

Given that the dataset provides a time-type feature ‘hour’ and a feature that can

approximate to identify a single user ‘device_id’, the following variables were created to

leverage the information we can extract from the user behavior.

● num_impressions_user_day: This variable quantifies the total number of ad

impressions received by a single user (identified by device_id) within a single day. It

is created to understand the frequency of ad exposure per user per day.

Figure 3.2: Distribution of num_impressions_user_day

● time_interval_last_visit: This variable represents the time between consecutive visits

by the same user. It provides information on the rhythm of interactions.

Figure 3.3: Distribution of time_interval_last_visit

13

● num_days_user_appears: It is defined as the number of distinct days a user appears

in the dataset, quantifying the unique days associated with each user.

Figure 3.4: Distribution of num_days_user_appears

● num_previous_clicks: This feature counts the cumulative number of ad clicks by a

user prior to the current impression, offering a historical perspective on the user's

responsiveness to ads.

Figure 3.5: Distribution of num_previous_clicks

As we can see in the plots above, distributions of the new variables are highly skewed,

which could adversely affect the performance of linear models such as logistic regression.

However, tree-based methods, which are less sensitive to skewness, may still benefit from

these variables, leveraging information related to user behavior.

14

Creation sin and cosine time features

Considering that the dataset has the feature ‘hour’, which has the date and hour of the ad

impression, it is appropriate to encode this time variable, taking into account the cycle nature

of time. To achieve this, sin and cosine transformations are applied. By applying sin and cos

transformations, each point in time is mapped onto a unit circle, preserving the cyclic nature

of time (Time-Related Feature Engineering, 2024). This transformation is crucial for handling

features that exhibit regular intervals, such as hours of the day. To preserve the cycle of ad

impressions, in this study, the variable ‘hour’ is transformed into variables ‘sin_time’ and

‘cos_time’, whose formulas for their creation are as follows:

sin_time = ; cos_time =𝑠𝑖𝑛 (2Π * 'ℎ𝑜𝑢𝑟'
24) 𝑐𝑜𝑠 (2Π * 'ℎ𝑜𝑢𝑟'

24)

These transformations map each hour onto a unit circle, effectively capturing the cyclic

nature of 'hour,' as shown in Figure 3.6. The plots illustrate how sine (blue curve) and cosine

(red curve) transformations create smooth oscillations between -1 and 1 for existing days of

ad impressions. This differs from simply extracting the hour as values from 0 to 23, which

treats time as a linear progression; therefore, the difference between 23:00 and 0:00 is 23

hours, rather than 1 hour. By applying sine and cosine transformations to the hour feature,

each time point is mapped onto a unit circle, maintaining the cyclicality of the hour feature

and making these transformations more suitable for a model's ability to detect and utilize

time-dependent patterns.

Figure 3.6: Cyclic Representation of Time

15

3.3. Handling Imbalanced Data

Imbalanced datasets challenge many machine learning approaches due to significant class

disparity. When one class outweighs others, predictive models may become biased, showing

high accuracy overall but poor performance on the minority class (Kuhn & Johnson, 2013).

This is critical in fields where the minority class, like clicks on advertisements, is less

frequent but more important. To address this, combining various sampling methods is

effective for improving model generalizability across classes (Yap Bee Wah et al., 2016).

One technique for handling imbalanced data is downsampling, which involves randomly

selecting a subset of the overrepresented class to balance the distribution. This method aims to

prevent bias towards the dominant class, leading to more accurate evaluation metrics such as

precision, recall, and F1-score (Kuhn & Johnson, 2013). As shown in Figure 3.8,

downsampling balances the distribution of clicks compared to Figure 3.7.

Figure 3.7: Imbalance Distribution of Click

Figure 3.8: Balance Distribution of Click

16

4. Methodology
In this section, the employed algorithms and metrics for performance evaluation are

described.

4.1. Models

In this study, the following model were chosen as relevant for the CTR prediction: Logistic

Regression, Random Forest, XG-Boost, CatBoost and FeedForward Neural Network.

Furthermore, a more advanced approach using cluster-specific training is employed.

Logistic Regression

Logistic Regression was chosen as a base model for this study, which was employed in

several studies as reviewed in the literature. Logistic Regression models the probability that

an observation belongs to one of two classes as a logistic function of a linear𝑝 (𝑦 = 1| 𝑥)

combination of the input features. Specifically, the probability that an input x belongs to the

positive class is given by the function

𝑔(𝑥) = 1

1 + 𝑒θ𝑇 𝑥

where is the parameter vector of the model. The logistic function maps any realθ 𝑔(𝑥)

number to the (0, 1) interval, making it suitable for probability estimation. The model

parameters are usually estimated using maximum likelihood estimation, which seeks theθ

parameter values that maximize the likelihood of the observed data given the model

(Lindholm et al., 2022).

Random Forest

Random forest is an ensemble learning method that utilizes multiple decision trees to

enhance prediction accuracy and manage over-fitting. Each tree in the forest is constructed

from a randomly selected subset of training data and features. This approach reduces model

variance and enhances overall model reliability (James et al., 2021). Additionally, the

effectiveness of random forests extends across various predictive modeling scenarios because

of their ability to aggregate outcomes. For classification tasks, it uses majority voting of the

outcomes (Kuhn & Johnson, 2013). For optimizing a random forest model, hyperparameter

tuning plays a crucial role. Essential parameters include the number of trees, the number of

17

features considered at each split, the maximum depth of each tree, and the minimum number

of samples required at a leaf node. Adjusting these hyperparameters aids in fine-tuning the

model's complexity and predictive accuracy, ensuring it captures the essential patterns without

fitting too closely to the noise in the training data (Lindholm et al., 2022).

XG-Boost

Gradient boosting and XGBoost are powerful machine learning techniques that build upon

the idea of boosting to improve model predictions, particularly for complex datasets. Gradient

boosting is a sequential ensemble technique that builds a series of decision trees, where each

tree aims to correct the errors of the previous ones. It begins with a simple model, ​,𝐹
0
 (𝑥)

which is just the mean of the target values. Then iteratively, it adds new trees that predict the

residuals or errors of the current ensemble. Mathematically, it adjusts for the errors by

walking in the direction that minimizes a loss function, typically using the gradient descent

methodology. The update equation is:

𝐹
𝑇
 (𝑥) = 𝐹

𝑡−1
(𝑥) + η . ℎ

𝑡
 (𝑥)

where

is the model at step t, η is the learning rate, and is the new tree added at step t𝐹
𝑡
 (𝑥) ℎ

𝑡
 (𝑥)

(James et al., 2021). XG-Boost builds upon the principles of gradient boosting but introduces

more formalization and optimization to make the process faster and more effective. It

incorporates advanced regularization (L1 and L2), which helps reduce overfitting and

improves overall performance. XGBoost also optimizes computational resources by using a

more efficient tree construction algorithm and handling sparse data better. The objective

function of XGBoost includes a regularization term:

𝑂𝑏𝑗 = 𝐿(θ) + Ω(θ)

where is the differentiable loss function and is the regularization term, adding a𝐿(θ) Ω(θ)

complexity control over the model (Kuhn & Johnson, 2013; Lindholm et al., 2022).

Differences between Gradient Boosting and XGBoost include regularization—while

gradient boosting primarily focuses on reducing error by fitting new predictors to the residual

errors, XGBoost also penalizes the model complexity via regularization, helping to avoid

18

overfitting. XGBoost can handle missing data and variable sparsity through its built-in

mechanisms, unlike traditional gradient boosting, which may require complete data.

Furthermore, XGBoost is optimized to be more computationally efficient than standard

gradient boosting, due to its use of the quantile sketch algorithm for approximate tree learning

and more effective use of hardware resources.

CatBoost

CatBoost, a variant of gradient boosting developed by Prokhorenkova et al. (2019), stands

out by addressing prediction shifts caused by target leakage—where training data includes

information unavailable at prediction time. This issue is common in other gradient boosting

frameworks, especially with categorical features. CatBoost improves categorical data

handling through an ordered boosting approach, ensuring each model in the ensemble is

trained on a distinct subset of data, enhancing robustness and accuracy. It converts categorical

features into numerical forms reflecting their statistical relationship with the target variable,

more effectively than traditional one-hot encoding. CatBoost also modifies the standard

gradient boosting update formula by introducing a sequence of models adjusted based on data

subsets to prevent overfitting and leakage. The core update equation in CatBoost can be

described as follows:

𝐹
𝑇
 (𝑥) = 𝐹

𝑡−1
(𝑥) + α

𝑖=1

𝑛

∑ 𝑔
𝑡,𝑖

(𝑥)

where is the gradient of the loss function with respect to the function estimate from𝑔
𝑡,𝑖

(𝑥)

the previous iteration, and is the learning rate.α

Moreover, CatBoost not only addresses the inefficiencies of handling high cardinality

categorical features but also enhances model performance by reducing overfitting through its

sophisticated data sampling and handling strategies. As a result, CatBoost outperforms other

gradient boosting methods in various datasets by effectively managing categorical features

and mitigating prediction shift, making it particularly advantageous in scenarios where

categorical data is prevalent (Prokhorenkova et al., 2019). Additionally, for effects of this

study, since CatBoost does not require categorical variables to be encoded, it will be tested

both with and without encoding these variables.

19

Feed-Forward Neural Network (NN)

Feedforward neural networks, also known as multilayer perceptrons (MLPs), are the

quintessential deep learning models. The architecture of these networks is based on a series of

layers, where each layer consists of a set of neurons, and each neuron in one layer connects

forward to the neurons of the subsequent layer, with no backward or lateral

connections—hence the term "feedforward." As described by Goodfellow, Bengio, and

Courville (2016), these connections are typically weighted, and data processing occurs in two

stages through these connections: a linear summation followed by a nonlinear activation

function. This process begins with the input layer, progresses through one or more "hidden"

layers, and concludes at the output layer. Each hidden layer’s activation function, such as

sigmoid or ReLU, introduces non-linear properties that allow MLPs to learn complex

functions. The training of these networks involves adjusting the weights of the connections to

minimize the difference between the actual output and the target output, a process typically

done through backpropagation. Goodfellow et al. (2016) detail that backpropagation

efficiently computes the gradient of the loss function associated with a given state of the

network by propagating error gradients backward through the network. This allows for

efficient optimization of the loss function using algorithms like stochastic gradient descent. In

the study, this basic deep learning approach will be tested as part of the experimentation

algorithms to compare the results with the machine learning algorithms.

K-Means

Upon exploring the dataset, it was observed that the data points naturally group into

clusters, as illustrated in Figure 4.1, which displays the clustering using two principal

components. Consequently, a viable experimental approach is to apply K-means clustering to

the training set. This clustering algorithm is widely utilized for dividing observations into a

predetermined number of groups, denoted as 'k'. It aims to categorize observations into

distinct groups where those within the same cluster are highly similar (resulting in high

intra-class similarity), while those in different clusters are as dissimilar as possible (leading to

low inter-class similarity). Each cluster in k-means is characterized by its centroid,

representing the mean of the observation values assigned to that cluster.

20

Figure 4.1: Training dataset grouped in clusters

In this setup, the number of clusters is a critical parameter and was determined to be 4

using the Elbow method shown in Figure 4.1. This method determines the optimal number of

clusters by plotting the sum of squared distances from each point to its assigned cluster center

(inertia) against the number of clusters, and identifying the point where the inertia begins to

decrease more slowly, forming an "elbow" shape (Celebi et al., 2013).

Figure 4.2: Elbow Method to determine optimal number of clusters.

Note: The x-axis represents the number of clusters, while the y-axis shows the Within-Cluster Sum
of Squares (WCSS), which measures the sum of squared distances of samples to their nearest cluster
center.

Once the data was organized into 4 clusters, each cluster is then analyzed using a specific

predictive model. Using K-means clustering as a precursor to predictive modeling is an

21

effective strategy to enhance model performance by tailoring specific models to more

homogenous subsets of data. As reviewed in the literature, Kumar et al. (2019) used a

clustering approach for CTR prediction obtaining promising results. This targeted approach

allows for the application of the most appropriate modeling techniques to different data

characteristics.

In this scenario, four distinct models are used to train in each of the clusters: Logistic

Regression, Random Forest, XG-Boost and Catboost are trained for each cluster. Therefore,

the most suitable model is chosen for each cluster. Finally, when the model is exposed to

unseen data, first the datapoint will be assigned to its corresponding cluster, and the prediction

will be done taking into account the corresponding trained model for the specific cluster it

belongs to.

4.2. Evaluation Metrics

The main metrics to evaluate the performance of the models are Logaritmic loss and

F1-Score.

Log-Loss

Log-loss, also known as cross-entropy loss, is an important metric in evaluating machine

learning classification algorithms. It is based on prediction probabilities, where a lower

log-loss value indicates better predictions (Aggarwal et al., 2021). The metric is extensively

used in industries where understanding the model's confidence in its predictions is as

important as the predictions themselves (Ferri et al., 2009). It measures the uncertainty of the

model's predictions based on how much the predicted probabilities deviate from the actual

class labels. It is calculated as the negative log of the probability assigned to the true class for

each instance. A lower log loss value indicates a model with better accuracy, as it reflects

smaller differences between the predicted probabilities and the actual class labels. Log loss is

particularly useful because it penalizes not just incorrect classifications, but also the

confidence of the predictions.

22

F1-Score

The F1-score is a crucial metric for evaluating the performance of classification models,

especially in the context of imbalanced datasets. It calculates the harmonic mean of precision

and recall, effectively balancing the importance of both metrics. It is calculated as follows

𝐹
1

= 2 . 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

where precision measures the accuracy of positive predictions, whereas recall assesses how

well the model identifies all relevant instances (i.e., the actual positives). The resulting

number is between zero and one, being the higher the better (Lindholm et al., 2022). The

F1-score is preferred over the misclassification rate for imbalanced problems, as it considers

both precision and recall, offering a balanced metric between the two. In ads click prediction

is advantageous because it ensures a balanced evaluation of precision (the proportion of

predicted clicks that are actual clicks) and recall (the ability to capture all potential clicks).

This metric is significant in advertising, where both avoiding false positives (wasting

resources on non-clickers) and maximizing true positives (identifying all potential clickers)

are key for optimizing campaign effectiveness and ROI.

5. Empirical Analysis
In this section, the model settings and results are presented and discussed.

5.1. Modeling settings

In the empirical analysis, various models were employed to evaluate their performance in

predicting if an ad will be clicked or not. The dataset was initially split into training and

testing subsets, maintaining 80% for training and 20% for testing purposes.

Logistic Regression

For the Logistic Regression model, feature scaling was applied using StandardScaler to

normalize the data, enhancing the training process. Hyperparameter tuning was conducted

through cross-validation using k equal to 5, and targeting optimal regularization strength (C)

23

and penalty type. The tested parameters included a range of C values from 0.001 to 100. The

optimal parameters determined were 'C' equal to 0.1 for L2 Regularization and

Table 5.1: Parameters for Cross-Validation for Logistic Regression

Penalty type Hyperparameter Range Best Parameter

L2 C [0.0001, 0.001, 0.01, 0.1, 1, 10] 0.1

L1 C [0.0001, 0.001, 0.01, 0.1, 1, 10] 10

Random Forest

The Random Forest model was configured with a grid search to explore different

combinations of the number of trees in the forest (n_estimators), the maximum depth of the

trees (max_depth), the minimum number of samples required to split an internal node

(min_samples_split), the minimum number of samples required to be at a leaf node

(min_samples_leaf), and the number of features to consider when looking for the best split

(max_features). After evaluating the configurations using cross-validation of k equal to 5, the

optimal parameters were determined to be the ones shown in Table 5.2.

Table 5.2: Parameters for Cross-Validation for Random Forest

Hyperparameter Range Best Parameter

n_estimators [100, 200, 300] 200

max_depth [None, 10, 20] None

max_features ['auto', 'sqrt'] sqrt

min_samples_split [2, 5, 10] 10

min_samples_leaf [1, 2, 4] 4

XG-Boost

The XGBoost model was configured with a grid search to explore different combinations

of the learning rate (learning_rate), the maximum depth of the trees (max_depth), the number

of trees in the forest (n_estimators), the fraction of samples used for fitting individual trees

(subsample), and the fraction of features used for fitting individual trees (colsample_bytree).

24

After evaluating the configurations using cross-validation with k equal to 5, the optimal

parameters were determined to be the ones shown in Table 5.3.

Table 5.3: Parameters for Cross-Validation for XG-Boost

Hyperparameter Range Best Parameter

learning_rate [0.01, 0.1, 0.2] 0.1

max_depth [3, 5, 7, 9] 9

n_estimators [50, 100, 200] 200

subsample [0.6, 0.8, 1.0] 0.8

colsample_bytree [0.6, 0.8, 1.0] 0.8

CatBoost

The CatBoost model, specifically designed to handle categorical features efficiently, was

finely tuned through a grid search. The optimization focused on adjusting parameters such as

iterations, learning rate, and depth to significantly enhance model performance. After

evaluating the configurations using cross-validation with k equal to 5, the optimal parameters

were determined to be the ones shown in the following table.

Table 5.4: Parameters for Cross-Validation for CatBoost

Hyperparameter Range Best Parameter

depth [6, 8, 10] 8

iterations [300, 500] 300

learning_rate [0.01, 0.05, 0.1] 0.1

l2_leaf_reg [1, 3, 5, 7] 7

Feedforward Neural Network

The neural network model was configured with a random search to explore different

combinations of the weight initializer (RandomNormal, HeNormal, GlorotNormal), the

number of units in the first dense layer, the number of units in the second dense layer, the L2

regularization term for the first dense layer, the L2 regularization term for the second dense

layer, the optimizer (Adam, RMSprop, SGD), and the learning rate. After evaluating the

25

configurations using a validation split of 0.1, the optimal parameters were determined to be

the ones shown in Table 5.5.

Table 5.5: Parameters for Cross-Validation for Feedforward Neural Network

Hyperparameter Range Best Parameter

Weight initializer ['RandomNormal', 'HeNormal',
'GlorotNormal']

RandomNormal

Units in the first dense
layer

[32, 64, 96, ..., 512] (step 32) 160

L2 regularization (first
layer)

[1e-5, 1e-4, 1e-3, 1e-2] (log scale) 1e-2

Units in the second
dense layer

[16, 32, 48, ..., 256] (step 16) 128

L2 regularization
(second layer)

[1e-5, 1e-4, 1e-3, 1e-2] (log scale) 1e-4

Optimizer ['adam', 'rmsprop', 'sgd'] adam

Learning rate [1e-5, 1e-4, 1e-3, 1e-2] (log
scale)

1e-4

K-Means Clustering Approach

For the K-Means Clustering approach, prior to model training, the dataset was subjected to

clustering into four groups, as explained in the methodology of this study. This preliminary

segmentation aimed to uncover inherent groupings within the data, hypothesizing that

different groups might exhibit unique behaviors that could affect the effectiveness of the

predictive models. In this regard, for each cluster, the models are trained and evaluated using

5-fold cross-validation to determine the best-performing model based on the F1-score as

shown in Table 5.6. The best model for each cluster is then used to make predictions on the

test data, which will be clustered using the same K-Means model.

26

Table 5.6: Best Models for Clusters

Cluster Best Model

0 Random Forest

1 Random Forest

2 CatBoost

3 Random Forest

5.2. Performance Overview

Among the tested models, whose results are shown in Table 5.7, the CatBoost model

emerged as the top performer, achieving the lowest log-loss (0.5836) and the highest F1-score

(0.7093), indicating a robust ability to predict positive instances with a good balance between

precision and recall. In addition, the ensemble methods, including Random Forest and

XG-Boost, also showed strong performance, particularly in terms of the True Positive Rate

(TPR), with values above 0.73, which suggests their effectiveness in correctly identifying

positive cases. The Feed Forward Neural Network, while not surpassing the ensemble models,

still demonstrated commendable performance with a TPR of 0.7428 and an F1-score of

0.6924, reflecting its capability to handle complex patterns in data. On the other hand, the

K-Means Clustering method displayed a log-loss of 0.6390 and a moderate F1-score (0.6327),

showing improved efficacy but still lagging behind the other models.

Table D.1: Model Performance Results

27

Model Log-Loss TPR FPR F1-Score

Logistic Regression L2 0.6202 0.7151 0.4053 0.6745

Random Forest 0.5938 0.7329 0.3650 0.6987

XG-Boost 0.5940 0.7362 0.3704 0.6989

CatBoost 0.5836 0.7580 0.3793 0.7093

Feed Forward Neural Network 0.6079 0.7428 0.4029 0.6859

K-Means Clustering 0.6390 0.6171 0.3336 0.6327

Additionally, confusion matrices were plotted and shown in Appendix B. For instance,

Figure 5.1 shows the confusion matrix for Logistic Regression using L2 regularization. We

can interpret that this model is effective in identifying actual positives, with a TPR of 0.7151

and a relatively low FPR of 0.4053. It also achieves a decent F1-Score of 0.6745, indicating a

good balance between precision and recall while maintaining acceptable overall probability

prediction accuracy.

Figure 5.1: Confusion Matrix of Logistic Regression L2

While CatBoost stands out with the lowest log-loss and the highest F1-Score, it also

exhibits a significantly higher FPR (0.7580), indicating a tendency to predict non-clicks as

clicks more frequently. Despite this, CatBoost maintains a respectable TPR of 0.7580,

demonstrating its effectiveness in correctly identifying actual ad clicks. Finally, in case of

K-Means Clustering, while not leading in most metrics, presents an interesting profile with

the lowest FPR (0.3336) among all models. This suggests that K-Means makes fewer errors in

predicting negatives as positives.

5.3. Feature Importance

The feature importance analysis from the CatBoost model, which was the one with best

performance, highlights that the features site_id, app_id, device_model, C21, and

site_domain, dominate the importance chart, suggesting their critical role in the predictive

28

performance. The prominence of site_id and app_id underscores the impact of the specific

website or application context on user engagement, as different sites and apps inherently

attract varying user demographics and interests, which in turn affect CTR. Similarly,

device_model serves as a strong predictor, reflecting variations in user experience and

interface interaction that can influence ad engagement. The feature C21, potentially

representing an ad-related attribute, also plays a vital role in influencing user responses.

Additionally, the engineered feature num_previous_clicks, is the eighth most influential

feature indicating that a user's propensity to engage with ads based on past interactions might

be significant for predicting if a future ad will be clicked.

Figure 5.2: Feature Importance Bar Plot

5.4. Discussion

The empirical findings from this study revealed that CatBoost, XG-Boost, and Random

Forest demonstrate robust performance. Specifically, CatBoost performed as the superior

model, achieving the lowest log-loss (0.5836) and the highest F1-score (0.7093), reflecting its

potent capability to predict positive instances accurately while maintaining a balance between

precision and recall. Additionally, to evaluate how feature hashing impacts model

29

performance, CatBoost was tested both with and without encoded categorical variables, as

this model can inherently manage categorical data. Interestingly, CatBoost without encoding

showed a slightly higher F1-Score (0.6958) compared to when using encoded categorical

variables, aligning with Kulkarni's (2022) observations about CatBoost's adeptness at

managing categorical features prevalent in advertisement datasets. This ability significantly

contributes to its efficiency and accuracy. On the other hand, Random Forest showcased

strong performance, particularly in terms of the True Positive Rate (TPR), with a value of

0.7329. This finding is consistent with Sahllal & Souidi (2023), who reported substantial

improvements in CTR prediction when using Random Forest. Such effectiveness is crucial in

digital advertising for enhancing the allocation and optimization of advertising resources.

Moreover, Shi and Li (2016) demonstrated Random Forest's precision in estimating CTR and

CPC, reinforcing its suitability for predictive tasks in advertising. XG-Boost also

demonstrated notable performance with a TPR of 0.7362 and an F1-score of 0.6989. This

supports the findings of Çakmak et al. (2019), who found XGBoost outperformed other

models in predicting clicks for advertisements. Similarly, AlAli Moneera et al. (2021)

highlighted XGBoost's superior performance compared to Logistic Regression and Random

Forest in predicting CTR with reduced computational power and fewer features.

6. Conclusion, Limitations and Future Research
In conclusion, this thesis has demonstrated the potential of machine learning models in

predicting click-through rates for mobile digital advertisements. Among the various tested

models, CatBoost outperformed the others by achieving the highest F1-score and the lowest

log-loss, highlighting its exceptional capability in handling the complexities of categorical

data which is very common to handle in digital advertising. Particularly influential in this

model were the features site_id, app_id, and device_model. Random Forest also demonstrated

notable strengths, particularly in managing data imbalance and achieving high true positive

rates. These models notably outperformed not only traditional logistic regression but also

other approaches such as XG-Boost and Feed Forward Neural Networks. Furthermore, the

study also incorporated a K-Means Clustering approach, which, while showing improved

performance over previous iterations, still lagged behind the singular predictive models.

On the other hand, a limitation of this study is related to the size of the dataset utilized.

While the original dataset comprised over 40 million rows, a subset of 1 million rows was

30

utilized for analysis. This downsizing was necessary due to memory constraints, as handling

such a large dataset posed computational challenges. Another limitation of this thesis is that

many of the variables were anonymized, which can made it challenging for the interpretability

and analysis of those variables in order to suggest actionable insights for real contexts.

Finally, future research could explore advanced feature engineering techniques to uncover

new insights from user behavior data and investigate the implications of repeated device IDs

in the current dataset. Additionally, with increased computational power, a broader range of

features can be tested in the feature hashing process to enhance performance. Moreover,

employing ensemble techniques to combine the strengths of different models, along with deep

learning approaches for high-dimensional data, could further refine the prediction process.

31

References
Agarwal, A., Gupta, A. & Ahmad, T. (2015). A Comparative Study of Linear Learning

Methods in Click-through Rate Prediction, in 2015 International Conference on Soft
Computing Techniques and Implementations (ICSCTI), 2015 International
Conference on Soft Computing Techniques and Implementations (ICSCTI),
Faridabad, India, October 2015, Faridabad, India: IEEE, pp.97–102, Available
Online: http://ieeexplore.ieee.org/document/7489611/

Aggarwal, A. (2021). Label Inference Attacks from Log-Loss Scores

AlAli, M., AlQahtani, M., AlJuried, A., AlOnizan, T., Alboqaytah, D., Aslam, N. &
Ullah Khan, I. (2021). Click Through Rate Effectiveness Prediction on Mobile Ads
Using Extreme Gradient Boosting, Computers, Materials & Continua, vol. 66, no. 2,
pp.1681–1696

AppsFlyer. (n.d.). Device ID | AppsFlyer Mobile Glossary, AppsFlyer, Available Online:
https://www.appsflyer.com/glossary/device-id/

Çakmak, T., Tekin, A., Şenel, Ç., Çoban, T., Uran, Z. & Sakar, C. (2019). Accurate
Prediction of Advertisement Clicks Based on Impression and Click-Through Rate
Using Extreme Gradient Boosting:, in Proceedings of the 8th International
Conference on Pattern Recognition Applications and Methods, 8th International
Conference on Pattern Recognition Applications and Methods, Prague, Czech
Republic, 2019, Prague, Czech Republic: SCITEPRESS - Science and Technology
Publications, pp.621–629, Available Online:
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/000739430621062
9

Celebi, M. E., Kingravi, H. A. & Vela, P. A. (2013). A Comparative Study of Efficient
Initialization Methods for the K-Means Clustering Algorithm, Expert Systems with
Applications, vol. 40, no. 1, pp.200–210

Chen, J.-H., Zhao, Z.-Q., Shi, J.-Y. & Zhao, C. (2017). A New Approach for Mobile
Advertising Click-Through Rate Estimation Based on Deep Belief Nets,
Computational Intelligence and Neuroscience, vol. 2017, pp.1–8

Ferri, C., Hernández-Orallo, J. & Modroiu, R. (2009). An Experimental Comparison of
Performance Measures for Classification, Pattern Recognition Letters, vol. 30, no. 1,
pp.27–38

32

http://ieeexplore.ieee.org/document/7489611/
https://www.appsflyer.com/glossary/device-id/
https://www.appsflyer.com/glossary/device-id/
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007394306210629
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007394306210629
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007394306210629

Fortune Business Insights. (2024). Mobile Advertising Market Size, Share, Trends |
Growth [2032], Available Online:
https://www.fortunebusinessinsights.com/mobile-advertising-market-102496

Fubel, E., Groll, N. M., Gundlach, P., Han, Q. & Kaiser, M. (2023). Beyond Rankings:
Exploring the Impact of SERP Features on Organic Click-through Rates,
arXiv:2306.01785, Available Online: http://arxiv.org/abs/2306.01785

Gudipudi, R., Nguyen, S., Bein, D. & Kurwadkar, S. (2023). Improving Internet
Advertising Using Click – Through Rate Prediction, 14th International Conference
on Applied Human Factors and Ergonomics (AHFE 2023), 2023, Available Online:
https://openaccess.cms-conferences.org/publications/book/978-1-958651-70-4/articl
e/978-1-958651-70-4_8

Haans, H., Raassens, N. & Van Hout, R. (2013). Search Engine Advertisements: The
Impact of Advertising Statements on Click-through and Conversion Rates,
Marketing Letters, vol. 24, no. 2, pp.151–163

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers,
S. & Candela, J. Q. (2014). Practical Lessons from Predicting Clicks on Ads at
Facebook, in Proceedings of the Eighth International Workshop on Data Mining for
Online Advertising, KDD ’14: The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York NY USA, 24 August 2014, New
York NY USA: ACM, pp.1–9, Available Online:
https://dl.acm.org/doi/10.1145/2648584.2648589

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer Feedforward Networks Are
Universal Approximators, Neural Networks, vol. 2, no. 5, pp.359–366

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2022). An Introduction to Statistical
Learning with Applications in R, Statistical Theory and Related Fields, vol. 6, no. 1.

Kaggle. (2014). Kaggle, Available Online:
https://kaggle.com/competitions/avazu-ctr-prediction

Kuhn, M. & Johnson, K. (2013). Applied Predictive Modeling, [e-book] New York, NY:
Springer New York, Available Online:
http://link.springer.com/10.1007/978-1-4614-6849-3

33

https://www.fortunebusinessinsights.com/mobile-advertising-market-102496
https://www.fortunebusinessinsights.com/mobile-advertising-market-102496
http://arxiv.org/abs/2306.01785
https://openaccess.cms-conferences.org/publications/book/978-1-958651-70-4/article/978-1-958651-70-4_8
https://openaccess.cms-conferences.org/publications/book/978-1-958651-70-4/article/978-1-958651-70-4_8
https://openaccess.cms-conferences.org/publications/book/978-1-958651-70-4/article/978-1-958651-70-4_8
https://dl.acm.org/doi/10.1145/2648584.2648589
https://dl.acm.org/doi/10.1145/2648584.2648589
https://kaggle.com/competitions/avazu-ctr-prediction
https://kaggle.com/competitions/avazu-ctr-prediction
http://link.springer.com/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-1-4614-6849-3

Kulkarni, C. S. (2022). Advancing Gradient Boosting: A Comprehensive Evaluation of
the CatBoost Algorithm for Predictive Modeling, Journal of Artificial Intelligence,
Machine Learning and Data Science, vol. 1, no. 5, pp.54–57

Kumar, A., Nayyar, A., Upasani, S. & Arora, A. (2020). Empirical Study of Soft
Clustering Technique for Determining Click Through Rate in Online Advertising, in
N. Sharma, A. Chakrabarti, & V. E. Balas (eds), Data Management, Analytics and
Innovation, Vol. 1042, [e-book] Singapore: Springer Singapore, pp.3–13, Available
Online: http://link.springer.com/10.1007/978-981-32-9949-8_1

Kumar, R., Naik, S. M., Naik, V. D., Shiralli, S., Sunil V.G & Husain, M. (2015).
Predicting Clicks: CTR Estimation of Advertisements Using Logistic Regression
Classifier, in 2015 IEEE International Advance Computing Conference (IACC),
2015 IEEE International Advance Computing Conference (IACC), Banglore, India,
June 2015, Banglore, India: IEEE, pp.1134–1138, Available Online:
http://ieeexplore.ieee.org/document/7154880/

Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J. & Zhang, B. (eds). (2020). Communications,
Signal Processing, and Systems: Proceedings of the 2018 CSPS Volume III:
Systems, Vol. 517, [e-book] Singapore: Springer Singapore, Available Online:
http://link.springer.com/10.1007/978-981-13-6508-9

Lindholm, A., Wahlström, N., Lindsten, F. & Schön, T. B. (2022). Machine Learning: A
First Course for Engineers and Scientists, 1st edn, [e-book] Cambridge University
Press, Available Online:
https://www.cambridge.org/highereducation/product/9781108919371/book

Ma, Y. & Zhang, Z. (2020). Travel Mode Choice Prediction Using Deep Neural
Networks With Entity Embeddings, IEEE Access, vol. 8, pp.64959–64970

Panda, A. R., Rout, S., Narsipuram, M., Pandey, A. & Jena, J. J. (2024). Ad
Click-Through Rate Prediction: A Comparative Study of Machine Learning Models,
in 2024 International Conference on Emerging Systems and Intelligent Computing
(ESIC), 2024 International Conference on Emerging Systems and Intelligent
Computing (ESIC), Bhubaneswar, India, 9 February 2024, Bhubaneswar, India:
IEEE, pp.679–684, Available Online:
https://ieeexplore.ieee.org/document/10481562/

34

http://link.springer.com/10.1007/978-981-32-9949-8_1
http://ieeexplore.ieee.org/document/7154880/
http://ieeexplore.ieee.org/document/7154880/
http://link.springer.com/10.1007/978-981-13-6508-9
http://link.springer.com/10.1007/978-981-13-6508-9
https://www.cambridge.org/highereducation/product/9781108919371/book
https://www.cambridge.org/highereducation/product/9781108919371/book
https://ieeexplore.ieee.org/document/10481562/
https://ieeexplore.ieee.org/document/10481562/

Potdar, K., S., T. & D., C. (2017). A Comparative Study of Categorical Variable
Encoding Techniques for Neural Network Classifiers, International Journal of
Computer Applications, vol. 175, no. 4, pp.7–9

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. (2019).
CatBoost: Unbiased Boosting with Categorical Features, arXiv:1706.09516,
Available Online: http://arxiv.org/abs/1706.09516

Sahllal, N. & Souidi, E. M. (2023). A Comparative Analysis of Sampling Techniques for
Click-Through Rate Prediction in Native Advertising, IEEE Access, vol. 11,
pp.24511–24526

Shah, A. & Nasnodkar, S. (2021). The Impacts of User Experience Metrics on
Click-Through Rate (CTR) in Digital Advertising: A Machine Learning Approach

Shi, L. & Li, B. (2016). Predict the Click-Through Rate and Average Cost Per Click for
Keywords Using Machine Learning Methodologies

Statista. (2024). Global Smartphone Penetration 2016-2022, Statista, Available Online:
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita
-since-2005/

Time-Related Feature Engineering. (2024). Scikit-Learn, Available Online:
https://scikit-learn/stable/auto_examples/applications/plot_cyclical_feature_engineer
ing.html

Wah, Y. B., Rahman, H. A. A., He, H. & Bulgiba, A. (2016). Handling Imbalanced
Dataset Using SVM and K-NN Approach, ADVANCES IN INDUSTRIAL AND
APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium
of Mathematical Sciences (SKSM23), Johor Bahru, Malaysia, 2016, Johor Bahru,
Malaysia, p.020023, Available Online: https://pubs.aip.org/aip/acp/article/586631

Wang, X. (2020). A Survey of Online Advertising Click-Through Rate Prediction
Models, in 2020 IEEE International Conference on Information Technology,Big
Data and Artificial Intelligence (ICIBA), 2020 IEEE International Conference on
Information Technology,Big Data and Artificial Intelligence (ICIBA), Chongqing,
China, 6 November 2020, Chongqing, China: IEEE, pp.516–521, Available Online:
https://ieeexplore.ieee.org/document/9277337/

Weinberger, K., Dasgupta, A., Langford, J., Smola, A. & Attenberg, J. (2009). Feature
Hashing for Large Scale Multitask Learning, in Proceedings of the 26th Annual

35

http://arxiv.org/abs/1706.09516
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://scikit-learn/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://pubs.aip.org/aip/acp/article/586631
https://ieeexplore.ieee.org/document/9277337/
https://ieeexplore.ieee.org/document/9277337/

International Conference on Machine Learning, ICML ’09: The 26th Annual
International Conference on Machine Learning Held in Conjunction with the 2007
International Conference on Inductive Logic Programming, Montreal Quebec
Canada, 14 June 2009, Montreal Quebec Canada: ACM, pp.1113–1120, Available
Online: https://dl.acm.org/doi/10.1145/1553374.1553516

Yang, Y. & Zhai, P. (2022). Click-through Rate Prediction in Online Advertising: A
Literature Review, Information Processing & Management, vol. 59, no. 2, p.102853

Yi, J. & Chang, B. (2021). Efficient Click-Through Rate Prediction for Developing
Countries via Tabular Learning, arXiv:2104.07553, Available Online:
http://arxiv.org/abs/2104.07553

Zeng, G. (2023). On the Analytical Properties of Category Encodings in Logistic
Regression, Communications in Statistics - Theory and Methods, vol. 52, no. 6,
pp.1870–1887

Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., Wang, B. & Liu, T.-Y. (2014).
Sequential Click Prediction for Sponsored Search with Recurrent Neural Networks,
arXiv:1404.5772, Available Online: http://arxiv.org/abs/1404.5772

Zhou, S. (2022). Analyzing Factors of Users Click Behavior on Ads Based on Logistic
Regression and Machine Learning, in G. Ali, M. C. Birkök, & I. A. Khan (eds),
Proceedings of the 2022 6th International Seminar on Education, Management and
Social Sciences (ISEMSS 2022), Vol. 687, [e-book] Paris: Atlantis Press SARL,
pp.2538–2549, Available Online:
https://www.atlantis-press.com/doi/10.2991/978-2-494069-31-2_299

36

https://dl.acm.org/doi/10.1145/1553374.1553516
http://arxiv.org/abs/2104.07553
http://arxiv.org/abs/2104.07553
http://arxiv.org/abs/1404.5772
https://www.atlantis-press.com/doi/10.2991/978-2-494069-31-2_299
https://www.atlantis-press.com/doi/10.2991/978-2-494069-31-2_299

Appendix A

CTR Distribution across variables

Figure B.1: Distribution of variable app_category

Figure B.2: Distribution of variable app_domain

Figure B.3: Distribution of variable app_id

37

Figure B.4: Distribution of variable banner_pos

Figure B.5: Distribution of variable C1

Figure B.6: Distribution of variable C14

38

Figure B.7: Distribution of variable C15

Figure B.8: Distribution of variable C16

Figure B.9: Distribution of variable C17

39

Figure B.10: Distribution of variable C18

Figure B.11: Distribution of variable C19

Figure B.12: Distribution of variable C20

40

Figure B.13: Distribution of variable C21

Figure B.14: Distribution of variable device_conn_type

Figure B.15: Distribution of variable device_type

41

Figure B.16: Distribution of variable site_category

Figure B.17: Distribution of variable site_domain

Figure B.18: Distribution of variable site_id

42

Figure B.19: Distribution of variable device_id

Figure B.20: Distribution of variable device_ip

43

Appendix B

Resulting Confusion Matrices

Figure E.1: Confusion Matrix Logistic Regression Dimension Reduction

Figure E.2: Confusion Matrix Logistic Regression L2

44

Figure E.3: Confusion Matrix Random Forest

Figure E.4: Confusion Matrix XGBoost

45

Figure E.5: Confusion Matrix CatBoost

Figure E.6: Confusion Matrix Feedforward Neural Network

46

Figure E.7: Confusion Matrix KMeans

47

