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Abstract
This thesis presents the derivation of the flavor structure of the Standard
Model (SM) from the trinification model with an additional family symme-
try. The trinification group is assumed to be broken in a single step to the
electroweak gauge group. A low energy Effective Field Theory (EFT) is con-
structed and matched numerically at one loop level to the trinification model
at high energies. The analysis focuses on an SM-like EFT with one Higgs-
doublet, two scalar Lepto-Quarks (LQs), and one Vector-Like-Quark (VLQ)
in the scalar potential. This is motivated by a numerical scan over the possible
mass spectra. For parameter space points satisfying the correct mass spectrum
at tree level, loop corrections are added, and the parameters are Renormaliza-
tion Group (RG)-evolved down to the electroweak symmetry-breaking scale,
at which predictions of the quark mass hierarchy and CKM matrix are com-
pared to observations. The results reveal that the constructed EFT cannot
accurately reproduce the correct SM quark masses, indicating the need for
multiple Higgs particles to reproduce the observed SM, resulting in strong
constraints on further considerations of this model.
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Popular Science Description
It has long been known that the objects we interact with in everyday life are constituted
by atoms. These atoms, in turn, consist of electrons, protons and neutrons, with the latter
two being further composed of quarks. The electrons and quarks are known as elemen-
tary particles, meaning nothing constitutes them, which together with other elementary
particles form the Standard Model of particle physics.

The Standard Model is, without doubt, one of the most successful descriptions of reality,
describing the interactions of all elementary particles. Yet, despite its success, experimen-
tal contradictions questioning its completion have surfaced. This motivates the search for
new models describing the experimentally verified part of the Standard Model, whilst
solving its anomalies.

One such model that aims to both be consistent with the Standard Model and address its
limitations is the trinification model, consisting of a larger symmetry group that is sym-
metric between left and right-handed particles. Studying the trinification model presents
the opportunity to receive insight into many features of the elementary particles of the
Standard Model, such as the origin of the large mass differences among the quarks, the
existence of dark matter, and the observation of matter anti-matter asymmetry.
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Acronyms

CKM Cabibbo–Kobayashi–Maskawa
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1 Introduction
The Standard Model (SM) of particle physics has proven to be one of the most successful
descriptions of reality. Yet, discrepancies between measurements and theoretical predic-
tions of the SM have been observed, such as the observed matter anti-matter asymmetry,
neutrino masses, and the existence of dark matter. The SM also leaves many questions
unanswered, such as the large hierarchy of the quark masses [1], which has led many
physicists to believe the SM to be incomplete. Furthermore, the discovery of the Higgs
boson, and the correctly predicted unification of the weak and electromagnetic forces into
the Electro-Weak (EW) force, invigorated physicists to theorize of a Grand Unified The-
ory (GUT) that would unite the EW and the strong force. Many such models exist but
none have been experimentally verified. One such model that potentially could explain
many of the observed discrepancies and unify the fundamental forces (except gravity) is
the trinification model.

The trinification model, first considered in 1984 in [2], is composed of a gauge group con-
sisting of three SU(3) groups: SU(3)L× SU(3)R× SU(3)C, referring to left, right and color
respectively. Originally an additional Z3 symmetry was also added, imposing the gauge
couplings to unify at a GUT scale, making this a viable GUT theory. The trinification
model has numerous advantages such as being flexible enough to allow for any masses
and mixing angles for quarks and leptons [3]. In particular, the SU(3)R group allows for
the inclusion of right-handed neutrinos, permitting neutrino masses. Additionally, the
model incorporates extra Higgs-doublets allowing for additional CP-violation, potentially
explaining the observed matter-antimatter asymmetry [4]. Another motivation for the
study of the trinification model is the fact that it appears as a maximal subgroup of
the exceptional Lie group E6, a group commonly used in GUT models due to it being
anomaly-free [5, 6]. Furthermore, the trinification group also appears in the compactifi-
cation of E8× E8 heterogenic string theories [4, 7]. This motivates the investigation of
the trinification model structure from a theoretical point of view.

This thesis explores a specific variant of the trinification model. Firstly, the Z3 symmetry
is not imposed, because this requires the energy scale, at which the EW and strong
coupling constants are unified, to be very large. Hence, the imposition of the gauge
couplings to unify is not considered in this model. The variation of the trinification
gauge group considered is [SU(3)]3× SU(2)F× U(1)F, where SU(2)F× U(1)F represent an
additional family symmetry, restricting the possible terms in the Lagrangian, with SU(2)F
being a gauge symmetry and U(1)F being a global symmetry. Having both family doublets
and singlets in the model results in, after the family symmetry is broken, three particles
corresponding to the three generations in the SM. Since [SU(3)]3 ⊂ E6, this model can be
viewed as an intermediate stage in a larger chain of broken symmetries starting from an
even larger E6 GUT theory. The additional family symmetries allow for the unification of
gauge couplings above the trinification scale, motivating the view of the model considered
in this thesis as a partial breaking step in a larger theory. This view is supported by [8],
where an E8 group is broken into a supersymmetric version of the gauge group considered
in this thesis, which in turn is broken in several steps down to the SM.

To study how a model beyond the SM, such as the trinification model, would affect
the physics of the SM, an Effective Field Theory (EFT), as a low-energy limit of the
trinification theory is constructed and matched at one loop level. As usual in the SM,
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at a given energy, the produced particles in a scattering event cannot have a total mass
exceeding the input energy. Hence, adding a heavy particle to the SM would never
be directly observed, nevertheless, it would appear as a virtual particle in interactions,
indirectly affecting observables. In the trinification model, many such heavy particles are
added, which cannot be observed at currently accessible energies. An EFT is constructed
to examine how a model, such as the trinification model, would affect the observable
phenomena of the SM, describing the impact of the high energy theory at lower energies.
This is achieved by calculating effective couplings, defined as the sum of the tree level
coupling plus all possible interactions with heavy particles only appearing in loops as
virtual particles [9]. The resulting EFT can hence be designed to resemble the SM, but
still depend on the parameters of the high energy theory.

A similar model to the one considered in this thesis has been studied at tree level in [10].
Consequently, the introductory sections describing the model will share many features.
The analysis at tree level had difficulties accommodating the correct Cabibbo–Kobayashi–
Maskawa (CKM) matrix and quark mass spectrum. Extending the analysis by matching
the EFT at one loop order will provide deeper insight into how the predicted particles of
the trinification model would influence the observable structures of the SM, such as the
quark mass hierarchy and the CKM matrix.

In this thesis a trinification model, [SU(3)]3, with the additional SU(2)F× U(1)F family
gauge symmetry is considered. The fields, their representations, the Lagrangian, and ac-
cidental symmetries are described in sec. 2. The trinification group is broken in one step
with the corresponding Vacuum Expectation Values (VEVs) and the remaining gauge
and global symmetries are calculated in sec. 3. Subsequently, the field components are
renamed; their charges under the new broken symmetry group, and their mass matrices
are calculated in sec. 4. The EFT model is detailed in sec. 5, as well as the mathemat-
ical formalism of the matching procedure and calculations of loop integrals. In sec. 6,
Renormalization Group (RG) evolution and EW symmetry breaking are described, as well
as properties to compare between the matched EFT and the SM, such as quark masses
and the CKM matrix. The EFT matching was implemented numerically by first finding
parameters resulting in the correct tree level mass spectrum and adding loop corrections
for respective points, described in sec. 7. The results of the numerical scan and the one
loop matching are detailed in sec. 8, together with an outlook for further analysis of this
model. Finally, sec. 9 concludes the method and results of the thesis.

1.1 Aim of thesis
This thesis aims to derive the flavor structure of the SM quarks as well as the mass
hierarchy and CKM matrix, from the trinification model with an additional SU(2)F×
U(1)F family symmetry. This is done by first assigning VEVs such that the SU(3)R and
SU(2)F are completely broken, and SU(3)L is broken into SU(2)L. Next, heavy fields
are integrated out and an EFT is constructed and matched to the full theory at one
loop level using a numerical implementation. The numerical computations are performed
by first scanning the tree level mass spectrum and adding loop corrections to any point
satisfying the EFT mass spectrum and parameter constraints. The matched EFT is then
transformed, by RG evolution, to the energy scale of EW symmetry breaking, at which
the Higgs mass parameter runs negative, giving mass to the SM quarks, and predictions
of the analyzed model can be compared to observations.
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2 Trinification model
The trinification model, as discussed in the introduction, is an attractive candidate for
beyond the Standard Model model building, consisting of the gauge group:

SU(3)C × SU(3)L × SU(3)R, (2.1)

which is commonly used in GUT models, where the three gauge couplings are unified by a
Z3-symmetry, that cyclically permutes the SU(3) groups. Even so, the model considered
in this thesis is not a GUT model, but it still has a Z3-symmetry reducing the number
of model parameters. Additionally, a SU(2)F × U(1)F symmetry is imposed to further
constrain the allowed terms in the Lagrangian. Here, the U(1)F symmetry added is an
exact global group of the fermion sector, but is softly broken by terms in the scalar
potential. Soft symmetry breaking refers to the symmetry being broken explicitly by
quadratic or trilinear terms in the Lagrangian. That it is "soft" refers to the fact that
the symmetry will only appear broken at lower energies and will in general not affect the
running of any couplings. Thus, the gauge group considered in this work becomes:

SU(3)C × SU(3)L × SU(3)R × SU(2)F ⋉ Z3 (2.2)

The Lagrangian that will be described in sec. 2.2, also contains two accidental symmetries:
U(1)A and U(1)B, the latter of which corresponds to the baryon charge which will remain
unbroken, as will be shown in sec. 3.

In this section, the fields within the model, their representations and charges under the
various symmetries, as well as the Lagrangian, for scalar, fermion, and gauge sectors, are
defined.

2.1 Field content
The fundamental representation of the trinification group, [SU(3)]3, is a 27-plet. Thus,
the fundamental representation of the gauge group given in eq. (2.2) can be decomposed
into:

27i = (1,3, 3̄)i

L̃i,Li

⊕ (3, 3̄,1)i

Q̃i
L,Q

i
L

⊕ (3̄,1,3)i

Q̃i
R,Q

i
R

, i = 1, 2, 3 (2.3)

where the family index i = (1, 2) is put into an SU(2)F doublet, and i = 3 is placed into
a singlet. The bar denotes the field being in the anti-fundamental representation of the
group, defined as the complex conjugate of the representation.

Adding scalars and left-handed Weyl fermions into these representations we have the
scalars, denoted by a tilde, L̃i, Q̃i

L, Q̃
i
R; and the fermions, Li, Qi

L, Q
i
R; with their represen-

tations shown in eq. (2.3). The fields Li, Qi
L, and Qi

R denote lepton, left-handed quarks,
and left-handed anti-quarks (charge conjugated right-handed Weyl-spinors) respectively.

However, to avoid a theoretical inconsistency known as the Witten anomaly, we need
to introduce additional particles. The Witten anomaly arises for (dimension four) gauge
theories with an odd number of SU(2) fermion doublets [11]. Hence, we add one additional
SU(2)F fermion doublet, N I (I = 1, 2), and their corresponding scalar fields, Ñ I , both of
which are put into singlets in the other gauge groups. Lastly, an additional scalar singlet
is added, S̃, to give mass to the N I fermions by S̃ acquiring a VEV.
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Thus, the model contains the following left-handed Weyl fermions: Li, Qi
L, Q

i
R and N I ;

the scalars: L̃i, Q̃i
L, Q̃

i
R, Ñ

I and S̃; and the gauge bosons: GC, GL, GR and GF. A summary
of all the high-scale fields and their representations is given in tab. 1.

Table 1: Summary of fields in high-scale model and which representation of the gauge
group, eq. (2.2), they belong to.

SU(3)C SU(3)L SU(3)R SU(2)F

Fermions & Scalars

LI , L̃I 1 3 3̄ 2
L3, L̃3 1 3 3̄ 1
QI

L, Q̃I
L 3 3̄ 1 2

Q3
L, Q̃3

L 3 3̄ 1 1
QI

R, Q̃I
R 3̄ 1 3 2

Q3
R, Q̃3

R 3̄ 1 3 1
N I , Ñ I 1 1 1 2

S̃ 1 1 1 1

Gauge Bosons

GC 8 1 1 1
GL 1 8 1 1
GR 1 1 8 1
GF 1 1 1 3

The Lagrangian, described in sec. 2.2, also possess two accidental symmetries, U(1)A and
U(1)B, the latter of which gives rise to a baryon number conservation and will remain
unbroken, as seen in sec. 3. The fields are assigned charges under the U(1)A, U(1)B, and
U(1)F symmetries, similar to a model considered in [7]. This charge assignment is shown
in tab. 2.

Table 2: Charge assignment under the accidental symmetries, U(1)A and U(1)B, as well
as the softly broken U(1)F symmetry.

Field Component U(1)A U(1)B U(1)F

LI , L̃I 1 0 -1/2
L3, L̃3 1 0 1
QI

L, Q̃I
L -1/2 1/3 -1/2

Q3
L, Q̃3

L -1/2 1/3 1
QI

R, Q̃I
R -1/2 -1/3 -1/2

Q3
R, Q̃3

R -1/2 -1/3 1
N I , Ñ I 0 0 -1/2

S̃ 0 0 1

2.1.1 Note on notation

The fields of the trinification model can have both fundamental and anti-fundamental
components. In this thesis, indices in the fundamental representation are written as
upper indices, and anti-fundamental as lower indices. The fields are written in the form
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(L̃i)lr where the indices outside the parentheses are the trinification group indices (note
from tab. 1 that l and r are in the 3 and 3̄ respectively). The indices used will have the
following conventions, lower case indices i, k, l, r, c will range from 1 to 3, the index a will
take values from 1 to 8, and the upper case indices I, J, L,R will take the values 1 and 2.

The components of the fields can be written in a matrix representation, where the upper
(fundamental) index will indicate the row and the lower (anti-fundamental) index indicates
the column of the matrix. For instance, (L̃i)lr is represented by a 3 × 3 matrix for each i.

Lastly, to shorten the notation of the Lagrangian the discrete Z3 group, defined to cycli-
cally permute the fields is introduced:

(Li)lr (Qi
L)cl

(Qi
R)rc

Z3

Z3Z3

(L̃i)lr (Q̃i
L)cl

(Q̃i
R)rc

Z3

Z3Z3

GL GC

GR

Z3

Z3Z3

gL gC

gR

Z3

Z3Z3

2.2 Lagrangian
The Lagrangian used is the most general realizable Lagrangian invariant under the gauge
group, eq. (2.2), where the Z3 symmetry is imposed to reduce the number of parameters.

The scalar potential is divided up as:

V = V1 + V2 + V3 + V4 + V5 + V6 (2.4)

where V1 contains all mass- and quartic bi-triplet self-interaction terms; V2 contains all
quartic interactions between the bi-triplets; V3 contains all trilinear terms between the
bi-triplet fields; V4 contains all Ñ I , S̃ masses and interactions; V5 contains all quartic
terms between a bi-triplet and either Ñ I or S̃; and V6 contains all trilinear terms between
Ñ I , S̃, and one bi-triplet.

V1 =µ2
1(L̃I)lr(L̃∗

I)rl + µ2
2(L̃3)lr(L̃∗

3)rl + λ1
[
(L̃I)lr(L̃∗

I)rl
]2

+ λ2(L̃I)lr(L̃∗
I)rl (L̃3)l′r′(L̃∗

3)r
′

l′ + λ3
[
(L̃3)lr(L̃∗

3)rl
]2

+ λ4(L̃I)lr(L̃J)l′r′(L̃∗
J)rl (L̃∗

I)r
′

l′ + λ5(L̃I)lr(L̃3)l′r′(L̃∗
3)rl (L̃∗

I)r
′

l′

+ λ6(L̃I)lr(L̃J)l′r′(L̃∗
I)r

′

l (L̃∗
J)rl′ + λ7(L̃I)lr(L̃3)l′r′(L̃∗

I)r
′

l (L̃∗
3)rl′

+ λ8(L̃3)lr(L̃3)l′r′(L̃∗
3)r

′

l (L̃∗
3)rl′ + λ9(L̃I)lr(L̃J)l′r′(L̃∗

J)r′

l (L̃∗
I)rl′

+ λ10(L̃I)lr(L̃3)l′r′(L̃∗
3)r

′

l (L̃∗
I)rl′ + (Z3 permutations)

(2.5)
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V2 =α1(L̃I)lr(L̃∗
I)rl (Q̃J

L)cl′(Q̃L
∗
J)l′c + α2(L̃3)lr(L̃∗

3)rl (Q̃I
L)cl′(Q̃L

∗
I)l

′

c

+ α3(L̃I)lr(L̃∗
I)rl (Q̃3

L)cl′(Q̃L
∗
3)l

′

c + α4(L̃3)lr(L̃∗
3)rl (Q̃3

L)cl′(Q̃L
∗
3)l

′

c

+ α5(L̃I)lr(L̃∗
J)rl (Q̃I

L)cl′(Q̃L
∗
J)l′c

+ α6
[
(L̃3)lr(L̃∗

I)rl (Q̃I
L)cl′(Q̃L

∗
3)l

′

c + (L̃I)lr(L̃∗
3)rl (Q̃3

L)cl′(Q̃L
∗
I)l

′

c

]
+ α7(L̃I)lr(L̃∗

I)rl′(Q̃J
L)cl (Q̃L

∗
J)l′c + α8(L̃3)lr(L̃∗

3)rl′(Q̃I
L)cl (Q̃L

∗
I)l

′

c

+ α9(L̃I)lr(L̃∗
I)rl′(Q̃3

L)cl (Q̃L
∗
3)l

′

c + α10(L̃3)lr(L̃∗
3)rl′(Q̃3

L)cl (Q̃L
∗
3)l

′

c

+ α11(L̃I)lr(L̃∗
J)rl′(Q̃J

L)cl (Q̃L
∗
I)l

′

c

+ α12
[
(L̃3)lr(L̃∗

I)rl′(Q̃I
L)cl (Q̃L

∗
3)l

′

c + (L̃I)lr(L̃∗
3)rl′(Q̃3

L)cl (Q̃L
∗
I)l

′

c

]
+ (Z3 permutations)

(2.6)

V3 = ϵIJ
[
γ1(L̃I)lr(Q̃J

L)cl (Q̃3
R)rc + γ2(L̃I)lr(Q̃3

L)cl (Q̃J
R)rc + γ3(L̃3)lr(Q̃I

L)cl (Q̃J
R)rc

]
+ c.c (2.7)

V4 = µ2
3Ñ

IÑ∗
I + µ2

4S̃S̃
∗ + η2

2
(
S̃2 + S̃∗2

)
+ χ1

[
Ñ IÑ∗

I

]2
+ χ2

[
S̃S̃∗

]2
+ χ3Ñ

IÑ∗
I S̃S̃

∗ (2.8)

V5 =β1(L̃I)lr(L̃∗
I)rl ÑJÑ∗

J + β2(L̃I)lr(L̃∗
J)rl ÑJÑ∗

I + β3(L̃3)lr(L̃∗
3)rl Ñ IÑ∗

I

+ β4(L̃I)lr(L̃∗
I)rl S̃S̃∗ + β5(L̃3)lr(L̃∗

3)rl S̃S̃∗ + (Z3 permutations)
(2.9)

V6 =γ4S̃Ñ
IÑ∗

I + γ5S̃(L̃I)lr(L̃∗
I)rl + γ6S̃(L̃3)lr(L̃∗

3)rl + γ7ϵIJÑ
I(L̃J)lr(L̃∗

3)rl
+ c.c + (Z3 permutations)

(2.10)

The Lagrangian of the fermionic sector is given by:

LYukawa = − ϵIJ
[
y1(L̃I)lr(QJ

L)cl (Q3
R)rc + y2(L̃I)lr(Q3

L)cl (QJ
R)rc + y3(L̃3)lr(QI

L)cl (QJ
R)rc

+ y4S̃N
INJ

]
+ c.c + (Z3 permutations),

(2.11)

where the spin indices are implicitly being contracted over the Levi-Civita tensor.

The kinetic part of the Lagrangian, describing gauge boson interaction, is given by:

LGauge =
[
Dµ(L̃i)lr

] [
Dµ(L̃∗

i )rl
]

+
[
DµÑ

I
] [

DµÑ∗
I

]
+
[
DµS̃

] [
DµS̃∗

]
+ (Li)lr /D(L∗

i )rl +N I /DN∗
I + S /DS∗

+ 1
2G

a
LµνG

a
L
µν + 1

2G
a
RµνG

a
R
µν + 1

2G
a
CµνG

a
C
µν + 1

2G
i
FµνG

i
F
µν + (Z3 permutations),

(2.12)

where the covariant derivative for the given gauge group for L̃i is given by:

Dµ = ∂µ + igLT
a
LG

a
Lµ − igRT

a
RG

a
Rµ + igFT

a
FG

a
Fµ , (2.13)
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and similarly for Q̃L and Q̃R, with appropriate generators and minus signs. However,
DµÑ

I and DµS̃ would only contain the SU(2)F variation due to them being singlets in
SU(3)L and SU(3)R. And Ga

Lµν denote the field strength tensor of the SU(3)L gauge
group, defined as:

Ga
Lµν = ∂µG

a
Lν − ∂νG

a
Lµ + gLf

abcGb
LµG

c
Lν (2.14)

and Ga
Rµν , Ga

Fµν and Ga
Cµν are defined equivalently, with fabc in eq. (2.14) being the

structure constants of the corresponding gauge group.

Altogether, the parameters of the high-scale model are the 5 mass-parameters µ1,...,4, η, 7
trilinear scalar couplings γ1,...,7, 4 Yukawa couplings y1,...,4, and 30 quartic scalar couplings
λ1,...,10, α1,...,12, χ1,2,3, β1,...,5.
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3 Symmetry breaking
To arrive at a model consistent with the SM at lower energies the high rank of the trini-
fication group needs to be reduced. This is achieved by spontaneous symmetry breaking
which also gives rise to massive gauge bosons, fermions, and scalars.

The U(1)F symmetry is softly broken, by the trilinear terms in V6, eq. (2.10). The energy
scale at which this occurs is taken to be above the breaking of the trinification group
itself. Therefore, the U(1)F will be considered broken throughout the rest of the thesis.

Writing the field-components in matrix form, using the notation described in sec. 2.1.1,
the VEVs that break the gauge group, eq. (2.2), down to a SM-like gauge group are

〈
L̃1
〉

= 1√
2

0 0 0
0 0 0
0 ω 0

 , 〈
L̃2
〉

= 1√
2

0 0 0
0 0 0
0 0 f

 , 〈
L̃3
〉

= 1√
2

0 0 0
0 0 0
0 0 p

 ,
〈
Ñ
〉

= 1√
2

(
ρ
0

)
,

〈
S̃
〉

= w√
2

(3.1)

Without a loss of generality, the VEVs ω, f, p, ρ and w are taken to be real and positive.
Similar to the SM Higgs mechanism, scalars that acquire a VEV must have a correspond-
ing potential with a minimum away from the origin. To impose this condition, the mass
parameters of the fields acquiring VEVs must be negative, µ2

1,2,3,4 < 0.

This section details a one-step breaking scheme of the trinification group to the SM gauge
group, the minimization conditions of the scalar potential, known as tadpole equations,
and the calculation of the new unbroken symmetries.

3.1 Tadpole equations
Tadpole equations are minimization conditions of the scalar potential with respect to the
fields. This is to ensure that the VEVs are expanded around a minimum, mathematically
it is written as:

∂V

∂ϕj

∣∣∣∣∣
ϕj=⟨ϕj⟩

= 0 , (3.2)

where
〈
ϕj
〉

is the VEVs. In the SM the minimization condition is used to solve for the
VEV in terms of other parameters of the model. Yet, in this thesis, the VEV scales are
treated as inputs. Instead, the five VEVs, in eq. (3.1), give five minimization conditions
used to eliminate the variables µ1, µ2, µ3, µ4 and γ7. The expression for these variables
are given in Appendix A.

Mathematically, these minimization conditions ensure there are no linear terms in the
Lagrangian, that is, a field never appears by itself. These linear terms would give rise to
Feynman diagrams with a single external leg,

(3.3)
referred to as tadpole diagrams [12].
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3.2 Breaking to SM gauge group
The VEVs in eq. (3.1) can be written more compactly in terms of Kronecker-delta func-
tions: 〈

(L̃i)lr
〉

= 1√
2
δl3
(
ωδ2

rδ
i
1 + (fδi2 + pδi3)δ3

r

)
. (3.4)

Using the notation: T a = λa/2, where λa are the Gell-Mann matrices, the generators of
SU(3), the generators of SU(2) are written as the first three SU(3) generators, T k = T 1,2,3,
and the U(1)A generator is given by TA, and a constant number. A general transformation
of the L̃i fields, considering the gauge group, eq. (2.2), can then be written as:

δ(L̃i)lr = iωaL(T aL)ll′(L̃i)l
′

r − iωaR(T aR)r′

r (L̃i)lr′ + iωkF(T kF)ii′(L̃i
′)lr + iωA(TA)(L̃i)lr . (3.5)

The minus sign for the SU(3)R variation is due to L̃i belonging to the anti-fundamental
representation of this group. No variation with respect to SU(3)C appear in eq. (3.5),
due to L̃I being a color singlet. Moreover, no U(1)B appears due to L̃i not being charged
under this symmetry. Finally, considering that L̃i has charge one under the U(1)A trans-
formations we can set (TA) to unity.

In order to leave the vacuum invariant after expanding around the new minimum, the
variation of the VEVs must vanish, δ

〈
(L̃i)lr

〉
= 0. Combining eqs. (3.4) and (3.5) we get

δ
〈
(L̃i)lr

〉
= i√

2

[
ωaL(T aL)l3

(
ωδ2

rδ
i
1 + (fδi2 + pδi3)δ3

r

)
− ωaRδ

l
3

(
ω(T aR)2

rδ
i
1 + (T aR)3

r(fδi2 + pδi3)
)

+ ωkFδ
l
3

(
ω(T kF)i1δ2

r + f(T kF)i2δ3
r + p(T kF)i3δ3

r

)
+ ωAδ

l
3

(
ωδ2

rδ
i
1 + (fδi2 + pδi3)δ3

r

) ]
= 0 .

(3.6)

Using that (T kF)i3 = 0 this can be written as

0 = ωaL(T aL)l3
(
ωδ2

rδ
i
1 + (fδi2 + pδi3)δ3

r

)
− ωaRδ

l
3

(
ω(T aR)2

rδ
i
1 + (T aR)3

r(fδi2 + pδi3)
)

+ ωkFδ
l
3

(
ω(T kF)i1δ2

r + f(T kF)i2δ3
r

)
+ ωAδ

l
3

(
ωδ2

rδ
i
1 + (fδi2 + pδi3)δ3

r

)
.

(3.7)

Considering all combinations i, l, r, and imposing ωaL, ωaR, ωkF and ωA to be real, we find
which generators that are broken by the VEVs. For example, considering i = l = r = 3,
eq. (3.7) reduces to

0 = ωaL(T aL)3
3p−ωaR(T aR)3

3p+ωkF

(T aF)3
1

=0

ω + (T aF)3
3

=0

f

+ωAp = ωaL(T aL)3
3p−ωaR(T aR)3

3p+ωAp

From the Gell-Mann matrices we have that (T a)3
3 = − δa

8√
3 , summing over a gives

⇒ −ω8
L

1√
3

+ ω8
R

1√
3

+ ωA = 0.
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Similarly for other combinations, we arrive at

ω4,..,7
L = ω1,2,4,..,7

R = ω1,2,3
F = 0, (3.8)

ω3
R −

√
3ω8

R = 0, (3.9)
ω8

L − ω8
R −

√
3ωA = 0. (3.10)

From this we conclude that the generators T 4,..,7
L = T 1,2,4,..,7

R = T 1,2,3
F are broken.

The generators T 8
L , T 8

R, T 3
R and TA are constrained by eq. (3.9) and eq. (3.10), the

remaining unbroken generators must be a linear combination of these, giving rise to two
independent unbroken U(1) generators, one of which will correspond to the hypercharge
U(1)Y. Considering a general transformation of T 8

L , T 8
R, T 3

R and TA, and using the derived
constraints to eliminate ω3

R =
√

3ω8
R and ωA = 1√

3(ω8
L − ω8

R), we get

ω8
LT

8
L + ω8

RT
8
R + ω3

RT
3
R + ωATA = ω8

LT
8
L + ω8

RT
8
R +

√
3ω8

RT
3
R + 1√

3
(
ω8

L − ω8
R

)
TA. (3.11)

Wanting to find a generator corresponding to hypercharge we choose to define,

ω8
L ≡ − 1√

3
(ωY + 4ωT), ω8

R ≡ 1√
3

(ωT − ωY),

eq. (3.11) then becomes,

ωY√
3
(
(−T 8

L − T 8
R) −

√
3T 3

R + TA · 0
)

+ ωT√
3

(
−4T 8

L +
√

3T 8
R + T 3

R − 4√
3
TA + 1√

3
TA

)
=

= ωY

(
− 1√

3
(T 8

L + T 8
R) − T 3

R

)
︸ ︷︷ ︸

≡ TY

+ωT

(
− 4√

3
T 8

L − 5
3TA + T 8

R − 1√
3
T 3

R

)
︸ ︷︷ ︸

≡ TT

. (3.12)

Hence, we have found the generators TY and TT:

TY = − 1√
3

(T 8
L + T 8

R) − T 3
R, TT = − 1√

3
(4T 8

L + T 3
R) − 5

3TA + T 8
R, (3.13)

where TT depends on TA which generates a global symmetry, hence TT must also be global.

The remaining unbroken generators are T 1,2,3
L , which are the generators of SU(2), therefore

we have broken SU(3)L → SU(2)L. Hence, the total breaking of the symmetry group can
be written as:

[SU(3)C × SU(3)L × SU(3)R × SU(2)F] × {U(1)F × U(1)A × U(1)B}
↓

[SU(3)C × SU(2)L × U(1)Y] × {U(1)T × U(1)B}
(3.14)

where square brackets [...] denote gauge symmetries and curly ones {...} denote global
symmetries.
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4 Low-scale fields
After spontaneous symmetry breaking the new gauge group is described by eq. (3.14).
In this section new names for the components of the high-scale fields are given, their
quantum numbers are calculated, as well as the masses of all scalar, fermion, and gauge
fields.

The components of the trinification fields are renamed, with the doublets denoting the
leftover SU(2)L doublets, and neglecting any SU(3)C index as it is not broken. The
components that receive a VEV, (L̃i)3

2 and (L̃i)3
3, are expanded into CP even and CP odd

components, then the scalar fields are given by:

L̃i =


(
Hd,1
Hd,2

)i (
Hu,1
Hu,2

)i (
ν̃L
ẽL

)i
ẽiR (L̃i)3

2 (L̃i)3
3

 , with :
(L̃i)3

2 = 1√
2
(
δi1ω + ν̃iR + iν̃

′i
R

)
(L̃i)3

3 = 1√
2
(
δi2f + δi3p+ Φ̃i + iΦ̃′i

) (4.1)

Q̃i
L =

((
d̃L ũL

)
D̃L

)i
, Q̃i

R =

 ũR
d̃R
D̃R


i

.

The Ñ I , and S̃ fields are also expanded around their VEVs as:

Ñ I = 1√
2
(
δI1ρ+ ñI + iñ′I

)
, S̃ = 1√

2
(
w + s̃+ is̃′

)
. (4.2)

The fermion fields are given as:

Li =


(

ER
NR

) (
NL
EL

) (
νL
eL

)
eR νR Φ


i

, Qi
L =

((
dL uL

)
DL

)i
, Qi

R =

uR
dR
DR


i

,

where the non-chiral quarks, DL and DR, are known as Vector-Like-Quarks (VLQs).

The SU(2)L doublets are in turn given the following names:

H i
d =

(
Hd,1
Hd,2

)i
, Ei

R =
(

ER
NR

)i
, qiL =

(
dL uL

)i
, ℓiL =

(
eL,
νL

)i

H i
u =

(
Hu,1
Hu,2

)i
, Ei

L =
(

NL
EL

)i
, q̃iL =

(
d̃L ũL

)i
, ℓ̃iL =

(
ẽL
ν̃L

)i
,

(4.3)

and the name of N I is unchanged from the UV model.

The charges of the low-scale fields under the remaining symmetry group, eq. (3.14), are
calculated by letting the new generators, defined in eq. (3.13), act upon the fields. Con-
sider for instance how Q̃i

L is charged under TT, remembering that it is anti-fundamental
under SU(3)L, a singlet under SU(3)R (seen in tab. 1), and its charge under U(1)A (seen
in tab. 2):

(TTQ̃
i
L)cl = 4√

3
(T 8

L)l′l (Q̃i
L)cl′ − 5

3 TA(Q̃i
L)cl︸ ︷︷ ︸

− 1
2 (Q̃i

L)c
l

= 1
3δ

L
l (Q̃i

L)cL − 4
3δ

3
l (Q̃i

L)c3 + 5
6(Q̃i

L)cl . (4.4)
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Thus, for l = 1, 2 (Q̃i
L)cl has charge 3

2 and for l = 3 it has −1
2 . Note that the calculation

for (Qi
L)cl is identical, thus it has the same charges. Hence, in terms of the low-scale

naming scheme, qiL and diL have U(1)T charges −3
2 and 1

2 respectively, with their scalar
counterpart having identical charges. Calculating this for all fields in the theory we arrive
at the quantum numbers described in tab. 3.

Table 3: Representations and quantum numbers under the new gauge group, eq. (3.14),
for the low-scale fields.

Fields SU(3)C SU(2)L U(1)Y U(1)T

H i
d, Ei

R 1 2 1/2 -3
H i
u, Ei

L, ℓiL, ℓ̃iL 1 2 -1/2 -2
ẽiR, eiR 1 1 1 -1

ν̃iR, ν̃i
′

R, νiR, Φ̃i, Φ̃i
′
, Φi, ñI , ñ′I , N I , s̃, s̃′ 1 1 0 0

q̃iL, qiL 3 2̄ 1/6 3/2
D̃i

L, Di
L 3 1 -1/3 -1/2

ũiR, uiR 3̄ 1 -2/3 3/2
d̃iR, diR, D̃i

R, Di
R 3̄ 1 1/3 1/2

Note that eiL and eiR have opposite hypercharge, this is due to all fields being left-handed
Weyl-spinors, hence a Dirac spinor would be constructed by charge conjugating one of

the fields, Qi =
(
Qi

L
Qi

R
c

)
, which gives the expected charge structure as in the SM. Keeping

this in mind, the hypercharge for the electron becomes negative one as expected. In sec.
6.2 it will also be shown that this field assignment will give the correct electric charges of
the corresponding SM fields after the EW symmetry is broken.

4.1 Tree-level masses
Before symmetry breaking the only massive scalars are those that have a quadratic cou-
pling in the UV Lagrangian, seen in sec. 2.2, with mass terms µ1, µ2, µ3, µ4, η. All other
scalars and gauge bosons are massless at this energy scale. After spontaneous symmetry
breaking, expanding around the VEVs seen in sec. 3, additional quadratic couplings ap-
pear in the broken Lagrangian, physically interpreted as particles acquiring mass due to
the broken symmetry. Many fields will acquire mass while the SM particles remain mass-
less. The mass terms of scalars are of the form, ϕϕ†, and for fermions ψψ̄ = ψLψ̄R +ψRψ̄L,
thus the masses can identified by differentiating the Lagrangian with respect to the fields.

This section describes how the coefficients of the mass terms and mass matrices are found
from the Lagrangian, through differentiation. This will be described for scalars, scalars
decomposed into CP even and CP odd parts, colored scalars, fermions, and gauge bosons.

4.1.1 Scalars

The mass matrix for scalar fields can be identified as the quadratic terms in the Lagrangian
after expanding the fields around the VEVs. The mass matrix for complex scalars,

(
M2

(S)

)
,

is calculated as
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(
M2

(S)

)ij
= ∂2V

∂ϕi∂ϕ
†
j

∣∣∣∣∣∣
ϕi=⟨ϕi⟩

for complex ϕ. (4.5)

As described in sec. 4, the fields that are expanded around the VEVs are split into real
and imaginary components (CP even and odd). The mass matrices of these components
are calculated similarly to eq. (4.5), but differentiating with respect to the unconjugated
fields:

1
2
(
M2

(S)

)ij
= ∂2V

∂ϕi∂ϕj

∣∣∣∣∣
ϕi=⟨ϕi⟩

for real ϕ. (4.6)

Note that the reason for expanding the components (L̃i)3
2, (L̃i)3

2 and (L̃i)3
3, into real and

imaginary parts in sec. 4 is that these components mix together. Hence blocks 7-11 of
the mass matrix, seen in tab. 4, only contain real fields and eq. (4.6) is applicable.

For scalars carrying colored charge, the mass terms can appear as (Q̃I
L)cl (Q̃L

∗
I)
r

c, hence
the mass matrix can be calculated from eq. (4.5). However, off-diagonal mass terms, for
example (Q̃I

L)cl (Q̃3
R)rc, also appear in the Lagrangian after symmetry breaking. The mass

matrix of these terms is given by

(
M2

(S)

)ij
= ∂2V

∂ϕiL∂ϕj R

∣∣∣∣∣∣
ϕi=⟨ϕi⟩

for ϕiL = Q̃L, ϕiR = Q̃R. (4.7)

All the mass matrices of all scalar fields are calculated and put in a block-diagonal form
which can be seen in tab. 4,

Table 4: Blocks of the block-diagonalized scalar mass matrix, the fields and the param-
eter dependence of each block. The un-colored complex, real, and colored scalars are
given in blocks 1-6, 7-11, and 12-18 respectively.

Block # Basis UV Parameter Dependence

1 {H1
d} {λ6,9,10}

2 {H2
d , H3

d} {λ4,6,...,10, β2}
3 {ℓ̃1

L} {λ6,7,9,10}
4 {ℓ̃2

L, ℓ̃3
L, H1

u} {λ4,6,7,9,10}
5 {H2

u, H3
u} {λ4,6,...,10, β2}

6 {ẽ2
R, ẽ3

R} {λ4,6, β2}
7 {ν̃2

R, ν̃3
R, Φ̃1, ñ2} {λ4,...,7, β2}

8 {ν̃1
R, Φ̃2, Φ̃3, ñ1, s̃} {λ1,...,10, β1,...,5, γ4,5,6, χ1,2,3}

9 {ν̃
′2
R , ν̃

′3
R , Φ̃′1, ñ

′2} {λ4,...,7, β2}
10 {Φ̃′2, Φ̃′3, ñ

′1} {λ4,...,7, β2}
11 {s̃

′} {η2, γ4,5,6}
12 {q̃1

L} {λ1,2,4,6,9,10, α1,2}
13 {q̃2

L, q̃3
L} {λ1,...,10, α1,...,6, β2}

14 {ũ1
R} {λ1,2,4,6,9,10, α1,3,5}

15 {ũ2
R, ũ3

R} {λ1,...,10, α1,...,6, β2}
16 {d̃1

R} {λ1,2,4,6,9,10, α1,3,5,7}
17 {d̃2

R, d̃3
R, D̃2

L
†
, D̃3

L
†
, D̃1

R} {λ1,...,10, α1,...,12, β1,2,5, γ1,2,3,6}
18 {D̃1

L
†
, D̃2

R, D̃3
R} {λ1,...,10, α1,...,12, β2, γ1,3}
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where the dagger, †, is used to ensure that fundamental and anti-fundamental field com-
ponents do not mix.

The scalar fields ẽ1
R and ν̃

′1
R are not appearing in tab. 4 because they remain massless

after symmetry breaking, becoming Nambu–Goldstone bosons. Since ẽ1
R is complex it

carries a total of two Degrees Of Freedom (DOF). Additionally, one eigenvalue of block
6, and two eigenvalues of blocks 7, 9, and 10 are zero. Lastly, one eigenvalue of block 4 is
zero, which carries a total of four DOF, due to it being a complex doublet. In total, we
find 15 DOF of the massless scalar particles, which give rise to 15 massive gauge bosons,
described in the next subsection.

Note that all the scalar mass matrices are symmetric, hence all eigenvalues, m2
i , are

positive and the mixing matrices that diagonalize all mass matrices by similarity trans-
formations must be hermitian. Furthermore, since all coefficients in the Lagrangian are
real, the mixing matrices are also real and hence orthogonal.

4.1.2 Gauge bosons

The Nambu Goldstone’s theorem states that each broken generator gives rise to one
massless Nambu-Goldstone boson which is "eaten" by a massless gauge boson, gaining an
extra degree of freedom as longitudinal polarization and acquires mass [13]. From sec. 3
15 broken generators were derived, which must give rise to 15 massless Goldstone bosons
which in turn give rise to 15 massive bosons. The 15 DOF of the massless scalars was
explicitly derived in the previous subsection. The mass matrix of the gauge boson is given
by:

1
2
(
M2

(G)

)
ab
gµν = −∂2LGauge

∂Ga
µ∂G

b
ν

∣∣∣∣∣∣
ϕi=⟨ϕi⟩

. (4.8)

All the gauge boson masses and matrices are calculated and shown in tab. 5, and eqs.
(4.9), (4.10).

Table 5: Computed masses of the gauge bosons. The first three rows show the squared
mass of the given fields, while the last three rows show mass matrices, and which com-
ponents mix. The mass matrices M2

GR,F
and M2

GL,R,F
are shown explicitly in eq. (4.9)

and (4.10).

Field Mass Squared

G4,5,6,7
L

1
2

(
f2 + p2 + ω2

)
g2

L
G1,2

R
1
2ω2g2

R
G4,5

R
1
2

(
f2 + p2

)
g2

R

Basis Mass Squared Matrix

{G6
R, G1

F} M2
GR,F

{G7
R, G2

F} M2
GR,F

{G8
L, G3

R, G8
R, G3

F} M2
GL,R,F
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M2
GR,F

=

1
2

(
f 2 + p2 + ω2

)
g2

R −fωgFgR

−fωgFgR
1
2

(
f 2 − ρ2 + ω2

)
g2

F

 (4.9)

M2
GL,R,F

=



2g2
L

3

(
f 2 + p2 + ω2

)
−ω2gLgR√

3
gLgR

3

(
−2f 2 − 2p2 + ω2

) (f2−ω2)gFgL√
3

−ω2gLgR√
3

1
2ω

2g2
R −ω2g2

R
2
√

3
1
2ω

2gFgR

gLgR
3

(
−2f 2 − 2p2 + ω2

)
−ω2g2

R
2
√

3
g2

R
6

(
4f 2 + 4p2 + ω2

)
−(2f2+ω2)gFgR

2
√

3
(f2−ω2)gFgL√

3
1
2ω

2gFgR −(2f2+ω2)gFgR

2
√

3
g2

F
2

(
f 2 − ρ2 + ω2

)


(4.10)

The M2
GL,R,F

mass matrix has three non-zero eigenvalues, amounting to three massive
gauge bosons. The remaining eigenvalue is zero, corresponding to the massless U(1)Y
gauge boson. Hence, 16 gauge boson fields are mixed but only 15 gain mass, as expected.

Similar to the scalars, the mixing matrices that fully diagonalize the gauge boson mass
matrices are in general orthogonal transformations.

4.1.3 Fermions

The mass terms for the fermions are mψψ̄, which decompose into Weyl-spinors: mψLψ̄R +
mψRψ̄L, motivating the following identification of the fermion mass matrix

(
M(F )

)ij
= −∂2LFermion

∂ψLi∂ψRj

∣∣∣∣∣∣
ϕi=⟨ϕi⟩

, (4.11)

where ψLi ∈ Qi
L and ψRj ∈ Qi

R.

The fermion mass matrix is real but not necessarily hermitian, unlike the scalar and
gauge boson cases above. To diagonalize the fermion mass matrix the method of Singular-
Value-Decomposition (SVD), described in [14], is used. With SVD two orthogonal mixing
matrices, L and R, can be found such that LTM(F )R = diag{m1,m2, ...}, where mi are
the fermion masses. The mixed fields are then written as: ψ′

L = LψL, and ψ′
R = RψR.

The SU(2)F doublet, N I , is uncharged under all U(1) groups. Consequently, it is its own
antiparticle, known as a Majorana fermion. The mass matrix for a Majorana fermion is
calculated as

(
M2

(F )

)ij
= −∂2LFermion

∂ψi∂ψj

∣∣∣∣∣
ϕi=⟨ϕi⟩

, for ψi = N I , (4.12)

and is diagonalized by the method of Takagi diagonalization [14], which finds a unitary
transformation, Ω, such that ΩTM(F )Ω = diag{m1,m2, ...}, where mi are the Majorana
masses.

Leptons do not receive mass at tree level, as in eq. (2.11) they only interact with the
colored scalars, Q̃L and Q̃R, which do not receive any VEV, resulting in the leptons not
developing mass through any Higgs mechanism.

Using eq. (4.11), it is found that the up type quarks ui =
(
uL
ucR

)i
remain massless.
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The mass matrix for the down type quarks, di, and vector-like quarks, Di becomes:

Mdown = 1√
2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 py3 −fy1
0 0 ωy1 −py3 0 0
0 ωy2 0 −fy2 0 0


, (4.13)

written in the basis
(
diL
Di

L

)
Mdown

(
diR Di

R

)
.

Using SVD Mdown is diagonalized, resulting in three massless down-type quarks, and three
massive VLQs. Mdown can be divided into the 3 × 3 blocks:

Mmix
D = 1√

2

0 0 0
0 0 ωy1
0 ω 0

 , Mdiag.
D = 1√

2

 0 py3 −fy1
−py3 0 0
−fy2 0 0

 , (4.14)

where Mmix
D can be identified as the mixing matrix between Di

L and diR, and Mdiag.
D is the

mass matrix for DL,DR.

Rotating the fields into a diagonal form results in the fields: diL, d
i
R, Di

L, and Di
R, related

to the original fields by:(
diL
Di

L

)
= L

(
diL
Di

L

)
,

(
diR
Di

R

)
= R

(
diR
Di

R

)
, (4.15)

where diL and diR become massless, corresponding to the SM down type quarks, while Di
L

and Di
R become massive VLQs.

For N I , using eq. (4.12), the mass matrix becomes

MN =
 0 2

√
2wy4

2
√

2wy4 0

 , (4.16)

which after using Takagi diagonalization gives degenerate masses of N1 and N2:

mN = 2
√

2wy4. (4.17)
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5 Effective Field Theory
The construction of an EFT is a general mathematical procedure to simplify problems by
approximating away irrelevant information of a certain problem. For instance, we do not
need Newton’s law of gravity to describe dynamics on the surface of Earth [9].

In the context of Quantum Field Theory, one integrates out heavy fields of the theory.
The theory containing the remaining fields is known as an EFT. At low energies, these
heavy states cannot be produced as initial or final states of any Feynman diagram, but
can only appear as virtual particles in loops. Although not directly detectable, these
particles still modify observable quantities. Calculating how the observed parameters in
the EFT are modified by the full theory, with heavy particles, is done by EFT matching.
This matching procedure calculates effective couplings of a model only containing light
particles, matched to the full, high-energy theory, but considered at low energies such
that the heavy particles only appear in loops.

This section details the EFT Lagrangian, the fields it contains, and couplings. Moreover,
a formal description of the construction of the EFT is given, as well as the matching
conditions and mathematical tools needed to calculate loop integrals.

5.1 EFT fields and Lagrangian
To construct an EFT, firstly, the light and heavy fields must be identified. Consequently,
all fields must written in the mass basis, by diagonalizing the mass matrices in sec. 4.1.
To motivate the following choice of light and heavy fields, a scan of the mass spectrum is
performed in sec. 7.

The light scalar fields that are chosen to be kept light, and enter the EFT, are: q̃1
L, d̃

1
R, and

the down-type Higgs-doublet, H1
d . The fields are relabeled in the EFT as: q̃1

L ≡ R, d̃1
R ≡ S,

and H1
d ≡ H, where colored scalars are also known as scalar Lepto-Quarks (LQs). The

scalar masses are described in sec. 4.1. Diagonalizing the fermion masses, using SVD,
results in three massless fermions, diL and diR, corresponding to the three generations of left
and right handed down-quarks in the SM; and six massive VLQ components, Di

L and Di
R.

The massless fermions are kept in the EFT, while only the first generation of the massive
VLQ, D1

L and D1
R, are put in the EFT. The dL

i particles are put into qiL =
(
diL uiL

)
.

All other fermions and leptons are massless and kept in the EFT, except for the SU(2)F
doublet N I . For the gauge bosons, only the broken generators will have a mass which is
of the scale of the VEVs and thus will be integrated out. The field content of the EFT is
summarized in tab. 6.

17



Table 6: All scalars, fermions and gauge bosons in the EFT, their representations and
charges as calculated in sec. 3.2.

SU(3)C SU(2)L U(1)Y U(1)B

Scalars

H 1 2 1/2 0
R 3 2̄ 1/6 1/3
S 3̄ 1 1/3 -1/3

Fermions

Ei
R 1 2 1/2 0

Ei
L 1 2 -1/2 0

ℓiL 1 2 -1/2 0
eiR 1 1 1 0
νiR 1 1 0 0
Φi 1 1 0 0
qiL 3 2̄ 1/6 1/3
D1

L 3 1 -1/3 1/3
uiR 3̄ 1 -2/3 -1/3
diR 3̄ 1 1/3 -1/3
D1

R 3̄ 1 1/3 -1/3

Gauge Bosons

GC 8 1 0 0
GL 1 3 0 0
GY 1 1 0 0

The most general (dimension four) Lagrangian containing all these fields has a scalar
potential given by eq. (5.1), and fermion interactions given by eq. (5.2). That no other
combinations are possible was confirmed using SARAH [15].

LEFT
Scalar = m2

H|H|2 +m2
R|R|2 +m2

S |S|2 + Z1|H|4 + Z2|R|4 + Z3|S|4 + Z4|H|2|R|2

+ Z5|R|2|S|2 + Z6|H|2|S|2 + Z7(RH)(H†R†) + A(H†RS + HR†S†)
(5.1)

LEFT
Fermions = M ij

EE
i
LE

j
R +M ij

ℓEℓ
i
LE

j
R +MDD

1
LD

1
R +M ′

D
i
D1

Ld
i
R +M ij

ν ν
i
Rν

j
R

+M ij
Φ ΦiΦj +M ij

νΦν
i
RΦj + Y ij

u HqiLu
j
R + Y ij

d H†qiLd
j
R + Y i

DH†qiLD
1
R

+ Y ij
ν1HℓiLν

j
R + Y ij

ν2HEi
Lν

j
R + Y ij

ν3H†Ei
Rν

j
R + Y ij

e1 H†ℓiLe
j
R + Y ij

e2 H†Ei
Le

j
R

+ Y ij
Φ1HℓiLΦj + Y ij

Φ2HEi
LΦj + Y ij

Φ3H†Ei
RΦj + Ωij

1 RℓiLd
j
R + Ωij

2 REi
Ld

j
R

+ Ωi
3RℓiLD1

R + Ωi
4REi

LD
1
R + Ωij

5 REi
Ru

j
R + Ωij

6 R†qiLν
j
R + Ωij

7 R†qiLΦj

+ Ωi
8R†Ei

RD
1
L + Θij

1 SℓiLq
j
L + Θij

2 SEi
Lq

j
L + Θi

3SνiRD1
L + Θi

4SΦiD1
L

+ Θij
5 S†eiRu

j
R + Θij

6 S†νiRd
j
R + Θij

7 S†ΦidjR + Θi
8S†νiRD

1
R + Θi

9S†ΦiD1
R

+ h.c

(5.2)

Note that for instance the term Y ij
d H†qiLd

j
R contracts two anti-fundamental SU(2)L dou-

blets implicitly through the Levi-Civita tensor. This structure does not appear in the UV
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Lagrangian, eq. (2.11), and is consequently zero at tree level. The global symmetry U(1)T
does not appear in the SM, hence we break it softly, and it does not appear in tab. 6.

Altogether, we have 4 mass terms m2
i , 6 mass matrices Mi, 7 quartic couplings Zi, one

trilinear coupling A, and 28 Yukawa couplings, Yi,Ωi,Θi. Note that after diagonalizing
the fermion masses, the mass matrix M ′

D = 0 at tree level, but can in general become
nonzero from higher order corrections.

The gauge Lagrangian is identical to that of eq. (2.12), but instead containing the scalars
and fermions in the EFT, tab. 6. The coupling constants gC, and gL remain the same
for the EFT, since the SU(3)C is not broken, and the fact that the light SU(2)L gauge
bosons, G1,2,3

L , do not mix with any other bosons. The hypercharge coupling, gY, appears
in the EFT Lagrangian as:

Dµ ⊃ gYT
a
YG

a
Yµ, (5.3)

where T aY is defined in eq. (3.13), and Ga
Yµ is identified as the massless eigenvector of

M2
GL,R,F

seen in eq. (4.10), giving

Ga
Y = 1√

4g2
L + g2

R

(
gRG

8
L +

√
3gLG

3
R + gLG

8
R

)
, (5.4)

The vector bosons G8
L, G

3
R, and G8

R all mix to GY and tree massive vector bosons. Finding
the orthogonal mixing matrix and rotating the gauge Lagrangian in eq. (2.12) to the
broken mass basis, gY can be identified as the term in front of TYG

a
Yµ, as in eq. (5.3). A

more detailed derivation is found in [10]. It is thus found that

gY =
√

3gLgR√
4g2

L + g2
R

. (5.5)

5.2 Formalism of EFTs
Considering a Lagrangian containing particles with a wide mass-spectrum, the Lagrangian
can be divided into light fields, {ϕL}, and heavy fields, {ϕH}, such that LUV({ϕL}, {ϕH}) =
LLight({ϕL})+LMix({ϕL}, {ϕH})+LHeavy({ϕH}). The decoupling theorem states that the
massive fields will not impact the dynamics of the particles at lower energies [16], which
motivates the construction of the EFT. The EFT is constructed by integrating out all
heavy fields such that LEFT ≡ LLight.

The matching between the original UV theory and the EFT is done by matching the
scattering matrix elements between the theories at a low energy scale, which can be done
by matching the one-light-particle-irreducible amplitudes (1PI) [17] [18].

MEFT({ϕL}) ≡ MUV({ϕL}, {ϕH})p2≤M2 , (5.6)

where p2 ≤ M2 indicates that the matching takes place at energies lower or equal to the
heaviest {ϕH} field with mass M .
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Following the structure of [18], these scattering matrices can be split into tree-level, loop-
level and counter-term parts

Mtree
EFT + Mloop

EFT + Mct
EFT = Mtree

UV + Mloop
UV + Mct

UV,

which can be rewritten as:

Mtree
EFT = −Mloop

EFT − Mct
EFT + Mtree

UV + Mloop
UV + Mct

UV. (5.7)

Effectively, we take the finite part of eq. (5.7) to be the matching condition, as the
divergences of individual terms in the above expression can be neglected as they will
cancel. In the UV limit, the light particles will not affect the amplitudes, and the UV-
divergences are canceled by the UV counter-terms. Furthermore, the IR divergences are
also canceled by the construction of the EFT to match the UV theory in the IR limit [19].

The loop integrals can be expanded in MUV
loop and MEFT

loop where the loop integral of the
EFT part become scaleless and vanish in dimensional regularization [18]

MEFT
tree = MUV

tree + MUV
loop,expanded + (MUV

ct − MEFT
ct ). (5.8)

A more complete treatment of the theory of EFT is described in [19].

5.3 EFT matching equations
To match the EFT to the high scale theory, all couplings in eq. (5.1) and (5.2), must be
matched. That is, corrections for all masses, trilinear scalar couplings, Yukawa couplings,
gauge couplings, and quartic couplings must be calculated. For simplicity, loops with only
heavy particles are considered. That is, external legs can only be light particles, and no
loops with mixed light and heavy particles appear. The different topologies contributing
to the one loop matching can be seen in the following eqs. (5.10), (5.11), (5.12), (5.13),
and (5.14).

The corrected mass can be identified by first calculating the propagator correction, cal-
culated as the sum of all 1PI diagram with two external legs. The physical mass can
then be recognized by first writing the two-point correlation function, using the corrected
propagator, as a geometric series and identifying the physical mass as its pole [13]. We
then arrive at:

mEFT = m0 + δm (5.9)

where δm is the corrected propagator and m0 is the tree level mass using the Modified
Minimal Subtraction scheme (MS) described in more detail in the next subsection.

Written diagrammatically, the mass term for the scalars becomes:

= + + + + +

(5.10)
where the first term is the tree level mass, and the other diagrams constitute the mass
correction, δm.
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The fermions mass term is:

= + + (5.11)

The effective trilinear couplings are simply calculated as the sum of the tree level contri-
bution plus the higher order corrections. The effective Yukawa coupling is:

= + + +

+ + +

(5.12)

The effective scalar trilinear is:

= + + + 3 + (5.13)

where the last two diagrams of eq. (5.12), and the last term in eq. (5.13), are the external
leg corrections at one loop level, comprising the wavefunction renormalization. They
consist of the 1PI diagrams with one loop and are given by the corrections to the mass
terms in eq. (5.10) and (5.11).

The quartic scalar interactions are approximated by the tree level matching conditions,
which still allows for dependence on the heavy fields,

= + + +

+ + +

(5.14)

Note that in the limit of zero external momentum the last three diagrams involving the
vector boson will tend to zero, as there is no momentum that is integrated over.

The mass term for the gauge bosons calculated at one loop is calculated similarly to
eq. (5.10) and (5.11), but with two external gauge bosons. The effective gauge coupling
can be calculated by considering the one loop corrections to Feynman diagrams with one
external gauge boson and either two external fermions or two scalars. However, this work
considers the gauge boson effective masses and effective gauge couplings at tree level.

The above diagrams require the Feynman rules of the UV theory to be known. Due to
the complexity of the scalar potential, a general method of identifying the possible vertex
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interactions is needed. This can be calculated by differentiating the Lagrangian, expanded
around the VEVs, with respect to the different fields. The trilinear and quartic scalar
vertex factors, T (S)

ijk and Q
(S)
ijkl are then given by:

T
(S)
ijk = 1

S

∂3V

∂ϕi∂ϕj∂ϕk

∣∣∣∣∣
0
, Q

(S)
ijkl = 1

S

∂4V

∂ϕi∂ϕj∂ϕkϕl
, (5.15)

where i, j, k, l are the index component of a list of all scalars, ϕi = {H1
d , H

1
d

†
, ẽ1
R, ẽ

1
R

†
, . . . }i,

the evaluation at zero for the trilinear term ensures any remaining fields after differen-
tiation are set to zero, and S is a symmetry factor, for instance, for four identical field
S = 4!.

Similarly, the Yukawa interactions, T (F )
ijk , can be identified by differentiating the fermion

Lagrangian with respect to two fermion fields and one scalar field. Thus we can write:

ϕi

ϕj

ϕk
= −iT (S)

ijk , ϕi

ϕj

ϕk

ϕl = −iQ(S)
ijkl, ψi

ψj

ϕk
= −iT (F )

ijk , (5.16)

where the factor −i is necessary to be consistent with the propagator and gauge sector
Feynman rules.

The gauge Lagrangian, eq. 2.12, is identical to that of the SM, but with additional SU(3)
gauge symmetries, additional fermions, and charged scalars. The trilinear and quartic
couplings involving SU(3) vector bosons are well known and described in [20, 21], while in
principle they could be derived in a similar manner as for the scalars and fermions. The
relevant Feynman rules are:

ψi

ψj

Ga
X
µ

= igXγ
µ(T aX)ij ≡ iγµT

(GF )
ija ,

ϕi

ϕj

Ga
X
µ

= igX(−pµ1 + pµ2)(T aX)ij ≡ i(pµ1 + pµ2)T (GS)
ija

ϕi

ϕj
Gb
X
µ

Ga
X
µ

= ig2
X(T aX)ij(T bX)ij ≡ iT

(GSS)
ijab ,

(5.17)
where Ga

X
µ is a list of all heavy vector bosons of type X = L,R, F . Note that the fermions

in T
(GF )
ija are already rotated to the mass basis, while the scalars and gauge bosons are

not. There is not any two vector boson to scalar vertex contributing due to the outgoing
scalar always being of the scale of the VEVs, thus heavy.

The propagators for the scalars, fermions and vector bosons with momentum k are:

ϕi ϕ†
i

= i

k2 −m2 , QL QR
= i(/k +m)

k2 −m2 , Ga
X
µ Ga

X
ν

= −igµν − kµkν/m
2

k2 −m2 .

(5.18)
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The scalar propagator mixes the scalar and its complex component, and the fermion Dirac
propagator interchanges the chirality of fermions, hence the scalars and Weyl spinors are
mixed in the propagators above.

In eq. 5.15 the Lagrangian is differentiated with respect to the UV fields, however, the
interactions take place in the mass basis. Consequently, the tensors T (S)

ijk , Q(S)
ijkl, T

(F )
ijk ,

T
(GS)
ija and T (GF )

ija , need to be rotated into the mass basis. For instance, the trilinear terms
of the scalars appear as:

Lmass-basis ⊃ T ′(S)
abcϕ

′aϕ′bϕ′c = T
(S)
ijk (Oϕ)ai(Oϕ)bj(Oϕ)ckϕaϕbϕc , (5.19)

where the primed fields and tensors denote fields being in the mass basis, and (Oϕ) denotes
the rotation matrix for the scalars. Hence the trilinear term in the mass basis is:

T ′(S)
abc = T

(S)
ijk (Oϕ)ai(Oϕ)bj(Oϕ)ck , (5.20)

and equivalently for the four-point vertex,

Q′(S)
abcd = T

(S)
ijkl(Oϕ)ai(Oϕ)bj(Oϕ)ck(Oϕ)dl . (5.21)

For the Yukawa interactions, the scalar field will still be in the gauge-basis, and must be
rotated:

T
(F )
ijk = T ′(F )

ajk(Oϕ)ai . (5.22)

The trilinear couplings involving the vector boson are rotated by the gauge mixing matrix,
(OG), and considering the gauge-fermion and gauge-scalar interactions, we get:

T ′(GF )
abc = T

(GF )
ijk (OG)ck, T ′(GS)

abc = T
(GS)
ijk (Oϕ)ai(Oϕ)bj(OG)ck,

T ′(GSS)
abcd = T

(GSS)
ijkl (Oϕ)ai(Oϕ)bj(OG)ck(OG)dl .

(5.23)

Due to the complexity of the mass matrices, derived in sec. 4.1, it is not feasible to
analytically rotate the fields into the mass basis. Hence a numerical approach is needed
and will be described in sec. 7.

5.4 Loop integrals
Considering the second term in eq. (5.10), with some initial and final particle, i, with
momentum, p, and the particles a and b in the loop with momentum p+ k and k respec-
tively,

p

p+ k

p

k

a

b

ϕi ϕ†
i

=
(

−iT ′(S)
iab

) ∫ d4k

(2π)4
i

(p+ k)2 −m2
a

i

k2 −m2
b

(
−iT ′(S)

i∗a∗b∗

)

(5.24)
ignoring the iϵ prescription, and the complex conjugated indices denotes the index of
corresponding complex conjugated field, required due to the propagator in eq. (5.18).
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The loop integral can be calculated using dimensional regularization, for simplicity con-
sider ma = mb so b = a, in the zero external momentum limit, p → 0, the integral, I,
becomes

I =
∫ d4k

(2π)4
1

(k2 −m2
a)2 . (5.25)

Dimensional regularization is an analytic continuation of the number of space-time dimen-
sions, made by the following replacement:

∫ d4k
(2π)4 →

∫
µ4−d ddk

(2π)d , where µ is a dimensional
constant to keep the correct units, and d the dimension parameter which in the end is
taken to approach 4 [22]. The motivation of dimensional regularization is to decrease the
power of d4k to ensure that the integral converges. We also define ϵ such that d = 4 − ϵ,
so ϵ → 0 as d → 4. The integral in dimensional regularization, Id, then becomes

Id =
∫
µϵ

ddk

(2π)d
1

(k2 −m2
a)2 . (5.26)

which can be seen to converge for d < 4.

Rewriting this in terms of spherical coordinates, see [13, 22], Id becomes

Id = µϵ
∫ dΩd

(2π)d
∫ ∞

0
dp

pd−1

(p2 −m2
a)2 , (5.27)

where the first integral is the volume of a d-dimensional sphere,
∫
dΩd = 2π d

2 /Γ(d2). The
second integral can be solved using a change of variables and the Euler beta function,

∫ ∞

0
dp

pd−1

(p2 −m2
a)2 = 1

2

(
1
m2
a

)2− d
2 Γ

(
2 − d

2

)
Γ
(
d
2

)
Γ(2) ,

Id then becomes

Id = µϵ

(4π)dΓ
(

2 − d

2

)(
1
m2
a

)2− d
2

= µϵ

(4π)2 (4π)ϵ/2Γ
(
ϵ

2

)
m−ϵ
a . (5.28)

Laurent expanding in ϵ,
Γ
(
ϵ

2

)
= 2
ϵ

− Γ′(1)︸ ︷︷ ︸
≡γE

+O(ϵ) ,

(
m2

4πµ2

)−ϵ/2

= exp
− ϵ

2 ln
(
m2

4πµ

) = 1 − ϵ

2 ln
(
m2

4πµ2

)
+ O(ϵ2) ,

where γE is Euler’s constant, we get

Id = 1
(4π)2

2
ϵ

− γE − ln
(
m2
a

µ2

)
− ln(4π) + O(ϵ)

 . (5.29)

The final integral still diverges as ϵ → 0, these divergences will in general be canceled
by counter terms [23]. Using the Minimal Subtraction (MS) renormalization scheme, the
1/ϵ pole is absorbed into the counterterm and subtracted away. Furthermore, in the MS-
scheme, one takes µ2 → µ2 eγE

4π , such that the other finite constants in Id are canceled.
Thus, the poles are subtracted, leaving the finite functional dependence unaffected.
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IMS
d = 1

(4π)2

− ln
(
m2
a

µ2

)
+ O(ϵ)

 . (5.30)

We are now free to take the limit d → 4, eq. (5.24) becomes for a = b and p → 0:

T ′(S)
iaaT

′(S)
i∗a∗a∗

1
16π2 ln

(
µ2

m2
a

)
. (5.31)

Noteworthy is that the final expression depends on µ, which is the renormalization scale.
In general, the renormalization scale will never appear in observables [22]. As the matching
is performed at the breaking scale of the smallest VEV in eq. (3.1), µ is taken to be this
scale.

In general, a loop integral withN propagators, with massesm0, . . . ,mN−1, and P fermions,
with four-momentum of the ith fermion being pµi

, becomes:

INµ1...µP
(p1, . . . , pN−1;m0, . . . ,mN−1)

= (2πµ)4−d

iπ2

∫
ddk

kµ1 . . . kµP

(k2 −m2
0)((p1 + k)2 −m2

1) . . . ((pN−1 + k)2 −m2
N−1)

.
(5.32)

This integral can generally be solved using the Passarino-Veltman functions [24]. It can
be shown that this tensor can be reduced, through differentiation, to linear combinations
of scalar integrals. The Passarino-Veltman functions are usually denoted by the Nth char-
acter of the alphabet, I1

µ1...µP
= Aµ1...µP

, I2
µ1...µP

= Bµ1...µP
, and so on. The calculated loop

integral in eq. (5.24) is hence denoted by iB0(p = 0;ma,mb = ma), where the subscript
zero denotes the scalar integrals. This tensor reduction can be done systematically and
is hence implemented in several computer packages, to reduce lengthy expressions [25].
One such program, to calculate these loop integrals is Package X [26] for Mathematica
used in this thesis.

In total, summing over all heavy particles in the loop, the second term in eq. (5.24)
becomes

ϕi

a
ϕ†
i

b

= 1
2!

∑
a,b∈{ϕH}

T ′(S)
iabT

′(S)
i∗a∗b∗iB0(0;ma,mb) , (5.33)

where {ϕH} is a list of all heavy scalar fields, and the prefactor 1
2! is needed to avoid

double counting. The other terms are calculated similarly and additional examples are
found in Appendix B.
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6 Matching to the Standard Model
All calculations throughout this thesis have taken place at the energy scale of the VEVs,
described in sec. 3. Due to the couplings and masses being energy dependent, we must
run the parameters down to SM-energies to compare these with observables. Specifically,
this is achieved by studying the RG evolution and β-functions, which is used to run to the
Electroweak Symmetry-Breaking (EWSB) scale and match to the SM. At the EWSB scale,
the SM Higgs boson, H, receives a VEV, giving mass to the SM quarks and electrons.

This section details the method of evolving parameters down to lower energies, through
RG evolution and the VEV-setting that breaks the EW symmetry, resulting in the SM
quarks gaining mass and charged flavor-violating interactions describebed by the CKM
matrix.

6.1 RG evolution and β-functions
The RG is a general mathematical procedure for studying how a system evolves at different
energy scales. There exist many quantities that describe this RG evolution, one of which
is the β-function, defined as the derivative of a parameter, g, with respect to the logarithm
of the renormalization scale, µ

β(g) = dg

d ln(µ) . (6.1)

Using this Renormalization Group Equation (RGE), any parameter can be evolved to
different energies and is used in this study to run down to the EWSB scale [27, 13].

6.2 Electroweak symmetry breaking
After the symmetry breaking in sec. 3, all SM fermions are still massless. As in the SM,
they gain mass after EWSB, thus, in order to deduce the implications this model has on
fermion masses this symmetry needs to be broken.

Analogously to the SM, the EFT seen sec. 5.1 is broken by the VEV:

⟨H⟩ = 1√
2

(
0
v

)
, (6.2)

where v is the Higgs VEV, experimentally given by v ≈ 246 GeV [28]. As previously
discussed all parameters depend on the renormalization scale, letting the Higgs mass
parameter evolve to a negative value results in the potential receiving a local nonzero
minima, spontaneously breaking the symmetry. The condition for the squared Higgs
mass parameter to run negative will be a constraint on the parameter space, see sec. 7.
Identically to the SM, once EWSB is broken the resulting SM Higgs boson will have a
mass, mh, proportional to the VEV, v, and square root of the quartic self-coupling at the
EWSB energy, Z1(v),

mh =
√

2Z1(v) · v . (6.3)
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As in the SM, the VEV breaks SU(2)L× U(1)Y → U(1)EM, hence the total breaking
scheme is:

[SU(3)C × SU(3)L × SU(3)R × SU(2)F] × {U(1)F × U(1)A × U(1)B}
↓

[SU(3)C × SU(2)L × U(1)Y] × {U(1)T × U(1)B}
↓

[SU(3)C × U(1)EM] × {U(1)B}

(6.4)

The remaining U(1)B is a global symmetry and accidental, giving rise to the conservation
of the baryon number and explaining the observed baryon conservation.

Note that, just as in the SM, the electric charge generator is Q = TY + T 3
L . This gives

the correct electric charges of all the fields in the EFT in tab. 6, noting that all fields
are left-handed Weyl spinors, hence the fields with subscript R, are the charge-conjugated

SM right-handed fields. That is, a Dirac spinor is formed as
(
Qi

L
Qi

R
c

)
, and consequently,

the corresponding charges of the subscript R particles are that of the SM antiparticles.
Secondly, note that the fields with subscript L, are antifundamental under SU(2)L, hence

QQi
L = TYQ

i
L − T 3

LQ
i
L =

(
1
6 − 1

2

)
δi1 +

(
1
6 + 1

2

)
δi2 − 1

3δ
i
3 = −1

3δ
i
1 + 2

3δ
i
2 − 1

3δ
i
3

Hence, the doublet structure qL =
(
dL
uL

)
matches the charges of the SM for the up and

down type quarks.

6.3 Quark masses and CKM matrix
After EWSB the SM quarks receive mass, and their mass matrices can be calculated
similarly as described in sec. 4.1. The EFT shows that the only terms contributing to
the quark masses will be Yu, Yd, YD, MD and M ′

D. This gives the up-type quarks a mass
Mu = Y ij

u v/
√

2, which after diagonalization gives the SM quark masses mu,mc,mt. The
masses of the down-type quarks are given by the 4 × 4-matrix:

MEWSB
Down =

 v√
2Yd

v√
2YD

M ′
D MD

 , (6.5)

written in the basis
(
diL
D1

L

)
MEWSB

Down

(
diR D1

R

)
. Diagonalization of MEWSB

Down gives the SM

down-type quark masses md,ms,mb, and the VLQ mass mD, LTDownM
EWSB
Down RDown =

diag(md,ms,mb,mD).

Considering the up-type quark spectrum at tree level, Mu = v/
√

2Yu, where Yu can be
directly identified from eq. (2.11). This only contributes to Yu when I = r = 1 and
J = l = 2, giving the relevant terms:

−ϵ12[y1
v√
2
u2

Lu
3
R + y2

v√
2
u3

Lu
2
R] + h.c (6.6)
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Ignoring any RG evolution, the tree level mass matrix, see eq. (4.11), becomes

MTree
u = v√

2

0 0 0
0 0 y1
0 y2 0

 . (6.7)

Performing SVD results in the tree level masses:

mu = 0, mc = v√
2
y1, mt = v√

2
y2 , (6.8)

Consequently, to impose the observed mass hierarchy between the charm and top quarks
we have

mt

mc

= y2

y1
∼ 100 , (6.9)

which will be used as a constraint in the numerical scan in sec. 7.

The mixing between flavor and mass eigenstates is responsible for charged flavor-violating
interactions and can be described by the CKM matrix for the quarks. Letting the up-type
quark mass-matrix be diagonalized by Lu and Ru, and the SM down-type mass matrix
by Ld and Rd, then the SM CKM matrix

V SM
CKM = LuL

†
d . (6.10)

Due to the additional D down-type quark, the CKM matrix is extended as:

VCKM = Lu · P · L†
d =

(
V SM

CKM V D
CKM

)
, P =

(
13×3 03×1

)
, (6.11)

where V SM
CKM is the SM CKM matrix, describing the mixing between the up and down type

quarks, while V D
CKM is a 3 × 1 matrix describing the mixing between the up-type quarks

and VLQ, D.
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7 Numerical implementation
Due to the complexity of the mixing matrices diagonalizing the masses, it is not feasible
to analytically calculate the matching conditions at one loop level. Thus, a numerical
approach is implemented using Mathematica [29]. In total, the high scale parameter
space is spanned by 46 variables, µ1,...,4, η, γ1,...,7, y1,...,4, λ1,...,10, α1,...,12, χ1,2,3, β1,...,5, and
the EFT parameter space is spanned by 46 variables, mi, Mi, Zi, Yi, Ωi, and Θi, many of
which have multiple components, giving a total of 264 parameters in the EFT. The VEV
scales considered in this thesis are taken to be consistent with [10], hence we have

ρ = 500 TeV, w = 500 TeV, ω = 800 TeV, f = 900 TeV, p = 1000 TeV (7.1)

The renormalization scale is thus µ = ρ, and the EWSB energy scale is determined
dynamically by the energy at which m2

H runs negative.

This section details the implementation of the numerical approach, by scanning over
parameter space to find adequate points satisfying the correct mass spectrum of the EFT,
and ensuring other constraints on different parameters.

7.1 Tree level scan
Firstly, points in parameter space are found that satisfy the correct mass spectrum, giving
rise to the correct EFT, described in tab. 6. This is achieved by first finding values for the
trilinear scalar couplings, the quartic couplings, and gauge couplings, that give the correct
scalar and gauge mass spectrum. Instead of simply randomizing these UV parameters,
individual blocks of the mass matrix in tab. 4 are inverted, reducing the parameter space
region needed to scan over. Based on the scan in [10], the scalar masses of the EFT
are inverted along with the gauge boson masses and single scalar masses, which are then
randomized in a range such that a single Higgs-doublet, H, and two scalar LQs, R and S,
are light while the other inverted masses are heavy. The trinification fields that develop
a VEV must also have a negative mass parameter. This gives the constraints µ2

1,...,4 < 0,
which put restrictions on the values of other parameters of the model through the tadpole
equations, see sec. 3.1.

Once such a point is found, the Yukawa couplings y1,...,4 are still unspecified. These
couplings will only contribute to the mass spectrum of the VLQs, Di, hence a second
scan, finding points that give the correct mass spectrum of the quarks, is performed. A
ratio of y2/y1 ∼ 100 correctly describe the mass hierarchy between the top and charm
quarks at tree level, see eq. (6.9), which is also chosen as a constraint on the parameters.

Furthermore, constraints on the parameters themselves must be satisfied, such as the
couplings needing to be small enough for perturbative expansions to be possible. The
constraints on the parameters are:

y2
i

4π ≤ 1,
∣∣∣∣∣ λi4π

∣∣∣∣∣ ≤ 1,
∣∣∣∣ αi4π

∣∣∣∣ ≤ 1,
∣∣∣∣∣ βi4π

∣∣∣∣∣ ≤ 1, gi ≤ 1 (7.2)

Another set of constraints to ensure vacuum stability is to impose that the scalar potential
is bounded from below [30]. As discussed in [31], this is satisfied by constraining the
quartic terms in the scalar potential but is in general difficult to prove. Instead, a weaker
set of constraints is used for the quartic scalar couplings, namely that the sum of all
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quartic couplings of the same field to the fourth power is positive, as used in [10]. From
eq. (2.4), we then arrive at the constraints:

λ1 + λ4 + λ6 + λ9 > 0, λ3 + λ8 > 0, χ1 > 0, χ2 > 0 . (7.3)

Schematically, the scanning procedure of the tree level mass spectrum can be seen in fig.1.

Mass

Breaking scale

Parameter space

Figure 1: Schematic illustration of parameter-space-scan. The initial variables of the
UV model are pseudo-randomized and the corresponding mass-spectrum, at this point
in the parameter space, is calculated and saved if consistent with the EFT.

7.2 One loop matching scan
The EFT is matched for each point found in the tree level scan satisfying the above
constraints. This is done by adding the loop corrections to the EFT parameters for each
tree level parameter point. Namely, corrections are calculated for all scalar masses, eq.
(5.10), fermion masses, eq. (5.11), scalar trilinear, eq. (5.13), and Yukawa couplings,
eq. (5.12). The gauge boson masses for G1,2,3

L , GY and the gauge couplings gL, gC, and
gY are approximated by their tree level value. The quartic scalar couplings, Zi, are also
approximated by the tree level matching condition but still allows for dependence on the
heavy scalars in eq. (5.14).

Again, the same constraints of the UV paramaters are applied for the EFT parameters:∣∣∣∣∣Zi4π

∣∣∣∣∣ ≤ 1 for all i, Zi > 0 for i = 1, 2, 3 . (7.4)

For the points satisfying all the above constraints, the parameters are evolved down to
the EWSB energy scale using the RGEs, see sec. 6, calculated using the Mathematica
package: SARAH [15]. The EWSB scale is determined dynamically by the energy at
which m2

H < 0. Thus the SM fermions gain mass and their masses, the CKM matrix, and
other observables can be compared to SM parameters.
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8 Results and discussion
The following section presents the results of the numerical scan; the results of match-
ing calculations, eqs. (5.10), (5.11), (5.12), (5.13), and (5.14); the RG-evolution; and
consequences for SM observables.

Firstly, it was found that the corrected SM down-type Yukawa coupling is zero, Y ij
d = 0,

independently of parameter values. Consequently, the down-type mass matrix, (6.5),
reduces to:

MEWSB
Down =

 0 v√
2YD

M ′
D MD

 (8.1)

Performing SVG, it is found that the three SM down-type quarks remain massless. Yd
is expected to be zero at tree level as no structure contracting two (anti-)fundamental
fields appear in the fermion Lagrangian, (2.11), such as Y ij

d H†qiLd
j
R. However, at one loop

level there is nothing preventing such structures to be non-zero. Due to the SM down-
type quarks being massless, there will be no mixing between mass and flavor eigenstates,
resulting in a diagonal CKM matrix.

This result indicates the need of an additional (down-type) Higgs-doublet, giving the
down-type SM quarks masses. Yet, Yd could gain corrections at two-loop matching, still,
these corrections ought to be very small and thus likely would not be able to accurately
describe the bottom quark mass. Therefore, further studies of the trinification model
should reasonably have multiple Higgs doublets in the EFT.

Secondly, the numerical scan described in sec. 7 found points satisfying the parameter
constraints. However, calculating the one loop corrections for these parameter points
results in large scalar mass corrections. This is not expected and indicates a perturba-
tive breakdown of the theory. The problem originates from the trilinear scalar vertices,
appearing in typologies such as in eq. (5.24), which become enormous due to the large
VEVs. After the high-scale symmetry breaking, many trilinear vertices appear as:

(8.2)

where the cross indicates a field that has received a VEV.

Explicitly, consider the λ5 term in eq. (2.5),

V ⊃ λ5(L̃I)lr(L̃3)l′r′(L̃∗
3)rl (L̃∗

I)r
′

l′

{
for: I = 1, l = (1, 2), r = 1, and r′ = l′ = 3

}
⊃ λ5H

1√
2

(
p+ Φ̃3 + iΦ̃3′

)∗
H3
d

1√
2

(
Φ̃1 + iΦ̃1′

)∗
⊃ λ5p

2 HH3
d(−i)Φ̃1′ (8.3)

This trilinear interaction between one light scalar and two heavy scalars, here p = 1000
TeV, and |λ5| ≤ 4π, results in potentially very large vertices. Furthermore, having two
such vertices such as in eq. (5.33), squares the contribution. However, the vertices are
always accompanied by a loop integral which suppresses this factor, yet not enough.
Considering eq. (5.33) again, the loop integral is 1

16π2 ln ( µ2

m2 ), see eq. (5.31), with a heavy
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particle of mass m which will be of the order of the VEVs. Consequently the logarithm
will roughly be: ln ( µ2

m2 ) ∼ ln(ρ2

p2 ) ∼ - ln (22). Thus, some scalar mass corrections may be
of the order 105 TeV, per particle in the loop. Summing over multiple such particles can
give an even larger contribution. Such contributions do appear, explaining the very large
mass corrections. Note that, the quartic scalar corrections, eq. (5.14), also faces the same
large vertex factor, but is suppressed by 1

m2 , preventing it from blowing up.

Considering the mass spectrum of the up-type quarks for an example parameter point, the
tree level up-Yukawa, Y tree

u , and the loop correction, Y loop
u , at µ = ρ = 500 TeV, becomes:

y1 = 0.00739, y2 = 0.770, y3 = 0.802,

Y tree
u =

 0 0 0
0 0 0.00739
0 0.770 0

 , Y loop
u =

 0 0 0
0 3.16 · 10−7 0
0 -0.00397 0

 . (8.4)

Preforming RG-evolution to the EWSB scale, estimated to 6.67 TeV (see details bellow),
using all the matched EFT parameters, but considering the tree level scalar masses, the
up-Yukawa, Y RGE

u , is calculated to:

Y RGE
u =

 0 0 0
0 4.51 · 10−7 0.00739
0 0.766 0

 , (8.5)

resulting in a massless up-quark, and massive charm- and top-quarks, with mt/mc =
103.7, compared to the tree level ratio of 104.2. That the up-quark remains massless
could also be resolved by having additional Higgs-doublets in the EFT. As seen in this
example, the loop corrections and RG-evolution contributions are small, which is general
for studied parameter points, thus, the correct quark mass hierarchy between the charm
and top quarks can in general be fulfilled.

Fig. 2 presents the results of the RG evolution of the scalar masses in the EFT, m2
H,

m2
R, m2

S ; the inverse gauge couplings, g−1
Y , g−1

L , g−1
C ; and quartic scalar couplings, Z1...7.

The squared Higgs mass runs negative developing a VEV, while the other squared scalars
masses remain positive, see fig. 2a. This behavior matches that of the SM, displaying the
validity of considering this model. The RGEs are evolved down to an energy stopping
scale, at which m2

H has become negative with a magnitude of the order of the initial
squared mass. This defines the EWSB scale, and this is found to be, for this paramater
point, v = 6.67 TeV, leading to a mass of the Higgs boson, see eq. (6.3), mh =

√
2Z1(v) ·

v = 9.83 TeV, where the quartic scalar coupling at the EWSB scale, Z1(v) = 1.09, see fig.
2c. Both the calculated EWSB scale and Higgs boson mass is far greater than observed
values. The strong coupling constant, gC, increases for lower energies while the other
couplings decrease, see fig. 2b, also consistent with the SM.

The loop-corrected mass of the light VLQ, D, in the EFT can be seen in fig. 3, for
the different high-scale Yukawa parameters, y1 and y3. In fig. 3a, the VLQ mass, mD,
increases roughly linearly with y1 for small values. As y1 becomes larger, the allowed
values become less constrained. The Yukawa coupling y2 is constrained by eq. (6.9),
thus the mD dependence on y2 is similar to that of y1. Considering y3 however, see fig.
3b, exhibits little correlation with the mD, except for small values where it limits the
maximum value mD can take. The results reveal that mD has a wide mass-spectrum,
thus, the VLQ mass can obtain values from zero to the scale of the smallest VEV.
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Figure 2: RG running with energy µ, from the trinification scale, down to EWSB scale
for the three scalar masses, (a); inverse gauge couplings, (b); and quartic couplings, (c).
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Figure 3: Resulting loop-corrected VLQ mass, mD, for different y1, (a), and y3, (b).
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8.1 Improvements and outlook
The analysis of this project lays the groundwork for further exploration of the Trinification
model’s ability to reproduce the SM’s flavor structure. Nevertheless, several improvements
and extensions can be considered. Firstly, to recover the perturbative validity by suppress-
ing the large mass corrections, stronger parameter constraints are needed. Such points
were attempted to be found with the pseudo-random numerical scan of sec. 7, but due to
the large parameter space, spanned by 46 parameters, no such points were found. This
further necessitates the need for a more efficient searching algorithm for the parameter
space mass spectrum.

Another natural improvement would be to calculate one-loop corrections of the quartic
couplings, gauge boson masses, and gauge couplings. This will likely not affect the results
significantly as it will only contribute to the quark sector through the RGEs. Still, to
complete the one-loop matching it is necessary, and could be achieved using software that
automates the calculations. Examples of such software that automatically can perform
the one-loop matching are SARAH [17] and Matchete [32]. Implementing the model in
well-tested software would validate the results of this thesis. Additionally, SARAH has the
ability to export the code to SPHENO [33] for numerical matching, and more sophisticated
searching algorithms, such as running the RGEs up and down to iteratively converge
at parameter points matching to the SM. This could be particularly useful for finding
parameters matching the correct EWSB scale and Higgs boson mass. Both SARAH and
Matchete implementations were attempted with this model, but without success.

The analysis could further include predictions of more phenomenology, such as the study
of neutrino masses, baryon asymmetry, or dark matter candidates. As already noted, the
model considered in this thesis contains heavy Majorna fermions N I , eq. (4.16), which
has the potential to generate neutrino masses through the seesaw mechanism. Studying
CP-violating processes of the model could also be used to explain the observed baryon
asymmetry, and the many additional particles in the model could be studied as dark
matter candidates. Expanding the analysis to include the neutrino sector, CP-violation,
and dark matter candidates could give further insight into the limitations and predictions
of the trinification model.

Lastly, our analysis revealed that constructing an EFT with a single Higgs doublet is
insufficient to generate the correct SM down-quark masses. Hence exploring models with
additional light Higgs-doublets appears necessary. Previous work [10] demonstrates the
existence of parameter points giving rise to a mass spectrum with three light Higgs-
doublets. Extending this search to consider multi-Higgs-model EFT could potentially
solve the limitations encountered in this work, specifically the inability to accurately
reproduce down-quark masses.
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9 Conclusion
This thesis aimed to study the quark mass hierarchy and CKM matrix from a trinification
model with an additional family symmetry, [SU(3)]3 × SU(2)F × U(1)F. The gauge group
was assumed to be broken in a single step, resulting in an SM-like gauge group with
an additional accidental U(1)B-symmetry, giving rise to the conservation of the baryon-
number. The resulting masses due to the breaking of the trinification symmetry were
calculated, then an EFT containing a single Higgs-doublet, one VLQ, and two scalar
LQs was constructed, and motivated by a numerical scan over the masses. The EFT
was matched at one loop-level, numerically, for points in parameter space satisfying the
EFT mass spectrum, found by the numerical scan. The resulting matched couplings were
evolved to the EWSB scale using RG evolution, at which the Higgs boson receives a
VEV, and the SM quarks obtain mass. The results reveal that an EFT with a single
Higgs-doublet is unable to reproduce the correct SM quark masses, namely, the down-
type quarks remain massless after EWSB. Additionally, the scalar mass corrections were
observed to become very large, implying stronger conditions on the parameters in the
numerical scan are necessary, accordingly a more efficient scanning method is required
for further studies. Finally, the up-type quark spectrum is noted to be flexible enough to
accommodate SM observations.
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A Appendix: Tadpole equations
The tadpole equations, described in sec. 3.1, solved for the parameters µ1,2,3,4 and γ7:

µ2
1 =1

2
(

(β1 + β2) ρ2 + 2
(
λ1
(
f 2 + ω2

)
+ f 2λ9 + (λ4 + λ6 + λ9)ω2

)
+ (λ2 + λ10) p2 + β4w

2 + 2
√

2γ5w
)

µ2
2 = 1

2p2

(
− 2f 4λ4 − 2f 4λ6 + β2f

2ρ2 + 2f 2λ4ω
2 + 2f 2λ6ω

2 + f 2λ2p
2 + f 2λ10p

2

+ 2λ3p
4 + 2λ8p

4 + β3p
2ρ2 + λ2p

2ω2 + λ10p
2ω2 + β5p

2w2 + 2
√

2γ6p
2w
)

µ2
3 = 1

2ρ2

(
− 2f 4λ6 + β1ρ

2
(
f 2 + ω2

)
+ β2ρ

2
(
f 2 + ω2

)
+ 2f 2λ4

(
ω2 − f 2

)
+ 2f 2λ6ω

2

− f 2λ5p
2 − f 2λ7p

2 + β3p
2ρ2 + 2ρ4χ1 + ρ2w2χ3 + 6

√
2γ4ρ

2w
)

µ2
4 =1

2
(
β4
(
f 2 + ω2

)
+

√
2
w

(
3γ4ρ

2 + γ5
(
f 2 + ω2

)
+ γ6p

2
)

− 2η2 + β5p
2 + ρ2χ3 + 2w2χ2

)
γ7 = − 1√

2pρ

(
f
(
−β2ρ

2 + 2 (λ4 + λ6) (f − ω)(f + ω) + (λ5 + λ7) p2
))

(A.1)

B Appendix: EFT matching equations examples
A selection of diagrams in eqs. (5.10), (5.11), (5.12), (5.13) and (5.14) written out explic-
itly. The complex conjugate of an index below will denote the appropriate transformation
of scalars and fermion propagators, as seen in eq. (5.18).

ϕi

a

ϕ†
i

b

= -1
2!

∑
a,b∈{ψH}

(
−iT

′(F )
iab

)(
−iT

′(F )
i∗a∗b∗

) ∫ d4k

(2π)4
Tr[i(/k +ma)i(/k +mb)]

(k2 −m2
a)(k2 −m2

b)

= -
∑

a,b∈{ψH}
T

′(F )
iab T

′(F )
i∗a∗b∗

∫ d4k

(2π)4
4k2 + 4mamb

(k2 −m2
a)(k2 −m2

b)

= -4
∑

a,b∈{ψH}
T

′(F )
iab T

′(F )
i∗a∗b∗i

(
gµνBµν(0;ma,mb) +mambB0(0;ma,mb)

)
(B.1)

ψj

ψi

ψa

ϕk
=

∑
a∈{ψH}

(
−iT

′(F )
ia∗k

)
i

−ma


ψj ψa

 (B.2)
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ψiL

a

ψjR
b

=
∑

a∈{GH}
b∈{ψH}

iγµT
′(GF )
iab iγνT

′(GF )
jab∗

∫ d4k

(2π)4
−i(gµν − kµkν/m

2
a)i(/k +mb)

(k2 −m2
a)(k2 −m2

b)

=
∑

a∈{GH}
b∈{ψH}

T
′(GF )
iab T

′(GF )
jab∗

∫ d4k

(2π)4
−(γµγµ − /k/k/m2

a)(/k +mb)
(k2 −m2

a)(k2 −m2
b)

=
∑

a∈{GH}
b∈{ψH}

T
′(GF )
iab T

′(GF )
jab∗ i

(
− 4

(
mbB0(0;ma,mb) − γµBµ(0;ma,mb)

)

+γ
µγν

m2
a

(
γσBµνσ +mbBµν(0;ma,mb)

))
(B.3)

ϕj

ϕk

b

c

ϕi
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∑

a∈{GH}
b,c∈{ϕH}

iT
′(GS)
iab iT

′(GS)
jca

(
−iT

′(S)
kb∗c∗

) ∫ d4k

(2π)4
−i(gµν − kµkν/m

2
a)kµkνi2

(k2 −m2
a)(k2 −m2

b)(k2 −m2
c)

=
∑

a∈{GH}
b,c∈{ϕH}

T
′(GS)
iab T

′(GS)
jca T

′(S)
kb∗c∗

∫ d4k

(2π)4
−(k2 − k4/m2

a)
(k2 −m2

a)(k2 −m2
b)(k2 −m2

c)

=
∑

a∈{GH}
b,c∈{ϕH}

T
′(GS)
iab T

′(GS)
jca T

′(S)
kb∗c∗i

(
−gµνCµν(0;ma,mb,mc) + gµνgσκ

m2
a

Cµνσκ(0;ma,mb,mc)
)

(B.4)

ϕj

ϕk

b

c

ϕi

a = -(-i)3i3
∑

a,b,c∈{ψH}
T

′(F )
iab∗ T

′(F )
jca∗ T

′(F )
kbc∗

∫ d4k

(2π)4 i
3Tr[(/k +ma)(/k +mb)(/k +mc)]

(k2 −m2
a)(k2 −m2

b)(k2 −m2
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= −
∑
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T

′(F )
iab∗ T

′(F )
jca∗ T

′(F )
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∫ d4k

(2π)4
4k2(ma +mb +mc) + 4mambmc

(k2 −m2
a)(k2 −m2

b)(k2 −m2
c)

= -4
∑
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T

′(F )
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′(F )
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′(F )
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(
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)

(B.5)
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