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Abstract

This thesis explores the determinants of educational performance in Slovak schools
using advanced machine-learning (ML) techniques. It identifies key factors influ-
encing academic outcomes and evaluates the effectiveness of various ML models,
including Random Forest, Gradient Boosting, and Neural Networks, among others.
This study compiled a complex dataset of 1409 primary and 656 secondary schools
and matched it to a variety of demographic and economic characteristics. Results
indicate that ensemble tree methods, particularly XGBoost, outperform other mod-
els in terms of predictive accuracy. These models consistently identify the higher-
educated population in the region, the ratio of teachers to students, and the number
of pupils in a school as the most significant predictors of academic performance.
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1

Introduction

Education, and consequently educational performance, are key predictors of societal
quality. Understanding the factors that influence academic performance has long
been a priority for educational researchers and policymakers. With the arrival of
machine learning (ML) techniques, there is an opportunity to study these factors
more deeply and predict educational outcomes with greater accuracy. Inspired by
similar papers by Chen and Ding (2023) and Masci et al. (2018), this thesis explores
the determinants of educational performance at the school level using advanced ML
techniques, aiming to enhance our understanding and provide actionable insights
for improving educational policies and practices. The central research question
of this thesis is: What are the key factors influencing academic performance in
Slovak schools, and how effectively can machine learning techniques predict these
outcomes?

The motivation behind this research stems from the growing recognition that tra-
ditional statistical approaches, while valuable, may not fully capture the complex
and non-linear relationships inherent in educational data. Machine learning offers
a robust alternative that is capable of handling large, complex datasets and uncov-
ering patterns that might be overlooked by conventional methods (Nafea, 2018).
This study leverages a dataset comprising school-level data from Slovakia, includ-
ing variables such as school characteristics, socio-economic status (SES) of pupils,
ICT usage, demographic factors, and many others. By applying a range of ML
techniques, including Random Forest, Gradient Boosting, Light GBM, XGBoost,
Support Vector Machines (SVM), Neural Networks, K-Nearest Neighbors (kNN),
and Kernel Ridge Regression (KRR), the research aims to identify the most effec-
tive models and the key predictors of academic performance. Results indicate that
ensemble tree methods, particularly XGBoost, outperform other models in terms of
predictive accuracy. These models consistently identify the higher-educated popu-
lation in the region, the ratio of teachers to students, and the number of pupils in a
school as the most significant predictors of academic performance.

The data and methodology involve a very complex and manual process of data
collection, preprocessing, model selection, and evaluation. Our dataset comprises
1409 primary schools and 656 secondary schools. We used national tests by National
Institute of Education and Youth as a reference for educational achievement. Be-
sides that, the dataset includes various factors that potentially influence educational
outcomes sourced from various Slovak public databases. Preprocessing techniques
were employed to handle missing data, standardize variables, and transform skewed
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distributions. The selected ML models were then trained and validated using cross-
validation techniques to ensure robust and reliable predictions. The study acknowl-
edges several limitations. The dataset does not include some schools in Slovakia
that do not report the dependent variable - the standardized test or some important
independent variables. This may affect the generalizability of the findings to other
contexts. Additionally, while ML models offer high predictive accuracy, their inter-
pretability can be challenging, complicating the translation of results into actionable
policy recommendations.

Following this introduction, Chapter 2 - Literature Review examines existing
research on the determinants of educational performance and the application of ML
techniques in educational research. This review contextualizes the current study and
highlights gaps that this thesis aims to address. Chapter 3 - Data and Chapter 4
- Methodology details the data sources, preprocessing steps, and ML models used
in the analysis, along with the criteria for evaluating their performance. Chapter 5
- Results presents the findings, including the performance of different models and
the importance of various predictors. Comparative analyses identify the most ef-
fective models and the key factors influencing academic performance. Section 5.3
- Discussion interprets the results in light of existing literature and explores their
implications for educational policy and practice. The strengths and limitations of
the study are critically examined, and recommendations for future research are pro-
vided. The conclusion summarizes the key findings, reiterates the contribution of
our study to the field of educational research, and highlights the practical implica-
tions of the results. It concludes with a discussion of potential future directions for
research in this area.

In summary, this thesis aims to enhance our understanding of the determinants
of educational performance using advanced ML techniques. By identifying key pre-
dictors and evaluating the effectiveness of various models, this study seeks to provide
actionable insights for policymakers and educators. The findings highlight the po-
tential of ML to improve educational outcomes. Through a comprehensive analysis
and a clear articulation of its implications, this thesis aspires to contribute mean-
ingfully to the field of educational research and policy.
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2

Literature Review

This chapter aims to evaluate the latest research on forecasting academic perfor-
mance and analyzing educational attainment determinants at the school level using
machine learning techniques. Our approach for this literature review involved inves-
tigating relevant literature and papers to compare these studies’ methodologies and
corresponding findings. We filtered the studies based on the specifics of our data and
then also examined the limitations of these studies and discussed how their results
can be applied in the context of this Master’s Essay. Lastly, we highlight how this
Master’s Essay builds upon and contributes to the existing research.

2.1 School Performance Factors

The determinants of students’ and schools’ educational performance have received
significant interest in recent years. Researchers agree that personal circumstances
and external or school-related factors influence student performance. According
to the literature, there is a variety of factors that can influence educational per-
formance. The effects might vary based on the regional context or socioeconomic
setting, yet we decided to list the most important ones below.

Consistently shown as a decisive factor, socioeconomic status has been found to
have a negative effect on educational performance (Carlisle and Murray, 2015). A
student’s family’s financial and social capital can also heavily influence the educa-
tional resources, from study materials to the opportunity for private tutoring (Amini
et al., 2015). The nature of the school itself, whether public or private, has been
documented to affect educational efficiency, though this effect can be either negative
or positive (Cherchye et al., 2010). The geographical setting of a school also plays
a significant role. Urban versus rural locations can negatively or positively impact
efficiency, as each comes with unique challenges and advantages regarding resources,
student population, and teacher availability (Bouck, 2018).

Surprisingly, the presence of competition, measured by the number of competing
schools in the vicinity, positively impacts a school’s efficiency. This phenomenon is
attributed to the market-like dynamics where schools strive to improve to attract and
retain students (Agasisti, 2009). The experience and salaries of teachers are directly
associated with higher school efficiency. Experienced teachers tend to have more
refined teaching methodologies and classroom management skills, contributing to
better student outcomes. Likewise, competitive salaries can attract higher-quality
teaching staff and indicate a school’s investment in human capital (Britton and
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Propper (2016); Hanushek and Rivkin (2007)).

Smaller class sizes have been associated with better educational outcomes as they
allow for more individualized attention (Fredriksson et al., 2013). Similarly, the size
of the school itself can have a positive impact, with smaller schools often fostering
a more focused educational environment (Werblow and Duesbery, 2009). The aca-
demic background of parents has a positive effect on school performance. Parents
with higher levels of education are often more equipped to support their children’s
educational journey (Afonso and Aubyn, 2016). On the other hand, parental pres-
sure has a negative relationship with efficiency, possibly due to the additional stress
it places on students (Toraman et al., 2022).

Based on these findings, where possible, we try to add all these features in some
comparable form to our dataset.

2.2 Application of Machine Learning in Educa-

tion

The rapidly evolving intersection of machine learning and educational research also
gained serious popularity and provides a fresh perspective into the various determi-
nants affecting academic performance across schools (Korkmaz and Correia, 2019).
Educational data is known to exhibit often complex and, therefore, non-linear re-
lationships, something that traditional linear models cannot adequately capture or
interpret (Nafea, 2018). This complexity in the educational data leads to switching
to using more advanced analytical techniques such as machine learning (Wu, 2020).
The development of ML in educational research is mainly due to the increasing
availability of large-scale datasets. These datasets allow for the comparative anal-
ysis of academic performance across various demographics and geographies. The
opportunity to leverage these large datasets creates a new playground for trans-
formative research in education, potentially leading to more nuanced algorithms for
understanding school performance factors (Jordan and Mitchell, 2015; Hilbert et al.,
2021).

Classical statistical models and machine learning models differ significantly in
their approaches to analyzing educational data. Classical statistics, such as lin-
ear regression, ANOVA, and logistic regression, rely on assumptions about data
distribution and are simpler and easier to interpret, requiring fewer computational
resources. These methods are well-documented for their effective handling of struc-
tured data within specific parametric frameworks (Korkmaz and Correia, 2019; Wu,
2020).

In contrast, machine learning models like Decision Trees, Neural Networks, and
Support Vector Machines are favored for their ability to manage large, complex
datasets and model non-linear relationships, which often results in higher accuracy.
These models excel in environments with ample data and diverse variable inter-
actions, enhancing predictive performance through advanced learning algorithms
(Nafea, 2018; Jordan and Mitchell, 2015).

However, the benefits come with challenges. Classical models may struggle with
complex patterns and require strict data conformity to assumptions. Machine learn-
ing models, although powerful, can be opaque (”black boxes”), making them difficult
to interpret and requiring significant computational power, which can be a barrier
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in resource-constrained settings (Hilbert et al., 2021; Jordan and Mitchell, 2015).

2.3 Predictive Models and Educational Outcomes

As shown in Table 2.1, we conducted a thorough literature review for papers carrying
out similar research on educational outcomes using predictive models. We excluded
papers with small sample sizes or those not utilizing machine-learning methods. Our
review resulted in a table of 16 research papers or articles focusing on this specific
research area.

It is noteworthy that all studies are relatively recent, and most use individual
students rather than entire schools as the unit of interest. The research geography is
diverse, with papers from around the world. Additionally, some studies are naturally
classification problems or translated into classification problems.

Table 2.1 illustrates the evolution of predictive modeling in education, reflecting
advancements in data availability and machine learning techniques. Early studies
primarily used simpler models like Decision Trees and Logistic Regression. How-
ever, recent research increasingly incorporates more sophisticated algorithms such
as Random Forest, Neural Networks, and Support Vector Machines. These models
provide more robust predictions and can handle larger, more complex datasets.

This subset of research using machine learning to determine educational out-
comes typically follows two main approaches. One approach focuses on the indi-
vidual student, while the other compares entire schools based on other collected
features (Khan and Ghosh, 2021). The latter approach is less common, with re-
searchers tending to use students as the base unit. Studies using students as a unit
base tend to have slightly higher accuracy measurements.

In terms of data size, the samples ranged from smaller (e.g., 105 schools in
Tunisia by Rebai et al. (2020)) to very large (e.g., 1.2 million students in Australia
by Cornell-F. and Garrard (2020)). While the studies also used a wide range of
features, some of the most common predictors across the research included student
demographics (Mousa and Maghari, 2017; Masci et al., 2018; Carlos et al., 2021;
Chen and Ding, 2023; Naicker et al., 2020), prior academic achievement (Chung and
Lee, 2019; Zafari et al., 2021; Yağcı, 2022), and school characteristics (Rebai et al.,
2020; Cruz-Jesus et al., 2020). However, the results varied significantly across stud-
ies, emphasizing the complex and multi-dimensional nature of school performance.

One of the more comparable pieces of literature from Table 2.1 is the paper
by Chen and Ding (2023), titled ”A Machine Learning Approach to Predicting
Academic Performance in Pennsylvania’s Schools.” This paper uses ML across ed-
ucational datasets in Pennsylvania with various other variables to predict student
performance and identify at-risk schools. The relevance of this work to the current
thesis lies in its comprehensive analysis of ML algorithms, such as Random Forests,
Support Vector Machines, Decision Trees, and Neural Networks, which this thesis
aims to use as its methodology. Secondly, this paper uses variables that are very
similar to ours, making the studies very comparable.
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Table 2.1: Overview of Relevant Literature for Prediction of Educational Performance

Characteristics Methods & Accuracy [%]

Author (year) Country Sample Unit Feature imp. DT1 RF2 SVM3 kNN4 LR5 NN6 NB7

Nghe et al. (2007)⋆ Thailand 21 534 students not reported 72 - - - - - -

Anuradha et al. (2015)⋆ India ≈500 students not reported - - - 63 - - 70

Mousa and Maghari (2017)⋆ Palestine 1 036 students SES8 93 - - 89 - - 92

Masci et al. (2018) OECD (9 c.) 3 600 schools SES8,9 14-609 - - - - - -

Harvey and Kumar (2019) USA (MA) 403 schools not reported 60 - - - - - 71

Chung and Lee (2019) South Korea 165 715 students absenteeism - 93 - - - - -

Cruz-Jesus et al. (2020) Portugal 110 627 students school size 79 79 51 79 81 77 -

Cornell-F. and Garrard (2020) Australia 1.2 mil students not reported 77 83 - - 84 83 -

Naicker et al. (2020)⋆ USA 1 000 students race, gender, lunch 88 - 97 - 97 - 74

Rebai et al. (2020) Tunisia 105 schools gender, school size - n/a - - - - -

Yildiz and Börekci (2020)⋆ Turkey 421 students not reported 92 90 90 86 78 - 82

Zeineddine et al. (2021)⋆ UAE 1 491 students not reported 69 76 74 69 71 71 72

Carlos et al. (2021)⋆ Colombia 163 030 students SES8 - - - - - 82 -

Zafari et al. (2021) Iran 459 students absence - 72 73 - 76 83 -

Yağcı (2022)⋆ Turkey 1 854 students midterm - 75 70 74 72 75 71

Chen and Ding (2023)⋆ USA (PA) 8 129 schools SES8 48 54 51 - 50 60 -

Notes: 1 - Decision trees, 2 - Random Forest, 3 - Support Vector Machines (Regression), 4 - k-Nearest Neighbours, 5 - Logistic Regression, 6 - Neural Nets,
7 - Naive Bayes, 8 - Socially and economically disadvantaged students, 9 - Depending on the country, ⋆ - Classification study.



Another more complex and complicated approach is presented by Masci et al.
(2018) in a paper titled ”Student and school performance across countries: A ma-
chine learning approach,” where a two-step ML tree-based method for data is uti-
lized. The PISA 2015 test scores dataset is from nine countries: Australia, Canada,
France, Germany, Italy, Japan, Spain, the UK, and the USA. This research aims
to identify which student and school characteristics significantly correlate with test
scores and how school value-added (measured at the school level) is associated with
school-level variables. Key findings from this study reveal that several student and
school-level characteristics are significantly related to students’ achievements. How-
ever, considerable differences in predicted variability (the measure used by the study)
across different countries were observed.

Moreover, the study by Khan et al. (2022), ”Student Performance Prediction
in Secondary School Education Using Machine Learning,” offers a comparative per-
spective that is highly relevant to this thesis. By contrasting traditional statistical
methods with deep learning models, this study illustrates the superior predictive
capabilities of ML in educational research with accuracy reaching 94%. This com-
parison underscores the potential of employing advanced ML algorithms to gain
deeper insights into school performance metrics beyond what traditional economet-
ric methods can reveal.

2.4 Contribution

The studies shown in Table 2.1 clearly illustrate the powerful applications of ML
methodologies in educational research. This increasing interest from various inter-
national contexts underlines a growing agreement about the importance of advanced
analytics in this area. For Slovakia, specifically its primary and secondary education
sectors, using ML techniques offers the potential for new insights. Our research aims
to combine the precision of ML algorithms with traditional econometric methods,
enhancing the analytical capabilities to understand better what drives educational
success.

A major contribution of our study is using a public dataset that includes all
primary and secondary schools in Slovakia with good reporting capabilities (most
of them). Unlike many studies that rely on samples or subsets, our approach allows
for a more detailed and complete analysis of educational dynamics nationwide. This
enhances the generalizability of our findings and provides a robust framework for
evaluating the entire educational system.

Moreover, this study investigates a geographical area that has not been previ-
ously examined at all. By focusing on Slovakia, a region often overlooked in global
educational research, we contribute a unique perspective to the literature. This is
supplemented by our data source - standardized national tests - which provide a
consistent, reliable measure of academic achievement within the country.

Our approach also differs from most of the other papers by using schools as
the primary unit of analysis instead of individual students. This shift allows us to
include geographic and socioeconomic characteristics at the school level, creating the
opportunity to study the importance of these features. This perspective is essential
for understanding systemic factors affecting school performance, including regional
disparities and resource allocation, often overlooked in student-centric analyses.
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3

Data

In this chapter, we introduce the dataset and its features. The dataset includes
results from 7 years (2014-2022; COVID years excluded due to cancellation of the
test) of 1409 primary schools and 656 secondary schools in Slovakia. To avoid
bias, we only included regular schools, excluding those for pupils with special needs.
Only primary schools participating in the NIVAM (National Institute of Education
and Youth) tests are included. Schools with only four grades do not participate
in these tests and, therefore, are not part of our dataset. We also ensured the
schools included have good reporting capabilities for variables such as the number
of pupils and teachers. As for secondary schools, we included only those with no
or a minimal number of missing values in the panel data. This means we excluded
schools established later or ones that had closed.

We start by introducing the dependent variable - the results and percentiles from
standardized NIVAM tests (Testing 9, Maturita) that every pupil in each school
must take unless excused for serious reasons such as long-term inability to attend
school or a condition that prevents attendance. These results were obtained from
the National Institute of Education and Youth.

Next, we introduce the independent variables. Specific details for each school
(type, founder, number of students, number of teachers, number of students from
socially disadvantaged backgrounds, etc.) were obtained from Institute for Economic
and Social Reforms. For town-specific data, we used population percentages and
higher education percentages from Statistical Office of the Slovak Republic. District-
specific data, such as unemployment rates, were also sourced from Statistical Office
of the Slovak Republic, while crime rates were obtained from Ministry of Interior of
the Slovak Republic through Open Data request.

The shapefiles of Slovakia used in the map figures were acquired from Geodetic
and Cartographic Office of Bratislava.

3.1 Standardized Tests as Dependant Variable

We use the percentiles of NIVAM tests as our dependent variable. These are norm-
referenced national tests in Slovakia, similar to PISA tests. Their main objective
is to assess the strategic competencies of students. Hence, these tests offer a good
representation of educational achievement among individual schools in Slovakia.

There are three nationwide tests that NIVAM administers, but we are utilizing
only two for our research:
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• Testing 9 (nationwide from the school year 2004/2005) - mandatory tests in
Mathematics and the Slovak language (or alternatively Hungarian) for primary
school students in 9th grade.

• Maturita (nationwide from the school year 2006/2007) - mandatory tests in the
Slovak language (or alternatively Hungarian) and optional (occasionally oblig-
atory) tests in additional languages (English, German, Spanish, or French)
and Mathematics for secondary school students in the school-leaving grade.

Figure 3.1: NIVAM test results between years 2014-2022
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Source: National Institute of Education and Youth

For this Master’s Essay, we created a special variable to measure the educational
achievement of schools. We calculated the average percentiles of Testing 9 in Math-
ematics and Slovak (or Hungarian) language for primary schools. For secondary
schools, we calculated the average percentiles of Maturita in Slovak (or Hungarian)
language and English language.

In Table 3.1 and Figure 3.1, we provide descriptive statistics and graphical rep-
resentations for both primary and secondary schools. The graphs in Figure 3.1
explain our decision to use percentiles instead of standard test scores. As shown
in the Figure 3.1a and the Figure 3.1b, the tests are not consistently reliable due
to significant fluctuations in the mean. These fluctuations could be due to varying
test difficulty over the years, deletion of certain questions, or granting all students
points for poorly formulated questions that were deemed misleading post-testing.
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However, these factors do not affect percentiles, which continue to rank schools rela-
tive to each other. Therefore, using percentiles as the dependent variable proved to
be a better option, as it offers a more reliable variable for machine learning models.

Table 3.1: NIVAM Test Score - Percentiles: Descriptive Statistics

Primary Schools Secondary Schools

Year N Min Med. Mean Max σ N Min Med. Mean Max σ

2014 1400 0.00 50.53 50.22 99.89 26.75 656 0.00 51.62 51.06 100.00 28.61
2015 1402 0.08 50.18 50.30 99.92 26.85 656 0.00 51.62 51.06 100.00 28.61
2016 1400 0.18 51.75 50.55 99.81 26.81 656 0.00 51.23 50.96 100.00 28.48
2017 1400 0.04 51.17 50.49 99.86 26.86 636 0.00 50.74 50.65 100.00 28.61
2018 1409 0.11 51.11 50.48 99.82 27.01 654 0.00 51.71 50.99 100.00 28.57
2019 1409 0.15 50.97 50.51 99.93 27.30 655 0.00 50.00 49.86 100.00 28.15
2022 1396 0.41 50.55 50.24 100.00 27.15 610 0.26 50.24 50.66 100.00 27.95

Source: National Institute of Education and Youth (2023).

3.2 Independent Variables

This Master’s Essay stands out due to the numerous specific independent variables
that the authors have sourced and matched at the most precise level possible. To
illustrate the specificity, data from six organizations and two censuses were utilized.
In this section, we describe all the variables included in specific categories. First,
we discuss numerical variables specific to each school. Next, we report on dummy
variables that, while not numerical, are still school-specific. Finally, we describe
variables reported at the town and district level, focusing on those specific to each
area.

School level variables

Table 3.2: Descriptive Statistics for School Variables by School Type

Primary Schools Secondary Schools

Variable Min Med. Mean Max σ Min Med. Mean Max σ

Ratio of Teachers 2.63 8.17 8.90 100.00 2.76 0.95 10.39 12.39 333.33 9.26
ICT (in %) 4.00 85.00 76.55 100.00 25.68 0.00 73.45 68.78 100.00 28.57
Number of Pupils 15.00 244.00 300.59 1410.00 189.79 7.00 304.00 328.03 1164.00 188.51
Number of SES Pupils 0.00 0.00 16.51 1024.00 53.55 0.00 0.00 1.20 312.00 11.93

Note: Ratio of Teachers - number of teachers per pupil, ICT - Usage of interactive and communications technologies.
Source: Institute for Economic and Social Reforms.

School statistics often form the basis of the research in cases like this one; our
main reference papers (Chen and Ding (2023); Masci et al. (2018)) also include these;
hence, we include four relevant statistics for this case. These are the ratio of teachers
to students, ICT (usage of interactive and communication technologies), the total
number of pupils, and the number of socially and economically disadvantaged (SES)
students. By incorporating these variables, we aim to provide insight into how these
characteristics influence the results, such as whether the ratio of teachers or school
size is more significant.

For instance, from the Table 3.2, it is evident that SES students are likely concen-
trated in certain schools, as indicated by the median and mean. This concentration
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may be due to the significant Roma minority in some regions of Slovakia, which could
be a crucial factor in determining the educational outcomes of specific schools.

Dummy variables

Another interesting statistic to consider includes dummy variables indicating whether
the school is public or private, church-established, and the language of instruction.
This is particularly relevant in a regional context, as many schools in Slovakia use
Hungarian as the language of instruction due to a large Hungarian minority, primar-
ily in the south. These students then also take Hungarian tests in conjunction with
tests from other subjects. This may introduce bias, making it beneficial to include
this information. You can find these statistics in the Table 3.3.

Table 3.3: Dummy variables: descriptive characteristics

Primary schools Secondary schools

Type of establisher N N

Public 1305 499
Private 31 119
Church 98 74

Language of instruction N N

Slovak 1293 540
Hungarian 124 30
Bilingual 17 122

Source: Institute for Economic and Social Reforms

Town and district level variables

In this section, we include the most interesting variables at the town level that could
potentially influence students’ and pupils’ perceptions of their area. For instance,
we include variables such as unemployment and crime rates, including youth crime
rates, which could affect the overall environment of the school’s location. We also
consider factors like the ratio of highly educated individuals, the number of divorces
per new marriage, and out-of-wedlock births, which may provide insight into the
population structure. The importance of these factors is evident in Figure 3.2,
where schools that outperform are mainly located in areas with a high proportion
of university-educated individuals. We also consider the number of school canteens,
libraries, and extracurricular institutions per school-aged person in the region, as
these factors can be significant.
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Figure 3.2: Overperforming schools above 90th percentile in NIVAM tests with respect to
university-educated population

o   school

Share of residents over 15 y.o. with university degree [%]

0 10 20 30 40 50

Source: Authors’ own visualization based on public datasets cited in Chapter 3.

In the context of Slovakia, it makes sense to include the ratio of ethnic popula-
tions. This is apparent in Figure 3.3, where many underperforming schools over the
years have been in areas with a high concentration of the Roma population.

Figure 3.3: Underperforming schools below 5th percentile in NIVAM tests with respect to
Roma population

o   school

% of Roma population

0 10 20 30 40 50 60 70 80 90 100

Source: Authors’ own visualization based on public datasets cited in Chapter 3.
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A summary of all the variables included and their descriptive statistics can be
found in Table 3.4.

Table 3.4: Descriptive Statistics for Town and District Variables by School Type

Primary Schools Secondary Schools

Variable (level) Min Med. Mean Max σ Min Med. Mean Max σ

Population (T) 163 3526 15480 113215 22881 570 25492 35888 113215 27586
Roma Population (T) 0.00 0.36 2.48 78.28 6.74 0.00 0.49 1.40 28.12 2.79
Hungarian Population (T) 0.00 0.26 9.71 92.36 22.36 0.00 0.41 6.89 81.59 16.87
Slovak Population (T) 0.00 90.77 81.81 100.00 22.93 0.00 88.24 82.63 98.31 16.53
Religious Population (T) 15.33 77.04 74.63 99.28 13.75 28.07 63.49 64.61 94.91 10.89
Higher Educated Population (T) 7.13 15.71 17.36 57.43 6.83 7.18 12.44 12.93 42.90 3.63
Divorces per New Marriage (T) 0.00 33.33 36.33 700.00 31.70 0.00 34.57 35.65 200.00 12.03
Out-of-Wedlock Births (T) 0.00 38.46 40.35 100.00 18.14 0.00 37.61 40.17 100.00 11.99
School Canteens (T) 0.00 0.00 0.02 0.28 0.04 0.00 0.03 0.05 0.28 0.06
School Libraries (T) 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.02 0.00
Extracurricular Institutions (T) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
Unemployment (T) 0.00 0.035 0.046 0.34 0.03 0.00 0.03 0.04 0.20 0.02
Crime Rate per Thousand (D) 0.43 1.05 1.20 5.01 0.60 0.43 1.07 1.23 5.01 0.62
Youth Crime Rate per Thousand (D) 0.00 0.06 0.08 0.50 0.07 0.00 0.06 0.08 0.50 0.06

Source: Statistical Office of the Slovak Republic; Ministry of Interior of the Slovak Republic. Note: T - town level, D - district level.

Missing Data Handling

As shown in Figure 3.4, our dataset has missing values due to some schools not
reporting certain variables. The total number of pupils and socioeconomically dis-
advantaged (SES) pupils data is missing at random (MAR) for the year 2014 -
unreported by about half of the schools. This is because these statistics only started
being collected that year, so the assumption is that only some institutions reported
it on a voluntary basis that year.

Figure 3.4: Missing Data

To address this, we imputed the MAR 2014 data for the number of pupils and SES
pupils using linear imputation, taking into account the individual schools’ trends
over the following years. The rationale behind choosing linear imputation is based
on the assumption that the number of pupils in a school tends to be relatively stable
year-to-year, with only minor fluctuations. By leveraging the enrollment data from
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subsequent years, we can estimate the missing values more accurately. This method
assumes that the changes in the number of pupils follow a linear trend, which is
reasonable given the typically stable nature of school enrollments. However, this
approach has limitations. It assumes that there are no significant events (e.g., new
school openings, major demographic shifts) that would cause abrupt changes in
student numbers, which should not be the case for the general amount of schools.
Despite these limitations, linear imputation is a practical method for handling miss-
ing data in this context.

On the other hand, a few schools systematically fail to report the teacher-student
ratio and ICT usage data. These schools consistently failed to report this data over
the years, so we removed them from the dataset due to inconsistent reporting.

Finally, in our preprocessing pipeline, we removed the remaining 345 NA values.
This leaves us with 13,989 observations for analysis with our models.

Preproccessing of Census Data

In addition to the imputation for missing data in 2014, we also performed a more
complex linear imputation for several variables derived from the census data of 2011
and 2021. These variables include the Roma population, Hungarian population,
Slovak population, religious population, and higher-educated population at the town
level. The rationale behind this imputation was the recognition of the significant
value these variables add to our analysis, as they provide critical demographic and
socio-cultural context that can influence educational outcomes.

We observed the trends at the district level for these variables and found them
to be linear over the census periods. This linearity suggests that the demographic
changes in these populations are relatively stable and predictable over time. Con-
sequently, we applied a linear imputation method to estimate the values for the
intervening years at the town level. By doing so, we assumed that the linear trends
observed at the district level are representative of those at the town level, allowing
us to fill in the gaps in the dataset.

This approach, while more drastic, is justified due to the critical nature of these
variables. The presence and proportions of different ethnic groups, religious adher-
ence, and the level of higher education within a town can have profound impacts on
the social and educational environment. For instance, areas with a higher propor-
tion of the Roma population may face unique educational challenges, while towns
with a higher percentage of higher-educated residents might benefit from a more
supportive learning environment. Similarly, the linguistic composition (Hungarian
and Slovak populations) and religious demographics can influence school culture and
community engagement with education.

By retaining these variables through linear imputation, we ensure that our analy-
sis incorporates these vital contextual factors. Despite the inherent assumptions and
potential limitations of this method, such as the possibility of non-linear changes in
smaller communities, the importance of these variables to our overall research objec-
tive justifies their inclusion. Thus, this imputation enables us to maintain a richer
and more informative dataset, hopefully supporting a more interesting analysis of
educational outcomes.
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3.3 Correlation Analysis

In our analysis, we found some strong correlations with the dependent variable, as
can be seen in Figure 3.5. There is a strong positive correlation between the de-
pendent variable and the number of pupils, the population of the town, the Slovak
population of the town, and the number of school canteens. This implies that larger
schools in more populous towns with a higher number of school canteens tend to
have better educational outcomes. On the other hand, there is a strong negative
correlation between the dependent variable and the number of socioeconomically
disadvantaged pupils (SES), the Roma and Hungarian population, the higher ed-
ucation population in the town, out-of-wedlock births, unemployment rates, and
youth crime rates. This could suggest that schools with a higher percentage of dis-
advantaged pupils or those located in areas with high unemployment, crime rates,
or out-of-wedlock births tend to have lower educational outcomes.

Figure 3.5: Correlation Matrix

In addition, we observed other strong positive correlations not directly tied to the
dependent variable. For example, there is a strong positive correlation between the
Roma population in the town and the SES pupils, suggesting that schools in towns
with higher Roma populations tend to have more socioeconomically disadvantaged
students. There’s also a strong correlation between the Hungarian dummy variable
and the Hungarian population in the town, which is logical as the Hungarian dummy
variable is likely to be activated in towns with a higher Hungarian population.
Lastly, we noted a strong positive correlation between unemployment and the higher
education population in the town, which could be due to the higher competition for
jobs in areas with a highly educated population.

We also found strong negative correlations between certain variables. For in-
stance, there is a strong negative correlation between the Slovak population in the
town and the Hungarian population, indicating that towns with a higher Slovak pop-
ulation tend to have fewer Hungarian inhabitants. Lastly, the Hungarian dummy
variable has a strong negative correlation with the Slovak population in the town,
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implying that towns with a higher Slovak population tend to have fewer Hungar-
ian schools. These correlations provide insightful context for the analysis, and the
occurrence is very understandable.

While it is true that a high correlation between predictor variables can sometimes
pose problems in statistical analyses, it is important to note that this is not always
a cause for concern. In many cases, a high correlation between predictor variables is
expected and logical based on the nature of the variables themselves. For example,
an increase in the population of a town might naturally lead to an increase in the
number of libraries in that town. In such instances, retaining both variables in the
analysis can be justified because they each provide unique and valuable information.
Therefore, we decided to keep all of these variables despite some high correlation.
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4

Methodology

After reviewing the relevant literature and describing the data, we move on to dis-
cuss the methodology employed in our analysis. This section begins by introducing
our approach and briefly revisiting the advantages of machine learning over tradi-
tional statistical models, particularly in handling our complex, nonlinear dataset.
After that, we provide a detailed description of each stage in our machine learning
pipeline, from data preprocessing and model selection to evaluation and interpreta-
tion techniques, as well as the tools utilized for analysis.

4.1 Approach

To begin, this study aims to identify the key factors influencing educational outcomes
in Slovak schools and determine the suitability of machine learning models for such
analysis. Our study will concentrate on evaluating model performance as well as
obtaining feature importance scores from advanced machine learning models and
analyzing their implications. By doing so, we intend to identify at-risk groups and
provide decision-makers with data-driven insights that facilitate early intervention
strategies to prevent sub-optimal educational outcomes.

As previously discussed, machine learning methods offer numerous advantages
over traditional statistical approaches. What makes them particularly suited for
our study, however, is their unmatched ability to handle complex, high-dimensional
data with skewed and imbalanced predictors. Moreover, features like automated
hyperparameter tuning and the capability to quickly adapt to new data make ma-
chine learning methods highly advantageous in educational research. This strategic
choice not only accommodates the complex nature of our data but also broadens
the applicability of our findings for real-world scenarios. Consequently, our choice
to employ machine learning algorithms leads to a different approach to the method-
ology section - instead of focusing on a specific estimable equation as in traditional
analyses, our methodology revolves around a description of an extensive machine
learning pipeline, which will be the topic of the following section.
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4.2 Machine Learning Pipeline

Preprocessing

Data preprocessing is an important first step in any machine learning analysis be-
cause it ensures compatibility with the models and aligns data better with their
underlying assumptions. While not all models require preprocessing to achieve good
predictive accuracy - for example, ensemble trees can usually handle relatively raw
data - it also offers faster convergence and more consistent feature importance scores.
Many different data preprocessing techniques exist, each optimal for various models;
therefore, choosing an appropriate transformation is important to achieve the best
results.

The preprocessing that we chose for our data was twofold. First, we applied the
Yeo-Johnson transformation (detailed in Equation 4.1), the purpose of which is to
make skewed numerical variables more normally distributed and reduce the effect of
outliers. This is especially beneficial for algorithms that rely on distance calculations,
such as K-Nearest Neighbors, as it ensures that no single variable affects the outcome
disproportionally due to its scale. Furthermore, the Yeo-Johnson transformation
aligns data better with the key statistical assumptions underlying many predictive
models, thus increasing robustness and improving the interpretability of feature
importance by stabilizing the variance. Second, we standardized the transformed
variables, as defined in Equation 4.2. This process adjusts the variables to have a
mean of zero and a variance of one. This way, the predictors contribute equally
to model training and features with larger variances do not dominate during the
modeling process, which is crucial for scale-sensitive algorithms like Support Vector
Machines and Neural Networks. Additionally, standardization is one of the tools
that is known to improve convergence speed. It is also important to note, that these
preprocessing techniques were applied only to the numerical predictors.

X ′(λ) =


(X+1)λ−1

λ
for X ≥ 0 and λ ̸= 0,

log(X + 1) for X ≥ 0 and λ = 0,

− (−X+1)2−λ−1
2−λ

for X < 0 and λ ̸= 2,

− log(−X + 1) for X < 0 and λ = 2.

(4.1)

Z =
X ′ − µ

σ
(4.2)

Where:

• X ′ is the Yeo-Johnson transformed variable.

• λ is the transformation parameter determined based on maximizing the log-
likelihood function.

• µ is the mean of the Yeo-Johnson transformed variable.

• σ is the standard deviation of the Yeo-Johnson transformed variable.

• Z is the standardized variable.
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By combining these techniques, we ensure that our models benefit from both
normalized feature distributions and fair feature scaling. This, in turn, helps to
minimize the effects of skewness and adjusts the scale to prevent features with
large variance from dominating the training process. Moreover, this combination
of preprocessing techniques not only improves convergence but also aids in obtain-
ing comparable feature importance scores, which is a key goal of our analysis. In
contrast, in the literature we reviewed, including Chen and Ding (2023) and Masci
et al. (2018), standardization alone was applied; however, we chose to combine
both the Yeo-Johnson transformation and standardization due to their complemen-
tary nature, this way enhancing the quality of data and potentially improving the
algorithms discussed in other studies.

Model Selection

After discussing data preprocessing, we now proceed to describe the model selection
process. This step is critical in our data analysis framework, as each model has its
strengths and limitations, which are particularly important to evaluate given our
context of skewed features and imbalanced dummy variables. Although careful pre-
processing can somewhat mitigate these issues, selecting the right models to handle
these characteristics effectively remains essential. In light of this, we explored a wide
variety of models to analyze our data from different angles. The main strengths and
weaknesses of our key models are summarized in Table 4.1 and will be discussed in
detail below.

Ensemble tree methods are central to our analysis. By combining multiple trees,
they offer higher robustness and an improved predictive performance compared to
individual decision trees. Random Forest, for example, excels in its ability to handle
skewness and imbalances by constructing multiple trees simultaneously and aggre-
gating their outputs. However, its speed can deteriorate as the number of trees
grows. We also implemented numerous boosting tree methods, such as AdaBoost,
Gradient Boosting, Light GBM, and XGBoost, which excel in their ability to handle
complex, non-linear relationships and skewed variables by building trees sequentially
to correct previous errors. While these algorithms are similar, they also have their
distinctive strengths: Light GBM, for example, is renowned for its efficiency and
training speed, whereas XGBoost includes regularization features to help prevent
overfitting. AdaBoost can handle skewed variables and imbalanced dummies well
due to its focus on difficult cases and adaptive weighting, though it may face diffi-
culty in handling outliers. Notably, while tree methods offer significant advantages,
they also share a vulnerability of overfitting, which is important to address by careful
hyperparameter tuning and specific countermeasures like cross-validation (CV).

To make our approach more diverse, we also explored other models, like SVM,
which relies on support vectors to define a separating hyperplane in a higher-
dimensional space, making it well-suited for our high-dimensional data. However,
its performance may degrade with a large, skewed dataset unless the kernel is cho-
sen carefully. Neural Networks (NN) are flexible and capable of capturing complex
patterns but require careful architecture design to avoid overfitting. kNN is a model
appealing due to its simplicity - it offers an assumption-free method by using the
nearest neighbors for prediction, though it might struggle with high-dimensional
data containing irrelevant features. Lastly, Kernel Ridge Regression extends ridge
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regression with the kernel trick to model non-linearities but may face challenges with
large datasets.

Table 4.1: Strengths and weaknesses of various models in the context of skewed numerical
and imbalanced dummy predictors.

Model Strengths Weaknesses

RF
Handles skewness and
predictor imbalance

Slower with many trees,
complex model

AdaBoost
Robust to skewness,
adaptive weighting

Sensitive to outliers

GB Robust to skewness
Overfitting without careful

tuning

Light GBM
Robust to skewness, fast,

scalable
Overfitting without careful

tuning

XGBoost
Robust to skewness, offers

regularization
Computationally

demanding

SVM
Effective in

high-dimensional space
May struggle with size and

skewness

NN
Flexible, can capture
complex relationships

Requires large data and
tuning

kNN
Simple, no distribution

assumption
Sensitive to irrelevant

features

KRR Non-linear modelling
Not ideal for very large

datasets

To conclude, each model was carefully selected for its potential to offer unique
insights into our data. By employing diverse models, we can utilize the distinct
strengths and mitigate the inherent weaknesses of individual models, resulting in
a comprehensive analysis of educational outcomes. Our approach expands upon
methodologies discussed in the literature review. While our foundational paper by
Chen and Ding (2023) employs decision tree, Random Forest, logistic regression,
SVM, and Neural Network models, we explore a wider variety of algorithms by
incorporating additional boosting models, along with kNN and KRR. Similarly,
while Masci et al. (2018) combines tree-based methods with traditional econometric
approaches, our study extends this by incorporating a wider variety of machine
learning models to ensure a diverse evaluation of the data.

Model Training, Validation and Hyperparameter Tuning

Following the selection of our models, we move on to describe our approach to
model training, validation, and hyperparameter tuning - essential stages for opti-
mizing model performance and ensuring the accuracy of our predictions on school
performance.

We began by partitioning our data into training and test subsets with a 75/25
split ratio, which allows for comprehensive learning while still putting aside a sub-
stantial subset for unbiased evaluation of our models on the test set. In addition to
the initial split, we further segmented the training data to apply 5-fold CV, aiming
to combat overfitting - a condition where a model fits the training data too well
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but performs poorly on unseen data. CV is a method that systematically cycles the
dataset through multiple training and validation phases, ensuring that each data
point is used for both training and validation. This approach not only improves the
model’s ability to generalize to new data but also maximizes the use of available
data for training, providing a robust estimate of model performance.

One efficient method for applying CV is through GridSearchCV, which also
performs automated hyperparameter optimization. This technique exhaustively
searches the hyperparameter space to find the optimal model configurations by eval-
uating various combinations on the training set and assessing their performance on
the validation set. Given the wide variety of models we utilized, ranging from
tree-based algorithms to more complex architectures, each model required specific
hyperparameters that we carefully tuned to achieve optimal performance. Care-
ful selection of hyperparameters also helps to control overfitting, as certain models
incorporate built-in regularization parameters, while others allow for limiting tree
depth or selecting node purity criteria.

In the Random Forest model, we adjusted the number of trees, maximum tree
depth, and the criteria for node purity to enhance prediction robustness and manage
model complexity. For AdaBoost, we fine-tuned the number of consecutive trees to
build and the learning rate while also selecting the most effective loss function that
determines how the algorithm weights misclassified data points, optimizing iterative
adjustments. The Gradient Boosting model underwent a similar tuning process with
particular attention to the loss function, choosing between squared error and Huber
loss to find the ideal error correction approach. Light GBM adjustments involved
tuning the maximum number of leaves per tree to directly control model complexity,
and the L1 regularization term on weights to promote sparser models and improve
generalization. For XGBoost, we tuned parameters like gamma, min child weight,
and colsample bytree, all of which are aimed at combating overfitting. For SVM,
we optimized the penalty parameter C to control the trade-off between achieving
lower errors on the training data and minimizing the complexity of the model, and
epsilon, which defines a margin of tolerance where no penalty is given to errors,
crucial for effectively handling noise in the data. In the kNN model, we tuned the
number of neighbors, and the distance metric, which influences how distances are
calculated between data points. Lastly, in KRR we focused on the parameter alpha
for regularization, the kernel type to enable non-linear modeling, and the gamma
parameter to adjust model flexibility. For a full list of tuned hyperparameters, please
refer to the Table 5.1.

Another approach was taken towards Neural Networks. While we employed 5-
fold CV as with other models, we did not utilize GridSearchCV for hyperparameter
optimization due to the different nature of NN. Our architecture comprised a se-
quence of densely connected layers. The first hidden layer had 256 neurons with
ReLu activation, followed by batch normalization to stabilize the learning process
and a dropout rate of 10% to reduce overfitting. This configuration was repeated
with subsequent hidden layers of 128 and 64 neurons, each followed by batch normal-
ization and dropout. The final hidden layer had 32 neurons followed by a dropout of
10% before leading into a single-neuron output layer for predictions. The model was
compiled using the Adam optimizer with mean squared error as the loss function.
To avoid overfitting, we implemented early stopping by monitoring the validation
loss and terminating the training process if no improvement was noted after 10
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epochs. Training was conducted over 100 epochs with a batch size of 32, incorpo-
rating a 20% validation split to continuously monitor model performance against
unseen data during the training phase.

It is important to note, however, that model complexity comes at a cost of
computational demands. Therefore, balancing high model performance with com-
putational efficiency was a key consideration in our process, ensuring the training is
effective while still managing the available computational resources and time con-
straints.

Performance Metrics and Model Evaluation

After discussing model training, validation, and hyperparameter tuning, we now
focus on evaluating model performance. This section details the three different types
of performance metrics that we employed to assess the effectiveness of our models,
discusses the actual vs predicted plots used for visual validation, and describes the
model evaluation process.

1. Training Metric - Mean Squared Error (MSE): We selected MSE as
the primary metric to guide model optimization by minimizing prediction er-
rors. MSE, detailed in Equation 4.3, measures the average squared difference
between predicted and actual values, this way providing a clear measure of
model accuracy during the training phase.

2. Validation Metric - Negative Mean Squared Error (Neg MSE): For
model validation and hyperparameter tuning with GridSearchCV, we used
Neg MSE, an adaptation of MSE that aligns with optimization algorithms de-
signed to maximize outcomes. For neural networks, MSE also supported early
stopping mechanisms by monitoring validation loss, thus preventing overfitting
during model training.

3. Evaluation Metrics - Root Mean Squared Error (RMSE) and R-
squared (R²): For the final evaluation of all models, we chose RMSE and
R². RMSE, defined as the square root of MSE, offers direct interpretability
by measuring model error in the same units as the target variable. R-squared,
defined in equation 4.4, measures the proportion of variance in the dependent
variable that is explained by the independent variables, indicating how well
our models explain the variability in educational outcomes.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (4.3)

R2 = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Y )2
(4.4)

The variables in the formulas are defined as follows:

• Yi are the actual values of the dependent variable

• Ŷi are the predicted values estimated by the model

• Y is the mean of all actual values of the dependent variable.
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To visually supplement these metrics, we examined actual vs. predicted value
plots for each model. These plots provide a straightforward method to assess the
accuracy of the models visually, showing how predicted values compare directly with
actual outcomes. By aligning the predicted values with actual values on a plot, we
can observe the degree of variance from the line of perfect prediction (the diagonal),
which further helps in understanding the effectiveness of each model at different
data ranges.

The selection of our performance metrics - MSE for training, Neg MSE for val-
idation, and RMSE together with R² for final evaluation - was influenced by the
skewness and imbalances in our data. Furthermore, implementing Yeo-Johnson
transformation and standardization aided in making these metrics more reliable
by normalizing data features and mitigating the impact of extreme values. Since
we consider the outliers to be important data points rather than typing errors or
anomalies, this combination of performance metrics and preprocessing techniques
is especially effective for our skewed data because MSE emphasizes large errors,
ensuring that the outliers adequately influence the model training process.

Our evaluation process varied slightly across model types. For all models except
Neural Networks, GridSearchCV played an important role in tuning and validat-
ing the models. After identifying the optimal hyperparameters, these models were
trained on the full training dataset and then evaluated on the test set to confirm
accuracy and explanatory power. For Neural Networks, our evaluation approach
included a validation split to continuously monitor performance and early stopping
to prevent overfitting, followed by performance assessment on the test set using
RMSE and R-squared. All in all, our evaluation process confirms the effectiveness
of the models and highlights their reliability in handling the specific challenges of
our dataset.

Interpretation and Explanation

Given the complex, often black-box nature of machine learning models, integrating
effective interpretation tools is crucial. These tools help make model predictions
understandable and actionable, which is particularly important in decision-making
contexts like education. Since our primary goal is to identify key factors affecting
exam scores, this section discusses the interpretation tools we utilized, adapted to
the specific model types we employed.

Our interpretation framework varied based on the model architecture. For our
tree-based models like Random Forest, Gradient Boosting, and others, we utilized
direct feature importance measures. These measures are calculated based on the
average reduction in the model’s prediction error when a feature is used in the trees.
Higher importance values indicate that modifying the feature’s values significantly
alters the model’s accuracy, thus highlighting its critical role in affecting predic-
tions. This method provides a first look at which features are driving the model’s
decisions. For models where direct feature importance is not inherently available,
such as SVM, Neural Networks, and others, we used permutation importance. This
method involves randomly shuffling individual features and observing the effect on
model accuracy. A significant change in model performance upon shuffling a feature
indicates its importance in the predictive process. Additionally, permutation im-
portance is model-independent, allowing for the comparison of feature significance
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across various model types.
To visualize these importance metrics, we utilized horizontal bar plots, ranking

the features by their importance. This visual representation helps in quickly iden-
tifying the features that most significantly impact model predictions, facilitating a
straightforward comparison across models.

While these interpretation methods provide valuable insights, they also come
with limitations. Direct feature importance may misrepresent the influence of highly
correlated features, potentially overstating the importance of one feature over an-
other. Permutation importance, while useful for capturing the overall influence of
features across models, does not account for interactions between features and can
be computationally demanding, especially with large datasets or complex models.
Furthermore, both methods generally assume that features influence model perfor-
mance independently, which might not capture the complex interdependencies in
real-world data. However, despite the limitations, we opted for these interpretation
methods because they provide clear, actionable insights and are relatively straight-
forward to implement. As a further improvement to our methodology, advanced
techniques like LIME (Local Interpretable Model-agnostic Explanations) or SHAP
(SHapley Additive exPlanations) could be used to improve model transparency and
offer deeper insights into the nuanced relationships and interactions among features.

All in all, effective interpretation techniques are essential for stakeholders who
need to trust and understand machine learning-driven decisions, especially in edu-
cation where such insights can inform targeted interventions that directly impact
student outcomes. By applying these methods, we not only make our models more
interpretable and transparent but also enhance the credibility and utility of our
machine learning solutions.

Tools

To conclude the methodology, in this section we briefly discuss the key tools em-
ployed for data analysis, model construction, and performance evaluation.

Our research primarily utilized Python and R, which offer extensive libraries that
are particularly well-suited for machine learning. We used Python as our primary
platform, executing our code in Google Colab’s cloud-based environment. We relied
on several Python libraries: NumPy and Pandas for data manipulation; Matplotlib
and Seaborn for visualization; Scikit-learn for modeling and evaluation; and Tensor-
Flow along with Keras for advanced machine learning models. While Python was
the key tool that we used, R played a crucial role in creating data visualizations and
maps, primarily using the ggplot2 and rgdal packages. This combination of tools
and platforms enabled us to effectively handle our complex dataset and implement
advanced machine learning algorithms, this way supporting our research objectives.

4.3 Conclusion

In conclusion, our methodology used advanced machine learning techniques to ex-
plore the complex factors influencing exam results in Slovak schools. We began our
analysis with careful data preprocessing, using the Yeo-Johnson transformation and
standardization to align our dataset with the assumptions of advanced modeling
techniques. We then selected a diverse array of models, from ensemble tree methods
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to Neural Networks, each chosen for its ability to reveal different aspects of the data.
Furthermore, we employed hyperparameter tuning and CV to optimize each model’s
performance, thus enhancing their predictive accuracy and reliability. By integrat-
ing advanced modeling techniques with thorough data management, we aimed to
obtain results that are statistically robust and practically applicable, contributing
meaningful insights to the field of educational data analysis. Looking ahead, our
methodology could be further improved by incorporating advanced outlier detection
methods to compare model performance with and without extreme values, con-
ducting geospatial analysis to explore regional educational trends, and integrating
interpretative techniques such as LIME or SHAP to deepen understanding of feature
importance.
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5

Results

In the previous section, we provided an extensive overview of the methodology for
our thesis, detailing the strategic choices made in model training, validation, and
hyperparameter tuning. Building on this foundation, this section evaluates model
performance from multiple perspectives to determine their effectiveness and appli-
cability in educational settings.

First, we discuss the results of hyperparameter tuning, focusing on the opti-
mization strategies used for each model. Next, we evaluate model performance by
comparing quantitative metrics - RMSE and R² - and examining actual vs. predicted
value plots to visually assess each model’s accuracy and fit. After this quantitative
assessment, we evaluate feature importance scores to identify key factors influenc-
ing exam results. This analysis not only highlights the most important predictors of
educational outcomes but also provides practical insights for improving educational
strategies in real-world settings.

Lastly, we discuss how our findings fit into the existing body of research, pointing
out where our results agree with or differ from previous studies. We also outline
potential improvements and directions for future research that could enhance our
evaluation framework and model performance.

5.1 Model performance

Hyperparameter Selection

This section discusses the hyperparameters selected for each model using Grid-
SearchCV, emphasizing our strategic approach to optimizing model performance
by carefully balancing accuracy, computational efficiency, and the ability to gener-
alize. The specific parameters chosen are detailed in Table 5.1 and will be discussed
in detail below.

Random Forest (RF)

For the Random Forest model, we selected 400 trees (n estimators: 400). While
a higher number of trees generally reduces variance by averaging multiple decision
paths, it also increases computational demands and may lead to overfitting. The
parameters for minimum samples per split and minimum samples per leaf were set at
2 and 1, respectively, enabling the model to identify subtle differences between data
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points. To prevent overfitting while allowing the model to learn detailed patterns,
the maximum tree depth was capped at 20.

AdaBoost

The AdaBoost model utilized 50 trees (n estimators: 50) to achieve a good balance
between computational efficiency and model accuracy. A learning rate of 0.1 was
chosen to strike a balance between preventing overfitting and allowing the model
to capture complex data patterns effectively. The linear loss function was selected
for its effectiveness in simplifying the process of weight adjustment and focusing on
balanced error reduction.

Gradient Boosting (GB)

Similarly to AdaBoost, Gradient Boosting was configured with 100 trees (n estimators:
100), and the learning rate of 0.1. Minimum samples per split and per leaf were set
at 2 and 5, respectively. Due to overfitting concerns, tree depth was capped at 10.
Moreover, the squared error loss function was chosen for its effectiveness in handling
outliers.

Light GBM

Similar to the other boosting models, Light GBM configuration included 100 trees
(n estimators: 100) and a learning rate of 0.1. The number of leaves was set to 90,
allowing for detailed yet computationally efficient tree growth. The model’s depth
was unrestricted (max depth: -1) allowing it to capture intricate details within the
data but increasing the risk of overfitting. To counteract this, L1 regularization was
applied at a moderate level (reg alpha: 0.5) to penalize large coefficients. Moreover,
the minimum number of samples per child was set to 10 (min child samples: 10),
ensuring reliable decisions while further mitigating overfitting. Additionally, the
column-wise building algorithm (force col wise: True) was used to optimize the
processing of our high-dimensional dataset.

XGBoost

XGBoost was configured with 300 trees (n estimators: 300) and a low learning rate
(0.01), combined with a maximum tree depth of 15. This setup supported robust
learning by enabling detailed tree structures and enhancing the model’s ability to
capture complex non-linear relationships while mitigating overfitting by limiting
tree depth. The gamma value was set to 0, reducing the regularization of leaf nodes
and allowing for greater flexibility in constructing tree structures. A minimum
child weight of 5 ensured each leaf node represented several observations, reducing
sensitivity to individual data points. Additionally, a colsample bytree value of 0.8
limited the model’s complexity by using 80% of the features for building each tree,
further protecting against overfitting.

Support Vector Machines (SVM)

For SVM, a penalty parameter C of 70 was selected to control the trade-off between
maximizing the margin and minimizing the training error. A higher value of C
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leads to a model that prioritizes a close fit to the training data thus increasing
the risk of overfitting. A larger epsilon, set to 15, increases the model’s tolerance
for deviations from the predicted regression line, which can help to achieve a more
robust and generalized solution by allowing for certain errors without penalty. The
combination of a high C and a large epsilon was chosen to balance achieving a
close fit to the data while managing the risks of overfitting. Additionally, the RBF
kernel was chosen to handle non-linear data patterns effectively, offering flexibility
to capture complex relationships.

K-Nearest Neighbors (kNN)

The kNN model used 20 neighbors to ensure robust averaging of results, with dis-
tance weighting to give closer points more influence. A low leaf size of 1 was chosen
to optimize the efficiency of the algorithm in searching for nearest neighbors. Ad-
ditionally, the Manhattan metric was employed, which is particularly effective in
high-dimensional data settings by emphasizing differences across individual dimen-
sions and improving the relevance of distance calculations.

Kernel Ridge Regression (KRR)

KRR was configured with an alpha of 0.1, applying mild L2 regularization to balance
model complexity with a good fit to the training data. An RBF kernel was used to
handle non-linear relationships in the data effectively. As the gamma parameter was
not adjusted, it defaulted to a preset value. This default setting helps control the
model’s sensitivity to data variations, ensuring stability and preventing overfitting
without requiring manual tuning.

Neural Networks

For Neural Networks, hyperparameters were not optimized using GridSearchCV.
For details on the parameters and architecture chosen for Neural Networks, refer to
Model Selection in Section 4.2.

In this section, we explored the strategic selection of hyperparameters for various
predictive models using GridSearchCV. This systematic approach enabled us to find
an optimal balance between accuracy, computational efficiency, and generalizability
to suit our data and objectives. Hyperparameters for each model were adjusted to
align with its unique characteristics, enhancing predictive accuracy and minimiz-
ing the risk of overfitting. These carefully chosen hyperparameters contributed to
the robustness and effectiveness of our predictive models in achieving the research
objectives of our thesis.

Model performance evaluation

Following the optimization of hyperparameters, this section evaluates and compares
the performance of various machine learning models, linking back to the discussions
on model selection in Section 4.2. We assess each model’s accuracy and fit to the
data using both quantitative performance metrics and visual comparisons.
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Table 5.1: Hyperparameter ranges and the best parameters selected through GridSearchCV
for various predictive models.

Model Hyperparameter Range Parameters Chosen by GridSearch

RF n estimators: [200, 300, 400] n estimators: 400
max depth: [10, 20, None] max depth: 20
min samples split: [2, 10] min samples split: 2
min samples leaf: [1, 2] min samples leaf: 1

AdaBoost n estimators: [30, 50, 70] n estimators: 50
learning rate: [0.01, 0.1, 1.0] learning rate: 0.1
loss: linear, square, exponential loss: linear

GB n estimators: [100, 200] n estimators: 100
learning rate: [0.1, 1.0] learning rate: 0.1
max depth: [5, 10, None] max depth: 10
min samples split: [2, 5] min samples split: 2
min samples leaf: [1, 5] min samples leaf: 5
loss: squared error, huber loss: squared error

Light GBM n estimators: [50, 100, 200] n estimators: 100
learning rate: [0.01, 0.1, 0.2] learning rate: 0.1
num leaves: [70, 90, 110] num leaves: 90
reg alpha: [0.0, 0.5, 0.7] reg alpha: 0.5
max depth: [-1, 5] max depth: -1
min child samples: [5, 10, 15] min child samples: 10
force col wise: True force col wise: True

XGBoost n estimators: [100, 200, 300] n estimators: 300
learning rate: [0.01, 0.1, 1.0] learning rate: 0.01
max depth: [5, 10, 15] max depth: 15
gamma: [0, 0.5] gamma: 0
min child weight: [1, 5] min child weight: 5
colsample bytree: [0.5, 0.8, 1.0] colsample bytree: 0.8

SVM C: [50, 70, 90] C: 70
epsilon: [5, 10, 15] epsilon: 15
kernel: linear, poly, rbf kernel: rbf

kNN n neighbors: [15, 20, 25] n neighbors: 20
weights: uniform, distance weights: distance
leaf size: [1, 3, 5] leaf size: 1
metric: euclidean, manhattan, chebyshev, minkowski metric: manhattan

KRR alpha: [0.01, 0.1, 1] alpha: 0.1
kernel: linear, poly, rbf kernel: rbf
gamma: [None, 1, 10] gamma: None

For quantitative analysis, we utilized RMSE and R² to evaluate the accuracy
and explanatory power of our models. The results, presented in Table 5.2, rank the
models based on these metrics.

XGBoost demonstrated the best overall performance with the lowest RMSE
(21.717) and the highest R² (0.360), suggesting it was the most effective at predicting
outcomes and explaining variance in the dataset, likely due to its regularization
features that prevent overfitting. Light GBM followed closely with an RMSE of
21.950 and an R² of 0.346, demonstrating its strong predictive accuracy and efficient
data handling capabilities. Random Forest and Gradient Boosting also showed
strong performances, reflecting their ability to manage skewness and imbalances by
aggregating outputs from multiple decision trees. In contrast, KRR, SVM, Neural
Networks, and kNN, despite careful preprocessing and model-specific optimizations,
demonstrated moderate performance, consistent with the challenges of our high-
dimensional and skewed dataset. AdaBoost struggled the most, with the highest
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RMSE (24.870) and the lowest R² (0.161), likely due to its sensitivity to outliers.

Table 5.2: Comparison of Machine Learning Models

Model RMSE R2

XGBoost 21.717 0.360
Light GBM 21.950 0.346
Random Forest 22.016 0.342
Gradient Boosting 22.036 0.341
KRR 23.132 0.274
SVM 23.165 0.272
Neural Networks 23.326 0.262
kNN 23.336 0.261
AdaBoost 24.870 0.161

Note: Models are trained with 5-fold CV and ranked by
performance based on RMSE and R2. Lower RMSE and
higher R2 indicate better performance.

Additionally, to complement our quantitative metrics, we conducted visual com-
parisons of actual versus predicted values for each model, providing an intuitive
representation of their accuracy, as shown in Figure 5.1.

XGBoost, Light GBM, and Random Forest demonstrated tight clustering around
the diagonal, exhibiting high accuracy and consistent performance across different
value ranges. Gradient Boosting also showed good alignment along the diagonal,
though with slightly more scatter. Nevertheless, the plots emphasize the robust
predictive accuracy of our ensemble tree methods. In contrast, SVM and KRR
displayed reasonable scatter but generally maintained alignment with the diago-
nal, suggesting solid but less precise predictive accuracy. Similarly, kNN showed
comparable performance with good clustering around the diagonal. Neural Net-
works presented more variability in predictions across all value ranges, suggesting
potential challenges in model calibration or issues related to overfitting. AdaBoost
consistently underestimated or overestimated values, evidenced by horizontal pat-
terns deviating from the diagonal. This suggests difficulties in modeling complex
patterns, which might be caused by the model’s sensitivity to outliers. These vi-
sual evaluations support our quantitative results and provide valuable insights into
each model’s strengths and limitations, emphasizing the necessity for careful model
selection and hyperparameter optimization, especially in handling high-dimensional
and skewed datasets.

In conclusion, our findings confirm expectations about the effectiveness of ensem-
ble tree methods in handling non-linear characteristics, skewness, and imbalances in
the dataset. This effectiveness was supported by meticulous preprocessing, strategic
hyperparameter tuning, and 5-fold cross-validation - all key elements emphasized in
our methodology. Among the models evaluated, our analysis highlighted XGBoost
as the most effective model, showcasing good predictive capabilities and adaptability
across various dataset characteristics.

This analysis not only reflects the outcomes anticipated from our methodological
setup but also highlights areas for future research improvements. Firstly, the poten-
tial for overfitting within some models emphasizes the need for deeper investigation.
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Figure 5.1: Actual vs Predicted Values Graphs

(a) Random Forest - Actual vs Predicted Graph (b) AdaBoost - Actual vs Predicted Graph (c) Gradient B. - Actual vs Predicted Graph

(d) Light GBM - Actual vs Predicted Graph (e) XGBoost - Actual vs Predicted Graph (f) SVM - Actual vs Predicted Graph

(g) Neural Nets - Actual vs Predicted Graph (h) kNN - Actual vs Predicted Graph (i) KRR - Actual vs Predicted Graph
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Second, it is important to note that our comparisons rely on observed metrics
without statistical validation due to time constraints. Integrating statistical tests
like ANOVA can be used to compare the performance metrics of different mod-
els to assess if the differences in performance are statistically significant or simply
due to random variations in data. Lastly, future research could focus on advancing
ensemble techniques by integrating different algorithms, exploring additional hyper-
parameters, and further investigating deep learning models. All of these suggestions
could lead to improvements in predictive accuracy and model interpretability, this
way enhancing our methodology.

5.2 Feature importance

After discussing model performance and comparing their effectiveness, this section
explores the importance of various features derived from predictive models, aiming
to highlight the factors that are most impactful in influencing educational outcomes.
Our analysis employs two main methods, as outlined in the Methodology section
(refer to Model Interpretation and Explanation in Section 4.2): direct feature im-
portance for tree-based models and permutation importance for non-tree models.

This section is structured into three distinct parts: an initial analysis of top-
performing models, followed by an examination of less optimal models, and con-
cluding with a comprehensive analysis across all models. The results are presented
in Table 5.3, which provides a comparative ranking of feature importance across the
models used in our study. The table is organized with features listed vertically and
models horizontally and includes R-squared scores to facilitate easier comparison of
model performance. Each cell contains a numerical ranking of the feature’s relative
importance within that model; a ranking of ’1’ indicates the highest influence on
prediction outcomes for that model, with higher numbers indicating decreasing im-
portance. Features with negligible impact are not ranked and are marked with a
dash.

Additionally, we have conducted a visual analysis, providing feature importance
plots for each model. These plots visually represent the relative importance of each
feature, further illustrating how different attributes impact model predictions. For
a detailed view of these graphical representations, please refer to Figure A.1 in the
Appendix.

Feature Importance in Top-performing Models

We begin by discussing the feature importance for the top-performing models: XG-
Boost, Light GBM, Random Forest, and Gradient Boosting. Each model highlighted
different factors significantly influencing educational outcomes.

XGBoost

Our top-performing model identified Higher Educated Population as the most signif-
icant predictor. It uniquely prioritized Private Dummy as the second most crucial
factor, and ranked SES Pupils as the third most important feature. This highlights
the model’s sensitivity to educational attainment, the type of schooling, and socio-
economic background. Interestingly, XGBoost assigned relatively high significance
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to the dummy variables, while other models either ranked these variables lower or
found them completely insignificant.

Light GBM

Contrary to the other models, Light GBM assigned the highest importance to Pupils.
Furthermore, it ranked Ratio of Teachers second and School Canteens third. The
features picked by Light GBM as the most significant indicate a focus on school size,
educational resources, and infrastructure.

Random Forest and Gradient Boosting

These models provided very similar feature importance scores, with the top five
features being identical, and others in slightly varying order. Like XGBoost, these
models rated Higher Educated Population as the most important feature. Both
also placed Ratio of Teachers and Pupils as the second and third most important
features, respectively, highlighting the critical roles of teacher availability and school
size in predicting educational outcomes.

Across all top-performing models, a consistent emphasis on higher education
within the town suggests a strong link between educational attainment in the region
and exam scores. The importance of Pupils and Ratio of Teachers across various
models (except for XGBoost, which ranks these features lower) indicates a shared
valuation of school and class sizes. Variations in the importance assigned to features
such as ICT and SES Pupils highlight differing model sensitivities, which may guide
their application in specific educational contexts.

Feature Importance in Less Optimal Models

While the top-performing models provided valuable insights into the predictive fac-
tors influencing educational outcomes, exploring the feature importance of models
that performed less optimally can provide insights into alternative predictors and
offer a broader perspective on the factors influencing educational outcomes that may
not be as important in the leading algorithms.

AdaBoost

Consistent with the top-performing models, AdaBoost identified Higher Educated
Population as the most important feature. It placed substantial emphasis on SES
Pupils andOut-of-Wedlock Births, suggesting that family dynamics and socio-economic
factors impact education.

SVM

Contrary to top-performers, this model positioned Town Population as its most
important feature. It also emphasized Pupils and the ethnic composition of student
populations, indicating its sensitivity to the demographic and social contexts in
predicting exam scores.
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Neural Networks

Neural Networks ranked Pupils and Town Population as top features, reflecting
a strong alignment with SVM. Additionally, it shared SVM’s emphasis on ethnic
demographics, such as Town Roma Population and others

kNN

kNN stood out by ranking Ratio of Teachers as its top feature, suggesting it values
teacher availability most out of all the models. It also ranked Pupils and SES Pupils
highly, suggesting a focus on school size and socioeconomic status.

KRR

This model shared similarities with SVM and NN in valuing the same features for
the top 4. Particularly, it agreed with SVM on Town Population being the most
important feature. Interestingly, it placed the highest significance on Town Religious
Population out of all the models, indicating consideration of religious contexts in its
predictions.

These models illustrate that town population, along with broader societal influ-
ences such as ethnic composition and cultural contexts, are significant predictors,
providing a complementary perspective to the top-performing models. However, de-
spite highlighting these different features, most models consistently identify higher
educated population, ratio of teachers, and number of pupils as the most influential
features. This indicates a strong agreement between all algorithms on the impor-
tance of these key features.

Comprehensive Analysis of Feature Importance

Having discussed the most important features for each model separately, we now
present a comprehensive analysis of feature importance across various machine learn-
ing models. This analysis reveals which attributes consistently play crucial roles,
which are less influential, and which display varying degrees of influence in predicting
educational outcomes, helping to inform strategic model application and educational
policy development.

Top Influential Features Across Models

Higher Educated Population

This feature consistently ranked highly across almost all models, particularly XG-
Boost, Random Forest, Gradient Boosting, and AdaBoost, indicating its strong
predictive power. This consistency suggests that the level of educational attainment
in a region is crucial for predicting educational outcomes. Higher educational attain-
ment can positively influence school exam scores by creating an environment that
supports academic achievement, provides role models, and encourages a culture that
values education. Additionally, regions with higher educational attainment would
likely have more highly skilled teachers, leading to better educational outcomes.
Conversely, less educated regions may experience a shortage of teachers, especially
in STEM fields, which would adversely affect education.
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Pupils

The size of the student body is a critical feature in most of the models, but especially
emphasized by Light GBM, SVM, and Neural Networks, where it ranked as the most
significant or near the top. This suggests that the scale of educational institutions
impacts their effectiveness, potentially due to resource allocation challenges and the
ability to provide individual attention.

Ratio of Teachers

Frequently appearing as a top feature in most models, particularly Random For-
est, Gradient Boosting, Light GBM, and kNN, this indicates the importance of
teacher availability relative to student numbers. It aligns with educational theories
advocating for smaller class sizes, which enable more personalized instruction and,
consequently, lead to better educational outcomes.

Features with Varying Influence

SES Pupils

The socioeconomic status of pupils showed significant variability in its impact, rank-
ing highly in models like XGBoost, kNN, and AdaBoost but less so in others.

ICT

The importance of ICT varied across models as well. For instance, it ranked higher in
Light GMB, kNN, Gradient Boosting, and Random Forest, while being insignificant
or very close to the bottom of the list for others.

Ethnic demographics

Variables such as Town Roma Population, Town Slovak Population, and Town Hun-
garian Population also showed variability in importance across different models.
Town Roma Population ranked in the top 5 for some models but was low in others
like Light GBM and XGBoost. Town Slovak Population was notably important in
models like SVM and Neural Networks but less so in others. Similarly, Town Hun-
garian Population ranked highly in Light GBM and kNN but was less significant in
other models.

Least Influential Features

School libraries and Extracurricular Institutions

These features generally ranked low in influence across the models. This lower
ranking could indicate that, while these factors contribute to a rich educational
environment, their direct impact on measurable educational outcomes may not be
as significant as other more directly linked educational factors such as teacher-to-
student ratios or school size. This suggests that models may not fully capture the
nuanced benefits these resources provide, such as fostering lifelong learning habits
or improving student engagement, which may not immediately result in higher aca-
demic performance.
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Unemployment, Divorces per New Marriage, Crime Rates

These community factors generally appeared less influential across the models. This
might suggest that while they affect the broader socio-economic environment, their
direct impact on educational outcomes is limited compared to more immediate ed-
ucational factors.

Table 5.3: Feature Importance Ranking Across Models

Model RF AdaB. GB L.GBM XGB SVM NN kNN KRR
(R2) (0.342) (0.161) (0.341) (0.346) (0.360) (0.272) (0.262) (0.261) (0.274)

Higher Educated Population 1 1 1 9 1 3 3 6 3
Ratio of Teachers 2 4 2 2 12 4 4 1 4
Pupils 3 5 3 1 11 2 1 2 2
Town Population 4 6 4 8 8 1 2 12 1
SES Pupils 5 2 5 16 3 8 9 3 12
Out-of-Wedlock Births 6 3 7 11 9 13 12 14 10
ICT 7 - 9 4 20 16 18 5 16
Town Roma Population 8 7 6 13 10 5 5 4 5
School Canteens 9 - 8 3 13 15 11 - 9
Town Religious Population 10 - 10 10 18 7 7 - 6
Town Slovak Population 11 - 11 7 17 6 6 8 7
Town Hungarian Population 12 - 12 6 15 10 8 7 8
Unemployment 13 - 14 5 19 11 14 - 15
School Libraries 14 - 13 12 16 14 13 9 13
Divorces per New Marriage 15 - 17 15 23 19 - - -
Youth Crime Rates per Thousand 16 - 15 14 21 - 17 - 18
Crime Rates per Thousand 17 - 18 17 22 18 - - -
Extracurricular Institution 18 - 16 18 14 12 15 - 14
Bilingual Dummy - - - - 4 17 16 13 17
Private Dummy - - - - 2 - - - -
Public Dummy - - - - 7 - - 10 -
Hungary Dummy - - - - 6 9 10 - 11
Church Dummy - - - - 5 - - 11 -

Note: Each cell represents the rank of importance for the feature in each model. We do not report ranking if the variable is too
insignificant - significance less than 10% compared to the value of the most important variable.

In conclusion, this analysis has revealed the complexity of factors influencing
educational outcomes. The consistent significance of Higher Educated Population,
Pupils, and Ratio of Teachers across various models highlights their critical impact
on academic performance. This indicates that the immediate educational environ-
ment and resources within schools play a more significant role in shaping educational
outcomes than broader community socio-economic conditions, with the notable ex-
ception of higher education within the community.

However, the variability in the importance assigned to socio-economic, infras-
tructural, and ethnic demographic features across different models points to the
need for strategic focuses that accommodate specific regional and demographic con-
texts. While our models consistently highlight the significance of school-specific
factors and educational attainment, further research is needed to better understand
the impact of socioeconomic factors and demographic compositions. This research
could help develop targeted policies aimed at improving educational outcomes.

5.3 Discussion

This section connects our analysis to its broader implications for educational policy
and model selection. We begin by aligning our findings with the existing literature,
highlighting both consistencies and deviations to validate or challenge prevailing
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views on educational outcomes. This is followed by a discussion on the implica-
tions for educational policy and model selection in educational research. Lastly, we
address the limitations of our study and propose directions for future research to
further explore the factors influencing educational outcomes.

Synthesis of Findings

Integrating our findings with existing literature reveals several interesting patterns
and deviations that contribute to a broader understanding of educational outcomes.
Our study confirms the impact of socioeconomic factors, specifically higher educated
populations and the socioeconomic status of pupils, aligning with the conclusions
of Britton and Propper (2016), Hanushek and Rivkin (2007), Carlisle and Murray
(2015) and Amini et al. (2015). These factors consistently emerged as top pre-
dictors across multiple models, with higher educated populations being universally
significant and socioeconomic status being important for top-performing models,
underscoring their critical role in influencing educational performance. This con-
sistency with prior research reinforces the importance of socioeconomic context in
educational outcomes and highlights the robustness of these predictors across dif-
ferent methodological approaches.

However, our results challenge some of the established views in the literature.
For instance, while Bouck (2018) emphasized the significant impact of geographical
settings (urban vs. rural), our models showed that town population and specific
demographic variables, such as town Roma population, were not uniformly signifi-
cant across all models. This divergence suggests that while geographical factors do
play a role, their influence might be context-dependent and less universally applica-
ble. Additionally, the varying importance of features like ICT and extracurricular
institutions suggests that these factors, although beneficial, may not directly trans-
late into measurable academic performance improvements as consistently as other
factors such as teacher-student ratios or school size.

Comparing our RMSE and R2 results can be challenging. This is mainly because
many of the reference studies in Table 2.1 are classification studies that report accu-
racy, making them not directly comparable. Another factor is the unit of prediction;
studies that use an individual as a unit typically have better results than those us-
ing schools. However, our results can be compared to some studies, such as Masci
et al. (2018), which reported a proportion of variability explained ranging from 14
to 60, depending on the country of measurement. Although the measure used in this
study is not directly comparable to ours, the results are still relevant to our best
models. Our top-performing model, XGBoost, achieved an RMSE of 21.717 and
an R2 of 0.360. While these figures may be slightly worse, they still demonstrate
substantial predictive power. These discrepancies may be due to differences in data
characteristics or model configurations. For instance, studies utilizing large-scale
individual-level data might capture more nuanced patterns, leading to higher accu-
racy. Furthermore, the chosen best models and their most important features varied
significantly across studies, with some emphasizing demographic factors while others
focused on school infrastructure and teacher quality. This highlights the complex
and multifaceted nature of educational performance determinants, suggesting that
model selection and feature importance can vary greatly depending on the specific
context and dataset.
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Implications for Educational Policy and Model Selection

The insights gained from analyzing feature importance across models are invaluable
for informing educational policies and interventions. As discussed in Section 5.2,
key predictors such as Higher Educated Population, Pupils, and Ratio of Teachers
significantly impact academic performance. Higher education consistently emerges
as a strong predictor because educated communities create an environment that
supports academic success by providing role models, highly skilled teachers, and a
strong emphasis on the value of education. The number of students in a school is an
important predictor because it affects resource allocation and individual attention,
with smaller student bodies likely enabling better interactions and more personalized
support. Lastly, a higher teacher-to-student ratio allows for more individualized
instruction, leading to improved educational outcomes. Consequently, the findings
of our study lead to several key recommendations for educational policy:

1. Focus on Educational Attainment: Policies should aim to raise educa-
tional levels within communities. This could involve adult education programs,
parental engagement initiatives, and community support for education, creat-
ing an environment that enhances overall educational outcomes for children.
Additionally, prioritizing higher education can lead to more qualified teachers,
further improving student outcomes.

2. Optimize School Size and Teacher Ratios: It is important for schools
to maintain manageable sizes and optimal teacher-student ratios. Therefore,
policies could include funding for hiring more teachers, reducing class sizes,
and improving teacher training. Additionally, offering ongoing professional
development courses for teachers to stay updated with the latest teaching
methodologies can further enhance the quality of education.

3. Improve technological access: Although ICT was not important in all
models, it was relatively significant in our top-performing algorithms. There-
fore, policies should aim to integrate technology in classrooms to enhance
learning and support personalized education. This could include investing in
digital tools, training teachers to use technology effectively, and making sure
all students have access to necessary technological resources.

4. Customized Strategies for Socio-Economic and Demographic Con-
texts: The varying importance of socio-economic and ethnic demographic
features across models suggests the need for further research. However, our
evidence still supports the need for region- and demographic-specific strate-
gies. For instance, policies in socio-economically disadvantaged areas could
focus on meeting basic needs and re-evaluating support systems.

While these suggestions can help policymakers and educational leaders develop
strategies that target the most important factors, it is also crucial to consider po-
tential challenges such as budget constraints, resistance to change, and difficulties in
hiring and training more teachers. These issues can be addressed through strategic
planning and effective communication of the benefits of these policies. Additionally,
it is important to regularly monitor and evaluate the implemented policies to assess
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their effectiveness and, if necessary, make adjustments, since keeping policies flexi-
ble to adapt to changing educational needs and environments helps maintain their
relevance and effectiveness over time.

In addition to these policy recommendations, our findings have significant impli-
cations for model selection in educational research. Since the importance of different
features varies across algorithms, using multiple models can provide a more compre-
hensive understanding of the factors influencing exam scores. For example, ensemble
modeling techniques can offer a wider range of insights by combining the strengths
of individual models. This approach helps address both direct and indirect factors
affecting student success, ensuring more robust and reliable predictions and leading
to more effective educational strategies.

The implications for educational policy and model selection derived from this
analysis highlight the importance of targeted interventions and strategic resource
allocation to improve educational outcomes. By utilizing insights gained from mul-
tiple models and focusing on key predictive factors, policymakers and educational
leaders can develop more effective strategies to address educational inequalities and
enhance student performance across diverse contexts.

Limitations and Future Research

To provide a clear understanding of our findings and offer directions for future
research, this section acknowledges the limitations of our analysis and aims to guide
further exploration and validation of the factors influencing educational outcomes.
Throughout our thesis, we have identified various limitations and future research
directions, discussing them in detail within each section. This summary consolidates
these points to emphasize their importance.

1. Sample Size and Data Quality

The dataset used in this study, while comprehensive, is limited to schools in
Slovakia and may not fully represent global educational contexts. Additionally,
data quality issues such as missing values and potential reporting inaccuracies
by the schools could have influenced the results. Therefore, investigating why
some schools fail to report ICT usage and teacher-student ratios could help
ensure the highest data quality. Furthermore, future research in different coun-
try contexts could deepen the understanding of factors influencing educational
outcomes.

2. Model Limitations

This study employed a wide range of machine learning models, each with its
strengths and weaknesses; however, no single model can capture the full com-
plexity of educational outcomes. Additionally, the potential for overfitting,
despite careful hyperparameter tuning, remains a concern and requires deeper
investigation. Future research could explore integrating additional models,
such as deep learning techniques, and investigating a broader range of hy-
perparameters to enhance predictive accuracy and robustness. Additionally,
exploring ensemble model techniques could offer a more holistic view of the
factors influencing educational outcomes.
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3. Feature Selection and Importance

Our study highlighted the significance of certain features, such as a higher ed-
ucated population, pupil numbers, and teacher ratios. However, the variability
in the importance of socio-economic, infrastructural, and ethnic demographic
features across models suggests that further research is needed to better under-
stand these dynamics. Future studies should investigate these less consistently
important features to uncover hidden impacts or interactions not immediately
apparent through single-model analyses. Additionally, longitudinal studies
that capture changes over time could offer more targeted insights for policy
interventions by revealing how educational outcomes and influencing factors
evolve.

4. Methodological Improvements

While our study utilized advanced machine learning techniques, there is al-
ways room for methodological improvement. Future research could incorpo-
rate more sophisticated outlier detection methods and geospatial analysis to
explore regional educational trends. Advanced interpretative techniques like
LIME and SHAP could offer deeper insights into feature importance and in-
teractions. Additionally, statistical tests such as ANOVA could be used to
compare the performance metrics of different models to determine the statis-
tical significance of differences in model performance.

Addressing these limitations and exploring the suggested areas for future re-
search could lead to improving the understanding of educational outcomes and
creating more effective educational policies and interventions. By enhancing
the quality of the data, integrating insights from multiple predictive models,
exploring the complexities of socio-economic and demographic factors, and
refining methodology, future studies can provide a more holistic view of the
factors that influence educational success.

All in all, this discussion has compared our study’s findings against existing
literature, revealing both consistencies and deviations that contribute to a deeper
understanding of educational outcomes. We have highlighted significant implica-
tions for educational policy and model selection, emphasizing the need for targeted
interventions and methodological advancements. Additionally, we addressed the
limitations and future research directions that have the potential to enhance the
robustness of educational analyses and support the development of more effective
policies. Our study contributes valuable insights to the field, highlighting the im-
portance of comprehensive and context-specific approaches in educational research.

5.4 Conclusion

In this comprehensive discussion of the results, we have carefully analyzed model
performance, examining hyperparameter selection, model performance metrics, and
feature importance to uncover the key factors influencing educational outcomes.
Our study highlighted the strong predictive power of higher educated population,
number of pupils, and the student-teacher ratio, emphasizing the critical role of
these features in shaping academic performance. The variability in the importance
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of socio-economic, infrastructural, and ethnic demographic features across different
models emphasized the complexity of educational outcomes and the need for further
research to fully understand these dynamics.

Our findings align with existing literature on the significance of educational
attainment within the population, while challenging some established views re-
garding geographical settings and the direct impact of certain infrastructural el-
ements. These insights have significant implications for educational policy, sug-
gesting targeted interventions to raise educational attainment, optimize school sizes
and student-teacher ratios, and effectively integrate technology. Furthermore, the
variability observed in feature importance across models indicates the necessity for
customized strategies tailored to specific regional and demographic contexts.

We have also identified several limitations in our study, including the represen-
tativeness of the dataset and the potential for overfitting in our models. Addressing
these limitations through future research in different country contexts, integrating
additional models such as deep learning techniques, and employing more sophisti-
cated methodologies could further enhance the understanding of educational out-
comes.

In summary, our study highlights the key factors that influence educational suc-
cess, emphasizing the need for targeted, evidence-based educational policies. By
combining findings from multiple models and focusing on key predictive factors,
policymakers and educators can create more effective strategies to improve student
performance. Our research highlights the importance of comprehensive and context-
specific approaches in education, paving the way for future studies to build on these
findings and help develop better educational policies and interventions.
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Conclusion

This study aimed to identify the key factors influencing academic performance in
Slovak schools and evaluate the effectiveness of machine learning techniques in pre-
dicting educational outcomes. We explored how machine learning techniques can
capture the complex, non-linear relationships inherent in educational data, where
traditional statistical approaches might fall short. Utilizing an extensive dataset
from 1,409 primary schools and 656 secondary schools, which included information
on school characteristics, socio-economic status, ICT usage, demographic factors,
and more, we applied various machine learning models. These models included Ran-
dom Forest, Gradient Boosting, Light GBM, XGBoost, Support Vector Machines,
Neural Networks, K-Nearest Neighbors, and Kernel Ridge Regression.

Our methodology involved several complex processes, including data collection
and careful preprocessing to handle missing values, standardize variables, and trans-
form skewed distributions to make them more normal. We meticulously selected a
variety of models, each chosen for its ability to reveal different aspects of the data.
These models were trained and validated using cross-validation techniques to en-
sure robust and reliable predictions, with hyperparameters tuned to find optimal
configurations and mitigate overfitting. To evaluate model performance, we chose
a range of metrics, including quantitative measures and actual vs. predicted value
plots. Given that machine learning models are often considered black boxes, we
integrated effective interpretation tools, such as feature importance scores from tree
models and permutation importance for other algorithms, to provide insights into
their decision-making processes.

Our findings demonstrate that ensemble tree methods, particularly XGBoost,
consistently outperform other models in terms of predictive accuracy. The models
we utilized identified the higher educated population in the region, the ratio of
teachers to students, and the number of pupils in a school as the most significant
predictors of academic performance. This confirms the importance of educational
attainment within the community, teacher availability, and school size in shaping
educational outcomes.

In light of these results, we have successfully answered our research question,
demonstrating that advanced machine learning techniques can effectively predict
academic performance and highlight critical factors that influence learning out-
comes. Our findings have significant implications for educational policy, suggest-
ing that efforts should focus on raising educational attainment within communities,
optimizing school sizes and teacher-student ratios, and integrating technology effec-
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tively to enhance learning. Moreover, the variability in feature importance across
different models indicates the need for context-specific strategies that take regional
and demographic characteristics into account. This variability highlights the com-
plex and multifaceted nature of educational performance determinants, indicating
that a one-size-fits-all approach may not be effective.

The findings of our thesis align with existing literature in several key areas.
Consistent with some studies, we found that socio-economic factors, particularly
the level of education within the community, play a crucial role in academic per-
formance. However, our study challenges some established views that emphasize
the significant impact of urban versus rural settings. The results suggest that while
geographical factors are important, their influence might be context-dependent and
less universally significant.

In addition, several limitations must be acknowledged to provide a clear un-
derstanding of our findings and offer directions for future research. The dataset,
while comprehensive, is limited to Slovak schools and may not fully represent global
educational contexts. Data quality issues, such as missing values and potential re-
porting inaccuracies, could also influence the results. Additionally, despite careful
hyperparameter tuning, the potential for overfitting remains a concern. Future re-
search should explore different country contexts, integrate additional models such
as deep learning techniques or ensemble methods, and employ more sophisticated
methodologies to enhance predictive accuracy and robustness.

In conclusion, this research contributes valuable insights into the factors that
influence educational outcomes, emphasizing the need for targeted, evidence-based
policies to address educational inequalities and improve student performance. By
combining insights from multiple models and focusing on critical predictive factors,
policymakers and educators can develop more effective strategies to enhance ed-
ucational success. Future studies should continue to explore these dynamics and
build on our findings to support the creation of more effective educational policies
and interventions. Through ongoing research and methodological advancements, a
better understanding of the diverse factors impacting education can be achieved, en-
abling the development of comprehensive solutions to improve educational outcomes
worldwide.
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Appendix A

Additional Graphs and Plots

Figure A.1: Feature Importance Graphs

(a) Random Forest - Feature Importance

54



Figure A.1: Continuation of Feature Importance Graphs

(b) AdaBoost - Feature Importance (c) Gradient Boosting - Feature Importance

(d) LightGBM - Feature Importance (e) XGBoost - Feature Importance
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Figure A.1: Continuation of Feature Importance Graphs

(f) SVM - Feature Importance
(g) NN - Feature Importance

(h) KNN - Feature Importance (i) KRR - Feature Importance
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