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1

Introduction

1.1 The Relevance of Studying Food Prices

After almost a decade of low inflation rates and prospering economics globally, the
last four years dramatically challenged this status quo. The covid-19 pandemic, war
in Europe as well as the resulting economic downturn has resulted in high inflation
rates over the last few years. In the summer of 2022, the global inflation rate reached
its highest since the mid 1990’s (Ha et al., 2023). According to Ha et al. (2023),
in their policy research paper for the World Bank, they identify oil prices as the
main driving force of the inflation rate change in the last few years. However, for
most people, one of the main areas where inflation is frequently present is when
grocery shopping. According to Statistics Sweden (2023), food prices are one of the
most significant parts of the Swedish consumer price index which is the measure of
inflation domestically. Food is a limited but renewable resource that is essential,
we cannot choose to not consume it. As a result there are economic incentives in
forecasting the price of groceries, so that it is possible to buy when prices are low.
Additionally, by accurately forecasting prices it can make good food planning more
relevant and profitable, and thereby less food will be wasted as well.

This paper will be written in collaboration with Matilda Foodtech, a SaaS com-
pany focused on food procurement, meal planning and food safety within the public
sector. A large portion of Swedish municipalities and other public organs are cus-
tomers of Matilda Foodtech. This allows us to gain access to a large data set
containing information of more than a hundred food categories over time.

By accurately forecasting the price of food in general, it will be relevant both
for Matilda Foodtech and their customers as an indicator as to whether prices will
increase and at what rate. Additionally, by interpreting the cost drivers of different
food items it is possible to make more educated decisions on what sort of food items
to prioritize in order to keep costs down. One such decision is to decide on organic
or conventional food items. If it is determined that one category is more affected by
a variable such as oil price (Baek and Koo, 2010), it would be possible to use that
variable as an indicator of how the category’s price will be affected in the future.
Moreover, by learning about the seasonality and how different models capture it, it
is possible to make more educated and cost efficient food planning. Similar intuition
for more efficient food planning is found in papers forecasting food demand (Fattah
et al., 2018).



1.2 Organic and Conventional Food

The European Corporate Sustainability Reporting Direction (CSRD) that was im-
plemented back in early 2023 forces companies to report non-financial metrics in
their annual reports. This in turn means that from this fiscal year, more companies
are required to include ESG reporting in order to provide stakeholders with infor-
mation regarding their environmental work (European Union, 2023). The increased
focus on sustainability reporting in the European Union is regulated in the Commis-
sion’s delegated regulation (2023/2772). The regulation mentions one of the EU’s
targets for Biodiversity, that agricultural farming should be increasingly organic and
that the uptake of agro-ecological practices is significantly increased. This means
that organic foods are of interest for companies conducting business within the Eu-
ropean Union and that it is an important part of the now more comprehensive ESG
reporting mandated by the union.

Matilda Foodtech’s customers are mainly operating within the public domain,
where the stakeholders are the taxpayers. As in accounting, the importance of
reporting within the public sector is profound. Taxpayers money should be spent
wisely and stakeholders gain insights through these reports and execute their control
by voting. From this perspective, it is relevant to consider organic foods in this pa-
per, since stakeholders want to maximize the utility gained from their investments,
both from an environmental and financial perspectives. By gaining deeper under-
standing of how and why the prices of organic and conventional food items change,
it is possible to both maximize the amount of organic foods and not necessarily
spend more money doing so.

Lastly, there are indications that organic foods have not necessarily increased in
price at the same rate as conventional foods during the last years of high inflation
(KRAV, 2022). The article highlights that organic foods are less dependent on
pesticides and fertilizer that are commonly imported. These items have gone up in
price due to the war in Ukraine and the increased energy prices, this is because of
transportation as well as the dependence of fossil fuels in fertilizer manufacturing
(KRAV, 2022). This highlights that some foods might be less susceptible to the
current driving forces behind inflation and why it is of interest to determine what
causes what.

1.3 Contemporary Machine Learning Techniques

Swedish inflation forecasts presented by Swedish public organizations are often made
using statistical models. As an example, the central bank of Sweden commonly uses
a Bayesian Vector Auto-Regressive (BVAR) model to forecast consumer price index
with fixed interest rate (CPIF) (Sveriges Riksbank, 2023). CPIF is the official mea-
sure for inflation in Sweden (Sveriges Riksbank, n.d.). Statistical models like these
are frequently favored for their ability to elucidate the process behind forecasting,
shedding light on both the methodology used and the variables influencing the fore-
cast. In a study of the forecasting errors of inflation between 2013 and 2022, The
Swedish Central bank showed lower precision in their forecasts compared to other
financial institutes (Sveriges Riksbank, 2023).

There was a period during which it was believed that complex algorithms would


https://eur-lex.europa.eu/eli/reg_del/2023/2772/oj

not substantially enhance forecasting performance when contrasted with simpler sta-
tistical models. One of the main conclusions from the M3 forecasting competition
in 1999 was that complex methods does not necessarily perform better than simpler
ones (Koning et al., 2005). During the last decades, both academia and forecasting
competitions have shown improved forecasting performance with machine learning
approaches compared to statistical models. Although deep learning emerged vic-
torious in the M4 competition in 2018, the M5 competition in 2020 revealed that
tree-based gradient boosting methods, particularly Light GBM and XGBoost, wield
significant forecasting power, with many winning teams incorporating them into
their solutions (Januschowski et al., 2022).

1.4 This paper

Collaborating with Matilda Foodtech grants us access to invaluable data, setting
our research apart from previous studies on food price forecasting. While other
researchers primarily focus on predicting food price inflation, our access to high-
resolution data allows for a more nuanced analysis. This granularity enables the
examination and evaluation of both aggregate and disaggregate series, offering a
deeper understanding of market dynamics. To illustrate the extent of the data
resolution, consider the raw information it contains as the following. Each data
point encompasses details regarding specific products, including brand, container
size, and unique properties. For instance, a single data entry might pertain to
a particular brand of milk, specifying its container size and organic certification.
These individual attributes can then be aggregated to form broader categories such
as "milk” or "dairy products.” Furthermore, leveraging product properties allows for
the differentiation between frozen, fresh, or organic goods. This becomes particularly
pertinent when integrating macroeconomic variables into our models, allowing us to
identify macroeconomic factors that serve as deterministic cost drivers for specific
goods or categories. By considering such detailed information, our research aims
to enhance the accuracy and robustness of food price forecasting models in a real-
world setting, thereby offering valuable insights for both academia and industry
stakeholders.

Given the shifting beliefs in forecasting methods and the unique data, this pa-
per aims to assess models capable of enhancing forecasting accuracy beyond tra-
ditional statistical methods, leveraging variables previously identified in research
as influential for food price inflation. The evaluated methods include statistical
approaches, hierarchical extensions of these statistical methods, modern gradient
boosting tree-based techniques, and ensembles combining all three. This multidisci-
plinary approach is in this paper dedicated to find the best suited forecasting model.
Therefore, the emphasis will be on forecasting performance rather than inference.

Additionally, if valuable insights can be gained on which variables influence food
prices, it might lead to meaningful results in terms of efficient food planning. This
study will specifically investigate whether the best general food forecasting model
can be effectively generalized to suit organic and conventional foods.
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Previous Research

2.1 Food Prices

Food prices have been forecasted before. However, most papers on the topic such as
the report from the Swedish National Institute of Economic Research (NIER, 2023)
and Joutz (1997) utilize aggregated food price data from consumer price indices.
NIER (2023) uses the Swedish consumer price index (CPI) to analyze the general
price and cost-development between 2019 and 2023. They find that groceries as
a category, experienced an increase in price greater than what their base model
predicted on the prices in 2019 with domestic values of the predictors such as input
goods and energy prices. Additionally, they modeled prices with constant levels of
energy prices and concluded that energy prices only marginally contributed to the
price increase in general and claim that this is due to the decline in energy prices
since 2022 whilst the consumer price index still increased. NIER’s (2023) paper is,
however, not specifically focused on food prices but the price level in general where
food constitutes a fraction of it.

Joutz (1997) summarized three forecasters’ results and their primary drivers for
explaining the food price inflation during the 1990s in the US. However, these dif-
ferent forecasting methods provide widely different predictions and Joutz (1997)
claims that it is due to different assumptions on the macroeconomic variables in-
troduced. The three forecasters had similar intuition on which drivers caused food
price inflation and they determined that commodity prices at the farmgate (prices
of input goods), labor costs and energy prices of the wholesalers and food processors
provided meaningful results for food price forecasting.

Gilbert (2010) researched the food price inflation during the late 2000s financial
crisis where the price of food commodities more than doubled from 2005 and the mid
of 2008. However, he claims that the causation of this price increase is controversial
and some common explanations are drought in Australia resulting in a decrease in
wheat supply of 4% globally. Another factor according to Gilbert (2010) is poor
grain harvest in Europe in 2007 which was offset by good harvests in Argentina,
Kazakhstan and Russia. However Headey and Fan (2008) concurred that during
the same time period these weather shocks did not significantly impact the prices,
instead they explain this by the increase of input prices and especially fertilizer
which had a lagged effect on food prices. Gilbert (2010) highlights that the rise of
food prices during this period coincided with a general rise in commodity prices led
by energy and metals. However, agricultural raw materials were stable during this



period and followed the developments of crude oil prices which fell drastically post
the Lehman Brothers crisis months where the subsequent effect was decreasing food
prices as well. One theory that Gilbert (2010) put out is that oil prices might affect
food prices in two ways, through increased oil prices influence agricultural production
costs in nitrogen based fertilizer and transportation. Baffes (2007) determines that
this cost pass-through is limited in agriculture due to it not being very energy
intensive. He estimates the pass-through effect of an oil price shock on food prices
to be approximately 17%. Additionally, the pass-through effect of oil on fertilizer
was estimated somewhat higher at 33% and the effect on food to be 18% (Baffes,
2007).

2.2 Methodology

Much of the research presented above is mainly focused on explaining the increase
in food prices and determining the drivers of increased cost. However, when focus-
ing on the research methodology regarding forecasts of food price inflation there
are different approaches used. Joutz (1997) compares forecasting performance from
two different American institutes and one private consultancy firm with the baseline
autoregressive integrated moving average (ARIMA) model. One institute, the Food
and Agricultural Policy Research Institute at the University of Missouri (FAPRI)
has created their own econometric model that is depicted as a large scale structural
econometric model that combines consumer price index for food as well as economic
factors, agricultural science and biological processes (Joutz, 1997). The other in-
stitute and the consulting firm also have vague descriptions of their specific model,
although these models appear more complex they do not significantly outperform
the baseline ARIMA model.

Toledo and Duncan’s (2024) article focus on food price inflation forecasting dur-
ing global crises, especially the financial crisis and the Covid-19 pandemic. They test
a multitude of different model specifications and evaluate them in times of crises and
pre-crisis periods. Some of the models they tried were dynamic model averaging,
driftless random walk, autoregressive (AR), time-varying parameter model where
each parameter evolves as a unit root process, kitchen sink approach which con-
tains prespecified lags of the dependent independent variables, and lastly a dynamic
model selection approach that uses the model with the the highest posterior prob-
ability in each forecast. These models were then also compared to baseline models
such as Atkeson-Ohanian Random Walk, AR model with prespecified lag length as
well as an AR model with Bayesian information criteria selected lags. They find
that the dynamic model averaging performs slightly better than the rest in most
cases, especially during times of crisis. However, when considering the evaluation
metrics it is not a significant leap from the traditional time series models like the
autoregressive ones. There are many different iterations of dynamic models that uti-
lize multiple predictive models and combine them in different ways. The dynamic
model averaging setup in Toledo and Duncan’s (2024) paper is set up to average
the results from different predictions. Ensemble methods like this can according to
Gastinger et al. (2021) improve the forecasting accuracy, however, one additional
parameter to consider and tune is the weights of each model, meaning how much it
should influence the ensemble model.

Another approach used to boost performance of traditional statistical modeling



methods is to consider a hierarchical modeling approach. This is when considering
the time series data at a more disaggregate level. In the context of a consumer
price index it implies that it is of interest to model the time series that constitutes
the index individually, so food prices and prices of services etc. should be modeled
separately. This can be performed using a ‘top down’ or ‘bottom up’ method where
the difference is the starting point (Hyndman et al., 2011). In a bottom up model the
disaggregate series are modeled and forecasted before aggregating to get the forecast
at the aggregate level, top down is the opposite direction used to gain a deeper
understanding of the disaggregate components. The aggregation of disaggregate
series is an important factor where index weights can be used but one must be
mindful of aggregation bias. Schwarzkopf et al. (1988) performed a comparison
between forecasts made at the aggregate level versus using a bottom up approach.
The authors state that the major downside of making individual forecasts for each
item, then adding them together with a percentage distribution, is that it requires
that there are no missing values in individual series and that it takes more time to
compute the forecasts. They also argue for the upsides of the bottom-up approach,
which can detect differences between items and is usually equally robust to a forecast
modeled directly at the aggregate level even though individual series might contain
more outliers. These upsides are further highlighted when NIER (2023) evaluated
their PRIOR model with disaggregate level data within agriculture and groceries and
were able to provide a more in-depth explanation of cost pass-through for different
categories. There are various ways to improve performance of hierarchical methods.
Hyndman et al. (2011) presents a way to combine the bottom up hierarchical
forecasts through regression. They show good accuracy and lower variance with
this method than additive bottom up specifications.

Recent literature points towards a predictive superiority of machine learning
based approaches compared to traditional statistical ones. Xu and Zhang (2023)
forecasts wholesale food price index in China with an autoregressive neural net-
work utilizing a two-layer feedforward structure. Additionally, they benchmark its
performance against random walk, AR, AR general autoregressive conditional het-
eroskedasticity (AR-GARCH), support vector regression (SVR), regression tree (RT)
and a long short-term memory recurrent neural network (LSTM-RNN). All models
significantly outperforms the AR and AR-GARCH models in forecasting accuracy.
This highlights a paradigm shift in time series forecasting which is supported by
Januschowski et al. (2022). They discuss the superiority of gradient boosted tree
based methods in M4 and M5 time series forecasting competitions. In recent years
the leaderboards have been topped by gradient boosted decision tree algorithms
(GBDTs) such as XGBoost. Neural networks are also represented among the leader-
boards in accuracy competitions, however in second and third place. These neural
networks are based primarily on DeepAR and NBEATS frameworks developed by
Amazon and Facebook respectively (Januschowski et al., 2022).
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Data

3.1 Data Description

Matilda Foodtech supplied purchasing data for five main categories: frozen goods,
refrigerated goods, colonial goods, wine and spirits and nutritional goods. Within
these categories there are subcategories such as dairy products, cheese and vegetables
to name a few in the refrigerated goods category. For each unique combination of
main category and subcategory there are monthly observations for the columns
showcased in Table 3.1. This was the raw data structure as received from Matilda
Foodtech. The time period for this data ranges from January 2013 until December
2023, resulting in 17306 observations.

Before receiving the data, some pre-processing steps were undertaken. Aggrega-
tion to subcategory level is the main procedure that we did not perform ourselves,
it is therefore hard to control for bias at this level. For the smaller categories in
particular, there is reason to believe that different products are represented in a
subcategory between different periods, which might lead to less accuracy in our
forecasts of these categories. Furthermore, while most public organizations feed
their information into Matilda Foodtechs system on a monthly basis, some are do-
ing it on a quarterly basis. Together with Matilda Foodtech, an active decision was
made to exclude the quarterly imported data for two main reasons. Initially, fewer
organizations are reporting quarterly to Matilda Foodtech, and they anticipate that
this trend will continue, with very few organizations expected to do so in the coming
years. Secondly, the quarterly data exerted significant influence on the behavior of
our dependent variable, particularly noticeable in earlier years, resulting in distinct
dips occurring every three months. These quarterly dips were diminishing over the
years since more and more organizations started to report monthly. This gave many
models a hard time to correctly estimate the effects of seasonality. With quarterly
imported data removed, the behavior of the time series became more logical and in
line with the seasonality explained by Matilda Foodtech’s clients.
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Table 3.1: Variable Descriptions for Matilda Foodtech Data

Variable Data type Description

period timestamp month formatted as YYYY-MM

main_category string the five types described above

subcategory string still aggregated but more detail. for example
“meat”, “dairy product” and “fish”

value float total spendings during the month

volume float total number of items during the month

value_organic float spendings on organic items during the month

volume_organic float number of organic items during the month

number _of_clients integer number of organizations that have bought items

in this category during the month

Previous research highlighted the importance of macroeconomic variables in fore-
casting performance, feature importance and inference. These macroeconomic time
series were fetched online through API’s to ensure a continuous flow of contempo-
raneous data into the models. Global macroeconomic variables are collected from
the US Federal Reserve Economic Data (FRED, 2024) API, the data itself have dif-
ferent sources such as the International Monetary Fund (IMF). Variables regarding
Swedish macroeconomics were collected from the Swedish central bank API (Sveriges
Riksbank, 2024). Lastly, the variable for the Swedish electricity price was collected
from Statistics Sweden (2024) API as well. Table 3.2 lists all the macroeconomic
variables, their shortened name, API and source of information.

By incorporating the use of API’s, the variables are constantly up to date for as
long as the API is updated online. This ensures that data is available for a great
span of years and well into the future as well.
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Table 3.2: Summary of macroeconomic variables, their source, API, and years covered.

Variable Code Variable Name API Source Years
POILBREUSD Global price of Brent Crude Oil ~FRED International =~ Mone-  1990-01-01
(USD) tary Fund (IMF) 2024-03-01
PCU325311325311 PPI: Nitrogenous Fertilizer FRED US Bureau of Labor 1975-12-01
Statistics 2024-03-01
PNRGINDEXM Global Price Index - Energy FRED International =~ Mone-  1992-01-01
tary Fund (IMF) 2024-03-01
PFOODINDEXM Global Price Index - Food FRED International =~ Mone-  1992-01-01
tary Fund (IMF) 2024-03-01
SWECPICOR- CPI Sweden: All Items Except FRED Organization for Eco- 1970-01-01
MINMEI Food and Energy nomic Co-operation  2023-11-01
and Development
(OECD)
CPGRENO1- CPI Sweden: Energy (Fuel, FRED Organization for Eco- 1970-02-01
SEM657TN Electricity and Gasoline) nomic Co-operation  2023-11-01
and Development
(OECD)
CSESFTO02- Consumer Opinion Survey: FRED Organization for Eco-  1995-10-01
SEM460S Economic Future for Sweden nomic Co-operation  2024-03-01
and Development
(OECD)
WP5075303 PPI: Diesel Fuel FRED US Bureau of Labor 1986-05-01
Statistics 2024-03-01
CPO111EU27- Harmonized CPI for EU: Eurostat Eurostat 2000-12-01
2020MO86NEST Bread and Cereals 2024-03-01
PWHEAMTUSDM  Global Price of Wheat (USD) FRED International =~ Mone-  1990-01-01
tary Fund (IMF) 2024-03-01
ENRGYOEU272020- Harmonized CPI: Energy for Eurostat Eurostat 2000-12-01
MO86NEST European Union 2024-03-01
CP0450EU27- Harmonized CPI: Electricity, FEurostat Eurostat 2000-12-01
2020MO86NEST Gas and Other Fuels for Euro- 2024-03-01
pean Union
SSDManad- Elhan-  Electricity Prices in Sweden Statistics Statistics Sweden En-  2013-04-01
delpris Sweden ergy Agency 2024-03-01
SEKEURPMI SEK-EUR Exchange Rate Swedish Swedish Riksbank 1993-01-04
Riksbank 2024-04-01
SEKUSDPMI SEK-USD Exchange Rate Swedish Swedish Riksbank 1993-01-04
Riksbank 2024-04-01
SEKKIX92 KIX Index 92 Swedish Swedish Riksbank 1992-11-18
Riksbank 2024-04-01
SECBREPOEFF Swedish Policy Rate  Swedish Swedish Riksbank 1994-06-01
(Styrranta) Riksbank 2024-04-01
SETBIMBENCHC  Swedish Treasury Bill Matu- Swedish Swedish Riksbank 1983-01-03
rity 1-Month (Statskuldsvéxel) — Riksbank 2024-04-01
EMGVB5Y Government Bond EUR 5Y  Swedish Swedish Riksbank 1990-01-04
(Statsobligation EUR 5 ar) Riksbank 2024-04-01
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3.2 Data Operationalization

Unique combinations of main category and subcategory will from here on out be
referred to as category. Initially, there were 163 distinct categories. However, upon
visualizing the data and closely examining the information and patterns, it became
clear that before 2015, there was a lack of data, leading to anomalous fluctuations
in the value variables at both the category and aggregated levels. For that reason,
2013-2014 was filtered out. Following the filtering process, all categories that still
contained missing values were eliminated. Categories that were either non-food or
alcoholic were also removed to make sure the data was in line with the research
question. 103 categories were left for the final dataset and are shown in Appendix
A1, excluding roughly a third of all categories. Regarding the total value, elimi-
nating these categories did not have a significant impact, as the removed categories
typically involved purchases in small volumes. The total value corresponding to
removed categories in the period of interest between January 2015 and December
2023 is 0.8% of the total value of all categories in the original dataset in the same
period. Thus the final, formatted dataset used for modeling thereby keeps 99.2% of
the total value in the data handed to us by Matilda Foodtech.

To construct the aggregated price index for modeling, weights were computed for
each category. These weights were derived from the category value divided by the
total value over the years 2019-2021. The reason for excluding 2022-2023 (out-of-
sample period discussed in Chapter 4) is to simulate a real forecasting scenario and
not create biased index weights. The 36-month time frame was chosen in consulta-
tion with Matilda Foodtech to capture the general shopping habits of their clients
over recent years. Furthermore, by selecting a time period that is too short, one
might risk to select a biased index due to their cyclical and seasonal relevance of
certain goods to the public sector. However, an overly long period could risk basing
the index on the importance of categories that are no longer popular, while under-
estimating the significance of goods that have become more popular in recent years.
The 36 month weights are thereby an effort to balance these two shortcomings.

For each category an average price variable was created. These variables are
simply value divided by volume for the corresponding category and time period.
The average price columns was then multiplied by the corresponding, previously
calculated weights, which gave rise to yet another 103 variables, which when summed
constitutes the aggregated price index. Given the trending behavior of prices, first
differences were taken for each category. First differences were also applied to the
price index to ensure stationarity and the ADF-test p-value for the differenced series
is 0.0062 (2015-2021). It is this differenced aggregated price index that we aim to
forecast in this paper.

Two additional datasets were generated, one for organic goods and one for con-
ventional goods, employing the same methodology outlined previously. In the case
of organic goods, values and volumes for organic goods were used. For conven-
tional goods, the organic value and volume was instead removed resulting in only
non-organic i.e. conventional goods being left. The organic dataset contains fewer
categories due to the presence of missing values in the time period of interest for
organic goods across many categories.

Some transformations of the macroeconomic variables were necessary before uti-
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lizing them in the models. The Swedish electricity market is divided into four
distinct zones. These zones exhibit divergent price patterns attributable to re-
gional disparities in electricity supply and demand. Notably, Zone 1, situated in
the most northern region characterized by an electricity surplus, experiences lower
prices compared to Zone 4 in the southern part of Sweden, marked by an electricity
deficit (Energimarknadsbyran, 2024). The electricity data from Statistics Sweden
(2024) contains monthly average prices for non-domestic users in these four regions.
The average Swedish electricity price was calculated without regards to weighing
the zones differently based on energy consumption within the food industry. This
newly transformed variable is from this point called ’avg_electricity_price . SWE’.

Moreover, the electricity dataset sourced from Statistics Sweden (2024) exhibited
missing values for March 2021. To address this issue, a linear imputation method was
employed, whereby the missing value was estimated by the arithmetic mean of the
two adjacent values. This ensured that all macroeconomic variables included were
consecutive time series data. The macroeconomic series were then differenced to
ensure stationarity of the data. Figure 5.2 and 5.3 visualize both the original and first
differenced macroeconomic data. Augmented Dickey-Fuller tests were performed on
all time series between 2015-2021 (see Appendix A.2). Before differencing, only 3
variables were stationary, after differencing however, all variables were stationary at
the 5% level. Starting from 2015 allowed for consistency across all variables, while
ending in 2021 simulated the scenario in which these models would be trained during
our selected out-of-sample period (2022-2023).

3.3 Data for Modelling

The macroeconomic dataset and three versions of the Matilda Foodtech data was
then combined into three data sets. One for all Matilda Foodtech data, one only
consisting of organic foods and one only consisting of conventional foods.

The three final datasets used for modelling each consist of 108 observations (time
periods) and 410 variables. The difference between the datasets are the price index
variables, where value and volume used to create these variables have been filtered
based on underlying items in the categories are organic or not. The variables include
19 contemporary macroeconomic variables, 171 lags of macroeconomic variables, 103
category price indices, 103 first differences of category-specific indices, 12 dummy
variables for months, 1 aggregated price index, and 1 first difference of the aggregated
price index.

With the surging food prices that followed the recent crises, it would be interest-
ing to incorporate some sort of proxy variable for times of crisis. However, due to
the subjectivity in creating a feature like this on our own, we opted to make this into
a delimitation and not include such feature in the data. Instead, the phenomenon
generated by the war in Ukraine on energy prices and deficits in Ukrainian cereal
production is covered by other variables. Other factors like extreme weather, war
and politics are not specifically included either which is also common limitation in
studies such as Ribeiro and Dos Santos Coelho’s (2020). However, policy changes,
subsidies and environmental factors most certainly affect the food industry and the
resulting food prices.

14



4

Methodology

In Section 4.1 the common choices, used for all models is presented. The choices
made here are to ensure comparability of results. In Section 4.2 the specifications
and choices specifically applicable to the statistical models are presented and argued
for. In Section 4.3 the hierarchical bottom-up approach is explained. In Section 4.4
the specifications and choices for modern machine learning approaches are presented
and argued for. In the final Section, 4.5, it is presented how the best models are
combined using what is commonly referred to as ensemble methods or consensus
methods.

4.1 General Methodology

All models used in this study make one-step-ahead deterministic forecasts of the first
differences of the monthly price index. For comparability, all models in this study use
a rolling window for forecasting one-step-ahead for the 48 periods between January
2020 and December 2023. The window sizes differ between models but were all
chosen through cross-validation on 2020-2021, where 12, 24, 36, 48 and 60 period
rolling windows were tested. Given the available data, with the restriction of using
full-year periods, 60 was the largest possible window to use. For the Rolling Average,
Seasonal ARIMA (SARIMA) and SARIMA with exogenous variables (SARIMAX)
models (Section 4.2) a 60 period rolling window was selected, while for XGBoost
(Section 4.4) a 36 period rolling window was selected. For the hierarchical SARIMA
and SARIMAX (Section 4.3), no cross-validation was performed due to extensive
computational time, instead 60 was used based on the cross-validation from the
non-hierarchical versions.

The sample period which will be used for modelling and evaluation is January
2015 to December 2023. January 2015 was chosen as the first observation in consen-
sus with Matilda Foodtech by examining the data. Their business only consisted of
a few major clients in the early years, but from 2015 onwards the data contains ob-
servations from a mix of clients more representative of today’s clients. The product
mix within categories and weights of food categories in the data is also more stable
from 2015 onwards. Thereby making this a rational decision since the outlook for
this paper is in the future. December 2023 was also chosen as the last observation
together with Matilda Foodtech. Given that some of the macroeconomic variables
are not available until April of 2014 in the APT’s, nine lags of these variables are used
in the modelling stage. This data availability limitation is thereby used as a natural
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delimitation for lag lengths. However, nine lags are also a reasonable maximum lag
length since groceries mainly constitute fresh goods with a limited shelf life. There
is a trade-off between reducing the training data size and adding more lags of the
variables.

In order to evaluate the generalizability of the models, the same in-sample and
out-of-sample periods were chosen for feature selection and hyperparameter tuning
for all algorithms. The year 2022 is considered to be particularly interesting since
there was a sudden increase in inflation due to the war in Ukraine (Emediegwu, n.d.).
The objective is to discover a model capable of being fine-tuned with pre-war data
while maintaining satisfactory forecasting accuracy for the years 2022 and 2023. The
years 2019-2021 i.e. 36 observations are used for hyperparameter tuning. Rolling
one-step-ahead forecasts are then made between 2020 and 2023, where 2020-2021
measure “in-sample performance” which can be thought of as a measure of fitness
to the sample, and 2022-2023 measure “out-of-sample performance” which instead
can be viewed as the models’ ability to generalize for unseen data. Results will also
be presented with separate MSFEs for each year. Additionally, line graphs for each
models of actual values and forecasted values, will be used to analyze which periods
that are especially difficult to forecast accurately.

The initial benchmark model is a simple rolling average of 60 periods. In other
words, the average of the 60 last months is the forecast for the upcoming month.
Although, as the modeling phase progresses the next model, the SARIMA is the
more reasonable benchmark based on previous research as discussed in section 4.2.
The evaluation metric used in this study is mean squared forecasting error (MSFE).
This metric is widely used in similar studies on forecasting of price differences in
food such as Ribeiro and Dos Santos Coelho (2020) and Yang et al. (2017), who
also compare different models to each other.

After the rolling average benchmark was established, complexity of models was
added incrementally. Throughout the rest of this chapter we will present how these
increasingly modern models were implemented, starting off with how to capture
trends and auto-regressive aspects of the series.

4.2 Statistical Approach

The target variable as well as most of the category-level time series of the target have
clear monthly seasonality, some of which is explained by the yearly cycle of Matilda
Foodtech’s clients buying different goods in for example December compared to
August. Some is, however, explained by actual price differences of the same foods
between different months due to supply and demand dynamics. As an example
vegetables tend to be cheaper during summer than during winter. Considering
that for instance electricity prices also have a clear seasonality, adding seasonality
components can help prevent spuriousness to arise when introducing macroeconomic
variables (Enders, 2015).

The first model used to try to improve on the rolling average benchmark is
a SARIMA. AR and ARIMA models are often used as a benchmark in similar
studies (Ribeiro and Dos Santos Coelho, 2020). In this study the seasonality effects
are added to have a fair benchmark, since an ARIMA would perform poorly on
the seasonal data. The hyperparameters were tuned on 2017-2021, with the grid
specification as in table 4.1.
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Table 4.1: Parameter Values for Component Orders

Components Values tested
AR order (p) 0,1,2
Integration order (d) 0,1

MA order (q) 0,1,2

AR order of seasonality (P) 0,1,2
Integration order of seasonality (D) 0, 1

MA component of seasonality (Q) 0,1,2
Seasonality components (s) 0, 12

The hyperparameters were then selected by minimizing the Bayesian informa-
tion criteria (BIC). Using the selected model specification, 48 models were trained
using a rolling window and used to make one-step-ahead forecasts for January 2020
up until December 2023. Note that 0 is included in the grid for seasonality com-
ponents, but 12 was selected (see Chapter 5, Table 5.2), which further validates
the need for including monthly seasonality effects in the benchmark. Additionally,
the integration order was only meaningful for a few of the category-level time series
where SARIMA and SARIMAX were used hierarchically as discussed in 4.3 that
needed second differences to ensure stationarity.

Considering the vast amount of lagged macroeconomic variables, a two-step fea-
ture selection procedure was used for the SARIMAX. The first step was using a
simplified version of correlation analysis. Correlation is a commonly used way to
perform feature selection in Machine Learning. Hall’s (1999) paper explains that
a good feature set should consist of variables that have high correlation with the
target variable, while not being correlated with each other within the feature set.
The simplified approach used in this article was to choose a correlation threshold
used to keep or dismiss certain lags of certain variables. If the absolute value of the
correlation between the feature and the target was greater than the threshold, the
feature was kept for step two.

The second step for feature selection used was least absolute shrinkage and se-
lection operator (LASSO). When the features selected through correlation analysis
alone were used to perform out-of-sample forecasts, the model showed signs of severe
overfitting. Muthukrishnan and Rohini (2016), explains how models fitted on too
many variables often are hard to interpret and do not generalize well. He raises
LASSO as a proven alternative for feature selection and argues that it can make
models generalize better on new data. LASSO was therefore used to further filter
the features with high correlation. Again, 2019-2021 was the period used to select
features with LASSO. Using LASSO alone did not keep any variables in the feature
set, and therefore was not considered interesting since it would be equivalent to the
SARIMA model explained above.

The simplified approach used in this article was to perform in-sample cross-
validation to choose a correlation threshold used to keep or dismiss certain lags of
certain variables. [0.15, 0.2, 0.25, ..., 0.4] was tested as thresholds and 0.3 gave
the lowest in-sample MSFE. The same parameter grid for the SARIMA components
(see table 4.1) were used for the SARIMAX and parameters were now re-selected
using BIC, given the variables selected using this approach.
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4.3 Hierarchical Approach

The SARIMA and SARIMAX procedures explained in 4.2 were applied directly to
the aggregated first differences of the price index. However, as explained by previous
research, there are potential benefits of first forecasting individual categories and
then adding them back together using the same percentage share used when creating
the index (Hyndman et al.; 2011). In previous literature a bottom-up approach is
sometimes shown to both improve model performance as well as providing valuable
insights about underlying items.

The next models to be tested are therefore a hierarchical (bottom-up) SARIMA
and a hierarchical (bottom-up) SARIMAX. The procedure is the same as in the
aggregated case, but 103 SARIMA models and 103 SARIMAX models are now
trained and tuned. This means that for each category, both the SARIMA and the
SARIMAX model has its own combination of p, d, ¢, P, D, Q and s. This also implies
that each SARIMAX model can select different macroeconomic variables depending
on what features are highly correlated and kept by LASSO for that specific category.
The 103 forecasts of the category-level SARIMA models are summed, which creates
the forecast for the first difference of aggregated price index. The same applies to
the 103 forecasts made by the SARIMAX models.

4.4 XGBoost Approach

In contrast to the traditional statistical approach above, this section covers the
methodology of a machine learning based approach with gradient boosted decision
trees. Namely, the extreme gradient boosted tree algorithm XGBoost. The prereg-
uisites regarding data structure are somewhat different to the statistical approach,
hence a reformatted data structure was needed. As dependent variables, both the
aggregated price index as well as all the category-level indices were kept. To adapt
the data for XGBoost, nine lags of differenced category price indices were created in
addition to the macroeconomic variables. Nine lags were included to enable a fair
comparison to the statistical modeling approach. Lastly, a new set of variables for
the month was created with one-hot encoding for each month of the year to easily
capture seasonality. These modifications to the data significantly increased the di-
mensionality, hence the importance of properly selecting features in the subsequent
step.

Feature selection and feature scaling are two procedures that are different with
regards to tree based models. Scaling and normalization is not necessary due to the
tree structure, additionally feature selection is in a sense automatically conducted
in the algorithm by the splits. Additionally, when tuning the model, regularization
parameters for L1 and L2 regularization were included in the parameter grid to
only include relevant features in the model. In order to train a general and well-
performing model, cross validation was employed on a parameter grid. This ensures
that the model is tuned to utilize the optimal values of the parameters in the grid
according to a seven-fold cross validation. The parameters included in the grid
were number of estimators, max depth, learning rate, lambda, alpha, gamma and
subsample. The values of these parameters in the grid and the effect they have on
the model is presented in table 4.2.
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Table 4.2: Parameter Grid for Model Tuning of XGBoost

Hyperparameter Values

Number of boosting rounds [50, 60, 70, 75, 80, 90, 100, 125, 150]
Maximum tree depth (2, 3,5, 7]

Learning Rate [0.1, 0.01, 0.001]

L2 regularization [0, 0.1, 0.3, 0.5, 0.7]

L1 regularization [0, 0.1, 0.2, 0.3]

Minimum loss reduction allowed for a split [0, 0.1, 0.2, 0.3]

Subsample [0.5, 0.7, 0.9]

These parameters were then tuned using GridSearch cross validation with seven
folds on the training data set which is the 36 months prior to the first observation in
the validation set. Both RandomizedSearch and GridSearch were tested. However,
GridSearch did perform better although it is much more time consuming. The main
difference between GridSearch and RandomizedSearch when cross validating is the
methodology. When using GridSearch it systematically tests every combination of
parameters in the grid. In comparison, RandomizedSearch randomly selects param-
eter combinations and provides us with the best one given the number of iterations
it is allowed to test.

4.5 Ensemble Methods

Previous studies show that a combination of models can be used to further improve
performance. Combining models in different ways is often referred to as ensemble
methods (Ribeiro and Dos Santos Coelho, 2020) or consensus methods (Marmion
et al., 2009). A summary of articles that show how different ensemble techniques
can improve single forecasting models in price forecasting is provided by Ribeiro
and Dos Santos Coelho (2020). While the ensemble methods exemplified in their
paper are all showing improved performance, they tend to be complicated. In many
other fields than economics, consensus methods have also shown performance boosts
compared to stand-alone models. One of the simplest ways to implement consensus
methods that show improved performance is taking averages of the forecasts of
different models (Marmion et al., 2009). Marmion et al. (2009) among others also
discuss potential improvements using weighted average ensembles, where different
models are assigned different weights based on their estimated performance.

In this study an average ensemble of the best models was created using the
SARIMAX, the hierarchical SARIMAX and the XGBoost models. In other words,
for each of the 48 periods that were forecasted, the forecasts of the three best models
were summed and divided by three. This method will also be compared to creating
an ensemble of the same three models using the optimal linear combination suggested
by a linear regression model applied to the 24 in-sample forecasts.
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5
Empirical Analysis

This chapter will start with a exploratory analysis in Section 5.1. This will be
followed by results and analysis of the different modelling approaches in Section 5.2
to 5.6. A comparison of all models performance is found in Section 5.7. Lastly,
models for organic and conventional foods will be analyzed in Section 5.8.

5.1 Exploratory Analysis
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Figure 5.1: Price Indices over time for organic, conventional and the ordinary index.

Figure 5.1 depicts the price indices used in this paper. The left column shows
the aggregated price indices before differencing, where the increase in food prices in
2022 is very clear. Prior to the war in Ukraine, the trend for food price inflation
appears to be rather constant with a slight stagnation between 2020 and 2022. These
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were the years most affected by the Covid-19 pandemic which significantly impacted
public sector organizations. In the right column the first differenced time series are
presented. Here the series are stationary and a clear seasonality is present in the
data. It appears that there is a significant downturn in food prices in January and
August. Yet, whether this constitutes a genuine trend in food pricing or stems from
heightened procurement by public sector entities in Sweden during these months
remains to be clarified. Given that the prices reflect average costs across various
grocery categories, it is plausible that the commencement of new semesters during
these two months prompts bulk purchases, thereby mitigating the average unit price.
However, without looking into the specific goods bought during different months it
is not possible to accurately pinpoint the reason for this behavior.

Figure 5.2 and 5.3 depicts the macroeconomic variables used in the modeling,
some of them are price indices, interest rates and prices in different currencies.
Therefore, the scale and unit on the y-axis is different for each and every variable.
However, it is still possible to interpret both the tendencies and trends in these time
series. Generally, for all the series, the last years of the Covid-19 pandemic and war
in Europe has affected them. Significant increases are present in all three exchange
rates since the outbreak of the Russian invasion in February of 2022. The Swedish
policy rate, treasury bill and government bond also increased in this time period
from low and stable levels the years prior. When considering the prices of products
and commodities they all significantly increased in this time period as well. It is safe
to say that the last couple of years has significantly affected all of the macroeconomic
variables, this in turn will hopefully provide useful information for the models to
accurately model the similar pattern found in the food price index as well. In the
right hand side of Figure 5.2 and 5.3 the first differenced values of all macroeconomic
variables are presented. When considering the differenced series, most of them go
from stable levels with constant variance to greater fluctuations in the last two to
three years. The exchange rates are the only ones that do not show much difference
in behavior over time. The differenced series are the input to the models.
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Figure 5.2: Evolution of first differences of macroeconomic variables over time.
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CPI SWE: All Items Non-Food Non-Energy
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Figure 5.3: Evolution of first differences of macroeconomic variables over time.
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One way to assess the relevance of macroeconomic variables and their lags is
to consider correlation matrices. The correlation matrix in figure 5.4 presents the
correlation between the price index and all nine lags of the macroeconomic variables
between January 2019 and December 2021, the same period as the models are trained
and tuned on. Significant correlation is present in the second lag of the exchange
rates of Swedish krona against euro, dollar and the combined exchange rate of 27
trade partners. The Swedish policy rate and treasury bill is most correlated at lag
5. However, the opposite relationship exists between these two and the price index
at lag 7. Other interesting patterns visible in the figure is that the global price of
wheat is most correlated at the first lag and then it is very close to zero. The price
of Brent crude oil is however not very correlated with the food price index during
this time period, even though previous research by Baffes (2007) suggests that an oil
price shock will in part influence the food prices as well. Interestingly, the strongest
correlation in figure 5.4 is not present in the first lag. Insinuating that in this period,
forecasting with longer horion than one month ahead is viable.
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Figure 5.4: Matrix with correlation for all lags of the macroeconomic variables with the

independent variable "First Difference of Price Index’ between January 2019 and December
2021.

One important aspect to highlight is the difference in the selection of macroeco-
nomic variables and lags. The statistical models SARIMA and SARIMAX selects
its macro variables based on the period 2019-2021 as shown in figure 5.4. XGboost
on the other hand re-evaluates the variable selection for each forecast and hence
allowing for a more dynamic model due to the rolling window forecasting approach.
The statistical models can be configured to do this as well, but it increases the
computational complexity significantly and thus not implemented in this paper.
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5.2 Rolling Average

The rolling average model is the benchmark model in this paper. It is a simple way
to benchmark and mostly used as a proof of concept (Conol, 2020). The length of
the rolling average window is found to be 60 months, i.e. five years, through cross
validation. The forecasting performance of this benchmarking model is depicted
in figure 5.5. This figure shows both the in-sample and out-of-sample forecast. In
Table 5.1, the evaluation metric MSFE that will be compared with the other models
is presented.

— Actual
2- —— Rolling Average
---- In Sample vs. Out of Sample
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Figure 5.5: Rolling Average forecast

As one might expect, the rolling average is forecasting a slight positive value
indicating a fairly constant price inflation. As exemplified in Figure 5.1, starting
from 2022 the food price inflation increased from this fairly steady level. Hence, the
benchmark should easily be beaten by other models that can capture the dynamics
of food prices.

Table 5.1: Mean Squared Forecasting Errors for rolling window forecast (36 months) both
i and out-of-sample

Model MSFE: 2020-2021 MSFE: 2022-2023
Rolling Average 0.4467 1.2572

The MSFE in Table 5.1 is lower in sample (2020-2021) than it is out-of-sample
(2022-2023). This is all due to the sudden change in food prices which the rolling
average will have difficulties capturing due to its 60 month window. Conversely, if
the food price inflation stabilizes around a lower level again in the future, it will
take time for it to adapt to this more steady state.

5.3 Statistical Approach

The tuned and selected hyperparameters by BIC for the SARIMA and SARIMAX
models are presented in Table 5.2. These are very similar for the two models with
the main difference being that the SARIMAX does not include any AR components
and instead uses the seasonal MA-component. The parameter p, d and q represents
the ARIMA parameters where p is the autoregressive component, d is the differences
and q is the MA component. In the seasonal models, P, D and Q are the seasonal
autoregressive, differences and MA components. In effect, the SARIMAX model
is therefore an MA model with seasonal effects and exogenous variables whilst the
SARIMA includes the AR component and no MA component in the seasonal effect.
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Given the complexity of the situation, it is best to simplify by referring to them as
SARIMA and SARIMAX moving forward, as these are the frameworks in use.

Table 5.2: SARIMA Hyperparameters

Hyperparameter p d q P D Q s
SARIMA 1 0 2 2 1 0 12
SARIMAX o 0o 2 2 1 1 12

The performance of the two models in Table 5.3 are very similar. Although, the
SARIMAX which includes macroeconomic variables is slightly better performing
both in and out-of-sample. When comparing this with the rolling average forecast,
the statistical modeling approach is superior.

Table 5.3: Mean Squared Forecasting Errors for SARIMA and SARIMAX

Model MSFE: 2020-2021 MSFE: 2022-2023
SARIMA 0.2321 0.7829
SARIMAX 0.2209 0.7469
Rolling Average 0.4467 1.2572

This is also evident in figure 5.6 where both models follows the dynamics of the
actual values. Nevertheless, it is evident that both models encounter difficulties in
the year 2022, where they underestimate the increase in food prices. While they
accurately capture the direction of the fluctuations, they fall short in accurately
representing the magnitude of the change. This is unsurprising, as the model lacks
significant knowledge of the war in Europe and its potential impact on prices in the
future.

2- —— SARIMA
---- In Sample vs. Out of Sample

— Actual
27 —— SARIMAX
---- In Sample vs. Out of Sample

20 i i i i i i i i i i i i i i i i i
202001 202007 202101  2021-07  2022-01  2022-07  2023-01  2023-07  2024-01 202001 202007  2021-01  2021-07  2022-01 202207  2023-01  2023-07  2024-01

(a) SARIMA (b) SARIMAX
Figure 5.6: Comparison of non-hierarchical SARIMA and SARIMAX forecasts

The addition of macroeconomic variables improves the forecasting performance
compared to the SARIMA model. The improvement in MSFE is small but both
models perform significantly better than the rolling average benchmark both in-
and out-of-sample.

An interesting aspect of the SARIMAX model is that it is possible to identify
which macroeconomic variables it selected and the lag order of these, which is found
in Table 5.4. The global food price index three months ago, Swedish treasury bill
with one month maturity five months ago and the government bond are selected to
name a few. Notably, most of these are Swedish macroeconomic variables except
global food price index and harmonized consumer price index for bread and cereals
in the European Union.
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Table 5.4: Selection of macroeconomic variables for SARIMAX

Feature Lag

PFOODINDEXM 3
setblmbenchc 5
emgvboy 4
6
7
8

setblmbenchce
secbrepoeff
CPO0111EU272020M086NEST

5.4 Hierarchical Approach

As described in section 4.3, the same modelling approach as for the SARIMA and
SARIMAX is used for the hierarchical version. In the hierarchical approach however,
103 separate models on disaggregate data are tuned and trained before forecasts are
added together to create the index. The parameter specifications construct a vast
matrix that will not be presented in this paper. All disaggregate models are however
tuned according to the same principle as before. While the disaggregate models
may not strictly adhere to the full SARIMA or SARIMAX specifications, they do
operate within the framework and have the flexibility to utilize all parameters in
their specifications. Hence, the overarching modeling approach is SARIMA and
SARIMAX.

In table 5.5 the performance of the hierarchical approach is shown to be more
reliable on incorporating macroeconomic variables than the non-hierarchical ap-
proach. Out-of-sample the hierarchical SARIMAX is equivalent to the statistical
models while the hierarchical SARIMA is clearly worse. The in-sample performance
is better for both hierarchical models compared to the non-hierarchical SARIMA.

Table 5.5: Mean Squared Forecasting Errors for hierarchical SARIMA and hierarchical
SARIMAX

Model MSFE: 2020-2021 MSFE: 2022-2023
Hierarchical SARIMA 0.1397 0.9687
Hierarchical SARIMAX 0.1000 0.7544
Rolling Average 0.4467 1.2572
SARIMA 0.2321 0.7829

Considering figure 5.7, it is clear that the dynamics of 2022 are poorly captured
by the models. On the other hand, the hierarchical SARIMAX is quite accurate in
2023 compared to the other models. This indicates that the effects of 2022 are not
as present in 2023 since the model is performing similarly to the in-sample period.
Thereby, it is possible that food price inflation is settling down to pre-war levels.
Conversely, it is also possible that the model is slowly adapting and learning the new
reality since the war started. However, whatever the true effect is, the forecasting
performance is better in 2023.
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Figure 5.7: Comparison of hierarchical SARIMA and SARIMAX forecasts

The hierarchical modeling approach enables the analysis of results from models
focused on specific categories. The specifications and results of the four best models,
compared to rolling average, are presented in table 5.6. These categories are frozen
fish products, frozen meat products, fresh meat products and fresh dairy products.
The MSFE is less than half of the corresponding rolling average across all four cat-
egories. Moreover, these categories hold significant weight in the aggregated price
index, with fresh dairy products having the largest share among them. An intrigu-
ing and intuitive observation from the table is that the variables chosen for fresh
meat products, which are predominantly Swedish (approximately 99% during the
in-sample period), consist solely of Swedish macroeconomic variables. Conversely,
for frozen fish products, where only about 40% are Swedish, predominantly global
and European macroeconomic variables are selected.

Table 5.6: Statistical performance and component orders by category

Product MSFE MSFE  Features SARIMA
SARI- Rolling Orders
MAX avg
(00S) (00S9)
Frozen fish products 0.0057 0.0135 setblmbenchc, (0,0, 1),
CP0111EU272020M086NEST, (1, 0, 0, 12)
POILBREUSDM,
WPS057303
Frozen meat products 0.0017 0.0065 WPS057303 (0,0, 1),
(1,0, 0, 12)
Fresh meat products 0.0045 0.0113 setblmbenche, (1,0, 0),
emgvbby, (1,0,1, 12)
sekeurpmi
Fresh dairy products 0.0025 0.0087 setblmbenchc, (0, 0, 0),
CP0450EU272020M086NEST, (0, 1, 0, 12)
secbrepoeft,
PWHEAMTUSDM,
sekkix92,

ENRGYOEU272020M086NEST,
CP0450EU272020MOS6NEST

In figure 5.8, the four best performing submodels from the hierarchical SARI-
MAX are visualized. In these four models, the SARIMAX predictions follow the
actual values fairly closely. It is also possible to distinguish differences in the be-
haviour of the prices between the categories. As an illustration, Matilda Foodtech
elucidated that Swedish Christmas ham, a component of fresh meat products, could
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elucidate the price surges during December months. This is due to its relatively
high cost and the fact that it is primarily purchased in December, aligning with
traditional consumption patterns. Clear seasonal spikes and dips like these are gen-
erally well-captured by the models. Issues arise when price fluctuations deviate from
these established patterns, resulting in significant price changes occurring in months
that were not previously affected by such fluctuations. This is a sign that the ef-
fect of macroeconomic variables on price changes is not constant, and their relative
importance could change over time. The solid fit of the fresh meat product model
in-sample and in 2023, contrasted with its poor performance in 2022, suggests that
during periods of economic instability, additional variables may influence outcomes
compared to more stable economic periods. Another possible explanation is that
the models mostly captures seasonality, and given the large amount of features to
choose from, some features are simply selected by chance and should not actually
be part of the feature set.

202001 202007 2021-01 2021-07 2022:01 2022:07 202301 202307 202401 202001 202007 202101 202107  2022:01  2022:07 2023-01 202307 2024-01

(a) Frozen fish products (b) Frozen meat products

(c¢) Fresh meat products (d) Fresh dairy products
Figure 5.8: Four best models in the hierarchical SARIMAX model

Table 5.7 displays the frequency with which the twelve most selected macroeco-
nomic variables are employed in the category-level models. The global wheat price
is most commonly used, followed by the Swedish treasury bill and US diesel prices.
Additional insights can be gleaned from less frequently chosen features like the SEK-
USD exchange rate. This feature is predominantly selected for categories typically
produced in the US and South America, such as colonial dairy products and colo-
nial coffee. Conversely, the SEK-EUR exchange rate is identified in categories like
colonial pasta, illustrating its varied usage across different product categories.
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This can further be broken down by main category as in table 5.8, which can
provide insights about differences between the groups. An intriguing example is that
Swedish electricity prices are ranked as third, fourth, seventh, and are not included
for fresh, frozen, colonial, and nutrition, respectively. The share of Swedish goods
in these main categories in the sample period is 73%, 52%, 41% and 0.6%. Another
example is that global price index for energy, which is the eleventh most selected
overall, is the fifth most selected for frozen. Note that it is not possible to make
inference-like conclusions from this analysis, one can only tell that feature selections

Table 5.7: Most common features all categories.

Rank  Feature Count
1 PWHEAMTUSDM 56
2 setblmbenchc 46
3 WPS057303 43
4 avg_electricity _price. SWE 37
5 sekkix92 31
6 PFOODINDEXM 30
7 CSESFT02SEM460S 28
8 CP0450EU272020M086NEST 25
9 PCU325311325311 21
10 CP0111EU272020M086NEST 18
11 PNRGINDEXM 17
12 POILBREUSDM 16

often seem intuitive.

Table 5.8: Most common features by main category.

Rank Frozen Rank Fresh

1 WPS057303 1 PWHEAMTUSDM

2 setblmbenchc 2 setblmbenchc

3 PWHEAMTUSDM 3 avg_electricity_price . SWE
4 avg_electricity_price . SWE 4 sekkix92

5 PNRGINDEXM 5 PFOODINDEXM

6 CSESFT02SEM460S 6 WPS057303

7 PCU325311325311 7 CP0450EU272020MO08S6NEST
Rank Colonial Rank Nutrition

1 PWHEAMTUSDM 1 WPS057303

2 setblmbenchce 2 PWHEAMTUSDM

3 CSESFT02SEM460S 3 POILBREUSDM

4 sekkix92 4 NA

5 PFOODINDEXM 5 NA

6 WPS057303 6 NA

7 avg_electricity_price . SWE 7 NA
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5.5 XGBoost

The seven-fold cross-validation when tuning the model provided the model speci-
fication of parameters shown in table 5.9. Surprisingly, it favored relatively large
trees with a max depth of seven, compared to stumps which is what James et al.
(2023) describes as the most efficient specification.

Table 5.9: Hyperparameter specification from cross validation and tuning.

Hyperparameter Value
Number of boosting rounds 150
Max tree depth 7
Learning Rate 0.1

L2 regularization 0

L1 regularization 0
Minimum loss reduction allowed for a split 0
Subsample 0.7

Interestingly, it does not pick any regularisation parameters. Manually adding
some regularization can be beneficial if the tuned model does not generalize to new
unseen data very well. Figure 5.9 shows the performance of the model. Generally,
the model follows the patterns and fluctuation in the actual data very well, especially
in sample. However, it does not fully capture the amplitude of these fluctuations
even though it appears to go in the same direction as the actual observed values.
Although, the sample ends right before the war in Ukraine and the increasing food
price inflation as visible in figure 5.1. By considering the MSFE in table 5.10, it is
clear that the error is considerably lower in sample than out-of-sample. It is however
still a well performing model with slightly lower MSFE than the statistical models.

2- — XGBoost
---- InSample vs. Out of Sample

=2 . / / ! ! . ; ;
2020-01 202007 202101  2021-07 202201  2022-07  2023-01  2023-07  2024-01

Figure 5.9: XGBoost forecast in- and out-of-sample

Table 5.10: Mean Squared Forecasting FErrors for XGBoost and benchmarking models.

Model MSFE: 2020-2021 MSFE: 2022-2023
XGBoost 0.2232 0.7180
Rolling Average 0.4467 1.2572
SARIMA 0.2321 0.7829

One advantage by using XGBoost is that one can easily extract the most impor-
tant features. Feature importance in this case is the built in function in the XGBoost
algorithm, rating the importance of each feature by how much impurity it reduced
in the tree by splitting on the feature in a tree (Marsh, 2023). The average for all
trees are then used to create the feature importance figures in this paper (Marsh,
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2023). Figure 5.10 depicts the 25 most important features from the 36 month long
training period between 2019 and 2021. In comparison, figure 5.11 shows the most
important features from the last forecast, i.e. the forecast for December 2023. No-
tice that the macroeconomic variables are significantly more important in the latter

period.
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Figure 5.10: The 25 most important features from the training period 2019-2021

In figure 5.10, the relatively most important feature is the fifth lag of frozen ice
cream. Whether this is true or a seasonal effect not captured by the model is hard to
differentiate between. However, ice cream is most likely a very seasonally dependent
good and thereby it is also likely that it is the latter. The six most important features
are disaggregate index variables with varying lags, meaning that the autoregressive
endogenous features can to a larger degree explain the future behavior of food price
inflation in the training period 2019-2021 compared to figure 5.11 which used the 36
months prior to the last forecast of December 2023. Macroeconomic features that
are present among the 25 most important features in the training set are the diesel
price six months ago and the diesel price three months ago.

In comparison, the most important macroeconomic features in the 36 months
prior to the last forecast (2020-2023) are very different. These are the European
Energy Price Index in EU 6 months ago, diesel price six months ago, Swedish con-
sumer price index for energy one month ago, five year European government bond
one month ago, global wheat price one month ago and many more. This highlights
that the macroeconomic features plays a bigger role during the time period with
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Figure 5.11: The 25 most important features from the 36 months prior to the last forecast
in December 2025.

higher food price inflation. The effect of an oil price shock is only visible in times
where shocks are present, thereby the difference in features validates Baffes’s (2007)
results that the effect of an oil price shock spills over on food prices. Interestingly,
the first lag of oil prices is most important meaning that a change in oil price effects
food prices one month later. This is rather fast and thus not likely to be caused by
fertilizer prices and instead more likely increased transportation costs. In contrary,
the diesel fuel price is most important with six lags which means that it is not as
closely related to transportation. Instead, the time frame is better suited to be the
result of farming and agricultural machines running on diesel fuel. However, the
diesel price in the model is from the US so even though oil related goods are sold on
a global market and thus prices are interlinked, it does not account for subsidies and
stimulus grants currently present in the EU (European Commission, 2024). Another
interesting feature is the sixth lag of frozen unprepared fish. As shown in Table 5.8,
frozen goods are from the statistical approach dependent on electricity prices and
energy. It would make sense since fishing as an agricultural activity is dependent on
fuels and frozen goods are linked with electricity prices to stay frozen.

XGBoost is the well-rounded stand-alone model that overall suits the data best in
this paper, with consistent forecasts both in and out-of-sample and good adaptation
to changes such as the war in Ukraine. The advantage of using a tree based method
is its flexibility, ease of use and interpretation ability. As long as the time series data
frame is correctly formatted with new columns for each autoregressive lag, then it
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is able to cope with large amounts of data and many additional variable. Another
benefit is that combining both numerical and categorical variables in the algorithm
is straight-forward with little to none preprocessing required. One drawback is that
the algorithm isn’t specifically designed for time series data, resulting in that one
must create shifted value columns to allow for autoregressive components.

Another benefit of XGBoost is that it can handle non-stationary data as well.
Resulting in relaxed settings were more variables can be included and thus setting
the stage for a well-performing model. In a volatile and uncertain environment like
the food market in 2022, XGBoost’s flexibility and adaptability may have allowed
it to generate more accurate and robust predictions than the statistical methods.

So, why did it perform significantly better during the troubled year of 2022 and
thus being the best performing stand-alone model in this paper? The algorithm
can handle complex non-linear relationships, making it flexible and adaptable than
the SARIMAX. Additionally, if the seasonality aspect changed or was disrupted,
the algorithms flexibility can capture this more easily due to its adaptability. From
Figure 5.2 and 5.3, there were some clear disruptions in the series in this time
period. Such as the spiking energy prices, wheat prices and exchange rates that
might temporarily violate the stationarity assumptions of other models rendering
XGBoost the most viable approach in terms of crises.

5.6 Ensemble Methods

There are different ways to combine forecasting models as alluded to previously, one
way is to average different model, another is to through a regression of the forecasts
in sample construct a linear combination of the forecasting models. One upside
of this is that if a model accurately captures one aspect of the series that another
model misses, then combining them can improve the performance. However, the
interpretation is then not as straight-forward as a stand-alone model.

The Average Ensemble model is constructed by the arithmetic mean of the fore-
casts for each period from the the SARIMAX, hierarchical SARIMAX and XGBoost
models above. Although averaging the best performing models is primarily chosen
as a linear combination for its simplicity, it is still proven to improve performance
in previous research (Marmion et al., 2009).

However, if validation of the linear combination of the same three models is
performed through linearly regressing the in-sample forecasts to find the ideal linear
combination. This should definitely improve the in-sample forecasts, but does not
necessarily generalize to new unseen data very well.

The results for the ensemble models are presented in table 5.11 confirms this.
In-sample the regression ensemble is, as expected, better than all other models
presented in this study. Out-of-sample it is however not better than any of the
three models indicating that the regression has overfitted the ensemble to the in-
sample data. As mentioned for other models, this could also be due to the rapidly
increasing food price inflation where other macroeconomic variables are important
starting 2022.
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Table 5.11: Mean Squared Forecasting Errors for Average Ensemble, both in and out-of-
sample

Model MSFE: 2020-2021 MSFE: 2022-2023
Average Ensemble 0.1104 0.5621
Regression Ensemble  0.0824 0.7552
Rolling Average 0.4467 1.2572
SARIMA 0.2321 0.7829

— Actual i — Actual
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(a) Average ensemble (b) Regression ensemble

Figure 5.12: Comparison of Average Ensemble and Regression Ensemble in and out-of-
sample.

Considering the evaluation metrics, the ensemble method performs better both
in and out of sample than all other models above. It does follow the fluctuations
very nicely, but just as with the previous models it does struggle with the amplitude
of the fluctuations. However, it appears that 2022 is the worst year and that it
captures the movement nicely in 2023 again.

The difference in out-of-sample MSFE for regression ensemble model is approx-
imately 0.2 compared to the average model, resulting in a performance not signifi-
cantly better or worse than a stand-alone model.

When summarizing the results in this paper, the average ensemble model is the
clear winner of this study in terms of out-of-sample forecasting performance. Once
all single models are trained and forecasts are made it is also relatively simple to
create both the average ensemble and the linear ensemble. It does however require
a lot of computation to create each single model. Therefore, in terms of effort, the
ensemble methods are the worst. When considering the comprehensibility of which
variables drive price changes, ensemble methods exhibit evident drawbacks. This is
because it must be deciphered using the linear combination and all the input models.
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5.7 Model Comparison

Table 5.12 shows the performance of each model for each year. The SARIMA model
displays a significant improvement in forecasting performance in comparison with
the benchmark rolling average. It is therefore reasonable to, from here on out
consider the SARIMA as the benchmark model, which is also more in line with
previous studies. In 2020 and 2021 the hierarchical SARIMAX outperforms the
other models. However, this is in sample where the model is trained. The worst
performing models during these two years are XGBoost and the SARIMA model.
In 2022, the best single model is XGBoost although it is just slightly beaten by
the average ensemble model. When considering 2023 there are some interesting
results, the average ensemble model is the best performer but more importantly,
the hierarchical SARIMAX is not far behind and they are both significantly better
than XGBoost. It is fair to say that 2022 was a special year, not only for food price
inflation. One way to look at these results is that it is clear that some models cope
with anomalies better than other and when the global crises settles somewhat, the
hierarchical SARIMAX provide us with accurate forecasts once more.

Table 5.12: MSFE for all models for each year separately. 2020-2021 is in sample and
2022-2023 is out-of-sample.

Model MSFE
2020 2021 2022 2023

Rolling average 0.3789 0.5144 1.4926 1.0218
SARIMA 0.1513 0.3129 1.0136 0.5522
SARIMA hierarchical 0.0932 0.1862 1.4531 0.4844
SARIMAX 0.2162 0.2256 0.9796 0.5142
SARIMAX hierarchical 0.0570  0.1430  1.2098 0.2990
XGBoost 0.2227 0.2236 0.8897 0.5463
Ensemble - average 0.0707 0.1501 0.8577 0.2665

Ensemble - linear regression 0.0442 0.1238 1.1650 0.2588

Among the ordinary models, the hierarchical SARIMAX outperforms the other
models in three out of four periods. However, the combined effect out-of-sample
results in better performance by the XGBoost model. The color coding in table
5.12 highlights the best performing single and ensemble model. Consequently, the
best performing stand-alone model is the XGBoost, which will be the foundation
for analysing organic and conventional data sets.

SARIMAX based models exhibits improved forecasting performances compared
to their SARIMA counterparts. The SARIMAX model performs better than the
equivalent SARIMA model for both out-of-sample years, which is also true, and
more substantial, for the hierarchical approach. While this analysis is not focused
on the inference of whether a certain variable actually influences the price or whether
it just functions as an indicator, it is safe to say that macroeconomic variables can
be useful for food price forecasting.
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5.8 Organic & Conventional Food

This section can be considered as a test of generalizability of the best performing
single model (XGBoost) to see whether it is a valid procedure for these subcate-
gories. Additionally, by considering the feature importances between organic and
conventional foods, see whether the impact of macroeconomic variables are different
for the two categories.

Actual vs. Predicted Organic Price Index Actual vs. Predicted Non-Organic

—— Actual Price Index —— Actual Price Index
—— Predicted Price Index —— Ppredicted Price Index
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(a) Organic (b) Conventional

Figure 5.13: Comparison of XGBoost forecasts between organic and conventional foods out
of sample.

The dataset only containing organic food items was used and XGBoost tuned
and validated a new model with seven-fold cross validation, just as in the general
model case above. The forecasting performance of that model is illustrated in Figure
5.13a. The poor prediction in Figure 5.13a is also reflected in the evaluation metric
in Table 5.13. It is slightly better than the rolling average benchmark, but it is
clear that it does not fit the movements in the data very well. Instead, it hovers
just above zero, resulting in a behavior close to the benchmark rolling average of
forecasting a steady inflation rate.

The same procedure as for organic foods was conducted on the conventional
food dataset. Figure 5.13b illustrates the forecasts in comparison to the actual
values. It is clear that it does not fully capture the patterns of food price inflation
of conventional foods. It does however, follow the actual values better than for
organic goods even though it does stay close to zero throughout the forecasting
period.

It seems like the conventional model is rather restrictive in its forecasts. The
amplitude of the fluctuations is not a big as the actual values. Potentially, this could
be rectified by multiplication to get an even better performing model. However, since
it is trained on a 36 month rolling period the period prior to increased food price
inflation it is reasonable that it does not fully capture this. By linearly transforming
the model forecast one might loose generalizability on new unseen data if overfitting
on the validation period.

Model Organic Conventional
XGBoost 0.9685 1.1265
Rolling Average 1.1067 1.4278

Table 5.13: MSFFE for Organic and Conventional foods using XGBoost and rolling average.
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Figure 5.14 show the feature importance of the organic and conventional models.
There are not any features that truly stand out compared to the full price index
forecast in figure 5.10. It could be assumed that fossil fuels would be less significant
for organic products, given the reduced dependency resulting from not using fertiliz-
ers. Although, there are some macroeconomic features that are relatively important
such as the Swedish treasury bill nine months ago and the Brent crude oil price two
months ago. There are not any outstanding differences in which features that impact
organic and conventional foods in Figure 5.14. Despite assumptions about potential
differences, the data fails to demonstrate them. Although, since these plots are only
showing which features were important between 2019 and 2021 some things could
have changed. Especially since the energy prices has gone up.
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Figure 5.14: Comparison of feature importance between organic and conventional food
price indices

The forecasting performance of organic and conventional foods is noticeably in-
ferior to that of the ordinary price index, showing only marginal improvement com-
pared to their respective rolling average benchmarks. Whether this is the effect of
data loss when using subsets or due to incorrect specification is difficult to deter-
mine. However, it should be noted that the parameter grid used for tuning the
models was the exact same as for the ordinary price index. For the ordinary price
index, the grid was evolved by multiple iterations of tuning the price index model
and by adding more parameter values close to the selected values. This was not
conducted for these subsets, rendering the model tuning less thorough than for the
ordinary price index.

A big portion of the macroeconomic variables are energy related. Baffes (2007)
found the pass through effect of oil on food to be 18% and 33% on fertilizer. Since
fertilizer is only used on conventional foods, the assumption before analyzing was
that we would see a difference in feature importance of fossil fuels on conventional
foods compared to organic. However, there was no clear difference in Figure 5.14a
and 5.14b on the top feature importances between organic and conventional foods.
Conversely, Baffes (2007) researched the influence of oil shocks in the US. The food
market is not entirely global, some produce are sold locally and thus it might be

38



that his results are not directly transferable to the Swedish and European market.
Whether the EU and Sweden are less dependent on fertilizer, fuels and oil than the
US is outside the scope of this paper, but still relevant for correctly modeling the
series.

What is intriguing is that both models exhibit similarly poor performance, even
though one might assume that conventional foods would not be far off the ordi-
nary price index. It would make more sense if the organic forecast was worse, since
the majority of the macroeconomic variables revolve around energy and fuels that
theoretically suit conventional foods better. Otherwise, it could be that other pre-
dictors are more useful for organic foods such as labor rates assuming it is more
labor intensive by not using pesticides and chemicals to the same extent.

In summary, the results were not as distinct as one might think in advance.
Whether it was due to model specification, feature selection or data loss is hard to
say. Potentially, the time period chosen (22-23) was more complex and unforgiving
for this test compared to a more stable period. Nevertheless, it is still relevant to
predict these series individually. Especially since KRAV’s (2022) article claimed
that the price inflation grew differently for organic and conventional foods. For
public sector organizations where environmentally friendly procurement is relevant
for stakeholder, it would be very useful to forecast these series accurately.
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6

Discussion

Section 6.1 will focus primarily on the validity of this study to what extent conclusion
can be made. In Section 6.2, some practical applications and trustworthiness of
forecast will be discussed.

6.1 Insights and Challanges

Having model evaluation of forecasting performance as the main goal of this paper
quickly increased the complexity of the models. The primary issues include nu-
merous lags, an abundance of features, and the multiplicative interaction between
the two. The methodology of this study does not facilitate the discovery of signif-
icant evidence for particular food price drivers. While inference is not within the
scope of this study, the chosen features can offer insights to guide future research.
As suggested by Joutz’s (1997), prices of input goods have been shown useful for
forecasting in this study. There are logical suggestions from the feature selection
procedures both in the hierarchical SARIMAX case and in the XGBoost case. A
few such interesting things are that the global price of wheat is the most common
variable selected in the feature selection process for the hierarchical SARIMAX, es-
pecially for colonial goods wheat is commonly an input into goods such as pasta and
bakeries. Other interesting patterns are noticable at the main category level, partic-
ularly intriguing and intuitive is that electricity prices are more commonly selected
for frozen and fresh goods than for colonial goods. The diesel price is also one of
the most commonly chosen variables in the hierarchical SARIMAX. This variable is
also found to be important by XGBoost on both occasions shown in the result.

It is also important to highlight that the impact of these macroeconomic variables
seem to be changing over time. By comparing figure 6.1, presenting a correlation
matrix between the macroeconomic variables and food price index between January
2022 and December 2023, to figure 5.4 (2019-2021), we suggest that the influence of
macroeconomic variables has shifted. Most significantly the correlation between the
global wheat price at one lag demonstrates a lot more correlation. Additionally the
Swedish average electricity prices are more important and lastly the price of diesel
and price of oil at lag 8 are also much more correlated to the price differences.
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Figure 6.1: Matriz of macroeconomic features and their nine lags correlation with the price
index between January 2022 and December 2023.

Methodological Insights

The study has shown that complex and modern models which include macroeco-
nomic variables can outperform models that do not in terms of forecasting, which
confirm Januschowski et al.’s (2022), Ribeiro and Dos Santos Coelho’s (2020) and
many other contemporary studies. The exact reason for why some models are better
than others can however not be concluded by this study. The main reason is the
differences in features used as input for the models. However, the algorithms work a
bit differently and might capture different aspects of the relation. Most importantly,
the XGBoost has access to all lagged variables, including lags of specific food cat-
egories, meaning that another variable can explain the difference in inflation than
what is available for the SARIMAX. Furthermore, even though models at times se-
lect the same variables, they often choose different lags. While both XGBoost and
SARIMAX models includes wheat prices, the most common lags selected by SARI-
MAX (lag 6), is only the third most important lag of wheat according to XGBoost.
As mentioned in Chapter 4, a major difference between the SARIMAX models and
the XGBoost is that the latter automatically select new variables for each training
round, while the SARIMAX models use the variables selected based on 2019-2021.
Same goes for price of diesel fuel where SARIMAX most commonly chooses lag 4,
while XGBoost chooses lag 3 and lag 6.

In addition to that correlation between the dependent and independent variables
changes over time, some macrovariables become non-stationary after 2021. P-values
from ADF-tests including 2022-2023 are found in A.3. Thereby, not only should for
example the first lag of wheat prices be included for out-of-sample forecasts, some
variables should be completely dropped or differenced once more to not introduce
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spuriousness (Enders, 2015). Most importantly, the category-level SARIMAX mod-
els commonly selected the Swedish one-month treasury bill which is not stationary
when including 2022, which could be part of the reason why hierarchical SARIMAX
is performing much worse in 2022 than in other years. To make this problem even
worse, the differenced aggregated price index is also non-stationary when includ-
ing 2022. When excluding 2022 and looking at 2015-2021 and 2023 the series is
again stationary. This is furthermore a potential explanation of why XGBoost is
the best performing model in 2022, as it does not assume stationarity for either the
dependent or independent variables.

Alternative Methods

When writing a thesis, there are many methodological considerations to me made.
One of them is regarding feature importance since it can be calculated in multiple
ways. An alternative approach to the one used is to use SHapley Additive exPla-
nations (SHAP) feature importances which are derived from game theory (Marsh,
2023). SHAP-values are the contribution of each variable but corrected to not be
distorted by feature scaling and thus more accurate and consistent than the built-in
feature importance in XGBoost according to Marsh (2023). SHAP was introduced
by Lundberg and Lee (2017) to better suit the human intuition and allow for more
complex models to be easily interpreted. In hindsight, this method would allow for
more accurate and consistent feature importance’s from the XGBoost models as well
as providing more insights about the adaptivity of the features.

There are also considerations regarding the inclusion of macroeconomic variables.
In this paper, these variables are included as after differencing and pre-processing.
However, an interesting approach that was considered was to use principal compo-
nents and use these as the input instead. According to Stock and Watson (2002), the
benefit is that a large number of predictors easily can be incorporated without in-
creasing the computational complexity and thus generate better forecasts. Moreover,
Stock and Watson (2002) shows that using principal components are asymptotically
efficient as variables and times series length increases. A drawback is however, that
it does not allow for models that benefit from the presence of heteroskedastic and
serially correlated uniquenesses (Stock and Watson, 2002). Due to the limited num-
ber of macroeconomic variables, this paper does not perform principal component
analysis. Although, it would be interesting to use many more macroeconomic vari-
ables from a larger API source and perform principal component analysis in terms
of organic and conventional foods. Since the forecasting performance was limited,
adding more variables through principal components could potentially better explain
the difference between organic and conventional foods.

When discussing macroeconomic variables, feature engineering becomes a factor
to consider. For instance, considering variables like the global wheat price reported
in US dollars, it would make sense to create a new variable combining exchange
rates with the reported currency to more accurately reflect the impact in Sweden.
However, this insight came later and was consequently omitted due to time con-
straints.

42



Aggregation Bias

By aggregating the data into a price index, one should be cautious about aggregation
bias. It occurs when aggregating data to a higher level if the disaggregate data has
different scales, units or if things change in the data that are not accounted for
(Luloff et al., 1980). In our data, aggregation is based on value and volume. The
value is always reported in SEK, however, as the data aggregation was not conducted
by us it is not possible to determine whether volume is always measured in weight
(kg) or if there are any discrepancies. This can induce aggregation bias since the
price index is constructed with the volume for each category. Another source of
potential aggregation bias is the increasing customer base for Matilda Foodtech.
Even though it is mainly public sector organizations, it is possible that different
organizations and municipalities have different purchasing patterns and purchase
different goods which might affect the aggregation accuracy. To somewhat account
for this, only customers reporting on a monthly basis are included in this paper. It is
still no safeguarding against aggregation bias since the trend is that more and more
customers switch to monthly from quarterly reporting during the years analyzed.
Aggregation bias can result in the ecological fallacy, where one might assume that
what is true on aggregate level also is true for the disaggregates (Piantadosi et al.,
1988). In this paper, the bottom up hierarchical approach is used in the statistical
models and thus no conclusions are drawn in the opposite direction.

Computational Complexity and Ease of Use

In comparison with statistical time series methods, these are generally constructed
to use lagged values within the same column, making it simple to adjust the input
data without changing the data frame. In a setting where the data is fairly well
known, some assumptions of how seasonality affects the series can make traditional
statistical approaches both quicker and less computationally intensive than machine
learning based methods. Here, good results are the product of intensive tuning and
validation, instead of knowledge and experience from similar data. When considering
Januschowski et al.’s (2022) results from forecasting competitions, the best results
are found with machine learning methods. Although, if there is a time constraint for
model selection, an experienced time series economist could potentially get better
results in less time with statistical methods by having more experience and therefore
specify the model better. However, domain knowledge is also beneficial with a
machine learning approach where the addition of relevant predictors and feature
engineering is fundamental here as well. Another modeling approach are pre-trained
algorithms like Januschowski et al. (2022) mention about Amazon and Facebook’s
frameworks. A promising method using a pre-trained model is Googles TimesFM,
which is a trained on billions of time series observation online (Upadhyay, 2024).
However, this is a brand new and unproven method within this domain.

6.2 Extensions

This section is primarily included to enhance understanding and usability for Matilda
Foodtech and public sector stakeholders. To obtain the forecast of the next month
in terms of the undifferenced price index, it is necessary to add the forecast being

43



made to the current month’s price index. As explained in section 3.2, the indices are
created using weights representing the most bought categories between 2019-2021 in
terms of value. Furthermore the prices themselves are derived by dividing value by
volume. Therefore the values on the y-axis in figure 6.2 represents the average price
of one unit in the "average shopping bag between 2019-2021" of the public sector.

— Actual Price Index — Actual Price Index
56 - —— Forecast Price Index 56 - —— Forecast Price Index
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Figure 6.2: Visualizing the undifferenced time series forecasts for the different models.

The average ensemble model in Figure 6.2¢ is notably "smoothing” out the errors
made by the benchmark SARIMA model in Figure 6.2b, both in- and out-of-sample.
While it still has a hard time to follow the sudden inflation in 2022, it limits the big
misses made by the SARIMA. Most clearly at some peaks such as July 2022 and
December 2022, as well as some dips such as in January 2023 and September 2023.
Furthermore, it can also be concluded by looking at the plot of the rolling average
in Figure 6.2a, that it is useless in any real world situation for Matilda Foodtech.

Another way to analyze the performance and usability of our models is to look
at how often they predict the correct sign, i.e. if prices increase, the model should
forecast a price increase and the other way around. In terms of sign, the overall ac-
curacy of the average ensemble model out-of-sample is 75%. However, the accuracy
on changes smaller than 1% is 44%, while accuracy on changes larger than 1% is
93%. Since small price changes likely affect the clients of Matilda Foodtech less than
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large changes, it is more important that it correctly forecasts the sign of changes
greater than 1%. When changes are greater than 1.5%, which they are half of the
time during 2022 and 2023, the model forecasts the correct sign 100% of the time
(12 times).

This analysis can be reversed, if the model forecasts a price increase, the prices
should actually increase in order for the model to be trustworthy. Again, the overall
performance of the average ensemble is 75%, and again bigger changes are more
important, and the model has a higher precision on big changes. When the model
forecasts a change smaller than 1%, it is correct 50% of the time, but when it
forecasts changes greater than 1% it is correct 100% of the time (12 times).

For in-sample forecasts the average ensemble is correct about the sign 79% of the
time, which can be compared to the rolling average that is correct 63% of the time.
The hierarchical SARIMAX which intuitively would suffer from the most over-fitting
is correct in-sample 79% of the time in-sample, 67% of the time out-of-sample when
changes are smaller than 1%, and 80% of the time when changes are greater than
1%. The XGBoost model is only correct about the sign-in-sample 63% of the time,
making it the only one not beating the in-sample performance of the rolling average.
Out-of-sample the XGBoost however has 33% accuracy for changes smaller than 1%,
but 100% accuracy for changes greater than 1%.

Again, this analysis suggests that the ensemble approach keeps the strengths of
the strongest in-sample models for 2023. At the same time it reduces the errors
of such models in 2022 when it instead seems to use the strengths of the “under-
fitted” XGBoost. The ensemble model therefore seems to be very well balanced in
regards to both MSFE and sign forecasting. The weakness of the ensemble is its low
explainability and that it requires more training and computer resources than any
single model.
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7

Future Research

The results shown in this study might not generalize to other food price indices.
Partly because of the delimitation of using Swedish public sector data, and partly
because the manner in how the price index was created in this study does not
exactly replicate other indices. Therefore, it is imperative to test these methods on
additional data before making any substantive claims about their effectiveness in
forecasting for example Swedish consumer food price index or Swedish CPIF.

No conclusions about specific macroeconomic variables’ influence on food prices
can be made from this study. Instead, given the results, selected features are to be
seen as guidance or suggestions for future researches wanting to do more inference-
focused studies on drivers of food price changes. There are signs of interesting
relationships between lags of macroeconomic variables and food prices, both for
specific food categories, as well as the aggregated index.

Another area for further research is trying to improve the models used in this
study. One concrete suggestion is to engineer features by for example multiplying
global wheat prices with the SEK-USD exchange rate. Avoidance of multicollinearity
issues for the statistical models was left for LASSO to handle in this study, it could
be beneficial to more carefully remove some variables manually using correlation
matrices and prior beliefs before leaving the feature set for LASSO to deal with.

As mentioned in previous research, there are many modern forecasting methods
such as SVMs and NNs. XGBoost was chosen for this study since it often is one of
the best algorithms in forecasting competitions, but other modern algorithms could
potentially be better for this data. As time passes and more data becomes available,
it might also be possible to improve the SARIMA and SARIMAX models simply
by increasing the window size, as the selected window size of 60 periods was the
maximum. Especially in the case where macroeconomic variables are used it could
be less prone to overfitting.

Matilda Foodtech provided us with both main category and subcategory. A lot is
left to explore in terms of hierarchical models. The bottom-up SARIMAX approach
that is the best performing single model both in-sample and in 2023, only forecasts
unique main category-subcategory combinations, and then immediately aggregates
them to the price index. Oftentimes, hierarchical models have more layers and it
would be interesting to also forecast main categories, before aggregating all the way
up to the price index. Furthermore, a next step could be to combine the category
forecasts in the optimal way as suggested by Hyndman et al. (2011).
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8

Conclusions

This paper has shown that ensemble methods that include modern machine learning
models can improve forecasting performance as previously proven by Ribeiro and
Dos Santos Coelho (2020) amongst others. More specifically, this paper has demon-
strated that ensemble models improve performance in real-world scenarios where
data is not always collected explicitly for researchers or forecasting organizations.
Compared to previous research, we however propose ensembles not purely made up
of machine learning models. Instead, we have shown that when combining statis-
tical methods with machine learning methods, ensembles can use strengths of the
two by capturing both linear and non-linear relationships between macroeconomic
variables and food prices. Strengths and weaknesses of hierarchical methods dis-
cussed in Schwarzkopf et al. (1988) are also validated in this paper. We see that
the best performing category-level models are the ones corresponding to the largest
categories, which have the most data and least amount of outliers. The smaller
categories are in general much harder to forecast and their models seem to perform
poorly.

Although the average ensemble is difficult to interpret, it is possible to explain
the behavior within the underlying categories once all the individual models are
constructed. Different organizations and researchers such as NIER (2023), Joutz
(1997) and Headey and Fan (2008) has shown that prices of input goods affect food
prices, which also seems to be the case in this paper. However, different studies
point towards the importance of different input goods. This paper also highlights
the importance of input goods. However, due to the complexity of food—considering
factors like country of origin, the variety of staple foods used in products, and the
storage methods of finished goods—different inputs such as electricity prices, wheat
prices, diesel prices, and exchange rates have varying levels of significance depending
on the time, location, and product involved. This leads to the conclusion that
there are no definitive factors that should be consistently used to explain food price
inflation at the aggregated level. Instead it depends on hundreds of variables at the
lower level of the hierarchy whose significance varies over time.
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Appendix A

Table A.1: Categories included in index

Category

Frozen pastry with filling
Frozen dessert

Frozen fine bread

Frozen unprepared fish
Frozen fish products
Frozen fruit and berries
Frozen ready meals
Frozen unprepared poultry
Frozen poultry products
Frozen ice cream

Frozen untreated vegetables
Frozen vegetable dish
Frozen coffee

Frozen pastry dough
Frozen pastry bakery
Frozen spices

Frozen meat unprepared
Frozen meat products
Frozen bake-off bread
Frozen ready-made bread
Frozen pancake, waffle, omelette
Frozen pasta dish

Frozen potato product
Frozen puree

Frozen hash and stir-fry
Frozen pie crusts

Frozen seafood

Frozen timbale

Fresh baking accessories
Fresh dessert

Fresh dressing, sauce, soy
Fresh unprepared fish
Fresh canned fish

Continued on next page
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Table A.1 — Continued from previous page

Category

Fresh fruit and berries
Fresh ready meals

Fresh unprepared poultry
Fresh poultry products
Fresh treated vegetables
Fresh untreated vegetables
Fresh peeled vegetables
Fresh vegetable products
Fresh juice, nectar, drink
Fresh spices

Fresh unprepared meat
Fresh meat products

Fresh mayonnaise and products
Fresh mayonnaise salad
Fresh ready-made bread
Fresh cooking fats and oils
Fresh dairy substitutes
Fresh dairy products

Fresh cheese

Fresh potatoes

Fresh potato products

Fresh caviar products

Fresh shellfish

Fresh main course sauces
Fresh eggs

Fresh egg products

Colonial baking mix
Colonial baking accessories
Colonial legumes

Colonial baby food

Colonial stock, fond, glaze
Colonial dessert

Colonial dressing, sauce, soy
Colonial canned fish
Colonial breakfast cereals
Colonial fruit and berries
Colonial fruit and berries canned
Colonial seeds and kernels
Colonial ice cream accessories
Colonial grains

Colonial canned vegetables
Colonial vegetable dish
Colonial dry bread and baked goods
Colonial juice, nectar, drink

Continued on next page
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Table A.1 — Continued from previous page

Category

Colonial coffee

Colonial pastry bakery
Colonial carbonated drink
Colonial confectionery
Colonial spices

Colonial ready-made bread
Colonial cooking fats and oils
Colonial dairy substitutes
Colonial dairy products
Colonial flour

Colonial pasta product
Colonial potato product
Colonial mashed potato powder
Colonial thickener, starch
Colonial rice

Colonial salt

Colonial mustard, tomato products
Colonial snacks

Colonial sugar, sweeteners
Colonial soup, stew, powder
Colonial jam, marmalade, jelly
Colonial sauce for main dishes
Colonial tea, chocolate drink
Colonial vinegar, cooking wine
Nutritional supplement
Nutritional products
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Variable p-value
sekeurpmi 0.0026
sekusdpmi 0.0
sekkix92 0.0154
secbrepoeff 0.0
setblmbenchc 0.0
emgvbdy 0.0
POILBREUSDM 0.0
PCU325311325311 0.0
PNRGINDEXM 0.0
PFOODINDEXM 0.0
SWECPICORMINMEI 0.0017
CPGRENO1SEMG657N 0.0
CSESFT02SEM460S 0.0
WPS057303 0.0
CP0O111EU272020MO8S6NEST | 0.0004
PWHEAMTUSDM 0.0
ENRGYOEU272020M086NEST | 0.0
CP0450EU272020MOS6NEST | 0.0
avg_electricity_price . SWE 0.0

Table A.2: P-values from ADF-test of first differenced macroeconomic variables 2015-2021
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Variable p-value
sekeurpmi 0.0
sekusdpmi 0.0
sekkix92 0.0
secbrepoeff 0.2635
setblmbenchc 0.2489
emgvboy 0.0084
POILBREUSDM 0.0
PCU325311325311 0.0079
PNRGINDEXM 0.0086
PFOODINDEXM 0.0
SWECPICORMINMEI 0.383
CPGRENO1SEMG657N 0.0001
CSESFT02SEM460S 0.0
WPS057303 0.0042
CPO0111EU272020MO086NEST 0.1413
PWHEAMTUSDM 0.0
ENRGYOEU272020M086NEST | 0.0404
CP0450EU272020MOS6NEST 0.0002
avg_electricity_price. SWE 0.0

Table A.3: P-values from ADF-test of first differenced macroeconomic variables 2015-2023
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