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Abstract

In this thesis, we present the efforts towards finding an improved implementation of
the newly proposed Born Spreading method for reduction of negative S weights in the
MC@NLO matching prescription. The improved implementations are tested on various
LHC processes with MADGRAPH5 AMC@NLO (MG5 aMC) and compared to default
MG5 aMC, 2×2×1 folding and default Born Spreading. The runtime in each step and frac-
tion of negative S weights were recorded for each method to support a detailed discussion
of their performance under considerations of both runtime and fraction of negative weights
reduced. It was found that improved Born Spreading outperforms default Born Spreading
convincingly, often achieving a greater reduction of negative S weights with shorter runtime.
Moreover, improved Born Spreading is also comparable to 2 × 2 × 1 folding in terms of
reduction of negative S weights, but with much shorter runtime.



Popular Science Summary
In the past century, physics is amongst many disciplines that have seen tremendously rapid de-
velopment. In particular, physicists have identified the fundamental constituents of matter and
proposed a theory that describes the dominating interactions between them. This theory, known
as the Standard Model is arguably physics’ best candidate for a theory of everything.

However, in addition to being powerful and ambitious, the Standard Model is also extremely
complex. This leads to great difficulty in linking theory with experiments. In fact, most results
from accelerator experiments are completely incomprehensible, in the sense that one cannot
possibly ascertain what processes produced such results by the means of simple data analysis.
To bridge this gap, computer simulations were developed. These simulations, known as event
generators, have since become an integral tool for experimental particle physics.

In recent years, improving the efficiencies of event generators has been rising quickly on
physicists’ priority lists. This is due to the pending upgrades to major accelerator experiments
around the world, which leads to greater demand of computational resources. Unfortunately,
unlike optimising an arbitrary computer program, developers of event generators will often find
their hands tied by the laws of physics, since some obstacles are of physical origin. One of such
obstacles is the presence of negative weights.

By negative weights, we refer to events that are associated with a negative contribution
(weight) to the result. They are essential for obtaining the correct result, but lead to results
with greater uncertainty. Since precision is an requirement as well, presence of negative weights
means that more events must be generated, consuming more computational resources. Therefore,
reduction of negative weights is critical for improving efficiencies of event generators.

Traditionally, the problem is tackled by folding, a method that trades time for accuracy. Typ-
ically, using this method represents at least two times more computing time compared to default.
Since our current problem is exactly the lack of computational resources, relying on such a
method might not be the best idea.

Fortunately, a good alternative was presented recently. This new method, known as Born
Spreading, is much less demanding and gives results comparable to minimal folding in most
cases. Most importantly, it’s full potential is yet to be explored.

My work is exactly to contribute to this exploration with the hope of finding an improved
implementation of Born Spreading. Under a general consideration (runtime and effectiveness), it
is not difficult to imagine that such an improved implementation can be considered comparable
or even superior to folding. Therefore, if such an implementation is found, a discussion for in-
cluding Born Spreading in the default program could be considered, representing a truly exciting
opportunity to make a tiny contribution to a real problem in physics.
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1 Introduction
In modern particle physics, event generators play a major role as the bridge between theory
and experiment. However, due to the wide usage, they are also huge sinks for computational
resources. As such, to improve efficiencies of event generators has become an important task.
Moreover, the pending upgrades to the collider experiments (e.g. HL-LHC) represent increasing
demand of computational resources, which, combined with the stagnation of CPU development
[3], adds a sense of urgency to the problem.

One of the obstacles for improving efficiency is the presence of negative weights at NLO
precision. Negative weights are events associated with a negative event weight, whose presence
means that often much more events must be generated to achieve the same level of accuracy as
an event sample without negative weights. For an event sample with a fraction f of negative
weights, the number of extra events needed to be generated scales as 1/(1 − 2f)2 [4]. It is then
obvious that having a large number of negative weights will lead to huge inefficiency. Therefore,
reduction of negative weights is an essential task for increasing efficiency of event generators.

The events generated at NLO precision with MC@NLO [5] can be classified into S and H
events, both containing negative weights. The negative S and H weights are of different origins
and are tackled in different ways. This thesis will focus on the negative S-weights, for which
folding [6] has been developed as an effective solution. However, employing folding represents
multiple times longer runtime and therefore cannot be considered as an efficient solution. As an
alternative, Born Spreading [7] has been proposed recently.

Tests with a quick implementation of Born Spreading already shows a reduction of negative
S-weights comparable with 2 × 2 × 1 folding but a much shorter runtime. Since the possible
implementations have not been explored yet, it is certainly reasonable to expect that there exists
a better performing implementation.

There are multiple directions that can be followed to find such an improved implementa-
tion. One of which is relaxing the non-negative constraint on the spreading function F (ΦR). In
isolation, this means that more negative weights will be created. However, combined with the
normalisation requirement, it means that larger reduction in negative weights can be achieved
elsewhere. With a careful constructed implementation, the benefit should be able to outweigh
the cost, giving a net increase in negative weights reduced.

This thesis presents the efforts made towards finding such an improved implementation. In
the first section, the theoretical concepts required for understanding the construction of event
generators are presented, along with a discussion of folding. Then, the Theory section focuses
on Born Spreading, its default implementation and the event generator it is implemented in,
MADGRAPH5 AMC@NLO. After that, the Method section describes the improved implemen-
tation, with a preceding discussion about the approach took to find it. Finally, the results obtained
are presented and discussed, closing with an outlook of some ideas for further improvement and
an evaluation of Born Spreading as a method of negative weight reduction.
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2 Background
This section starting by providing an overview of Monte Carlo event generators, from its basis
in Monte Carlo integration to its usage in simulation of event structures at collider experiments
such as the LHC. Then, the MC@NLO matching prescription is presented, with the goal of
introducing the origin of negative weights. Lastly, folding is discussed as the existing method
on negative-weight reduction, laying foundation to a comparison between it and Born Spreading
based on theoretical considerations.

2.1 Monte-Carlo Integration
Monte Carlo (MC) integration is a method of numerical integration that discretises the volume
being integrated over with random sampling points. To see the idea, consider an n-dimensional
integral with x = (x1, ..., xn) representing the coordinates. MC integration relies on the realisa-
tion that such an integral can be rewritten as the following infinite sum:∫

Ω

dxf(x) = lim
N→∞

1

N

N∑
i=1

f(xi)

ρ(xi)
, where

∫
Ω

dxρ(x) = 1 (2.1)

One can easily imagine that at fixed N , if MC integration is employed, then the accuracy can
vary depending on different sampling methods. With the goal of reducing variance σ2 at fixed
N , the two most popular methods are importance sampling and stratified sampling.

In importance sampling, ρ(x) is varied to reduce σ2. The optimal choice has been shown to
be [8]:

ρ(x) =
|f(x)|∫

Ω
dx|f(x)|

(2.2)

That is, to sample more points in the region where the absolute value of the integrand is largest.
In stratified sampling [8], the integration volume is split into Ns sub-volumes, where N/Ns

points will be sampled in each sub-volume. The sizes of each sub-volume are then varied until
they contribute equally to the total variance σ2. This has been shown to minimise σ2. Therefore,
stratified sampling samples more points in regions that contribute more to the error (i.e. large
and rapidly-changing integrand).

2.2 VEGAS Algorithm
While MC integration is extremely powerful for computing high-dimensional integrals, imple-
menting it for particle physics is not quite straight-forward. In particular, neither of these sam-
pling methods on themselves are appropriate for use in particle physics. To implement them, one
must first know about the integrand’s behaviour. This is clearly unrealistic for an event genera-
tors as the integrand will (roughly) be the matrix elements, which differ for different processes.
Therefore, a general-purpose MC integration algorithm must be able to gain knowledge about
the integrand while running and use this knowledge to modified the sampling procedure. These
algorithms are known as adaptive and the most relevant of them is the VEGAS algorithm.
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The VEGAS program in use now can employ both importance and stratified sampling [8,
9]. However, to show the idea, only importance sampling is considered as the modification to
stratified sampling is only minor. For simplicity, consider the integral I of a one-dimensional
function f(x) on the interval [0, 1]:

I =

∫ 1

0

dxf(x) (2.3)

In the initial step, an M -point Monte Carlo integration is performed with ρ(x) = 1, uniform
distribution. Then, the domain [0, 1] is split into N intervals between N + 1 points (0 = x0 <
x1 < ... < xN−1 < xN = 1). The distribution function is then redefined such that when a
random number is chosen, it has equal probability of being in any interval. That is to say:

ρ(x)∆xi =
1

N
=⇒ ρ(x) =

1

N∆xi

, where ∆xi = xi − xi−1

After that, a quantity mi will be computed for each interval [xi−1, xi]. mi is defined as:

mi = K
f i∆xi∑
j f j∆xj

, where f i =
∑

x∈[xi−1,xi]

|f(x)| ∝ 1

∆xi

∫ xi

xi−1

dx|f(x)| and K a large integer.

(2.4)
Each interval [xi−1, xi] is then sub-divided into mi + 1 sub-intervals1. Finally, the points xi are
redefined as new set of points x′

i such that new intervals [x′
i−1, x

′
i] contain an equal number of

sub-intervals and the total number of intervals is thus still N . The described procedure is then
iterated until mi = mj .

Notice that by the definition of f i in Eq. 2.4, mi is larger in regions where |f(x)| is the great-
est. Therefore, more points will be sampled in those regions, which is exactly what importance
sampling aims to achieve.

To generalise to n dimensions, a separable probability distribution function must be used:

ρ(x) = ρx1(x1)...ρxn(xn)

The one-dimensional procedure is then employed for each ρxi
(xi). However, to have f i serve

the same purpose of showing how much a certain interval contributes to the whole integral, it
must be redefined. The algorithm will end with an optimal grid, which focuses on the regions of
greatest |f(x)|.

Lastly, to implement stratified sampling, the definitions of f i are simply modified to give
largest mi in regions contributing most to errors.

2.3 Event Generation
In principle, the random points sampled on the optimal grid for MC integration can be treated
as events. Indeed, the coordinate x will correspond to a set of momenta, which characterises an

1Note that we get at most K + 1 sub-intervals. Therefore, to have the program efficiently showing difference
between each interval [xi−1, xi], we need K to be large.
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event. However, these events would be weighted. That is to say, they do not accurately represent
the distribution of events required by nature. In this case, the distribution is the absolute value
of the integrand (absolute value is needed since the integrand is not necessarily positive-definite,
as discussed later). Since VEGAS is not a perfect algorithm, one should not expect the optimal
grid to perfectly reflect the shape of the integrand, meaning that |f(x)|/ρ(x) will not be flat (or
|f(x)|, when plotted on the optimal grid, will not be flat).

Therefore, to call these points events, they must be unweighted. The procedure of unweight-
ing is simply to choose random points in an n + 1-dimensional box, whose height is h =
max{|f(x)|/ρ(x)}x∈Ω. Note that this height is considerably lower than h′ = max{|f(x)|}x∈Ω.
Then, all points within the plotted integrand (xn+1 < |f(x)|/ρ(x)) are accepted as events with
weights ±1, where the sign is given by sgnf(x). The events generated this way will be un-
weighted and hence accurately represent the distribution.

Then naturally, the operation of event generators will consist of three steps. In step 0, the
VEGAS algorithm is used to set up a grid (typically the fastest step). Then in step 1, the value of
h (upper envelope) is computed. Finally in step 2, the unweighted events are generated (typically
the slowest step).

Now, the only remaining task is to determine the integrands that should be input. These are
exactly the differential cross-sections2 of different components of the event structure (including
the parton distribution functions (PDFs) if applicable). Since event generators aim at simulating
an experiment in a collider experiment, the reasonable course of action would be to consider the
structure of events occurring there. A general overview of the event structure at the LHC can be
found in Appendix A. It is worth noting that the dominant interactions come from QCD. For the
purpose of this thesis, the only relevant ones are hard scattering and initial/final state radiation.

Figure 1: Example of initial and final state radiation (ISR & FSR) in a 2 → 2 scattering. The
radiated particle is a gluon, which could either be emitted by incoming particles (ISR) or outgo-
ing (FSR). This Feynman diagram and all subsequent ones are generated with the FEYNGAME

package [1, 2].

The cross-sections of hard scatterings are rather standard. In practice, they are either built-in
or generated by matrix element generators. Moreover, as a hard process, the integral will be
free of divergences, hence no additional care is needed. These cross-sections will be given by
fixed-order matrix elements.

Initial and final state radiation (examples are presented in Fig.1) are more difficult, mainly

2Unless specified otherwise, they are referred to simply as cross-sections from this point on.
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due to soft and collinear divergences. Their origins are discussed in Appendix B. Generally,
the treatment involves writing the cross-sections in the soft and collinear limits and use them
instead3. With these cross-sections, the further approach taken is known as the parton shower
evolution, which studies the emissions of partons. A detailed description can be found in [10].
One additional complication is that initial state radiation can affect all subsequent processes, as
it changes the beam energy. Therefore, instead of a natural forward evolution, employed for final
state radiation, a backward evolution is performed, where the subsequent steps are fixed first,
then the corresponding initial state radiation generated accordingly [10].

As illustrated above, for different components in the event structure, either fixed-order ma-
trix elements or parton showers approach are taken to generate events. However, since the goal
of building event generators is to simulate the entire event structure, we must prepare the re-
sults from fixed-order matrix elements such that it can be passed on to the subsequent parton
showering program. This method of preparation is known as matching prescriptions.

2.4 NLO Matching
As mentioned above, the main demand for event generators are the need to study QCD processes
at collider experiments. The studies of such processes are based on perturbation theory, usually
up to next-to-leading order (NLO). This means that NLO matching prescriptions, which com-
bines NLO matrix elements with partons showers are needed. This section will focus on one of
such prescriptions, MC@NLO [5].

At NLO, three different terms contribute to the cross-section: 1) Born term B, correspond-
ing to no emission (Fig.2a); 2) virtual term V , corresponding to exchange of a virtual particle
(Fig.2b); 3) real emission term R, corresponding to emission of a particle (Fig.2c). Due to
the extra emitted particle, R depends on an extra set of phase-space variables. That is, while
B = B(ΦB) and V = V (ΦB), where ΦB represent the Born phase-space variables (including
the Bjorken x’s), R = R(ΦB,ΦR), where ΦR represent the radiative phase-space variables.

(a) (b) (c)

Figure 2: Feynman diagrams of the Born (a), virtual (b) and real (c) contributions for NLO cross-
sections

Consideration of processes at NLO leads to two issues: double counting and divergencies.
By double counting, one refers to the fact that the NLO diagrams will already be included in
parton showers. This is easiest to see for real emission, whose diagram is the same as for FSR.

3They are assumed to be accurate not only in the soft and collinear limits. Therefore, hard emissions are also
generated with these cross-sections.
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To avoid double counting, a shower subtraction term KMC(ΦB,ΦR) is defined. The integrand
can then be split into two parts:

R−KMC︸ ︷︷ ︸
H

and B + V +KMC︸ ︷︷ ︸
S

.

Events generated with the former are known as H-events, corresponding to a Hard MC evolution
with one real emission already. Events generated with latter are known as S-events, correspond-
ing to a Standard MC evolution with no prior emission.

However, there remains the issue of divergencies. Namely that integrals of V and R are
separately divergent but their sum is finite [11, 12]. Since H-events and S-events are considered
separately, the divergencies become a problem. For H-events, the shower subtraction term will
also cancel out the divergence in R, giving a convergent integrand. For S-events, another term
I(ΦB,ΦR) is added and subtracted to cancel out the divergence. The resulting integrand is thus:

B + (V + I) + (KMC − I)

Since this thesis focuses on S-events, it is convenient to redefine the terms:

Ṽ (ΦB) = V (ΦB) +

∫
I(ΦB,ΦR)dΦR

K̃MC(ΦB,ΦR) = KMC(ΦB,ΦR)− I(ΦB,ΦR)

These redefined terms will then be free of divergencies. Furthermore, the integral IS over Born
and radiative phase-space is:

IS =

∫
dΦB

[
B(ΦB) + Ṽ (ΦB) +

∫
dΦRK̃MC(ΦB,ΦR)

]
(2.5)

This integrand will not be positive definite as both Ṽ and K̃MC may be negative. As a result,
events with negative weights may be generated, which leads to increased statistical errors. In
fact, it is possible to compute the fraction of negative-weight events as:

fS =
1

2

(
1− IS

JS

)
(2.6)

where JS is the same integral but of the absolute value of the integrand in Eq. 2.5. Therefore, if
the integrand is positive-definite, there will be no negative-weight events, as was expected.

Lastly, the integrand with respect to ΦB of Eq. 2.5 can be rewritten as:

F (S)(ΦB) =

∫
dΦR

[
B(ΦB)∫
dΦR

+
Ṽ (ΦB)∫
dΦR

+ K̃MC(ΦB,ΦR)

]
, (2.7)

known as the S event generating functional.
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2.5 Folded Integration
Currently, the most common methods (e.g. [13]) used to reduce fraction of negative S weights
make use of folding, implemented in the MINT algorithm and first introduced in [6]. To see the
idea, consider a two-dimensional function f(x, y) integrated over the unit square:

I =

∫ 1

0

∫ 1

0

dxdyf(x, y) (2.8)

Suppose that f(x, y) is not positive definite but its y-integral is positive. One could rewrite I
as:

I =

∫ 1

0

dx

[∫ 1

0

dyf(x, y)

]
︸ ︷︷ ︸

g(x)

(2.9)

This gives an x-integral with a positive definite integrand g(x).
To evaluate this integral numerically, g(x) needs to be computed for given x, meaning that

the y-integral must be taken. This is achieved by sampling N different y values per x value and
averaging. Note that the evaluation of the y-integral need only to be done on a very coarse grid
(small N )4.

However, by folding over y, the information of the y-dependence of the original function
f(x, y) is lost. In particular, this poses a problem for event generation as the generated points
will no longer be distributed according to the original integrand, which is the cross-section.
Therefore, one can only fold over the variables that do not affect event generation.

Fortunately, for S events, the radiative phase-space variables ΦR are such variables irrelevant
in terms of event generation. This is evident through the S event generating functional’s inde-
pendence of ΦR. Physically, as S events corresponds to no real emission, the generated events
should only be described by ΦB.

Therefore, on ΦR the folded integration can be performed. The parametrisation of the radia-
tive phase-space is done with the three FKS variables ξ, y, and ϕ [14], corresponding to energy,
cosine of angle with a partner particle and azimuthal angle of the radiated particle. For these
three variables, folding parameters nξ, ny, nϕ (corresponding to N in the above example) are
defined.

3 Theory
In this section, the theoretical underpinnings of Born Spreading, which this thesis is centred
around, and its current implementation is outlined. In addition, MG5 aMC, the event generator
in which Born Spreading is implemented will be discussed briefly.

4Suppose the x-integral is computed by sampling M points. Then M × N points will be sampled in the two-
dimensional unit square. Therefore, since M should be large, N need not be.
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3.1 Born Spreading
Consider first the generating functional given in Eq. 2.7:

F (S)(ΦB) =

∫
dΦR

[
B(ΦB)∫
dΦR

+
Ṽ (ΦB)∫
dΦR

+ K̃MC(ΦB,ΦR)

]

It can be observed that the Born contribution B(ΦB), incidentally also the only positive-definite
term, is independent of ΦR. This can be viewed as B(ΦB) distributed uniformly in radiative
phase-space. However, such distribution need not be uniform, meaning that a distribution func-
tion F (ΦR) can be defined freely. Then as long as the distribution is normalised, an equivalent
expression for the generating functional can be obtained:

F (S)(ΦB) =

∫
dΦR

[
B(ΦB)F (ΦR) +

Ṽ (ΦB)∫
dΦR

+ K̃MC(ΦB,ΦR)

]
,

∫
F (ΦR)dΦR = 1, (3.1)

which is the generating functional for Born Spreading [7].
Since there is freedom in choosing F (ΦR), it can be chosen to be larger when the no-Born

contribution is more negative. This means that the integrand in Eq. 3.1 will have smaller negative
regions compared to Eq. 2.7; and when it is still negative, the magnitude will be lower. In this
sense, one can say that Born Spreading makes the integrand more positive-definite.

Compared to folding, the most obvious advantage of Born Spreading is speed. Folding is
carried out in steps 1 & 2 and samples Nf = nξnynϕ times more points than default. Typically,
the minimal folding is considered to be (2×2×1), which increases the number of points sampled
by factor of 2× 2 = 4. On the other hand, for Born Spreading, the increase in runtime is due to
two sources: 1) sampling F (ΦR); 2) integrand in Eq. 3.1 being more complicated than Eq. 2.7.
Sampling of F (ΦR) is carried out in step-0, meaning that although more (by default 106) points
are sampled, the extra time needed will not be significant compared to total runtime. However,
having a more complicated integrand influences steps 1 & 2 and leads to an increase in runtime.
Nevertheless, the increase is much smaller compared to folding.

The most crucial disadvantage of Born Spreading is peak performance. After folding, the
function is maximally positive-definite analytically. Therefore numerically, if sufficiently large
folding parameters are chosen (i.e. integral evaluated precisely), the negative weights that can be
eliminated will be eliminated completely. However, Born Spreading cannot guarantee this, even
with the optimal choice of F (ΦR) and a large number of sampling points. The reason is that
the no-Born contributions may be large in magnitude and/or have strong ΦB-dependence. Since
F (ΦR) is subject to multiple constraints (normalisation, ΦB-independence, etc.), complete can-
cellation of negative no-Born contributions across the entire radiative phase-space is not always
possible.
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3.2 Default Implementation
The current implementation of Born Spreading is straight-forward. The no-Born contribution
relative to Born contribution is defined as W (ΦB,ΦR):

W (ΦB,ΦR) =

(
Ṽ (ΦB)∫
dΦR

+ K̃MC(ΦB,ΦR)

)
1

B(ΦB)
(3.2)

Then, to create an F (ΦR) that is large when W (ΦB,ΦR) is more negative, an option can be:

F (ΦR) = N ·
∫

|min(0,W (ΦB,ΦR))|dΦB (3.3)

where N is a normalisation constant.
Such F (ΦR) is 0 when the no-Born contribution is already positive, to allow it to be greater

elsewhere. As for when the no-Born contribution is negative, F (ΦR) is positive and its magnitude
depends on the magnitude of the no-Born contribution relative to Born contribution. Therefore,
this choice of F (ΦR) will make the integrand in Eq. 3.1 more positive-definite.

In practice, the VEGAS grid is first set up according to Eq. 2.7. Then, the two-dimensional
space of ξ× y is divided into a 40× 40 uniform grid. After that, by default 106 points is sampled
to obtain a suitable value of F in each bin. This will give a function Fij defined piecewise. To
arrive at the spreading function F (ΦR), simply let F (ΦR) = Fij if the point ΦR is in the ij-th
bin. Lastly, with the generating functional defined instead as Eq. 3.1, the VEGAS grid is set up
again and subsequent steps run.

3.3 MADGRAPH5 AMC@NLO
MG5 aMC [15] is an event generator that supports simulations at both LO and NLO (w.r.t. αS)
accuracy. Strictly speaking, MG5 aMC only generates events according to fixed-order matrix
elements and matches them to parton showers. The subsequent showers are simulated by other
programs, such as PYTHIA [16] and HERWIG [17], via an interface to them.

For the purpose of this thesis, processes are always considered at NLO. In this case, the
matching prescription used is MC@NLO. In addition, folding is already implemented in the
program. The folding parameters can be changed in the run card, which contains all adjustable
parameters for the program that will be run.

Once installed, the program is run with ./bin/mg5 aMC executed in a terminal shell. Then,
in the given prompt, event generation of an NLO process requires executing three commands
consecutively:

MG5 aMC> generate process [QCD]
MG5 aMC> output folder name
MG5 aMC> launch

For example, executing the following commands generates NLO events of p p → t t and saves
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relevant files to a folder named pptt in the MG5 aMC directory.

MG5 aMC> p p > t t∼ [QCD]
MG5 aMC> output pptt
MG5 aMC> launch

When the run is completed, the relevant information regarding the process simulated will be
summarised in the index.html file in the pptt folder.

After executing the launch command, the user will be prompted twice to make some mod-
ifications. The first prompt allows changes to run settings, in particular, the order, whether
matching is done and how/whether shower is performed. The second prompt allows changes to
the parameters and run cards (and shower card if shower is performed).

The generated events will be found in the Events folder within the output folder (pptt in
example). It will be saved with extension lhe (Les Houches Events). The file format is described
in [18]. See Fig.3 below for the positions of the relevant values for this thesis.

Figure 3: Example of one event from a sample events.lhe file. The mentioned Particle Data
Group (PDG) convention can be found online at (https://pdg.lbl.gov/2023/mcdata/mc particle
id contents.html).

In the context of this thesis, only the circled values in Fig.3 will be relevant. They are:

• NUP, which is an integer value that specifies the number of particles involved in this events.

• XWGTUP, which is a double precision value that gives the weight of this event. In par-
ticular, if the events are unweighted, then this value will differ only by sign for different
events.

• Particle ID, which is an integer value that corresponds to a specific particle in SM. An-
tiparticles will have negative values. For example, ±6 corresponds to top/anti-top quark.

Among them, NUP values allow us to identify S-events, XWGTUP values allow us to sort out
the negative weights and particle ID’s allow us to examine which particles are involved in a
particular event.
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4 Method
An apparent feature of the default implementation of Born Spreading outlined in Section 3.2 is
that the spreading function F (ΦR) is non-negative. However, this is not a necessary feature. In
fact, as pointed out in [7], setting F negative in some regions should help further improve the
performance of Born Spreading.

In this section, we will first present some methods that helped develop the improved imple-
mentations and evaluate their performance. Then, several possibilities for an improved imple-
mentation are outlined. In particular, they will be classified into naı̈ve methods, representing
some early efforts, and improved methods, which are developed in later stages and do lead to
improvements.

4.1 Offline Tests
It is clear that the idea of removing the non-negative constraint on F is only a general direction.
Therefore, the process of finding an improved implementation along this line will surely involve
testing many ideas, among which most will not prove to be fruitful.

Since running the event generation will take around 10 minutes even for the simplest process,
for efficiency, it is necessary to have a faster method for performance tests.

To this end, we make use of the 1 million sampled points for Born Spreading. We will run
the event generation once and save {B(ΦB), Ṽ (ΦB) + K̃MC(ΦB,ΦR),ΦR} at these points to a
file using the write command in FORTRAN. Then, a script can be written to read and process
these samples offline to give F .

In particular, we can use these sampled points to compute
∫∫

|min(0, B(F +W ))|dΦBdΦR,
which is directly related to the fraction of negative weights fS, since it is the size of the integral
over the negative regions. More specifically:

fS =
1

2

(
1− IS

JS

)
=

1

2

(
1−

∫∫
|max(0, B(F +W ))|dΦBdΦR −

∫∫
|min(0, B(F +W ))|dΦBdΦR∫∫

|max(0, B(F +W ))|dΦBdΦR +
∫∫

|min(0, B(F +W ))|dΦBdΦR

)
=

∫∫
|min(0, B(F +W ))|dΦBdΦR

JS
,

where JS is approximately constant if the size of negative weights is small.
However, it should be noted that this is only an approximate measure of performance since the

value of
∫∫

|min(0, B(F +W ))|dΦBdΦR computed from the sample points will be an estimate
and JS is only approximately constant. Nevertheless, it should give a good enough idea as to
whether the implementation being tested represents an improvement upon the default.

4.2 Computing fS

From Eq. 2.6, we see that fS can be computed from IS and JS, which are both outputs of
MG5 aMC. However, our motivation for reducing negative weights is so that fewer events gen-

11



erated are associated with a negative weight. Therefore, it is much more reasonable to just look
at the event file and count the number of negatively-weighted S-events.

To this end, a PYTHON script is written to read the .lhe file. The script first counts the total
number of S-events nS, which is the number of events with the smallest NUP value (see Fig.3).
Then, by looking at the first digit of the event weight XWGTUP, the number of negatively-
weighted S events n−

S can be counted. Finally, we print fS = n−
S /nS.

4.3 Naı̈ve Implementation
With the restriction of non-negative F lifted, it is natural to devise a method in which a negative
value is assigned to F at a certain bin based on gathered information. This is in all ways similar
to the idea behind the default implementation.

Mathematically, at a bin where we wish to set F negative5, the naı̈ve methods set the value
of F to:

F = −C

∫
W (ΦB,ΦR)dΦB (4.1)

where C is an arbitrary constant that varies from method to method.
Eq. 4.1 is indeed reasonable, as F will be more negative if the no-Born contribution is

more positive. However, a closer inspection will reveal that an implementation of this cannot be
straightforward.

To see this, we remark that
∫
W (ΦB,ΦR)dΦB ∝ avgΦB

(W (ΦB,ΦR)) by the mean-value
theorem. It is thus inevitable to have

∫
W (ΦB,ΦR)dΦB > W (ΦB,ΦR) for some ΦB values.

Moreover, if W (ΦB,ΦR) has sharp peaks in ΦB, the inequality will hold for most ΦB. This
implies that:

F (ΦR) +W (ΦB,ΦR) < 0, (4.2)

which means that the integrand in Eq. 3.1 will be made negative in some regions by the choice of
F in Eq. 4.1. In other words, creating negative weights is inevitable, which is not the case for the
default implementation, where F is set to zero when the no-Born contribution is positive-definite.

Of course, setting F negative means that F can be more positive in regions where the no-
Born contribution is negative. Therefore, creating negative weights is not necessarily a problem,
granted that more negative weights are reduced elsewhere.

However, for any choice of C, it is difficult to justify why one expect the reduced nega-
tive weights to outweigh the created. Hence the statement that implementations of these naı̈ve
methods cannot be straightforward.

Practically, implementation of the naı̈ve methods consists of two steps:

1. Set F according to Eq. 4.1 with certain C if the no-Born contribution is positive-definite
2. At remaining bins, use default implementation (Eq. 3.3) with the appropriate normalisation

constant

Offline tests are ran with C = {1, 1/1600}6, both performed worse than default Born Spread-
ing.

5The condition for this decision also varies between methods
6Recall that 1600 is the total number of bins
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4.4 Improved Implementation
The main issue with the naı̈ve methods is the inability to predict its impact on performance,
which the improved methods must solve. An immediate consideration is to devise an iterative
method with some performance criterion in place. Alternatively, the naı̈ve methods must be
exchanged for a method of greater predictability.

4.4.1 Non-Iterative

We note first that this method requires the sampled points to be saved in an array. Then, the value
of F is determined in two steps. In step 1, an un-normalised F0 is chosen such that in every bin:∫

B(ΦB)[F0(ΦR) +W (ΦB,ΦR)]dΦB = a

where a is an arbitrary constant.
Rearranging this requirements gives the expression for this initial spreading function F0:

F0(ΦR) =
a−

∫
B(ΦB)W (ΦB.ΦR)dΦB∫

B(ΦB)dΦB

(4.3)

Then, in step 2, this F will be normalised by setting

F (ΦR) = b · F0(ΦR) +

(
1− b ·

∫
F0(ΦR)dΦR

) ∫
|min(0, B(F0 +W ))|dΦB∫∫

|min(0, B(F0 +W ))|dΦBdΦR

, (4.4)

where b is another arbitrary constant.
Notice that in step 1, all ΦR bins are made to have equal weight. Therefore, bins containing

predominantly positive (negative) weights will have their weights reduced (raised) with negative
(positive) F .

Then in step 2, the bin-wise values of F is modified according to the bins’ contribution to
total size of negative weights. This added value will always be positive. Therefore, for F at a
certain bin, there can be three possible outcomes after step 2:

1. F was already positive after step 1 and remains positive;

2. F was negative after step 1, but this bin has a large contribution to negative weights, rela-
tive to its distance to the set weight a. So, F becomes positive;

3. F was negative after step 1 and this bin’s contribution to negative weights is small, so it
remains negative.

Among the three, outcome 3 demands particular interest. For outcome 3 to materialise, it is
necessary that

∫
B(1 + W )dΦB > a and the process of setting

∫
B(F + W )dΦB = a did not

make B(F +W ) negative in large magnitude or over a large region. But if this is the case, then
the concern raised in the previous section about negative F increasing negative weights by too
much is not warranted.
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4.4.2 Iterative

For an iterative method, we can build upon either the naı̈ve method or the improved method
(Section 4.4.1). For the naı̈ve method, the resulting iterative method will be of a hit-or-miss
nature, since the iterations won’t necessarily be progressive. On the other hand, for the improved
method, it is possible to have the iterations progress towards a prescribed destination that is
believed to be optimal. Therefore, the iterative method will be built upon the improved method.

From the improved method, a normalised spreading function F (ΦR) is obtained. Considering
this, an iterative procedure is designed to be:

F = F + c

( ∫
|min(0, B(F +W ))|dΦB∫∫

|min(0, B(F +W ))|dΦBdΦR

− 1∫
dΦR

)
, (4.5)

where c is an arbitrary constant.
It is easy to check that upon integration over ΦR, the expression within brackets in Eq. 4.5

vanishes. Therefore, F will continue to be normalised.
Such an iterative procedure will end naturally if all bins contribute equally to the remaining

negative weights. Moreover, consider a bin that contributes more to negative weights than aver-
age, F will be increased at that bin, which reduces its contribution to negative weights. In other
words, the iterative procedure does progress towards this natural end.

As for free parameters, the constant c determines the ”step-size” between iterations. One
can remark that extreme values should not be chosen since small c leads to negligible changes
between iterations and large c introduces instability.

Lastly, the iteration procedure should not be allowed to continue indefinitely. Instead, it will
be stopped when

∫∫
|min(0, B(F + W ))|dΦBdΦR stops decreasing or when a preset number

niter is reached. This is for runtime consideration and the fact that there is no guarantee that the
minimum fS will not be reached midway.

5 Results
Given the positive results from the offline tests, the non-iterative and iterative methods are both
implemented in MG5 aMC with free parameters set to a = 0, b = 1 for both and c = 1, niter =
1000 for iterative only.

The event generations were run on a laptop with 1 million unweighted events generated for
each process. All processes are generated with the four-flavour scheme, employed in MG5 aMC
by default. Other relevant parameters are also unchanged from MG5 aMC default.

From Table 1, it is evident that for all four processes tested, the non-iterative and iterative
methods both outperform default Born Spreading in terms of negative weight reduction, while
maintaining a similar (often shorter) runtime. Moreover, they also outperform 2× 2× 1 folding
for three out of four processes, including two processes for which default Born Spreading does
not, while often being considerably faster. These observations would suggest that the improved
implementation of Born Spreading is indeed an efficient method for negative weight reduction.
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Step-0
(s)

Step-1
(s)

Step-2
(s)

Negative
S-weights

(%)

Increase in
runtime7

(%)
p p → e+ e−

Default MG5 aMC 3 21 252 5.9 -
2× 2× 1 folding 3 49 528 1.8 210

Default Born Spreading 182 49 385 1.8 223
Non-iterative 198 53 319 1.6 207

Iterative 227 100 399 1.5 263
p p → t t

Default MG5 aMC 3 164 1674 12.1 -
2× 2× 1 folding 3 309 3466 3.9 205

Default Born Spreading 272 172 2033 4.4 135
Non-iterative 297 204 1634 3.5 116

Iterative 297 212 1851 3.5 128
p p → W+ j

Default MG5 aMC 13 1045 6960 27.6 -
2× 2× 1 folding 18 3060 21900 16.1 312

Default Born Spreading 700 1056 7800 22.3 119
Non-iterative 741 1194 7800 21.1 121

Iterative 784 1151 8700 21.2 133
p p → W+ t t

Default MG5 aMC 4 841 4380 5.3 -
2× 2× 1 folding 7 1596 7860 3.0 198

Default Born Spreading 274 1029 8760 3.1 193
Non-iterative 289 975 5460 2.7 129

Iterative 307 1029 6180 2.8 144

Table 1: Runtime (s) at each step, fraction of negative S-events (%), increase in total runtime
w.r.t. default MG5 aMC (%) for various LHC processes with default MG5 aMC, 2 × 2 × 1
folding, default Born Spreading, non-iterative method and iterative method.

In fact, when the goal is to obtain an event sample with less negative weights in a short time,
improved Born Spreading can even be thought of as a superior alternative to folding.

However, runtime itself is insufficient to determine the consumption of computational re-
sources. In particular, as mentioned in Section 4.4.1, the improved implementation require sav-
ing the sampled points. The total number of points saved could easily amount to several million
depending on the number of diagrams this process can occur via and the number of integration
channels for each diagram. This should translate to data of size on the order of megabytes.
Therefore, in most conceivable circumstances, saving the sampled points should not be a cause
of concern.

7Here runtime refers to the runtime sum of the three steps shown.
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Another point of interest is the performance of Born Spreading in general (default and im-
proved) for p p → W+ j. As mentioned in the introduction, the increase in consumption of
computational resources scales as 1/(1− 2f)2. From the shape of this function, we see that neg-
ative weight reduction for processes with larger f should be of greater interest. In other words, if
we achieve the same absolute reduction of negative weights (say 5%) for two processes with frac-
tions of negative weights f1 and f2, then f1 > f2 implies that more computational resources are
saved on process with f1. With this in mind, the performance of Born Spreading on p p → W+ j
becomes quite disappointing as it worsened significantly.

It is, however, possible to speculate the reason for such a worsened performance. Firstly, we
should note the lack of ΦB-dependence of the spreading function F (ΦR), meaning that across ΦB

space, we assign the same F . Moreover, this means that the values we use to determine F will be
various ΦB-integrals to remove the ΦB dependence. As we discussed in Section 4.3, the integral,
which is proportional to the average, is at best a rough estimate of the function’s behaviour.
Therefore, if W (ΦB,ΦR) has very different ΦR-dependencies at different ΦB’s,

∫
WdΦB will

be a bad estimate and hence cause Born Spreading to be less effective. Secondly, we have noted
in Section 4.1 that fS is directly related to

∫∫
|min(0, B(F +W ))|dΦBdΦR, which depends on

the size of the regions where F < W and their difference |F −W | at those regions. Since there
is a normalisation constraint on F , if we have |W | ≫ 1 at most bins (i.e. no-Born contribution
much larger than Born), then Born Spreading will surely be ineffective. Lastly, we note that
p p → W+ j is a very special process, since a jet is already included at LO. In principle, this jet
will be indistinguishable from the real emission at NLO. Therefore, when the event generation is
ran, there is a point where the decision of which particle is which is made. Such ambiguity may
also lead to unexpected influences on the Born Spreading method.

Finally, we may compare the non-iterative method to the iterative. In principle, the at most
0.1% absolute difference in negative weight fraction should be neglected as it falls into the range
of statistical fluctuations. However, by construction, since a stopping condition is inserted for
the iterative method, we should expect the iterative method to at least always be as good as non-
iterative. This is shown, although inconclusively, to be false. If this observation were to hold after
more extensive testing, then a possible reason may be over-training. Since a sample of 1 million
points should only give a rough picture of the function in ΦB and ΦR spaces, performing minor
adjustments on F based on information from the sampled points may not be entirely justified.
Therefore, although the iterative method should lead to improvements by construction, its actual
impact may not be as expected.

6 Extensions
Although a improved implementation is found, there is no proof that it is optimal. In fact, some
ideas to pursue for further improvement can already be suggested. Due to time constraint, they
cannot be tested and will instead be presented in this section.
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6.1 Ratio Method
This idea returns to default Born Spreading and considers the function W−, defined as:

W−(ΦB,ΦR) =

{
0, W ≥ −F

W (ΦB,ΦR), W < −F
, (6.1)

which gives the ratio between the no-Born and Born contribution at the negative regions.
Since the spreading function is ultimately multiplied to B(ΦB), the quantity

∫
|W−|dΦB

should play a role. To see the benefit, consider two bins A and B contributing equally to the total
size of negative weights. If at the negative regions in bin A, both Born and no-Born are small,
and at bin B they are both large. Then to make min(0, B(F +W )) zero (i.e. eliminate negative
weight), bin A needs a larger F than bin B.

However, note that the primary quantity to consider should still be the relative contribution
to negative weights ∫

|min(0, B(F +W ))|dΦB∫∫
|min(0, B(F +W ))|dΦBdΦR

and
∫
|W−|dΦB can be used to make adjustments.

6.2 Spreading Ṽ (ΦB)

As one might have noticed, by the exact same argument used to introduce F (ΦR) for B(ΦB),
another spreading function G(ΦR) can be introduced for Ṽ (ΦB). A brief analysis shows that F
and G need not be separately normalised (see Appendix C). Instead, it is sufficient that∫

F (ΦR)dΦR = 1 +

∫
Ṽ (ΦB)dΦB∫
B(ΦB)dΦB

(
1−

∫
G(ΦR)dΦR

)
which may give more freedom in assigning values for F and G at different bins.

It is, however, difficult to determine appropriate values for G. This is because Ṽ (ΦB) is not
positive-definite and G(ΦR) continues to be independent of ΦB, where the latter means we can
only look at

∫
Ṽ dΦB and the former says this integral will poorly reflect the behaviour of Ṽ .

7 Conclusion
In this thesis, we presented efforts towards finding an improved implementation of Born Spread-
ing for reduction of negative S weights in MC@NLO matching prescription. The two variations
(non-iterative and iterative) of the improved method are implemented in MG5 aMC for a com-
parison of runtime and fraction of negative weights with default MG5 aMC, 2 × 2 × 1 folding
and default Born Spreading.

The results show that both variations are an improvement over default Born Spreading,
achieving greater negative weight reduction with often shorter runtime. Moreover, compared
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to 2 × 2 × 1 folding, improved Born Spreading showed great advantage in terms of runtime
and achieved at least comparable reduction of negative weights. As for comparison between the
two variations, the performance on negative weight reduction is almost identical but the itera-
tive method is consistently slower. In addition, the iterative method could lead to over-training,
meaning that spending extra runtime for minor adjustments may not be justified. Therefore, we
may make the conclusion that the non-iterative variation of improved Born Spreading is indeed
an efficient method for negative weight reduction with decent performance.

However, we must note that if the folding parameters are increased, folding will certainly
achieve greater negative weight reduction than improved Born Spreading. Therefore, improved
Born Spreading cannot be thought of as a substitute for folding. If the goal is to generate an
event sample with almost no negative weights, folding is still the only option.

Nevertheless, as the runtime for improved Born Spreading is comparable to default MG5 aMC
and its performance is comparable to 2× 2× 1 folding, then as suggested in [7], an argument for
using Born Spreading as the new default mode for MG5 aMC can be made.
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the most recent run, the collisions have centre of mass energy ECM = 13 TeV [19]. For each
LHC event, there will exist various components forming the event structure. When two protons
collide, the relevant event structure composes of [20]:

(a) Evolution of parton distribution functions. Since it is the partons within protons that partic-
ipate in interactions, the evolution of PDFs in time (and space) will influence the processes
that take place;

(b) Hard scattering, a high energy collision between partons. This is typically considered the
primary process one wishes to study;
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(c) Resonance decays. Once unstable resonance particles created, they will decay according
to their lifetimes;

(d) Initial state radiation, emissions of incoming particles (i.e. partons in protons);

(e) Final state radiation, emissions of outgoing particles (i.e. products of the hard scattering);

(f) Multiple parton-parton interactions. This is a collection of all interactions between other
partons present. They will scatter, either hardly or softly, and emit initial and final state
radiations;

(g) Hadronisation. The partons present, both remnants of the initial state and products of mis-
cellaneous processes, will form hadrons due to confinement;

(h) Hadronic decay. The unstable hadrons will decay into stable particles.

At the detectors, the stable particles or jets formed by them are measured. The complexity of
the event structure is mainly due to the presence of QCD processes. Due to such complexity, in
order to study the measurements made, event generators are required.

B Origin of Soft and Collinear Divergences
As mentioned in Section 2.3, soft and collinear divergences, which arise when considering NLO
processes, demand extra care in treatment of NLO cross-sections. In this Appendix, their origin
will be discussed.

Consider an NLO process with one real emission (e.g. a 2 → 2 scattering where one of
the final state particles emit another particle). Then, looking only at this emission, it can be
illustrated as:

Figure 4: Diagram illustrating the real emission.
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where (p + q), p and q are the four-momenta of the original particle before emission, emitted
particle and original particle after emission respectively. In addition, the angle between emitted
particle and original particle is θ.

Considering the entire Feynman diagram, the propagator representing the original particle
before emission will be an internal line. Therefore, assuming massless particles, the factor 1/(p+
q)2 must be multiplied to the matrix element. It is then obvious that having (p + q)2 = 0 will
lead to divergences.

Since the particles are massless, the expression can be equivalently written as:

(p+ q)2 = p2︸︷︷︸
0

+ q2︸︷︷︸
0

+2p · q = 2p · q (B.1)

Then, let

p = E(1, 0, 0, 1)

q = E ′(1, 0, sin θ, cos θ),

which means that (p+ q)2 is given by:

(p+ q)2 = 2p · q = 2EE ′(1− cos θ) (B.2)

From Eq. B.2, it can be seen clearly that (p+ q)2 will tend to 0 when E ′ → 0, corresponding
to emission of a soft particle, and when θ → 0, corresponding to emission of a particle collinear
with the original particle.

C Derivation for normalisation condition of spreading func-
tions F and G

Recall the integral evaluated for S-event generation (Eq. 2.5)

IS =

∫
dΦB

[
B(ΦB) + Ṽ (ΦB) +

∫
dΦRK̃MC(ΦB,ΦR)

]
If we multiply B(ΦB) and Ṽ (ΦB) by arbitrary spreading functions F (ΦR) and G(ΦR), for

the integral to remain unchanged, we must require that∫∫
[B(ΦB)F (ΦR) + Ṽ (ΦB)G(ΦR)]dΦBdΦR =

∫
[B(ΦB) + Ṽ (ΦB)]dΦB

Rewriting the left-hand-side gives an equation to solve for the normalisations of F and G∫
B(ΦB)dΦR

∫
F (ΦR)dΦR +

∫
Ṽ (ΦB)dΦR

∫
G(ΦR)dΦR =

∫
B(ΦB)dΦB +

∫
Ṽ (ΦB)dΦB

=⇒
(∫

F (ΦR)dΦR − 1

)∫
B(ΦB)dΦB =

(
1−

∫
G(ΦR)dΦR

)∫
Ṽ (ΦB)dΦB
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This equation can then be rearranged to give∫
F (ΦR)dΦR = 1 +

∫
Ṽ (ΦB)dΦB∫
B(ΦB)dΦB

(
1−

∫
G(ΦR)dΦR

)
(C.1)

∫
G(ΦR)dΦR = 1 +

∫
B(ΦB)dΦB∫
Ṽ (ΦB)dΦB

(
1−

∫
F (ΦR)dΦR

)
(C.2)
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