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Abstract 
The increasing availability of satellite images with seemingly ever increasing spatial, 

spectral, and temporal resolution is a treasure when searching for information about 

activity on the surface of the earth. However, the large amount of data is challenging 

for humans to search through. Anomaly detection in time series of satellite images 

could potentially help humans to search specific areas for interesting changes reduce 

the workload on humans. 

 The RX-algorithm is commonly used for spatial anomaly detection, but there 

are not that many publications concerning the RX-algorithm applied on temporal data. 

The studies which have been done are on desert areas, which is assumed to be less 

challenging than the area in this thesis.  

By changing the direction of the data sampling from spatial, meaning 

sampling of several pixels in the x, y direction of one satellite image, to the temporal 

direction meaning pixels with the same x, y location from several images taken at 

different times, the algorithm can be used for temporal anomaly detection.  

 In this thesis the performance of the temporal RX-algorithm is assessed by 

applying it on a time series of Sentinel-2 images and comparing the algorithms 

classification against the classification made by a human. All the classifications are 

binary, in this assignment meaning that it is either no change detected or change 

detected.  

Spectral analysis of pixels with 10x10 meter resolution is challenging, and the 

quality of the data is crucial for the results. Mixed pixels, co-registration errors and 

scattered irradiance are present to some extent in all satellite images. The areas 

selected for this study are chosen to test the performance in areas where these errors 

are likely to be present.  

Confusion matrixes are used to interpret the performance by analyzing the 

number of true positives and negatives, and false positives and negatives. It does also 

keep the spatial location of the performance metrics, so that the position of the errors 

could be analyzed. This indicates which type of errors that the misclassification could 

be caused by. The temporal dimension is tracked, and when in time the anomalies are 

introduced is visible in figures which can be compared to the corresponding image.  

This project aims to broaden the understanding of the temporal RX-

algorithm´s performance on time series of satellite images where the environment is 

more complex than a desert. It will hopefully shed light on the limitations and 

possibilities for such automated approaches to anomaly detection that could possibly 

aid humans when interpreting images in the search of anomalies with unknown 

spectral signatures.   
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1. Introduction 
The use of remote sensing for monitoring large areas is not new, and 50 years 

of satellite imagery is available for this purpose (Decuyper, et al., 2022). The 

technological advances since the 1990s have made multi- and hyperspectral images 

from air- and spaceborne sensors increasingly valuable due to the high level of 

information they contain. Among the applications of this data, the monitoring of 

changes is useful and common (Wu, Zhang, & Du, 2015). 

Change detection is to compare an image with multispectral measurements 

from a specific location with another and determine if the measurements have 

changed significantly. A significant change in the measurements implies that the 

observed location contains a change, while smaller changes could be due to 

differences in recording conditions (Singh, 1989). Change detection have a range of 

applications within planning, monitoring and surveillance of larger geographical areas 

(İlsever, 2012).   

First, landcover changes were identified by using bi-temporal images, and 

later on with longer time series. When imagery is applied to monitoring of vegetation, 

it is common to use vegetation indices, such as the Normalized Difference Vegetation 

Index (NDVI), to detect and classify vegetation.  

The Anomaly Vegetation Change Detection (AVOCADO) algorithm 

(Decuyper, et al., 2022) is recently developed to monitor deforestation and regrowth 

over time. The algorithm uses measurements of known undisturbed vegetation from 

nearby areas as reference vegetation. The measured values from these areas are used 

as input, and the algorithm accounts for seasonal changes to detect transitions in 

forest. The relevance of detection algorithms used on time series of data is shown 

with the AVOCADO algorithm, but the AVOCADO algorithm is specialized on 

vegetation and is probably too specific when you are searching for changes across 

different types of landcover containing different types of changes. 

For surveillance purposes interesting landcover changes could be either 

temporary, here meaning appearing and disappearing, or permanent, here meaning 

changed from the original state to another permanent state. It is also important to 

discard changes assigned to normal variations and highlight actual changes in 

landcover. A change from one type of landcover to another, should be considered 

anomalous, while smaller changes between recordings of the same landcover at the 

same place should not be considered anomalous.  

With the increasing availability of satellite imagery with high temporal, spatial 

and spectral resolution, the possibility to detect changes within the same pixel over 

time becomes increasing interesting for several types of automated surveillance 

systems. 

In 1990 Irving Reed and Xiaoli Yu (Reed & Yu, 1990) introduced the Reed-

Xiaoli (RX) algorithm for anomaly detection. This has since become one of the most 

common algorithms for spatial anomaly detection (Manolakis, 2002). In 2020 a 

slightly modified RX-algorithm was applied for temporal anomaly detection in a time 

series of co-registered multispectral images, proving that it can be used both spatially 

and temporally  (Ziemann, Simonoko, & Flynn, 2020), (Simonoko, Ziemann, & 

Flynn, 2020). 

It is possible to argue that temporal anomaly detection is both anomaly 

detection and anomaly change detection since it detects anomalies rather than 

anomalous changes, but since the time of a change can be identified, the change can 

be identified.  



 

 

2 

In their research on Temporal RX, Ziemann et al. (Ziemann, Simonoko, & 

Flynn, 2020), (Simonoko, Ziemann, & Flynn, 2020) use images of a desert area taken 

between June and October 2018.  

This study aims to investigate if the temporal RX-algorithm can be used to 

detect anomalous changes in a time series of co-registered multispectral images in a 

more challenging environment than desert. This study uses a collection of Sentinel-2 

1C images from July 2015 to November 2022 of the 32VKP grid tile.  

Sentinel-2 multi spectral images are used due to the assumed high quality of 

the post-processing of the images that should reduce errors and reduce the need of 

further processing steps. 1C products are used because the data was downloaded 

before the systematic provision of 2A products was made available (Esa, 2024). The 

focus is primarily on classification precision compared to a human made ground truth, 

focusing on false positives and negatives at 10x10 meter resolution.  

The analysis is done on five patches containing nine pixels each. Performance 

is evaluated by comparing the classification of pixels done by visual interpretation 

and by the temporal RX-algorithm. The assignment aims to investigate if temporal 

anomaly detection on Sentinel-2 images with a resolution up to 10x10 meters is 

suitable for automatic detection of objects such as boats and windmills. If an 

automated process could replace, or aid, human visual interpretation of satellite 

images, the growing amount of data could still be analysed within a reasonable 

timeframe. 

 The thesis uses temporal samples of the same pixel location for a given span 

of time to create a statistical background model that later pixels in the time series are 

compared against. The statistical model for each pixel location is assumed to capture 

natural variations for that location over time. When a test pixel is compared to the 

model, it should fit fairly with the model if the content of the pixel is the same. If the 

pixel does not fit reasonably with the statistical model, an anomaly is detected. The 

detection of an anomaly gives us a reason to assume that the content within the pixel 

has changed.  

Since the statistical model is drawn from a specified timeframe, it is possible 

to find the timestamp of the detected anomalies, and thru that detecting the change 

related to the initial model. If the pixel contains vegetation when the statistical model 

is created, but later is converted to a road, the anomalous change is when the pixel 

transitions from vegetation to road. However, the road will not be anomalous since 

the road is a new normal but the pixels containing road will be anomalous compared 

to the, now outdated, statistical model.  

The thesis focuses on pixel level detection of anomalies over time to find 

changes and compares the automated classification against classification done by a 

human. The types of errors that occurs sheds light on which problems such types of 

systems must handle to deliver consistently good results. 

   

1.1. Disposition 
The thesis consists of this introduction with research objectives and questions, before 

the background is presented. The background presents the literature review and 

introduces the most important theory and facts about the subject and data this thesis 

draws upon. Then the methodology of the experiment is described in detail. Then the 

results are presented for each of the five patches individually, before a short overall 

performance is presented. This is followed by a discussion part where the results are 

debated, shortfalls within the research design are discussed and suggestions for 
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further research is presented. Finally, a conclusion is presented that states the answers 

to the research questions. 

 

1.2. Research objectives and questions 
This thesis aims to evaluate if the temporal RX algorithm is suitable for detecting 

anomalous changes in time series of Sentinel-2 images with a spatial resolution of 

10x10 meters.  

 

Assumptions:  

1) If the data quality is consistent, significant changes in spectral 

measurements for pixels outside the timeframe of the statistical model 

should be detected.  

2) The performance is dependent on the spatial size of the change. Ground 

changes not covering a full 10x10 meters pixel will likely give a higher 

false rate, than those bigger than 10x10 meters.  

 

Objective 1: Investigate if the temporal RX-algorithm can detect different types of 

anomalous changes in a less homogenous environment than a desert with Sentinel-2 

data. 

 

 Q1.1: Is the temporal RX-algorithm able to detect changes in Sentinel-2 data 

with other types of landcover than desert? 

 

 Q1.2: Are the timestamp of the anomalies that the temporal RX-algorithm 

detects consistent with the visually detectable changes in the Sentinel-2 images?  

 

Objective 2: Assess the precision of detection at 10x10 meter spatial resolution on 

3x3 pixel patches with different landcover and temporal anomalies. 

 

 Q2.1: How many false positives and negatives will the temporal RX-

algorithm produce in each 3x3 pixel patch?  

 

 Q2.2: How is the spatial distribution of the false positives and negatives in 

each patch, and how do they relate to the shape of the change? 
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2. Background 

2.1. Change detection 
Change detection is used to identify physical changes on the surface of the earth by 

comparing satellite images of the same area taken at different times (Zhao, Shan, & 

Wang, 2023). Such changes could occur because of “[…] deforestation, disasters, 

urbanization, change in coarse of river, etc.” (Elkholy, Mostafa, ElSayad, Ebeid, & 

Tolba, 2023), but the application of change detection is not restricted to landcover 

changes (Geethika, Sreeja, Tharuni, & Radhesyam, 2024). The movement of objects 

on the earth’s surface, such as boats and cars, should also be possible to detect with 

change detection if the objects are larger than the image resolution.  

The information change detection can provide is useful for decision making 

and could inform decisionmakers about urban expansion and changes in water bodies 

(Elkholy, Mostafa, ElSayad, Ebeid, & Tolba, 2023). It is also useful for mapping the 

extent of natural disasters (Zhao, Shan, & Wang, 2023), and how deforestation or 

other changes in vegetation are developing (Geethika, Sreeja, Tharuni, & Radhesyam, 

2024).  

The premise of change detection is that a change in landcover must result in a 

larger change in spectral signature captured by remote sensing than changes caused 

by other factors such as differences in atmospheric conditions, sun angle, soil 

moisture etc. (Singh, 1989). When comparing the spectral signatures measured at the 

same location recorded at different times, identification of changes significantly larger 

than background noise can be used to detect landcover change. 

Change detection is a difficult task (Acito, Diani , Corsini, & Resta, 2017), 

and many different methods have been developed. Some methods are better suited for 

some applications, while others are better suited for other applications. The methods 

here are not comprehensive but gives an overview of some of the most common 

methods. Lu et al. (Lu, Moran, Mausel, & Brondízio, 2004) published an article with 

a review of different change detection methods and divided them into seven main 

categories: algebra, transformation, classification, advanced models, GIS, visual 

analysis, and other change detection techniques. Later, İlsever (İlsever, 2012) have 

reduced the number of categories to four: transformation based, texture based, 

structure based, and pixel based. The following methods and groups are taken from 

İlsever (İlsever, 2012). 

Pixel based is a group that consists of Image Differencing, Image Rationing, 

Image Regression, Change Vector Analysis, Median Filtering-Based Background 

Formation, and Pixelwise Fuzzy XOR Operator. The Pixelwise Fuzzy XOR Operator 

is not included here due to the low number of articles referring to it.  

Image differencing is the subtraction of an image from one date from an image 

from another date of the same scene, pixel by pixel (Lu, Moran, Mausel, & Brondízio, 

2004) to create a new image which contains the amount of change.  

Image ratioing is to calculate the ratio between images taken at two different 

dates pixel by pixel, band by band, and the results should be normalized for best 

performance (Lu, Moran, Mausel, & Brondízio, 2004).  

Image regression assumes that pixels in the first image are a linear function of 

the pixels in the second image. The first date image is regressed against the second 

image with least-squares regression to create a difference image (Singh, 1989). The 

difference image is subtracted from the first date image (Lu, Moran, Mausel, & 

Brondízio, 2004). 

Change Vector Analysis is a method where the Euclidian distance between the 

same pixel at different times is calculated. To calculate this, two images taken at 
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different time are needed and two or more spectral bands from each image must be 

used. Each pixel will now be a vector in a multidimensional space. The two pixels 

with the same geographical location should share the same location in the Euclidian 

space if the pixels are unchanged. If a change has occurred, it is possible to detect 

both the magnitude of the change (distance) and the direction of the change. The 

magnitude of the change can be used to determine the threshold of the change, while 

the direction of the change can be used to classify the type of change.  

Median Filtering-Based Background Formation is a method which is most 

used for motion detection in video that İlsever (İlsever, 2012) has utilized on satellite 

images. The median pixel value for each pixel is determined by sorting a timeseries of 

pixels, and the median pixels are used to create a new background image. The 

assumption is that outliers will be removed. To detect changes, other images are 

subtracted from the background image.   

Transformation based is a group that contains Principal Component Analysis 

(PCA), Kauth-Thomas Transformation (KTT), Vegetation Index Differencing, Time-

Dependent Vegetation Indices, and Colour Invariants. All the methods in this group 

transform the multispectral data to enhance some type of feature before the change 

between images is calculated on the transformed data. The name of the specific 

methods reflects the transformation of the multispectral data. 

PCA reduces the dimensionality of the multispectral images to those who 

account for most of the variation (Singh, 1989). The principal component loadings, 

which indicate how much of the variance each of the variables contributes to the 

principal component, is then analysed to detect changes between images.  

KTT is a fixed transformation of multispectral data, that redefines it into 

brightness, greenness, yellowness, and nonsuch values. The correlation between 

bands is always high within the visible bands and within the infrared bands, while the 

correlation between the visible and infrared bands are always low. The invariant 

nature of this correlation is exploited when the data is transformed. The transformed 

data, which enhances vegetation features, can then be used to detect changes between 

images. 

Vegetation Index Differencing is when multispectral data is transformed into a 

specific index such as NDVI, where the fact that vegetation absorbs most light in the 

red band and reflects most light in the infrared bands. Depending on which vegetation 

features you want to enhance, different indexes can be calculated. The new index 

values are then used to detect changes between images.  

Time-Dependent Vegetation Indices are vegetation indexes where the near 

infrared is sampled from an image with one timestamp, and red is sampled from an 

image with another timestamp. Furthermore, the angle of the index is calculated. 

İlsever decribes it as a «[…] time-dependent form of angle vegetation indices […] 

(İlsever, 2012). Since this index use data from two images in the calculation, the 

index itself describe the level of change and no further processing is needed, although 

thresholding could be applied.    

Colour Invariants are transformations of the RGB colour space that exploit the 

correlations between bands in multispectral images. It was proposed for object 

recognition by Gevers and Smeulders (Gevers & Smeulders, 1997) and they prove 

that the RGB colour space can be transformed to values insensitive to object 

geometry, illumination direction and illumination intensity. The new values that this 

transformation provides, can be used to detect changes when comparing images taken 

at different times. 
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The texture based methods can use different types change detection, as shown 

by Tomowski et al. (Tomowski, Klonus, Ehlers, Michel, & Reinartz, 2010), but the 

methods are applied on texture values rather than intensity values. The two methods 

described by İlsever (İlsever, 2012), are Gray Level Co-occurrence Matrix (CLCM) 

and Entropy. Here texture values are calculated from a window around the pixels in 

the satellite images. The most useful texture features used in CLCM are contrast, 

correlation, energy, and inverse difference moment. Entropy only use entropy, which 

is a measure of randomness that can be used to describe texture.  

Structure based methods is a group that contains Edge Detection, Gradient-

Magnitude-Based Support Regions, Matched Filtering, Mean Shift Segmentation, 

Local Features, Graph Matching and Shadow Information. The main aspect of these 

methods is to identify significant structural elements in the images such as edges, 

shapes, or shadows, and then compare the identified structural elements between 

images. 

It is also worth to mention that artificial intelligence also can be used for 

change detection, like the use of Deep Siamese Convolutional Network proposed by 

Yang et al. (Zhan, et al., 2017). The use of deep learning has been further tested and 

developed by others (Elkholy, Mostafa, ElSayad, Ebeid, & Tolba, 2023). A further 

review of this falls outside the scope of this thesis. 

 

2.2. Temporal anomaly detection 
Anomaly detection can be perceived as a type of target detection where you lack any 

information about the spectral signature of the target (Matteoli, Diani, & Corsini, 

2010). Anomaly detection uses the spectral distribution of the surrounding pixels in a 

satellite image to detect if the pixel under test (PUT) has a significantly different 

spectral signature from its spatial surroundings (Ziemann, Simonoko, & Flynn, 2020). 

The application of anomaly detection could be to identify camouflaged items in a 

single image (Hupel & Stütz, 2022) or other objects with rare and uncommon spectral 

signatures relative to the background. In anomaly detection, the background is a 

neighbourhood of pixels surrounding the pixel under test. This neighbourhood can be 

the whole image or a smaller sample.   

Where anomaly detection only uses a single image to find rare pixels, 

Anomaly Change Detection (ACD) use two or more images of the same scene to find 

pixels where the amount of change between images is larger than the normal variation 

between the rest of the pixels. One method is to use a change statistics image that 

contains statistical values that describe the changes between the images. The highest 

value pixels in the change statistics are the most changed pixels (Acito, Diani , 

Corsini, & Resta, 2017).  
Temporal anomaly detection draws on the methodology of anomaly detection 

but changes the sampling dimension from spatial to temporal. It uses the measured 

spectra for the same geo-referenced pixel over time as a background rather than the 

surrounding pixels in the same image (Ziemann, Simonoko, & Flynn, 2020). Since it 

uses images taken at different times it shares some of the data quality problems with 

ACD.  

With temporal anomaly detection one must address the problem of discerning 

between relevant and irrelevant anomalies. The irrelevant anomalies are those 

introduced to the images due to different recording conditions. This can be sensor 

noise, differences in contrast, brightness or focus, shadows, camera motion, 

atmospheric conditions and seasonal changes, or any combination of these (Acito, 

Diani , Corsini, & Resta, 2017).  
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With methods that use recordings of the same spatially co-registered pixel 

location with different recording dates, spatial co-registration errors could affect the 

performance. These small errors in geo-location introduced by the complexity of the 

recording system are unproblematic for many applications, but when comparing the 

exact same pixel position against itself an error of 1 meter at 10x10 meter resolution 

could affect performance. Perfect geographical correction of images from spaceborne 

sensors is probably impossible, and all images will contain some level of co-

registration error (Acito, Diani , Corsini, & Resta, 2017). However, when using a 

larger number of recordings of the same pixel over time, the errors should be 

absorbed into the statistical model and the effect would be reduced. 

 

2.3.  RX-algorithm 
In 1990 Reed and Yu (Reed & Yu, 1990) proved that their constant false rate alarm 

(CFAR) detection algorithm worked well on satellite images. Since then the 

algorithm, later known as the Reed-Xiaoli (RX) algorithm, has been widely used for 

anomaly detection (Manolakis, 2002), and is considered as a benchmark (Matteoli, 

Diani, & Corsini, 2010). 

The RX-algorithm is a generalized likelihood ratio test developed for 

multidimensional image data. It assumes that the spectrum of the test pixel and the 

covariance of the background pixels is unknown. Further it assumes that the spectral 

information based on the background pixels fits to a multivariate normal distribution. 

This distribution is described with a mean vector and a covariance matrix. 

 The RX-algorithm calculates the Mahalanobis distance, D, for the pixel under 

test using the mean of the background pixels and the pixel under test along with the 

covariance matrix of the background. The distance, D, is then compared to a threshold 

(η) distance to test if the pixel under test is non-anomalous (where D is under the 

threshold distance), or if it is anomalous (where D is above the threshold distance). 

 Each multispectral pixel, 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑗]
𝑇
, is a vector consisting of j bands. 

The background pixels, ℬ , can be represented as a j x m sized matrix where m is the 

number of sample pixels used to build the background model. Where each 

multispectral pixel is represented as a column, ℬ =  [𝐱1, 𝐱2 , … , 𝐱𝑚,]. 

  

The mean of the background 𝛍̂𝑏 ”is given by: 

 

𝛍̂𝑏 =
1

𝑚
∑ 𝐱𝑏𝑖

𝑚

𝑖=1

 

Equation 1 

The covariance matrix is given by: 

 

𝚺𝑏 =
1

𝑚 − 1
∑(𝐱𝑏𝑖 − 𝛍̂𝑏)(𝐱𝑏𝑖 − 𝛍̂𝑏)𝑇

𝑚

𝑖=1

 

Equation 2 

 The RX-algorithm uses the covariance matrix and the mean of the background 

to model a multivariate normal distribution that represents the normal spectral 

distribution of an image, or a part of an image. This model represents the normal 

spectral measurements of a background, or neighbourhood. This background could 
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either be the whole image, or a smaller area surrounding the pixel under test, and 

represents the normal distribution of spectral measurements.  

These differences reflect different implementations of the RX-algorithm, 

where the difference is the sampling method of the background pixels. The 

performance will differ if the background pixels are, for example, the whole image, 

versus a smaller area surrounding the pixel under test (Matteoli, Diani, & Corsini, 

2010), (Ziemann, Simonoko, & Flynn, 2020).   

The Mahalanobis distance, which the RX-algorithm below calculates, is used 

as a measure of how well the pixel under test, r, fits within the statistical model based 

on the background pixels.  

𝐷(𝐫) = (𝐫 − 𝝁̂𝒃)𝑇𝚺⬚
−1(𝐫 − 𝝁̂𝒃) 

Equation 3 

 When the Mahalanobis distance, D, increases, the likelihood of the pixel under 

test being a part of the dataset used to model the background decreases. The 

Mahalanobis distance could then be used for binary classification by using a threshold 

value. Distances below the threshold are non-anomalous, and distances above the 

threshold are anomalous (El-Rewainy & Farouk, 2011).  

 The squared Mahalanobis distance is likely to follow a chi-square distribution 

with p degrees of freedom (Ekiz & Ekiz, 2017). This means that chi-square can be 

used to set the threshold for the statistical models by using the number of spectral 

bands used in the experiment as degrees of freedom along with a probability level 

(Brereton, 2014).   

 

 
Figure 1: Illustration of a statistical model for one x, y location with sample pixels and test pixels inside and 

outside of threshold. 

2.4. Temporal RX-algorithm 
The temporal RX implementation use the same RX-algorithm, but the background 

pixels is not drawn from pixels spatially surrounding the pixel under test, but 

recordings of same geographically positioned pixel at different times. In other words, 

a temporal background is used rather than a spatial background. Pixels with the same 

x, y coordinates are sampled over a given time to build a statistical background model 

calculated with a mean and covariance matrix. This means that each pixel location 
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will have its own statistical model, and that the pixels under test are pixels from the 

same location recorded at another time than the pixels in the model. 

The tests are done on pixels with the same x, y coordinates as its statistical 

model, but the test pixels are sampled from images outside the temporal background. 

If the distance, D, for the pixel under test is longer than the set threshold value, it is 

reasonable to assume that the pixel under test is not a part of the distribution of the 

temporal background. This implies that the spectral signature of that pixel is 

anomalous, meaning that a change likely has occurred in that location (Simonoko, 

Ziemann, & Flynn, 2020). This assumes that the sample pixels do not contain a larger 

variety of measurements; the sample pixels mostly contain one type of landcover. If 

the samples contain a larger portion of temporal changes like cars or boats, the model 

will become less capable of detecting such temporal changes. The preprocessing and 

selection of data for the statistical model will affect the performance of the detector. If 

the statistical model contains many pixels with temporary changes the model will 

become more generic, and it is likely that the model will become less sensitive for 

detection of changes.  

 

 
Figure 2: Illustration of temporal sampling of pixels at location 1 in a 3x3 pixel patch included in statistical model 

with corresponding test pixels for location 1. 

 

Since the temporal RX-algorithm only uses one pixel as spatial resolution, it is 

sensitive to errors at pixel level. However, one can assume that a larger time series 

captures these normal errors and includes them into the background model. This 

would hopefully reduce the impact of such errors. Since the temporal RX-algorithm 

relies on the same spatial resolution as ACD, the same pixel level errors must be 

considered (Acito, Diani , Corsini, & Resta, 2017).  
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2.5.  Precision, recall and F1-score 
When working with classification algorithms a measure of the performance is useful 

for assessment. For this assignment, three metrics have been used and they are all 

calculated using data from confusion matrixes. 

With binary classification, a confusion matrix will be a 2x2 window 

containing the numbers of true positives (TP), true negatives (TN), and false positives 

(FP) and false negatives (FN). With two classes where 0 = N (non-anomalous) and 1 

= P (anomalous), the possible combinations will be TP = 1,1; TN = 0,0; FP = 0,1; FN 

= 1,0 where the first digit is the true class, and the second digit is the predicted class. 

In the tables, the correct classifications will be in the upper left and lower right corner 

of the table. The incorrect classifications are in the lower left and upper right corner 

(Tharwat, 2020).  

From these numbers, different metrics can be calculated to evaluate the 

performance. Here recall, precision and F1-score are described.  

Recall, also called hit-rate, sensitivity, or true positive rate, is a metric that 

compares the number of correctly classified positives with the total number of 

positives in the data set. The score ranges from 0, which is no recall to 1 which is 

perfect recall. It is calculated like this (Tharwat, 2020): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 4 

 

Precision, or positive prediction value, is a metric that measures the 

performance of the predictions. It compares the number of correctly classified 

positives with the total number of predicted positives. The score ranges from 0, which 

is no precision to 1 which is perfect precision. It is calculated like this (Tharwat, 

2020): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

Equation 5 

 

 F1 score, or F-measure is the harmonic mean of precision and recall. The 

score ranges from 0, which is low classification performance to 1 which is high 

classification performance. It is calculated like this (Tharwat, 2020): 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 6 

 

 For all these metrics, a value close to 1 indicates a better performance, and is 

what one should strive to achieve. Since it is difficult to eliminate all false positives 

and negatives, a value of 1 is hard to achieve. It is also common that when reducing 

one type of error, another one increases. Therefore, a compromise between precision 

and recall is needed. Sometimes, one type of error is preferred above the other. In 

such cases a deliberate decision of which type of error that should be suppressed can 

be made by trading recall for precision, or precision for recall. The F1 score can also 
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be used to find the trade-off between precision and recall, since this is their harmonic 

mean.  

 

2.6.  Spectral imaging 
The purpose of remote sensing is to gain information about an object without coming 

in physical contact with the object (Manolakis, 2002). Hyperspectral imaging is a 

particular type of remote sensing that combines imaging and spectrometry to extract 

information about an object from a distance. The imaging system enables the 

electromagnetic information to be spatially referenced and stored as a visually 

interpretable image (Eismann, 2012). The spectrometer captures information about 

the composition of the materials measured by measuring variations of power in 

wavelength or frequency of light (Eismann, 2012). 

Spectral images can be divided into different classes depending on the number 

of bands recorded simultaneously. Typically, the different types are: Panchromatic, 

which is one broad spectral band. Multispectral, which is several narrower bands 

usually between 2-10. Hyperspectral, which is many narrower bands numbering from 

around 10 to above 100. It is also usual to separate bands by which part of spectrum it 

captures.  

 

VNIR, which is Visual and Near Infra-Red ca. 400 nm - 1000 nm wavelength. 

SWIR, which is Short Wave Infra-Red ca. 1000 nm - 2500 nm wavelength. 

MWIR, which is Mid Wave Infra-Red ca. 3000 nm – 5000 nm wavelength. 

LWIR, which is Long Wave Infra-Red ca. 8000 nm – 14000 m wavelength. 

 

There are no defined number of bands needed for an image to be categorized 

as multispectral or hyperspectral, but (Verhoeven, 2018) use these: An image 

containing more than red, green, and blue bands would probably be the threshold of 

multispectral since RGB is the normal components of a conventional colour image. 

The line between multispectral and hyperspectral images is also blurred, but 

somewhere around 10-12 bands are the normal threshold. The width of the bands is 

probably a better indicator since hyperspectral images usually have shorter 

bandwidths around 10nm and no gaps between. Multispectral images usually have 

bandwidths between 20 – 100nm and contain small bandwidth gaps in between bands 

(Eismann, 2012). The theory and methodology are common for both multi- and 

hyperspectral images.   

The instruments used for remote sensing measures different parts of the 

electromagnetic spectrum. The most common part of the electromagnetic spectrum to 

measure within electro-optical (EO) and infrared (IR) remote sensing ranges from 400 

to 14000 nm wavelength. The sensors that record these emissions are passive. That 

means that they mainly record light or thermal emissions in the spectrum it is 

designed to record, and they do not emit any own signals that returns to the sensor. 

Since the sensors are built for different purposes, they record different portions of the 

electromagnetic spectrum. These portions become the bands of the image and 

contains the spectral measurements in the part of the electromagnetic spectrum that 

the sensor is built to record (Eismann, 2012). 

 

2.6.1. Geometric sources of error 
When detecting changes at pixel level between one or more pairs of images taken at 

different times, it is usually assumed that the pixels are perfectly co-registered 

(Theiler & Wohlberg, 2012). Co-registration of satellite images is a difficult task, and 
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perfect co-registration is nearly impossible (Meola & Eismann, 2008). Co-registration 

errors have a negative effect on the performance of ACD algorithms (Meola & 

Eismann, 2008), (Theiler & Wohlberg, 2012) and since temporal anomaly detection 

use the same pixel to pixel comparison, it is reasonable to assume that large co-

registration errors will affect the performance of the temporal RX-algorithm if the 

statistical background model do not include all the normal sources of error.  

 The path of the satellite is not identical between passes, and the swath of the 

sensor along with the shape of the earth’s surface creates a need for processing of the 

raw image to get it georeferenced. This is done with a combination of automated and 

manual processes that warps the image into position (Meola & Eismann, 2008). Even 

if the precision is good, the errors could be at subpixel level, meaning that the co-

registration errors are smaller than the spatial resolution of the images. Correcting for 

such small errors will influence the performance of ACD algorithms (Theiler & 

Wohlberg, 2012), indicating that the precision needed is high.  

 

2.6.2. Radiometric sources of error 
Spectral imaging is a complex task, and it is not straightforward to record a precise 

spectral signature from a distance. Both the system itself and the conditions at the 

time of recording affects the measurements (Eismann, 2012), but it is reasonable to 

assume that images from the same type of instrument have fairly consistent errors 

from the system itself.  

 How radiation transfer through the atmosphere is possible to estimate, but the 

complex and shifting conditions makes estimation a challenging task. Different 

numerical models to estimate the effect on pupil-plane measurements are used to 

process the raw images at the ground segment (Eismann, 2012). 

The consistency of Sentinel-2 images has been tested by Doshi et al. (Doshi, Koringa, 

& Ghosh, 2020), and they conclude that images from the two satellites can be used 

interchangeably. This indicates that the quality of the image processing is good. A 

more detailed description of this process and a quality assessment of Sentinel-2 image 

processing falls outside the scope of this study.   

It is relevant to consider both scattered irradiance and mixed pixels. Scattered 

irradiance is when objects surrounding a pixel radiates into the area of the pixel and 

contaminates the spectral signature of the material that the pixel actually contains 

(Eismann, 2012). Mixed pixels are quite common and is when the spatial resolution of 

the pixel is larger than the objects recorded, or when there is a clear divide inside the 

pixel between for instance road and grass. This means that the pixel contains more 

than one type of material, and the spectral signature that is recorded is a composite of 

the different materials represented at sub-pixel level (Manolakis, 2002). Mixed pixels 

could make it difficult to model a background that captures the pixel content precisely 

and could therefore affect the performance negatively. Due to this the temporal RX-

algorithm would probably perform poorer in non-homogenous areas with large 

spectral variation.  

Dealing with these types of anomalies are one of the most challenging 

problems within hyperspectral data exploitation (Manolakis, 2002). 

 

2.7.  Sentinel-2 

2.7.1. Description of the mission 
Sentinel-2 is a European Space Agency twin satellite mission launched in 2015 with 

the following objectives: 
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• systematic global acquisitions of high-resolution, multispectral 

images allied to a high revisit frequency.  

• continuity of multi-spectral imagery provided by the SPOT 

series of satellites and the USGS LANDSAT Thematic Mapper 

instrument.  

• observation data for the next generation of operational 

products, such as land-cover maps, land-change detection maps 

and geophysical variables. 

(European Space Agency, 2015) 

The two satellites are flying in the same polar orbit, but they are phased at 180° to 

optimize the revisit frequency at the Equator. The orbits are sun-synchronous, 

meaning that they aim to have constant angle to the sun to reduce differences in 

shadows and illumination recorded. The geographical coverage is between latitude 

56° south and 83° north. This includes land areas and shores between Cape Horn to 

above Greenland, in addition to some other areas like closed seas and the 

Mediterranean Sea. The images recorded by both satellites are made with the Multi-

Spectral-Instrument (MSI) (European Space Agency, 2015).  

 

2.7.2. The Multi-Spectral-Instrument 
The Multi-Spectral-Instrument is a passive push-broom sensor who records 13 bands. 

The reflected electromagnetic emissions are split onto two focal plane assemblies 

where one handles visible and near infrared emissions, and the other shortwave 

infrared. It also has a shutter mechanism that shields from direct sunlight that would 

contaminate the recordings.  

 

2.7.3. Products 
Sentinel-2 data exist in different processing levels. The lowest level of processing is 

level 0, then level 1A, 1B, 1C and finally level 2A. Level 1C and level 2A products 

are the two products that are released to users (Esa, 2024). 

The level 1C data in this assignment contains top of atmosphere (TOA) 

reflectance in a fixed grid. The spatial reference system is a combined UTM 

projection and WGS84 geodetic system (European Space Agency, 2015).  

The images are radiometrically and geometrically corrected, and they are 

delivered in 100km2 tile sets. Each tile corresponds to a grid in the Sentinel-2 level 1C 

tiling grid that gives 100km2 square a unique name.   

 

2.7.4. Temporal and radiometric resolution 
The revisit frequency at the equator of one Sentinel-2 satellite is 10 days, and the 

constellation of the two satellites reduces the temporal resolution to 5 days (European 

Space Agency, 2015). 

The radiometric resolution is a measure of how many unique values the sensor 

can record. A higher number means that the instrument should be more capable of 

detecting accurate differences in intensity or reflectance. It is expressed as a bit-

number, and for Sentinel-2 that is 12-bits. This means that the measurements can 

range from a value of 0 to 4095. 
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2.7.5. Spatial and spectral resolution 
The Sentinel-2 products have 13 different spectral bands, which vary in spatial 

resolution between 10-, 20- and 60-meters. It delivers data in four 10-meter bands, six 

20-meter bands and three 60-meter bands. Figure 3, below, displays all bands in all 

spatial resolutions with the respective spectral resolutions.  

 

 
Figure 3: Sentinel-2 bands spatial and spectral resolution (European Space Agency, 2015).  
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3. Methodology 
First the study area was selected, and relevant patches was identified. Then all the 

Sentinel-2 images were cropped to the study area. After that the images were visually 

inspected. Many of the images where either empty or contained heavy clouds or 

snow. Such images would introduce known errors into the statistical background that 

we use to model the original state for the pixel location, or they would create false 

positives for the pixel under test. Since the data do not contain measurements of what 

we are studying, but measurements of a phenomena that obscures the recording of the 

ground, they are removed. Of the 303 images, 233 were manually inspected and 

excluded, leaving 70 good images.   

 Now a sequence of visual inspections of was conducted by iterating through 

all the remaining 70 RGB-images to visually classify the study area pixels as changed 

or unchanged. If the pixel did not appear to have changed, it was assigned the number 

0, and if it did contain an apparent change the number 1 was assigned. This binary 

classification is used as the ground truth, which is how a human would classify 

locations tested.  

 The Sentinel-2 images are now ready to be classified with the temporal RX-

algorithm and compared to the human assessed binary classification data. The 

temporal RX-algorithm was configured to work through each of the 9 pixels in all the 

5 patches, a total of 45 spatial pixel locations.  

 In this process the temporal RX-algorithm calculated a statistical background 

with the first 20 pixels and then tested the remaining 50 pixels sequentially as pixel 

under test to evaluate if it is likely that it is a part of the statistical background or not. 

If the Mahalanobis distance of the pixel under test was longer than the threshold, the 

pixel under test was classified as outside the background model, implying a change. 

These changed pixels were given the value 1, while those with a distance shorter than 

the threshold was given the value 0. After one pixel location was evaluated, a new 

background was modelled for the next pixel location and the pixels under test were 

evaluated against the new background model.  

The binary classification data created by the temporal RX-algorithm was then 

compared to the human made classification data to compare the performance of the 

temporal RX-algorithm against the performance of the human. This data was then 

used to create different plots and figures.  

The study was conducted in MATLAB 2022b, and several scripts were written for 

the different parts.  

 

 
Figure 4: Flowchart of the steps in the study 

 

3.1. Study area and patch selection 
The study area is called Hennøy and is a small peninsula approximately 20 km north 

of Florø in the western part of Norway. The area is quite diverse, and contains both 

water, windmills under construction, and different types of vegetation and 
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infrastructure. At Hennøy, five 3x3 pixel patches with interesting features within the 

area was located using internet sources.  

 

Patch 1: 61.7839°, 5.1327° 

Patch 2: 61.7963°, 5.1454°  

Patch 3: 61.7777°, 5.1565°  

Patch 4: 61.7655°, 5.1374°  

Patch 5: 61.7715°, 5.1600°  

 

The position close to the shore is chosen because the general climate is assumed to 

reduce the number of days with snow. This allows Sentinel-2 imagery over a northern 

area to be used without discarding too many images due to snow. The position also 

introduces water with a harbour into the images, which is an interesting area to study 

temporary changes. It was also selected because it has been built windmills in the area 

after 2015. The Norwegian Water Resources and Energy Directorate online maps 

containing wind power were used to identify areas with recent windmill construction 

(NVE, 2022). In addition, the topography is not flat, and the area contains built-up 

areas and nature. The area is completely within the Sentinel-2 1C 32VKP tile. 

 

 
Figure 5: Image of study area with patch positions.  

 

 

3.1.1. Patch 1 – Windmill construction, border 
This patch was selected because it contains an emerging windmill. The 3x3 pixel 

patch is deliberately placed at the border of the construction to introduce challenges 

with sub-pixel changes and potential co-registration errors. The patch starts as an area 

with natural vegetation in 2015 and ends in 2017 with a road containing a fundament 

and a windmill in the eastern part, and natural vegetation in the western part.  
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Figure 6: Before, under and after image of patch 1. Image number (YYYYMMDD): 2 (20150818), 30 (20190412) 

and 69 (20211104). 

3.1.2. Patch 2 – Windmill construction, centre 
This patch was selected because it also contains an emerging windmill, but the 3x3 

pixel patch is deliberately placed centred on the final windmill. It is done to reduce 

the probability of having pixels containing both forest and construction work at the 

same time. The patch starts as an area with natural vegetation in 2015 and ends in 

2017 with a road containing a fundament and a windmill in the centre of the patch.  

 

 
Figure 7: Before, under and after image of patch 2. Image number (YYYYMMDD): 2 (20150818), 30 (20190412) 

and 69 (20211104). 

3.1.3. Patch 3 – Unchanged Forest 
This patch is chosen because it does not contain any known or identifiable changes 

except one slightly cloudy image (nr.70) and is included as a reference area. The 

patch starts as an area with natural vegetation and ends as an area with natural 

vegetation.  

 

 

 

 

 

 

Figure on next page. 
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Figure 8: Before, under and after image of patch 3. Image number (YYYYMMDD): 2 (20150818), 30 (20190412) 

and 69 (20211104).  

3.1.4. Patch 4 – Removal of vegetation 
This patch was selected because it also contains man made changes, but it is not 

identified that unnatural materials are introduced into the area, as with the windmills. 

The changes are also appearing later in the time series than the windmill construction 

and gives a different temporal distribution of changes. The patch starts as an area with 

natural vegetation, forest, and grass, and ends with bare soil. 

 

 

 
Figure 9: Before, under and after image of patch 4. Image number (YYYYMMDD): 2 (20150818), 30 (20190412) 

and 69 (20211104). 

 

3.1.5. Patch 5 – Harbour 
This patch was selected because it does not contain vegetation. It contains temporary 

changes in the form of boats arriving and departing, in contrast to the other patches 

where the areas are permanently changed. The 3x3 pixel patch is deliberately placed 

on the biggest boats, but since the boats often are smaller than the patch, sub-pixel 

anomalies and potential co-registration errors could be introduced. The patch starts as 

an area with water and ends as an area with water. In between several boats has 

visited the harbour.  

 

 

 

Figure on next page. 
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Figure 10: Before, under and after image of patch 5 with temporary change. Image number (YYYYMMDD): 2 

(20150818), 30 (20190412) and 69 (20211104). 

3.2. Data and band selection  
The raw data for this thesis is a time series of 303 level 1C Sentinel-2 SAFE folders 

with images of the Sentinel-2 1C tile grid 32VKP. The first image is dated 25.07.2015 

and the last 04.11.2022. The tile was cropped into a smaller study area according to 

the flowchart (Figure 11). In the experiment only 11 of the 13 bands where used. 

Band 9 and 10, Water Vapour and SWIR cirrus, where excluded just as Ziemann et al. 

(2020) did when they first used the RX-algorithm on temporal data. 

The tested pixels have a 10x10 meter spatial resolution, but the data used have 

10-, 20- and 60-meter resolution. To handle this, a nearest neighbour resampling was 

used to retrieve measurements from the 20-, and 60-meter bands. 

 

 

 

 

 

 

 

 

 

 

 

Figure on next page. 
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Figure 11: Flowchart describing Sentinel-2 cropping process. 

 

3.3. Quality inspection and image selection 
When visually inspecting the data, many of the images happened to be unsuitable. 

Some of them where empty, while others contained heavy clouds or snow. Empty 

images and images containing snow and significant clouds were removed from the 

dataset used for the study to ensure that the statistical background being modelled 

contains actual ground measurements. This reduces the risk of the models becoming 

too general to represent the ground, and that the pixel under test would not obviously 

contain a measurement of something else than the ground, resulting in false positives. 

After removing the 233 images that was judged unsuitable, the final dataset contained 

70 images. 

An automated approach to discarding images with low quality and unwanted 

features is the most elegant method, but it also reduces the control over the 

experiment and increases complexity. To have full control over the images used as 

training data, and to ensure that images that obviously would create false alarms 

where excluded, a list of visually inspected and approved images was created. The 

images in the final list include a few with clouds and shadows but excludes the most 

of them. In the first 20 images boats in the harbour are also excluded to ensure that 

the background models do not include anomalies that we want the algorithm to detect. 

The quality inspection was a machine-aided process with a Matlab script that is 

illustrated in the flowchart in figure 12. 
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Figure 12: Flowchart describing the quality inspection process. 

 

3.4. Ground truth  
To assess the performance of the temporal RX-algorithm a ground truth was made to 

compare the classification made with the temporal RX-algorithm versus the 

classification made by a visual inspection of the images. A precise visually 

classification and annotate of images with 10x10 meter resolution is difficult. Objects 

smaller than 10x10 meters could hide inside the pixels, but the visual ground truth is 

done with the same data that the automated process uses.   

The ground truth was established manually by visually inspecting each pixel 

in each patch in all the images. Each pixel was visually inspected at different zoom 

levels to enable the best interpretation of the pixel. If the pixel was assessed to contain 

something different than the original state, the pixel was flagged as changed with the 

value 1, and if it contained the same as the original state it was flagged with the value 

0. The ground truth values were stored in a matrix compatible with the structure of the 

output analysis data from the temporal RX-algorithm. A table with the binary 

classifications, 0 and 1, was the result from this process. It was aided by a script that 

displayed each pixel inside a red line with surrounding areas at different zoom-levels 

illustrated in the flowchart, figure 13. 

 

 

 

 

 

Figure on next page. 
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Figure 13: Flowchart describing the ground truthing process. 

 

3.5. Experiment description 
The experiment was conducted by using the satellite images in the time series which 

are older than the construction work to model the background for the temporal RX-

algorithm´s covariance matrix and background mean. Black images, images with 

heavy clouds and snow were manually removed before the experiment was 

conducted. From the remaining images, the statistical background was drawn from the 

first 20 images. 20 images were a reasonable limit to have a small gap in time 

between the statistical model and the first signs of construction. The final dataset 

contained 20 images which was used to model the backgrounds for the pixel 

locations, and 50 images to draw test pixels from.  

 The experiment iterated through each pixel of all the patches sequentially. The 

temporal RX-algorithm was applied like this on one pixel before it moved to the next 

pixel where the same procedure was applied.  

First the background pixels were drawn from the 20 first images for a x, y 

coordinate, and the mean and covariance matrix were calculated. Then the pixel under 

test was drawn from a later image with the same x, y coordinates as the background 

pixels. The algorithm worked in depth of time with the spatial distribution of one 

pixel where each pixel under test was drawn from image 21 to 70. The squared 

Mahalanobis distance for the pixel under test, which equals to the squared RX-score, 

and the threshold was used to test the hypothesis.  

To find the threshold value, 11 degrees of freedom was used, corresponding to 

the number of spectral bands used in the experiment, and the p-value was set to 0.05. 

This gives a threshold value of 19.67  (Brereton, 2014). The following hypothesis was 

used to determine if the pixel under test was a part of the statistical model or not: 

 

𝐻0 = √𝐷  ≥ 19.67 = unchanged 

 

𝐻1 = √𝐷 < 19.67 = changed 
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Unchanged pixels were given the classification number 0 and changed pixels 

1. This gave a 1x50 matrix with ones and zeros which was concatenated with the 

corresponding matrix from the ground truthing process. This 2x50 matrix were used 

to calculate the number of true positives, true negatives, and false positives and false 

negatives.  

The squared Mahalanobis distances for all the classified pixels in the same 

location were plotted against the corresponding image number. In the bottom of these 

plots the threshold value is displayed as a straight line. According to the classification 

produced, a colour was given to the bar chart. This plot shows when in time, by image 

number in the time series, the anomalous changes were introduced. This ends the 

process for one pixel.  

The same procedure was done for each pixel in every patch, starting with the 

creation of a new background model from the 20 first images, then testing the pixels 

under test, comparing the classification with the ground truth, and plotting the results.  

The script worked its way through all the 9 pixels in a patch before the 

concatenated matrixes with ground truth and predicted values was used to calculate a 

spatial confusion matrix and a combined confusion matrix for the first patch. 

The spatial confusion matrix keeps the spatial distribution of true positives and 

negatives, and false positives and negatives of the pixels within each patch, while the 

combined confusion matrix sums up the total number for all nine pixel positions in 

the patch. The following four patches were analysed the same way.  

In the end, a confusion matrix with the total number of true positives, true 

negatives, and false positives and false negatives was generated from all the 2x50 

matrixes for the total number of pixels. The flowchart in figure 14 depicts how the 

script worked in this step. 

 

 

 

 

 

 

 

 

 

 

 

Figure on next page. 
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Figure 14: Flowchart describing the temporal RX-algorithm image classification process. 
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4. Results 
For each patch a figure is provided. It contains a bar chart displaying the squared RX-

score for each pixel over time where image number (21-70) for pixel under test is 

shown. The bar chart is colour coded according to if it is a true positive, true negative 

or false positive or false negative. The setup follows the x, y location of each pixel 

within the patch. This means that the upper left bar chart corresponds to the upper left 

pixel in the patch (pixel 1), and this again corresponds to the location in the spatial 

confusion matrix.  

The spatial confusion matrix, which is a heatmap that displays the spatial 

distribution of TP, TN, FP and FN for the whole patch where each of the 4 classes has 

its own 3x3 pixel window. This gives a total of four 3x3 windows, where upper left is 

TN, upper right is FP, lower left is FN and lower right is TP. This makes it possible to 

study the spatial distribution of errors inside each patch.  

In addition, there is a normal confusion matrix with 4 windows where each 

window contains the total of TP, TN, FP and FN in both numbers and percent for the 

whole 9-pixel patch. 

 

4.1. Patch 1 - Windmill construction, border 
When studying figure 15, the first temporal RX-algorithm detected anomalies appears 

in image 24, which are false positives. The first true positives appear in image 25, and 

this corresponds well with the visual signs of construction inside the patch. From 

image 24 to 70, the anomaly score changes significantly both between pixels and 

within pixels. Some of the values are above and some are below the threshold. This is 

expected since the patch contains both changed, pixel 6 and 9, and unchanged pixels, 

6 and 9. When inspecting figure 16, the other pixels seem to be either mixed or shift 

over time. However, highest density of true negatives follows the left side of the 

patch, that corresponds with low level of change. The highest density of true positives 

is in the lower right corner, that covers the centre of the construction. The 

misclassifications seem to be overrepresented along the border between changed and 

unchanged pixels. 

 

 

 

 

 

 

 

 

 

Figure on next page. 
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Figure 15: Patch 1 plots 

 

The patch border, red line in figure 16, seems to shift slightly over time, 

containing an increasing, decreasing and then increasing part of the construction site 

that is visually detectable. If you compare image 28 and 32, image 38 and 40, image 

46 and 47, and image 55 and 56 this phenomenon is present. This shift is most present 

in the east/west direction since the patch is more centred on the construction site in 
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the north/south direction. This could happen because of co-registration errors or 

differences in light conditions/shadows, or in the later ones in the time series, by the 

rotation of the windmill blade. When comparing this with the spatial confusion 

matrix, most true negatives are located in the western part of the patch, and most true 

positives are located in the eastern part of the patch.  

 With 8.4% false negatives and 9.8% false positives, the performance of the 

temporal RX-algorithm is poorer on this patch than the overall performance for the 

experiment. This underperformance is distributed along the outer border of the 

construction site. 

 

 
Figure 16: Patch 1 highlighted in red, background data = image 1-20, test data = image 21-70. 
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4.2. Patch 2 - Windmill construction, centre 
When studying figure 17, the first temporal RX-algorithm detected anomalies appears 

in image 23, which are likely false positives. From image 24 onwards anomalies are 

detected, and they coincide with the first verifiable visual signs of windmill 

construction. From image 23 to 70, the anomaly score is constantly high, and the few 

non-anomalous pixels are found in image 21 and 22 which is before the construction. 

The anomaly score is consistent with a patch where many pixels are permanently 

changed from one state to another, where the new state is different than the state 

modelled by the statistical background.  
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Figure 17: Patch 2 plots 
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 The contents within the patch border, red line in figure 18, could seem to shift 

slightly, but the patch contains a part of the construction site quite constantly with a 

border to natural vegetation in the north/top. The blade of the windmill, which is 

introduced in image 39, creates some of the shifts in shape in this patch. This makes it 

harder to visually determine if the patch is stable or if it, like patch 1, seems to have 

some co-registration errors.  

 The spatial confusion matrix shows that the temporal RX-algorithm has a 

lower performance in the northern/upper part of the 3x3 patch with some false 

positives and false negatives. This is shown at the upper row of pixels in the spatial 

confusion matrix.  

 With 3.6% false negatives and 4.7% false positives, the performance of the 

temporal RX-algorithm is approximately as good as the overall performance for the 

experiment.  

 

 
Figure 18: Patch 2 highlighted in red, background data = image 1-20, test data = image 21-70. 

4.3. Patch 3 - Unchanged Forest  
When studying figure 19, the first temporal RX-algorithm detected anomalies appears 

in image 57 and is an error which coincides with some false positives in patch 4 and 5 

and cannot be explained well. The second detected anomaly is in image 70 where it 

correctly classifies clouds as anomalous. The low number of anomalies is consistent 

with a patch where the tested pixels are not different than those in the statistical 

background of the location. 
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Figure 19: Patch 3 plots 
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 It is not possible to detect if the quality of the co-registration by inspecting the 

pixels within the patch border, red line in figure 20, since the natural vegetation fills 

the whole patch quite constantly.  

 With 0.0% false negatives and 0.2% false positives, the performance of the 

temporal RX-algorithm is better on this patch than the overall performance for the 

experiment.  

 

 
Figure 20: Patch 3 highlighted in red, background data = image 1-20, test data = image 21-70. 
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4.4. Patch 4 - Removal of vegetation 
When studying figure 21, the first temporal RX-algorithm detected anomalies appears 

in image 24, then 45, 46, 57 and 59. These are likely false positives, and some of 

them appear at the same time as false positives in other patches due to a phenomenon 

that gives the whole RGB-image a greenish hue. 

Then it detects parts of the true changes from image 60. Along with the 

correctly classified changes, it produces quite some false negatives along the centre 

diagonal along pixel 3, 5 and 7 visible in figure 21, but the general anomaly score is 

kept high for the rest of the time series.  

It is difficult to determine if there are any co-registration errors since there are 

no reference point other than the diagonal terrain feature that runs like a line thru 

figure 22. This means that a 1-pixel shift both up and right, or down and left is 

difficult to detect when visually inspecting figure 22; an equal shift in both the x and y 

direction would maintain a similar intersection with the patch border, red line. 

However, it seems like the white detail in the lower right corner of the image bounces 

around. This indicates that the co-registration is not perfect. The best illustration of 

this is between image 61 and 62 where the content within the patch also changes 

slightly.   
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Figure 21: Patch 4 plots 
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 The spatial confusion matrix in figure 21 shows that the temporal RX-

algorithm has a lower performance with more false positives on both sides of the 

road/strip of bare soil. Most of these false positives are located in pixel 2 and 4, and 

falls just outside the diagonal line that runs thru pixel 3, 5 and 7. The false negatives 

are clustered along this diagonal strip of bare soil.  

Scattered irradiance from the surrounding trees is a potential explanation since 

the shadows in the images in figure 22 indicates high trees along the strip of bare soil. 

A higher presence of spectral values from vegetation transferred into pixels with soil 

could possibly mask the soil and emulate vegetation. Especially since the algorithm 

use several infrared bands that the visual interpretation does not use. 

 Another explanation is that the classification made by a human is worse than 

the automated classification. In this patch it is difficult to determine exactly when the 

changes start. 

 With 5.8% false negatives and 3.1% false positives, the performance of the 

temporal RX-algorithm´s false positive performance is better, and the false negative 

performance is worse on this patch than the overall performance for the experiment. 

 

 
Figure 22: Patch 4 highlighted in red, background data = image 1-20, test data = image 21-70. 
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4.5. Patch 5 – Harbour 
The temporal RX-algorithm detected anomalies in this patch are distributed between 

boats, clouds, and false alarms. When studying figure 23, the false alarms that do not 

contain a boat in the image are 22, 56 and 57. The rest of the false positives are in 

images with boats, but where the human has classified the pixel as water next to the 

hull of the boat, rather than a boat. The problem here is to decide where to draw the 

line between boat and water. In this case the human has been more inclined to classify 

the border pixels as water, and the RX-algorithm more inclined to classify it as a boat. 

The boats are correctly detected as anomalies in image 30, 34, 36, 37, 38, 39, 

50, 52, 54, 63 and 67. The temporal RX-algorithm can detect temporary changes 

where an object is introduced into a test pixel for a limited time, when the modelled 

background does not contain such objects.  
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Figure 23: Patch 5 plots 
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 For this patch, co-registration cannot be evaluated by studying figure 24, since 

the only reference point seems to be moving. The position of the harbour in image 3 

and 4 has shifted significantly counterclockwise, and this indicates that the 

installation is floating or movable. It is also worth noting that image 24 have a 

distinctly different colour than the rest. The reason for this discolouration of the water 

cannot be determined precisely.    

In general, the boats in these images are docked across the patch with the line 

between the boat and water in the bottom of the patch. The false positives are present 

at the bottom of the patch, shown with lighter green squares in the upper right 

window of the spatial confusion matrix at pixel position 7, 8 and 9. The higher 

presence of false positives at left side could be explained with the slight clockwise 

rotation of the boats.    

 With 0.0% false negatives and 4.7% false positives, the performance of the 

temporal RX-algorithm is better on this patch than the overall performance for the 

experiment. 

 

 
Figure 24: Patch 5 highlighted in red, background data = image 1-20, test data = image 21-70. 

4.6. All patches 
 

The overall performance of the RX-algorithm in this experiment is quite good, and it 

correctly classifies 91.9% of all pixels, and has 3.6% false negatives and 4.5% false 

positives.  
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Figure 25: Confusion matrix for all patches. 

When considering the distribution of false positives and false negatives between 

patches in figure 26, it is clear that patch 1 and 4 has a negative impact on the overall 

performance with their false negatives, and the high number of false positives in patch 

1. 

 

 
Figure 26: Number of false positives and negatives by patch with means drawn as lines. 

When looking at F1, recall and precision in table 1, the performance is good. With a 

F1 score of 0.880 for the whole experiment the performance of the temporal RX-

algorithm at pixel level is good. The recall is also quite acceptable across all patches 

with 0.675 on patch 4 and 0.764 on patch 1 as the lowest. The performance differs a 

lot between patches. The lowest precision is found on patch 1, with 0.737, and the rest 

are from 0.794 to 0.949. The performance on patch 1 and 4 is generally poorer than 

the rest on recall, precision and F1.  

 
Patch F1 score Recall Precision 

1 0.750 0.764 0.737 

2 0.955 0.961 0.949 

3 0.947 1.000 0.900 

4 0.730 0.675 0.794 

5 0.891 1.000 0.804 

Total 0.880 0.892 0.868 

Table 1: Table with F1 scores, recall and precision for patch 1-5 and total. 
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5. Discussion 

5.1. Mixed pixels and co-registration 
The spatial distribution of misclassified pixels often coincides with the outlines of the 

changed areas. In patch 1 this is along the border between forest and construction site. 

In patch 2 the misclassifications are placed in the upper part of the 3x3 patch, which is 

the side that is closest to the natural vegetation. In patch 3 there are no predominant 

anomalies and no clear distribution. In patch 4 the distribution of misclassifications 

follows the shape of the bare soil. In patch 5 the misclassifications are most present 

along the edge between hull and water.  

 The spatial distribution of these misclassifications indicates that the temporal 

RX-algorithm performs poorer on abrupt changes between landcover. Mixed pixels 

are a reasonable explanation for this phenomenon. If the boat only covers 50% of the 

10x10 meter pixel and the rest is water, the reflected value will not be only boat. The 

exact distribution of reflectance values from all the objects inside a pixel is hard to 

determine with a threshold value. It is possible that the temporal RX-algorithm 

classifies these mixed pixels better than the human eye, and that a human is more 

likely to visually interpret mixed pixels wrong. 

Another problem is smaller objects within a pixel. If there is a car parked in a 

10x10 meter pixel, it could potentially affect the measurements while being 

undetectable in the RGB image. It is likely that temporal RX-algorithm’s performance 

is affected negatively by mixed pixels in this experiment.   

 There are indications of co-registration errors, but they are difficult to measure 

accurately due to the experiment design. One can also assume that the size of the time 

series incorporates the normal variation of the co-registration errors into the statistical 

backgrounds. As long as the co-registration error of the pixel under test is not 

significantly larger than the errors in the statistical model, the errors should not affect 

the performance significantly since the model includes the normal variation of the 

dataset. With the detection rate that the temporal RX-algorithm delivers on Sentinel-2 

data the co-registration errors seem to have little effect on performance. It is possible 

that co-registration errors could contribute further to the mixed pixels problem at the 

edge between changed pixels and unchanged pixels.  

The temporal RX-algorithm struggles most with performance on abrupt 

changes between two distinct types of landcover. It is likely that these edge problems 

are more problematic than co-registration errors and mixed pixels themselves, and 

that the previous mentioned errors further reduce performance along such edges.   

 The reduced performance along the edges of changes can, however, be used to 

infer that you should not expect the temporal RX-algorithm to perform well to detect 

anomalies before the size of the anomaly exceeds the spatial resolution of the images.  

 

5.2. Scattered irradiance 
The patches with the highest number of false negatives are patch 1 and 4. When 

inspecting these two images they both seem to contain more shadows than the rest. 

This indicates that the vegetation that surrounds the patches are higher than in the 

comparable patch 2 and 5. Irradiation caused by light bouncing from the vegetation 

could explain the errors. This phenomenon has been modelled and measured on a 

single tree and shows that the irradiance can affect NDVI scores (Kukenbrink, et al., 

2019). The scattering effects differs through the spectrum and decreases with 

increased distance from the tree. The model used by Kukenbrink et al. (2019) displays 

an effect several meters from just a single tree.  
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 In patch 4, irradiance from the surrounding trees could potentially mask the 

bare soil visible in the RGB band with IR vegetation values from neighbouring pixels. 

This could possibly lead to false negatives, since the statistical models contains pixels 

containing vegetation, and a high number of IR-bands are used in the experiment. 

 

5.3. Difference between patches 
The patches were selected to test different aspects of the temporal RX-algorithm. 

Patch 1 and 2, which both contain a windmill under construction, have very different 

results. The deliberate centre placement of patch 2 on the known change seems to 

increase the performance significantly when compared to the deliberate edge 

placement of patch 1.  

 Patches 1 and 4 also share some of the characteristics. They both have an edge 

placement, and they have more shadows than patch 2. The fact that patch 1 contains a 

manmade object, while patch 4 only uncovers bare soil does not seem to change the 

performance. Patch 3 that contains no known anomalous changes, and patch 5 with 

appearing and disappearing anomalous changes, are the two with no false negatives.  

 

5.4. General performance 
At its best, the temporal RX-algorithm performs very well. This is evident in patch 2. 

On the very similar patch 1, the performance is significantly poorer. This is expected 

since this patch has a higher potential of mixed pixels, co-registration errors, and 

scattered irradiance. However, the overall performance is good. This indicates that the 

temporal RX-algorithm could be further refined to be used in surveillance systems 

given that the data is sufficiently pre-processed. The performance indicates that there 

is a need of a human to study the areas classified with anomalies afterwards. Still, it 

would reduce the human labour needed to study images when detecting anomalous 

changes. 

 This study has not compared temporal-RX with different change detection 

methods. It is hard to determine which methods that are most precise. The temporal-

RX approach has most in common with pixel-based methods and Median Filtering-

Based Background Formation. It operates on pixel level but uses a statistical 

background to determine anomalies rather than deviations from the median. The 

advantage of the temporal-RX is that different image bands can be added or 

subtracted from the model, and the training data can be adjusted. This means that it 

can be somewhat tailored to be either very specific and sensitive, or more generic and 

less sensitive. The greatest potential with temporal-RX could be the use of Gaussian 

mixture models to model several normal seasons. This can be used to tailor better 

models for areas with large seasonal variations or incorporate normal elements such 

as red boats in a harbour, but not blue.  

 

5.5. Limitations of the study 
The process of ground truthing depends on a visual interpretation of pixels. Since this 

is a subjective process, it could introduce errors. To determine the border between 

water and boat, or the border between forest and road is difficult. Especially when the 

images contain different amounts of shadows and light.  

A better method would have been to introduce known changes, such as a 

10x10 meter tarpon, into the study area. This gives full control over the change and 

the position of the object. This method would also increase the possibility to measure 

co-registration errors and control mixed pixels by aligning the tarpon inside a 10x10 
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meter pixel if it is possible. Since this requires long-term planning and physical access 

to the area, it has not been possible to do in this research. 

The resolution of the images is 10x10 meters. It is possible that sub-pixel 

anomalies are detected by the temporal RX-algorithm with data from other bands that 

has not been used for the visual classification. Without access to pictures from the 

area, or controlled observations on the ground, it is hard to control the existence of 

sub-pixel objects. 

The study has been conducted on Sentinel-2 1C data that contains top-of-

atmosphere reflectance, not 2A data that is processed to contain surface reflectance. 

This could possibly reduce the data quality of the ground objects. However, this study 

indicates that the performance on top-of-atmosphere data is quite good. Since the 

statistical model from the training data is drawn from a several images taken under 

different atmospheric reflectance, it is possible that the errors are generalized into the 

model. However, 2A data would be preferred above 1C data for detection of objects 

at ground level.   

The pre-processing is done manually and many of the available images have 

been discarded. The result is that both the background models and test pixels are quite 

clean. This could make the detector more sensitive to natural errors such as the hue 

phenomena visible in patch 5 image 24 and increase the false positive rate. Another 

problem is that the performance of the algorithm in the experiment is heavily 

dependent on pre-processing. The data must either be quality controlled manually, or 

with a robust automated pre-processing suitable for the purpose.  

The high number of discarded images has also reduced the size of the dataset. 

Since the construction of the windmill starts in image 23 of the 70 approved ones, the 

upper limit of images to include in the training data was 22. I found it reasonable to 

include a few images without known changes in the test data for the two patches with 

windmills, and the images used to model the background pixels were limited to 20. A 

longer time series, where assumed natural errors such as the one in image 24 are 

included, could potentially give better background models reduce the number of false 

positives, and would make the performance more robust.         

 

5.6. Suggestions for further research 
The temporal RX-algorithm seems to work well on quality-controlled images where 

the anomalous changes extend at least across the pixel resolution. To increase the 

performance further research is suggested to focus on:  

1) Pre-processing of Sentinel-2 images to ensure that images are good enough to 

be used for this type of automated classification.  

2) Methods to mitigate classification errors on the border between changed and 

unchanged pixels. This could include both sub-pixel detection, morphological 

methods such as opening or by experimenting with the temporal RX-

algorithm, where parts of the spatial neighbourhood are included along with 

the temporal dimension. 

3) Testing if false negatives can be reduced by adjusting band composition when 

using the temporal RX-algorithm on areas surrounded by high trees.  

4) Since the temporal RX-algorithm works with one statistical distribution, it 

would be interesting to see how Gaussian mixture models performs across 

different seasonal changes. It should be possible to have separate models for 

spring, summer, fall and winter.  
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6. Conclusions 

6.1. Objective 1 

6.1.1.  Q1.1  
The temporal RX-algorithm implemented on Sentinel-2 images in this assignment can 

detect anomalous changes at pixel level in different environmental conditions. It can 

be applied on images containing water and vegetation, and can detect vegetation to 

soil, vegetation to manmade construction, and water to boat changes.  

 

6.1.2.  Q1.2 
The changes that the temporal RX-algorithm detects are quite consistent with the time 

stamps of the images. The changes detected coincides well with the visually 

detectable changes in the images. This is most clear in patch 5, where the changes are 

temporary (moving boats) and not changing from one state to another.  

 

6.2. Objective 2 

6.2.1. Q2.1  
The temporal RX-algorithm implemented in this experiment detects anomalous 

changes at 10x10 meter resolution with a total of 3.6% false negatives and 4.5% false 

positives. The total number of analysed and classified pixels are 2250, with 80 false 

negatives and 101 false positives. The recall is 0.892, precision is 0.868 and F1 is 

0.880. On each patch the metrics varies with a significantly higher number of errors in 

patch 1 and 4.   

 

6.2.2. Q2.2  
The spatial distribution of the errors seems to follow the borders of the changes. 

Meaning that the number of errors increases in the outer edges of the changed areas, 

and that the temporal RX-algorithm performs best to detect changes with a spatial 

extent of at least one pixel.  

 

6.3.  Conclusion summary 
The experiment shows that the temporal RX-algorithm performs quite well for 

detecting changes in Sentinel-2 images using all bands except band 9 and 10. It works 

with images containing more challenging terrain than desert, and on temporary 

changes like boats, and on areas which changes from one state to another. The 

temporal RX-algorithm performs best when the changes are larger than the spatial 

resolution of the images. Borders between changed and unchanged areas are most 

challenging. This implies that a mixture of co-registration errors, mixed pixels and 

scattered irradiance may affect the performance.  

 When considering the time a human would need to classify the same amount 

of pixels, the approach shows promising results as a cost-effective aid to imagery 

analysts in their work. 

 

6.4. Possible applications 
The temporal RX-algorithm shows a potential for application within automated or 

semi-automated surveillance systems. It could be to identify emerging permanent 

constructions, or temporal placement of objects such as docking of boats. The most 

crucial limitations are spatial and temporal resolution. This thesis shows suboptimal 

performance when pixels are not fully saturated with the change. Robust detection of 
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smaller objects than the spatial resolution of the images cannot be expected when 

used as in this thesis. The high number of discarded images reduces the temporal 

resolution and makes the temporal RX-algorithm less suitable for detection of 

temporal object such as boats – since many images with potential boats are discarded. 

It can detect them, but the time series are incomplete, and reliability of the system is 

reduced.  

 Another application is to aid imagery analysts to find areas of interest. With 

increasing amounts of image data, time spent by humans inspecting images is 

increasingly scarce. A workflow that uses an implementation of the temporal RX-

algorithm could help analysts find the relevant focus areas, and discard areas without 

flagged anomalies. For this application, an adjustment of the threshold to achieve a 

higher false positive rate to suppress false negatives could be preferable since humans 

could remove false positives, but not negatives. 

 To implement the temporal RX-algorithm into an automated system, several 

other processing steps must be added. It seems like automated pre-processing and 

quality control would be the most beneficial. The temporal RX-algorithm must also 

be implemented differently to produce anomaly rasters, like the detection maps used 

by  (Ziemann, Simonoko, & Flynn, 2020).     
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Annex A – List with image dates 
 

Image_number Image taken (YYYYMMDD)  Image_number Image taken (YYYYMMDD) 

1 '20150725'  36 '20190716' 

2 '20150818'  37 '20190726' 

3 '20150824'  38 '20190728' 

4 '20150903'  39 '20190921' 

5 '20160527'  40 '20190924' 

6 '20160606'  41 '20190926' 

7 '20161014'  42 '20191004' 

8 '20161021'  43 '20191006' 

9 '20161024'  44 '20191014' 

10 '20170628'  45 '20191103' 

11 '20170719'  46 '20191105' 

12 '20170825'  47 '20200529' 

13 '20170926'  48 '20200531' 

14 '20180517'  49 '20200615' 

15 '20180525'  50 '20200723' 

16 '20180530'  51 '20200725' 

17 '20180606'  52 '20200809' 

18 '20180608'  53 '20200816' 

19 '20180629'  54 '20200826' 

20 '20180701'  55 '20200831' 

21 '20180704'  56 '20200926' 

22 '20180726'  57 '20201003' 

23 '20181029'  58 '20201015' 

24 '20181120'  59 '20201016' 

25 '20190404'  60 '20210528' 

26 '20190405'  61 '20210529' 

27 '20190407'  62 '20210622' 

28 '20190409'  63 '20210630' 

29 '20190410'  64 '20210702' 

30 '20190412'  65 '20210723' 

31 '20190414'  66 '20210725' 

32 '20190415'  67 '20210730' 

33 '20190424'  68 '20210822' 

34 '20190611'  69 '20210826' 

35 '20190713'  70 '20211104' 
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caves in the Périgord noir, France (2022). 

147. Bernat Dorado-Guerrero: Assessing the impact of post-fire restoration 

interventions using spectral vegetation indices: A case study in El Bruc, 

Spain (2022). 

148. Ignatius Gabriel Aloysius Maria Perera: The Influence of Natural Radon 

Occurrence on the Severity of the COVID-19 Pandemic in Germany: A 

Spatial Analysis (2022). 

149. Mark Overton: An Analysis of Spatially-enabled Mobile Decision Support 

Systems in a Collaborative Decision-Making Environment (2022). 

150. Viggo Lunde: Analysing methods for visualizing time-series datasets in 

open- source web mapping (2022). 

151. Johan Viscarra Hansson: Distribution Analysis of Impatiens glandulifera in 

Kronoberg County and a Pest Risk Map for Alvesta Municipality (2022). 

152. Vincenzo Poppiti: GIS and Tourism: Developing strategies for new touristic 

flows after the Covid-19 pandemic (2022). 

153. Henrik Hagelin: Wildfire growth modelling in Sweden - A suitability 

assessment of available data (2023). 

154. Gabriel Romeo Ferriols Pavico: Where there is road, there is fire 

(influence): An exploratory study on the influence of roads in the spatial 

patterns of Swedish wildfires of 2018 (2023). 

155. Colin Robert Potter: Using a GIS to enable an economic, land use and 

energy output comparison between small wind powered turbines and large-

scale wind farms: the case of Oslo, Norway (2023). 

156. Krystyna Muszel: Impact of Sea Surface Temperature and Salinity on 

Phytoplankton blooms phenology in the North Sea (2023). 

157. Tobias Rydlinge: Urban tree canopy mapping - an open source deep learning 

approach (2023). 

158. Albert Wellendorf: Multi-scale Bark Beetle Predictions Using Machine 

Learning (2023). 

159. Manolis Papadakis: Use of Satellite Remote Sensing for Detecting 

Archaeological Features: An Example from Ancient Corinth, Greece (2023). 

160. Konstantinos Sourlamtas: Developing a Geographical Information System 

for a water and sewer network, for monitoring, identification and leak repair 

- Case study: Municipal Water Company of Naoussa, Greece (2023). 

161. Xiaoming Wang: Identification of restoration hotspots in landscape-scale 

green infrastructure planning based on model-predicted connectivity forest 

(2023). 

162. Sarah Sienaert: Usability of Sentinel-1 C-band VV and VH SAR data for the 

detection of flooded oil palm (2023). 

163. Katarina Ekeroot: Uncovering the spatial relationships between Covid-19 

vaccine coverage and local politics in Sweden (2023). 

164. Nikolaos Kouskoulis: Exploring patterns in risk factors for bark beetle attack 

during outbreaks triggered by drought stress with harvester data on attacked 

trees: A case study in Southeastern Sweden (2023). 

165. Jonas Almén: Geographic polarization and clustering of partisan voting: A 

local-level analysis of Stockholm Municipality (2023). 

166. Sara Sharon Jones: Tree species impact on Forest Fire Spread Susceptibility 

in Sweden (2023). 



 

 

60 

167. Takura Matswetu: Towards a Geographic Information Systems and Data- 

Driven Integration Management.  Studying holistic integration through 

spatial accessibility of services in Tampere, Finland. (2023). 

168. Duncan Jones: Investigating the influence of the tidal regime on harbour 

porpoise Phocoena phocoena distribution in Mount’s Bay, Cornwall (2023). 

169. Jason Craig Joubert: A comparison of remote sensed semi-arid grassland 

vegetation anomalies detected using MODIS and Sentinel-3, with anomalies 

in ground-based eddy covariance flux measurements (2023). 

170. Anastasia Sarelli: Land cover classification using machine-learning 

techniques applied to fused multi-modal satellite imagery and time series 

data (2024). 

171. Athanasios Senteles: Integrating Local Knowledge into the Spatial Analysis 

of Wind Power: The case study of Northern Tzoumerka, Greece (2024). 

172. Rebecca Borg: Using GIS and satellite data to assess access of green area for 

children living in growing cities (2024). 

173. Panagiotis – Dimitrios Tsachageas: Multicriteria Evaluation in Real Estate 

Land-use Suitability Analysis: The case of Volos, Greece (2024). 

174. Hugo Nilsson: Inferring lane-level topology of signalised intersections from 

aerial imagery and OpenStreetMap using deep learning (2024). 

175. Pavlos Alexantonakis: Estimating lake water volume fluctuations using 

Sentinel-2 and ICESat-2 remote sensing data (2024). 

176. Karl-Martin Wigen: Physical barriers and where to find them (2024).  

177. Martin Storsnes: Temporal RX-algorithm performance on Sentinel-2 images 

(2024). 

 

 

 

 

 

 


