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Summary 

Several trends are affecting urban water systems, both external, such as climate change 
and population growth, and internal, such as urbanisation and ageing infrastructure (Hering et 
al., 2013; Romano & Akhmouch, 2019; Wamsler, 2014), forcing their conversion towards 
greater sustainability (Daniell et al., 2015). To mitigate the risks associated with these pressures 
and adapt to a changing climate, municipalities are striving to make better decisions about their 
hydrological networks, despite the complexity of this process and the challenges pertaining to 
this dynamic reality (Alves et al., 2016; Larsen et al., 2016; Romano & Akhmouch, 2019). 
Simultaneously, Artificial Intelligence (AI) and Machine Learning (ML) are evolving quickly, 
allowing fast and efficient data processing and pattern identification to be applied to complex 
tasks in stormwater management (Eggimann et al., 2017; Makropoulos & Savić, 2019). 

This changing technological context with promising opportunities has motivated this 
research to explore the potential of AI in urban stormwater management decision-making. In 
this regard, this thesis builds on an inductive strategy to identify and appraise the potential 
opportunities and challenges that an AI-based tool can provide to decision-making in urban 
stormwater management. The research is based on the case study of the InflowGo tool, an AI-
based stormwater model, and 16 semi-structured interviews conducted with urban water 
management professionals. 

The findings confirm the emerging nature of AI in the field and the growing interest 
around it. Moreover, they describe the conventional, i.e. without AI, decision-making process 
in urban stormwater management as broad, complex, and iterative. It was also identified as 
relying on knowledge and expertise all along its different phases, including goal setting, 
comparison of alternatives, and implementation of solutions (Gregory et al., 2012). 
Furthermore, this decision-making process is characterised by: its political aspect, as framed by 
laws, regulations, and recommendations of the authorities (Saraswat et al., 2016); its 
collaborative aspect, as interdisciplinary communication, deliberation, and participation are 
essential traits for sustainable outcomes (Hadjimichael et al., 2016; Kvamsås, 2021; Stern and 
Fineberg, 1996); and its technical aspect, as relying on expertise, data, parameters, tools, and 
models (Larsen et al., 2016; Leskens et al., 2014a; Lombardi & Ferretti, 2015). 

Several challenges and shortcomings were identified in the conventional decision-
making process. The first group of challenges is technical, including the complexity of the 
modelling tools and expertise needed that can make the process isolated and non-inclusive 
(Haris et al., 2016). Additionally, the large amount of data that needs to be processed further 
complicates the matter. In this regard, AI shows potential with its ability to analyse large 
amounts of data in a shorter time than conventional tools, and promises superior capabilities 
compared to those of humans (Habbal et al., 2024; Yigitcanlar et al., 2020). Moreover, the case 
study demonstrated the prospect of an educational added value, which is worth investigating 
more. 

The second group of challenges identified was organisational, characterised by the high 
number of diverse stakeholders that needs to be involved (Bohman et al., 2020; Cettner et al., 
2013; Skrydstrup et al., 2020), and contextual considerations linked with available resources. 
In this matter, AI appears as beneficial with accelerating hydraulic simulations which can in 
turn improve interdisciplinary collaboration and participation. This way, the number of 
necessary meetings to make a decision is reduced, which can result in reduced costs and 
resources spent. 
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Furthermore, miscellaneous shortcomings in conventional decision-making were 
identified, as the process was described as too slow as well as lacking flexibility, collaboration, 
communication, and ownership, which creates silos (Bohman et al., 2020; Grum et al., 2023; 
Leskens et al., 2014a; Palmitessa et al., 2022; Skrydstrup et al., 2020). As previously stated, 
these issues could be addressed thanks to AI’s reduced computational time and its use for 
educational purposes, by involving stakeholders from different disciplines earlier and quicker 
in the process. AI can also improve the flexibility of the process by enabling real-time 
simulations and the comparison of alternatives in the first stages of decision-making during 
meetings, while being complementary with conventional tools. 

Consequently, the utilisation of AI/ML shows potential for decision-making in the field 
of urban stormwater management, and thereby seems relevant for disaster risk management and 
climate change adaptation. The case study of InflowGo also revealed two contributing success 
factors for AI-tools. The first factor involves their user-friendliness for better accessibility 
(Hadjimichael et al., 2016) and potential learning outcomes. The second factor is their web-
based nature, which can increase participation thanks to cross-platform use that does not require 
prior installation, thus reducing costs and computational power needed. 

However, AI-based tools cannot address all challenges identified, such as the 
complexity and uncertainty inherent to the field, the world, and climate change, and bring new 
shortcomings with their application. These involve several different concerns about ethics and 
responsibility of decision-makers (Bianco, 2021; Booyse & Scheepers, 2024), reluctance to 
change and to use new tools (Daniel & Pettit, 2021; Oschinsky et al., 2021; Warrick, 2023), 
lack of transparency and understanding of AI (Arun et al., 2020, as cited in Bianco, 2021; 
Booyse & Scheepers, 2024; Wagner & De Vries, 2019), legal considerations (European 
Commission, 2020; Musch et al., 2023), and cybersecurity. 

To conclude, further research is encouraged to investigate the replication of these 
findings in another case study, i.e. within a different context and with a fully developed AI tool. 
In addition, it is deemed worth exploring the added value of such AI-based tools in their use for 
educational purposes, delving deeper into their potential training and learning outcomes. 
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1. Introduction 

Cities are increasingly affected by climate change, population growth, and rapid 
urbanisation. This impact is not limited to low- and middle-income countries, but extends to 
most industrialised ones (Romano & Akhmouch, 2019; Wamsler, 2014). This increase in 
complexity as well as in frequency and intensity of unfavourable weather events negatively 
impacts the exposure and vulnerability of city residents to natural hazards. In this context, urban 
water systems face enormous pressure to perform multiple functions, such as protecting public 
health, reducing flood risk, supporting urban agriculture, and ensuring sufficient quantity and 
quality of water for domestic and recreational use (Larsen et al., 2016; Mittal et al., 2022). In 
addition, these pressures are further constrained by a decreasing permeability of cities, an ever-
increasing demand for water in parallel with issues in quantity and quality of its supply, as well 
as by the limitation of investment and the ageing of infrastructures (Makropoulos et al., 2018; 
Skrydstrup et al., 2020). 

In high-income countries, infrastructures are indeed becoming increasingly vulnerable 
and obsolete, considering that the future challenges they face differ from the ones of the 
industrialisation era, when they were created (Hering et al., 2013). In that respect, Van Breugel 
(2017) noted that most infrastructures were built between the 1950s and 1980s, meaning that 
their lifetime of 50 to 80 years is coming to an end. Moreover, Romano and Akhmouch (2019, 
p. 2) stressed that: “For a total of 92% of surveyed cities [in the Organisation for Economic Co-
operation and Development] obsolete or lacking infrastructure represents the most important 
challenge for the future of water management”. Hence, the current situation of the water 
infrastructure of these cities does not allow them to sustainably supply and sanitise water as 
required by international frameworks and treaties. 

Urban water management is an integral component of global sustainability challenges. 
Due to the above-mentioned global shifts and increasing vulnerabilities, there is an urgent need 
to convert existing urban water systems towards more sustainable ones (Daniell et al., 2015). 
This narrative is reflected in global agreements and frameworks, such as the Sendai Framework, 
the New Urban Agenda, and the Sustainable Development Goal 6 for clean water and sanitation. 
These initiatives not only draw attention to the issue, but also highlight the need for innovative 
approaches to create inclusive, safe, and sustainable cities (Romano & Akhmouch, 2019). 

To cope with these pressures and prevent risks, city authorities make decisions to 
replace and adapt urban water supply systems (Larsen et al., 2016; Romano & Akhmouch, 
2019). However, these decisions are very costly and can also reinforce socio-economic 
vulnerability and physical exposure to hazards. Thus, this increases adverse consequences, 
which highlights the importance of adequate decision-making (Wamsler, 2014). Moreover, the 
quality of decisions is limited by several factors, such as the use of poor information or poor 
rationale, lack of clarity about values and trade-offs, and difficulty in securing the commitment 
of key stakeholders (Spetzler et al., 2016, as cited in Mittal et al., 2022). In this regard, Alves 
et al. (2016) stated that the complex physical ramification of the urban water drainage also 
complicates the decision-making process, and in turn, technological innovation. Additionally, 
the latter is further hampered by the decision-makers' risk aversion in respect to the great 
amount of money invested in the expected performance of water infrastructure (Hering et al., 
2013). Indeed, Romano and Akhmouch (2019, p. 4) argued that the “water sector is typically 
capital-intensive, requiring huge investment for infrastructure development and maintenance”. 
On another note, decision-making in the urban water management field is further constrained 
by the timescale mismatch between the slow-onset pressures and the politics of policy-making. 
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Whereas current trends of climate change, population growth, and urbanisation affecting cities 
are creeping with a slow onset and long-lasting consequences, the politics of urban areas are 
short-sighted due to pressing short-term issues and quick turnover of elected politicians (Pot, 
2020). 

Current technological development is associated with large amounts of available data 
and more powerful computational capabilities (Eggimann et al., 2017; Pina et al., 2016), where 
modern cities are now “recognized as complex social-ecological-technological systems in 
which sustainability and climate resilience require environmental function to be paired with 
innovative technology” (Li & Nassauer, 2021, p. 1). In this context, Artificial Intelligence (AI) 
technology is rapidly developing and increasingly applied to disaster risk reduction (Kuglitsch 
et al., 2022; Linardos et al., 2022), for instance with the concept of “smart cities” (Yigitcanlar 
et al., 2020). This new technology can efficiently process large datasets, identify patterns, and 
provide optimal solutions through reinforcement learning, or Machine Learning (ML). It 
therefore appears as an opportunity to support decision-making in water management “in 
performing complex operational, tactical or strategic tasks” (Makropoulos & Savić, 2019, p. 3) 
and achieving greater reliability and precision (Eggimann et al., 2017). Indeed, according to 
Makropoulos and Savić (2019), utilising AI can help decision-makers visualise and assess 
different scenarios for long-term urban development and for existing and new infrastructure 
through realistic stress-testing simulations, while enhancing proactivity and appraising 
potential trade-offs. In that sense, Hering et al. (2013, p. 4) called for the development of next-
generation technologies and tools for “bridging technologies that facilitate the integration of 
new approaches into existing systems”, for example, to “account for non-monetary benefits, 
manage trade-offs among alternatives and more effectively engage stakeholders”. In the context 
of rapid urbanisation and ageing water infrastructure, Larsen et al. (2016) recalled that this 
furthermore is a context of opportunities to develop such new technological (and managerial) 
innovations. 

Existing models supporting flood management are limited for several reasons. They 
require special expertise to adequately use the model (input, data processing, output) and to 
translate this information to decision-makers (Leskens et al., 2014a). Moreover, they are seldom 
used due to the practitioners’ fear of complexifying the information in the decision-making 
process (Leskens et al. 2014b). Additionally, Grum et al. (2023, p. 1) emphasised that: “Tools 
that enable quick but physically accurate evaluations of flood risk and the environmental impact 
of urban plans and water management are not currently available”. According to these authors, 
this leads, firstly, to decisions being made intuitively in a paced manner, without acknowledging 
water considerations, and, secondly, in the use of accurate but slow water models only after 
important decisions have been made. More authors further criticised current conventional 
hydrological models due to their poor accessibility and user-friendliness (Haris et al., 2016). In 
this regard, Martel et al. (2017, p. 1307) explained how tools are generally complicated with 
steep learning curves and lacking open-source coding, “thus limiting the ability to tweak the 
model to local particularities”. Furthermore, Palmitessa et al. (2022) presented the hard 
compromise to find between low- and high-fidelity hydrological models, and thus the need to 
fill this current gap, potentially with ML. Indeed, on the one hand, simplified models are quick 
but display a reduced resolution only suitable for limited functions, which restrains holistic 
decision-making. On the other hand, realistic models are very accurate, but the significant 
computational power and simulation time they require make decision-making much more 
difficult, which hinders, if not prevents, stakeholder engagement, uncertainty analysis, and real-
time use (Palmitessa et al., 2022). 
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In accordance with the above, this research is driven by the emerging nature of AI/ML, 
which are still in their infancy and not commonly applied neither to the domain of urban 
planning, nor to the field of urban stormwater management (Daniel & Pettit, 2021; Sanchez et 
al., 2023; Wagner & De Vries, 2019; Yigitcanlar et al., 2020). The research problem identified 
is that the pressing issues of climate change, population growth, and urbanisation, coupled by 
the challenges faced by the urban water system such as its ageing infrastructure, call for 
effective decision-making in the sector of urban stormwater management. At the same time, AI 
and ML are developing quickly and have immense potential in disaster risk reduction, urban 
planning, and urban stormwater management, including decision-making (Abid et al., 2021; 
Palmitessa et al., 2022). Consequently, the contributions AI/ML can make to knowledge and to 
current conventional decision-making processes, are yet to be seen. 

The purpose of this research is to identify and appraise the potential opportunities and 
challenges that an AI-based tool can provide to decision-making in urban stormwater 
management. Therefore, this thesis is guided by the following questions: 

1. What decision-making tools and methods are currently used in urban stormwater 
management, and what are their challenges and shortcomings? 

2. What gaps does an AI-based tool fill and what new shortcomings does it present? 

The study is based on semi-structured interviews with urban stormwater management 
professionals and a new AI-accelerated stormwater management model, InflowGo, as a case 
study. To answer the questions posed above, interviews were conducted with developers of the 
tool, urban stormwater management professionals who participated in the InflowGo 
development workshops, and practitioners who have no experience with AI. As the tool is still 
under development, this study explores its potential and possible applications in practice. 

The structure of the thesis is as follows. The Methodology part introduces the research 
strategy and motivates the data collection and analysis methods utilised. The Conceptual 
framework is laid out to understand the keywords of this study, and how they relate to each 
other, forming the thesis’ framework. The Case study description presents in detail the AI-
based decision-making tool studied, InflowGo. The Findings and discussion are merged 
together in this chapter to present and discuss the results of the interviews undertaken, 
connecting them to each other and putting them in relation to the conceptual framework, the 
purpose of the thesis, and existing literature. Finally, the study is summarised and further 
research is encouraged in the Conclusion.  
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2. Methodology 

Due to the novelty of the field of integrating AI into urban stormwater management 
decision-making, no specific theoretical framework was identified before the beginning of data 
collection. Thus, the general logic of inquiry is based on an inductive research strategy where 
the framework emerges from the data, which suits the exploratory nature of the research 
detailed thereafter. The description and identification of the current state of decision-making in 
urban stormwater management and its gaps were made, by conducting a complementary 
literature review and drawing generalisations from the patterns discovered during this process 
(Blaikie, 2010). Moreover, potential changes that the use of an AI tool brings in the decision-
making process were distinguished. 

For the research methodology, the case study method was chosen, where the InflowGo 
tool is the subject of research. “A case study is both the process of learning about the case and 
the product of our learning” (Stake, 1995, as cited in Crowe et al., 2011, p. 4). Taking into 
account the uniqueness of the studied AI-based tool for the sector of urban stormwater 
management, it was deemed this approach to be the most relevant. It was assumed that through 
this method, it was possible to achieve the empirical exploration of the implementation of the 
AI-based tool InflowGo within its real-life context (Crowe et al., 2011). The case study has an 
exploratory nature as it investigates how the application of the AI-based tool alters the decision-
making process and what the outcomes of its implementation are. Exploratory research is often 
used when there is a general lack of knowledge about a topic and when the issue being studied 
is new (Elman et al., 2020). This approach is appropriate when there is a specific issue that 
needs to be investigated but there is no pre-existing knowledge or paradigm to investigate it. 
Thus, taking into account the above-mentioned novelty of the topic under study, the exploratory 
approach seems to be the most suitable for this research. 

2.1. Data collection 

To answer the research questions, qualitative primary data was collected through direct 
contact with the source of evidence by means of semi-structured interviews (Blaikie, 2010). 
The semi-structured interview method was chosen as it is considered versatile and flexible 
(Kallio et al., 2016). This method allows for reciprocity between the interviewer and 
interviewee, provides the opportunity to ask clarifying questions, and gives participants the 
opportunity to express their opinions (Kallio et al., 2016). 

In order to collect data, a connection was established with the CEO of WaterZerv, the 
company developing the tool InflowGo, who eventually became a ‘gatekeeper’ to reach the 
participants of the tool’s development workshops. This was very important for the process, as 
the ‘gatekeeper’ allowed to gain access to and establish trust with the participants (Cresswell, 
2013). WaterZerv has been doing several workshops with participants from three Danish and 
three German municipalities and public utilities. In total, eight key informants were provided 
from the aforementioned public facilities, however, by using the snowball sampling technique, 
the list of interviewees was expanded. 

In total, 16 online interviews were conducted, lasting an average of 35 minutes, which 
enabled a better understanding of the different perspectives of various stormwater stakeholders 
who have or have no experience with InflowGo. Interviewees who are professionally relevant 
to the topic of the study were purposefully selected, such as civil engineers, urban land-use 
planners, stormwater specialists, hydraulic modellers, and researchers. Eight interviewees were 
participants of InflowGo’s workshops, including six from Germany and two from Denmark. 
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Two were members of InflowGo’s development team, both from Denmark. Finally, six 
interviewees were other urban water professionals, of which three from Germany and three 
from Sweden (Appendix 3). By approaching specialists with different backgrounds and 
expertise in the field, it was assumed that their experience and knowledge in urban stormwater 
planning and decision-making would provide a clear and comprehensive understanding of the 
subject. Moreover, it helped cover the nuances that highlight the practical significance and 
effectiveness of such AI-based tools in this particular field, and enriched the research with 
diverse perspectives and substantial empirical support. Nevertheless, it was given equal weight 
to each interview conducted, treating them as equally valuable sources of data. 

An interview guide was elaborated to ensure flexibility while simultaneously attempting 
to anticipate important potential themes for the data collection. The questions were divided into 
seven sections identified as relevant for the research based on the literature review. Beginning 
with the general introductory questions, the participants were then asked about their 
understanding of the decision-making process, and of conventional methods and tools to 
support it. In the subsequent step, the interviewees were interrogated about their opinion of the 
application of AI-based tools in the decision-making process in stormwater management, and 
then in particular with the InflowGo tool (for interviewees having used it). Moreover, they were 
questioned about their perceptions and ethical considerations regarding the integration of AI in 
their professional field, as well as about its relevance for the future. Finally, the interviewees 
were left with the opportunity to finish the interview by expressing their own thoughts, or by 
adding any information to their liking. The interview guide was sent to the participants prior to 
the interviews to allow them to prepare and to mitigate any language limitations described 
thereafter, while giving them the opportunity to assess if their expertise match with the 
questions and if they are comfortable answering them. In that respect, few of the professionals 
declined the interview. The document shared with the interviewees was, however, a reduced 
version that did not include the interviewers’ probing questions and the ‘Further remarks’ 
section (Appendix 2). 

In addition to the primary data collection method, a complementary literature review 
was conducted in order to provide a more comprehensive and robust analysis of the subject, 
establish conceptual background, and support the findings. This method is considered 
appropriate for this exploratory study due to the novelty of the subject explored. Although there 
is enough scientific literature on conventional stormwater management decision-making 
methods, it is not sufficient to answer the research questions posed due to the limited number 
of sources on AI applications in this area. This process involved a review of existing decision-
making research to gather additional information about the decision-making process in urban 
stormwater management with and without the application of AI-powered tools. For this 
purpose, “Elsevier”, “Elicit”, “ResearchGate”, “Google Scholar”, and “Web of Science” were 
used. Preference was given to scientific articles published within the last decade. As a starting 
point, the same key words mentioned at the beginning were used. Moreover, a snowball search 
was undertaken by reviewing the bibliographies and citations of previously identified articles, 
as well as where those papers were cited (Wohlin, 2014). 

2.2. Data analysis 

For better analysis of qualitative data of a case study, the data analysis spiral approach 
proposed by Cresswell (2013) was applied, as follows. In accordance with its steps, after 
collecting the data, the transcription of the interviews’ recordings was made and organised into 
a coherent structure. As mentioned earlier, the case study explores an emerging aspect of the 
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stormwater management field with a limited scope of knowledge, thus an inductive coding 
approach was applied to analyse the raw data. This approach refers to the extraction and creation 
of concepts, themes, and patterns from the raw data by comparing and identifying repetitions 
(Chandra & Shang, 2019). Thus, the next important step was to process and code the data.  

According to Elliott (2018), coding is a universal practice in qualitative research and a 
fundamental element of the analytical path that allows researchers to deconstruct their 
qualitative data in order to create something new. All interviews’ transcripts were processed to 
identify various patterns, themes, frequencies, similarities, and differences. Then, labels were 
assigned to words and phrases that reflected important aspects of the research. For the efficacy 
of the process, the data analysis software NVivo 14 was used. 

Subsequently, the identified themes were organised by the codes developed into larger 
units of abstraction to make sense of the data, by comparing and contrasting the patterns, and 
highlighting the unexpected ones. This interpretation of the data is supported by additional 
research from the scientific literature and reports, i.e. triangulation, to support the validity of 
the findings (Wieringa, 2014). Additionally, it enabled the case study to be generalised in order 
to draw lessons from it (Cresswell, 2013). Even though the research is qualitative, and the 
sample could be deemed little and thus non-representative, it is important to emphasise that it 
is unique in terms of locations and time frame. Thus, its objective is not to produce standardised 
results applicable to any types of cities, but “a coherent and illuminating description of and 
perspective on a situation that is based on and consistent with detailed study of that situation” 
(Blaikie, 2010, p. 217), while acknowledging its limitations. Moreover, as the topic of this 
research is still in its infancy, further research could find value in this case study by establishing 
whether some of the findings are replicable or not, and why. 

Finally, by extracting and analysing the data from interviews, it was possible to identify 
similarities and differences in the challenges and shortcomings between the current decision-
making process and the AI-based approach. Moreover, gaps were found in the current decision-
making process that may be covered by the AI tool, and, furthermore, what the new technology 
can learn from the conventional methods for a better decision-making process, feeding on both 
initial and future success factors. 

2.3. Ethical considerations 

One of the main ethical considerations in the research was to obtain informed consent 
from interview participants. Every interviewee was informed about the nature of the research 
activities at the very beginning, during the establishment of contact via email, by providing 
them with an electronic consent form (Appendix 1). While ensuring full anonymity to the 
participants, their professions were asked to be indicated for a more holistic analysis, since 
cross-sector collaboration for decision-making is an essential aspect under study. Moreover, the 
country in which they work was displayed as considered relevant due to the geographically 
limited application of the tool and attempt to assess contextual differences. Furthermore, raw 
data is securely stored without displaying information that could precisely determine the 
identity of any participant. 

The physical integrity of the participants was not violated, as interviews did not require 
any type of unsafe activities. Moreover, to ensure no psychological or emotional distress, and 
in line with the confidentiality and impartiality principles, it was made sure to maintain a strictly 
scientific-oriented approach aligned with the research objectives. No personal or sensitive 
questions were asked, and no funding or vested interests were involved in the study. The 
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interview questions were designed with precautions to not influence participants into answering 
what the researchers want to hear. The transcriptions of the interviews did not contain 
misleading or deceiving information for answering the purpose of the study. Once the study is 
published, the findings will be shared with the interviewees. 

2.4. Limitations 

AI/ML technologies is an emerging field of research and practice in decision-making 
and urban stormwater management. Even though scientific literature was found on the current 
state of the decision-making process in urban stormwater management, literature regarding the 
application of AI/ML in this particular field is still limited at the time of the research. To address 
this limitation, practical real-life examples from the interviews were included as they can serve 
as illustrations of the application and impact of AI/ML technologies in the context of the study. 

Another significant limitation worth mentioning is that the AI tool InflowGo is still 
under development and cannot be considered a finalised product. It is therefore only possible 
to assess its application during workshops as an early version accessible to few end-users where 
AI is emulated. Therefore, it is the potential of this tool and, by extension, of AI that are under 
research. 

An additional limitation of the study relates to the scope of practitioners interviewed. 
Since the interview language was English, which is not the native language of the interviewees, 
interviews were conducted only with those comfortable to speak English. Consequently, the 
variety of specialists chosen for the purpose of the research may have been limited. To address 
the language limitation, as previously mentioned, the interview guide was sent to the 
interviewees before the interviews to enable them to prepare and anticipate potential difficulties 
in expressing themselves in a foreign language. 

It should be noted that the majority of the interviewees related to InflowGo was initially 
interested in introducing new technologies into the urban stormwater management, and thus 
does not have an impartial attitude towards the development of AI in this field and the present 
conventional state. In this regard, the study’s findings about benefits, challenges, and 
shortcomings rely on the interviewees’ perspectives, and thus may not be perceived as benefits, 
challenges, and shortcomings by other stakeholders. Despite this, it is believed that this did not 
have a significant impact on the data obtained. Indeed, it was possible to interview other 
stakeholders without prior AI experience, and to document both the potential benefits and 
challenges of the implementation of an AI-based tool for the decision-making process by 
engaging with the literature, to counterbalance the interviewees’ perceptions.  



 8 

3. Conceptual framework 

Based on the purpose and research questions stated above, three main research domains 
were identified, from more central to overarching importance (Figure 1). The focus of the thesis 
is the decision-making process, separated between conventional and AI-based methods, that are 
overlapping due to the expected similarities they have. The concept of decision-making is 
included within the concept of urban stormwater management, itself within the broader concept 
of urban planning. Finally, nature-based solutions and resilient city are overarching concepts 
important for the context of the research, but not explored in detail due to the narrower focus 
of it. This is why they are separated from other concepts by a thicker line on the figure. 

Figure 1 

Conceptual framework 

 
Note. Authors’ contribution providing an overview of the conceptual framework. 

3.1. Decision-making 

3.1.1. Evolution of the concept 

The concept of decision-making has been the subject of academic interest in a number 
of different disciplines for the last centuries (Oliveira, 2007). In the middle of the 1900s, a 
significant amount of groundbreaking work in the field of economics and management greatly 
influenced the conceptual development of the field. In this regard, in 1947, Simon’s book 
Administrative Behavior associated decision-making with the field of management and 
conceptualised it into three phases: identification of alternatives, determination of their 
consequences, and evaluation of these consequences (Simon, 1947, as cited in Pomerol & 
Adam, 2004). 

Thirty years later, after incorporating psychological aspects revolving around human 
cognitive processes, Simon defined four steps of decision-making: intelligence, design, choice, 
and review. According to Pomerol and Adam (2004), Simon emphasised the importance of 
access to information in restraining the decision. This introduced Simon’s next work about the 
concept of bounded rationality. The latter defines that information and knowledge can never be 
complete because of the human cognitive limitations, the different values that various 
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individuals have, and the world’s complexity, which thus affects decision-making (Simon et 
al., 1987). 

In their article, Simon et al. (1987, p. 30) also highlighted the growing importance of 
computer simulation in the decision-making process, “both for purposes of testing its empirical 
validity and for augmenting human problem-solving capacities by the construction of expert 
systems”. The latter refer to AI and the modelling of environmental systems, demonstrating the 
precursor character and influence of this seminal work. Indeed, Simon et al. (1987) already 
described the potential quantitative capacity of computers to process information and recognise 
patterns that humans cannot match for problem-solving and decision-making. 

In parallel, Kahneman and Tversky (1979) conceptualised the prospect theory, which 
diverged from the widespread model at that time describing the rationality of decision-makers 
under risk. They found effects influencing the choices and behaviour of people, emphasising 
the importance of uncertainty and framing. The perception of risk is subjective as people tend 
to overestimate low-probability high-consequence events, and underestimate high-probability 
low-consequence events. There is thus an asymmetry between gains and losses, implying that 
people are more sensitive to losses than to gains of the same magnitude, and therefore leading 
to risk-averse behaviour for sure gains and risk-seeking behaviour for avoiding losses. 
Moreover, these evaluations depend on the reference point of the decision-maker, i.e. how the 
choices are presented. Indeed, the isolation effect explains how people are more likely to focus 
on the differences rather than similarities between alternatives, and thus how choices framed in 
isolation are more valued. Another consequence is people’s “inconsistent preferences when the 
same choice is presented in different forms” (Kahneman & Tversky, 1979, p. 263). 

In the field of risk management, Stern and Fineberg (1996) described the decision-
making process as an “analytic-deliberative process” (p. 3) for risk characterisation, the latter 
meaning the “translation of the results of technical analysis for the use of a decision maker” (p. 
1). The decisions are thus informed, made, and accepted through the participation and 
collaboration of various affected stakeholders aiming for a consensus, and thanks to 
contextualised, accurate, understandable, and accessible information (e.g. description of risk 
factors, potential gains and losses, uncertainty, trade-offs). This process necessitates 
transparency, accountability, learning, feedback, organisational capability, and the 
consideration of societal values, ethical considerations, and stakeholder perspectives. It goes 
against the sole analysis of technical expertise and scientific evidence overlooking the 
complexity of decision-making (Stern & Fineberg, 1996). 

Then, in the domain of environmental decision-making, Gregory et al. (2012) presented 
three typical approaches conventionally used but not suited for complexity, followed by their 
own framework of structured decision-making. The first conventional method is the science-
based decision-making, which as criticised by Stern and Fineberg (1996), lacks subjectivity, 
values, dialogue, and social and ethical considerations. Secondly, the consensus-based 
decision-making is also criticised, this time differentiating with the previous authors. Gregory 
et al. (2012) found this approach to be too ‘rushed’ in its process. Indeed, because of the focus 
on finding an agreement early on, the authors argued that it relies too much on opinions rather 
than understanding, that it hinders creativity, innovation, and minority perspectives, and that it 
neglects the exploration of uncertainty and trade-offs. Finally, the last typical method they 
described and criticised is the economics and multi-criteria analysis. This one is deemed too 
technocratic, based mostly on expertise, formulas, scores, and cost-benefit evaluations, again 
to the detriment of creativity, understanding, and community support (Gregory et al., 2012). 
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The structured decision-making that Gregory et al. (2012) recommended is argued to be 
more adequate to deal with complexity, uncertainty, and the multiplicity of objectives and 
stakeholders’ preferences. Instead of being ‘normative’, i.e. defining “how decisions should be 
made, based on the theory of rational choice”, or ‘descriptive’, i.e. describing “how people 
actually make decisions”, the authors presented their approach as ‘prescriptive’, i.e. to “suggest 
ways to help [...] to make better decisions” (Gregory et al., 2012, p. 6). In other words, it is a 
framework guiding decision-makers with a set of questions about the decision’s context, 
objectives, alternatives, consequences, uncertainties, pros and cons, as well as follow-up 
lessons learnt for future applications. 

Figure 2 

Structured decision-making 

 
Note. From Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., & Ohlson, D. (2012). 
Structured Decision Making: A Practical Guide to Environmental Management Choices (1st ed.). 
Wiley. https://doi.org/10.1002/9781444398557. 

3.1.2. Decision support systems 

Hydroinformatics is the field that allows the interaction of different stakeholders 
through the computational modelling of their environment and of water-related solutions. It is 
increasingly incorporating social considerations to support decision-making, for a more holistic 
planning (Vojinovic & Abbott, 2017). This field usually employs computer software to make 
decisions, named decision support systems (DSS). They aim to improve the quality of complex 
decisions by using data to design and evaluate different alternatives (McIntosh et al., 2011). 
According to Crossland (2008, p. 1095), DSS “are increasingly being combined with 
geographic information systems (GIS) to form a hybrid type of decision support tool known as 
a spatial decision support system”. By integrating both the logic of DSS and the spatial 
components of GIS, they solve even more complex problems and become more efficient for 
urban planners (Lombardi & Ferretti, 2015). Nonetheless, as recalled by Pomerol and Adam 
(2004), DSS have a disadvantage since they heavily depend on the quality of the data fed into 
them, regardless of the quality of the model itself, even though the latter is given greater 
attention. This phenomenon is defined in computational sciences as ‘garbage in – garbage out’, 
where incoherent, sparse, or inaccurate data input eventually leads to unreliable, non-
representative output (Kilkenny & Robinson, 2018). 
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3.1.3. Stormwater modelling 

Among DSS in hydroinformatics are hydrological models, including urban stormwater 
models. They can be defined as “simulation tools that include algorithms and methods to 
describe the main physical processes related to the flow of stormwater across urban catchments” 
(Pina et al., 2016, p. 1). These computational tools are standardly utilised by decision-makers, 
from engineers to city planners, to understand and simulate hydrological processes, to then 
design, monitor, and control urban drainage systems (Haris et al., 2016; Palmitessa et al., 2022). 
For instance, such models can simulate the quality of urban water, helpful for pollution and 
water supply management, and its quantity through the “rainfall–runoff, overland flow and 
sewer flow” (Pina et al., 2016, p. 1), useful to manage the risk of both flooding and overflow. 
The use of hydrological models entails the provision of input data in the form of “spatial and 
temporal distribution of precipitation” (Zoppou, 2001, pp. 199-200). Moreover, a realistic, 
accurate, and reliable depiction of the hydraulic system is needed to make informed decisions. 
Therefore, a stormwater model needs to be calibrated so that its predictions closely match the 
actual water levels and flows. Calibration can be made thanks to measurements, and then by 
adjusting parameters such as the runoff coefficients or the pipes diameters (Gupta et al., 1998). 

According to Zoppou (2001), hundreds of hydrological models exist to simulate the 
characteristics and physics of water, and they are developed by various types of stakeholders 
such as private engineering companies, governments, regulatory institutions, or scientific 
academies. These actors have different resources and objectives, which is reflected in the 
diversity of available models and of their applications, from risk assessment and flood 
forecasting to urban drainage and agriculture (Martel et al., 2017). For instance, different 
modelling approaches allow for more or less detailed simulations and fidelity of the reality, and 
can be applied to a various range of geographical scales, from reduced to vast watersheds (Haris 
et al., 2016; Palmitessa et al., 2022). Moreover, the accessibility to them varies greatly as public 
tools are generally open-source and free to download, allowing technological tweaking to tailor 
their utilisation to different applications and contexts. Conversely, private tools are designed 
for commercial purposes, thus available at an expensive price, but providing more support from 
their developers (Martel et al., 2017; Zoppou, 2001). 

As explained by Zoppou (2001), models can be divided into different categories: to plan 
infrastructure configurations for asset management, by evaluating different alternatives in 
regard to criteria; to design the infrastructure itself by accurately modelling the water flow; to 
operate hydrological resources in real time, like flood forecasting models; and for hybrid 
purposes. These different types of models generally require different types and amounts of data 
as input and can produce different kinds of output after various scales of simulation time, 
according to the level of specification and to the number of features analysed. As a result, it is 
difficult to associate real-time data with complicated operational data (Zoppou, 2001). 
Moreover, Zoppou (2001) stressed the importance of uncertainty analysis when interpreting the 
results of a modelling for decision-making. It can be inherent uncertainty, pertaining to the 
natural physical processes involved with water; model uncertainty, related to the simplification 
of the reality being modelled; or parameter uncertainty, about characteristics of the model. 
However, the author also highlighted that, at the time of the article, none of the models allowed 
uncertainty analysis. 

The management of urban water by computer models started in the beginning of the 
1970s in the United States of America, to simulate both its quality and quantity. At this point, 
governmental agencies had already developed various types of modelling approaches, from 
“very simple conceptual models to complex hydraulic models” (Zoppou, 2001, p. 197). One 
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example is the Storm Water Management Model (SWMM), launched in 1971 by the USA’s 
Environmental Protection Agency, which is still being updated and used today to simulate 
events with detailed modelling of stormwater, urban drainage, and measurements of watersheds 
(Haris et al., 2016; Pina et al., 2016). From this tool, several other tools were developed with 
different graphical user interfaces, like XP-SWMM or MIKE-SWMM. The latter is a combined 
model with MIKE 11 which, according to Zoppou (2001), couples their advantages and 
improves the mathematical calculations with water flow simulation. Moreover, its interface is 
very versatile as it can be connected to other models, allowing its application for different 
purposes such as production of rainfall patterns, simulation of sediment transport, analysis of 
coastlines, or assessment of the performance of wastewater treatment plants (Zoppou, 2001). 

All these enhancements in hydrological models were enabled throughout the years in 
parallel with technical and technological innovations as well as increasingly available data, as 
displayed by the addition of GIS between the 1990s and 2000s (Pina et al., 2016). Sahu et al. 
(2020) reviewed several studies applying another tool called HEC-HMS, developed by the 
USA’s Army Corps of Engineers. The authors showed different examples of successful 
implementations of this hydrological model with GIS, for instance to prepare slope and soil 
maps by remote sensing, or to model a water basin through a digital elevation model for flood 
forecasting. 

Nevertheless, according to Fu et al. (2022), hydrological modelling today faces a 
number of challenges which has led to stagnation in the development of new functionalities and 
improvements. Indeed, the authors noted five hurdles, as follows: the complexity of urban water 
systems and of their interplay with other climate, biodiversity, and human systems; the 
challenging urban water modelling combining various factors, assumptions, parameters, and 
processes; the lack of certainty and data; the high computational power required for detailed 
modelling; and the obligation to devote oneself to a single model and therefore difficulty to 
switch to another, due to the skills and resources required for “model development and 
maintenance” (Fu et al., 2022, p. 1). Contrarily, the authors then mentioned disruptive 
technologies and presented the recent advancements in AI/ML, thus appearing as potential 
solutions to address these obstacles. 

3.2. Artificial Intelligence and Machine Learning 

3.2.1. A disruptive technology 

In this study, the above-mentioned methods and tools that are part of the current 
decision-making process are defined as conventional when not employing AI/ML. The latter 
constitute the prevalent example of current disruptive technologies, alongside for example the 
blockchain, internet of things, 3D printing, robotics, and drones (Munawar et al., 2022; 
Păvăloaia & Necula, 2023). Disruptive technologies are presented with different perspectives 
in the literature, making it difficult to find one universal definition (Nagy et al., 2016). However, 
they all encompass the notions of novelty, change, and improvement. 

On the one hand, Millar et al. (2018, p. 254) explored the concept of disruption as 
“change that makes previous products, services and/or processes ineffective”, indicating a 
notion of discontinuity and incompatibility with current conventional technologies. On the 
other hand, other authors described it as “new technologies [that] can create new markets or 
radically change, or disrupt, the status quo in existing markets” (Bower & Christensen, 1995, 
as cited in Nagy et al., 2016, p. 119), as well as in research, due to larger performance (Munawar 
et al., 2022). For this reason, disruptive technologies and in particular AI/ML show potential in 
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the urban context for multiple applications such as planning, public safety, water management, 
governance, energy, mobility, and more generally for disaster risk management and climate 
change adaptation (American Planning Association, 2022; GFDRR, 2021; GSMA, 2020; 
Munawar et al., 2022; Păvăloaia & Necula, 2023; Spencer, 2021; UN-Habitat, 2022). 

3.2.2. Theoretical and technical considerations 

The definition of AI is constantly evolving along with the dynamic and fast nature of 
technological development in this area, resulting in a lack of a universally accepted definition 
(Duan et al., 2019; Huang & Peissl, 2023). A definition is suggested by the High-Level Expert 
Group on Artificial Intelligence, an independent body initiated via the European Commission, 
and restated by Huang and Peissl (2023): 

Artificial intelligence (AI) systems are software (and possibly also hardware) systems 
designed by humans that given a complex goal, act in the physical or digital dimension 
by perceiving their environment through data acquisition, interpreting the collected 
structured or unstructured data, reasoning on the knowledge, or processing the 
information, derived from this data and deciding the best action(s) to take to achieve the 
given goal. AI systems can either use symbolic rules or learn a numeric model, and they 
can also adapt their behaviour by analysing how the environment is affected by their 
previous actions. (p. 177) 

Duan et al. (2019, p. 2) added that AI “is normally referred to as the ability of a machine to 
learn from experience, adjust to new inputs and perform human-like tasks”. This ability is called 
ML, a subset of AI “that can make predictions [...] on new observations” (Zhou, 2021, p. 2). 
These predictions are made by identifying patterns in the input data, following mathematical 
models and statistical methods. In order to solve greater learning tasks and allow applications 
in complex contexts, a structure of numerous interconnected ML layers (called neural networks) 
was developed, forming Deep Learning (DL), a subtype of ML (GSMA, 2020; Zhou, 2021). 
This enables the parallelised processing of an enormous number of parameters in an accelerated 
manner (Grum et al., 2023), which suits urban stormwater management “where we often want 
to simulate water levels and flows in hundreds or thousands of links and nodes” (Palmitessa et 
al., 2022, p. 2). As a result, Fu et al. (2022, p. 1) emphasised that ML will “help tackle water 
challenges such as resource efficiency, water supply, water pollution, flooding and drought, 
contributing to achieving the water-related United Nations’ sustainable development goals”. 
However, they also noted that the application of such data-driven models is still in its early 
phases in the urban stormwater management field. 

3.3. Urban stormwater management 

3.3.1. Hydrological notions 

In order to grasp the concept of urban stormwater management, it is important to first 
understand the origin of water and its different types to manage. One of the main components 
of the water cycle concerns the precipitation phenomenon, and is explained by Zoppou (2001) 
as follows. A portion of the water falling from the sky is lost due to evaporation and vegetation 
absorption. The surplus of water can then penetrate the soil and at some point re-emerge, 
accumulate in ground depressions, or flow on the surface. These different alternatives depend 
on the quantity of water and on the type of soil, as the latter can have varying levels of saturation 
and of permeability. Subsequently, the running water flows towards the various elements of the 
hydrographic network in the watershed. The latter can also be named catchment area or 
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drainage basin, and the USA’s National Oceanic and Atmospheric Administration (2023) 
defined it as “a land area that channels rainfall and snowmelt to creeks, streams, and rivers, and 
eventually to outflow points such as reservoirs, bays, and the ocean”. 

According to Jaber (2008, p. 3), the “precipitation that does not soak into the ground, 
but instead runs off its surface” is defined as stormwater. It is thus a natural process, whereas 
wastewater rather originates from human activities, either domestic, industrial, or commercial 
discharge of used water (Jaber, 2008). However, rainfall is mostly turned into runoff on 
impervious land, which is the case in urban areas (Zoppou, 2001) and alters the natural 
functioning of a drainage basin (Larsen et al., 2016). Indeed, a lesser extent of natural soil cover 
reduces the potential amount of water evapotranspiration made by the trees and of water 
infiltration in the ground, increasing the portion of rainwater to runoff from 10% to 45% (Jaber, 
2008). Moreover, urban areas are characterised by numerous man-made built waterways 
(Zoppou, 2001) and more debris, chemicals, and pollutants that can get drained by storm- or 
wastewater, thus also increasing erosion and reducing biodiversity and the quality of supplied 
water (Jaber, 2008). All of this explains how in cities, the “increase in runoff volume and flow 
[...] can result in flooding, watercourse and habitat destruction” (Zoppou, 2001, p. 197), and 
highlights the need for urban stormwater management. Undoubtedly, stormwater management 
is also important to consider in rural areas, even if the increased permeability of the ground 
there slows down water runoff. However, the difference between both geographical areas is 
substantial as it implies a higher level of detail for urban models compared to rural models 
(Zoppou, 2001). 

3.3.2. The concept of urban stormwater management 

In their report, Jotte et al. (2017) stated that traditionally, stormwater management 
considered the diversion of excess water to nearby watercourses with a focus on minimising 
flood risks, and thus solely on water quantity. However, today the focus has expanded to also 
consider water quality and amenity, i.e. the contribution to the overall attractiveness, comfort, 
and well-being of urban residents (Jotte et al., 2017). This modernised approach seeks to 
achieve a variety of objectives, including reducing the water runoff, mitigating flood and 
erosion risks, facilitating natural groundwater recharge, lowering concentrations of stormwater 
pollutants, improving biodiversity, preserving water (and air) quality, minimising costs 
associated with stormwater treatment and pipe capacity, and enhancing the amenity and 
aesthetics of urban areas planned. According to Larsen et al. (2016), for these reasons, urban 
stormwater management has made a prevailing medical milestone and is of utmost importance 
for the hygiene and health of residents. 

The infrastructure for urban stormwater management is multiple. In industrialised 
countries, it is based on a network of pipes, most of the time buried underground, and reservoirs, 
for transporting and draining of stormwater and wastewater to protect lives and settlements, as 
well as for supplying water for domestic, industrial, or agricultural use (Larsen et al., 2016; 
Zoppou, 2001). Moreover, this equipment is “only designed for a particular storm event, usually 
the 1 in 2 year or 1 in 5 year event or the 1 in 10 year storm event for commercial and industrial 
areas” (Zoppou, 2001, p. 200). This represents a great limitation with the growing intensity and 
frequency of rainfall events in the current context of climate change (Arya & Kumar, 2023). 
Additionally, certain infrastructures are reserved for the treatment of water, for its drinkability 
but also to limit pollution before its release in the natural environment. This large diversity of 
essential functions makes the water infrastructure very complicated, demanding a high level of 
technical skills, and also costly in financial, social, and environmental matters (Larsen et al., 
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2016; Zoppou, 2001). According to Larsen et al. (2016, p. 929), this is the “consequence of 
ageing built infrastructures, increasing urbanisation, emerging contaminants, competitive water 
uses, and measures to mitigate the effects of climate change (e.g. water-saving measures)”. On 
a less technical and more institutional level, urban stormwater management is characterised by 
the intervention of public stakeholders for planning and governance considerations, usually 
municipal authorities in the case of industrialised countries. They generally follow various strict 
regulations and codes elaborated on higher administrative scales (Larsen et al., 2016). 

3.4. Urban planning 

The above-mentioned makes urban stormwater management fall under the concept and 
domain of urban planning. Bibri and Krogstie (2017, p. 190) identified urban planning as a 
systematic approach to strategic guiding and shaping of “the use and development of land, 
urban environment, urban infrastructure, and related ecosystem and human services” with the 
aim to “ensure the maximum level of economic development, high quality of life, wise 
management of natural resources, and efficient operation of infrastructures”. Moreover, urban 
planning is the purposeful intervention in the built environment through the development of 
programs and plans with the overarching goal of achieving a more sustainable, resilient, 
integrated, equitable, and just future for the city (Bush & Doyon, 2019). 

Rapid urbanisation, development challenges, and growing pressure of climate change 
make urban planning inherently complex and adds pressure on urban systems, thereby placing 
stress in city life in terms of core operational and organisational processes, functions, and 
services (Bibri & Krogstie, 2017; Bush & Doyon, 2019; Frantzeskaki et al., 2022). To address 
these challenges, cities need to improve their resilience and capacity by developing, applying, 
and implementing innovative solutions and sophisticated methods in urban planning (Bibri & 
Krogstie, 2017). The urgency and importance of building and developing sustainable cities are 
also reflected in the goals of the global initiative, such as the Sustainable Development Goal 11 
(sustainable cities and communities) and the New Urban Agenda (UN-Habitat, 2022). 

Adaptation of new technologies such as AI in various aspects of urban planning has 
enormous potential and can offer new opportunities to address the above-mentioned challenges 
(He & Chen, 2024). Features such as analysing large and complex data sets, optimising the 
planning process, and providing more accurate forecasts and insights can greatly facilitate urban 
planning and ultimately lead to more sustainable urban environments (He & Chen, 2024). 

3.5. The overarching concepts of nature-based solutions and resilient city  

There is a wide range of definitions and interpretations of nature-based solutions (NbS) 
in the literature (Dorst et al., 2019; Sowińska-Świerkosz & García, 2022). The most commonly 
used was provided by the European Commission (2015, p. 5), where NbS are considered as 
“actions which are inspired by, supported by or copied from nature” with “the aim to help 
societies address a variety of environmental, social and economic challenges in sustainable 
ways”. In their work, Balian et al. (2014, as cited in Kabisch et al., 2016, p. 2) defined NbS 
with a clear depiction of those challenges “such as climate change, food security, water 
resources, or disaster risk management”. Specifically for the urban planning context, Albert et 
al. (2019, p. 14) characterised NbS as “actions that (i) alleviate a well-defined societal 
challenge, (ii) utilise ecosystem processes of spatial, blue and green infrastructure networks, 
and (iii) are embedded within viable governance or business models for implementation”. The 
concept arose from the need to develop new innovative solutions to achieve sustainable urban 
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planning and to address climate change and disaster risk reduction through the integration of 
ecosystem services (Faivre et al., 2018; Sowińska-Świerkosz & García, 2022). 

NbS is considered an umbrella concept that incorporates all other nature-based 
approaches for sustainable development, such as ecosystem-based adaptation and management, 
green infrastructure, ecosystem-based disaster risk reduction, and eco-engineering (Dorst et al., 
2019; Johnson et al., 2022). Given the multifunctional and solution-oriented nature of the 
concept, it can help improve collaboration between actors from different disciplines and sectors, 
by providing a common language and pooling knowledge and experience that can contribute to 
achieving sustainable urban development for resilient cities (Dorst et al., 2019; Su et al., 2023). 

A resilient city is one that is able to adjust and adapt in the face of change while moving 
along the desired development path (Bush & Doyon, 2019). Urban resilience depends on long-
term, integrated approaches to urban planning and development. To identify viable 
development strategies, it is important to combine different disciplines, perspectives, 
mechanisms, as well as new technologies (Bush & Doyon, 2019). Moreover, solutions related 
to ecosystem services play an important role in increasing the resilience of cities, especially in 
regard to sudden changes, destruction, natural hazards, and the effects of climate change.  
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4. Case study description – InflowGo 

This chapter provides a contextual background of the InflowGo tool to better understand 
the purpose, working mechanism, and development of an AI-based tool in the field of 
stormwater management. The information presented is based on open data extracted from the 
website of the tool's developer company WaterZerv, its LinkedIn page, and interviews with 
developers. 

InflowGo is an AI-powered sustainable stormwater management model launched in 
2023. According to the developers, the development of this tool combines years of experience 
in stormwater management, hydrology, hydraulics, ML, and software development with the 
initial goal of addressing current challenges and creating a new model for sustainable 
stormwater management. The main shortcomings of the current state of stormwater 
management identified by the WaterZerv company are outdated tools and software, and lack of 
collaboration among vital stakeholders, which in the end is deemed to hinder the urban planning 
process. By developing the tool, the company claims to facilitate the creation of sustainable and 
blue-green cities and to contribute to the Sustainable Development Goals, namely: Goal 6 – 
clean water and sanitation; Goal 11 – sustainable cities and communities; Goal 13 – climate 
action; and Goal 14 – life below water. The tool is positioned as a research and innovation 
project that aims to address the above-mentioned challenges through workshops and 
consultations with practitioners.  

The company has determined that their product provides value to a wide range of 
professionals, including civil engineers, water utilities, traffic authorities, municipalities, 
environmental authorities, hydraulic engineers, urban planners, and policymakers among 
others. InflowGo intends to offer stakeholders a platform to improve collaboration, ensure 
participation from the beginning of the project’s planning process, and explore different 
scenarios in real time. The tool is positioned as an advanced AI model, which, however, is still 
under development and improvement. At this moment, InflowGo is available in English, 
German, and Danish. The company plans to expand its language coverage further. 

InflowGo uses advanced ML techniques to produce results very similar to traditional 
hydrologic models, which the company claims to achieve 100 to 10,000 times faster. This, by 
training a custom neural network to model the flows, levels, overflows, and carbon footprint of 
both stormwater and combined networks. Moreover, the use of a neural network makes it 
possible to simultaneously perform multiple calculations, for example, changing inflows from 
several areas at once. 

The tool works on DL, i.e. neural networks that need to be fed and trained based on the 
data provided. With this AI implementation, it is claimed possible to predict and test the impact 
of construction projects, climate change, overloading of drainage systems, and other changes 
on the sewer systems. Moreover, it is expected that it will also be possible to obtain estimates 
of carbon dioxide emissions. 

The development of the project is supported by the Innovation Fund Denmark as well 
as six utilities and municipalities in Germany and Denmark. This collaboration is reflected in 
joint cross-disciplinary workshops with land-use and landscape planners, storm- and 
wastewater planners, spatial data experts, hydraulic modellers, and sustainable urban drainage 
specialists from the aforementioned municipalities and utilities. At the workshops, invited 
experts and developers analyse modern planning processes and identify their strengths and 
weaknesses, jointly test the latest version of the tool through real development scenarios, and 
look for solutions to complex problems, considering the opinion of each specialist. The 
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company has planned a total of 18 workshops with end-user experts with the main goal to 
receive feedback for further improvements and of their expectations from the InflowGo tool. 
By the time of the data collection, half of the workshops had been completed.  
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5. Findings and discussion 

This chapter provides answers to the research questions through a critical analysis of 
the findings complemented by scientific literature. More precisely, 5.1. is focused on the first 
part of research question 1 – “what decision-making tools and methods are currently used in 
urban stormwater management”; 5.2. on the second half of research question 1 and the first 
part of the research question 2 – “what are their challenges and shortcomings” and “what gaps 
does an AI-based tool fill”; and 5.3. on the second half of research question 2 – “what new 
shortcomings does it present”. Interviewees are anonymously cited by their number (Appendix 
3). Firstly, the interviewees’ perceptions of the definition of stormwater management decision-
making, its practices, and the dynamics of its stages are discussed in relation to what was 
established in the Conceptual framework chapter. Secondly, the conventional decision-
making’s challenges and shortcomings identified by all practitioners are discussed in relation 
to the findings made about potential benefits of AI. This was achieved by analysis of the 
interviewees’ overall experience with InflowGo and synthesis of the views of those who have 
not interacted with any AI-based tool. Thirdly, based on the interviewees’ common concerns, 
new shortcomings and obstacles that may arise in practice when using an AI-based tool are 
summarised, as well as the shortcomings of the conventional decision-making process that 
cannot currently be solved with AI. 

For transparency, the findings discussed present limitations that are essential to 
explicitly clarify the scope of the study. Besides the methodological constraints previously 
considered, it is important to note that the discussion is limited because it concerns a version of 
the InflowGo tool without AI/ML being implemented. As explained by the development team, 
AI/ML is currently emulated by a numerical model by doing the calculations on a small 
catchment, and by feeding the software with a small dataset of one 10-year rain event as input, 
instead of larger historical rainfall series. With AI/ML, the tool is expected to perform with 
more pace and stability, on larger areas, while displaying statistically more detailed results 
(quantity but also frequency of overflows at desired locations). However, as the aim of the 
research is to investigate an AI-based tool through its potential, the results are presented as only 
being feasibly obtainable. Furthermore, the following challenges, shortcomings, and potentials 
of AI were raised by multiple interviewees during the research and were thus deemed relevant 
for the purpose of the study. This list, however, should by no means be considered exhaustive. 

First of all, the interviewees’ experience with AI is presented. When asked about 
previous experience with it, out of 16 answers, seven of them had no background with AI tools. 
Out of the 10 interviewees related to InflowGo, either as workshop participants or developers, 
six referenced this tool as their first AI experience. These findings are consistent with the 
literature depicting the application of AI/ML to urban stormwater management and planning as 
a field in its infancy (Sanchez et al., 2023; Wagner & De Vries, 2019; Yigitcanlar et al., 2020). 
According to Fu et al. (2022, p. 2), “there are few well-tested deep learning algorithms or 
products readily available for solving UWS [(urban water systems)] problems”, which was also 
highlighted by the interviewees: 

“many of the current AI tools that I use are not really made for decision-making.” (5) 
“Actually, at the moment, I do not know any AI solution that is good enough for this 
diverse field of planning.” (12) 

To illustrate this further, the interviews showed that AI for professional use in the field is for 
the moment reduced to paperwork tasks, e.g. writing and translation purposes, where generative 
AI and ChatGPT were cited seven times. 
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However, five interviewees have heard about AI applications in stormwater during 
conferences or have participated in an AI project or research program within their organisation. 
One mentioned that their project did not work and was terminated, and another is considering 
starting a project for utilising the considerable amount of rain data available. Ongoing projects 
cited were both from Germany: KIWaSuS, an AI-based warning system for heavy rain and 
urban flash floods, and Ziggurat, an automated sewer system planner. Moreover, two 
interviewees had already utilised AI for decision-making purposes in stormwater management. 
One mentioned the German tool FloodWaive, for flood forecasting, early warning, and risk 
analysis. Another one mentioned the Danish tool Rehab-IT, developed for asset management 
in the renewal of water networks. 

Thus, while AI in stormwater is only emerging, it seems to be at the centre of a growing 
attention thanks to its rapid development, and is experimented in few projects for its promising 
features for the field (Eggimann et al., 2017; Makropoulos & Savić, 2019). Likewise, 
Yigitcanlar et al. (2020, p. 2) described AI as “the most disruptive technology” in urban 
contexts. In this regard, twelve interviewees clearly stated that they are open and curious about 
the application of AI in their work, and overall in the field of stormwater management. 
Moreover, they shared that some of their colleagues “are very eager to explore the opportunities 
and options [of AI], and to have it as an additional information source” (14). 

5.1. Characteristics of the conventional decision-making process 

This section connects findings from academic literature to the responses of interviewees 
when asked about their definition of the decision-making process, and about the current 
conventional methods and tools used in stormwater management. All of them had a personal 
definition, or at least some views about what this concept entails, except one interviewee who 
instead focused their answer on risk assessment, particularly on the relation between flood 
management and critical infrastructure. 

5.1.1. Definition 

Two interviewees noted that ‘decision-making’ is a broad concept used in multiple 
fields of profession, and thus encompassing different definitions depending on who employs it. 
In the field of stormwater management, the interviewees defined it as a process relying on 
knowledge and experience, characterised by certain steps following a repetitive order. This is 
in line with the conceptual framework of the thesis, stressing that access to information 
constrains decision-making (Simon, 1947, as cited in Pomerol & Adam, 2004), and with 
Gregory et al.’s (2012) structured decision-making (Figure 2). This framework encompasses 
phases that were mentioned by seven interviews: definition of objectives, e.g. “climate 
resilience” (12); development and evaluation of alternatives; and implementation of solutions. 

However, compared to the interviewees’ point of view, Gregory et al.’s (2012) 
framework lacks the initial step of identifying requirements and needs to reach the objectives, 
and the feedback loops between each step. In this regard, interviewees described decision-
making as “iterative” (11, 12, 14), with a lot of “back and forth” (14), and continuous 
repetitions of “analogue” phases (9). Moreover, after comparing scenarios, those selected are 
examined deeper before being assessed and compared again. Finally, finding solutions can be 
seen as the final aim, as illustrated: 

“To me, decision-making is to decide what solution we need to use with regards to 
stormwater.” (7) 
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5.1.2. Political aspect 

The previous steps are furthermore influenced by the political sphere, as illustrated by 
an interviewee’s definition of decision-making as “organisational politics” (11). This theme is 
recurrent for 11 interviewees, no matter their geographical context, highlighting the important 
role of legislation and authority. The latter is either within the city or municipality itself, or 
within the planning administration above the city in the chain of command. Early in the process, 
the authority confers “recommendations” (1) to follow to the stormwater professionals, 
dictating their range of action in addition to existing “laws” (1). 

This point is found in the literature as well, with Saraswat et al. (2016) explaining how 
stormwater management depends on regulatory and institutional frameworks, especially for 
water quality and quantity. In addition, Larsen et al. (2016, p. 928) supported the idea that urban 
stormwater decisions are “delegated to municipal water authorities [that] follow well-
formulated regulatory codes in their operations”. The interviewees added that this legislative 
context also requires them to check their results with the authority after each step of alternative 
generation, comparison, and evaluation. Indeed, feedback can be useful, and an authorisation 
is needed to step onto the next phase, until the decision is implemented. 

5.1.3. Collaborative aspect 

The previous aspect of communication with authorities reflects another significant point 
of the process of decision-making that was highlighted by 13 interviewees: the collaboration 
aspect. Five interviewees described their teams, with only one appearing to be big, as part of a 
large city with many employees. The other four were on the contrary portrayed as small, due to 
the scale of the municipality or utility, with even one case where the interviewee was the only 
person involved in planning. It is however worth noting that one interviewee from a small team 
pointed out that they have to collaborate on a regular basis with neighbouring cities, as located 
in a very dense area, which considerably increases the number of stakeholders. Regardless of 
this context, according to them, it is essential for different planning stakeholders to 
communicate in order to find solutions all along the different phases. 

“it also needs constant communication and feedback with and from various 
stakeholders.” (4) 

Similarly, decision-making was defined as a “deliberative” (2, 15) process “with a lot of 
dialogue and talk” (9) as well as with “hearing and listening” (15). This is coherent with Stern 
and Fineberg (1996) who likewise stress the interdisciplinary, deliberative, and compromise-
oriented characteristics of decision-making. 

Therefore, according to one interviewee, decision-making requires monitoring and 
adaptation in order to stay flexible, as diverse input from various stakeholders is added, and 
also as laws may change. Stern and Fineberg (1996, p. 96) also reflected the necessity for 
flexibility in the process “to allow for midcourse corrections”, while Gregory et al. (2012, p. 10) 
explained further that it permits “to incorporate what is learned over time”. Moreover, 
according to the interviewees, it necessitates governing activities facilitating deliberation 
through platforms to engage different stakeholders, like “team-building processes” (5). 
Planning meetings, or workshops, were explicitly cited by seven interviewees as such a 
platform. They enable brainstorming to gather and present ideas, to compare alternatives and 
results (e.g. from modelling), to renew plans, to go deeper in some proposals, and to physically 
engage different stakeholders for eventually finding “compromises” (11). This finding is 
consistent with Kvamsås (2021) and Leskens et al. (2014a) who mentioned various types of 
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meetings engaging different stakeholders for the planning process. Nevertheless, platforms for 
stakeholder collaboration are not bound to formal physical meetings: Leskens et al. (2014b) 
enumerated more of them such as informal talk, telephone calls, and emails. 

The interviewees emphasised the importance of stakeholder participation, especially in 
an interdisciplinary fashion. The latter was indicated by 10 interviewees, when emphasising the 
need for involving multiple stakeholders, such as green landscape planners, architects, 
policymakers and authorities, consultant companies (e.g. to do the modelling), the social 
department of the city planning, and in general any non-experts in water or sewer systems, 
including the citizens. Cross-sectoral collaboration is echoed by Hadjimichael et al. (2016, p. 
4) as it “allows for the inclusion of a wide range of different perspectives rather than decision-
making by specialists and experts in isolation – something that is particularly important in early 
design and planning stages”. Moreover, Kvamsås (2021) stressed the importance of 
transdisciplinary cooperation as it supports the current shift from traditional approaches to more 
sustainable ones, such as NbS. 

“We have a strategy to involve and include the strategies from the municipality with 
regards to recreational activities, health, biodiversity, and so on. So, in order to include 
those strategies, I often include different stakeholders from the municipalities, 
authorities, maintenance people, city planners, and so on. [...]. I think my perception is 
that, in order for my projects to be a success, the municipality and all the stakeholders 
have to have some sort of ownership of the project.” (7) 
“For us, it is very important to use different experiences, to have different occupations, 
to have their view on the matter, or on the risks, or on the challenges.” (16) 

Finally, it was found that decision-making implies the translation of information when 
communicating to non-experts, for example by sharing maps that are easy to understand as an 
output of modelling. In this matter, Leskens et al. (2014a) precised that this communication 
generally flows from modellers to decision-makers. 

5.1.4. Technical aspect 

The decision-making process was also described to rely a lot on technical 
considerations. Indeed, 12 interviewees mention this aspect when asked about their definition 
of decision-making. Likewise, Larsen et al. (2016, p. 928) stated that decisions “rely primarily 
on highly specialised technical expertise”. Most of the professionals put emphasis on the 
conventional tools and software currently being utilised through the phases of decision-making, 
for modelling, generation, comparison, and evaluation of alternatives, as well as for 
presentation of the results. These include hydraulic models such as MIKE Urban, Scalgo, and 
GIS (QGIS), which are also widely cited in the literature as decision-making supports 
(Adhikari, 2020; Leskens et al., 2014a; Lombardi & Ferretti, 2015; Saraswat et al., 2016). 

“These are tools that we are using for making a decision, they are not making these 
decisions for us. It is just a tool to address the problem.” (12) 

Thus, proper measurements, databases, parameters, and models are required to base the 
decisions on. One of the German interviewees, as a member of a city government, declared 
having free access to a pool of public data from the state, in addition to the database of their 
town. Another interviewee highlighted their extended rainwater system and the importance of 
the stormwater physics supported by the tools. However, three interviewees indicated that the 
tools used depend on the scale of the decision to implement, on the needs, as well as on the 
current knowledge and resources. For example, in smaller projects, an interviewee indicated 
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that Excel matrix calculations are sufficient, in contrast to complex projects requiring detailed 
hydraulic modelling results. 

Moreover, interviewee 15 stressed the importance of interdisciplinary collaboration for 
the use of DSS, which corroborates McIntosh et al.’s (2011) assertion that such tools necessitate 
stakeholder involvement. On another note, when successfully utilised, they are very valuable 
for fostering collaboration further. 

“I think this is quite important that these tools actually provide the opportunity for cross-
country or cross-department dialogue. [...]. Decision support tools need the actors, 
stakeholders from different areas [to] sit down together and look into the stuff. […]. 
[These are] the tools that have actors involved, instead of like monitoring tools, [with] 
one guy sitting [in front of] the computer.” (15) 
In order to incorporate more diverse input into the decision-making process, multi-

criteria, utility value, or cost-benefit analyses can be combined with hydraulic models and GIS. 
As explained by Wang Yujing et al. (2011), it is necessary to select appropriate criteria to reduce 
subjectivity in decisions. Thus, “there will frequently be decisions made in stormwater 
management that reflect the economic, political, social, and aesthetic components that may not 
always be easily incorporated into a GIS analyses and modelling system” (Saraswat et al., 2016, 
p. 102). Contrarily, Gregory et al. (2012) motivated that such an approach could be too 
technocratic, thus limiting the required creativity for robust decisions. Still, with seven 
mentions, the financial criterion is the most cited as part of the evaluation of decisions. The 
latter is considered as expensive, for instance when having to bring all stakeholders together. 
Contrariwise, an interviewee cited the financial criterion at only the third rank of significance, 
below the safety and performance. This was the only time that the safety and performance 
criteria were acknowledged. Other criteria stressed were environmental, or ecological, and 
social. 

5.2. Challenges and shortcomings potentially addressed by AI 

In this section, the interviewees’ perspective on the current challenges and shortcomings 
of the conventional stormwater management decision-making process are discussed together 
with the potential benefits of AI-tools, to analyse gaps that may be filled to some extent.  

Two clusters of challenges were identified from the interviews, based on the complexity 
of the stormwater management field: technical and organisational challenges. Then, one cluster 
of shortcomings was recognised, displaying what is currently lacking in the conventional 
decision-making process. In parallel, the potential benefits of an AI-based tool for decision-
making in stormwater management are discussed through the case study of InflowGo, 
according to the workshops’ participants and developers. They are further consolidated by other 
stormwater professionals with no experience of InflowGo, reflecting upon AI tools in general 
and what they entail. It is however important to note again that the results concerning the 
potential benefits of AI present limitations. They concern a version of the InflowGo tool without 
AI being implemented, but only emulated by a numerical model, as previously mentioned. 

5.2.1. Technical challenges  

Expertise needed 

Given the complexity of the field, interviewees are challenged by the importance of 
having “sufficient knowledge and experience” (1) to be able to understand the tools, parameters, 
models, systems, and to interpret results. Other interviewees mentioned that the complexity of 
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the tools and specialised software in stormwater management make the expertise “very 
isolated” (14) and “not very inclusive” (11). The tools are “created by experts for experts” (1) 
and there is “so much you need to know” (11). 

“They have a very steep learning curve, and before you are able to not only do some 
calculations, but also provide some results that you can show to non-experts… it takes 
quite some time in order to be able to do that. [...]. But in order to use them properly, 
in order to understand what you have to do, it just takes some experience and that means 
it takes some time and you have no chance to learn it. You can read a lot, but it does not 
help really.” (5) 

This is also reflected by Haris et al. (2016) who described conventional hydraulic models as 
being of low accessibility, and highlights the need for user-friendliness within AI solutions to 
increase their application (Hadjimichael et al., 2016). In this regard, interviewee 12 also stressed 
the necessity for AI solutions to be easily dealt with, as solutions that are too technical are 
generally not appreciated. In the case of InflowGo, even though still in development, all eight 
workshops’ participants agreed upon the user-friendliness of the tool. This was also noted by 
the two InflowGo developers, allowing non-experts to take part in the modelling. 

In this regard, the interviews revealed that InflowGo and AI in general could have the 
potential to raise awareness and support educational purposes. The tool could help to learn from 
its application, to better understand stormwater management and the interaction between the 
water system’s behaviour and the infrastructure planned. This aspect was stressed by eight 
interviewees. 

“InflowGo, or tools like this, would also help in education very, very much. And also, 
probably in fields that are not directly related to the water sector. For example, for 
architects or for spatial development planners, or who are not engineers but who have 
to deal with these factors. Nevertheless, they can also try to understand how systems 
work. [...]. In my mind, I think it will also start forcing, and let's say helping others in 
their fields, to also probably get into tools like this in order to help us understand their 
points, and that is pretty important.” (5) 
“I see added knowledge to the participants in the workshop, so they know more why the 
solutions have been chosen. So that, in other projects, they know why water behaves as 
it does. They know why water is important to include in the projects they [have].” (7) 
“AI-based tools could explain even more to people who do not know the water or 
wastewater industry as well. [...]. On the other hand, I am not sure that people would 
fully understand or be able to question the results of that tool. But, it could help with 
the explanation or teaching, spreading knowledge.” (16) 

Furthermore, one interviewee explicitly mentioned that InflowGo could be regarded as a game, 
highlighting again the user-friendliness of the tool and its potential for learning by doing. 

“It feels a little bit like a game, like SimCity. You just drag something in and out, and 
you click on something and change the value, and then you have another building there. 
So, that is something that I really liked from this tool, that things are kept very simple. 
I think that it is really important to keep it as simple as possible. [...]. You can play, you 
can change the variable and then you can see the results. So, it is kind of a learning 
tool, and as it is with games, you just learn without really noticing that you have just 
learnt something. I think that it is very, very important that you can see the differences 
when you do something here or do something there, immediately.” (5) 
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Amount of data 

Seven interviewees identified that data plays a significant role in the decision-making 
process in this field: “[it] depends on the quality of the databases” (4). This finding correlates 
with the fundamental principle of data analysis mentioned in the Conceptual framework 
chapter, ‘garbage in – garbage out’, which emphasises that the quality of input data 
fundamentally affects the quality of output data produced by the computing system, regardless 
of the methods used (Kilkenny & Robinson, 2018). Moreover, the amount of data in the field 
was mentioned as one of the biggest challenges: “We use, of course, a lot of data from different 
areas, from different topics, to address the issue in the field of water. There is a lot of different 
data that we need to use to make good planning” (12). 

On the contrary, one interviewee emphasised that “there is a lack of sufficient data and 
measurements” (5). Moreover, it was mentioned that “a lot of cities have different databases, 
they have different data types” (12), which creates yet another obstacle to communication 
between stakeholders. Furthermore, one interviewee emphasised that "there is a lack of data, 
especially when it comes to nature, or green-related, because the blue-green infrastructure, 
sustainable stormwater management, these concepts just emerged 20 years ago” (15). 

Thanks to ML, four interviewees see AI increasing the speed of the calibration of 
hydraulic models, allowing quicker preparation. Moreover, interviewee 4 sees AI as a support 
for gathering and combining data, and interviewee 11 for data quality control and patching.  

“With the help of AI, we can manage to input more data into the algorithm behind it, 
that is beyond the capacity of the practitioner.” (15) 

Indeed, one of the main advantages of AI, that among others can speed up decision-making, is 
its ability to analyse large amounts of data in a shorter time, which is beyond the capability of 
humans (Habbal et al., 2024; Yigitcanlar et al., 2020).  

Linked to the previous point, AI is for seven interviewees beneficial to the decision-
making process in stormwater management due to its promising superior capacities, compared 
to the ones of humans. For instance, AI’s potential was highlighted when it comes to identifying 
an area with the most impacts, to processing and summarising huge amounts of data (textual or 
technical), to automating conventionally heavy workloads, and overall to handling complexity. 

“A normal situation could be that the human who calculates oversees this point, or does 
not recognise this, and I think that does not happen when the AI calculates.” (3) 
“I also think that an AI-based tool could handle a more complex question. I think so 
because our brains are limited.” (16) 

5.2.2. Organisational challenges  

Number of stakeholders 

Although, as previously mentioned, the interdisciplinary nature of the decision-making 
process in stormwater management is noted as a positive aspect, it also brings new challenges. 
Interviewees indicated that the number of stakeholders, depending on the size of the project, 
complexifies the decision-making process. Thus, since stormwater management is part of the 
urban planning process, most projects require the participation and input of various experts in 
the field, which influences project dynamics and communication. Bohman et al. (2020) 
emphasised in their work that cross-sectoral collaboration between different stakeholders is an 
important component of stormwater management and is critical to the development of holistic 
and flexible solutions. The same narrative was found in the works of Cettner et al. (2013) and 
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Skrydstrup et al. (2020), indicating the need for an interdisciplinary approach to urban water 
management involving many active stakeholders with their own objectives. 

“Nowadays we have to consider a lot of stakeholders. […] The requirement is to involve 
every part of the city that [has to be] involved. For example, streets, sewer systems, 
green people who are responsible for the green area, the social part of the city. [...]. 
There are a lot of stakeholders who want to have their own opinion on these solutions, 
in this planning process. It also means that the communication we are using today is 
really different from 20-30 years ago. And we are dealing today more with the 
organisational challenges. We have complex communication between a lot of different 
stakeholders.” (12) 

However, although participation of diverse stakeholders is important, another interviewee noted 
how decision-making is first and foremost associated with the consideration of who to include 
or exclude from the start, and whose objectives to incorporate or not. 

“In the same sector, [participation of stakeholders is] not so difficult because you do 
not need to spend so much time on setting up your results in a way that even someone 
who is not an expert can understand it [...]. You can use your typical vocabulary, which 
is pretty easy. [...]. First, you should think about who is not to be involved for sure in 
the process, and that is basically in the beginning of the project. But in most cases, you 
do not know who not to involve, and then you start talking to the people. But they will 
tell you pretty fast if they do not need to be involved. And then you come to the group 
that has to be involved, and you need to find out their objectives. So, it is just the same 
as for a single process, but just a multi-criteria process in this case.” (5) 

In addition, interviewee 8 noted that due to the workload of stakeholders, they are unable 
to hold additional meetings or workshops despite the value they could add to the decision-
making process: “They do not have the time. They have other things which have a high priority.” 
Moreover, it was emphasised that “the problem is that we do not have so much time and we 
also have to focus on other things. I think that what we do right now is some kind of minimum… 
there are many more possibilities” (8). 

In this regard, it was recognised that the above-mentioned benefits associated with AI, 
namely faster simulations and user-friendliness, save time, and improve interdisciplinary 
collaboration among all stakeholders in the decision-making process, regardless of their level 
of experience in stormwater management. 

Contextual differences and their consequences 

Based on most of the interviews, it became clear that the difference in context, whether 
different countries or different municipalities within the same country, also plays an important 
role in assessing the decision-making process as well as the ability to integrate new technologies 
into existing systems. In this regard, budget limitations were mentioned as a problem for small 
municipalities. Indeed, they affect the development of in-house technical resources, thus small 
municipalities are forced to use third-party modelling services. One interviewee shared that 
they “would preferably want more modelling to have in the decisions”, however, “to do 
additional or extra modelling and simulations by the hired company will increase the budget 
expenses” (16). 

The speed of data analysis and its compilation provided by AI and the possible web-
based nature of AI tools were identified as contributing success factors in addressing budgetary 
constraints. With faster computing, fewer workshops can be held as stakeholders’ comments 
can be shared immediately, and accordingly changes can be made, and different models can be 
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tested. Interviewee 3 emphasised that this makes it quicker and easier to obtain governmental 
approvals and therefore makes the process more cost-effective. Decision-making becomes more 
accessible due to the time gained, as two other interviewees pointed out that the loss of time 
increases costs. This is an important point given the importance of the financial criterion 
discussed earlier. 

Different legislations and rapid changes in the regulations were also mentioned as 
challenges. The interviewees mentioned multiple times that their processes are heavily 
regulated: “the legal framework in Germany has complex requirements” (1). “This field is 
complicated with regards to legislation. The legislation has changed four or five times over the 
last 10 years. And those changes, they affect the decision-making process” (7). Moreover, it 
was noted that climate change is also increasing regulatory requirements. Due to climate 
change, many industries are changing their paradigms, including in stormwater management 
where the need to mitigate the effects of global warming is recognised (Johnson et al., 2022; 
Saraswat et al., 2016). 

5.2.3. Miscellaneous shortcomings 
Time-consuming process 

Overall, 11 interviewees described the decision-making process as slow and time-
consuming. This was associated with the lengthy process of conducting hydraulic simulations 
and modelling while using conventional tools, which can take several hours, as also displayed 
in the literature (Grum et al., 2023; Leskens et al., 2014b; Palmitessa et al., 2022). This is further 
problematic as finding solutions in this field was acknowledged as requiring a lot of 
calculations, especially when comparing all alternatives and proposals. As a result, “the 
calculations and the evaluation of impacts of different scenarios is done not during workshops, 
but basically between workshops” (11). In that sense, Leskens et al. (2014a, p. 1730) illustrated 
this point when highlighting that “model information is prepared prior to multi-stakeholder 
work sessions”. The authors added that this is also due to the expertise needed to handle the 
modelling tools, which AI can potentially help with, as previously discussed. 

AI/ML was also identified by eight InflowGo workshops’ participants as having the 
potential to accelerate the decision-making process by increasing simulation speed of hydraulic 
models, thanks to faster calculations and display of results, as in the literature (Grum et al., 
2023; Palmitessa et al., 2022; Shrestha et al., 2019). The interviews revealed that this benefit is 
also obtained due to the web-based nature of the tool, a contributing success factor for effective 
AI application. Due to this characteristic, the tool can quickly run without initial download, on 
multiple platforms (computers, tablets, smartphones), and even with little computational power. 
Therefore, this advancement in speed potentially grants the opportunity to test different 
alternatives and to incorporate more input as real-time simulations are undertaken, a significant 
feature found in Leskens et al. (2014a). 

“It is so quick to change things and see what is happening. [...]. We can immediately 
decide [if] it is a good measurement, or [if] it does not work we can put it away.” (2) 

Moreover, another interviewee shared the concern that because of the lack of workshops 
due to lengthy simulations, “not all options are always explored [as] some people's input 
arrives very late in the process, whereas it could have been more valuable earlier” (11). 
Consequently, AI can play a role in addressing this shortcoming, as it was described as having 
the potential to “compress five workshops into one” (7). This would enable to quickly change 
plans and thus try different variations of scenarios to compare them more rapidly, to get “the 
right solution faster” (7).  
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Lack of flexibility 

The interviewees also noted that the process of decision-making is not flexible enough. 
Interviewee 5 emphasised that “when you go into a decision-making process, you usually have 
no chance to do some additional modelling or measurements during this decision-making 
process”. It is thus a “linear” (5) process where it is hard to adjust things easily as the modelling 
is too time-consuming. According to two interviewees, this leads practitioners to look only for 
solutions to decisions that had already been made in advance. Leskens et al. (2014a) explained 
further that even if stakeholders come up with new ideas along the process, it would most likely 
lead to technical information becoming quickly obsolete because of lengthy simulations, and 
thus to technical output not matching with decision-makers’ expectations (Leskens et al., 
2014b). In this regard, the modelling speed increase by AI is highlighted again as a potential 
benefit, to improve the flexibility of decision-making. 

Furthermore, the application of AI showed potential in its easy integration in the 
conventional decision-making process. Eight interviewees mentioned that due to increased 
simulation speed, the AI tool accelerates decision-making by allowing the filtering of ideas and 
scenarios in the early stage of the process, which could in turn “break up the linearity” (5). For 
instance, in the conceptual planning phase, when designing “a rough sketch of how the system 
looks” (7), InflowGo was described as beneficial to make fast decisions by quickly providing 
an overview of the behaviour of the stormwater system when implementing different planning 
solutions. The tool was reported to be used as a guide, to preliminarily investigate solutions and 
sort them out, as already done by one workshop participant according to the CEO of InflowGo. 
This confirms the findings of Daalmans’ (2023) thesis which identified InflowGo as a screening 
tool for the same reasons. However, to date, the tool was said to be too limited for detailed 
planning and to make the final decision and needs more development. 

Building on these points, AI is a tool easily implementable with conventional tools, as 
mentioned by two interviewees. This is significant, as it was seen as an advantage for five other 
interviewees to be able to follow-up on the AI-based results giving an early overview with the 
conventional “old-school planning” (1) tools, to “get into details” (5). Indeed, it makes it 
possible to avoid wasting time in the beginning when making long-lasting simulations on 
conventional tools, thus also simplifying the collaboration with the consultancy firm making 
the modelling for some of the interviewees. 

Lack of participation, ownership, and collaboration that create silos 

Eight interviewees explained that the current low speed of the decision-making process 
is also due to the limited availability of stakeholders to participate in additional meetings, and 
by the complexity of communication between stakeholders. Moreover, two interviewees 
emphasised that there is a sense of detachment and a lack of ownership for some stakeholders 
due to the lack of additional workshops, although participation and ownership were identified 
as essential for decision-making by the interviewees and literature (Bohman et al., 2020; 
Kvamsås, 2021; Romano & Akhmouch, 2019). 

“[it] can be quite long and frustrating for some because there is a limit to how many 
times I can invite people to a meeting about a certain project. So, I would like them to 
only maybe meet once and give all their ideas and their views on what solution we 
should choose.” (7) 

Fu et al. (2022) identified two ways to enable direct involvement of decision-makers: improve 
the flexibility of models and lower their present-day high computational time. As recognised 
so far, those are possible benefits of AI, showing its potential to address the current 
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shortcomings in participation. The interviewees also mentioned the potential positive impact 
from increasing simulation speed, saying that “it makes communication with others easier” (1) 
and that “the value of speed is that we can make a tool that is more inclusive” (11). Furthermore, 
AI emulation was recognised as strengthening real-time collaboration, identified by 
interviewees as conventionally complex, with the potential of incorporating more input during 
simulations in workshops. 

“It is easier to incorporate more viewpoints earlier on. And, so, you have less of a risk 
to get lost or to take a path that is maybe not as helpful, less productive, and weaker.” 
(14) 

Additionally, two interviewees would like an AI tool to follow the meeting and gather the inputs 
of different live-prompting stakeholders, in order to come up with “the best solution for the 
environment, for the economy, for the citizens, for the whole picture” (9).  

Regarding improved participation and collaboration, it is important to recall the two 
contributing success factors for the application of AI-based tools for decision-making: their 
user-friendliness and web-based nature. The former was shown to help address the current 
challenge of high expertise needed, thus in turn helping the participation and collaboration of 
more stakeholders in the modelling, and eventually decision-making. Moreover, the web-based 
nature of the tool makes it easy to collaborate with people without having to download anything, 
and in real time on the same model, by adding “sticky notes” (a feature to leave comments on 
all users’ interfaces) in order to gather ideas, share information, and try various alternatives. 

One of the current challenges is the lack of communication among professionals from 
different fields. It was stressed that the current collaboration process “is not interdisciplinary 
enough” (2) and “very isolated” (14), as professionals from different sectors of urban 
development (e.g. road department and green department) “are not used to working together” 
(2, 4). This corroborates Bohman et al.’s (2020) study identifying silo structures in stormwater 
management, as well as findings of Daalmans’ (2023) thesis on the same case study. This can 
also be explained by the fact that professionals do not communicate in the same way, as 
“everyone prepares their own information from a certain stand” (5), leading to 
misunderstandings. Moreover, two interviewees mentioned that the large number of various 
tools, requirements, sets of units, and measurements that are used across departments makes it 
hard to convey a message in an intelligible way, and to visualise each other’s solutions, as in 
Skrydstrup et al. (2020). 

“In my whole education, I did not learn how to communicate with others. It was just 
communication inside your bubble, but not outside.” (5) 

This is problematic since interviewees agreed that the field of water is very complex and cannot 
be addressed in silo, as “every planning decision-making process is unique” (4) and “there are 
always a lot of other fields that you have to think of” (5). 

In this matter, they also presented AI as potentially improving interdisciplinary 
collaboration and breaking silos for reasons previously discussed, namely its use for educational 
purposes and improving participation, ownership, and collaboration. It was indeed reported 
eight times that external stakeholders can be involved from the early stages (and not only later, 
as conventionally) to decide if the result satisfies them or not, allowing them to gain more 
ownership at the same time. Overall, “the involvement of several departments seems to be 
easier” (3) and “it feels like a common decision that has been made” (5). Moreover, due to its 
user-friendliness, the tool was said to facilitate the involvement of non-experts in the modelling 
by four interviewees. 
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5.3. Relevance of AI and expectations to fill more gaps 

The capability of AI/ML is to increase the modelling speed, which in turn has the 
potential to overcome technical and organisational challenges, as well as to help tackling current 
shortcomings. The flexibility of the decision-making process, the involvement and ownership 
of stakeholders, as well as the interdisciplinary input received can be increased, which are all 
characteristics that were seen as essential for successful decision-making, both by the 
interviewees and the literature (Cettner et al., 2013; Gregory et al., 2012; Romano & 
Akhmouch, 2019; Skrydstrup et al., 2020). To illustrate, interviewee 14 sees AI as potentially 
making decision-making “more efficient”, “more robust, and sound”. Moreover, Hering et al. 
(2013) stated how the effective participation of actors can allow the establishment of an 
enabling environment, which facilitates the achievement of future societal needs. 

Based on these potential benefits, some interviewees expressed their opinion on the 
relevance of AI in their profession. Five of them think that it will have a significant role to play 
in stormwater management, including three adding that AI tools are an opportunity that cannot 
be missed, as “it is important for all civil engineers to take the next step” (1). One of the 
InflowGo members considers that this technological advancement will enable the inclusion of 
stormwater management earlier in the general urban planning decision-making, whereas 
currently, water is only dealt with too late. Another interviewee agreed with this, saying that AI 
is a chance to give more focus to the field of stormwater, which importance has “gained 
momentum” (4). 

“I think it is the only way we can go forward as humans, and as engineers, and students, 
and so on as people.” (13) 
This relevance could be echoed in the overarching field of disaster risk reduction and 

climate change adaptation, as positively indicated by 10 interviewees. AI tools such as 
InflowGo could be applied for flood management to compare different risk scenarios quickly 
and collaboratively “with just slight changes in certain parameters” (5), assess the sensitivity 
of elements and impacts of various return period floods, make predictions and verifications, 
and even grasp climate uncertainty better “in order to find out which system is the most resilient 
one” (5). Moreover, interviewees said that AI tools have the potential to foster the 
implementation of NbS and blue-green solutions, and thereby minimise flood risk (Faivre et 
al., 2018; Sowińska-Świerkosz & García, 2022). Finally, interviewees shared the point that it 
is difficult to assess all the possibilities of AI that there will be in the future. 

5.4. AI’s limitations and new challenges 
Despite some potential benefits identified, it was found that AI is not able to address all 

the challenges and shortcomings of conventional decision-making, especially about the 
complexity of the world. Moreover, the application of AI comes with new challenges and 
shortcomings that are necessary to take into consideration to increase its potential. 

5.4.1. Complexity of the world 

As noted earlier, many factors influence the decision-making process. Interviewees 
indicated that compromises must be made as it is impossible to consider every aspect. There is 
no single solution and it is impossible to meet all needs, which leads to the complexity 
interviewees experience in their work. In addition, there are many uncertainties, ambiguities, 
non-linear interactions, and dynamic changes associated with climate change and adaptation 
processes, adding another layer of overall decision-making complexity (Becker, 2024). 
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“I think it is especially this uncertainty. We do not know how the future will be, when 
we talk about climate change adaptation. If we build a structure today or a pipe today, 
then it will remain, or at least it is planned that it will remain for 80 years. So we have 
no idea now how the weather will be in 2100.” (5) 
“Nowadays, you are trying to plan a lot of measures that are on the surface and are 
better for the climate resilience of the cities. In Germany the rules are changing, there 
are more standards to climate resilient planning. And also the topic is more and more 
complex. It is not enough to just consider the problem from the engineering part, but 
also the social part, and so on. Also the planning is also getting more complex, because 
the requirements are more complex.” (12) 

Despite the aforementioned benefits that AI can bring to the field, to date, interviewees do not 
see the opportunity to address the complexity and uncertainty of the world with AI. This may 
be due to the rapid but still emergent development of AI. In that respect, it was expected that in 
the future, an AI tool such as InflowGo will be applied to larger and more complex geographic 
systems in order to better reflect reality. Moreover, one interviewee hoped that AI will bring 
more holism to decision-making by incorporating qualitative data into quantitative data more 
easily. 

5.4.2. New challenges and shortcomings 

The results showed that despite the benefits that AI-based tools can bring to stormwater 
management decision-making, they also reveal new social and technical challenges that can 
hinder their adoption and implementation. 

Ethical concerns 

During each interview, interviewees were also asked whether they see any ethical 
concerns associated with the use of the AI. Seven interviewees, who are acquainted with the 
InflowGo tool, admitted that they do not have any ethical concerns regarding the application of 
this tool in particular. In this regard, it was emphasised that the type of ML implemented in 
InflowGo does not imply the same ethical challenges as generative AI, such as ChatGPT. 
“InflowGo is based on the same calculations as our hydraulic tools” (3), thus it produces 
mathematical results derived from the known data put as input and from which it was trained 
on. Moreover, the developers shared that they are “not using personal data, [and] not doing 
live video streaming analysis” (11), but only accelerating calculations. 

Additionally, in terms of the general application of AI in this field, two interviewees 
stated that they do not see any associated ethical concerns as long as the decision is made by 
humans and not by AI: “if you let the AI-based tool make all the decisions without questioning, 
that would be problematic” (16). In this regard, seven interviewees noted that they would not 
allow AI to make a decision for them but would use it as an assistant to help prepare arguments 
for a decision, since the responsibility for making a decision lies with a person. This can be 
explained by the fact that professionals are generally not willing to blindly believe in results 
just because they are generated by a computer, with or without an AI, taking into consideration 
that as “every modelling software has its uncertainties [...], artificial intelligence also has 
uncertainties” (5). Similar findings were identified in other studies, where the loss of control 
and power over decision-making appears to be a common obstacle to the implementation of AI 
(Bianco, 2021; Booyse & Scheepers, 2024). This social aspect is also related to the 
understanding of technology, the lack of which leading to distrust and rejection of the 
technological solution, as also reflected in the following findings. 
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On a side note, one interviewee believes that “AI-based models will replace the standard 
modelling tools within the next 10 years fully” and that “what InflowGo does now will become 
the standard” (5). In contrast, three interviewees do not see this change happening soon, or 
even at all, because there are currently too many conventional tools needed to make the decision 
safely. 

Resistance to change 

Despite the interviewees’ openness to AI, they noted that there is some reluctance 
among stormwater professionals to embrace new technologies or software, including AI. The 
basic idea is that people get used to a way of working using certain tools, and they may find it 
difficult to adapt to alternatives because “change is always challenging” (2) and “a lot of people 
are tired of being brought to new software they have to work with” (4). To illustrate this point, 
interviewee 4 shared that out of 12 colleagues invited to InflowGo’s workshops, only two 
agreed to participate. 

“For the cities it is more valuable if you use these common software solutions because 
they are known and they know what is behind it.” (12) 

Daniel and Pettit (2021) emphasised that one of the reasons for resistance to change is the 
simple unwillingness of people to learn new ways of doing things. Individuals perceive change 
differently depending on many factors, “some thrive on change while others dislike it and prefer 
maintaining the status quo” (Warrick, 2023, p. 435). A status quo bias was also identified by 
Oschinsky et al. (2021) as they stressed that people may not be ready to adapt to new 
circumstances due to the tendency to maintain habits.  

Another finding revealed that time is an important indicator when adopting new 
technologies, and that people need to gain some experience with the tool to be able to assess its 
applicability in the field. It was also identified by two interviewees that stormwater 
professionals may want to start using AI-based tools later, after they are better developed, and 
others provide “good examples” (13) of their application with clear benefits. Moreover, three 
interviewees emphasised that it also depends on how successful developers and pioneers will 
be in convincing other professionals to try new tools. 

“There are some people who will never be the first to make changes to something new. 
They want to see it be used by someone else first.” (11) 

The results also showed that due to the emerging nature of AI-based tools, their potential 
has not been recognised in the field yet, which is also interrelated with users' awareness of the 
technology. Thus, interviewee 4 shared their opinion on colleagues' perception of AI: “They 
are generally not interested because they do not see the benefits”. This correlates with 
Warrick’s (2023) assertion that change is likely to be resisted due to insufficient reasoning for 
change. This finding is also supported by Bianco (2021) who argued that lack of adequate 
knowledge about AI or misunderstanding of the scope of its application among potential users 
leads to polarisation of their views on the benefits of the technology. Interviewees also 
emphasised that in order to see the benefits of and accept AI solutions, the system must be 
transparent and understandable to users. Moreover, the logic and argumentation of such 
suggestions should be unequivocal: “When it comes to engineering stuff, I do not see any 
problem as long as it is very clear on how the AI is looking at the certain problem” (10). 

Furthermore, interviewee 11 emphasised that “there is a big difference whether the 
technology is catering to a problem (to a pain) or whether it is catering to a gain”. This means 
that sometimes technology solutions are proactive and more focused on improving existing 
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processes or experiences rather than solving a specific problem. Thus, some people may not 
even perceive existing processes as problematic or necessary for improvement and therefore be 
reluctant to adopt new technologies. For example, it might not be perceived as a problem that 
modelling is done between rather than during meetings because it has always been done this 
way. This is where technology adoption is seen as problematic: “it has nothing to do with the 
AI, that is more to do with the fact that improving collaboration is a gain, and it is not a pain” 
(11). This confirms Kahneman and Tversky’s (1979) prospect theory presented earlier that 
depicts the asymmetry between gains and losses. 

Need to understand AI 

When talking about AI perception, interviewees noted that the biggest barrier to its 
acceptance is the fear of the unknown. Lack of understanding of internal working algorithms 
and of AI's complex essence leads to distrust and resistance. Interviewees shared that “often, AI 
is a big scary cloud that nobody knows what is inside” (12) and that “people do not understand 
how AI works. It is like a black box.” (13). They also noted that in order to start applying AI, 
the system must be transparent and comprehensible for users. It was emphasised that AI 
solutions can be accepted if the logic and reasoning behind it can be understood. This concern 
is also linked to the responsibility that decision-makers have, and supports Daalmans’ (2023) 
findings on the same case study. 

“I have to be 100% sure [about] what the system is doing. And with AI at this point, now 
I cannot say that. So I cannot give the responsibility to the online tool. Because it can 
cause damage. So at every point, I have to be sure about everything in the background.” 
(1) 
“If I really use decision-making AI, I really want to know exactly how it works to 
consider if I can agree with the AI.” (2) 
“If people do not understand how it works, the acceptance will not be very high.” (8) 

Many scholars have emphasised the lack of transparency and ‘black box’ nature of AI as its 
major challenges (Arun et al., 2020, as cited in Bianco, 2021; Booyse & Scheepers, 2024; 
Wagner & De Vries, 2019). Transparency and trust are universally identified as a key element 
for successful AI integration and a core value of its ethical use (Habbal et al., 2024; Olsen et 
al., 2024). The AI ‘black box’ effect and AI illiteracy lead to misunderstanding of where data 
comes from and how results are created, which in turn leads to deep mistrust (American 
Planning Association, 2022; Booyse & Scheepers, 2024). Practitioners must be informed about 
how AI-based tools work to be able to build personal trust in its outcomes, and to communicate 
and justify the results to stakeholders (Shrestha et al., 2019). 

Legal aspects 

It was stated by the interviewees that the legal aspect also plays a significant role in the 
implementation of AI applications. Interviewees noted that in order to adopt and use AI in their 
work, they would need approval, general guidance, or legal frameworks from authorities: “if 
the government would say ‘you may use this AI we have approved’, then it is okay for me” (1). 
Moreover, it was emphasised that “the legal part of using AI solutions is not really clear” (12) 
and “there is currently no framework or law that can help me with that [(legitimacy of using 
data created by AI)]” (15). 

As the rapidly emerging and controversial nature of AI raises ethical, legal, and social 
issues, it is crucial to develop and implement new regulations for its development and 
application. Thus, in the European Commission’s (2020) White Paper, Artificial Intelligence: 
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A European Approach to Excellence and Trust, it is stated that both citizens and companies are 
concerned about the legal uncertainty surrounding the application of AI technologies, which is 
holding back their wider adoption. 

Since this study is conducted in a European context, it is worth mentioning two 
regulations recently adopted by the European Union (EU) to address challenges with AI 
adoption. In 2018, the General Data Protection Regulation (GDPR) came into force in the EU, 
which requires, among other things, transparency in the field of AI. Thus, according to the 
GDPR, in order to remove the ambiguity around AI, developers are required to provide 
information in an accessible form about the logic behind the automated solution, without 
necessarily disclosing the full algorithm (European Commission, 2018). Moreover, in March 
2024, the EU adopted a pioneering legislative measure, the Artificial Intelligence Act, which 
aims to provide a comprehensive framework for the development and application of AI. It aims 
to empower end-users, individuals, and organisations through its core principles of 
transparency, accountability, and data protection (Musch et al., 2023). 

Cybersecurity 

Five interviewees expressed their concerns regarding cybersecurity. One of the aspects 
of this challenge is that “the data that you have to transfer to the InflowGo service is potentially 
sensitive data. It is critical infrastructure. So it might be a problem” (5). This is related to 
another issue not directly linked to AI, but rather to the web-based nature of the tool, namely 
the physical location and access to the servers on which the tool runs: “There is always a data 
security issue once you are using the web” (11) and “all cities have different guidelines because 
web security is still a new topic” (14). Thus, interviewees from Germany emphasised that “it is 
important that the service which runs the programme, where it is hosted, is in Europe” (1) and 
“to make sure that you, as a provider of the InflowGo system, know where your data is stored, 
always” (5). The representatives of InflowGo shared how they plan to prevent such concerns, 
for example by having in-house servers, and by training the AI on general data, or potentially 
on the municipalities’ data with a clause permitting it.  
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6. Conclusion 

The pressing issues of climate change and urban development that humanity is currently 
facing underline the importance of this study. By identifying new opportunities and challenges 
from the case study of the InflowGo tool – a model for stormwater management based on AI – 
the research contributes to the emerging knowledge in potential effects that AI application in 
urban stormwater management decision-making can have. Moreover, it helps to appraise 
contributing factors to the successful application of an AI-based tool in this specific context. 

The results of the study were obtained by analysing 16 semi-structured interviews with 
urban stormwater professionals from Germany, Denmark, and Sweden. Some of the 
interviewees were participants in WaterZerv's workshops on the development of the InflowGo 
tool. The InflowGo case study provided feedback from practical knowledge and hands-on 
experience. 

The research identified that the decision-making process in stormwater management is 
complex and depends on many factors. It is driven by the legislation and institutional rules of 
urban planning, and requires close interaction between different stakeholders, as stormwater 
management is an integral part of urban development. Moreover, an effective decision-making 
process requires specific technical expertise to analyse and model different scenarios, evaluate 
alternatives, and process large amounts of data using specialised tools and software.  

It was found that stormwater professionals are challenged in the conventional decision-
making process by several issues. Experience and significant expertise with complex software 
and tools are needed to understand their operation and interpret the outputs. Extensive amounts 
of data need to be analysed and their quality assessed during the process. Additionally, the 
number and variety of stakeholders that need to be included, collaboration and communication 
constraints associated, as well as the slowness due to time-consuming conventional tools and 
stakeholders' involvement further complicate the process. Moreover, the linearity of the process 
hinders flexible adjustments. Other limiting factors are the high dependency on the context and 
the consequences related to different resources available and changing legislation. 

The research showed that the main potential benefit of AI/ML in stormwater 
management is to accelerate decision-making, by increasing the speed of data processing and 
hydraulic simulations compared to the conventional tools, and by suggesting capabilities 
superior to those of humans. Due to these abilities, AI/ML also shows potential in fostering 
collaboration between different stakeholders, breaking silos, enabling real-time adjustments, 
and improving ownership. Subsequently, these advantages can support educational purposes 
for non-experts’ participation. Consequently, the application of AI/ML in stormwater 
management decision-making appears to be relevant for this field, and thereby for disaster risk 
management and climate change adaptation. 

Furthermore, the InflowGo tool case study made it possible to identify key success 
factors for the application of AI-based tools: user-friendliness and web-based support. The user-
friendliness of the tool plays a crucial role in its accessibility and seems to enable the 
involvement of all stakeholders in the decision-making process, regardless of their level of 
experience in stormwater management. Thus, improved interdisciplinary cooperation and the 
ability to incorporate inputs from different stakeholders at an early stage of the decision-making 
process have the potential to make decisions more effective. The web-based nature of the tool, 
paired with AI, allows to accelerate decision-making, which eases the budget constraints and 
makes the tool available with little computational power for increased and easier collaboration. 
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While AI-based tools can solve and alleviate most of the identified challenges and 
shortcomings associated with current decision-making approaches, the complexity of the world 
and uncertainty associated with climate change were identified by the research participants as 
impossible to currently solve with AI. Moreover, AI-based tools also create new challenges and 
disadvantages. These include concerns about: ethics, decision control, and responsibility; 
resistance to change and lack of openness to new technologies; transparency and perception of 
AI as a ‘black box’; legal aspects of AI applications; and cybersecurity issues. The listed 
challenges and shortcomings are limited by the scope of the study and the methodological 
approach and are thus not exhaustive. Nevertheless, these results can be considered as a source 
of feedback for further development, which sheds light and raises awareness on challenges of 
AI in decision-making that are important to address for general application. 

Given the limits of the case study, more investigation dealing with the context of AI 
application would be valuable to add on to this research. In that respect, it is worth testing the 
replicability of its findings by examining the application of an AI-based tool within different 
geographical and development settings with various enabling environments, as well as within 
different professional sectors of urban planning and decision-making. Evaluating the 
application of a fully developed AI-based tool is also considered as valuable, in order to 
compare it with this research where the tool is still in development. 

Further research could also explore more in depth the added value of decision support 
AI tools for educational functions. This study’s finding deserves further attention in order to 
delve into the training and learning outcomes that such tools can have for practitioners, students, 
and non-experts, to potentially foster further engagement, interaction, as well as multi- and 
transdisciplinary decision-making. In this regard, further research could explore the concepts 
of ‘collaborative learning’ (Voinov & Bousquet, 2010), ‘learning-by-doing’ (Hung & Hobbs, 
2019), as well as ‘serious game’ and ‘gamification’ (Fox et al., 2022; Mittal et al., 2022; Teague 
et al., 2021) in relation to AI tools’ application.  
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Appendices 

Appendix 1. Consent form 

We, Sofia Bilmes and Antoine Berment, are two students from the Faculty of Engineering of 
Lund University, studying the last year of our Master programme Disaster Risk Management 
and Climate Change Adaptation (DRMCCA). We are writing a Master thesis titled Artificial 
Intelligence based tool for decision-making in urban stormwater management, which purpose 
is to identify and appraise the potential opportunities and challenges that an AI-based tool can 
provide to decision-making in urban stormwater management. 

For InflowGo’s workshops participants: 

In this regard, we are planning to conduct semi-structured interviews with cities or 
utilities which members are participating in workshops with InflowGo, to investigate the 
implementation of the tool by different users within its real-life context. With this 
approach, we are going to focus on the process of the application of the tool in the 
decision-making process and reflect on the outcomes of its implementation. We are 
aiming to investigate how the application of this tool alters the decision-making process. 

For InflowGo developers: 

In this regard, we are planning to conduct semi-structured interviews with InflowGo 
members, to investigate the development of the tool. With this approach, we are going to 
focus on the process of the application of the tool in the decision-making process and 
reflect on the outcomes of its implementation. We are aiming to investigate how the 
application of this tool alters the decision-making process. 

For other urban water professionals: 

In this regard, we are planning to conduct semi-structured interviews with urban 
stormwater management professionals. Our objective is to gather firsthand insights into 
the existing conventional decision-making processes in urban stormwater management, 
distinct from AI-driven approaches. Additionally, we seek to understand professionals’ 
perception of the future of the field. 

For ethical reasons in academic research, you as an interviewee must explicitly approve the 
conditions of your involvement and how the data collected will be used. Kindly read and sign 
this consent form to assure that you understand and agree with the following: 

● I agree to participate in an online 45-60 minute interview to share my professional 
experience and knowledge. 

● I understand that my participation is voluntary, thus I can withdraw from the project at 
any time and refuse answering any question without any consequence. 

● I agree to my interview being audio-recorded and fully transcribed. 
● I understand that the data collected is used for research purposes in this thesis project 

and possible future publications. 
● I understand that all information provided is treated confidentially, except the 

profession / sector and country of exercise, as cross-sector collaboration for decision-
making is an essential aspect under study. 

● I understand that my identity remains anonymous, even when being quoted. 
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● I agree that I understand the purpose of this research and that I can ask questions about 
it. 

● I understand that I can request access to the information provided and to the published 
article. 

 

Signature of research participant:   Date: 

 

 

………………………………………  ……………………………………... 

 

 

In case of questions, please contact us: 

Sofia Bilmes, sofia.bilmes@gmail.com; Antoine Berment, bermentantoine@gmail.com 

Our supervisor, Mo Hamza, mo.hamza@risk.lth.se 
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Appendix 2. Interview guides 

Appendix 2.1. Interview guide for InflowGo’s workshops participants 

A.   The interviewee: 

1. What is your job/field of profession, described generally? 
2. What is your role in urban planning, and more precisely in urban stormwater 

management? 
3. Can you provide an overview of your role in InflowGo’s seminars and workshops? 

B.   The conventional (non-AI) decision-making process: 
1. What do you understand about the process of decision-making? 

➢ different steps, objectives, success factors / pre-conditions needed, challenges  
2. What conventional processes (methods and tools) are currently being used/prevalent 

for decision-making without the use of Artificial Intelligence / Machine Learning 
(AI/ML) in the field of urban stormwater management? 

3. How are these processes conducted? 

➢ short description (e.g. about length, time pressure, complexity, uncertainty and 
making assumptions, available means and resources…) 

➢ do decision-makers need to receive information from multiple various 
stakeholders? 

4. Have you had any experience with decision-making/planning tools in stormwater 
management? If yes, could you provide examples? 

5. To sum up, what are your views on the current situation of decision-making (without 
AI/ML) in the field of urban stormwater management? (Can you describe it with 1-3 
adjectives?) 

➢ contributions to decision-making in stormwater management; advantages; 
shortcomings and limitations for addressing current challenges 

➢ how are the following: participation of stakeholders (and what type?), 
collaboration (intra- and inter-sector), social learning and/or tangible outcomes 
of a workshop, etc.  

C.   The AI-based decision-making process: 
1. Have you had any experience with AI/ML-based tools for decision-making in this 

field? If yes, could you provide examples? 
2. How do you see AI/ML (generally) supporting the process of decision-making? (its 

potential) 

➢ proactively, during workshops and the decision-making process, and after 

➢ what do you think you can do with AI-based tools for decision-making? (e.g. 
simulations, scenario comparisons, mapping, identifying the resources for 
implementation, planning and/or response?…) 

3. How has the introduction of AI impacted the overall decision-making process in 
stormwater management? (Can you describe it with 1-3 adjectives?) 
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4. What gaps or challenges in the current decision-making tools do you think an AI-
based tool can address effectively? What is the added value? 

D.   The InflowGo tool: 

1. Do you find InflowGo user-friendly? 
2. In your opinion, how easily can this tool be integrated into the existing stormwater 

management decision system? 
3. How do you see change in the process of decision-making with InflowGo? Does it 

make the process of decision-making easier or more complex? 

➢ how are the following: participation of stakeholders (and what type?), 
collaboration (intra- and inter-sector), social learning and/or tangible outcomes 
of a workshop, etc.  

4. Have you observed any challenges that, with the aid of InflowGo, became solvable or 
significantly easier to address, compared to when they were previously deemed 
impossible or highly challenging with conventional methods? 

5. Is the information produced with InflowGo reliable for practical decision-making? 
(e.g. to implement urban projects like Nature-based solutions, disaster risk reduction 
and climate change adaptation measures, urban planning…) 

➢ are predictions realistic? is the information accurate? how is uncertainty 
quantified? 

➢ are the outputs obtained through the application of the tool clear and easily 
translatable/understandable to all stakeholders? 

➢ what criteria for decision-making are evaluated? only physical/technical or 
also societal values? 

6. While addressing certain gaps, have you noticed any new shortcoming or challenges 
introduced by the utilisation of this tool? Do you have any recommendations for 
improving the integration or utilisation of this tool? 

E.   Perception of AI: 
1. How do other colleagues in your field perceive AI/ML and a tool such as InflowGo? 

Have you heard about a similar tool already being used? 
2. Are there any ethical considerations or social implications associated with the use of 

AI and InflowGo you have encountered? Do you have any concerns? 

F.   The future of the field: 
1. How do you see the future of AI in stormwater management decision-making 

evolving, considering the current advancements and challenges? 
2. Do you think this tool is important for future issues with decision-making and why? 

➢ with stormwater management and more generally urban planning? 

➢ with disaster risk reduction and climate change adaptation?  
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Appendix 2.2. Interview guide for InflowGo developers 

A.   The interviewee: 
1. What is your job, and role in InflowGo? 
2. What was your role in urban planning, and more precisely in urban stormwater 

management, before InflowGo? 

B.   The conventional (non-AI) decision-making process: 
1. What do you understand about the process of decision-making? 

➢ different steps, objectives, success factors / pre-conditions needed, challenges  
2. What conventional processes (methods and tools) are currently being used for 

decision-making without the use of Artificial Intelligence / Machine Learning 
(AI/ML) in the field of urban stormwater management? 

3. How are these processes conducted? 

➢ short description (e.g. about length, time pressure, complexity, uncertainty and 
making assumptions, available means and resources…) 

➢ do decision-makers need to receive information from multiple various 
stakeholders? 

4. Have you had any experience with decision-making/planning tools in stormwater 
management? If yes, could you provide examples? 

5. To sum up, what are your views on the current situation of decision-making (without 
AI/ML) in the field of urban stormwater management? (Can you describe it with 1-3 
adjectives?) 

➢ contributions to decision-making in stormwater management; advantages; 
shortcomings and limitations for addressing current challenges 

➢ how are the following: participation of stakeholders (and what type?), 
collaboration (intra- and inter-sector), social learning and/or tangible outcomes 
of a workshop, etc. 

C.   The AI-based decision-making process: 
1. Have you had any experience with AI/ML-based tools for decision-making in this 

field other than InflowGo? If yes, could you provide examples? 
2. How do you see AI/ML (generally) supporting the process of decision-making? (its 

potential) 

➢ proactively, during workshops and the decision-making process, and after 

➢ what do you think you can do with AI-based tools for decision-making? (e.g. 
simulations, scenario comparisons, mapping, identifying the resources for 
implementation, planning and/or response?…) 

3. How has the introduction of AI impacted the overall decision-making process in 
stormwater management? (Can you describe it with 1-3 adjectives?) 

4. What gaps or challenges in the current decision-making tools do you think an AI-
based tool can address effectively? What is the added value? 

D.   The InflowGo tool: 
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1. Why was InflowGo founded? 

➢ solve a problem/meet a certain need? increasing development of AI?  
2. How complex is it to train the algorithm for ML? And to add new information or 

change it if required? 

➢ During workshops, was the tool found to be user-friendly? 
3. In your opinion, and based on the feedback, how easily can this tool be integrated into 

the existing stormwater management decision system? 
4. How do you see change in the process of decision-making with InflowGo? Does it 

make the process of decision-making easier or more complex? 

➢ how are the following: participation of stakeholders (and what type?), 
collaboration (intra- and inter-sector), social learning and/or tangible outcomes 
of a workshop or exchange, etc. 

5. Have you observed any challenges that, with the aid of InflowGo, became solvable or 
significantly easier to address compared to conventional methods? 

6. How do you perceive the validity of InflowGo? 

➢ According to the feedback, is the information produced with InflowGo reliable 
for practical decision-making? (e.g. to implement urban projects like Nature-
based solutions, disaster risk reduction and climate change adaptation 
measures, urban planning…) 

➢ are predictions realistic? is the information accurate? how is uncertainty 
quantified? 

➢ are the outputs obtained through the application of the tool clear and easily 
translatable/understandable to all stakeholders? 

➢ what criteria for decision-making are evaluated? only physical/technical or 
also societal values? 

7. Have you noticed any new shortcomings or challenges introduced by the utilisation of 
this tool? 

8. What are the next development steps/objectives for InflowGo? 

➢ actual integration of AI, flood management… 
9. What are your hopes and expectations for the tool in the future? 

E.   Perception of AI: 
1. How do other colleagues in your field perceive AI/ML and a tool such as InflowGo? 

Have you heard about a similar tool already being used? 
2. Are there any ethical considerations or social implications associated with the use of 

AI and InflowGo you have encountered? Do you have any concerns? 
3. Can you identify obstacles to the development and application of AI? 

F.   The future of the field: 
1. How do you see the future of AI in stormwater management decision-making 

evolving, considering the current advancements and challenges? What are your 
expectations? 
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2. Do you think this tool is important for future issues with decision-making and why? 

➢ with stormwater management and more generally urban planning? 

➢ with disaster risk reduction and climate change adaptation?  
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Appendix 2.3. Interview guide for other urban water professionals 

A.   The interviewee: 
1. What is your job/field of profession, described generally? 
2. What is your role in urban planning, and more precisely in urban stormwater 

management? 

B.   The conventional (non-AI) decision-making process: 
1. What do you understand about the process of decision-making? 

➢ different steps, objectives, success factors / pre-conditions needed, challenges  
2. What conventional processes (methods and tools) are currently being used/prevalent 

for decision-making without the use of Artificial Intelligence / Machine Learning 
(AI/ML) in the field of urban stormwater management? 

3. How are these processes conducted? 

➢ short description (e.g. about length, time pressure, complexity, uncertainty and 
making assumptions, available means and resources…)  

➢ do decision-makers need to receive information from multiple various 
stakeholders? 

4. Have you had any experience with decision-making/planning tools in stormwater 
management? If yes, could you provide examples? 

5. To sum up, what are your views on the current situation of decision-making (without 
AI/ML) in the field of urban stormwater management? (Can you describe it with 1-3 
adjectives?) 

➢ contributions to decision-making in stormwater management; advantages; 
shortcomings and limitations for addressing current challenges 

➢ how are the following: participation of stakeholders (and what type?), 
collaboration (intra- and inter-sector), social learning and/or tangible outcomes 
of a workshop, etc. 

C.   The AI-based decision-making process: 
1. Have you had any experience with AI/ML-based tools for decision-making in this 

field? If yes, could you provide examples? 
2. How do you see AI/ML (generally) supporting and changing the process of decision-

making? (its potential) 

➢ proactively (e.g. to pre-calculate overflow/flood scenarios), during workshops 
and the decision-making process (e.g. increase exchange of information and its 
speed…), and after (i.e. evaluation of the decision). 

➢ what do you think you can do with AI-based tools for decision-making? (e.g. 
simulations, scenario comparisons, mapping, identifying the resources for 
implementation, planning and/or response?…) 

3. In your opinion, how easily can AI be integrated into the existing stormwater 
management decision system? 

➢ Would it make it easier or more complex? 
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4. How has the introduction of AI impacted the overall decision-making process in 
stormwater management? (Can you describe it with 1-3 adjectives?) 

5. What gaps or challenges in the current decision-making tools do you think an AI-
based tool can address effectively? What is the added value? 

D.   Perception of AI: 
1. What is your perception of AI? Do you feel ready to use AI more in your work? 
2. What do you need to accept and trust a tool based on AI for decision-making?  

➢ reliability and validity of the results, uncertainty, user-friendliness, approval by 
influential or public stakeholder… 

3. How do other colleagues in your field perceive AI/ML?  
4. Are the legislation and public authorities allowing the development and application of 

AI? 
5. Are there any ethical considerations or social implications associated with the use of 

AI you have encountered? Do you have any concerns? 

E.   The future of the field: 
1. How do you see the future of AI in stormwater management decision-making 

evolving, considering the current advancements and challenges? Your expectations? 
2. Do you think AI is important for future issues with decision-making and why? 

➢ with stormwater management and more generally urban planning? 

➢ with disaster risk reduction and climate change adaptation? 
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Appendix 3: List of interviewees 

# Profile Country Date Duration (min) 

1 InflowGo’s workshops participant Germany 23/02/2024 57 

2 InflowGo’s workshops participant Germany 27/02/2024 42 

3 InflowGo’s workshops participant Germany 29/02/2024 33 

4 InflowGo’s workshops participant Germany 01/03/2024 33 

5 InflowGo’s workshops participant Germany 04/03/2024 50 

6 InflowGo’s workshops participant Germany 08/03/2024 18 

7 InflowGo’s workshops participant Denmark 13/03/2024 35 

8 Other urban water professional Germany 21/03/2024 31 

9 InflowGo’s workshops participant Denmark 21/03/2024 18 

10 Other urban water professional Sweden 21/03/2024 30 

11 InflowGo developer Denmark 22/03/2024 60 

12 Other urban water professional Germany 25/03/2024 33 

13 Other urban water professional Germany 25/03/2024 32 

14 InflowGo developer Denmark 26/03/2024 36 

15 Other urban water professional Sweden 26/03/2024 32 

16 Other urban water professional Sweden 26/03/2024 26 

 

 

	


