
Concrete implementation of t-out-of-n threshold
lattice signatures

Department of Electrical and Information Technology
Lund University

Max Gustafsson Mattias Petersson
ma5517gu-s@student.lu.se ma8884pe-s@student.lu.se

Supervisor: Paul Stankovski Wagner

Assistant supervisor: Denis Nabokov

Examiner: Thomas Johansson

June 15, 2024

mailto:ma5517gu-s@student.lu.se
mailto:ma8884pe-s@student.lu.se

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

In preparation for quantum attacks on current cryptographic primitives, efforts are
being made to find ways to construct new primitives. While quantum computers
are not yet capable of breaking the keys used in modern parameter selection, efforts
are still being made to establish new primitives not vulnerable to any known quan-
tum attacks. These newly proposed solutions range from theoretical constructions
to concrete implementations. In this paper, we implement a lattice-based linearly
homomorphic t-out-of-n threshold signature scheme based on lattices in an effort
to verify its functionality and gather detailed performance data. We do this using
fully homomorphic encryption schemes and Shamir’s Secret Sharing method. Our
work proves that both the proposed passive and active security constructions in
the paper works in practice using our implementation. We provide insights to the
communication between participants and the number of messages being sent, as
well as the size of each message during an actively secure run of our scheme. We
also show some results on key sizes and total execution time for different parame-
ters, as well as computations for the number of mathematical operations used in
the algorithms. We further used our implementation to determine how runtime
scales for key generation and signature generation for increasing values of (t, n).
The main bottleneck was determined to be the Shamir’s Secret Sharing component
of the algorithm. Our results also show that key generation, which was the most
expensive algorithm overall, achieves maximum time-cost per participant when t
is equal to n+1

2 .

Keywords: Lattices – Threshold Signatures – Homomorphic Encryption – Thresh-
old Encryption.

i

ii

Popular Science Summary

There is a current challenge to develop new cryptographic standards that are se-
cure against quantum algorithms. With the knowledge that a sufficiently powerful
quantum computer can break current asymmetric cryptographic schemes, it is
important to redesign such protocols. This thesis explores the practical imple-
mentation of a threshold-signature scheme that is secure even with access to a
quantum computer.

Digital signatures are schemes uti-
lizing asymmetric cryptography, allow-
ing an entity to create a public/private
key pair. The public key can then be
distributed freely, while the private key
can be used to sign messages, docu-
ments, software and more. Anyone with
access to the public key can verify that
the signature is legitimate, i.e. the sig-
nature was created by the holder of the
private key. This scheme can be ex-
tended to a threshold scheme, where
multiple participants are required to
create a valid signature. Threshold-
signature schemes are typically called
t-out-of-n signature schemes, where t
denotes the number of participants re-
quired to create a valid signature, and
n denotes the total number of partici-
pants.

This is achieved in our scheme with
two underlying homomorphic schemes
for commitments and encryption. The
homomorphic property allows for math-
ematical operations such as addition of
encrypted data, e.g. ciphertexts, where
adding multiple ciphertexts is equiva-
lent to the sum of the encrypted cor-

responding plaintext.
Lattices are a popular candidate go-

ing forward for constructing quantum-
safe algorithms. Additionally, homo-
morphic schemes were first realized in
lattice-based cryptography. A lattice is
a set of points in a multi-dimensional
space, created by taking the linear com-
binations of a set of basis vectors.

There exists various theoretical im-
plementations of lattice-based t-out-of-n
schemes, but publicly available practical
implementations are lacking. Our im-
plementation serves as a first prototype
to demonstrate the feasibility of imple-
menting these schemes. We evaluate ex-
ecution time, sizes of messages sent, and
number of mathematical operations in
the protocol for different values of (t, n).
We found that our system scaled ex-
ponentially, with Shamir’s Secret Shar-
ing method requiring the most time out
of all algorithms. We also discovered
that key generation, which was the most
expensive algorithm, was the most ex-
pensive for each participant when t was
equal to n+1

2 .

iii

iv

Acknowledgments

We would like to thank our supervisors, Paul and Denis, for helpful feedback and
support, enabling us to do the best work we could. The idea for this thesis came
from Paul and was a perfect fit for our interests, and for that we are appreciative.

We would also like to thank our friends and family that has been there for
us throughout our entire time at LTH. Without your constant encouragement,
we would not be where we are. We would like to give special thanks to William
Emami, for providing useful feedback on this paper while we were in the process
of writing it.

v

vi

List of abbreviations

BDLOP18 Efficient homomorphic commitment scheme
BGV11 Fully homomorphic encryption scheme
CRYSTALS Cryptographic Suite For Algebraic Lattices
DOTT20 n-out-of-n threshold signature scheme
FHE Fully Homomorphic Encryption
GKS23 t-out-of-n threshold signature scheme
HVZKP Honest Verifier Zero-knowledge Proof
LDB23 t-out-of-n threshold signature scheme
LPN Learning Parity with Noise
LWE Learning With Errors
MP12 Trapdoors for lattices
NIST National Institute of Standards and Technology
NIZKP Non-interactive Zero-knowledge Proof
ROM Random Oracle Model
RSA Asymmetric encryption algorithm by Rivest, Shamir and Adleman
SIS Short Integer Solution
SVP Shortest Vector Problem
ZKP Zero-Knowledge Proof

vii

viii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Task . 1
1.3 Relevant Values to Study in Implementation 2

2 Background 3
2.1 Preliminaries . 3
2.2 Threshold Signatures . 5
2.3 Shamir Secret Sharing . 6
2.4 Commitment Schemes . 6
2.5 Homomorphic Encryption . 7
2.6 Classic Cryptography Hardness Problems 8
2.7 Quantum Advancements . 8
2.8 Zero-Knowledge Proof . 10
2.9 Lattice-Based Cryptography . 11
2.10 Current State of Lattice-Based Threshold Signatures 14

3 Methodology 17
3.1 Initialization . 17
3.2 BDLOP18 . 20
3.3 Distributed BGV11 . 21
3.4 GKS23 . 27

4 Results 31
4.1 Implementation . 31
4.2 Missing Schemes . 31
4.3 Communication Between Participants 32
4.4 Execution Time and Complexity . 35

5 Discussion 41
5.1 GKS Revision . 41
5.2 Further Improvements . 42

ix

x

List of Figures

2.1 A two-dimensional lattice with basis vectors
(
01
)

and
(
10
)

marked
out . 11

2.2 GKS23 and its required underlying schemes. Which algorithm was
used can be seen above each underlying scheme. 15

3.1 Rounded Gaussian distribution overlaid with a normal distribution,
both with mean zero and standard deviation 4. 18

3.2 Our hash function H(x), outputting a polynomial d from an input
polynomial array P . 19

3.3 NIZKP proof of opening from BDLOP18 utilizing a Fiat-Shamir trans-
form. 22

3.4 NIZKP proof of sum, based on proof of linear relation from BDLOP18
utilizing a Fiat-Shamir transform. 23

4.1 Measuring how our implementation scales for a static t = 3 and an
increasing n. 37

4.2 Measuring how our implementation scales for a static n = 7 and an
increasing t. 38

xi

xii

List of Tables

3.1 BDLOP18 parameters, a brief description, and their values. 20
3.2 Parameter notation for GKS23 and distributed BGV11. 27
3.3 Parameter initialization for GKS23 and distributed BGV11. Values are

set for one signature generation per key, or for 365 signature genera-
tions per key. 28

4.1 Number of transmissions of each type sent by a participant to each
other participant running KGenT S . The total size is calculated for a
(3, 5) scheme with parameters for 365 signatures presented in 3.3. . . 33

4.2 Number of transmissions of each type sent by a participant to each
other participant running SignT S . 34

4.3 Theoretical values of the size of a signature and a public key for a
single-use signature and 365 uses per signature. These values are
from [GKS24]. 34

4.4 A measure of the average, lowest time, highest time, and estimated
variance for key generation and signature generation. All units are in
seconds. 35

4.5 Measurements of execution time and number of multiplications and
additions for KGenT S for different values of (t, n). 36

4.6 Measurements of execution time and number of multiplications and
additions for SignT S for different values of (t, n). 36

xiii

xiv

Chapter 1
Introduction

This paper is an exploration of a practical implementation of the recently pub-
lished GKS23 scheme for t-out-of-n threshold signature cryptography based on
the R-LWE problem. The originally published paper described the scheme, and
gave suggestions for a future implementation, including commitment and zero-
knowledge proof schemes which would be required. The goal was to follow these
suggestions as closely as possible to evaluate the scheme, identify bottlenecks for
performance and establish a springboard from which further investigations into
the scheme could start.

1.1 Motivation
The state of cryptography is evolving rapidly due to the threat of quantum algo-
rithms breaking commonly used cryptographic primitives. This means that there
are several new schemes proposed every year, many lacking any amount of practical
testing. This leads to interesting opportunities to study the process of implement-
ing new schemes. Advanced cryptographic schemes are often built on top of other
schemes, and while getting an objective view how how efficient a scheme is, it can
be useful to identify what aspects of execution are the most costly, since that can
help direct future efforts of optimization.

Our paper and implementation is done to evaluate performance, and should
provide valuable insights into the efficiency and scalability of GKS23. We also lay
the groundwork to identify bottlenecks in performance, which could improve the
practical viability of the scheme itself.

1.2 Task
The goal of this paper is to implement a t-out-of-n threshold signature scheme
from [GKS23], which had previously not been implemented. Due to a recent re-
vision of the article, the implementation covers both the original and the revised
schemes. When applicable we cite these separately, the revised version can be seen
in [GKS24]. Our analysis focuses on execution time, signature and public key size,
and the number of polynomial additions and multiplications. Different values of

1

2 Introduction

(t, n)-threshold signatures are analyzed to observe how the scheme scales. Addi-
tionally, our analysis of (3, 5)-threshold signatures is used to compare signature
and public key sizes with those presented in [GKS24].

1.3 Relevant Values to Study in Implementation
There are many variables to consider when comparing cryptographic schemes
that make directly comparing time to execute in seconds or clock cycles difficult.
Choices of language, exact implementation of underlying mathematical operations
and optimization techniques can all drastically alter the execution time. As such,
making a direct comparison of performance required controlling for these variables,
which is difficult to accomplish without implementations done with identical de-
sign choices. While trying to compare the execution time of an implementation of
GKS23 with existing schemes would not be particularly illuminating, there were
still useful comparisons to be made. Variables like key size, signature size and
the number of messages sent were aspects of the scheme itself and were therefore
independent of our implementation.

Execution time could be of interest to provide comparative values for future
research. Additionally, it served as a benchmark for performing modifications done
to our implementation, as the relative change could be studied. It also allowed
for the study of separate aspects of the implementation, allowing us to determine
what aspects of the scheme are most useful to optimize or replace with faster
alternatives.

Aside from execution time, which varies between exact implementation and the
power of the computer, the number of certain costly operations in the scheme can
be easily counted in a practical implementation. In GKS, these include the math-
ematical operations on large polynomials, the number of which are determined by
the settings for t and n, additionally the number of Shamir secret reconstructions
are also determined by the participant parameters. These can be used along with
the size of coefficients and the degree of polynomials to compare the implemented
scheme to others relying on similar mathematical operations directly, without hav-
ing to compare implementations.

Chapter 2
Background

2.1 Preliminaries
This section aims to give an overview of notations and mathematical concepts that
will be used throughout this paper. Then, we give an introduction to two algebraic
structures known as groups and rings. We also define polynomials to be able to
present polynomial rings, which are used extensively throughout this paper.

2.1.1 General Notation
Algorithms stemming from research papers will be denoted by first letter of each
author’s last name, as well as the year the paper was published. As an exam-
ple, this thesis is implementing the scheme proposed by Gur, Katz, and Silde in
[GKS23]. The scheme is subsequently called GKS23. Vectors and matrices are
denoted by boldface lower- and uppercase letters, respectively. ⟨u, v⟩ denotes the
cross product of vectors u, v. All vectors are column vectors by default. We write
:= for deterministic assignment, and $← for uniform random distribution from a
set. For instance, we write e

$← Xm as a vector of length m where each ei is
sampled from the distribution X .

2.1.2 Polynomials
A polynomial is an expression that can be written in the form

anxn + an−1xn−1 + . . . + a1x + a0.

A constant is a special case of polynomial known as a constant polynomial, con-
taining only an a0 term. In this paper, we are generally not interested in evaluating
polynomials, aside from in the implementation of Shamir Secret Sharing. Instead,
one could think of the xn denoting the coefficient in the n-th position. A poly-
nomial is irreducible if it cannot be factored into a product of two polynomials,
excluding constant polynomials.

3

4 Background

Norm of Polynomial

We use Borwein & Erdélyi’s definition in [BE95] for the ℓp-norm of a polynomial
p as

∥p∥ℓp =
(

n∑
k=0
|ak|p

)1/p

for p ≥ 1. A special case is the ℓ∞-norm, defined as

ℓ∞ = max
k
{|ak|}.

The norms used in our implementation are the ℓ∞-norm, ℓ1-norm, and ℓ2-norm.
We denote these norms, using the definitions above, as

∥p∥1 =
n∑

k=0
|ak|,

∥p∥2 =

√√√√ n∑
k=0
|ak|2,

∥p∥∞ = max
k
{|ak|}.

2.1.3 Algebraic Structures
In this section, we present two different types of algebraic structures known as
groups and rings. We then expand on these concepts to introduce polynomial
rings.

Definition 2.1.1 (Group). A group (G, ∗) consists of a set G, with a binary
operation ∗ defined on G with the following properties.

• Closure: x ∗ y ∈ G,∀x, y ∈ G,

• Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z),∀x, y, z ∈ G,

• Identity: ∃e ∈ G : e ∗ x = x ∗ e = x,∀x ∈ G,

• Inverse: ∃x′ ∈ G : x ∗ x′ = x′ ∗ x = e, ∀x ∈ G.

One additional property that is often desirable in groups is commutativity, i.e.
a ∗ b = b ∗ a. This is not a strict requirement, a group that is commutative is
an abelian group. Addition over the reals, denoted (R, +), is an example of an
abelian group.

Definition 2.1.2 (Ring). A ring (R, +,×) consists of a set R, where two binary
operations +,× are defined with the following properties.

• (R, +) is an abelian group,

• The × operator has closure, associativity, and identity as defined for groups,

Background 5

• The distributive laws hold, i.e. ∀a, b, c ∈ R we have

a× (b + c) = (a× b) + (a× c),
(a + b)× c = (a× c) + (b× c).

The + operator is required to be commutative, the same does not apply to the
× operator. Rings that are commutative for both operations are known as commu-
tative rings. For example, addition and multiplication over the integers, denoted
as (Z, +,×), form a commutative ring. Throughout this paper, we frequently use
the ring of integers modulo q, denoted by Zq.

2.1.4 Polynomial Rings
Rings can be formed using polynomials by fixing a polynomial f(x) and an integer
q. Elements in the ring are all polynomials of degree less than the degree of
f(x), with all coefficients ai ∈ {− q−1

2 , ..., q−1
2 }. Addition is defined as polynomial

addition, with coefficients reduced modulo q. Multiplication is likewise defined
as polynomial multiplication, with the product reduced modulo f(x) and q. We
select f(x) to be an irreducible polynomial in the ring and q to be prime, which
makes the ring a commutative ring. As is common in literature, we let f(x) be
in the form xN + 1, where N is a power of two. This type of ring has some
desirable properties, one of which is that every non-zero element in the ring has
a multiplicative inverse. This property is a requirement for many of the schemes
implemented throughout this work. We denote a polynomial ring as

Rq = Zq[X]/⟨f(x)⟩.

2.2 Threshold Signatures
Asymmetric encryption schemes can be used to provide authentication in the form
of digital signatures. Algorithms for key generation, signing, and verification are
required for a complete digital signature scheme. The key generation algorithm
takes some input parameters and computes a public key and a secret key. The
signing algorithm uses the secret key to create a valid signature. The verification
step should not require the secret key, rather it should use the public key and
thus be usable by any user, and will verify that the signature was indeed made by
someone holding the secret key.

Threshold signatures are a modified version of digital signatures where the
secret key is divided into multiple parts during key generation, where each user
then holds only a part of the secret key. Signing then requires several users to
combine their shares of the secret key in order to properly create a signature
[Des92]. We write that there are n total keys, with t the minimum required
number of keys to sign, which create a t-out-of-n scheme, t ≤ n. If t = n, we
call it an n-out-of-n scheme. In practice, this is often constructed so that a signer
Si ∈ U , |U| = n produces a partial signature that can be combined with at least
t− 1 other participants in U to produce a valid signature.

6 Background

2.3 Shamir Secret Sharing
At its most basic level, threshold cryptography is often based on Shamir’s Secret
Sharing method in [Sha73], where one splits a secret value into parts such that a
subset of a certain size is required to reconstruct it. The scheme works as follows.

For an integer value D, construct a random polynomial q(x) of degree k − 1,
with constant a0 = D. The partial values are constructed as q(i) = Di, 1 ≤ i ≤ n.
With k or more of these values and their indices known, it is trivial to calculate
a0, but k − 1 or fewer known values do not provide any information to help solve
for a0.

As discussed in [GKS23], an extension of Shamir’s scheme to allow for values
of D ∈ Rq can be done. The method is mostly identical to the aforementioned
scheme, except that the coefficients of the polynomial are sampled from Rq. Ad-
ditionally, the points at which the polynomial is evaluated to derive the values
of Di must be selected more carefully. Specifically, the pairwise difference of the
selected evaluation polynomials must all be invertible for the scheme to hold.

2.4 Commitment Schemes
Commitment schemes are a method for having clients commit to certain values
that they cannot change at a later time. Said values should also be obscured, to
ensure that the committed value cannot be derived easily. This is often done by
adding some randomness ρ to a message x. We write that x ∈ P and ρ ∈ R for the
message space and randomness space, respectively. Then, we define an abstract
commitment scheme algorithm as Com(x, ρ) := c, where c is the commitment to a
message x along with randomness ρ. A commitment scheme has the following two
properties, formulated in [Sma16].

Definition 2.4.1 (Binding). A commitment scheme is binding if an adversary
cannot win the following game.

• The adversary chooses values x ∈ P and ρ ∈ R.

• The adversary must then output a value x′ ̸= x ∈ P and ρ′ ∈ R such that
Com(x, ρ) = Com(x′, ρ′).

Definition 2.4.2 (Hiding). A commitment scheme is hiding if an adversary cannot
win the following game.

• The adversary generates two different messages x0, x1 ∈ P.

• The challenger generates ρ ∈ R and chooses one of the messages at random
as x ∈ {x0, x1}.

• The challenger commits and computes c := Com(x, ρ), then sends c to the
adversary.

• The adversary has to accurately guess which of the messages x0, x1 was
chosen as x.

Background 7

The properties can be either information-theoretically or computationally bounded,
depending on the assumed resources of the adversary. If the property is information-
theoretical bounded, the adversary is assumed to have unlimited resources, while
in the computational bound, the adversary’s computational power is limited. The
security of a commitment scheme is often based on the hardness of the weakest of
these two properties. It is important to note that a commitment scheme cannot
achieve information-theoretical security for both properties of hiding and binding.
This can be shown by having a client commit to a value c := Com(x, ρ). Now there
has to exist some values x′ ̸= x ∈ P, ρ′ ∈ R such that c := Com(x′, ρ′), otherwise
the hiding property could be broken. If this has to exist, then a commitment can
be opened to two messages which would break the binding property.

A commitment scheme is divided into two phases, commitment and opening.
We illustrate these two phases with an example, where participants Pj commit to
a value, send the commitment c, and then all other participants ensure that the
commitments match the value that was committed to. We show it from a partic-
ipant Pi’s perspective. In the commitment phase, Pi computes ci := Com(xi, ρi)
using their message xi and a randomly generated value ρi. The commitment ci

is then sent to all other participants. Once all participants have received all cj

from Pj , j ̸= i, they proceed to the opening phase. Participant Pi now sends their
tuple (xi, ρi) to all other participants. Finally, having received all such tuples, all
participants can verify that Com(xj , ρj) = cj .

There is a subset of this type of scheme, known as a trapdoor commitment
scheme. In this scheme, a participant with access to some special information,
known as a trapdoor, can open a commitment ambiguously, thus overcoming the
binding property [Fis01].

2.5 Homomorphic Encryption
Homomorphic encryption enables computations on encrypted data without the
need to decrypt it first. For example, if a scheme allows multiplication, such that
Enc(a) · Enc(b) = Enc(a · b), where Enc(x) is an arbitrary encryption function,
we call the scheme multiplicatively homomorphic [Gen09]. Similarly, a scheme
is considered additively homomorphic scheme if the relation holds for addition.
Without the homomorphic property, performing an operation requires first de-
crypting the encrypted data a and b, performing the operation, then encrypting
the result. A scheme which is both additively and multiplicatively homomorphic
is a fully homomorphic encryption (FHE) scheme.

The first homomorphic encryption scheme was constructed in 2009 by Gentry
in [Gen09] and introduces noise to the ciphertext in its construction. At some
point, the accumulated noise from repeated operations might lead to decryption
failure. Gentry in his original paper solves this problem by a technique known
as bootstrapping, where the decryption algorithm is first converted into a circuit.
Then, any ciphertext along with the public key of the scheme can be sent into
this circuit, outputting the ciphertext without any noise. Bootstrapping is the
component requiring the most computational resources in a FHE scheme [AP23],
research since the original paper has been committed to develop more efficient

8 Background

FHE schemes, given its numerous use cases.
One such use case is in distributed encryption, where each party has its own se-

cret element randomly distributed from a set. Parties can then generate a mutual
encrypted product, with each participant contributing their own element to the
product without revealing their share of the secret. There is current work in estab-
lishing a standard for homomorphic encryption, this can be found in [ACC+18].

2.6 Classic Cryptography Hardness Problems
In order to accurately assess the security of encryption algorithms, it is common
to try to reduce an algorithm in complexity to a known mathematical problem
that is known to be hard, meaning it can not be solved in polynomial time. This
reduction means that the security of an entire scheme can rely on the difficulty of
a single mathematical problem. We define factorization and the discrete logarithm
problems, both of which are essential for asymmetric cryptography. We also define
the RSA problem, which can be reduced to the factorization problem. In other
words, the RSA problem can be turned into an easy problem given that one can
find the factors p, q [Sma16].

Definition 2.6.1 (Factorization Problem). Given an integer N , known to be a
product of two primes p and q, find p and q.

Definition 2.6.2 (RSA Problem). Given public parameters (N, e), along with a
ciphertext c, where e is chosen such that

gcd(e, ϕ(pq)) = 1

where ϕ denotes Euler’s totient function. Find m such that

me = c (mod N).

Definition 2.6.3 (Discrete Logarithm Problem). Given g, h in a finite abelian
group (G, ·) of prime order q, find an integer x ∈ [0, ..., q − 1] such that

gx = h

if such an integer x exists.

There are algorithms for finding solutions to these problems. For the factoriza-
tion problem 2.6.1, the number field sieve is a typical example. For discrete loga-
rithms, two examples are the Pohlig-Hellman and Pollard Rho algorithms [Sma16].
None of the aforementioned algorithms, nor any currently existing algorithm, can
solve these three problems in polynomial time on classical computers.

2.7 Quantum Advancements
Developments in quantum computing has lead to new algorithms which can turn all
three problems in 2.6.1, 2.6.2, 2.6.3 into easy problems; Shor’s algorithm is perhaps

Background 9

the most well known of these [Sho94]. Any data encrypted using a scheme that can
be reduced to one of these problems is no longer secure, given a quantum computer
powerful enough to run these quantum algorithms. Craig Gidney and Martin
Ekerå in [GE21] estimate, with their construction that includes adaptions of Shor’s
algorithm, that the upper bounded number of qubits required to break RSA-2048
is roughly twenty million. They also note that this number can change rapidly
with advancements in constructing quantum circuits, handling error correcting
codes, and the physical design of the qubits [GE21]. Algorithms which do not rely
on the hardness of factoring, RSA, or discrete logarithms can also be affected by
the progress of quantum computing, Grover’s algorithm is a quantum algorithm
that searches a list of size n in

√
n operations [Gro96]. This is a more efficient

exhaustive key search and a successful implementation could make smaller key
sizes of AES not-secure.

In an attempt to find how far along quantum computing has come, one might
be inclined to look at current records. Karamlou et al. in [KSK+21] have factored
1,099,551,473,989, and Li et al. in [LDC+17] have factored 291,311, respectively.
However, these integers have a special form which makes them easy to factor, we
show how this is done for the larger integer using Fermat’s Factorization Method.

Example. Find the factors of 1,099,551,473,989.

n = 1,099,551,473,989
n = x2 − y2 = (x− y)(x + y)

For the first trial, take ⌈
√

n⌉ then compute the difference with our original n and
look if the difference is a square.

⌈
√

n⌉ = 1,048,595
1,048,5952 − n = −36 ⇐⇒ n = 1,048,595 + 62

n = (1,048,595− 6)(1,048,595 + 6)
= (1,048,589)(1,048,561)

{p, q} = {1,048,589, 1,048,561}

This can be done for n = 291,311 and its respective factors are also found
after one trial. Due to their special form, successfully factoring these integers on
a quantum computer should not be seen as a projection of how close quantum
computing is to breaking modern cryptography. Rather the papers show the pos-
sibility of factoring large integers that is possible with current quantum technology
by performing pre-computations on classical computers. It is hard to say when or
even if quantum computers will become capable of running quantum algorithms
for relevant bit sizes. Despite this uncertainty it is best to take a proactive ap-
proach and look into quantum-safe alternatives, i.e. hardness problems that are
not turned into easy problems given quantum algorithms. Some companies are
investing heavily in quantum computing. IBM revealed a 433 qubit processor in
late 2022, and are aiming to develop a 100,000 qubit machine within the next ten
years [Bro23].

10 Background

2.8 Zero-Knowledge Proof
A zero-knowledge proof (ZKP) consists of two parties, a prover and a verifier. We
will name the prover Peggy and the verifier Victor, as is frequently done in other
literature. Peggy then wishes to prove that she knows something, e.g. the secret
key of an asymmetric scheme, to Victor. Additionally, Victor should not learn
what the secret is. There are three criteria for a scheme to be a zero-knowledge
proof, these are highlighted below. The properties of completeness and soundness
include some small error margin due to ZKPs being probabilistic, the scheme can
be designed to make this error negligible.

Definition 2.8.1 (Completeness). If both Peggy and Victor are honest partici-
pants, then Victor will almost always accept Peggy’s proof.

Definition 2.8.2 (Soundness). If Peggy is disingenuous and Victor is honest,
Victor should accept the proof only for some small probability.

Definition 2.8.3 (Zero-knowledge). If Peggy is honest and the protocol is fol-
lowed, Victor should learn nothing about the secret itself.

An efficient method of a ZKP is known as a Sigma protocol and consists
of three steps. First Peggy issues a commitment, Victor then responds to said
commitment with a challenge, and finally, Peggy provides a response. Victor is,
after this three-step process, able to verify that Peggy knows what she claims to
know. One oftentimes done simplification is to assume that Victor is an honest
participant that behaves according to the protocol, such ZKPs are known as honest
verifier zero knowledge proofs (HVZKP). Sigma protocols can be turned into a non-
interactive proof, then referred to as non-interactive ZKP (NIZKP). In this paper,
this is achieved by replacing the second step where Victor sends a challenge with
a hash of some values in the scheme which both parties have access to, this way
Peggy can create a complete proof on her own, and send it to Victor, and he can
still be confident that the challenge used in the proof was chosen at random.

Schnorr’s algorithm for signatures, which can be reduced to the discrete log-
arithm problem from 2.6.3, can be proven to be a Sigma protocol. We end this
section with an example of this, where we abbreviate Peggy as P and Victor as
V . We denote the direction data is sent, along with what data, with arrows and
the name of the variable above it.

Example (Sigma protocol for the discrete logarithm problem). Peggy wants to
prove to Victor that she knows x for gx = h

P
r−→ V : r := gk, k

$← G

V
e−→ P : e

$← G

P
s−→ V : s := k + x · e (mod q)

Victor can verify that Peggy knows x by verifying that r = gs · h−e, we will
merely state that this fulfills all required criteria for a zero-knowledge proof.

Background 11

2.9 Lattice-Based Cryptography
In an attempt to find a hardness problem that is quantum-safe, lattices are one of
the potential candidates going forward. A lattice is a discrete version of a vector
subspace [Sma16]. As an example, take two vectors

b1 =
(

0
1

)
and b2 =

(
1
0

)
and plot these with integers as coefficients for b1, b2 to create a two-dimensional
lattice. See Figure 2.1. It is important to note that there are many possible bases
for a lattice, the only requirement is that the vectors that form a basis are linearly
independent.

Figure 2.1: A two-dimensional lattice with basis vectors(
0
1

)
and

(
1
0

)
marked out

We denote the non-zero minimum of any lattice L by

λ1(L) = min{∥x∥ : x ∈ L, x ̸= 0}.

2.9.1 Shortest Vector Problem
The most well-known hard lattice problem is the Shortest Vector Problem (SVP).
This problem is extensively studied and comes in several forms, in this paper we
define only the basic version.

Definition 2.9.1 (Shortest Vector Problem). Given the basis of a lattice L, find
the shortest non-zero vector x in L. In other words, find x such that ∥x∥ = λ1(L).

It is easy to reason that x is not unique by observing the vectors in Figure 2.1.
For randomized reductions, this problem can be shown to be NP-hard, meaning
it cannot be solved in polynomial time, if P ̸= NP [Ajt98].

12 Background

2.9.2 Short Integer Solution Problem
Another lattice-based problem is the Short Integer Solution (SIS) problem, first
formulated in [Ajt96]. The parameters n, m, q, B, are all positive integers. Here,
n denotes the security parameter, m is application specific, q denotes the modulus
and B denotes the bound. We then define the problem as follows.

Definition 2.9.2 (Short Integer Solution Problem). Given A
$← Zn×m

q , find a
non-zero vector x ∈ Zm such that

A · x = 0 (mod q) and ∥x∥∞ ≤ B.

Generally the parameters are chosen such that m ≪ n. Additionally, B is
chosen such that B ≪ q. The name comes from the vector x being short, often
chosen such that x ∈ {−1, 0, 1}m.

This problem can be extended to polynomial rings, then called R-SIS. This
problem is analogous to SIS over Zq, we show the ring variant below.

Definition 2.9.3 (R-SIS Problem). Given A
$← Rm

q , find a non-zero vector x ∈
Rm such that

A · x = 0 (mod q) and ∥x∥ ≤ B.

2.9.3 Learning With Errors
One known lattice-based problem is the Learning with Errors problem (LWE) first
formulated by Regev in [Reg09]. We start by fixing a modulo q ≥ 2 and a dimen-
sion n ≥ 1. We let m denote the number of samples, with n > m. We then define
an error distribution X over Zq [Reg10]. This distribution is generally described
as either a discrete Gaussian distribution or a rounded continuous Gaussian dis-
tribution, with zero mean and a small standard deviation σ. There are then two
variants of the LWE problem, we start by defining the LWE search problem.

Definition 2.9.4 (LWE Search Problem). Let A
$← Zm×n

q , s, b
$← Zn

q , e
$← Xm.

The problem is then to, given (a, b), find s such that

b := A · s + e (mod q).

The idea behind this problem is to introduce noise into an otherwise linear
systems of equations. In Section 2.5 when we were talking about homomorphic
encryption, the noise comes from Regev’s construction based on LWE. Without
this added noise part the problems could be easily solved using Gaussian elimina-
tion. Because n > m, the matrix has more rows than columns and will either have
no solutions or one solution. The parameters are chosen such that it will have a
unique solution.

The second variant is the LWE decision problem.

Definition 2.9.5 (LWE Decision Problem). Let e
$← Xm. Given (A, b), where

A
$← Zm×n

q , s, and b
$← Zn

q , determine if either

Background 13

1. b := A · s + e (mod q).

2. b
$← Zn

q .

To realize why LWE is believed to be hard, Regev in [Reg10] provides the
following list of arguments.

1. Regev proves in [Reg09] that LWE is worst-case hard if the shortest vector
problem (SVP) is hard. As was mentioned earlier, SVP is a well-studied
problem, it and its variants are believed to be hard.

2. LWE is an extension of the learning parity with noise (LPN) mathematical
problem [Reg10], which is also believed to be hard.

3. The most well-known algorithm for solving LPN is provided by Blum, Kalai
and Wasserman in [BKW03] and runs in subexponential time. This algo-
rithm has been applied to LWE in [ACF+15], further improvements to the
original algorithm can be seen in [BGJ+21], [QLGZ20], [KF15].

2.9.4 Ring-Learning With Errors
Encryption schemes often use a variant of LWE based on polynomial rings, called
R-LWE defined in [LPR12]. This variant was created due to the original LWE
being inefficient for any practical means, simple primitives requiring quadratic
overhead for key sizes and computation times [LPR12]. We begin by defining Rq

as was done in the preliminaries, as

Rq = Zq[X]/⟨f(x)⟩ = Zq[X]/⟨xN + 1⟩.

Where N = 2k for some positive integer k. We then define an error distribution
X similarly to how we did for regular LWE, now outputting polynomials of degree
smaller than the degree of N . Analogous to the general case, the coefficients
are often distributed from either a discrete Gaussian distribution or a rounded
continuous Gaussian distribution, with mean zero and a small standard deviation
σ [ACC+18]. We can then define the ring version of the two LWE problems as
follows.

Definition 2.9.6 (R-LWE Search Problem). Let a, s, b ← Rq, and e ← X . The
problem is then to, given (a, b), find s such that

b := a · s + e.

Definition 2.9.7 (R-LWE Decision Problem). Let a, s, b
$← Rq, and e

$← X .
Determine if either

1. b := a · s + e.

2. b
$← Rq.

We will in a subsequent section describe how the parameters and distributions
are chosen, as many schemes used throughout this paper are based on R-LWE.

14 Background

2.9.5 Implementations
Finding an implementation of a lattice-based threshold encryption fit for standard-
ization is an ongoing process. The National Institute of Standards and Technology
(NIST) initiated this process by issuing a request for post-quantum cryptographic
algorithms as early as December 2016 [Nat16]. For key exchange and signatures,
Kyber [BDK+18] and Dilithium [DKL+18] respectively are the leading candidates.
Both of these algorithms are based on the hardness of LWE [Bou22], and are com-
ponents of the Cryptographic Suite for Algebraic Lattices (CRYSTALS) suite.
Sometimes the algorithms are referred to as CRYSTALS-Kyber & CRYSTALS-
Dilithium.

2.10 Current State of Lattice-Based Threshold Signa-
tures

In this section we aim to give an overview of GKS23 as presented in [GKS23] by
providing details on the required underlying schemes. We include schemes here
that were not implemented by us, and explain why that is the case. Then, we move
on to briefly give some detail on two of these underlying schemes before ending
this section by discussing similar work to GKS23.

2.10.1 GKS23
GKS23 is a t-out-of-n scheme requiring three underlying schemes, see Figure 2.2.
The figure also shows which algorithms were used in this paper for the underlying
schemes. GKS23 recommends using DOTT20 by Damgård et al. in [DOTT20]
for homomorphic trapdoor commitment. For the three required ZKP, GKS23
recommends three different schemes. For proofs of linear relation, they recommend
using BDLOP18 by Baum et al. in [BDL+18]. The remaining proofs are a proof
of shortness by Lyubashevsky et al. in [LNP22], and a proof for straight-line
extractability by Katsumata in [Kat21]. Lastly, GKS23 recommends using BGV11,
by Brakerski et al. in [BGV11] for threshold homomorphic encryption.

Due to overall complexity of implementing the trapdoor functionality of DOTT20,
our implementation does not include this scheme. Instead, we rely on BDLOP18,
which is an efficient homomorphic commitment scheme without the trapdoor func-
tionality. Our work also does not include a proof of shortness nor a proof for
straight-line extractability. These were not included in order to prioritize on other
aspects of implementation within the given time frame. Details on the security
implications of not implementing DOTT20, as well as the proof of shortness and
proof for straight-line extractability will be provided in subsequent chapters. In
Figure 2.2, the missing schemes are denoted by a dotted border, and implemented
schemes with a full border. There is a dotted line between the homomorphic
trapdoor commitment scheme and BDLOP18 as it is missing the trapdoor func-
tionality, thus only providing some of the necessary features.

GKS23 is evaluated in [GKS23] by estimations of performance, public key size
and signature size, leaving a concrete implementation as follow-up work.

Background 15

Figure 2.2: GKS23 and its required underlying schemes. Which
algorithm was used can be seen above each underlying scheme.

2.10.2 BDLOP18
BDLOP18 is an efficient additively homomorphic commitment scheme. The scheme
allows commitments to vectors over Rq. BDLOP18 is the recommended commit-
ment scheme in [GKS23] where trapdoor functionality is not required, as well as
for various NIZKP. As our implementation does not have a trapdoor commitment
scheme, BDLOP18 will be the only commitment scheme we implement.

2.10.3 BGV11
BGV11 is a FHE scheme that works for both LWE & R-LWE; our focus will be on
the R-LWE version. The scheme leverages techniques from prior research to get
efficient FHE without bootstrapping [BGV11]. As mentioned in Section 2.5, the
bootstrapping is computationally heavy and adds a layer of complexity to FHE
schemes. BGV11 instead reduces noise by performing modulus switching between
two integers p and q. The BGV11 scheme is not a threshold scheme as presented
in [BGV11], modifications can be made to support distributed key generation and
threshold decryption, without loss of security, as can be seen in [GKS23].

2.10.4 Similar work
While no implementation of GKS23 has been published, Leevik et al. proposed
and implemented a t-out-of-n scheme, LDB23, in [LDB23]. GKS23 and LDB23
differ in several key design choices. LDB23 utilizes Dilithium-G for its underly-
ing signature scheme, similar to DOTT20’s n-out-of-n solution, whereas GKS23
uses Lyubashevsky-type signatures [LDB23], [DOTT20], [GKS23]. Aside from
these underlying signature schemes, LDB23 and GKS23 use the same commit-
ment scheme and rely on the same Shamir Secret Sharing method to produce a
t-out-of-n signature scheme.

16 Background

Chapter 3
Methodology

For detailed performance data, such as measuring the execution time as well as the
number of operations for various operations such as key generation and signature
generation, an accurate model of the entire system was needed. This section aims
to explain these modeling choices that were done for our concrete instantiation of
GKS23. The implementation was created in Python, with everything other than
polynomial operations implemented from the ground up. This was done to give
us the most fine-grained analysis of what parts of the code took the most time to
execute, as well as to exclude the possibility of different implementations of parts
of the scheme utilizing different optimization strategies.

We begin by describing overarching initialization values, such as how polyno-
mials were represented, defining distributions, and how we made a hash function
that outputs a polynomial. We then present the underlying protocols that were
needed, along with the optimal parameters for each protocol. Lastly, we describe
how all of these components were integrated in order to create a complete version
of GKS23.

3.1 Initialization
This section aims to provide a baseline for the schemes that were implemented.
We first describe how our polynomial representation was done. Then, we define
three types of distributions that were used in our schemes. Finally, we show our
implementation of a hash function that maps a polynomial or array of polynomials
into a deterministic polynomial d.

3.1.1 Polynomials
Representing polynomials was done using the CyPari2 library in [FDDK24], which
is a Python interface to PARI/GP at [PAR23]. Utilizing this library allowed us
to perform addition and multiplication for polynomials in Rq. Additionally, it
supported vector and matrix addition and multiplication for large values of q and
N in Rq.

17

18 Methodology

3.1.2 Distributions

We generally required three distributions for our algorithms to sample polynomials
from. One was a uniform distribution, one was discrete Gaussian, and one was
ternary. In order to create a polynomial in Rq we sampled N independent one-
dimensional samples as the coefficients of the polynomial.

Creating a discrete Gaussian distribution is a complex problem. In [ACC+18],
it is stated that it is sufficient to choose each coefficient from a rounded continuous
Gaussian distribution. Our rounding was done to the nearest integer, for values
at exactly the halfway point we rounded to the nearest even value. It is a slight
misnomer to call this implementation a discrete Gaussian distribution, as a specific
integer i ∈ R is not proportional to e−(x−v)2

2σ2 , though the coefficients of a polynomial
will still have a bell-like shape. We plot these coefficients and overlay a normal
distribution, both with standard deviation σ = 4 in Figure 3.1.

Figure 3.1: Rounded Gaussian distribution overlaid with a normal
distribution, both with mean zero and standard deviation 4.

Our choice of σ = 4 = ⌈ 8√
2π
⌉ was based on the values in [ACC+18]. This en-

sured that no attacks were known against our scheme. Unless otherwise specified,
σ = 4 was used as the standard deviation for our discrete Gaussian distributions.
This value could change as new attacks are found or with time as understanding
of the error standard deviation improves [ACC+18].

Our ternary distribution was used when we required small elements. We let all
coefficients in a ternary polynomial be −1, 0, or 1. Furthermore, we also limited
the ℓ1-norm of a polynomial to be equal to κ. We write the set of polynomials
that we sample ternary polynomials from as

C = {c ∈ Rq : ∥c∥∞ = 1, ∥c∥1 = κ}.

Methodology 19

3.1.3 Hash Function

A hashing function was required for participants to be able to provide a NIZKP,
mentioned in Section 2.8, as well as for some communication in GKS23. As we
were working in polynomial rings, this function needed to work in a polynomial
ring setting. We created a hash function H that takes as input a polynomial array
of arbitrary size. This allowed for hashing single polynomials as well as matrices
of polynomials, outputting a polynomial d deterministically, as shown in Figure
3.2.

Figure 3.2: Our hash function H(x), outputting a polynomial d
from an input polynomial array P .

The string representation of the input was encoded using UTF-8 into a se-
quence of bytes, which was then hashed into a 48-byte output using SHA-384.
We chose to use SHA-384 as it provided 192-bit collision resistance security and
384-bit preimage resistance security in accordance with [Nat23]. We then took the
48-byte output and converted this to its integer representation, this was used as
the seed for generating randomness to create a polynomial. For randomness, we
used a 128-bit implementation of the permuted congruential generator defined in
[One14]. Using this random generator seeded with the hash, we generated a sparse
polynomial of at most degree N

4 . The deterministic polynomial d was created such
that it had an ℓ1-norm κ, and ℓ∞-norm 1.

20 Methodology

3.2 BDLOP18
BDLOP18 was required for the commitment scheme as well as for the NIZKP
proof of linear relations. From the commitment scheme we also required a proof
of opening for a commitment, which cover the majority of required proofs. These
proofs are interactive in the method presented in [BDL+18]. To make them non-
interactive, the authors in [BDL+18] recommend using the Fiat-Shamir transform
presented in [FS87]. This transform meant that we replaced the challenge value
selected by the verifier, as was shown in Section 2.8, with a hash of values that
were known to both the participant creating the NIZKP, and the participant who
later had to verify that the proof was valid.

Parameters were initialized using recommended values from [BDL+18]. We
needed a prime q ≡ 2d + 1 (mod 4d) for adequate security, and to guarantee that
all small elements (ℓ2 or ℓ∞) were invertible. The q used in BDLOP18 was the
same as the prime modulo of the polynomial to be commited, as such the values
of q and Q, explained in 3.4.1 had to be selected to ensure this held. The value
of N was similarly the same as N in GKS23 and BGV11, that being the order of
polynomials. Additionally, let a set of challenges that were small be defined as C̄.
An element in C̄ was the difference of two polynomials c, c′ sampled from C, with
c ̸= c′. Any element c− c′ had an ℓ∞-norm of at most 2, and would be invertible
in Rq [BDL+18]. All instance parameters, along with a brief description and their
values can be found in Table 3.1.

Parameter Brief description Value
q The ring modulus (prime) Set by GKS23
N Degree of the ring polynomial Set by GKS23
k Width of the commitment matrices A1, A2 3
n Height of A1 1
l Message space dimension 1
κ ℓ1-norm for any c ∈ C 36
C̄ {c− c′ : c ̸= c′ ∈ C} N/A
β Maximum ℓ∞-norm for small vectors 1
Sβ {x ∈ R : ∥x∥∞ ≤ β} N/A
N Gaussian distribution for NIZKP N/A
σ Standard deviation 11 · κ · β ·

√
kN

Table 3.1: BDLOP18 parameters, a brief description, and their val-
ues.

These values were selected from the optimal table provided in [BDL+18]. They
are considered optimal due to ensuring the same level of hardness for both hiding
and binding properties. It is important to again note that the security of the
commitment scheme is only as strong as the hardness of the weakest of the two
properties, which was maximized using these values. The hardness of the two
properties relied on the hardness of two mathematical problems, one for each
property. The problem for the binding property was dependent on hardness of

Methodology 21

module-LWE, and for the hiding property on module-SIS. The module prefix to
these problems is simply replacing singular ring elements from the definitions in
2.9.3, 2.9.6, 2.9.7 with module elements over the same ring, as discussed in [AD17].

We summarize the functions Keygen, Com and Open below.

Keygen: Create public commitment matrices A1 ∈ Rn×k
q , A2 ∈ Rℓ×k

q as

A1 =
[
In A′

1
]
, A′

1
$← Rn×(k−n)

q (3.1)

A2 =
[
0ℓ×n Iℓ A′

2
]
, A′

2
$← Rℓ×(k−n−ℓ)

q (3.2)

with In denoting an identity matrix of dimension n over Rq. Similarly 0ℓ×n

denotes a zero matrix of dimension ℓ× n over Rq.

Commit: Commit to a message x ∈ Rℓ
q by first choosing a small commitment

randomness r
$← Sk

β , then output c as

Com(x, r) := c =
[
c1
c2

]
=
[
A1
A2

]
· r +

[
0n

x

]
(3.3)

Open: An opening consist of a commitment c, a message x ∈ Rℓ
q, randomness

r ∈ Rk
q , and a small polynomial f ∈ C̄. The opening is valid if the following

holds.

f · c =
[
A1
A2

]
· r + f ·

[
0n

x

]
∧ ∥ri∥2 ≤ 4σ

√
N,∀i. (3.4)

It is important to distinguish the commitment randomness from the opening ran-
domness, both denoted r. This difference arises due to it being easier to use the
ℓ∞-norm when committing, but most efficient ZKPs demonstrate knowledge of
small vectors in the ℓ2-norm [BDL+18]. We show how the proofs of linear relation
for opening and proof of sum were constructed in Figures 3.3 and 3.4.

With these two proofs, the vast majority of required proofs for the GKS23 and
distributed BGV11 schemes could be implemented.

3.3 Distributed BGV11
A distributed version of the BGV11 scheme from [BGV11] was needed for threshold
homomorphic encryption. We begin by showing non-distributed BGV11 and its
three algorithms (KGen, Enc, Dec), and verify that this scheme is correct for a
plaintext m ∈ Rq. We then move on to present a distributed version as presented
in [GKS23].

Let q, Q be two primes, with q ≪ Q. We denote two polynomial rings Rq, RQ

for a fixed dimension N . In this scheme, q is referred to as the plaintext modulo,
while Q is referred to as the ciphertext modulo. The naming of these parameters
may seem odd, but is done to simplify the understanding of the relation between
BGV11 and GKS23. In our presentation of BGV11, Rq is the plaintext modulo,

22 Methodology

Prerequisites: A =
[
A1
A2

]
as in 3.1, 3.2. r ∈ Sk

β . c =
[
c1
c2

]
as in

3.3.

Commitment:

y
$← N k

σ

t := A1 · y

Challenge: For a hash function H outputting a polynomial,
compute

d := H(t)
z = y + d · r

Response: Verify that

A1 · z = t + d · c1

∥zi∥2 ≤ 2σ
√

N,∀i.

NIZKP proof of opening

Figure 3.3: NIZKP proof of opening from BDLOP18 utilizing a Fiat-
Shamir transform.

Methodology 23

Prerequisites: A =
[
A1
A2

]
as in 3.1, 3.2. r, r′, r′′ ∈ Sk

β .

c =
[
c1
c2

]
= Com(x, r), c′ =

[
c′

1
c′

2

]
= Com(x′, r′),

c′′ =
[
c′′

1
c′′

2

]
= Com(g · x + g′ · x′, r′′) as in 3.3.

Commitment:

y, y′, y′′ $← N k
σ

t := A1 · y
t′ := A1 · y′

t′′ := A1 · y′′

u := g ·A2 · y + g′ ·A2 · y′ −A2 · y′′

Challenge: For a hash function H outputting a polynomial,
compute

d := H(t, t′, t′′)
z = y + d · r

z′ = y′ + d · r′

z′′ = y′′ + d · r′′

Response: Verify that

A1 · z = t + d · c1

A1 · z′ = t′ + d · c′
1

A1 · z′′ = t′′ + d · c′′
1

g ·A2 · z + g′ ·A2 · z′ −A2 · z′′ = (g · c2 + g′ · c′
2 − c′′

2) · d + u

∥zi∥2 ≤ 2σ
√

N,∀i.

NIZKP proof of sum

Figure 3.4: NIZKP proof of sum, based on proof of linear relation
from BDLOP18 utilizing a Fiat-Shamir transform.

24 Methodology

and in GKS23 it is the ciphertext modulo. The choice for this is that aspects of the
signature itself need to be encrypted in the process of generating a signature, and
as such the encryption plaintext modulo must be the same size as the signature
ciphertext modulo.

Let DEnc be a distribution over RQ with an ℓ∞-norm bounded by predefined
values BEnc. The calculation of BEnc is presented in [GKS23], for brevity we will
simply state that for our chosen security parameters, the distribution should be
bounded by 27. The standard deviation should be then be approximately 25.
Keygen: Sample a uniform element a ∈ Rq, s, e ← C, output public key pk :=

(a, b) = (a, as + pe), secret key sk := s.
Enc: Input pk, m ∈ Rq. Sample r, e′, e′′ ← DEnc, output ciphertext (u, v) =

(ar +pe′, br +pe′′ +m). Also computes a ZKP πenc proving that r, e′, e′′ are
all bounded by DEnc, that m is bounded by q, that u = ar + pe′ and that
v = br + pe′′ + m. Implementation for proof of sum are covered in figure 3.4
and for proof of bounded values is discussed in 4.2.2.

Dec: Input sk, (u, v). Output (v − sk · u mod Q) mod q

We verify that the scheme is correct by showing that it works for decryption, which
it will iff ∥v − su∥∞ ≤ BDec < q

2 [GKS23]. We omit modulus operations in all
intermediate steps for brevity.

(v − sk · u mod Q) mod q

= v − su

= br + qe′′ + m− su

= (as + qe)r + qe′′ + m− su

= (as + qe)r + qe′′ + m− s(ar + qe′)
= (qer + qe′′ + m− sqe′ mod Q) mod q

= m

We then define ET = (DKGen, Enc, TDec, Comb) as the algorithms for the distributed
extension of BGV11 with threshold decryption. We have the same parameters as
for the non-distributed version, with the addition of U denoting a set of participants
in the scheme of at least size t. Enc in ET is identical to the non-distributed version
above, as such it is omitted from the description.

Committing to a value was done using the BDLOP18 commitment scheme, and
each commitment got a uniformly randomly distributed element from Sβ defined
in Section 3.2, denoted ρx for a message x. We show the protocol for a participant
Pi, and denote all participants as j ∈ [n]. Additionally, if Pi receives a value from
all other participants, we write Pj , j ̸= i.

DKGenET :

1. Sample ai
$← RQ, compute hai := H(ai) and broadcast to all other

parties. When Pi has received haj from all participants Pj , j ̸= i, they
broadcast ai. They verify that haj

:= H(aj), then define the public
key as

∑
j∈[n]

aj .

Methodology 25

2. Sample si, ei
$← C as the decryption key share and error noise share,

respectively. Set bi = asi + qei. Then compute and broadcast hbi
:=

H(bi).
3. Commit to si as csi and ei as cei . Compute t-out-of-n Shamir secret

shares {si,j} and {ei,j} of si and ei, respectively. Set bi,j := asi,j +qei,j

for all j ∈ [n].
4. Pi commits to all individual key shares as csi,j := Com(si,j , ρei,j) and

cei,j := Com(ei,j , ρei,j) for all j ∈ [n].
5. Pi now computes a proof πski

for the key si and error ei, proving that
both values are bounded, that bi is indeed the sum of asi and qei, and
that each bi,j is the sum of asi,j and qei,j . Pi then broadcasts πski ,
csi

, cei
, {csi,j

}, {cei,j
}, b and {bi,j} to all other participants.

6. For each other party j, Pi sends (si,j , ρsi,j) over a secure channel.
7. After receiving all data from the previous two steps from Pj , j ̸= i, Pi

verifies that hbj
:= H(bj) for j ∈ [n] and that a reconstruction of bi,j

outputs bi. They abort if any of these fail.
8. Pi verifies that all proofs πskj

are valid, and that csj,i
is a valid com-

mitment for sj,i, aborting otherwise.
9. Lastly, Pi computes b :=

∑
j∈[n]

bj , ski :=
∑

j∈[n]
sj,i, ρi :=

∑
j∈[n]

ρj,i, and

cj :=
∑

k∈[n]
csj,k

. Pi now outputs the public key pk := (a, b, {cj}j∈[n])

and the secret key ski := (si, ρsi
).

TDecET : Input ski, (u, v), U . Sample Ei
$← RQ, ∥Ei∥∞ ≤ 2secBDec for statis-

tical security parameter sec and noise-bound BDec. With λi the Lagrange
coefficient for Pi with respect to U , compute di := λisiu + qEi. Pi commits
to ski and Ei as cski

and cEi
, respectively. Then, Pi computes a proof πdsi

for a proof of relation with respect to si and Ei, and that Ei is correctly
bounded. Output dsi := (di, πdsi , cEi , cski)

CombET : Input v from Enc and partial decryption shares {dsj}j∈U . Ensure
all proofs πdsj

are valid, aborting with output 0 otherwise. Then output
plaintext ptx := (v −

∑
j∈U

dj) mod q.

There was a small change to the underlying mathematics that had to be made to
ensure that our implementation worked correctly. If a small number n is multiplied
by q (mod Q), such that n · q < Q, then (n · q (mod Q)) (mod q) ≡ 0. However,
this condition will not hold if 0 < n · q < Q is not satisfied, which is why the
error shares ei must be small. Generally, integers modulo Q is done in the range
[−Q−1

2 , Q−1
2]. Due to how Python handles modulo operations, our range was

instead [0, Q − 1] for the integer coefficients. Using the interval [−Q−1
2 , Q−1

2]
allowed for negative error shares to be used without the equivalence breaking, as
the size requirement was changed from 0 < n · q < Q to −Q−1

2 < n · q < Q−1
2 . To

allow us to still use negative error shares, we added Q−1
2 to each coefficient of the

26 Methodology

result of computing (v −
∑

j∈U
dj) before reducing it by modulo q. This added an

error of Q (mod q) to each coefficient, which was then subtracted.

3.3.1 Assumption for NIZKP
For the proof πski

calculated in DKGen step 5, an assumption had to be made re-
garding completeness. We made the assumption that if b is proven reconstructable
by any subset of size t in a set {bi} of size n, as well as being properly computed
from corresponding s and e. Then each bi is proven to be properly computed from
corresponding si and ei, and each s and e were assumed to be correctly secret
shared into si and ei. This assumption was made as there is otherwise simply not
enough information sent between parties to prove the reconstruction of s and e,
and the security of the scheme would be affected by sending other information. In
the revised publication of GKS23 at [GKS24], an argument is provided for how
the knowledge available is enough to construct a proof, but it does not construct
such a proof and the argument is not fully explained. For the purpose of our
implementation, however, we assumed that the argument is correct and that this
proof was sufficient.

3.3.2 Communication Between Participants
Communication between participants was handled by a centralized controller is-
suing a request to all contributing participants sequentially. Each participant sent
their data along with an identifier of who they were to the controller. The con-
troller then split the data into the parts as the step dictated. We will illustrate
this process using two examples, both from steps in DKGen above.

In the first example, when sharing a hash of each participant’s hi = H(ai),
0 ≤ i ≤ n, the controller request for all n participants for their hashed value and
put all of these in a list. Then, the controller sends the list of hashes back to all
participants, where all participants now have access to all hashes. This is repeated
for a, and each participant can now verify that H(ai) = hi, using the identifier to
map which values belong together. Our second example of communication was for
secret sharing and was done as follows.

1. Each participant Pj , j ∈ [n] generated their secret shares for sj , ej , which
were sent to the controller.

2. The controller sends one share to each participant, along with a participant
identifier, showing whose sj this is a secret share of.

3. This process is repeated for all participants, which led to all participants
holding one share of each sj , ej .

4. At a later step, these shares are to be reconstructed. The controller begin
by issuing a request to all participants for all shares they were holding.

5. The controller mapped all shares back to their original owner, adding an
identifier of who the holder was.

Methodology 27

6. Each participant would then attempt to reconstruct their sj , ej , using all
legitimate combinations.

7. If any combination failed in the reconstruction, the program terminated
and raised an error, detailing which user attempted to reconstruct, as well
as whose shares failed. Otherwise, the reconstruction succeeded and the
program continued as normal.

As showcased by these examples, communication was not accurately modeled,
as no trusted third party would be involved in the key generation process in a
real, distributed implementation. However the details of participant to participant
communication of the protocol (outside of the size of messages) was not considered
to be an area of interest to this report or implementation.

3.4 GKS23
With all underlying algorithms explained, we can now define the actively secure
t-out-of-n threshold signature scheme that was implemented and tested.

3.4.1 Parameters
We began by setting up what parameters were needed for GKS23, as well as a
brief description parameters that were used in Table 3.2. Then, in Table 3.3, we
show how these values were instantiated for two different scenarios for a bounded
number of signatures as described in [GKS23].

Parameter Brief description
q The GKS ciphertext ring modulus (prime)
p The GKS plaintext ring modulus (prime ≪ q)
Q The BGV ciphertext ring modulus (prime ≫ q)
N Degree of the ring polynomial
σr Standard deviation for distribution Dr

κ ℓ1-norm for any c ∈ C

Table 3.2: Parameter notation for GKS23 and distributed BGV11.

The first scenario is for a single signature generation for a given key generation,
meaning a signature is only used once per key generation. This type of signature
is used for Bitcoin transactions. The second scenario allows 365 signatures for
a given key, or one signature per day for a whole year before requiring a new
instantiation of the scheme. This scenario can be used in a variety of ways where
a service is used at most once a day, such as when authenticating a user.

The values for q, N , and σr were selected to match those recommended in
[GKS24] for setting a secure scheme for a bounded number of signatures with the
same key. The value for p, being the size of the plaintext to sign, was selected to be
as large as possible while still maintaining a correct scheme. Our κ was set to 36,
equivalent to κ for BDLOP18. This selection of parameters was chosen to make the

28 Methodology

Parameter Value (One signature) Value (365 signatures)
q 220 − 143 224 − 879
p 216 − 39 216 − 39
Q 235 − 975 236 − 527
N 210 210

σr ≈ 215.2 211

κ 36 36

Table 3.3: Parameter initialization for GKS23 and distributed
BGV11. Values are set for one signature generation per key,
or for 365 signature generations per key.

underlying R-SIS and R-LWE problems hard. This instantiation provided roughly
128 bits of security [GKS24]. Q was set to be sufficiently large to allow the BGV
scheme to function with q as plaintext modulo. It was selected to be as small as
possible without causing encryption to fail, and a value of 236 − 5 was found to
be sufficient for 365 signatures per key. A larger Q can be used, but increasing its
size will negatively impact the execution time of the scheme and have no benefit
to the scheme, as such the smallest possible Q was desirable.

3.4.2 Threshold Signature Scheme
We define T S as our scheme with algorithms (KGen, Sign, Vrfy), utilizing ET
from Section 3.3. We use the same notation for broadcasts, sharing of data, and
commitment randomness as in the distributed BGV11 case. All steps for how the
protocol works for a signer Si is shown below.
KGenT S :

1. Si invokes DKGen from E , with input t, n, d. They obtain pkE and ski from
E .

2. Sample ai
$← Rq uniformly, compute hai

:= H(ai) and broadcast hai
. After

Si receives haj
from signers Sj , j ̸= i, they broadcast ai. They then verify

that all haj = H(aj), j ∈ [n], aborting if any fail with output j. Otherwise,
compute a :=

∑
j∈[n]

aj and a :=
[
a 1

]
.

3. Sample si,1, si,2 as short signing key pieces. Set si :=
[
si,1 si,2

]
. Com-

pute yi := ⟨a, si⟩ and its corresponding hash hyi := H(yi), proceed to
broadcast hyi . Upon receiving hyj from signers Sj , j ̸= i, Si encrypts si as
ctxsi

:= Enc(pkE , si). They compute a proof πsi
proving that si is correctly

bounded and the same value used to calculate yi and broadcast the tuple
(yi, ctxsi

, πsi
).

4. Having received tuples from the step above for all Sj , j ̸= i,Si verifies that
hyj = H(yj) and that their proof πsj is valid for (ctxsj , yj). They abort
if any of these verification steps fail with output j. Otherwise, compute

Methodology 29

y :=
∑

j∈[n]
yj and ctxs =

∑
j∈[n]

ctxsj
, then define the public key pk = (a, y),

the secret key ski, and auxiliary information aux = (auxE , pkE , ctxs).

SignT S :

1. Input a message µ to be signed, with Si ∈ U . Sample signature randomness
ri,1, ri,2

$← Dr along with a commitment randomness ρi. Si then computes
ri :=

[
ri,1 ri,2

]
, wi := ⟨a, ri⟩, and commitment ci := Com(wi, ρi). They

then encrypt ri as ctxri
:= Enc(pkE , ri) and compute a proof πri

proving
that ri is correctly bounded and the same value used to calculate wi. Lastly
Si broadcasts the tuple (ctxri , comi, πri) to all j ∈ U\{i}.

2. Having received tuples from the step above for all users j ∈ U\{i},Si verifies
that πrj

is valid for (ctxrj
, cj), aborting if any fail with output j. If all

succeed, proceed and define c :=
∑

j∈U
cj , the challenge c := H(c, pk, µ). Then,

compute the encryption of the signature as ctxz := c · ctxs +
∑

j∈U
ctxrj

, and

decrypt its own share dsi := TDec(ctxz, ski,U). Broadcast (dsi, wi, ρi) to all
j ∈ U\{i}.

3. With Si having all (dsj , wj , ρj)∀j ∈ U\{i}, they verify that Open(cj , wj , ρj) =
1 and abort with output j if any fail. Si then attempts to combine de-
cryptions as z := Comb(ctxz, {dsj}j∈U), aborting with output j if z = ⊥
and Comb aborts with output j. Si computes ρ :=

∑
j∈U

ρj , then outputs

σ := (c, z, p) as their signature.

VrfyT S : Input σ and µ, verify that ∥z∥ ≤ Bz and ∥ρ∥ ≤ Bρ. Compute w∗ :=
⟨a, z⟩ − cy and derive c∗ := H(Com(w∗, ρ), pk, µ). Output 1 iff all checks hold and
if c = c∗, 0 otherwise.

3.4.3 Implementation
The steps of key generation, signing and verification was implemented in the same
way as the functions of distributed BGV11, creating an expanded participant
object capable of both distributed encryption and signature creation.

The short signing key pieces si,1, si,2 in step 3 of KGen were polynomials with
coefficients distributed from our discrete Gaussian distribution, with σ = 4.

One change done to the implementation was the manner in which πctx of
was verified during signature generation. Rather than adding the zero-knowledge
proofs together and taking into account the multiplication with c that occurs when
calculating ctxz, which is a complicated set of operations both to implement and
to execute, the zero-knowledge proof of a ciphertext is verified when it is used in a
homomorphic calculation of a new ciphertext, and no zero knowledge proof of this
new ciphertext is calculated. This should have no impact on security assuming
that the homomorphic operations on ciphertexts are correct. All internal linear
relations will still hold and, since no ciphertext that is transmitted to another
participant is ever calculated from other ciphertexts, the only thing the proofs of

30 Methodology

opening would be used for would be to verify that all proofs of opening in the
original ciphertexts held.

The one exception, the only proof in a calculated ciphertext that may fail
even if the same proof holds in all ciphertexts used to calculate it, would be
the proof of shortness. Since the variables checked to ensure shortness would be
added together, and as such the variables in the calculated ciphertext may break
shortness. However, since our implementation lacks an implementation of proofs
of shortness, this has no impact on this implementation, and is only noted for
completeness.

Chapter 4
Results

As all underlying schemes and GKS23 interoperate tightly, our implementation
included all of the underlying schemes described in the previous section. This
allowed a comprehensive analysis of GKS23 for all selected parameters. Further-
more, it allowed us to avoid relying on an imported scheme in a black-box fashion.
Due to the required interoperability, importing a scheme could be detrimental and
could possibly skew our analysis. Additionally, implementing the scheme in its en-
tirety allowed us to ensure consistent handling of polynomials, which was helpful
when troubleshooting and ensuring correctness of the schemes.

4.1 Implementation
The full implementation is available at [GP24].

4.2 Missing Schemes
In this section, we highlight what could not be achieved due to unimplemented
schemes. We begin by providing an insight into what the missing scheme does.
Then, we detail what consequences the absence of the scheme had on our imple-
mentation.

4.2.1 DOTT20
DOTT20 was the suggested trapdoor homomorphic commitment scheme, as men-
tioned in Section 2.10. They accomplish this by expanding on BDLOP18 [BDL+18],
with new parameters and adding a trapdoor scheme for lattices. They recommend
a scheme by Micciancio and Peikert in [MP12], known as MP12 for trapdoor func-
tionality.

DOTT20 was utilized in signature generation for GKS23, in step 1 of SignT S .
In the original scheme, a commitment key was computed as ck = H(pk, µ). This
commitment key was then used to commit to wi, ρi in the same step, replacing
ci := Com(wi, ρi) with ci := Comck(wi, ρi).

The absence of DOTT20 makes our implementation lack the equivocation
property, present in the original GKS23 scheme. This property is required to

31

32 Results

ensure that dishonest participants can not pretend to have access to certain or
different information than the information they are holding. A number of security
games are presented in [GKS24], without DOTT20 our implementation would not
hold for the scenario presented in G3.

4.2.2 ZKP Proof of Shortness
We required a proof of shortness for a complete GKS23 scheme to ensure that
secret shares were correctly bounded. Unlike the proof of opening and proof of
sum, a proof of shortness cannot easily be constructed using BDLOP18. Instead,
[GKS23] recommends the proof of shortness scheme by Lyubashevsky et al. in
[LNP22]. Implementing this scheme would have required a significant portion of
the time available, as it differs substantially from all other schemes.

Without this proof a dishonest participant could run the scheme with long
secret and error shares, which for a real-world application would obviously be
unacceptable. The missing proof of shortness also resulted in less data transmitted,
which led to our implementation requiring less communication than would be
necessary in a real-world implementation.

4.2.3 ZKP Straight-Line Extractability
The property of straight-line extractability was required for concurrent security
[GKS23]. This was needed due to our use of the Fiat-Shamir transform to turn
ZKP into NIZKP. However, this transform is only secure in the classical random
oracle model (ROM), not in a quantum random oracle model. In a ROM, a
function is modeled as a black box that responds to every query with uniformly
random output. This method is commonly used to analyze the security of a
system. The authors of GKS23 recommend the technique proposed by Katsumata
in [Kat21] to achieve this.

Katsumata’s technique is based on existing efficient NIZKP to make them
provably quantum safe, using smaller overhead compared to other algorithms
[Kat21]. This technique was meant to be utilized in combination with the afore-
mentioned proof of shortness. As our implementation did not include the straight-
line extractability property, our implementation could not be said to be provably
quantum-safe using a quantum ROM.

4.3 Communication Between Participants
Transmission analysis was done by counting messages exchanged by the partic-
ipants during KGenT S and SignT S . The number and size of messages sent by
each participant during key generation depends on the number of participants in
the scheme n. During signing it instead depends on the threshold value t. The
messages sent between participants are made up of polynomials, as even derived
message types like ciphertexts and commitments are made up of one or more poly-
nomials. These polynomials were either in RQ, Rq or Rp, which sets limitations
on their size in bits as N · log2(Q), N · log2(q) and N · log2(p) respectively.

Results 33

During KGenT S , a total of eight message exchanges take place, where each
participant sends a message to each other participant, and does not continue with
execution of the scheme until messages from each other participant has been re-
ceived. During SignT S , four such message exchanges occur. These exchanges are
near-instant in our implementation as all participants are running on the same
computer, in a real world implementation they would be much slower, as messages
would need to traverse the internet.

4.3.1 Message Size
The total size of messages exchanged during KGenT S and SignT S was calculated.
Each message consists of a number of polynomials, usually of degree N and of a
prime modulus. We did not consider any overhead from our polynomial implemen-
tation, nor did we consider any potential compression. The size of a polynomial
was calculated as the product of its degree and the base 2 logarithm of its mod-
ulus. This was done for all polynomials except for commitment randomnesses as
well as d, which was the output of our hash function H, as these were known to
be bounded. The commitment randomness consisted of binary coefficients, and
could be represented using one bit for each coefficient. Similarly, the hash output
was ternary, requiring only two bits. We calculated the total number and size of
each type of a message, and then multiplied these with our selected parameters to
find the total size. We show the results for a (3, 5)-threshold for KGenT S in Table
4.1 and the results for SignT S in Table 4.2. It is important to note that many of
these types can be sent as parts of one larger message. Each type of message is
sent only once in Table 4.2.

Value type Number Size per Message Total Size
Hashes 4 N

4 · log2(4) 2 Kib
Polynomials (Rq) (4 + n) N · log2(q) 216 Kib
Polynomials (Rp) 1 N · log2(p) 16 Kib

Commitments (2 + 2n) 2N · log2(Q) 864 Kib
ρ 1 N 1 Kib

ZKP πsi 1 11N · log2(q) 264 Kib
ZKP πsk 1 7N(n + 1) · log2(Q) 1512 Kib

BGV ciphertext 1 26N · log2(Q) 936 Kib

Table 4.1: Number of transmissions of each type sent by a par-
ticipant to each other participant running KGenT S . The total
size is calculated for a (3, 5) scheme with parameters for 365
signatures presented in 3.3.

The output signature that is generated consists of one hash, a commitment
randomness, and two polynomials in Rq. Using the values from the tables above,
these require a total of 49.5 Kib. The public key of the scheme consists of two
polynomials in Rq. In the public key, a is technically a vector of length two. As the
second value is set to 1, it can be disregarded both for storage and transmission.

34 Results

Value type Size per Value Total Size
Polynomials (Rq) N · log2(q) 24 Kib
Decryption shares 11N · log2(Q) 396 Kib

ρ N 1 Kib
Commitments 2N · log2(q) 48 Kib

ZKP πri 11N · log2(q) 264 Kib
BGV Ciphertext 26N · log2(Q) 936 Kib

Table 4.2: Number of transmissions of each type sent by a partici-
pant to each other participant running SignT S .

Effectively, the public key then requires 48 Kib.

Differences From Estimations in GKS23

In the revised paper, the authors present theoretical sizes of signatures and public
keys for two scenarios [GKS24]. These scenarios are identical to the ones estab-
lished in Section 3.4, where a signature can be used once or 365 times. In Table
4.3 we show the values they calculated.

Single use signature 365 Signatures
Type Signature Public key Signature Public key
Size 8.5 KB 2.6 KiB 10.4 KiB 3.1 KiB

Table 4.3: Theoretical values of the size of a signature and a public
key for a single-use signature and 365 uses per signature. These
values are from [GKS24].

A direct comparison can be made with the values we obtained for the 365
signature scenario. Above, we calculated that the signature requires 49.5 Kib and
the public key 48 Kib. Converting our results to bytes instead gives 6.1875 KiB
and 6 KiB, respectively.

The reason our signature is significantly smaller is due to the size of commit-
ment randomness ρ differing between implementations. This difference is likely
due to the increased complexity that would come from a fully functional DOTT20
scheme for commitments. Our public key is twice the size of the one proposed in
[GKS24], this comes from differences in what we include as part of the public key.
In our calculation, we include the vector a, computed in KGenT S . They write that
this value is instead deliverable by a ROM. We include a as our scheme supports
both the revised version and the original in [GKS23], with a flag indicating which
to run. These results indicate that the original authors’ estimations are correct.

Results 35

4.4 Execution Time and Complexity
The code was benchmarked on an Intel Core i7-10700K CPU. The code was imple-
mented without any concurrency, leading to all participants executing each part
of the code sequentially without any parallelization. As such, any calculation of
execution time will represent the total execution time for all participants as well as
the initialization of common objects like handlers for commitment schemes. Since
in a real, distributed implementation each participant would need to initialize their
own version of each of these, simply dividing the time required by the number or
participants would not solve this concern. Instead, time analysis of specific parts
of the code was used to calculate the time usage in a more detailed fashion.

In addition to the execution time analysis, the computational complexity was
also analyzed by incrementing a counter for each instance of polynomial addition
and multiplication. This is useful as the number of computations are a static
property of the scheme itself, and as such is a more useful metric for comparison
compared to the execution time.

4.4.1 Full Code Execution
For a given tuple (t, n), the number of multiplications and additions were constant.
This was because all our polynomials, where a bound check was required, was
verified upon generation of said polynomial. This meant that no additions or
multiplications were done with any polynomial that was too large, as such no
value failed a bounds check and needed to be regenerated.

To determine the best model for measuring time and the appropriate number
of simulations, we ran 100 simulations for a (3, 5)-threshold and examined the
lowest time, the average time, the highest time, and the variance. The results can
be seen in Table 4.4.

Lowest time Average time Highest time Variance
KGenT S 18.857 19.272 20.016 0.0366
SignT S 2.485 2.586 2.710 0.00123

Table 4.4: A measure of the average, lowest time, highest time, and
estimated variance for key generation and signature generation.
All units are in seconds.

Due to the low variance, we can reduce the number of simulations and still
maintain an accurate average time. In future tables, we will instead use a lower
number of simulations, and report the mean of these as the time to generate a key
or a signature.

Our next analysis was done for key generation and signature generation for
different configurations of (t, n). This was done to see how the computational
complexity and execution time grew with the size of the distributed scheme. The
results can be seen in Tables 4.5 and 4.6.

In Figure 4.1 we show how the complexity grew for a static t = 3 with an
increasing n.

36 Results

Key Generation
t n Time (seconds) Multiplications Additions
2 4 17.5 3008 820
2 5 31 4895 1355
3 4 19.5 3008 820
3 5 44 4895 1355

Table 4.5: Measurements of execution time and number of multipli-
cations and additions for KGenT S for different values of (t, n).

Signature generation
t n Time (seconds) Multiplications Additions
2 4 3 647 182
2 5 3 647 182
3 4 5.3 1182 355
3 5 5.4 1182 355

Table 4.6: Measurements of execution time and number of multipli-
cations and additions for SignT S for different values of (t, n).

From the figure, it is easy to see that the total time, number of additions
and multiplications for KGenT S scaled with the number of total participants in
the system. We also added a line showing the quotient of the KGenT S value and
the number of participants. This showed that while the system grew to take
approximately five minutes for nine participants, the time could be reduced to less
than one minute if all participants had the same computing power and the system
was fully parallelizable. SignT S was static in these trials, which was expected,
due to having a static t = 3.

Next we examined how the system scaled for a static n = 7 and an increasing
t. The results can be seen in Figure 4.2.

In the figure we see that the number of operations for SignT S increases for
larger t. Additionally, it can be seen that KGenT S requires more operations than
SignT S , even when all participants are required, as in a n-out-of-n-threshold sys-
tem. It is interesting to note that, as illustrated in Figure 4.2c, the time per
participant for KGenT S reached its maximum when t = ⌈n/2⌉, for increasing val-
ues of t.

It may seem odd that despite the same number of operations in key generation,
increasing the threshold value stills increased the execution time quite significantly.
One must recognize that the operation count only accounts for operations between
polynomials. The added time is made up of the additional constraints of secret
sharing. At the end of key generation for ET , detailed in Section 3.3. Here, each
participant must evaluate that every possible subset of bj of size t reconstruct
into b. For each subset, this takes approximately 0.035 seconds with a (2, 5)-
threshold, and 0.07 seconds with a (3, 5)-threshold. Part of the reason that this is
less pronounced than the difference between (2, 4) and (3, 4) is that the number of

Results 37

(a) Multiplications (b) Additions

(c) Time

Figure 4.1: Measuring how our implementation scales for a static
t = 3 and an increasing n.

reconstructions required for each participant is directly correlated to the binomial
coefficient of n over t. For (2, 4) this coefficient is 6 and for (3, 4) it is 4, therefore,
the time to execute is only increased by a factor of approximately 1.33, rather
than 2.

Full code execution was tested using a (3, 5)-threshold with the parameters for
single use keys from Table 3.3, using a reduced number of tests. The difference in
signature generation time was not statistically significant, but the time taken to
generate keys differed by a full second. The cause of this was easy to ascertain.
Using the Q-value for 365 signatures, along with all other parameters for single-use
signatures, resulted in a key generation time that was identical to those where all
parameters were set accounting for 365 signatures. It is quite clear that the main
parameter limiting execution time is the value of Q. However, the other parameters
are what determines the security of the scheme, and the value of Q is limited by
them. It would have been interesting to run the scheme with parameters for
boundless signatures as presented in [GKS24], but these were too large to function
in our implementation.

Another trial was done for a (3, 5)-threshold using N = 211 and the other

38 Results

(a) Multiplications (b) Additions

(c) Time

Figure 4.2: Measuring how our implementation scales for a static
n = 7 and an increasing t.

parameters set to account for 365 signatures per key generation. This is not
a rational selection of parameters, considering security, and should be seen as
an investigation into how changing N would impact performance. Predictably,
doubling the order of polynomials in the scheme resulted in a doubling of execution
time for both KGenT S and SignT S , with N = 210.

4.4.2 Code Section Analysis
To ascertain what fraction of code execution time is taken up by each part of the
code, separate timers were used for different segments to find the largest time sinks.
This execution was run using parameters for a (3, 5)-threshold with parameters
for 365 signatures using the same key. Many aspects of the code executed in just a
few hundredths of a second, and were therefore not particularly interesting for the
analysis. Among these were the initialization of commitment and ZKP schemes.
These initializations are the only aspects of the scheme that are currently done
by the controller, in a more realistic approach they would need to be performed
by each participant. As these initializations take such a relatively small amount

Results 39

of time, much smaller even than the variance in execution time, they can safely
be ignored. An accurate estimation of the time to execute the code for only
one participant, excluding communication, can be done by simply dividing the
execution time of KGenT S by n and of SignT S by t.

During key generation the vast majority of time was taken up by the verifi-
cation of values at the end of BGV key generation. As shown in Figure 4.4, key
generation takes 19.27 seconds on average for (3, 5), and verification of values took
14 seconds. Of this time, roughly 60% was taken up by the reconstruction of the
secret shares of b. Verification of the commitment csi,j

took at most a single per-
centage of the total time, with the remaining approximate one third of the time
taken by the verification of the proof πsk. A few other parts of key generation also
took upwards of a second to execute. The section of code representing steps 3,
4, and 5 from DKGenET in 3.3, took roughly 1.3 seconds to execute, about half of
which was taken up by the generation of πsk. In total, the generation of the GKS23
specific keys took only about four seconds of the key generation. Roughly one sec-
ond of this was taken up by the encryption of si as ctxsi

, 0.8 seconds taken up by
verifying the proof πs and 1.8 seconds taken up by the summation of ciphertexts
ctxsi

, with smaller mathematical operations accounting for the remainder.
A short test was run to see if the relative differences in execution time remained

consistent when changing the number of participants. KGenT S for 365 signatures
for a (3, 9)-threshold took 300.5 seconds, of which 284 seconds were taken up by
the verification of values, or approximately 19

20 . This is a large difference from a
(3, 5)-threshold, for which the verification took roughly 3

4 of the time. The bulk
of this increase was taken up by the reconstruction of secret shares, which went
from taking less than 10 seconds to taking 252 seconds. This increase can be
explained by the fact that each of the n participants have to reconstruct as many
combinations as the binomial coefficient of t over n for each of the n bj . For a
(3, 5)-threshold, this totals 250 reconstructions between all participants, whereas
for a (3, 9)-threshold it totals 6804. This led to an increase over the (3, 5)-threshold
by a factor of 27.2.

During SignT S , there was no large secret sharing required, which substantially
cut down the runtime, with an average time less than 2.6 seconds. Roughly 0.6
seconds were taken up by the encryption of ri as ctxri

, 0.7 seconds were taken up
by the calculation of ctxz, and 0.6 seconds were taken up by by the combination
of decryption shares into z. The remainder was taken up by smaller operations,
the largest of which being about 0.25 seconds to verify the proof πr.

40 Results

Chapter 5
Discussion

We achieved the major goal of implementing GKS23, and found that for increasing
values of (t, n), the complexity scaled faster than linearly. When accounting for
possible parallelization between participants, the scaling was less pronounced. We
found that KGenT S was the most expensive algorithm, where most of the time
was spent computing secret shares. It could also be seen that the time per each
participant in KGenT S was maximized for t = n+1

2 , which could change how (t, n)
should be set for an optimal scheme.

As there were no readily available resources that was compatible with our
goals, we had to implement all of the underlying schemes ourselves. We hope that
our implementation aids future work in post-quantum cryptographic schemes by
enabling reuse and improvements, rather than having to create everything from
scratch.

5.1 GKS Revision
The vast majority of the revisions in [GKS24] have made no change to the scheme
itself other than changes to notation. The first revision included a change to
DKGenET and KGenT S . The revision involves using a preset value for a rather than
a sum of values from each participant. Our implementation included a toggle to
use the revised version or the original. The execution time was negligible, as it
was much smaller than the variance in execution time. This is unsurprising as the
total number of saved operations was 2n2 additions during key generation, or 2n
additions per participant. It is worth mentioning that the revised version requires
a trusted exchange of a common reference string, which contains values for a and
ats, and reduces the number of transmissions for each participant by 2(n − 1)
hashes, (n − 1) polynomials in Rq and (n − 1) polynomials in RQ. Most impor-
tant is that each of the saved transmissions are stand-alone messages, meaning
that each one needs to be transmitted and copies of the message from each other
participant received before the key generation can continue. In our implemen-
tation, with participants all existing in the same program, this time to transmit
non-existent, but in a truly distributed scheme, with participants communicating
over the internet, this could cause increases to the execution time measured in
tens of milliseconds. This latency is not massive compared to the execution time
of our implementation, but it would be static, meaning more processing power or

41

42 Discussion

optimized implementations would have no effect on the latency, which could make
the removal of the delay a significant upgrade to the scheme.

5.2 Further Improvements
We highlight natural avenues to further investigate the scheme below.

Missing functionality. The implementation is, as mentioned in Section 4.2 lack-
ing a trapdoor homomorphic commitment scheme as well as a proof of shortness
and a straight-line extractability property. Implementing these and performing
a similar analysis would be of interest for completeness. The addition of proofs
of shortness are likely to add significant complexity to ZKP systems, which are
already a significant part of execution, and as such are a must if one intends to
compare this scheme to another. As these add complexity to the scheme, com-
parisons could be made with our execution times and number of operations as a
whole.

Concurrency and latency for participants. All our participants as well as
the controller are run locally on the same machine, as mentioned in Section 4.3. A
more realistic approach would be to simulate latency when sending data and have
the participants able to compute values concurrently. An analysis of the execution
time and relevant comparisons with our implementation would be of interest.

Optimize Shamir Secret Sharing. The analysis of execution time by code
sections shows that the majority of key generation time is taken up by the quite
simplistic implementation of Shamir’s Secret Sharing method. Finding a more
optimized implementation or investigating parallelization of this aspect of the im-
plementation could save significant time. A reduction of the execution time of
Shamir Secret Sharing by 50% would cut the execution time of KGenT S by one
third.

Reduce message size. When calculating the size of different types of messages,
as presented in Tables 4.1, 4.1, we highlight how commitment randomness and the
output of our hash function were bounded and thus limited in size. However several
other polynomials which are sent had coefficients which are bounded bounded by
much values than their ring modulus, and in fact the scheme would not function
if their coefficients were as large as the current messages can support, as such,
optimized transmission of them could be made smaller than the theoretical size
would imply.

Fine-grained parameter selection. The parameter selection for BDLOP18,
BGV11, and GKS23 were selected by recommendations in the papers presenting
BDLOP18 and GKS23. The large prime modulus Q was tested by trial until one
was found that worked. More fine-tuned parameter selection is likely to lead to
better efficiency in the implementation.

Bibliography

[ACC+18] M. Albrecht et al., “Homomorphic Encryption Security Stan-
dard,” HomomorphicEncryption.org, Toronto, Canada, Tech.
Rep., 2018.

[ACF+15] M. R. Albrecht, C. Cid, J.-C. Faugere, R. Fitzpatrick, and L.
Perret, “On the Complexity of the BKW Algorithm on LWE,”
Designs, Codes and Cryptography, vol. 74, pp. 325–354, 2015.

[AD17] M. R. Albrecht and A. Deo, “Large Modulus Ring-LWE ≥
Module-LWE,” in International Conference on the Theory and
Application of Cryptology and Information Security, Springer,
2017, pp. 267–296.

[Ajt96] M. Ajtai, “Generating Hard Instances of Lattice Problems,” in
Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, 1996, pp. 99–108.

[Ajt98] M. Ajtai, “The Shortest Vector Problem in L2 is NP-hard
for Randomized Reductions (extended abstract),” in Proceed-
ings of the Thirtieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’98, Dallas, Texas, USA: Association
for Computing Machinery, 1998, pp. 10–19, isbn: 0897919629.
doi: 10.1145/276698.276705.

[AP23] A. Al Badawi and Y. Polyakov, “Demystifying Bootstrapping
in Fully Homomorphic Encryption,” Cryptology ePrint Archive,
2023.

[BDK+18] J. Bos et al., “CRYSTALS-Kyber: a CCA-Secure Module-Lattice-
Based KEM,” in 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), IEEE, 2018, pp. 353–367.

43

https://doi.org/10.1145/276698.276705

44 BIBLIOGRAPHY

[BDL+18] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C.
Peikert, “More Efficient Commitments From Structured Lat-
tice Assumptions,” in International Conference on Security
and Cryptography for Networks, Springer, 2018, pp. 368–385.

[BE95] P. B. Borwein and T. Erdélyi, Polynomials and Polynomial
Inequalities. (Graduate texts in mathematics: 161). Springer,
1995, isbn: 0387945091.

[BGJ+21] A. Budroni, Q. Guo, T. Johansson, E. Mårtensson, and P. S.
Wagner, “Improvements on Making BKW Practical for Solv-
ing LWE,” Cryptography, vol. 5, no. 4, 2021, issn: 2410-387X.
doi: 10.3390/cryptography5040031.

[BGV11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, Fully Homo-
morphic Encryption Without Bootstrapping, Cryptology ePrint
Archive, Paper 2011/277, 2011. [Online]. Available: https :
//eprint.iacr.org/2011/277.

[BKW03] A. Blum, A. Kalai, and H. Wasserman, “Noise-Tolerant Learn-
ing, the Parity Problem, and the Statistical Query Model,”
Journal of the ACM (JACM), vol. 50, no. 4, pp. 506–519, 2003.

[Bou22] C. Boutin, “NIST Announces First Four Quantum-Resistant
Cryptographic Algorithms,” National Institute of Standards
and Technology, 2022.

[Bro23] M. Brooks, IBM Wants to Build a 100,000-Qubit Quantum
Computer, https : / / www . technologyreview . com / 2023 /
05/25/1073606/ibm-wants-to-build-a-100000-qubit-
quantum-computer/ (accessed June 15, 2024), 2023.

[Des92] Y. Desmedt, “Threshold Cryptosystems,” in International Work-
shop on the Theory and Application of Cryptographic Tech-
niques, Springer, 1992, pp. 1–14.

[DKL+18] L. Ducas et al., “CRYSTALS-Dilithium: A Lattice-Based Dig-
ital Signature Scheme,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2018, no. 1, pp. 238–
268, 2018. doi: 10.13154/tches.v2018.i1.238-268.

[DOTT20] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi, Two-
Round n-out-of-n and Multi-Signatures and Trapdoor Com-
mitment from Lattices, Cryptology ePrint Archive, Paper 2020/1110,
2020. [Online]. Available: https://eprint.iacr.org/2020/
1110.

[FDDK24] L. D. Feo, V. Delecroix, J. Demeyer, and V. Klein, CyPari 2,
https://github.com/sagemath/cypari2, 2024.

https://doi.org/10.3390/cryptography5040031
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://www.technologyreview.com/2023/05/25/1073606/ibm-wants-to-build-a-100000-qubit-quantum-computer/
https://doi.org/10.13154/tches.v2018.i1.238-268
https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2020/1110
https://github.com/sagemath/cypari2

BIBLIOGRAPHY 45

[Fis01] M. Fischlin, “Trapdoor Commitment Schemes and Their Ap-
plications,” Ph.D. dissertation, Frankfurt (Main), Univ., Diss.,
2001, 2001. [Online]. Available: https://core.ac.uk/download/
pdf/14505426.pdf.

[FS87] A. Fiat and A. Shamir, “How To Prove Yourself: Practical
Solutions to Identification and Signature Problems,” in Ad-
vances in Cryptology — CRYPTO’ 86, A. M. Odlyzko, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–
194, isbn: 978-3-540-47721-1.

[GE21] C. Gidney and M. Ekerå, “How to Factor 2048 Bit RSA in-
tegers in 8 Hours Using 20 Million Noisy Qubits,” Quantum,
vol. 5, p. 433, Apr. 2021, issn: 2521-327X. doi: 10.22331/q-
2021-04-15-433.

[Gen09] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D.
dissertation, Stanford University, 2009. [Online]. Available: https:
//crypto.stanford.edu/craig.

[GKS23] K. D. Gur, J. Katz, and T. Silde, Two-Round Threshold Lattice
Signatures from Threshold Homomorphic Encryption, Cryp-
tology ePrint Archive, Paper 2023/1318, 2023. [Online]. Avail-
able: https : / / eprint . iacr . org / archive / 2023 / 1318 /
1693840365.pdf.

[GKS24] K. D. Gur, J. Katz, and T. Silde, Two-Round Threshold Lattice
Signatures from Threshold Homomorphic Encryption, Cryp-
tology ePrint Archive, Paper 2023/1318, 2024. [Online]. Avail-
able: https://eprint.iacr.org/2023/1318.

[GP24] M. Gustafsson and M. Petersson, Lattice-Based t-out-of-n Thresh-
old Signatures, https://github.com/Mattias-Petersson/
lattice-based-t-of-n-signature-python, 2024.

[Gro96] L. K. Grover, A Fast Quantum Mechanical Algorithm for Database
Search, 1996. arXiv: quant-ph/9605043 [quant-ph].

[Kat21] S. Katsumata, “A New Simple Technique to Bootstrap Various
Lattice Zero-Knowledge Proofs to QROM Secure NIZKs,” in
Annual International Cryptology Conference, Springer, 2021,
pp. 580–610.

[KF15] P. Kirchner and P.-A. Fouque, An Improved BKW Algorithm
for LWE with Applications to Cryptography and Lattices, Cryp-
tology ePrint Archive, Paper 2015/552, 2015. [Online]. Avail-
able: https://eprint.iacr.org/2015/552.

https://core.ac.uk/download/pdf/14505426.pdf
https://core.ac.uk/download/pdf/14505426.pdf
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://crypto.stanford.edu/craig
https://crypto.stanford.edu/craig
https://eprint.iacr.org/archive/2023/1318/1693840365.pdf
https://eprint.iacr.org/archive/2023/1318/1693840365.pdf
https://eprint.iacr.org/2023/1318
https://github.com/Mattias-Petersson/lattice-based-t-of-n-signature-python
https://github.com/Mattias-Petersson/lattice-based-t-of-n-signature-python
https://arxiv.org/abs/quant-ph/9605043
https://eprint.iacr.org/2015/552

46 BIBLIOGRAPHY

[KSK+21] A. H. Karamlou, W. A. Simon, A. Katabarwa, T. L. Scholten,
B. Peropadre, and Y. Cao, “Analyzing the Performance of
Variational Quantum Factoring on a Superconducting Quan-
tum Processor,” npj Quantum Information, vol. 7, no. 1, Oct.
2021, issn: 2056-6387. doi: 10.1038/s41534-021-00478-z.

[LDB23] A. Leevik, V. Davydov, and S. Bezzateev, “Threshold Lattice-
Based Signature Scheme for Authentication by Wearable De-
vices,” Cryptography, vol. 7, no. 3, 2023, issn: 2410-387X. doi:
10.3390/cryptography7030033.

[LDC+17] Z. Li et al., High-Fidelity Adiabatic Quantum Computation
Using the Intrinsic Hamiltonian of a Spin System: Applica-
tion to the Experimental Factorization of 291311, 2017. arXiv:
1706.08061 [quant-ph].

[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon, “Lattice-
Based Zero-Knowledge Proofs and Applications: Shorter, Sim-
pler, and More General,” in Annual International Cryptology
Conference, Springer, 2022, pp. 71–101.

[LPR12] V. Lyubashevsky, C. Peikert, and O. Regev, On Ideal Lat-
tices and Learning with Errors Over Rings, Cryptology ePrint
Archive, Paper 2012/230, 2012. [Online]. Available: https :
//eprint.iacr.org/2012/230.

[MP12] D. Micciancio and C. Peikert, “Trapdoors for Lattices: Sim-
pler, Tighter, Faster, Smaller,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques, Springer, 2012, pp. 700–718.

[Nat16] National Institute of Standards and Technology, “Announcing
Request for Nominations for Public-Key Post-Quantum Cryp-
tographic Algorithms,” Computer Security Resource Center,
Washington, D.C., Tech. Rep., 2016.

[Nat23] National Institute of Standards and Technology, Hash Func-
tions, Washington, D.C., 2023. [Online]. Available: https://
csrc.nist.gov/projects/hash-functions.

[One14] M. E. O’neill, “PCG: A Family of Simple Fast Space-Efficient
Statistically Good Algorithms for Random Number Genera-
tion,” ACM Transactions on Mathematical Software, 2014.

[PAR23] PARI, PARI/GP version 2.15.4, available from http : / /
pari.math.u-bordeaux.fr/, Univ. Bordeaux, 2023.

https://doi.org/10.1038/s41534-021-00478-z
https://doi.org/10.3390/cryptography7030033
https://arxiv.org/abs/1706.08061
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://csrc.nist.gov/projects/hash-functions
https://csrc.nist.gov/projects/hash-functions
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

BIBLIOGRAPHY 47

[QLGZ20] X. Qian, J. Liu, C. Gu, and Y. Zheng, “An Improved BKW Al-
gorithm For LWE With Binary Uniform Errors,” in 2020 5th
International Conference on Computer and Communication
Systems (ICCCS), 2020, pp. 87–92. doi: 10.1109/ICCCS49078.
2020.9118492.

[Reg09] O. Regev, “On Lattices, Learning With Errors, Random Lin-
ear Codes, and Cryptography,” Journal of the ACM (JACM),
vol. 56, no. 6, pp. 1–40, 2009.

[Reg10] O. Regev, “The Learning With Errors Problem,” Invited sur-
vey in CCC, vol. 7, no. 30, p. 11, 2010.

[Sha73] A. Shamir, “How to Share a Secret,” Advances in Cryptology
— CRYPTO’ 86, 1973.

[Sho94] P. Shor, “Algorithms for Quantum Computation: Discrete Log-
arithms and Factoring,” in Proceedings 35th Annual Sympo-
sium on Foundations of Computer Science, 1994, pp. 124–134.
doi: 10.1109/SFCS.1994.365700.

[Sma16] N. P. Smart, Cryptography Made Simple. Springer, 2016, isbn:
9783319219363.

https://doi.org/10.1109/ICCCS49078.2020.9118492
https://doi.org/10.1109/ICCCS49078.2020.9118492
https://doi.org/10.1109/SFCS.1994.365700

	Introduction
	Motivation
	Task
	Relevant Values to Study in Implementation

	Background
	Preliminaries
	Threshold Signatures
	Shamir Secret Sharing
	Commitment Schemes
	Homomorphic Encryption
	Classic Cryptography Hardness Problems
	Quantum Advancements
	Zero-Knowledge Proof
	Lattice-Based Cryptography
	Current State of Lattice-Based Threshold Signatures

	Methodology
	Initialization
	BDLOP18
	Distributed BGV11
	GKS23

	Results
	Implementation
	Missing Schemes
	Communication Between Participants
	Execution Time and Complexity

	Discussion
	GKS Revision
	Further Improvements

