
Compensation for latency
in XR offloaded tasks using
pose prediction
Bálint Péter and Yas Yazdanian

DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2024

MASTER THESIS

mailto: pbalint999@gmail.com
mailto: yazdaniyanyas@gmail.com

Compensation for Latency in XR
Offloaded Tasks using pose

prediction

Bálint Péter and Yas Yazdanian

mailto: pbalint999@gmail.com
mailto: yazdaniyanyas@gmail.com

Compensation for Latency in XR Offloaded Tasks using pose
prediction

Copyright © 2024 Bálint Péter and Yas Yazdanian

Published by
Department of Design Sciences
Faculty of Enginnering LTH, Lund University
Box 118
SE-221 00 LUND
Sweden

Subject: Degree Project in Virtual Reality and Augmented Reality (MAMM15)
Department of Design Sciences
Supervisor(s): Günter Alce, gunter.alce@design.lth.se and
Marcus Valtonen Örnhag, marcus.valtonen.ornhag@ericsson.com and
Leire Amenabar, leire.amenabar@ericsson.com and
Tobias Widmark, tobias.widmark@ericsson.com
Examiner: Joakim Eriksson, joakim.eriksson@design.lth.se

mailto: pbalint999@gmail.com
mailto: yazdaniyanyas@gmail.com
mailto: gunter.alce@design.lth.se
mailto: marcus.valtonen.ornhag@ericsson.com
mailto: leire.amenabar@ericsson.com
mailto: tobias.widmark@ericsson.com
mailto: joakim.eriksson@design.lth.se

Abstract

As Augmented Reality (AR) and Mixed Reality (MR) glasses continue to advance,
becoming more compact and user-friendly, certain computationally demanding tasks
are being offloaded to edge networks or the cloud. This shift, while enhancing the
capabilities of AR/MR glasses, will introduce a new challenge—latency.

Latency occurs when there is a need to transmit data to a remote processing unit,
perform tasks, and then send the processed information back to the device for ren-
dering. Poor network conditions prevent the timely rendering of content on AR/MR
glasses which negatively impacts the user experience and in worst case could lead to
Virtual Reality (VR) sickness.

In this thesis, we will focus on minimizing the perceived latency to enhance
the user experience in AR/MR applications. Our primary approach involves using
head movement tracking with available sensors to minimize latency and synchro-
nize content with user movements, leading to a seamless and enjoyable immersive
experience.

Keywords: compensation, latency, XR, offloading, pose prediction

Sammanfattning

I takt med att glasögon för Augmented Reality (AR) och Mixed Reality (MR) blir
tunnare och mer användarvänliga är det nödvändigt att utföra vissa beräkningsin-
tensiva uppgifter på externa processorer, däribland edge-nätverk eller molnet. Denna
förflyttning av beräkningsresurser, som förbättrar kapaciteten hos AR/MR-glasögon,
introducerar en ny utmaning—latens.

Latens uppstår när det finns ett behov av att överföra data till en extern proces-
sor, utföra beräkningar och sedan skicka tillbaka den bearbetade informationen till
enheten för rendering. Ibland kan dåliga nätverksförhållanden förhindra att innehåll
renderas i tid på AR/MR-glasögon, vilket resulterar i en negativ påverkan av använ-
darupplevelsen och i värsta fall bidrar till Virtual Reality (VR) sickness.

I denna uppsats fokuserar vi på att motverka latens för att förbättra användarup-
plevelsen i AR/MR-applikationer. Detta görs främst genom att använda sensorinfor-
mation från användarens huvudrörelser för att beräkna skillnaden i position mellan
platsen där bilden tagits och renderingsplatsen. Denna metod kan minimera latensen
och synkronisera innehållet med användarens rörelser, vilket leder till en bättre up-
plevelse.

Nyckelord: kompensation, latens, XR, avlastning, positionsprediktering

Acknowledgements

We would like to express our gratitude to our supervisors. From Ericsson, we extend
our heartfelt thanks to Marcus Valtonen Örnhag for his immense support at any time
of the day, as well as to Leire Amenabar and Tobias Widmark. From Lund University,
we are deeply grateful to Günter Alce for his invaluable feedback. Special thanks go
to Martin Ek for his selfless help.

Our gratitude also extends to friends and family who supported us during our
work: Amir Rashidinia and Rose Rouhani, as well as Gábor Vagyóczki, Aimée Niau
Lacordaire, and Pauline Zaragoza.

Lund, May 2024
Bálint Péter and Yas Yazdanian

mailto: pbalint999@gmail.com
mailto: yazdaniyanyas@gmail.com

Table of contents

List of acronyms and abbreviations 9

1. Introduction 11
1.1 Background 11
1.2 Goals 12

1.2.1 Research Questions 13
1.3 Contribution to United Nations Sustainable Development Goals 14
1.4 Related Work 14

2. Theoretical background 16
2.1 Augmented Reality 16

2.1.1 Optical See-Through 16
2.1.2 Video Pass-Through 16

2.2 Virtual Reality Sickness and Latency 17
2.3 Tracking Methods in XR HMDs 18
2.4 Linear Interpolation 19
2.5 The Pinhole Camera Model 19
2.6 The Homography Matrix 20

2.6.1 Homography from Point Correspondences 21
2.6.1.1 Direct Linear Transform (DLT) Algorithm 22

2.6.2 Homography from Camera Displacement 22
2.6.2.1 Computing the Normal Vector n and Distance d 23

2.7 Camera Calibration 23
2.8 Calibrating Between Reality and a Virtual Environment (in Unity) 25

3. Method 30
3.1 Phase One: Exploration and Preparation 30

3.1.1 Literature Study 30
3.1.2 Hardware Setup and Test Environment 31

3.1.2.1 Raspberry Pi Setup for Optical See-Through 32
3.1.3 Creating a Latency Simulator 33
3.1.4 Measuring Baseline Noise and Latency 33

3.2 Phase Two: Implementation 36

3.2.1 Developing the Server 36
3.2.2 Developing the Client 37
3.2.3 Creating a Predictor 37
3.2.4 Running the Prediction On-Device 39
3.2.5 Developing for the Varjo XR3 41

3.3 Phase Three: Evaluation 42

4. Results 46

5. Discussion 48
5.1 Discussion of Results 48
5.2 Evaluating Our Process 48
5.3 Limitations 49
5.4 Addressing Research Questions 50
5.5 Future Work 51

6. Conclusion 54

References 55

List of acronyms and abbreviations

AI artificial intelligence
AR augmented reality
FPS frames per second
HMD head-mounted display
IMU inertial measurement unit
LERP linear interpolation
MR mixed reality
SDG sustainable development goal
VOR vestibule ocular reflex
VR virtual reality
WebRTC web real-time communication
XR extended reality (umbrella term for augmented, mixed, and virtual reality)

9

1 Introduction

This chapter outlines the scope, objectives, and significance of the thesis. It de-
scribes our research goals and elaborates on the contribution of this study towards
the United Nations Sustainable Development Goals. Lastly, we finish the chapter by
presenting previous studies relevant to our thesis.

1.1 Background

In recent years, Augmented Reality (AR) and Mixed Reality (MR) have been in-
creasingly popular amongst the public, transforming how we interact with digital
content. These technologies offer immersive experiences that blend virtual elements
with the real world, through the use of Head-Mounted Display (HMD) devices [13].
HMDs are equipped with two display modules for displaying visual content directly
to the user’s eyes. Additionally, HMDs have a tracking system mounted on them
which is responsible for tracking the position and orientation of the user’s head
in a three-dimensional space. The information gathered from the tracking data is
then used to ensure that the virtual content aligns accurately with the user’s perspec-
tive [3].

As the demand for more user-friendly HMDs grows, there is a simultaneous push
towards making these devices lighter and more comfortable to wear [9]. This shift
towards lighter, more wearable devices, means that certain computationally intensive
tasks has to be offloaded to a remote processing unit. Lighter and more user-friendly
HMDs can be made while ensuring they remain powerful and efficient tools for
users.

The Web Real-Time Communication (WebRTC) protocol is specifically designed for
the efficient offloading of video streams and can be effectively used for this purpose.
In our case, the offloading process involves a Unity client, which acts as the inter-
face for the AR/MR application, transmitting video streams to a dedicated server.
Upon receiving the stream, the server processes the content and adds the necessary
metadata, such as timestamps and pose data, before sending it back to the client.
Figure 1.1.1 illustrates the WebRTC protocol’s role in facilitating this offloading
process.

11

Figure 1.1.1 Architecture of an Offloaded Augmented Reality Application.

This offloading process, while solving computational challenges, introduces latency
as a consequence. Latency, in this context, refers to the delay from the moment data
is sent from the HMD to the server until the processed content is returned and ren-
dered on the device [31]. This delay can significantly affect the user experience,
especially in real-time applications where immediate response to user actions is es-
sential. In AR applications latency can disrupt the seamless integration of virtual
and real worlds, potentially leading to disorientation or a less convincing immersive
experience [24]. Additionally, latency can cause VR sickness, a topic we discuss in
more detail in Section 2.2.

1.2 Goals

The main objective of our thesis is to devise a method for compensating the latency
introduced by offloading tasks in extended reality (XR) environments, particularly
when real-time responsiveness is crucial. We begin our exploration with a practical
example to illustrate our main objective:

Imagine a scenario where a user in an AR setup is observing a cat through their
HMD, as depicted in Figure 1.2.1. At the initial moment t0 the image is transmitted
to a remote server which processes the visual data by performming semantic seg-
mentation. The server identifies and spatially locates the cat within the scene as it
appeared at time t0. However, during the time it takes for this information to be pro-
cessed and sent back to the user, the user’s perspective shifts from P1 to P2, altering
the image coordinate system due to the change in the user’s viewpoint.

Our thesis addresses the challenge of updating the returned data to align it with the

12

user’s new perspective. We aim to apply a transformation, specifically a projective
transformation (also known as homography), to adjust the virtual content. This trans-
formation recalculates the positions of known objects to reflect changes in the user’s
orientation and position, effectively adapting the virtual content to correspond with
the user’s current view.

In practice, we focus on implementing a predictive homography-based approach, uti-
lizing the user’s head movements to estimate future states of the environment. This
process is detailed in Chapter 4, where we discuss the use of projective transfor-
mations to adapt previously known positions to their new projected locations in the
user’s field of view.

Ultimately, our goal is to utilize these transformations to ensure that despite any
movement in the real world, the virtual content remains consistently positioned and
oriented relative to the user’s new perspective. This approach aims to reduce the per-
ceived latency and improve the responsiveness of the XR system, enhancing the user
experience by maintaining a seamless integration of virtual and real-world elements.

Figure 1.2.1 Example of semantic segmentation used in augmented reality.

1.2.1 Research Questions

1. How can an algorithm reduce perceived latency in offloaded AR/MR applica-
tions by compensating for pose differences using sensor data?

• For what types of motions and applications is this algorithm effective?

2. How can calibration between the physical and virtual worlds be achieved for
accurate pose-based prediction?

13

1.3 Contribution to United Nations Sustainable
Development Goals

This research contributes to the United Nations Sustainable Development Goal
(SDG) 9 (Industry, Innovation, and Infrastructure) by advancing Augmented Re-
ality (AR) and Mixed Reality (MR) technologies. Through developing innovative
solutions for reducing latency, this thesis supports the enhancement of technological
infrastructure and fosters innovation. This aligns with SDG 9’s objectives to build
resilient infrastructure, promote inclusive and sustainable industrialization, and en-
courage innovation.

Offloading also enables the use of simpler chip architectures in consumer devices,
enhancing power efficiency. This aligns with SDG 12, responsible consumption and
production, by reducing the need for complex components. It also supports Goal 13,
climate action, due to the potential positive environmental impact from lower energy
consumption. Additionally, streamlined chip designs can lead to reduced e-waste and
more sustainable production practices.

(a) (b) (c)

Figure 1.3.1 UN development goals.

1.4 Related Work

Prior studies have explored head motion prediction as a strategy to address on-device
latency in initial extended reality (XR) systems, even preceding the development of
offloaded XR technologies. The mathematical frameworks employed for these pre-
dictions have historical applications beyond XR, including the forecasting of finan-
cial trends and weather patterns [17].

Ongoing research in this domain is increasingly incorporating AI to enhance pre-
diction accuracy. Currently, certain AI models have demonstrated improved perfor-

14

mance over purely mathematical methods, such as the Kálmán Filter and Double
Exponential Smoothing algorithm [31].

Cloud computing has been, and remains to be, an active research area integrating
applications from big data analytics to cloud gaming [7]. Recent advancements in
offloaded rendering include workload distribution between clients and servers, and
effective frame caching strategies, like Flashback by Microsoft [5]. Additionally,
innovations like Furion [35] optimize Wi-Fi power efficiency, while Microsoft’s Ka-
hawai [11] introduces a method for offloading only a part of GPU processes.

Specifically, offloading VR has also been explored in detail. The study of VR of-
floading includes various techniques, which aim to enhance rendering efficiency and
reduce network demands. Notably, several approaches focus on the user’s gaze to al-
locate more resources to the viewed area, e.g., complemented by foveated rendering,
which utilizes eye tracking to decrease graphical fidelity in peripheral vision with-
out effecting user experience. Moreover, some strategies involve encoding selected
low-impact frames at lower bit rates to ease network requirements [16].

A study on homography-based loss functions for camera pose regression demon-
strates how homography can be effectively utilized for accurate pose estimation in
augmented reality applications. This approach involves computing homographies
for a set of virtual parallel planes to approximate reprojection error while avoiding
some of its drawbacks. The homography-based method offers competitive accuracy
and high numerical stability, making it suitable for real-time AR applications. By
quantifying error as the difference between the identity matrix and the homogra-
phy induced by planes between the ground truth and estimated poses, this technique
contributes to reduced latency and improved user experience [4].

15

2 Theoretical background

This chapter provides comprehensive overview of the concepts required to fully grasp
this thesis.

2.1 Augmented Reality

Augmented Reality uses a see-through HMD to overlay virtual objects into the real
world. Unlike virtual reality where the whole environment displayed to the user is
virtual, AR combines the real and virtual world together. (This same description can
apply to MR. However, the distinctions between mixed reality and augmented real-
ity are often unclear and subject to differing opinions. Therefore, for the purposes of
this thesis, we will refer to this type of technology as AR.) This integration is accom-
plished via optical or video-see through HMDs [2]. Therefore, we have categorized
HMDs into two sections; optical see-through HMDs and video pass-through HMDs.

2.1.1 Optical See-Through

In optical see-through HMDs, partially transmissive optical combiners are placed in
front of the user’s eyes. These combiners allow the user to see the real world di-
rectly through them, which means the real environment remains visible even when
the HMD is turned off. Additionally, these combiners are also partially reflective,
enabling the projection of virtual images from the head-mounted monitor onto the
combiner, where they are then seen by the user. This setup creates a seamless in-
tegration of virtual objects into the user’s view of the real world [3]. Figure 2.1.1
illustrates the components and functionality of an optical see-through HMD.

2.1.2 Video Pass-Through

In video pass-through HMDs, the headset completely covers the eyes, unlike optical
see-through HMDs. This means that if the device is turned off, the user cannot see
the real world through the HMD. The view of the real world is provided by a com-
bination of a closed view HMD with one or two head mounted video cameras. The
video from these cameras will be combined with the created virtual content by the
scene generator and sent to the monitor for the user to see [3]. Figure 2.1.2 illustrates
the components and functionality of a video pass-through HMD.

16

Figure 2.1.1 Conceptual diagram of an optical see-through HMD [3].

Figure 2.1.2 Conceptual diagram of a video pass-through HMD [3].

2.2 Virtual Reality Sickness and Latency

Unlike AR, which overlays virtual objects onto the real world, VR creates immer-
sive, computer-generated environments using video pass-through HMDs.

Latency is a critical factor in VR environments as it can significantly contribute
to VR sickness, also known as cybersickness. VR sickness occurs when there is a
mismatch between the sensory inputs received by the eyes and the vestibular system
in the inner ear, which helps control balance and eye movements [8]. The Vestibulo-
Ocular Reflex (VOR) is a mechanism that stabilizes vision during head movements
by producing eye movements in the opposite direction of head movement, allowing
the gaze to remain fixed on an object. When latency in the system causes a delay in
updating the visual scene in response to head movements, the VOR cannot function
correctly, leading to sensory conflict and VR sickness symptoms such as nausea,

17

dizziness, and disorientation [15]. The latency of the VOR varies depending on the
type of head movement: for rotational movements, the latency is approximately 4-17
milliseconds, while for translational movements, it ranges from 20-62 milliseconds
[10]. Therefore, minimizing system latency is crucial to enhance the comfort and
usability of VR systems.

2.3 Tracking Methods in XR HMDs

Tracking in XR devices is crucial for ensuring accurate alignment between the virtual
and real worlds. Various methods are employed to achieve this, including the use
of Inertial Measurement Units (IMUs), inside-out tracking, outside-in tracking, and
image-based tracking.

IMUs, which consist of accelerometers and gyroscopes, are commonly integrated
into HMDs to track the movement and orientation of the user’s head. These sensors
provide high-frequency data that is essential for smooth and responsive tracking,
although they may suffer from drift over time without correction [25].

Inside-out tracking utilizes cameras and sensors mounted on the HMD itself to ob-
serve the surrounding environment. By recognizing and tracking features or markers
within the user’s vicinity, this method offers a self-contained solution that is conve-
nient and scalable. It negates the need for external tracking systems, making it ideal
for portable and standalone HMDs.

Outside-in tracking, on the other hand, relies on external cameras or sensors po-
sitioned around the user. These devices track the HMD and, sometimes, handheld
controllers, offering potentially higher accuracy and stability since the external ref-
erences are fixed in the environment. This method is often used in high-end VR
systems where precise tracking is paramount.

Image-based tracking leverages computer vision techniques to process images cap-
tured by the HMD’s cameras. This method can identify and track physical objects or
markers within the environment, such as Valve’s lighthouse trackers [27], contribut-
ing to more robust and detailed positional tracking. Image-based tracking is often
combined with other methods, such as IMUs, to enhance overall tracking perfor-
mance and reduce latency.

By integrating these various tracking methods, XR HMDs can deliver an immer-
sive and responsive user experience, crucial for applications ranging from gaming to
professional simulations.

18

2.4 Linear Interpolation

Linear Interpolation (LERP) is a method used to estimate unknown values that fall
within the range of two known values. In mathematical terms, if we have two points
(x0,y0) and (x1,y1), the linear interpolation formula is

y = y0 +(y1 − y0)
x− x0

x1 − x0
, (2.1)

where x is the point at which we want to estimate the value of y. The formula essen-
tially constructs a straight line between the two known points and uses this line to
find the estimated value.

LERP is frequently used to generate intermediate values, smooth transitions, or fill
in gaps in data. For example, when animating a moving object, linear interpola-
tion can be used to determine the object’s position at any given time between two
keyframes [22].

2.5 The Pinhole Camera Model

The pinhole camera model describes the mathematics of transforming a world point
into an image point. Coupled with a distortion model that characterizes the deviations
from the pinhole model, it is possible to accurately represent most cameras using this
method [18].

The pinhole camera model is a simple representation of how a camera captures an
image. It assumes that light rays pass through a single point (the pinhole) and form
an image on the opposite side. In this model, the relationship between a 3D point
X = [X ,Y,Z]T in the world coordinates and its corresponding 2D point x = [x,y]T

in the image coordinates is given byx
y
1

=K

[
R t
0 1

]
X
Y
Z
1

 , (2.2)

where K is the intrinsic camera matrix, R is the rotation matrix, and t is the trans-
lation vector.

The intrinsic camera matrix K is defined as

K =

 f 0 −u0
0 f −v0
0 0 1

 , (2.3)

where f is the focal length and (u0,v0) are the coordinates of the principal point.

19

Figure 2.5.1 Pinhole camera model [28].

2.6 The Homography Matrix

The homography matrix is a transformation that maps points from one image plane
to another. Homographies are also referred to as projective transformations. Fig-
ure 2.6.1 considers a planar surface in the physical world, denoted as π , with two
cameras positioned at C and C ′ capturing this plane. A point on this plane, repre-
sented as xπ , is projected onto the image planes of both cameras, resulting in the
image points x and x′, respectively. The homography matrix H encapsulates the
transformation from the view of camera C to that of camera C ′, mapping the point
x in the first image to the point x′ in the second image as expressed in the equation
x′ ∼Hx [14]. Here, the symbol ∼ denotes equality up to a scale factor.

The homography H is a 3×3 matrix, which, despite its size, possesses 8 degrees of
freedom (DoF) due to global scale ambiguity.

Given a point (x,y) in one image and its corresponding point (x′,y′) in another image,
the relationship between these points through the homography matrix H can be
expressed as

s

x′

y′

1

= H

x
y
1

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 , (2.4)

where s is a scaler factor, and H is the homography matrix with elements hi j.

20

Figure 2.6.1 Planar homography [14].

2.6.1 Homography from Point Correspondences

The process of computing the homography matrix H from point correspondences
involves utilizing the geometric relationship between pairs of points on a plane in one
image and their counterparts in another image. Given a set of point correspondences,
where pi and p′

i represent corresponding points in two different images, the homog-
raphy matrix H can be computed that best maps all points from the first image to
their locations in the second image.

To compute the homography, we consider each point correspondence pi and p′
i as

homogeneous coordinates. For a set of at least four point correspondences, the ho-
mography H satisfies the equation

p′
i ∼Hpi. (2.5)

Expanding the equation and applying the cross product, we obtain

p′
i × (Hpi) = 0, (2.6)

which ensures that p′
i and Hpi are collinear. This equation can be expanded into two

independent equations for each point correspondence, leading to a system of linear
equations that can be represented in matrix form as

Ah= 0, (2.7)

where

A=

[
0 0 0 −xi −yi −1 y′ixi y′iyi y′i
xi yi 1 0 0 0 −x′ixi −x′iyi −x′i

]
, (2.8)

is constructed from the point correspondences in the way shown in (2.8), h is the vec-
torized form of the homography matrix H , pi =

[
xi yi 1

]T and p′
i =

[
x′i y′i 1

]T .

21

2.6.1.1 Direct Linear Transform (DLT) Algorithm
The Direct Linear Transform (DLT) algorithm provides a method to solve for h by
constructing the matrix A from all point correspondences, as shown in (2.9), and
then solving the homogeneous system of equations,

A=

0 0 0 −x1 −y1 −1 y′1x1 y′1y1 y′1
x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 −x2 −y2 −1 y′2x2 y′2y2 y′2
x2 y2 1 0 0 0 −x′2x2 −x′2y2 −x′2
...

...
...

...
...

...
...

...
...

0 0 0 −xN −yN −1 y′NxN y′NyN y′N
xN yN 1 0 0 0 −x′NxN −x′NyN −x′N

. (2.9)

For N = 4 distinct point correspondences (non-degenerate configurations), there ex-
ists a solution to Ah = 0; however, in the presence of noise, one often consid-
ers N > 4 points. In general, no solution exists but instead one seeks to minimize
minh∥Ah∥F , where ∥·∥F is the Frobenius norm. The solution to this problem is given
by the eigenvector of ATA corresponding to the smallest eigenvalue, or equiva-
lently, the singular vector of A corresponding to the smallest singular value obtained
through Singular Value Decomposition (SVD) [14].

The vector h is reshaped into the 3x3 homography matrix H . As mentioned before
H is determined up to a scale factor; hence, it is common practice to normalize H
such that h33 = 1.

2.6.2 Homography from Camera Displacement

To understand the homography that maps points from the first camera frame to
the second, let’s consider the changes in poses between two camera positions,
P1 = [R1 t1] and P2 = [R2 t2]. The homography is computed using the rotation
and translation changes between these two camera frames. The equation for com-
puting the homography from camera displacement is given by

H2
1 =R2

1 +
t2

1n
T

d
, (2.10)

where H2
1 is the homography that maps the points in the first camera frame to the

points in the second camera frame [23]. Here, R2
1 represents the 3×3 rotation matrix

that defines the rotation from camera frame 1 to camera frame 2, t2
1 is the translation

vector representing the translation between the two camera frames,n is the normal
to the plane, d is the distance from the plane to the camera frame.

22

Consider the following poses: Pose P1 = [R1 t1] represents the rotation R1 and
translation t1 of the first camera, pose P2 = [R2 t2] represents the rotation R2 and
translation t2 of the second camera.

The relative rotation R2
1 and translation t2

1 from camera 1 to camera 2 can then be
calculated as

R2
1 =R2R

T
1 , (2.11)

and
t2

1 =R2(−RT
1 t1)+ t2, (2.12)

respectively.

2.6.2.1 Computing the Normal Vector n and Distance d
The normal vector n of the plane represents the orientation of the plane in 3D space.
It can be derived from the rotation matrices. If R1 and R2 are the rotation matrices
corresponding to the initial and displaced camera positions, then

n=
R1n0

∥R1n0∥
, (2.13)

where n0 is the initial normal vector of the plane. This is a vector that indicates the
orientation of the plane before any camera movements. The normal vector n is thus
transformed by the initial rotation matrix R1 and normalized.

The distance d from the camera to the plane is computed based on the position of
the plane relative to the camera. Given a point X0 on the plane, the distance d can
be calculated as

d =
n · (R1X0 + t1)

∥n∥
. (2.14)

This formula ensures that d represents the perpendicular distance from the camera
center to the plane along the normal vector n.

2.7 Camera Calibration

Camera calibration is a fundamental step in computer vision and photogrammetry. It
involves estimating the parameters of the camera that are necessary to capture images
in a way that allows for accurate measurement and analysis. This process typically
includes determining the intrinsic matrix K and correcting for lens distortions to
produce undistorted images.

To calculate K and the distortion parameters, one may use Zhang’s method [34],
which is homography-based. In this method, one captures multiple images of a

23

Figure 2.6.2 Homography from Camera Displacement [23].

known calibration object, such as a checkerboard pattern. The calibration process
involves the following steps:

1. Image Acquisition: Capture multiple images of the calibration object from
different angles and distances.

2. Feature Detection: Detect feature points (corners of the checkerboard squares)
in the images.

3. Correspondence Matching: Establish correspondences between the detected
feature points in the images and the known coordinates of the points on the
calibration object.

4. Optimization: Use optimization techniques to minimize the reprojection error,
which is the difference between the observed feature points in the images and
the projected points from the 3D model using the estimated intrinsic matrix.

Most camera lenses introduce some degree of distortion to the captured images. The
most common types of lens distortion are radial and tangential distortion. Radial
Distortion: This type of distortion causes straight lines to appear curved. It is char-
acterized by the radial distortion coefficients k1,k2, and k3.

Tangential Distortion: This type of distortion occurs when the lens and the image
plane are not perfectly parallel. It is characterized by the tangential distortion coeffi-
cients p1 and p2.

The distortion in imaging can be effectively modeled using the Brown–Conrady dis-
tortion model [6], as described by the following equations

24

xdistorted = x
(
1+ k1r2 + k2r4 + k3r6)+2p1xy+ p2

(
r2 +2x2) ,

ydistorted = y
(
1+ k1r2 + k2r4 + k3r6)+ p1

(
r2 +2y2)+2p2xy,

(2.15)

where r2 = x2 + y2.

Once the distortion coefficients have been estimated, we can correct the distorted im-
ages to produce undistorted images. The undistortion process involves the following
steps:

1. Compute the Undistortion Map: Using the distortion coefficients and the in-
trinsic matrix K, compute the mapping from distorted pixel coordinates to
undistorted pixel coordinates.

2. Apply the Undistortion Map: Use the undistortion map to remap the pixels in
the distorted image to their corrected positions in the undistorted image.

Camera calibration is a critical process in computer vision that enables accurate mea-
surement and analysis of images. By calculating the intrinsic matrix K and cor-
recting for lens distortions, we can produce undistorted images that are suitable for
further processing and analysis. This calibration is essential because it ensures the
validity of the pinhole camera model.

Figure 2.7.1 Original image (on the left) compared to undistorted image (on the right), after
correcting lens distortion [21].

2.8 Calibrating Between Reality and a Virtual
Environment (in Unity)

Consider a pose P j = [R j | t j] w.r.t. the Unity coordinate system for view j. Fur-
thermore, in the field-of-view there are N visible markers {pi}N

i=1 corresponding

25

to known 3D points {Xi}N
i=1. The 3D points are anchored to the Unity coordinate

system and manually aligned with the physical markers. The normalized coordi-
nates x̂

(j)
i (w.r.t. the Unity coordinate system) are therefore given by x̂

(j)
i = P jXi

for point i in view j. This is the space which the Unity application and the pose data
from the HMDs adhere to, hence is the space in which we must define our sought
projective transformation. In order to do so, we must calibrate our camera coordinate
space accordingly. To this end, we seek a calibration matrix K

K =

 f 0 −u0
0 f −v0
0 0 1

 , (2.16)

where f is a scale factor (or focal length) and (u0, v0) is the principal point, such that
p
(j)
i =Kx̂

(j)
i . Let x̂(j)

i = [x(j)
i , y(j)

i ,z(j)
i] ∈P2, then

p
(j)
i =Kx̂

(j)
i =

 f x(j)
i −u0z(j)

i

f y(j)
i − v0z(j)

i

z(j)
i

 . (2.17)

Let (û(j)
i , v̂(j)

i) denote the real-valued representation of p(j)
i , then

[
û(j)

i

v̂(j)
i

]
=

[
f x̄(j)

i −u0

f ȳ(j)
i − v0

]
, (2.18)

where (x̄(j)
i , ȳ(j)

i) := (x(j)
i /z(j)

i , y(j)
i /z(j)

i) is simply the real-valued representation of
x̂
(j)
i .

From (2.18) we seek f , u0, and v0, while the other values are known. In the remain-
ing parts of this section, we will devise a robust calibration scheme to obtain the
unknown parameters, using multiple views and multiple 3D points this calibration
scheme represents a novel contribution of our work, providing a new method for
accurate alignment between the virtual and physical environments.

Theorem 1 (Optimal calibration). Given 2D correspondences of M known 3D points
in N different views, the optimal choice of parameters f , u0, v0 of (2.16) in the least-
squares sense is given by

f =
MN

(
x̄T û+ ȳT v̂

)
− s(û)s(x̄)− s(v̂)s(ȳ)

MN (∥x̄∥2 +∥ȳ∥2)− s(x̄)2 − s(ȳ)2 , (2.19)

26

and

u0 =
MN

((
x̄T û+ ȳT v̂

)
s(x̄)−

(
∥x̄∥2 +∥ȳ∥2

)
s(û)

)
+ s(û)s(ȳ)2 − s(v̂)s(x̄)s(ȳ)

MN
(
MN (∥x̄∥2 +∥ȳ∥2)− s(x̄)2 − s(ȳ)2

) ,

(2.20)

v0 =
MN

((
x̄T û+ ȳT v̂

)
s(ȳ)−

(
∥x̄∥2 +∥ȳ∥2

)
s(v̂)

)
+ s(v̂)s(x̄)2 − s(û)s(x̄)s(ȳ)

MN
(
MN (∥x̄∥2 +∥ȳ∥2)− s(x̄)2 − s(ȳ)2

) ,

(2.21)

where s(·) denotes the sum of all elements, x̄ is the vector of x̄(j)
i , ȳ is the vector of ȳ(j)

i , û is
the vector of û(j)

i and v̂ is the vector of v̂(j)
i

Proof. We seek to solve multiple equations of the form (2.18) simultaneously. Due
to noise, the problem is in general overdetermined, hence we seek to minimize the
cost function Ψ

min
f ,u0,v0

Ψ(f ,u0,v0) := min
f ,u0,v0

M

∑
i=1

N

∑
j=1

(
f x̄(j)

i −u0 − û(j)
i

)2
+
(

f ȳ(j)
i − v0 − v̂(j)

i

)2
,

(2.22)
which can be written as Ψ(f ,u0,v0) = ∥Φ(f ,u0,v0)∥2

2 = Φ(f ,u0,v0)
TΦ(f ,u0,v0),

27

where

Φ(f ,u0,v0) =

f x̄(1)1 −u0 − û(1)1

f ȳ(1)1 − v0 − v̂(1)1
...

f x̄(1)M −u0 − û(1)M

f ȳ(1)M − v0 − v̂(1)M
...

f x̄(2)1 −u0 − û(2)1

f ȳ(2)1 − v0 − v̂(2)1
...

f x̄(2)M −u0 − û(2)M

f ȳ(2)M − v0 − v̂(2)M
...

f x̄(N)
1 −u0 − û(N)

1

f ȳ(N)
1 − v0 − v̂(N)

1
...

f x̄(N)
M −u0 − û(N)

M

f ȳ(N)
M − v0 − v̂(N)

M

= f

x̄(1)1

ȳ(1)1
...

x̄(1)M

ȳ(1)M
...

x̄(2)1

ȳ(2)1
...

x̄(2)M

ȳ(2)M
...

x̄(N)
1

ȳ(N)
1
...

x̄(N)
M

ȳ(N)
M

︸ ︷︷ ︸

:=m

−u0

1
0
...
1
0
...
1
0
...
1
0
...
1
0
...
1
0

︸︷︷︸
:=e1

−v0

0
1
...
0
1
...
0
1
...
0
1
...
0
1
...
0
1

︸︷︷︸
:=e2

−

û(1)1

v̂(1)1
...

û(1)M

v̂(1)M
...

û(2)1

v̂(2)1
...

û(2)M

v̂(2)M
...

û(N)
1

v̂(N)
1
...

û(N)
M

v̂(N)
M

︸ ︷︷ ︸

:=d

,

(2.23)
where we introduce the compact form Φ(f ,u0,v0) = fm−u0e1 − v0e2 −d. It fol-
lows that

Ψ = (fm−u0e1 − v0e2 −d)T (fm−u0e13− v0e2 −d)

= f 2mTm−2 f u0m
Te1 −2 f v0m

Te2 −2 fmTd

+u2
0e

T
1 e1 +2u0v0e

T
1 e2 +2u0e

T
1 d

+ v2
0e

T
2 e2 +2v0e2d+dTd .

(2.24)

We seek the stationary points; the partial derivatives are given by

∂Ψ

∂ f
= 2 fmTm−2u0m

Te1 −2v0m
Te2 −2mTd, (2.25)

∂Ψ

∂u0
=−2 fmTe1 +2u0e

T
1 e1 +2v0e

T
1 e2 +2eT

1 d, (2.26)

∂Ψ

∂v0
=−2 fmTe2 +2u0e

T
1 e2 +2v0e

T
2 e2 +2eT

2 d . (2.27)

28

Due to the structure of the vectors e1 and e2, we find that eT
1 e2 = 0 and eT

1 e1 =
eT

2 e2 = MN. Therefore, any stationary points fulfil the equation mTm −mTe1 −mTe2
−mTe1 MN 0
−mTe2 0 MN

︸ ︷︷ ︸

:=M

 f
u0
v0

−

mTd
−eT

1 d
−eT

2 d

︸ ︷︷ ︸

:=b

=

0
0
0

 . (2.28)

For non-degenerate configurations the matrix M is invertible, hence there exists a
unique stationary point. Since (2.22) is strictly convex, this is the global optimum.

We may now solve for the unknowns, which—after simplifications—yields f
u0
v0

=
1

detM

 MN(MNmTd−eT
1 dm

Te1 −eT
2 dm

Te2)
eT

1 d(m
Te2)

2 −eT
2 dm

Te1m
Te2 −MNeT

1 dm
Tm+MNmTdmTe1

eT
2 d(m

Te1)
2 −eT

1 dm
Te2m

Te1 −MNeT
2 dm

Tm+MNmTdmTe2

 ,

(2.29)
where

detM = MN
(
MNmTm− (mTe1)

2 − (mTe2)
2) . (2.30)

We may re-write these as (2.19)–(2.21).

29

3 Method

This chapter explains the process and methodology used in our research, presented
in a largely chronological order with thematic groupings. It provides an account of
the steps taken in the process.

3.1 Phase One: Exploration and Preparation

We started our research process by collecting data and preparing the measurement
setup.

3.1.1 Literature Study

In the introductory section of our thesis we started with a comprehensive literature
review. This phase provided us with a deeper understanding of key concepts such as
homographies and pose prediction, which are essential for our research. Our research
involved building on a a server-client setup where the server, based on WebRTC, pro-
cessed video feeds and pose data, and the client, built in Unity, visualized the data
in real-time. Our predictor used homography calculations to adjust the positions of
virtual elements based on head movements, reducing perceived latency. Some of
our findings are presented in related work section, including a notable study on
homography-based loss functions for camera pose regression. This study demon-
strates how homography can be effectively utilized for accurate pose estimation in
augmented reality applications [4].

Figure 3.1.1 CAD-model of the Nreal Air holder.

30

3.1.2 Hardware Setup and Test Environment

In this study, we utilized two different types of head-mounted displays (HMDs) to
examine and validate our prediction algorithm. The setup included:

• Nreal Air glasses [32]: These are optical see-through augmented reality (AR)
HMDs that feature a transparent display. This setup allows users to see the real
world while digital content is superimposed on their view.

• Varjo XR3 [29]: These are primarily virtual reality (VR) HMDs but also in-
clude video see-through capabilities, making them suitable for AR applica-
tions.

Figure 3.1.2 Varjo XR3 holder setup.

Additionally, we designed custom mounts for these devices:

• Mount for Nreal Air glasses: We developed a 3D printed holder for the Nreal
glasses to facilitate stable simulations of head movements. This mount was
placed on a tripod to ensure a consistent and reproducible setup. Behind the
glasses, a Raspberry Pi camera was positioned to capture the testing process,

31

providing detailed documentation and analysis of our algorithm’s performance
under various conditions. The 3D model can be found in Figure 3.1.1.

• Mount for Varjo XR3: To evaluate our prediction algorithm using the Varjo
headset, we used a styrofoam head model seen on Figure 3.1.2. This model,
borrowed from the VR lab at Lund University, helped us create a testing en-
vironment that is stable enough for our needs. The setup is complete with
two Valve Index Base Station lighthouse trackers [27], that the device uses for
spatial positioning alongside its IMU.

(a) Aruco code setup used. (b) Setup for latency measurement.

Figure 3.1.3 Set up for the experiment.

3.1.2.1 Raspberry Pi Setup for Optical See-Through
We equipped a Raspberry Pi 4 Model B with its camera module, positioned as shown
in Figure 3.1.1, peering through one of the lenses. We installed Raspberry Pi OS
on the microcontroller, and a Python script was utilized for recording videos and
displaying them through the Pi’s HDMI connection.

32

3.1.3 Creating a Latency Simulator

For an initial demonstration, regarding the goal of this project, we created a latency
simulator. As seen in Figure 3.1.4, we introduced the concept of a red cross repre-
senting a real-world point, and a blue cross representing a corresponding offloaded
point. The demo shows the blue cross following the red cross with a customizable
delay, viewable through the Nreal Air AR glasses. This serves to illustrate the initial
problem with offloading in AR, as well as for us as developers to have a starting
point for the project.

Figure 3.1.4 Latency simulator through the lens of Nreal Air.

3.1.4 Measuring Baseline Noise and Latency

To ensure the accuracy of the position and rotation data being sent from the HMDs
was crucial. To verify this, we conducted a test where we measured the noise af-
fecting these parameters when the headsets remained static. Although we initially
included the Nreal Air in our tests, it malfunctioned and was not used in the final
analysis. Therefore, we are only presenting the results for the Varjo headset here.

For this test the headset remained on its holder undisturbed for approximately a
minute. In Unity a custom script created a text file containing the pose data (namely:
translation and rotation). Later we visualized this data using a Python script.

33

The results can be seen in Figures 3.1.5 and 3.1.6. The standard deviation, as shown
in Table 3.1, is within acceptable boundaries (one Unity unit corresponds to one
meter in physical space [26]).

Figure 3.1.5 Baseline noise affecting head position for Varjo XR3.

Figure 3.1.6 Baseline noise affecting head rotation for Varjo XR3 (degrees).

34

Table 3.1 Standard Deviation of Positional and Rotational Components (Varjo XR Noise Level).

Component Standard Deviation

Position X (Unity units) 5.7 ·10−4

Position Y (Unity units) 2.7 ·10−4

Position Z (Unity units) 1.1 ·10−4

Rotation X-axis (degrees) 8.53 ·10−3

Rotation Y-axis (degrees) 8.67 ·10−3

Rotation Z-axis (degrees) 9.01 ·10−3

35

3.2 Phase Two: Implementation

After completing the preparations, we began developing the necessary functionali-
ties for our research.

3.2.1 Developing the Server

The server we used for interfacing with the headset is based on WebRTC. This
server program is written in Python, using Python’s aiortc library, which implements
webRTC functionality [1].

WebRTC (Web Real-Time Communication) is an open-source project that enables
web browsers and mobile applications to communicate in real-time via simple APIs
without requiring an intermediary or additional plugins [30]. It is widely used from
applications such as video calls to computer games.

The server receives a video feed from the XR headset and can optionally handle
metadata, a feature we utilized in our setup. It returns metadata that can be used on
the headset to visualize necessary information for specific applications, such as the
locations of bounding box corners for a semantic segmentation algorithm.

A critical component of our setup is the integration of Aruco marker detection. Aruco
markers are black and white markers (seen in Figure 3.1.3a (b)) that can be easily
detected and tracked in real-time by a camera, making them highly useful for AR
applications where precise positioning and orientation are needed [33].

Figure 3.2.1 Server-Client Communication [12].

In our implementation, the camera continuously captures the video feeds and sends
them to the server for detection. Once the Aruco codes are detected, the server pro-
cesses this data to determine the positions and orientations of the markers in pixel
coordinates. After processing, the server compiles this spatial data into metadata
which is then sent back to the client. This metadata includes the coordinates of the

36

midpoint of each Aruco marker and their respective unique identifiers. The detection
of the Aruco markers is performed in real-time, ensuring continuous and accurate
tracking, which is then relayed back to the client.

To simulate real-world network conditions, we utilize a network condition simulator
called "clumsy". Clumsy is a software tool that allows us to introduce various types
of network issues like latency, packet loss, or bandwidth restrictions [19]. By incor-
porating clumsy into our test setup, we can artificially introduce specific amounts
of latency, thereby mimicking less-than-ideal network conditions that users might
experience in actual application scenarios.

3.2.2 Developing the Client

For the client side we also built on a custom application, meant to interface with
the Python server. This application is developed using Unity and comes in various
versions tailored to different headsets. For instance, the Nreal Air 2 uses an Android
build, while the Varjo XR3 operates on a Windows application version, or directly
from Unity.

The application transmits a video feed, with optional metadata, and receives meta-
data from a Python server, which it then visualizes in XR. Due to a malfunction with
the Nreal Air AR glasses during our research, we exclusively used the Varjo version
for evaluation. Although initially we ran the prediction algorithm on the server side
due to its support for OpenCV, we eventually shifted the prediction to the client side,
as this is the logical placement for effectively combating latency. This transition is
further detailed in Section 3.2.4.

3.2.3 Creating a Predictor

To predict the rendering location of certain pixels, we employed a homography-
based estimation method. This approach was selected because our scene projection
involves mapping three-dimensional points onto a two-dimensional plane. By using
homographies, we can effectively relate transformations between two planes corre-
sponding to different camera views or poses. This process utilizes the user’s head
movement, among other factors, to calculate a homography. This calculation is then
used to adjust the points received from the server (which are affected by latency) to
positions that more closely align with the real-world objects referenced by the AR
application. In this thesis, we refer to this process as prediction because it provides
approximate information about data we do not yet have access to. However, it is im-
portant to note that this prediction does not forecast future events, but rather infers
current unknowns.

One way to grasp this concept is to consider that, in the field of computer vision,

37

this method is typically applied in reverse [14]. Traditionally, by analyzing the posi-
tions of pixels across two images, we can determine the position of the camera that
captured these images. In our case, we employ this method in reverse, i.e, (3.1).

p′
i ∼ Hpi ⇔ pi ∼H−1pi . (3.1)

For the homography calculation, as seen in (2.10), we also need an n and d, which
describe the normal of the plane (on which the points lie) and the distance from the
plane to the camera frame, respectively. These can be calculated in Unity, where this
plane is an invisible game object. For the purposes of this thesis we kept this plane in
a location that is aligned with Unity’s coordinate system, where n=

[
0 0 −1

]T .
The d variable is the camera’s distance to this plane.

Python’s robust OpenCV support, which we had no access to in Unity, led us to
initially develop the prediction algorithm on the server. We streamed a video to the
server, where we first recognized the five Aruco codes and then captured their central
coordinates for our calculations. Along with the video stream, we transmitted pose
data from Unity, including the camera position and rotation of the Nreal Air glasses’
center (streaming) camera within Unity’s coordinate system.

Given that Unity and OpenCV utilize different coordinate systems, where OpenCV’s
y-axis is flipped, a correction is necessary (shown in Figure 3.2.2). After making this
adjustment, we calculated the homography. Using this homography, we transformed
the points. We initially grabbed the Aruco coordinates and applied the homogra-
phy to transform them. By comparing these transformed coordinates to the original
Aruco coordinates, we could confirm the effectiveness of the prediction, as the points
tended to align well.

Figure 3.2.2 Unity’s coordinate system (on the left) and OpenCV’s coordinate system (on the
right) [20].

Our steps for this initial version summarized:

38

1. Stream video to the server, recognize Aruco codes to capture their central
coordinates.

2. Send pose data from Unity, containing the Nreal Air glasses’ camera position
and rotation, in Unity’s coordinate system.

3. Correct for the differences in the coordinate systems used by Unity and
OpenCV.

4. Calculate the homography based on the corrected data.

5. Use the homography to transform the initial Aruco center coordinates.

6. Compare the transformed coordinates with the original Aruco coordinates to
validate the accuracy of the prediction.

3.2.4 Running the Prediction On-Device

After initially developing our predictor on the server, the next step involved im-
plementing the same process in Unity and using it on-device. For this transition,
we replicated the steps of the server implementation. However, in Unity, we had to
manually write several functions that were readily available in the Python implemen-
tation.

Firstly we successfully developed the same functionality on the client side, namely:
being able to compare the predicted points to the ground truth Aruco codes. We shall
refer to this version as version 1. This version works for describing static points in
the real world. However, for objects that move over time this approach would not be
feasible. We evaluate the versions further in Section 3.3.

For version 2, we are updating the position of the predicted points whenever we are
receiving new metadata from the server. Visually this means that the blue cross is
"jumping" to overlap with the red cross whenever the new Aruco code positions are
received, and when no metadata arrives it is behaving similarly to version one. This
in theory would allow this version to describe non-static points in space, however
in practice this is just an intermittent step between version 1 and 3 that is not quite
useful in its application. The reason for this is that the approach does not account
for the possibility that by the time the metadata is received by the client, the user
may have changed their orientation. As a result, the new metadata could correspond
to an inaccurate position, which the predicted points should not be moved to. Also,
aligning the predicted points with this metadata can cause the blue cross to "jump",
which causes a subpar user experience.

We aimed to complete our implementation with version 3, developing the function-
alities missing from version 2. First, we aimed to fix the problem with the received

39

metadata (red cross coordinates) being affected by latency. In order to find where
these points should be rendered in reality, we have to know the pose when the frame
was taken and the pose when it arrives. With this we can use our prediction algorithm
to find the correct position based on how much the user’s head has moved between
these two points in time.

For this purpose, the user’s historical head pose data was required, and, to this end,
we implemented a dictionary to store the necessary information. This is when we
ran into difficulties with Unity’s WebRTC implementation. For a perfect solution we
needed to attach metadata to the frames, which would have stored the user’s pose.
This way the poses would be synchronized with their respective images. However,
we found no way to achieve this with the current state of the WebRTC library as of
the writing of this paper. Instead, we had to resort to trying to measure this latency
using the latency of a separate metadata channel, however since these are sent asyn-
chronously, these values are most likely not the same. We can then use this metadata
latency to estimate the latency of the video stream.

In order to measure the latency of the metadata channel, we created a dictionary
storing the IDs of messages with the timestamp of when they are being sent. Then
when we receive metadata we use its embedded ID to look up the time it was sent,
and calculate latency using the current time. We are able to apply a multiplier to this
latency to get a rough estimate of the one affecting the video stream. Then we have
an estimate of when the image, the one we are receiving metadata about, was taken.

Having a rough timestamp of when the image was taken, we can use this to find the
closest timestamp stored in our time-pose dictionary. Thus we get an approximation
of the original pose, and we use use our prediction algorithm on this data. The result
is an approximation of where the real-world points are now, looking through the
HMD, assuming that the aforementioned points haven’t moved since the image was
sent. Due to this and the inaccuracies previously described, the result of this approach
still causes slight "jumps" where the predicted points suddenly shift. This can detract
from the user experience and become visually distracting when the frequency of
incoming data is low. To combat this we applied LERP between the current position
of the predicted point and its "new" position (the metadata received at that moment).
Where the final result should lie between these two points can be fine-tuned with a
variable in the application.

Finally, we developed a (to our knowledge) novel approach for calibrating between
virtual reality and virtual space, presented in Section 2.8. With this calibration our
prediction algorithm’s accuracy improved further.

40

In summary:

• Version 1: Only feed the prediction algorithm the point coordinates from the
first frame. After that run prediction based on this and head movement, and
compare these to the ground truth. (The blue cross is based solely on head
movement after the first frame)

• Version 2: Whenever data is received, move the predicted points to that posi-
tion. In the frames where data is not received is when the prediction algorithm
is running to "fill the gaps". (The blue cross "jumps" to the red cross when new
metadata arrives from the server. When the red cross is not updated the blue
cross updates based on the prediction algorithm).

• Version 3: When data is received from the server, move the predicted points
not directly to the received coordinates, but to the position those coordinates
were at the time the frame was recorded (with imperfect accuracy because of
technicalities). Also applying LERP to increase viewing comfort, and virtual-
to-real-world calibration for increased accuracy. (The blue cross moves in a
similar way as with version 2, however here the blue cross doesn’t "jump" to
the exact position of the red cross, instead it moves toward the direction of the
real-world point that the red cross represents.)

3.2.5 Developing for the Varjo XR3

In order to get an accurate measurement wireless connections were not ideal, as
the latency can fluctuate considerably (how much exactly we could not measure
because of the malfunction detailed below). To combat this, we started implement-
ing our project on the wired Varjo XR3 headset, with the plan of injecting latency
artificially to this wired connections. For this, we simply ported the Nreal project
and re-implemented the Nreal-specific parts for the Varjo headset. This process was
mostly straightforward, except for accessing the camera feed, which is not natively
supported for the Varjo headset and required a custom script. During the later stages
of our process, the Nreal glasses stopped being recognized by the device despite
confirming the hardware was functional. Consequently, we were unable to use them,
and had to proceed exclusively with the Varjo XR3 for evaluating our algorithm.,
thus the Varjo XR3 is the only device we were able to continue with and evaluate
our algorithm on.

Earlier in the thesis process we modeled and 3D-printed a holder for the Nreal Air
glasses, seen in Figure 3.2.3. Because of the glasses’ malfunction this was never used
for testing. Later we assembled a simple testing environment for the Varjo HMD,
seen in Figure 3.2.4.

41

Figure 3.2.3 Nreal holder.

3.3 Phase Three: Evaluation

Throughout the development process, we repeatedly evaluated our algorithm, mak-
ing this a phase we revisited multiple times. For version one it was crucial to see
that the homography calculated from the poses Hpose is correct, which we examined
by comparing it to the homography calculated from image points. After we deemed
these reasonably close, we visually inspected the points looking for the behaviour we
expect, which we found: the points were consistently aligning with the ground truth
markers. The match was not perfect, which could be due to noise, imperfections in
our approach, or other unknown sources.

We evaluated version two in a similar manner after completing our transition to Unity
on the client side. Once we saw that the predicted points on the server and the client
aligned we knew that the transition was successful.

In-depth evaluation only occurred with the finished algorithm, version 3. These are
the results discussed in Chapter 4. To evaluate the accuracy of our algorithm, we
analyzed 20-30 pictures taken over a span of 2-3 seconds, simulating a short period

42

Figure 3.2.4 Hardware setup.

of head movement. We conducted this process by aiming for "pure" translation and
"pure" rotation movements. Although achieving these ideal movements perfectly is
not feasible with our setup, these attempts provide an approximation suitable for our
needs.

The Varjo headset was placed on a holder 0.75 meters away from a paper with the
Aruco code cross. For the testing itself we either rotated the "head" horizontally, or
translated the entirety of the holder along the x (horizontal) axis, all while recording
frames and poses. Some example images are visible in Figure 3.3.1 and Figure 3.3.2:
these figures show the results of our prediction algorithm for varying distances, with
(b) representing a short distance and (f) representing a long distance. The corre-
sponding camera trajectories can also be seen next to their respective result images.
The frame numbers are indicated, assuming a frame rate of 60 frames per second
(fps), with the final image showing around 100-200 ms latency.

43

Frame 6

(a) (b)

Frame 9

(c) (d)

Frame 12

(e) (f)

Figure 3.3.1 Three examples of the algorithm result with camera trajectories—translation.

44

Frame 6

(a) (b)

Frame 9

(c) (d)

Frame 12

(e) (f)

Figure 3.3.2 Three examples of the algorithm result with camera trajectories—rotation.

45

4 Results

This chapter presents the findings of our research.

Based on the setup and process presented in Section 3.3, Figure 4.0.1 and Fig-
ure 4.0.2 show the distance in real-world and virtual point coordinates with and
without our prediction algorithm. This is based on the same data as in Figure 3.3.1
and Figure 3.3.2, where we sample one frame per 0.1 seconds. We can see that
our approach significantly decreases the distance between the real-world and virtual
points.

One way to think about these results is: if the frequency of incoming metadata is very
low or the user makes quick head movements, the prediction can resemble what
is shown in Figure 3.3.1(image f), which demonstrates a significant improvement
compared to not using compensation. Conversely, if the frequency is high or the
movements are slow, the compensated points remain close to the uncompensated
ones, meaning the prediction will not enhance the experience as dramatically.

Figure 4.0.1 Mean reprojection error with no compensation (red graph) compared to with com-
pensation (blue graph): Translation.

46

Figure 4.0.2 Mean reprojection error with no compensation (red graph) compared to with com-
pensation (blue graph): Rotation.

47

5 Discussion

In this chapter, we discussed an in-depth analysis and interpretation of our research
findings, alongside addressing limitations and outlining future directions.

5.1 Discussion of Results

Our research demonstrated the feasibility and effectiveness of using homography-
based prediction through pose information to mitigate latency in augmented reality
(AR) applications. The predicted points aligned well with the ground truth markers,
validating the accuracy of our algorithm.

The key findings are:

• Accuracy of Predictions: The predicted points showed a significant improve-
ment over the "red-cross" positions with no prediction applied, particularly
during periods of fast head movement or low metadata frequency.

• Implementation Challenges: The transition of the prediction algorithm from
the server to the client-side (Unity) was successful, but highlighted challenges
with synchronizing metadata and video frames, particularly due to limitations
in Unity’s WebRTC implementation.

Figures 3.3.1 and 3.3.2 illustrate the results of various scenarios of predicting points
during head movements, and Figures 4.0.1 and 4.0.2 show numeric qualities of our
approach.

5.2 Evaluating Our Process

The development and evaluation process revealed several insights:

• Initial Server Implementation: Implementing the algorithm on the server
first allowed rapid development and testing using Python’s robust OpenCV
support. This step was crucial for validating the homography calculation be-
fore transitioning to the client-side.

48

• Transition to Unity: Porting the algorithm to Unity presented challenges, par-
ticularly with accessing the camera feed on the Varjo XR3 and aligning the
coordinate system differences between Unity and OpenCV.

• Testing and Evaluation: The structured approach to testing, including base-
line noise and latency measurements, ensured that our results were reliable.
Using a controlled environment and consistent setups was essential for accu-
rate measurements.

• Lack of User Testing: We did not conduct user testing, as our focus was
primarily on the theoretical aspects and developing a robust algorithm. We
will discuss this further in Section 5.3.

While our methodology was effective, there were areas where different approaches
could have been beneficial. For instance, better synchronization of metadata and
video frames in Unity could have been achieved with alternative communication
protocols.

5.3 Limitations

Our study encountered several limitations that impacted its comprehensiveness. Our
major setback occurred during the testing with hardware phase due to the malfunc-
tion of the Nreal glasses. Despite our initial plan to utilize both the Nreal glasses and
the Varjo XR series for comparative analysis, the unexpected failure of the Nreal
glasses disrupted our ability to conduct comprehensive testing. Consequently, we
were unable to evaluate our prediction algorithm’s performance on the Nreal plat-
form. We chose these two platforms specifically to explore the differences between
video see-through and pass-through technologies, aiming to provide a comprehen-
sive analysis of latency compensation methods across different XR platforms. Ad-
ditionally, Varjo’s superior processing power significantly reduces rendering time.
Consequently, future pose prediction could have had a more substantial impact on
Nreal glasses, as their rendering time is considerably longer.

Another limitation of our study is the lack of user testing. While we do not believe
this affects the overall quality of the information presented, a user study would be
informative, particularly as we are discussing perceived latency. The user test could
provide information about latency’s effect on user experience when it is uncompen-
sated, compared to when our compensation is applied, for example. Some user test
ideas are presented in Section 5.5.

49

5.4 Addressing Research Questions

Our research aimed to address the following questions:

1. How can an algorithm reduce latency in offloaded AR/MR applications by
compensating for pose differences using sensor data?

We developed a homography-based prediction algorithm that uses sensor data from
head-mounted displays to compensate for pose differences and reduce latency. The
algorithm predicts the position of real-world points in the virtual environment, re-
ducing the perceived latency in offloaded AR/MR applications.

• For what types of motions and applications is this algorithm effective?
The algorithm is effective for a variety of head movements, including trans-
lations and rotations. The effectiveness of our approach was demonstrated
through tests involving both pure translation and pure rotation.

2. How can calibration between the physical and virtual worlds be achieved
for accurate pose-based prediction? To integrate physical and virtual spaces for
accurate pose-based prediction, we needed to ensure that our pose data, which was
in Unity space, aligned with our physical setup. Here’s how we approached this
calibration:

• Marker Detection We began by detecting Aruco markers in the captured
images using a predefined dictionary and detection parameters. The detected
marker corners provided the basis for subsequent calculations.

• 3D Points in Unity In the Unity environment, we placed virtual 3D cubes
at the same locations as the physical Aruco markers. These cubes provided
known 3D points anchored to the Unity coordinate system.

• Pose Data From Unity For each captured image, we retrieved the correspond-
ing pose data from Unity, which included the position and rotation in the form
of quaternions. This pose data was used to project the 3D anchored points into
the image plane.

• Midpoint Calculation and Image Adjustment We calculated the midpoints
of the detected Aruco markers. Due to differences in coordinate systems be-
tween Unity and the image plane, we flipped the image horizontally and ver-
tically to align the midpoints correctly.

• Camera Calibration K To ensure accurate alignment, we estimated the in-
trinsic camera calibration matrix, denoted as K. This matrix was optimized

50

to transform coordinates from the physical space to Unity space accurately.
The matrix K was calculated by solving a system of linear equations derived
from the correspondences and pose data, ensuring minimal error. The details
of this derivation and optimization process are discussed thoroughly in the
theory section.

It is also important to note that our approach can provide even more accurate results
for applications where tracking real-world objects is not required, instead entirely
virtual objects are being visualized. As long as we can keep our assumption of the
object’s movement aligning to a single plane, these use cases would be more accurate
because we can eliminate the inaccuracies stemming from the noise of aligning the
virtual and real worlds.

By following these steps, we achieved a robust calibration that accurately aligned the
physical and virtual worlds, allowing for precise pose-based prediction in the Unity
environment. To the best of our knowledge, this approach is novel and has not been
done before.

With this calibration matrix K, we can now easily perform homography-based pose
estimation. The matrix K is essential for reliable pose prediction because it ac-
curately captures the intrinsic parameters of the camera, such as focal length and
principal point. This allows us to transform coordinates between physical and vir-
tual spaces with high precision, ensuring that the projected 3D points and detected
marker positions align perfectly. As a result, our pose predictions become highly
accurate and reliable, enhancing the overall effectiveness of our virtual-physical in-
tegration.

(a) Semantic Segmentation (b) Hand detection (c) Face mesh

Figure 5.4.1 Augmented reality applications.

5.5 Future Work

In the future, we will apply our prediction algorithm to existing AR applications,
including semantic segmentation, face mesh, and hand tracking (as seen in Fig-
ure 5.4.1). By integrating our prediction algorithm into these applications, we will

51

aim to reduce the latency due to offloading these tasks which would lead to enhanc-
ing the user experience. Conducting user studies will be the most important aspect of
this future work. We are interested in understanding how users perceive the impact
of our algorithm on latency reduction. Specifically, we will investigate whether users
find that our algorithm effectively reduces latency or if they perceive it as overshoot-
ing, potentially causing disorientation or other negative effects.

Furthermore, we are interested in exploring the sensitivity of different applications
to latency. Through user testing and feedback, we will identify which applications
are more sensitive to latency and to what extent. For example, we expect that appli-
cations such as face mesh would be more sensitive to compared to semantic segmen-
tation, as we are more sensitive to slight changes around a person’s face than to those
of of a bounding box. Understanding the threshold at which latency becomes notice-
able or intolerable for each application will be valuable in optimizing our predictive
algorithm and informing future AR application development.

Based on our findings detailed in Chapter 4, some preliminary conclusions can be
drawn about how our approach could benefit the augmented reality applications dis-
cussed in this chapter. Assuming a frame rate of 30 frames per second and noting
that our sample data for rotation and translation spans approximately 15 frames, we
estimate a latency of around 500 ms. This can be considered a scenario with poor
network conditions, which would significantly diminish the user experience. As-
suming significant head movement in this time frame, we can expect similar offsets
compared to our findings. We use the translation data as a reference and apply these
offsets to the overlays. The results can be seen in Figures 5.5.1 to 5.5.3. The user
experience of these applications equipped with the algorithm detailed in this paper
will be further examined in a user study.

52

(a) Without prediction (b) With prediction

Figure 5.5.1 Compensation for estimated latency in semantic segmentation.

(a) Without prediction (b) With prediction

Figure 5.5.2 Compensation for estimated latency in hand detection.

(a) Without prediction (b) With prediction

Figure 5.5.3 Compensation for estimated latency in face mesh.

53

6 Conclusion

Summarizing our process and findings.

In this thesis, we explored the development and implementation of a homography-
based prediction algorithm to reduce latency in offloaded augmented reality (AR)
applications. Here are the main takeaways from our research:

• Effective Latency Reduction: Our homography-based prediction algorithm
effectively reduces the perceived latency in AR applications by compensat-
ing for pose differences. The algorithm showed significant improvements in
aligning virtual and real-world objects.

• Robustness Across Movements: The algorithm is effective for various types
of head movements, including translations and rotations. This versatility
makes it suitable for a wide range of applications, such as navigation, remote
assistance, and interactive gaming.

• Successful Calibration: We successfully achieved calibration between the
physical and virtual worlds using Aruco marker detection and homography
calculation. This calibration ensures accurate pose-based predictions, enhanc-
ing the precision and reliability of AR experiences.

In conclusion, our research provides a comprehensive framework for reducing la-
tency in offloaded AR applications through homography-based pose prediction. Fu-
ture work can build on these findings to further enhance the algorithm’s accuracy
and extend its applicability to more dynamic environments and diverse use cases.

54

References

[1] aiortc developers. Examples - aiortc. Accessed: 2024-05-17. URL: https : / / aiortc .
readthedocs.io/en/latest/examples.html.

[2] R. T. Azuma. “A survey of augmented reality”. Presence: teleoperators & virtual
environments 6:4 (1997), pp. 355–385.

[3] R. T. Azuma. Predictive tracking for augmented reality. The University of North
Carolina at Chapel Hill, 1995.

[4] C. Boittiaux, R. Marxer, C. Dune, A. Arnaubec, and V. Hugel. “Homography-based
loss function for camera pose regression”. IEEE Robotics and Automation Letters 7:3
(2022), pp. 6242–6249.

[5] K. Boos, D. Chu, and E. Cuervo. “Flashback: immersive virtual reality on mobile
devices via rendering memoization”. GetMobile: Mobile Computing and Communi-
cations 20 (Apr. 2017), pp. 23–27. DOI: 10.1145/3081016.3081026.

[6] D. Brown. “Decentering distortion of lenses”. Photogrammetric engineering 32:3
(1996), pp. 444–462.

[7] K. Cao, Y. Liu, G. Meng, and Q. Sun. “An overview on edge computing research”.
IEEE Access 8 (2020), pp. 85714–85728. DOI: 10.1109/ACCESS.2020.2991734.

[8] E. Chang, H. T. Kim, and B. Yoo. “Virtual reality sickness: a review of causes
and measurements”. International Journal of Human–Computer Interaction 36:17
(2020), pp. 1658–1682.

[9] D. Cheng, Q. Wang, Y. Liu, H. Chen, D. Ni, X. Wang, C. Yao, Q. Hou, W. Hou,
G. Luo, et al. “Design and manufacture ar head-mounted displays: a review and out-
look”. Light: Advanced Manufacturing 2:3 (2021), pp. 350–369.

[10] H. Collewijn and J. B. Smeets. “Early components of the human vestibulo-ocular
response to head rotation: latency and gain”. Journal of Neurophysiology 84:1 (2000),
pp. 376–389.

[11] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, M. Musuvathi, and S.
Saroiu. “Kahawai: high-quality mobile gaming using gpu offload”. In: MobiSys’15.
ACM – Association for Computing Machinery, May 2015. URL: https : / / www .
microsoft.com/en-us/research/publication/kahawai-high-quality-mobile-gaming-
using-gpu-offload/.

[12] D. Darab. RESTful API. Accessed: 2024-05-17. 2020. URL: https : / / darvishdarab.
github.io/cs421_f20/docs/readings/restful/api/.

55

https://aiortc.readthedocs.io/en/latest/examples.html
https://aiortc.readthedocs.io/en/latest/examples.html
https://doi.org/10.1145/3081016.3081026
https://doi.org/10.1109/ACCESS.2020.2991734
https://www.microsoft.com/en-us/research/publication/kahawai-high-quality-mobile-gaming-using-gpu-offload/
https://www.microsoft.com/en-us/research/publication/kahawai-high-quality-mobile-gaming-using-gpu-offload/
https://www.microsoft.com/en-us/research/publication/kahawai-high-quality-mobile-gaming-using-gpu-offload/
https://darvishdarab.github.io/cs421_f20/docs/readings/restful/api/
https://darvishdarab.github.io/cs421_f20/docs/readings/restful/api/

[13] J. Fu, A. Rota, S. Li, J. Zhao, Q. Liu, E. Iovene, G. Ferrigno, and E. De Momi.
“Recent advancements in augmented reality for robotic applications: a survey”. In:
Actuators. Vol. 12. 8. MDPI. 2023, p. 323.

[14] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

[15] I. Howard. “Human visual orientation(book)”. Chichester, Sussex, England and New
York, John Wiley and Sons, 1982. 704 p (1982).

[16] L. Hsiao, B. Krajancich, P. Levis, G. Wetzstein, and K. Winstein. “Towards retina-
quality vr video streaming: 15ms could save you 80% of your bandwidth”. ACM
SIGCOMM Computer Communication Review 52:1 (2022), pp. 10–19.

[17] G. K. Illahi, A. Vaishnav, T. Kämäräinen, M. Siekkinen, and M. Di Francesco.
“Learning to predict head pose in remotely-rendered virtual reality”. In: Proceedings
of the 14th Conference on ACM Multimedia Systems. 2023, pp. 27–38.

[18] Imatest. Projective Camera Model. Accessed: 2024-05-17. 2023. URL: https://www.
imatest .com/support/docs/pre- 5- 2/geometric- calibration- deprecated/projective-
camera/.

[19] Jagt. clumsy, an utility for simulating broken network for Windows Vista and above.
Accessed: 2024-05-12. 2023. URL: https://jagt.github.io/clumsy/.

[20] C. Krautz. What Are The Coordinates. Accessed: 2024-05-17. 2023. URL: https: / /
medium.com/@christophkrautz/what-are-the-coordinates-225f1ec0dd78.

[21] T. Kummarikuntla. Camera Calibration with OpenCV. Published in Analytics Vid-
hya. Retrieved from https://medium.com/analytics-vidhya/camera-calibration-with-
opencv-f324679c6eb7. 2019. URL: https://medium.com/analytics-vidhya/camera-
calibration-with-opencv-f324679c6eb7.

[22] K. LibreTexts. Applications of Linear Interpolation and Extrapolation. Accessed:
2024-05-20. 2023. URL: https://k12.libretexts.org/Bookshelves/Mathematics/Book%
3A_Mathematics_(Grade_11)/4%3A_Linear_Equations_and_Inequalities/4.7%3A_
Applications_of_Linear_Interpolation_and_Extrapolation.

[23] E. Malis and M. Vargas Villanueva. “Deeper understanding of the homography de-
composition for vision-based control” (2007).

[24] M. Nabiyouni, S. Scerbo, D. A. Bowman, and T. Höllerer. “Relative effects of real-
world and virtual-world latency on an augmented reality training task: an ar simula-
tion experiment”. Frontiers in ICT 3 (2017), p. 34.

[25] “Tracking methods in xr hmds”. arXiv (2024). Accessed: 2024-05-30. URL: https :
//arxiv.org/abs/2201.13278.

[26] Unity Technologies. Best Practice: Making Believable Visuals. Accessed: May 14,
2024. 2020. URL: https : / / docs . unity3d . com / 2020 . 1 / Documentation / Manual /
BestPracticeMakingBelievableVisuals1.html.

[27] Valve Index Base Station. Accessed: 2023-05-22. Steam, 2023. URL: https:/ /store.
steampowered.com/app/1059570/Valve_Index_Base_Station/.

[28] N. Van Oosterwyck. Real Time Human Robot Interactions and Speed Control of a
Robotic Arm for Collaborative Operations. PhD thesis. May 2018. DOI: 10.13140/
RG.2.2.28723.53286.

[29] Varjo XR-3. https://varjo.com/products/varjo-xr-3/. Accessed: [date].

56

https://www.imatest.com/support/docs/pre-5-2/geometric-calibration-deprecated/projective-camera/
https://www.imatest.com/support/docs/pre-5-2/geometric-calibration-deprecated/projective-camera/
https://www.imatest.com/support/docs/pre-5-2/geometric-calibration-deprecated/projective-camera/
https://jagt.github.io/clumsy/
https://medium.com/@christophkrautz/what-are-the-coordinates-225f1ec0dd78
https://medium.com/@christophkrautz/what-are-the-coordinates-225f1ec0dd78
https://medium.com/analytics-vidhya/camera-calibration-with-opencv-f324679c6eb7
https://medium.com/analytics-vidhya/camera-calibration-with-opencv-f324679c6eb7
https://k12.libretexts.org/Bookshelves/Mathematics/Book%3A_Mathematics_(Grade_11)/4%3A_Linear_Equations_and_Inequalities/4.7%3A_Applications_of_Linear_Interpolation_and_Extrapolation
https://k12.libretexts.org/Bookshelves/Mathematics/Book%3A_Mathematics_(Grade_11)/4%3A_Linear_Equations_and_Inequalities/4.7%3A_Applications_of_Linear_Interpolation_and_Extrapolation
https://k12.libretexts.org/Bookshelves/Mathematics/Book%3A_Mathematics_(Grade_11)/4%3A_Linear_Equations_and_Inequalities/4.7%3A_Applications_of_Linear_Interpolation_and_Extrapolation
https://arxiv.org/abs/2201.13278
https://arxiv.org/abs/2201.13278
https://docs.unity3d.com/2020.1/Documentation/Manual/BestPracticeMakingBelievableVisuals1.html
https://docs.unity3d.com/2020.1/Documentation/Manual/BestPracticeMakingBelievableVisuals1.html
https://store.steampowered.com/app/1059570/Valve_Index_Base_Station/
https://store.steampowered.com/app/1059570/Valve_Index_Base_Station/
https://doi.org/10.13140/RG.2.2.28723.53286
https://doi.org/10.13140/RG.2.2.28723.53286
https://varjo.com/products/varjo-xr-3/

[30] WebRTC. Web Real-Time Communication. Accessed: 2024-05-12. 2024. URL: https:
//webrtc.org/.

[31] T. Weikert et al. “Head motion prediction in xr” (2021).
[32] XReal. https://www.xreal.com/. Accessed: [date].
[33] Zach. Aruco Markers. Accessed: 2024-05-12. 2021. URL: https://fab.cba.mit.edu/

classes/865.21/people/zach/arucomarkers.html.
[34] J. Zhang, H. Yu, H. Deng, Z. Chai, M. Ma, and X. Zhong. “A robust and rapid camera

calibration method by one captured image”. IEEE Transactions on Instrumentation
and Measurement 68:10 (2018), pp. 4112–4121.

[35] Y. Zhang, J. Wang, Y. He, X. Ji, Y. Kang, D. Liu, and B. Li. “Furion: towards energy-
efficient wifi offloading under link dynamics”. In: 2016 13th Annual IEEE Inter-
national Conference on Sensing, Communication, and Networking (SECON). 2016,
pp. 1–9. DOI: 10.1109/SAHCN.2016.7732994.

57

https://webrtc.org/
https://webrtc.org/
https://www.xreal.com/
https://fab.cba.mit.edu/classes/865.21/people/zach/arucomarkers.html
https://fab.cba.mit.edu/classes/865.21/people/zach/arucomarkers.html
https://doi.org/10.1109/SAHCN.2016.7732994

	Title Page
	Table of contents
	List of acronyms and abbreviations
	Introduction
	Background
	Goals
	Research Questions

	Contribution to United Nations Sustainable Development Goals
	Related Work

	Theoretical background
	Augmented Reality
	Optical See-Through
	Video Pass-Through

	Virtual Reality Sickness and Latency
	Tracking Methods in XR HMDs
	Linear Interpolation
	The Pinhole Camera Model
	The Homography Matrix
	Homography from Point Correspondences
	Direct Linear Transform (DLT) Algorithm

	Homography from Camera Displacement
	Computing the Normal Vector n and Distance d

	Camera Calibration
	Calibrating Between Reality and a Virtual Environment (in Unity)

	Method
	Phase One: Exploration and Preparation
	Literature Study
	Hardware Setup and Test Environment
	Raspberry Pi Setup for Optical See-Through

	Creating a Latency Simulator
	Measuring Baseline Noise and Latency

	Phase Two: Implementation
	Developing the Server
	Developing the Client
	Creating a Predictor
	Running the Prediction On-Device
	Developing for the Varjo XR3

	Phase Three: Evaluation

	Results
	Discussion
	Discussion of Results
	Evaluating Our Process
	Limitations
	Addressing Research Questions
	Future Work

	Conclusion
	References

