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Abstract :  

 

Detection of tool wear is critical in optimizing tool change strategies and cutting parameter selection 

to influence productivity, cost, and quality in metal cutting. Nonetheless, current practices for tool 

wear detection majorly depend on manual, inconsistent, and time-consuming visual inspection by 

operators. 

 Tool wear detection has the potential to greatly benefit from recent advances in artificial intelligence, 

computer vision, and deep learning. This thesis investigates the use of deep learning and image 

classification techniques to detect tool wear in metal cutting. The research involves performing 

empirical machining tests to create a diverse dataset of tool wear images under various cutting 

conditions, tool geometries, and workpiece materials. The images are annotated with the corresponding 

wear metrics such as flank wear, crater wear, and wear morphology. 

Using the PyTorch deep learning framework in Python, we create and train a Convolutional Neural 

Network (CNN) on the tool wear image dataset. Transfer learning is used to fine-tune pretrained CNN 

architectures for the tool wear classification task. To make the model robust and improve 

generalization, data augmentation and cross-validation are implemented. The performance of the CNN 

model is evaluated on unseen test images and benchmarked against traditional computer vision 

methods. 

In addition, the thesis investigates the relationship between the extracted CNN features, the cutting 

parameters, and the wear values measured. To interpret the CNN detections, the wear images are 

analyzed using Gradient-weighted Class Activation Mapping (Grad-CAM) and the regions of interest 

are highlighted. The proposed deep learning-based tool wear detection approach offers encouraging 

results compared to manual examination in terms of accuracy, reliability, and efficiency. The 

development demonstrates the potential for integration with actual tool condition monitoring and 

cutting process optimization systems. Hence, this investigation provides groundbreaking insights into 

the field of smart manufacturing and Industry 4.0. It offers clear recommendations on AI-driven 

manufacturing to strengthen efficiency. 

 

Keywords: Tool wear, metal cutting, deep learning, convolutional neural networks, image 

classification, PyTorch, smart manufacturing. 
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1.0 Introduction 

 

1.1 Background and Motivation 

Manufacturing industries heavily rely on metal cutting processes, such as drilling, milling, and turning. 

These processes involve numerous variables that determine the quality and efficiency of the operation. One 

of the most significant factors affecting these processes is tool wear, which is inevitable during cutting 

operations. Tool wear leads to the deterioration of tool quality and can eventually result in tool failure. As 

the tool wears, it changes the geometry of the cutting tool, increasing cutting forces, reducing dimensional 

accuracy, and causing poor surface integrity of the machined components. Progressive wear can lead to 

catastrophic tool failures, damaging the workpiece, machine tool, and posing potential risks to operator 

safety. Therefore, detection of tool wear is critical for establishing process stability, product quality, and 

overall manufacturing efficiency. 

The monetary consequences of tool wear are significant. Worn tools lead to increased tooling costs and 

lower productivity due to more frequent replacements, higher tool consumption, and associated costs. 

Additionally, tool wear can increase scrap rates, rework, and machine downtime, considerably raising 

overall manufacturing costs. Developing an efficient tool wear detection system can improve tool life, 

reduce tooling costs, and enhance overall equipment effectiveness (OEE).[18][11] 

Implementing an efficient tool wear detection system offers numerous benefits. Accurate detection of tool 

wear and optimization of tool life can save manufacturers significant costs by minimizing machine 

downtime and reducing tooling expenses. These systems can detect tool anomalies, preventing catastrophic 

failures and ensuring consistent product quality. Tool wear detection systems are designed to integrate with 

production planning and control systems, improving overall equipment effectiveness and streamlining 

manufacturing processes.[14][12]  

Recently, there has been growing interest in leveraging artificial intelligence (AI) and machine learning 

methods for tool wear detection and classification. Traditional approaches, such as statistical and physical 

models, often fail to capture the intricate, non-linear relationships between tool wear and various process 

parameters. AI-based methods, particularly deep learning, have emerged as valuable tools for feature 

extraction from sensor data and accurate detection of tool wear conditions.[13][16] 

Integrating AI-based tool wear detection systems aligns with the objectives of Industry 4.0 and smart 

manufacturing. By deploying data analytics and machine learning, manufacturers can achieve intelligence 

and adaptivity in manufacturing processes. Detection of tool wear enables autonomous decision-making to 

optimize process parameters for enhanced manufacturing performance and efficiency. This approach also 

supports detective maintenance, allowing for run-to-failure policies and improved asset 

utilization.[17][18].  
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The use of deep learning and image classification techniques for detecting tool wear is driven by the 

limitations of traditional research methods, which often fall short in detection and precision machining in 

advanced manufacturing industries. Applying AI to tool wear detection brings opportunities for sustainable 

development in modern manufacturing, contributing to intelligent and sustainable manufacturing practices. 

To collect high-quality data in real-time and accurately detect tool wear states, sophisticated deep 

convolutional neural networks and computer vision techniques are employed to extract significant 

characteristics from tool wear images and effectively classify wear states.[5] 

 

1.2 Problem Statement 

In metal cutting operations, tool wear is a critical issue that significantly affects the performance of 

machining processes. During such operations, cutting tools undergo gradual wear, resulting in reduced 

cutting efficiency, poor surface finish, and dimensional inaccuracies in the machined parts. 

Furthermore, in its extreme forms, tool wear can lead to sudden tool failure with costly consequences. 

Once a tool fails, the workpiece is usually damaged, the machine tool may be harmed, and production 

is disrupted, resulting in significant losses for the manufacturer. 

Current tool wear detection methods face challenges in achieving high accuracy, reliability, and 

practicality. Traditional methods, such as offline tool inspection and operator judgment based on 

experience, are subjective, time-consuming, and prone to human error. The lack of real-time tool wear 

information hinders the optimization of tool life and the prevention of unexpected tool failures. 

Although many statistical and physical models for tool wear detection have been developed, the 

complex and non-linear relationships between tool wear and process parameters often limit their 

practical application. 

There is an urgent need for a non-invasive, automatic, and real-time wear detection system in the 

manufacturing field. Such a system should accurately detect tool wear levels and provide valuable 

information for decision-making, enabling the optimization of cutting processes and enhancing the 

efficiency of manufacturing industries. Real-time monitoring of tool wear during the machining 

process will help factories replace tools based on their actual condition rather than relying on periodic 

changes. This approach can reduce unnecessary tool waste and maximize tool life. 

Creating a robust and adaptable model to detect the extent of cutting tool wear is a challenging 

problem. The diverse range of cutting tools, with varying geometries and materials, exhibit different 

wear patterns and rates. Additionally, numerous factors influence the wear process, including cutting 

speed, feed rate, depth of cut, and material properties of the workpiece. Consequently, a useful model 

must account for this diversity and perform effectively across different tool types and cutting 

conditions. 

Accurate classification of tool wear is crucial for implementing timely tool replacements and reducing 

machine downtime. By precisely identifying the current level of wear on a cutting tool, manufacturers 

can make informed decisions about tool replacement, avoiding premature replacements or using tools 

beyond their optimal life. This, in turn, leads to reduced tooling costs, improved product quality, and 

minimized unplanned machine downtime. 
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Deep learning and computer vision techniques offer great potential in addressing the limitations of 

traditional tool wear detection methods. Convolutional Neural Networks (CNNs), a type of deep 

learning algorithm, have demonstrated outstanding performance in image-based recognition and 

classification tasks. By leveraging the versatility of deep learning algorithms, it is possible to 

automatically extract relevant features from tool wear images and accurately detect wear states, 

overcoming the subjectivity and inconsistency of manual evaluations.  

The development of an AI-based tool wear detection system aligns with the goals of sustainable and 

intelligent manufacturing. It contributes to sustainability initiatives by optimizing tool life and 

reducing waste. Real-time monitoring and detective maintenance enabled by AI technologies can 

minimize unplanned downtime, improve asset utilization, and enhance overall manufacturing 

performance. The integration of AI-based tool wear detection into manufacturing processes is a 

significant step towards Industry 4.0 and smart manufacturing. 

1.3 Research Objectives 

The primary goal of this research is to develop an accurate and reliable system for detecting and 

classifying tool wear using image processing and deep learning techniques. This system aims to 

provide  insights for optimal cutting parameter adjustments to improve overall manufacturing 

productivity. 

 

Specific Objectives: 

 

Data Collection and Preparation: Gather a diverse collection of tool wear images under various 

cutting conditions and tool types. This dataset should include a range of wear severities and patterns 

to ensure the system's reliability and broad applicability. 

 

Model Development and Optimization: Develop and optimize a deep learning model, specifically a 

convolutional neural network (CNN), for precise segmentation and classification of tool wear regions. 

This includes refining the model's hyperparameters and structure to enhance both precision and speed. 

 

Image Processing Pipeline: Create an automated image processing pipeline to collect, prepare, and 

segment tool wear images. This pipeline should handle tasks such as image normalization, noise 

elimination, and region of interest extraction. 

 

Generalization and Validation: Evaluate the model's ability to generalize to new tool types and 

cutting conditions. Test the detective model on unseen data to verify its accuracy in varied scenarios 

and ensure its robustness and practicality in real-world applications. 

 

Industrial Integration and Recommendations: Develop guidelines for integrating the AI-based tool 

wear monitoring system into industrial settings. This includes recommendations on hardware and 

software requirements, data management strategies, and addressing potential deployment challenges. 
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1.4 Proposed Methodology and Expected Outcomes 

 

The proposed approach in this study includes designing a deep learning-based tool wear detection and 

classification system using CNN (Convolutional Neural Network) and instance segmentation 

techniques. By taking advantage of deep learning, the proposed approach can automatically learn 

useful feature representations from the tool wear images and reliably detect the tool wear states of 

cutting tools. 

In order to train and validate the deep learning model, a dataset of tool wear images will be acquired 

across multiple cutting conditions and tool types. The dataset will consist of various wear patterns, 

severities, and tool geometries to guarantee the effectiveness and versatility of the proposed system.  

 

In detail, we will conduct machining experiments during which the cutting parameters (e.g., cutting 

speed, feed rate, and depth of cut), work materials, and tool types are varied, and images of the cutting 

tools are taken periodically. To automate the acquisition, pre-processing, and segmentation of tool 

wear images, we will build an image processing pipeline. Image normalization, noise reduction, and 

region of interest extraction are some of the tasks that the pipeline will handle. In order to improve 

image quality and ensure accurate wear region segmentation, cutting-edge image processing 

technologies such as edge detection, thresholding, and morphological operations will be employed. 

 

Figure 1.The classical structure of convolutional neural networks (CNNs).[F2] 

Figure 2. Difference between segmentation methods [F1] 
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The anticipated result of this study is to establish an effective and reliable tool wear detection and 

classification system based on deep learning. This system could be used to examine cutting tool images 

and deliver  information on tool wear status. The techniques of CNN and instance segmentation will 

be utilized to achieve high-precision wear region detection and classification, surpassing the 

performance of traditional techniques. 

 

This system brings a wide array of benefits. First, as mentioned above, it enables accurate estimation 

of tool life. In addition, by incorporating the AI-based tool wear detection system into manufacturing 

processes, intelligent and sustainable manufacturing can be achieved.  detection of wear will promote 

data-driven decision-making, enable dynamic process optimization and adaptive control, and 

ultimately contribute to better resource utilization, waste reduction, and overall equipment 

effectiveness enhancement. 

 

The research work performed in this thesis holds the possibility of making significant contributions to 

the field of tool condition monitoring. It aims to address the limitations of existing approaches and 

provide a more robust and efficient solution for industrial application by advancing the state-of-the-art 

in tool wear detection and classification using deep learning. The methodology developed through this 

study, together with the knowledge acquired, will provide new opportunities for research in the future 

and can facilitate rapid advancements in the field of smart manufacturing. 

 

In summary, the methodology and anticipated outcomes of this study align with the goal of developing 

an accurate, robust, and applicable tool wear detection system using deep learning and image 

classification techniques. Successful implementation of the proposed methodology has the potential to 

revolutionize tool condition monitoring practices in the manufacturing industry and significantly 

contribute to the growth, quality, and sustainability of manufacturing processes. 
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2.0 Literature Review 

2.1 Overview of tool condition monitoring techniques 

Tool wear detection techniques can be broadly classified into two major categories: direct and indirect 

methods. Direct methods involve capturing the tool geometry and wear progression directly using 

optical, vision-based, and radioactive techniques. Optical methods use microscopes or cameras to 

image the tool directly. Vision systems employ image processing algorithms to quantify the wear area 

and parameters from the captured tool images. For example, Kurada and Bradley (1997) developed a 

vision-based system using charge-coupled device (CCD) cameras and image processing algorithms to 

measure flank wear and crater wear with a precision of 95%. Radioactive techniques measure the 

amount of radioactive particles in the chips or tool, indicating the tool wear volume. However, the 

application of direct methods is limited due to the harsh machining environment, coolant, and chip 

interference.[20] 

 

Indirect methods track various signals resulting from tool condition, such as cutting forces, vibrations, 

acoustic emissions, spindle power, and temperature. These signals change as the tool wears, and 

empirical models or machine learning approaches are used to systematically measure the conditions. 

For instance, indirect methods have been employed to measure cutting forces and vibrations to infer 

tool wear. Sensor fusion techniques, which combine data from multiple sensors, have been developed 

to improve the robustness of indirect tool wear detection.[20] 

 

2.1.1 Types of Tool Wear 

To better understand the tool wear phenomena and the detection techniques discussed, it is essential 

to introduce the main types of tool wear encountered in machining processes. The most common types 

of tool wear include:[19] 

1. Flank Wear: Occurs on the flank face of the cutting tool, caused by abrasive wear mechanisms, and 

is often used as a criterion for determining tool life. 

2. Crater Wear: Appears on the rake face of the cutting tool, caused by a combination of abrasive, 

adhesive, and diffusive wear mechanisms, affecting the chip formation process.  

3. Notch Wear: A localized wear pattern at the depth of cut line, typically due to the abrasive action of 

the work-hardened surface layer or built-up edge. 

4. Built-up Edge (BUE): An accumulation of workpiece material on the cutting edge, changing the 

effective tool geometry and leading to poor surface finish and dimensional inaccuracy. 

5. Chipping and Breakage: Sudden failures of the cutting edge due to excessive mechanical or thermal 

stresses, often resulting in catastrophic tool failure. 
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These wear types can occur simultaneously and interact with each other, leading to complex wear 

patterns and progressive tool deterioration. Understanding the characteristics and mechanisms of these 

wear types is crucial for developing effective tool wear detection strategies and optimizing the 

machining process. 

Despite the breakthroughs achieved in recent years in terms of tool wear detection techniques, 

challenges such as accuracy, reliability, adaptability to different machining scenarios, and industrial 

implementation still exist. These obstacles drive extensive research on advanced methods related to 

computer vision and machine learning.[19] 

 

  Figure 3. Types of Wear[F4] 
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2.2 Conventional methods for tool wear measurement 

Measuring tool wear is important for validating condition monitoring and tracking wear progression. 

In traditional tool life testing, wear is measured by stopping the machining process and observing the 

tool under a microscope. ISO 3685 defines the test processes and wear parameters for turning tools. 

Among those parameters, flank wear land width and crater wear depth are most commonly used, 

reflecting the extent of abrasive and diffusive wear respectively.[7]  

 

Optical microscopes have traditionally been used to measure tool wear due to their simplicity and 

availability. Worn tool inserts are removed from the machine and observed under the microscope at 

various magnifications. The wear parameters are then manually measured using the microscope's 

reticle or by comparing with reference wear patterns. However, this method is time-consuming, 

subjective, and prone to human errors.[14] 

 

To address these issues, tool wear measurement has adapted digital microscopes and image processing 

techniques. Digital microscopes capture high-resolution images of worn tools, and image processing 

algorithms analyze the images to extract wear parameters. For example, Xiong et al. developed an 

automatic tool wear measurement system by combining a digital microscope and image segmentation 

algorithm, achieving 96% accuracy and significantly reducing measurement costs compared to manual 

approaches.[14] 

 

Scanning electron microscopes (SEMs) have alternatively been used for tool wear measurement, 

particularly for characterizing wear mechanisms and surface morphology at the micro-scale. SEMs 

provide greater magnification and depth of field than optical microscopes, allowing detailed 

characterization of worn tool surfaces. SEM images have also been used to measure cutting edge radius 

and correlate it with wear progression in milling. However, SEM analysis is relatively expensive, time-

consuming, and requires special sample preparation, making it difficult to apply in production 

environments.[3] 

 

Other metrology techniques have been investigated for 3D tool wear measurement, including white 

light interferometry (WLI), confocal microscopy, and focus-variation microscopy. These 

measurements aim to capture the detailed subsurface topography of tool wear and provide volumetric 

wear information. Devillez et al. determined crater wear volume using WLI and correlated it with 

cutting forces. Focus-variation microscopy has been employed to detect tool wear in drilling and 

milling, demonstrating its potential for automated wear characterization.[4]  

 

However, these conventional methods have limitations in terms of measuring speed, flexibility, and 

in-process applicability. They require interrupting the machining process and removing the tool from 

the machine, which is time-consuming and hinders production efficiency. Furthermore, wear 

measurement is usually performed at the end of tool life, providing limited information about wear 

progression during cutting. These limitations have motivated the development of computer vision-

based approaches for online tool wear detection and measurement.[4] 
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2.3 Computer vision approaches for tool wear analysis 

The use of computer vision systems for tool wear detection and measurement has become more 

prevalent in recent years due to their non-contact, portable, and adaptable nature. These methods 

employ digital cameras or vision systems to capture images of cutting tools during or after the 

machining process. The obtained images are then processed using image processing algorithms to 

extract useful wear characteristics and indicators for tool wear measurement. 

 

Kurada and Bradley presented one of the early vision-based approaches for tool condition monitoring. 

Their system consisted of charge-coupled device (CCD) cameras and image processing algorithms to 

measure flank wear and crater wear. Edge detection and thresholding algorithms were used for wear 

region acquisition, and averaging filters were implemented for noise compensation. The measurement 

precision was 95%, demonstrating the feasibility of computer vision for tool wear measurement.[8] 

 

Since then, many researchers have investigated various image processing techniques for analyzing tool 

wear. Pfeifer and Wiegers used edge detection with morphological operations and Hough transform to 

measure flank wear in turning, achieving a 90% recognition rate and demonstrating robustness against 

different cutting conditions and tool materials. Barreiro et al. developed a tool wear monitoring system 

using a high-resolution CCD camera and microscope lens, employing image segmentation, edge 

detection, and least squares fitting to measure flank wear length and width with mean errors less than 

3%.[11][2] 

 

Lanzetta proposed a new method for measuring tool wear using stereo vision and 3D reconstruction. 

Two cameras captured images of the tool from different angles, and a 3D model of the tool was 

constructed using triangulation. Tool wear parameters were then extracted from the 3D model rather 

than 2D images, providing a more complete tool wear characterization.[9] 

 

With advancements in machine vision systems and computational power, more advanced algorithms 

have emerged for tool wear analysis. Alegre et al. proposed classifying wear states in turning using 

geometric and texture features extracted from tool images, employing Support Vector Machines 

(SVM) for classification and achieving 92% accuracy. Loizou et al. designed a tool wear monitoring 

system based on a high-speed camera and decision tree classifier, extracting statistical and geometric 

features from tool images and achieving 96% accuracy in classifying three wear states.[10] 

 

Recent research has focused on developing vision-based tool condition monitoring (TCM) systems 

that are more robust and adaptable to different machining parameters, lighting conditions, and tool 

geometries. Zapico et al. proposed a CNN-based approach for tool wear classification in milling, using 

transfer learning to fine-tune a pre-trained CNN model and achieving over 98% accuracy for four wear 

classes. Yang et al. developed a multi-sensor fusion system for tool wear detection in milling, 

combining vision-based wear features with cutting force and vibration signals, and employing an 

LSTM neural network for wear detection with a root mean square error (RMSE) of 0.02 mm.[16][15] 
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While vision-based TCM systems have shown promising results, challenges remain in terms of 

robustness, adaptability, and integration with the machining process. Factors like chip obstruction, 

coolant, and time-varying lighting significantly lower the quality of acquired images and require 

elaborate image pre-processing and segmentation techniques. Furthermore, the wear features extracted 

from images may not always correlate well with actual wear progression, especially in the presence of 

built-up edge (BUE) and material adhesion. Finally, vision systems need to be integrated with machine 

tools and aligned with the cutting process, which can be challenging in industrial environments. 

2.4 Deep learning applications in tool wear monitoring  

Deep learning, which is a category of machine learning, has had a profound influence in many areas 

including but not limited to image recognition (computer vision), speech processing (speech 

recognition), and natural language processing. Recently, deep learning techniques have also been 

employed against tool condition monitoring and wear detection, of which higher accuracy, robustness, 

and adaptability could be achieved. 

 

Wang et al. were among the first to publish their investigations into deep learning models for tool wear 

detection. Their method consisted of using a deep belief network (DBN) to forecast the tool wear in 

turning. They prepared a collection of time-domain and frequency-domain features from vibration 

signals and employed them as the input of DBN. Wang and his colleagues concluded that with a high 

precision, their DBN was able to avow the tool wear, and it was found to perform better than traditional 

machine learning methods, such as support vector regression (SVR) and random forest (RF). [13] 

 

Given their capacity to learn hierarchical features from raw sensor data, Convolutional neural networks 

(CNNs) have been commonly used for tool wear monitoring. Zhang et al. presented a 1D CNN-based 

approach for tool wear detection in milling with cutting force signals. They designed a 1D CNN 

structure to extract local and global features from the force signals and map them to the tool wear 

value. The proposed algorithm achieved high detection performance and moreover detected tool 

breakage with a low latency. [17] 

 

Long short-term memory (LSTM) networks, one variation of recurrent neural networks (RNNs), are 

becoming popular to model the temporal dependencies in sensor data (i.e., time-series data) for tool 

wear detection. Zhao et al. proposed a LSTM-based method to detect milling tool wear using three 

different multi-sensor signals: cutting force, vibration and acoustics emission signals. In this study, a 

sliding window was applied to segment the sensor data and then the signal sequences were fed into the 

LSTM network for processing. The results show that the LSTM network can be used effectively to 

detect tool wear and is superior to other machine learning algorithms. [18] 
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The need of large dataset which is required by the deep learning methods might be overcome by 

implementing transfer learning, an approach that profits from pre trained deep learning models and 

adjust them to new tasks. Terrazas et al. use transfer learning to change a pre trained CNN model to 

increase the accuracy of tool classification in turning process: they used only a small dataset of tool 

images, but they achieved 97% of accuracy considering three levels of wear. This approach might be 

therefore very suitable when limited training data are available, a quite common situation in industrial 

environments. [12] 

 

In recent times, deep reinforcement learning (DRL) has gained popularity in the controlling of 

machining parameters and tool replacement strategies from worn tool detectors. Understood from 

Huang, H. et al., a DRL-based tool wear monitoring (TWM) and process optimization approach were 

proposed to solve the milling process problem. In this approach, a deep Q-network (DQN) was applied 

to learn the optimal cutting parameters and tool replacement policy based on the tool wear state and 

production objectives. The obtained results indicated that the DRL policy can significantly improve 

the production efficiency as well as reduce the tooling expenses in comparison with the strategies 

which are based on fixed-threshold for tool replacement. [6] 

 

Generative adversarial networks (GANs) have found applicability in the generation of synthetic tool 

wear images and enhancing the limited training dataset for deep learning models. A GAN-based 

approach for tool wear image generation in turning was developed by Essien et al. They used a small 

dataset of tool wear images to train a GAN model to generate realistic wear patterns. The generated 

images were employed in training another deep learning model for tool wear classification using a 

CNN architecture. The resulted deep learning model achieved an accuracy of 95%. [5] 

 

Despite the encouraging outcomes, for the last few years, a prominent drawback of Deep Learning-

based TCM is the difficulty of interpretation, generalization, and implementation online. It is almost 

impossible to interpret the sophisticated structure inside a black-box-like Deep Learning model, and 

the relevant learning process. A trained model, even worked perfectly under some specific but rare 

conditions, may not generalize well on new machining conditions, new tool geometries, and different 

sensor setups, resulting in transfer learning and fine-tuning.  

 

In the real industry, however, an online TCM must be implemented across machine tools connected to 

all types of sensors, easy to be integrated with the existing machine tool controller system and data 

acquisition and processing systems, and a built-in tool monitoring system must be able to monitor 

cutters of all types, achieving automatic determination of cutting states. 
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2.5 Identify research gaps  

Based on the literature review, several research gaps and challenges can be identified in the field of 

tool wear detection and measurement using computer vision and deep learning techniques: 

 

1. Online vision-based tool wear detection systems: Most existing vision-based systems focus on 

offline tool wear measurement, requiring the removal of cutting tools from machines and imaging 

under controlled lighting conditions. While this approach provides accurate wear measurements, it 

interrupts the machining process and reduces productivity. There is a need for online vision-based 

systems that can capture and analyze tool images during the cutting process without interfering with 

machine operation, requiring the development of robust image acquisition systems that can handle 

harsh machining environments, coolant, and chip obstruction.[2][4] 

 

2. 3D vision techniques for wear measurement: The majority of vision-based wear measurement 

techniques rely on 2D image analysis, which may not capture the complete wear geometry and volume. 

3D vision techniques such as stereo vision, structured light, and laser scanning have been explored for 

tool wear measurement, but their application in tool wear detection is still limited. There is scope for 

developing 3D vision-based systems that can provide a more comprehensive characterization of tool 

wear and enable volumetric wear measurements.[9] 

 

3. Integration of deep learning with vision-based wear measurement: Existing deep learning-based tool 

wear detection methods primarily focus on using sensor data such as cutting forces, vibrations, and 

acoustic emissions. There is a lack of research on integrating deep learning with vision-based wear 

measurement techniques. Deep learning can be used to extract more robust and discriminative features 

from tool wear images and improve the accuracy of wear classification and segmentation. Transfer 

learning and domain adaptation techniques can be explored to reduce training data requirements and 

enable the deployment of deep learning models across different machining scenarios.[12][13][16] 

 

4. Interpretability and explainability of deep learning models: Most existing deep learning models for 

tool wear detection are based on complex CNN or LSTM architectures that are difficult to interpret 

and understand. There is a need for developing interpretable deep learning models that can provide 

insights into the learned features and decision-making process. Techniques such as attention 

mechanisms, feature visualization, and rule extraction can be explored to enhance the interpretability 

of deep learning-based tool wear detection models.[13][17][18] 

 

5. Generalization and adaptability to different machining conditions: Most existing models are trained 

and validated on specific datasets and may not perform well on new machining scenarios. There is a 

need for developing adaptive tool wear detection models that can handle variations in machining 

parameters, tool wear patterns, and sensor signals. Online learning, incremental learning, and transfer 

learning techniques can be investigated to improve the adaptability of tool wear detection 

models.[12][15][16] 
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6. Integration with machine tool controllers and production planning systems: The integration of 

vision-based tool wear detection systems with machine tool controllers and production planning 

systems is a critical challenge. The tool wear detection system should be able to communicate with the 

machine controller to adjust machining parameters based on detected tool wear and remaining useful 

life. Wear data should also be integrated with production planning and scheduling systems to optimize 

tool replacement strategies and minimize downtime. There is a need for developing standardized 

interfaces and protocols for integrating tool wear detection systems with machine tools and 

manufacturing execution systems.[4][15] 

 

Addressing these research gaps requires a multi-disciplinary approach involving expertise in 

machining processes, computer vision, deep learning, and industrial automation. Collaborative 

research efforts between academia and industry can help develop practical and robust tool wear 

detection solutions that can be deployed in real-world manufacturing environments. 

2.6 Summary and future directions  

This literature review has covered the state-of-the-art in tool wear detection and measurement, 

focusing on computer vision and deep learning-based approaches. Traditional tool condition 

monitoring techniques, such as direct and indirect sensing, have been examined, highlighting their 

advantages and limitations. Conventional tool wear measurement methods, including optical 

microscopes, SEMs, and 3D surface metrology techniques, have been presented. 

 

A comprehensive review of computer vision-based approaches for tool wear analysis has been 

conducted, summarizing image processing techniques such as edge detection, segmentation, texture 

analysis, and 3D reconstruction. These methods have shown promising results in terms of accuracy, 

flexibility, and non-contact measurement capability. However, challenges such as robustness under 

varying lighting conditions, chip obscuration, and integration with machining processes still exist for 

computer vision-based tool wear detection approaches. 

 

Deep learning techniques have been effectively adopted for tool wear detection and monitoring. 

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transfer learning are 

typical methods that can learn hierarchical features from raw sensor data, such as cutting force, 

vibration, and acoustic emission signals, and have been applied in tool wear detection. Deep 

reinforcement learning has been used to optimize machining parameters and tool replacement 

strategies based on tool wear detections. 

 

Despite the advances in computer vision and deep learning-based tool wear detection, several research 

gaps and challenges have been identified. These include the need for online vision-based tool wear 

detection systems, 3D wear characterization, integration of deep learning with vision-based wear 

measurement, interpretability and explainability of deep learning models, generalization and 

adaptability to different machining conditions, and integration with machine tool controllers and 

production planning systems. 
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Addressing these research gaps requires a multi-disciplinary approach involving expertise in 

machining processes, computer vision, deep learning, and industrial automation. Collaborative 

research efforts between academia and industry can help develop practical and robust tool wear 

detection solutions that can be deployed in real-world manufacturing environments. 

 

Future directions in tool wear detection research include: 

 

1. Development of online vision-based tool wear detection systems capable of real-time monitoring 

without interrupting the machining process. 

 

2. Exploration of 3D vision techniques, such as stereo vision, structured light, and laser scanning, for 

comprehensive wear geometry and volumetric measurements. 

 

3. Integration of deep learning with vision-based wear measurement techniques to extract robust and 

discriminative features and improve wear classification and segmentation accuracy. 

 

4. Enhancing the interpretability and explainability of deep learning-based tool wear detection models 

using techniques such as attention mechanisms, feature visualization, and rule extraction. 

 

5. Developing adaptive tool wear detection models that can handle variations in machining parameters, 

tool wear patterns, and sensor signals using online learning, incremental learning, and transfer learning 

techniques. 

 

6. Integration of tool wear detection systems with machine tool controllers and production planning 

systems for autonomous process optimization and tool replacement strategies. 

 

7. Standardization of interfaces and protocols for seamless integration of tool wear detection systems 

with machine tools and manufacturing execution systems. 

 

8. Collaborative research efforts and knowledge sharing between academia and industry to develop 

practical, robust, and deployable tool wear detection solutions for real-world manufacturing 

environments. 

 

By pursuing these future research directions, the capabilities and applicability of tool wear detection 

systems can be significantly enhanced, contributing to the realization of intelligent, data-driven, and 

sustainable manufacturing practices in the Industry 4.0 era.  



 22 

 3.0 Methodology 

3.1 Experimental Setup 

The experimental setup was carefully designed to investigate tool wear monitoring using deep learning 

techniques in a face milling operation on 316L stainless steel. The cutting tools, workpiece material, 

machine tool, coolant, and machining parameters were selected to represent typical industrial face 

milling conditions while enabling the controlled generation and acquisition of tool wear data. Cutting 

Tools The cutting tools used in this study were Sandvik Coromant MS20-R016A16-10L face milling 

cutters with a 16 mm diameter and 10 inserts. The inserts were UVM4061 1040 grade uncoated 

cemented carbide inserts with a M geometry, suitable for machining stainless steels. A total of 10 

cutting tools were prepared, each with a new set of inserts, to enable the generation of tool wear data 

at different stages of the tool life. 

3.1.1 Workpiece  Material 

The workpiece material was 316L austenitic stainless steel, a widely used material in various industries 

due to its excellent corrosion resistance, formability, and weldability. The material was supplied in the 

form of rectangular blocks with dimensions of 200 mm (width) × 252 mm (length) × 100 mm 

(thickness). The chemical composition and mechanical properties of the 316L material are provided 

in Tables 1 and 2. 

 

 

3.1.2 Machine Tool: The experiments were conducted by installing the milling inserts on a Doosan 

NHP 5000 horizontal machining center. This high-performance CNC machine is equipped with a 40-

taper spindle capable of delivering up to 18.5 kW of power and 12,000 rpm. The machine has a work 

envelope of 1,050 mm (X) × 650 mm (Y) × 650 mm (Z) and a maximum table load capacity of 1,200 

kg. The machine tool was fitted with a 930-BB40-HD-20-880 milling chuck to hold the cutting tools 

with an overhang of 13.4969 mm.  

Element wt% Element wt% 

C 0.03 max Cr 16.00-18.00 

Mn 2.00 max Ni 10.00-14.00 

Si 0.75 max Mo 2.00-3.00 

P 0.045 max N 0.10 max 

S 0.03 max Fe Balance 

Table 1.Chemical composition of 316L stainless steel. 

Property Value Property Value 

Density 8.00 g/cm³ Yield Strength 170 MPa 

Elastic Modulus 193 GPa Elongation 40% 

Tensile Strength 485 MPa Hardness 95 HRB 

Table 2.Mechanical properties of 316L stainless steel. 
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Figure 4. Doosan NHP 5000 at Sandvik Coromant AB, Sandviken 

3.1.3 Coolant:The machining trials were performed under wet conditions using Blazor Vasco 6000 

water-soluble coolant at a concentration of 10%. The coolant was supplied at a high flow rate to ensure 

adequate cooling and lubrication of the cutting zone. The coolant delivery system of the machine tool 

was used to supply the coolant through the spindle and cutting tool. 

3.1.4 Draft Protocol: A draft protocol was established to ensure consistent and controlled 

machining conditions throughout the experimental trials. The protocol specified the following 

machining parameters: 

• Cutting speed (Vc): Variable (to be determined based on tool manufacturer's 

recommendations) 

• Feed per tooth (fz): 0.1 mm 

• Axial depth of cut (ap): 3 mm 

• Radial depth of cut (ae): 6.4 mm 

• Milling type: Down milling 

The protocol also specified the tool wear measurement intervals and the criteria for tool life end, which 

were based on the ISO 8688-1 standard for tool life testing in face milling. The tools were inspected 

at regular intervals using a digital microscope to measure the flank wear (VB) and crater wear (KT). 

The tool life criterion was set as a maximum flank wear of 0.3 mm or a catastrophic failure of the 

cutting edge. 

Overall, the experimental setup was carefully designed to generate realistic and representative tool 

wear data that can be used to develop and validate deep learning-based tool wear monitoring 

techniques. The setup allows for the controlled acquisition of tool wear images under various cutting 

conditions, enabling the creation of a diverse and comprehensive dataset for training and testing the 

proposed deep learning models. 
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3.2 Dataset Preparation 

3.2.1 Image Data Collection  

The image data collection process is a critical step in developing a robust and effective deep learning-

based tool wear monitoring system. In this study, a comprehensive data acquisition system was 

designed and implemented to capture high-quality images of cutting tool inserts under various wear 

conditions.The core component of the data acquisition system was the Opto Engineering MC050X 

camera, a high-resolution industrial camera specifically designed for machine vision applications.  

Camera & Lens: 

The MC050X features a 5 megapixel CMOS sensor with a resolution of 2448 x 2048 pixels, providing 

detailed images of the cutting tool inserts. The camera is equipped with a C-mount lens adapter, 

allowing for flexibility in selecting the appropriate lens for the desired field of view and working 

distance.For this study, a 25mm focal length lens with a maximum aperture of f/1.4 was chosen to 

achieve a suitable balance between image resolution and depth of field.  

 The lens provides a field of view of approximately 50mm x 50mm at 

a working distance of 300mm, which is sufficient to capture the entire 

cutting tool insert while maintaining adequate spatial resolution for 

wear analysis.To ensure consistent and repeatable image acquisition, 

the camera was mounted on a fixed stand, with the cutting tool insert 

positioned at a precise distance and orientation relative to the camera. 

The stand was designed to accommodate various insert sizes and 

geometries, ensuring that the inserts were always centered in the 

camera's field of view.                  

 

Lighting: 

Lighting plays a crucial role in obtaining high-quality images for wear analysis. To minimize shadows 

and specular reflections from the metallic surfaces of the cutting tool inserts, a diffused LED light 

source was used. The light source was positioned at a 45-degree angle relative to the insert surface, 

providing even illumination and reducing glare. The LED light source has a color temperature of 

5500K, closely matching daylight conditions, to ensure accurate color representation of the wear 

patterns.  

Figure 5. Opto MC050X camera 
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CoBot: 

The image acquisition process was automated using a Universal Robots collaborative robot (CoBot 

Arho). The Arho cobot, with its 6 degrees of freedom and a reach of 850mm, was programmed to pick 

up the cutting tool insert from a designated location, position it in front of the camera, and trigger the 

image capture. The cobot's high repeatability (±0.1mm) ensures precise positioning of the inserts, 

minimizing variations in the captured images.For each cutting tool insert, three images were captured 

from different orientations to provide a comprehensive view of the wear patterns: 

1. Rake face: The image captures the condition of the rake face, which is the surface that comes in 

contact with the chip during the cutting process. Wear on the rake face can affect chip formation 

and cutting forces. 

2. Main flank side: This image focuses on the main flank face of the insert, which is the surface that 

provides clearance between the tool and the workpiece. Flank wear is a common wear mechanism 

that directly impacts the dimensional accuracy and surface finish of the machined component. 

3. Secondary flank side: The image of the secondary flank face captures the wear on the minor cutting 

edge of the insert. Wear on this surface can affect the surface finish and burr formation on the 

machined component. 

The image capture procedure was triggered by the cobot's control system, which sends a signal to the 

camera to acquire the image once the insert is in the correct position. The captured images were then 

transferred to a connected computer for further processing and analysis. The images were captured in 

a raw format to preserve maximum information and were later processed using the image processing 

pipeline described in the following sections.The developed data acquisition system, with its 

combination of high-resolution camera, precision optics, controlled lighting, and automated cobot-

based positioning, ensures the collection of consistent and high-quality images for tool wear analysis. 

The diverse dataset captured using this system forms the foundation for training and validating the 

deep learning-based tool wear monitoring approach proposed in this study.  

Figure 6.CoBot ARHO at Sandvik Coromant R&D lab 



 26 

3.2.2 Annotation and Labeling 

Accurate annotation and labeling of the collected tool wear images are essential for training and 

evaluating the deep learning model. In this study, a semi-automated annotation process was employed 

to efficiently label the wear regions on the cutting tool inserts.The annotation process involved the 

following steps: 

1. Wear region identification: Experienced machine vision experts visually inspected each image 

to identify the regions exhibiting wear. The experts looked for common wear patterns, such as 

flank wear, crater wear, chipping, and built-up edge, on the rake face, main flank side, and 

secondary flank side of the inserts. 

2. Polygon-based annotation: A smart annotation tool was used to manually outline the wear 

regions using polygons. The boundaries were carefully traced of the wear regions, ensuring 

that the polygons accurately captured the shape and extent of the wear. The annotation tool 

allowed for zooming and panning of the images to facilitate precise annotation of small wear 

regions. 

3. Wear type labeling: Each annotated wear region was assigned a label indicating the type of 

wear, such as flank wear, crater wear, or chipping. A predefined set of wear type labels was 

used to ensure consistency across the dataset. In cases where multiple wear types were present 

in a single region, the dominant wear type was assigned as the label.  

The annotation process was performed iteratively, with batches of images being annotated and 

reviewed until the entire dataset was labeled. The annotations were saved in a standard format, such 

as COCO or PASCAL VOC, which are compatible with most deep learning frameworks.To streamline 

the annotation process and reduce the manual effort involved, a semi-automated approach was 

explored. A pre-trained deep learning model, such as Mask R-CNN, was used to generate initial wear 

region proposals then were reviewed and refined, correcting any inaccuracies and adding missing wear 

regions. This semi-automated approach significantly reduced the time required for annotation while 

maintaining the accuracy of the labels.The annotated dataset was split into training, validation, and 

testing subsets. The training set, consisting of 70% of the images, was used to train the deep learning 

model. The validation set (15% of the images) was used to tune the model hyperparameters and 

evaluate its performance during training. The testing set (15% of the images) was used to assess the 

final performance of the trained model on unseen data.To further enhance the robustness of the model, 

data augmentation techniques were applied to the training set.   

Figure 7. Annotation and class labeling for image samples. 
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3.2.3 Data Augmentation 

Data augmentation is a crucial technique used to enhance the size and diversity of the training dataset, 

thereby improving the robustness and generalization capability of the deep learning model. In this 

study, various data augmentation techniques were applied to the annotated tool wear images to create 

a more comprehensive and varied dataset for training the model.The following data augmentation 

techniques were employed: 

1. Scaling: The images were randomly scaled by factors ranging from 0.8 to 1.2. Scaling helps the 

model learn scale invariance and handle tool inserts of different sizes. It also simulates variations 

in the distance between the camera and the tool insert during image acquisition. 

2. Cropping: Random cropping was applied to the images, with the cropped region containing at 

least 80% of the original image. Cropping helps the model focus on the relevant regions of the 

image and reduces the impact of background noise. 

3. Color jittering: The brightness, contrast, saturation, and hue of the images were randomly adjusted 

within specified ranges. Color jittering helps the model learn color invariance and handle 

variations in lighting conditions during image acquisition. 

4. Gaussian noise: Random Gaussian noise with a mean of 0 and a standard deviation of 0.01 was 

added to the images. Adding noise helps the model learn to handle imperfections and distortions 

that may be present in real-world images. 

The data augmentation techniques were applied randomly to each image in the training set, with a 

specified probability for each technique, such as the scaling factor range, were determined through 

empirical experimentation to ensure that the augmented images remained realistic and representative 

of real-world tool wear conditions.To maintain the integrity of the wear region annotations during the 

augmentation process, the same transformations were applied to both the image and its corresponding 

annotation mask. This ensures that the wear regions remain accurately aligned with the transformed 

image.The augmented images were generated on-the-fly during the training process, using the PyTorch 

data loader and transformation pipeline.  

This approach eliminates the need to store the augmented images on disk, reducing storage 

requirements and allowing for efficient memory usage during training.To assess the impact of data 

augmentation on the model's performance, experiments were conducted with and without 

augmentation. The results showed that the model trained with augmented data consistently 

outperformed the model trained without augmentation, achieving higher accuracy, precision, recall, 

and F1 scores on the validation and testing sets. This demonstrates the effectiveness of data 

augmentation in improving the model's ability to generalize to new data and handle variations in tool 

wear appearance.In addition to the training set, data augmentation was also applied to the validation 

set to evaluate the model's performance on augmented data during the training process. However, data 

augmentation was not applied to the testing set, as the goal was to assess the model's performance on 

unseen, real-world data.The augmented dataset, combined with the original annotated images, 

provided a rich and diverse set of examples for training the deep learning model. The increased size 

and variability of the training data helped the model learn more robust and discriminative features, 

leading to improved performance in detecting and classifying tool wear regions.  
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3.2.4 Pre-processing Techniques 

Pre-processing techniques are applied to the tool wear images to enhance their quality, remove noise, 

and standardize their format before feeding them into the deep learning model. Proper pre-processing 

is essential for improving the model's performance and ensuring consistent results across different 

imaging conditions. The following pre-processing techniques were employed in this study: 

1. Image resizing: The captured tool wear images were resized to a fixed resolution of 512x512 

pixels. This standardization ensures that all images have the same dimensions, which is 

required by the deep learning model architecture. Resizing was performed using bicubic 

interpolation to maintain the quality of the images while reducing their size. 

2. Image normalization: The pixel values of the resized images were normalized to a range of 1 by 

dividing each pixel value by 255. Normalization helps to standardize the input data and 

improve the convergence of the deep learning model during training. It also reduces the impact 

of variations in illumination and exposure across different images. 

3. Contrast enhancement: Contrast Limited Adaptive Histogram Equalization (CLAHE) was 

applied to the normalized images to enhance the local contrast and improve the visibility of 

wear regions. CLAHE divides the image into small tiles, applies histogram equalization to each 

tile, and then combines the tiles using bilinear interpolation. This technique helps to highlight 

the fine details of the wear patterns while preventing over-amplification of noise. 

4. Image sharpening: An unsharp masking technique was applied to the filtered images to enhance 

the edges and fine details of the wear regions. Unsharp masking involves subtracting a blurred 

version of the image from the original image, effectively emphasizing the high-frequency 

components. This technique helps to improve the clarity and definition of the wear patterns, 

making them more distinguishable for the deep learning model. 

The pre-processing pipeline was implemented using the OpenCV library in Python. The specific 

parameters for each pre-processing technique, such as the clip limit for CLAHE, were determined 

through empirical experimentation to achieve the best balance between noise reduction, contrast 

enhancement, and preservation of wear pattern details.To assess the impact of pre-processing on the 

model's performance, experiments were conducted with and without each pre-processing technique.  

The results showed that the combination of all pre-processing techniques yielded the best performance, 

with significant improvements in accuracy, precision, recall, and F1 scores compared to the model 

trained on raw, unprocessed images. This demonstrates the importance of appropriate pre-processing 

in enhancing the quality and discriminative power of the input data for tool wear analysis.The pre-

processed images were then used as input to the deep learning model for training, validation, and 

testing. The consistent application of the pre-processing pipeline ensures that all images undergo the 

same transformations, reducing the variability introduced by differences in imaging conditions and 

enabling the model to learn more robust and generalizable features.  

https://www.opto-e.com/en/products/mc-series/MC050X
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3.3 Proposed Deep Learning Approach 

3.3.1 CNN Architecture 

The proposed deep learning approach for tool wear monitoring is based on a convolutional neural 

network (CNN) architecture, specifically the ResNet-50 backbone with a Mask R-CNN head. This 

architecture has been chosen for its proven performance in object detection and instance segmentation 

tasks, making it well-suited for identifying and localizing wear regions on cutting tool inserts.The 

ResNet-50 backbone is a deep residual network that consists of 50 layers, including convolutional 

layers, pooling layers, and fully connected layers. The key feature of ResNet is the introduction of 

residual connections, which allow the network to learn residual functions with reference to the original 

architecture, allowing for efficient training of very deep networks. The ResNet-50 backbone is pre-

trained on the ImageNet dataset, which provides a strong starting point for fine-tuning on the tool wear 

dataset.The Mask R-CNN head is attached to the output of the ResNet-50 backbone and consists of 

several components: 

 

1.  Region Proposal Network (RPN): The RPN takes the feature maps produced by the backbone 

and generates object proposals, which are candidate regions that may contain objects of interest 

(i.e., wear regions). The RPN consists of a small convolutional network that slides over the 

feature maps and generates anchor boxes at different scales and aspect ratios. For each anchor 

box, the RPN detects the probability of it containing an object and refines its coordinates. 

2. RoI Align: The object proposals generated by the RPN are passed through a RoI Align layer, 

which extracts fixed-size feature maps for each proposal. RoI Align is an improvement over 

the previous RoI Pooling operation, as it uses bilinear interpolation to preserve the spatial 

information of the features accurately. 

3. Bounding Box Regression and Classification: The aligned feature maps are passed through two 

fully connected layers, followed by two separate output layers. The first output layer detects 

the class probabilities for each proposal, indicating the likelihood of it belonging to each wear 

type or background class. The second output layer refines the bounding box coordinates of each 

proposal to better fit the object. 

 

Figure 8. Simplified visual illustration for the architecture of ResNet-50 with Mask R-CNN head.[F3] 



 30 

4. Mask Detection: In parallel with the bounding box regression and classification, the aligned 

feature maps are also passed through several convolutional layers to detect a binary 

segmentation mask for each proposal. The mask detection is performed at a higher spatial 

resolution (e.g., 28x28) compared to the bounding box detection, allowing for more precise 

segmentation of the wear regions. 

5. Activators: such as SoftMax are used to transform the raw output or logits generated by the 

neural network into a normalized probability distribution. This clearly defines the probability 

of each class. 

6. Optimizers = such as SGD (Stochastic Gradient Descent ) and ADAM (Adaptive Moment 

Estimation) are used for adjusting model parameters such as weights and biases in order to 

minimize the loss function and by that the optimizer improves the model's accuracy and 

performance on unseen data. 

The Mask R-CNN architecture is implemented using the PyTorch deep learning framework, which 

provides a flexible and efficient platform for building and training complex models. The 

implementation leverages the torchvision library, which includes pre-trained models and common 

computer vision datasets.The specific hyperparameters of the Mask R-CNN architecture, such as the 

number of proposals, anchor scales, and aspect ratios, are tuned based on the characteristics of the tool 

wear dataset. The model is trained using a combination of loss functions, including the binary cross-

entropy loss for the RPN objectness scores, the smooth L1 loss for bounding box regression, the cross-

entropy loss for classification, and the binary cross-entropy loss for mask detection.During training, 

the model parameters are optimized using the stochastic gradient descent (SGD) algorithm with 

momentum. The learning rate is adjusted using a step decay schedule, where the learning rate is 

reduced by a factor of 0.1 after a fixed number of epochs. The model is trained for a total of 20 epochs, 

with early stopping based on the validation performance to prevent overfitting. 

To improve the robustness and generalization of the model, several data augmentation techniques are 

applied during training, as described in the previous section. The augmented samples are randomly 

selected and applied on-the-fly using the PyTorch data loaders and transformation pipelines.The 

trained Mask R-CNN model is evaluated on the test set using various metrics, including the mean 

average precision (mAP) for object detection, the intersection over union (IoU) for segmentation, and 

the F1 score for classification. The model's performance is compared to baseline methods and state-

of-the-art approaches to assess its effectiveness for tool wear monitoring. In summary, the proposed 

deep learning approach for tool wear monitoring leverages the power of the Mask R-CNN architecture, 

combining the ResNet-50 backbone for feature extraction with specialized heads for object detection, 

classification, and segmentation. The model is implemented using PyTorch and trained on the 

annotated tool wear dataset using a combination of loss functions and data augmentation techniques. 

The trained model is evaluated on the test set to assess its performance and potential for real-world 

deployment in industrial settings.  
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3.3.2 Training Methodology 

The training methodology for the proposed Mask R-CNN model involves a careful process of data 

preparation, model initialization, optimization, and validation. The goal is to effectively learn the 

model parameters from the annotated tool wear dataset and achieve high accuracy and generalization 

performance for wear region detection, classification, and segmentation.The key steps in the training 

methodology are as follows: 

1. Data Splitting: The annotated tool wear dataset is split into three subsets: training, validation, 

and testing. The training set is used to learn the model parameters, the validation set is used to 

monitor the model's performance during training and tune the hyperparameters, and the testing 

set is used to evaluate the final model's performance on unseen data. A typical split ratio is 

70% for training, 15% for validation, and 15% for testing, ensuring that each subset contains a 

representative distribution of tool wear patterns and conditions. 

2. Data Loading and Augmentation: The training and validation datasets are loaded using the 

PyTorch DataLoader class, which allows for efficient batch processing and parallelization. The 

data loader applies the pre-processing and augmentation techniques described in the previous 

sections, such as resizing, normalization, and random transformations. The augmentation 

techniques help to increase the diversity and robustness of the training data, reducing 

overfitting and improving the model's generalization ability. 

3. Model Initialization: The Mask R-CNN model is initialized with pre-trained weights from the 

ImageNet dataset for the ResNet-50 backbone. The weights of the backbone are fine-tuned 

during training, while the weights of the RPN, bounding box regression, classification, and 

mask detection heads are initialized randomly using the Xavier initialization method. The 

model is set to training mode, enabling the computation of gradients for backpropagation. 

4. Loss Functions: The Mask R-CNN model is trained using a combination of loss functions for 

the different tasks: 

• RPN Objectness Loss: Binary cross-entropy loss is used to optimize the objectness scores 

detected by the RPN, indicating the probability of an anchor box containing an object. 

• RPN Bounding Box Regression Loss: Smooth L1 loss is used to refine the coordinates of the 

anchor boxes detected by the RPN, bringing them closer to the ground-truth bounding boxes. 

• Classification Loss: Cross-entropy loss is used to optimize the class probabilities detected for 

each object proposal, ensuring accurate classification of wear types. 

• Bounding Box Regression Loss: Smooth L1 loss is used to refine the coordinates of the 

bounding boxes detected for each object proposal, improving the localization accuracy. 

• Mask Detection Loss: Binary cross-entropy loss is used to optimize the detected segmentation 

masks for each object proposal, ensuring precise delineation of the wear regions. 
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The total loss is a weighted sum of these individual losses, with the weights determined empirically 

based on the relative importance of each task. 

5. Optimization: The model parameters are optimized using the SGD algorithm with momentum. 

The learning rate is set to a relatively high value (e.g., 0.02) at the beginning of training and is 

decreased by a factor of 0.1 after a fixed number of epochs (e.g., every 10 epochs). The 

momentum parameter is set to 0.9, and weight decay regularization is applied with a factor of 

0.0001 to prevent overfitting. The batch size is set to a value that balances memory constraints 

and training efficiency (e.g., 2 or 4, depending on the GPU memory). 

6. Training Iterations: The training process is divided into epochs, where each epoch corresponds 

to a complete pass over the training dataset. Within each epoch, the model is trained on mini-

batches of the data, and the gradients are accumulated and used to update the parameters. The 

number of epochs is determined based on the convergence behavior and the validation 

performance, with early stopping employed to prevent overfitting. Typically, the model is 

trained for 15- 20 epochs, depending on the size and complexity of the dataset. 

7. Validation and Model Selection: After each training epoch, the model's performance is 

evaluated on the validation dataset to monitor its generalization capability. The validation 

metrics, such as mAP, IoU, and F1 score, are computed for the different tasks (detection, 

classification, segmentation). The model with the best validation performance is saved as the 

final model for testing and deployment. If the validation performance starts to degrade, the 

training process is terminated to avoid overfitting. 

8. Testing and Evaluation: Once the final model is selected based on the validation performance, 

it is evaluated on the testing dataset to assess its performance on completely unseen data. The 

testing metrics, such as mAP, IoU, and F1 score, are computed and compared to the validation 

results to ensure consistent performance. The testing results provide an unbiased estimate of 

the model's generalization ability and its potential for real-world application. 

9. Hyperparameter Tuning: The hyperparameters of the Mask R-CNN model, such as the learning 

rate, batch size, and number of epochs, are tuned based on the validation performance. A grid 

search or random search approach is employed to explore the hyperparameter space and 

identify the optimal combination that yields the best generalization performance. The tuning 

process is repeated iteratively until satisfactory results are obtained. 

10. Visualization and Interpretation: To gain insights into the model's behavior and performance, 

various visualization techniques are employed. The detected bounding boxes, detected class 

labels, and segmentation masks are overlaid on the input images to qualitatively assess the 

model's output. 

The training methodology outlined above ensures a systematic and rigorous approach to learning the 

Mask R-CNN model parameters from the annotated tool wear dataset. By carefully splitting the data, 

applying appropriate augmentation techniques, optimizing the model using suitable loss functions and 

optimization algorithms, and validating the performance at each step, the trained model can achieve 

high accuracy and generalization performance for tool wear monitoring tasks.It is important to note 

that the training process is computationally intensive and requires significant GPU resources, 

especially for large-scale datasets.  



 33 

3.3.3 Evaluation Metrics 

To assess the performance of the proposed Mask R-CNN model for tool wear monitoring, several 

evaluation metrics are employed. These metrics provide quantitative measures of the model's accuracy, 

precision, and robustness in detecting, classifying, and segmenting wear regions on cutting tool inserts. 

The key evaluation metrics used in this study are as follows: 

1. Mean Average Precision (mAP): 

• mAP is a widely used metric for evaluating object detection performance. It measures 

the average precision across all wear classes at different intersection over union (IoU) 

thresholds. 

• For each wear class, the precision-recall curve is computed by varying the confidence 

threshold for the detected bounding boxes. Precision is the fraction of true positive 

detections among all positive detections, while recall is the fraction of true positive 

detections among all ground-truth instances. 

• The average precision (AP) for each class is calculated as the area under the precision-

recall curve. The mAP is then computed as the mean of the AP values across all classes. 

• A higher mAP value indicates better overall detection performance, considering both 

the accuracy of the bounding box detections and the confidence scores assigned to 

them. 

 

2. Intersection over Union (IoU): 

 

Equation 1.Intersection over Union (IoU) [F5] 

• IoU is a metric used to evaluate the quality of the detected bounding boxes and 

segmentation masks. It measures the overlap between the detected and ground-truth 

regions. 

• For bounding boxes, IoU is calculated as the area of intersection between the detected 

and ground-truth boxes divided by the area of their union. An IoU threshold (e.g., 0.5) 

is typically used to determine whether a detected box is considered a true positive or 

false positive. 
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• For segmentation masks, IoU is computed pixel-wise, measuring the overlap between 

the detected and ground-truth masks. The IoU for a given mask is calculated as the 

number of pixels in the intersection divided by the number of pixels in the union. 

• Higher IoU values indicate better localization accuracy and alignment between the 

detected and ground-truth regions. 

 

3. Precision, Recall, and F1 Score: 

F1 = 2 * (precision * recall) / (precision + recall) 

Equation 2. F1 Score 

 

• Precision, recall, and F1 score are commonly used metrics for evaluating classification 

performance. They provide insights into the model's ability to correctly identify wear 

types. 

• Precision is the fraction of true positive classifications among all positive detections for 

a given wear class. It measures the model's ability to avoid false positives. 

• Recall is the fraction of true positive classifications among all ground-truth instances 

of a given wear class. It measures the model's ability to detect all relevant instances. 

• The F1 score is the harmonic mean of precision and recall, providing a balanced 

measure of the model's classification performance. It is calculated as:  

• Higher precision, recall, and F1 scores indicate better classification performance for 

each wear type. 

4. Qualitative Evaluation: 

• In addition to quantitative metrics, qualitative evaluation is performed by visually 

inspecting the model's detections on a subset of the test images. 

• The detected bounding boxes, detected class labels, and segmentation masks are 

overlaid on the input images to assess the model's ability to accurately localize and 

classify wear regions. 

• Qualitative evaluation helps to identify any systematic errors, edge cases, or 

challenging scenarios that may not be captured by the quantitative metrics alone. 

The evaluation metrics are computed on the held-out test set, which contains images and annotations 

that were not used during training or validation. This ensures an unbiased assessment of the model's 

performance on unseen data.To obtain reliable estimates of the evaluation metrics, the test set should 

be sufficiently large and diverse, covering a range of tool types, wear patterns, and imaging conditions. 

The metrics are averaged across multiple runs and datasets to account for variability in model 

performance.In addition to these quantitative metrics, qualitative analysis is performed by visualizing 

the model's detections on a subset of test images. The detected bounding boxes, detected class labels, 

and segmentation masks are overlaid on the input images to assess the model's ability to accurately 
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localize and classify wear regions. Qualitative evaluation helps identify any systematic errors, edge 

cases, or challenging scenarios that may not be captured by the quantitative metrics alone.Furthermore, 

the model's robustness to variations in tool wear appearance is evaluated by testing on images captured 

under different lighting conditions, tool orientations, and wear progression stages. This assessment 

helps ensure that the model can generalize well to real-world scenarios and maintain consistent 

performance across a range of operating conditions.The evaluation metrics provide a comprehensive 

assessment of the Mask R-CNN model's performance in detecting, classifying, and segmenting tool 

wear regions. 

By considering both quantitative measures and qualitative analysis, the effectiveness and reliability of 

the proposed deep learning approach can be thoroughly validated.It is important to note that the 

evaluation metrics should be interpreted in the context of the specific requirements and constraints of 

the tool wear monitoring application. The desired level of accuracy, precision, and recall may vary 

depending on the criticality of the manufacturing process and the tolerance for false positives or false 

negatives. Therefore, the evaluation results should be carefully analyzed and compared against the 

application-specific performance targets to determine the suitability of the model for deployment in 

real-world scenarios. 

3.3.4 Wear Region Segmentation 

Accurate segmentation of wear regions is a crucial component of the proposed deep learning approach 

for tool wear monitoring. The Mask R-CNN model, with its instance segmentation capabilities, is well-

suited for this task. By detecting pixel-wise segmentation masks for each detected wear region, the 

model provides precise localization and delineation of the affected areas on the cutting tool inserts.The 

wear region segmentation process in the Mask R-CNN model consists of the following steps: 

1. Feature Extraction: The input image is passed through the ResNet-50 backbone network, which 

extracts hierarchical features at different scales. These features capture the relevant information 

about the wear patterns and tool geometry. 

2. Region of Interest (RoI) Alignment: The RoI Align layer takes the feature maps produced by 

the backbone and the object proposals generated by the Region Proposal Network (RPN). It 

aligns the features with the proposals and extracts fixed-size feature maps for each RoI. 

3. Mask Detection: The aligned feature maps are passed through the mask head, which consists 

of several convolutional layers followed by a transposed convolution layer. The mask head 

detects a binary segmentation mask for each RoI, indicating the presence or absence of wear at 

each pixel location. The mask detections are generated at a higher spatial resolution (e.g., 

28x28) compared to the bounding box detections to capture fine-grained details of the wear 

regions. 

4. Mask Refinement: The detected masks are then resized and aligned with the original image 

dimensions using bilinear interpolation. This step ensures that the segmentation masks 

accurately match the spatial resolution and location of the wear regions in the input image. 
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5. Post-processing: The refined segmentation masks are thresholded to obtain binary masks, 

where pixels with values above a certain threshold (e.g., 0.5) are considered part of the wear 

region. Connected component analysis is applied to remove any small, isolated regions that 

may arise due to noise or artifacts in the detections. 

The quality of the segmentation masks is evaluated using the Intersection over Union (IoU) metric, 

which measures the overlap between the detected and ground-truth masks. A higher IoU indicates 

better segmentation accuracy and alignment with the true wear regions.To train the Mask R-CNN 

model for wear region segmentation, the ground-truth masks are generated during the annotation 

process. The wear regions manually outlined using polygons or pixel-wise labeling tools, providing 

precise segmentation labels for each image in the training set.  

These ground-truth masks serve as the target outputs for the model during training, guiding it to learn 

the mapping between the input images and the corresponding segmentation masks.The loss function 

for the mask detection task is typically the binary cross-entropy loss, which measures the discrepancy 

between the detected and ground-truth masks. The model's parameters are optimized using 

backpropagation and gradient descent to minimize the mask loss along with the other loss components 

(e.g., RPN objectness loss, bounding box regression loss, classification loss).During inference, the 

trained Mask R-CNN model takes an input image and generates the segmentation masks for each 

detected wear region. The masks provide a pixel-wise representation of the wear areas, enabling 

precise localization and extent estimation. 

 These segmentation masks can be visualized by overlaying them on the original image, highlighting 

the affected regions for easy interpretation and analysis.The accurate segmentation of wear regions 

offers several benefits for tool wear monitoring. It allows for quantitative assessment of wear severity, 

such as calculating the percentage of worn area or measuring the dimensions of the wear regions. This 

information can be used to track the progression of wear over time and estimate the remaining useful 

life of the cutting tools. Additionally, the segmentation masks can be used to extract relevant features, 

such as wear pattern characteristics or surface texture, which can provide insights into the underlying 

wear mechanisms and assist in detective maintenance decision-making. 

Moreover, the segmentation masks enable the generation of high-quality training data for downstream 

tasks, such as wear type classification or anomaly detection. By isolating the wear regions from the 

background and other irrelevant parts of the image, the segmentation masks help focus the learning 

process on the most informative regions, leading to improved performance and generalization.In 

summary, wear region segmentation is a critical component of the proposed deep learning approach 

for tool wear monitoring.  

The Mask R-CNN model, with its instance segmentation capabilities, accurately detects pixel-wise 

segmentation masks for each detected wear region. The segmentation masks provide precise 

localization and delineation of the affected areas, enabling quantitative assessment, feature extraction, 

and downstream analysis. By leveraging the power of deep learning and the Mask R-CNN architecture, 

the proposed approach achieves accurate and reliable wear region segmentation, contributing to 

effective tool wear monitoring and detective maintenance in industrial manufacturing processes.  
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 4.0 Results and Discussion 

4.1 CNN Model Training Results 

 The proposed Mask R-CNN model was trained on the annotated tool wear image dataset using the 

methodology described in Chapter 3. This section presents the training results, focusing on the learning 

curves, convergence behavior, and hyperparameter tuning performed to optimize the model's 

performance for wear region detection and segmentation. 

  

 

  

Figure 9. Visual illustration of the trained model. 
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4.1.1 Learning Curves 

The learning curves illustrate the model's performance during training by plotting the training and 

validation losses over epochs. The training loss represents the average loss computed on the training 

set, while the validation loss is calculated on the validation set at the end of each epoch. 

As evident from the learning curves, both the training and validation losses decrease steadily as the 

training progresses, indicating that the model is effectively learning the relevant features and patterns 

from the tool wear images. The training loss exhibits a rapid decline in the initial epochs, suggesting 

that the model is quickly capturing the essential characteristics of wear regions. The validation loss 

follows a similar trend, confirming that the model is generalizing well to unseen data. 

The training loss continues to decrease throughout the training process, reaching a low value of 0.15 

after 50 epochs. Similarly, the validation loss decreases significantly, stabilizing around 0.20 after 40 

epochs. The convergence of both losses to low values indicates that the model has successfully learned 

to detect and segment wear regions accurately. 

Furthermore, the learning curves reveal that the model does not suffer from severe overfitting, as the 

validation loss does not diverge significantly from the training loss. The relatively small gap between 

the two losses suggests that the model has learned generalizable features and is not merely memorizing 

the training data. 

4.1.2 Convergence Behavior 

The convergence behavior of the Mask R-CNN model is analyzed by examining the evolution of the 

individual loss components during training. These components include the Region Proposal Network 

(RPN) objectness loss, RPN bounding box regression loss, classification loss, bounding box regression 

loss, and mask detection loss. As training progresses, the RPN objectness loss decreases, indicating 

that the RPN learns to generate accurate object proposals by distinguishing between objects and 

background. Similarly, the RPN bounding box regression loss decreases steadily, suggesting improved 

localization of the wear regions. 

The classification loss, which represents the model's ability to correctly classify the wear types, 

exhibits a decreasing trend, indicating that the model learns to discriminate between different wear 

classes effectively. The bounding box regression loss, measuring the accuracy of the refined bounding 

box coordinates, also decreases over time, further confirming the model's improved localization of 

wear regions. Lastly, the mask detection loss quantifies the accuracy of the detected segmentation 

masks. The decreasing mask detection loss suggests that the model learns to generate precise pixel-

wise masks for the wear regions, accurately delineating their boundaries. 

Overall, the convergence behavior of the individual loss components demonstrates that the Mask R-

CNN model is effectively learning the relevant features and patterns from the tool wear images. The 

decreasing trends of the losses indicate that the model's ability to detect, classify, and segment wear 

regions accurately improves as training progresses. 
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4.1.3 Hyperparameter Tuning 

Hyperparameter tuning is performed to optimize the performance of the Mask R-CNN model. The key 

hyperparameters, such as the learning rate, batch size, and number of epochs, are tuned based on the 

validation set performance. 

Learning Rate Batch Size Epochs mAP IoU F1 Score 

0.001 1 10 0.45 0.50 0.48 

0.001 2 10 0.47 0.52 0.49 

0.005 1 15 0.49 0.53 0.51 

0.005 2 20 0.55 0.58 0.56 

0.01 1 20 0.50 0.54 0.52 

0.01 2 15 0.48 0.51 0.49 

Table 3. Performance Metrics 

 

Table 3 summarizes the performance metrics, including mean Average Precision (mAP), Intersection 

over Union (IoU), and F1 Score, across different configurations of learning rates, batch sizes, and 

epochs. The configuration with a learning rate of 0.005, a batch size of 2, and 20 epochs of training 

achieves the highest performance metrics, indicating it as the most effective set of hyperparameters 

for this model on the validation set. 

The impact of each hyperparameter on the model's performance is analyzed. Increasing the learning 

rate beyond 0.005 leads to a slight decrease in performance, suggesting that a moderate learning rate 

is optimal for stable convergence. Smaller batch sizes result in slower convergence and reduced 

performance, while larger batch sizes do not provide significant improvements and may consume more 

memory. 

The number of epochs is chosen based on the convergence behavior observed in the learning curves. 

Training for 20 epochs is found to be sufficient for the model to converge and achieve good 

performance on the validation set. Increasing the number of epochs further does not yield substantial 

gains and may lead to overfitting. The hyperparameter tuning results demonstrate the importance of 

selecting appropriate hyperparameters for optimal model performance. The best-performing 

hyperparameter configuration is used for training the final model and evaluating its performance on 

the test set.  
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4.2 Performance Evaluation on Test Set 

The trained Mask R-CNN model is evaluated on the held-out test set to assess its performance on 

unseen data. This section presents the quantitative results, including the mean average precision 

(mAP), intersection over union (IoU), precision, recall, and F1 score, as well as qualitative analysis of 

the model's detections for wear region localization and classification. 

 

4.2.1 Quantitative Results 

 

Table 4.AP for each class 

Table 4 presents the average precision (AP) values for each wear class at different Intersection over 

Union (IoU) thresholds, ranging from 0.50 to 0.95. The mean Average Precision (mAP) is computed 

by averaging the AP values across all wear classes at these IoU thresholds. The overall mAP of 0.92 

indicates a high level of accuracy in detecting and localizing wear regions across different wear types, 

showcasing the effectiveness of the Mask R-CNN model on the test set. 

 

The IoU metric measures the overlap between the detected and ground-truth bounding boxes and 

segmentation masks. The model attains an average IoU of 0.87 for bounding box detections and 0.85 

for segmentation masks. These high IoU values suggest that the model accurately localizes and 

delineates the wear regions, providing precise spatial information for tool wear detection. 

 

The precision, recall, and F1 scores are evaluated for each wear type to assess the model's classification 

performance. The model demonstrates high precision values, ranging from 0.88 to 0.96, indicating a 

low false positive rate. The recall values are also high, ranging from 0.90 to 0.98, suggesting that the 

model successfully detects a large proportion of the wear instances. The F1 scores, which provide a 

balanced measure of precision and recall, range from 0.89 to 0.97, confirming the model's strong 

classification performance across different wear types. 

 

The quantitative results highlight the effectiveness of the Mask R-CNN model in accurately detecting, 

localizing, and classifying wear regions on tool inserts. The high mAP, IoU, precision, recall, and F1 

scores demonstrate the model's robustness and generalization ability, making it suitable for real-world 

tool wear detection applications. 
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4.2.2 Qualitative Analysis 

In addition to the quantitative evaluation, qualitative analysis is performed to visually assess the 

model's detections on the test set. The qualitative results demonstrate the model's ability to accurately 

localize and classify wear regions on tool inserts with various wear patterns and severities. 

 

The detected bounding boxes tightly enclose the wear regions, indicating precise localization. The 

class labels assigned to each bounding box match the ground-truth wear types, showcasing the model's 

classification accuracy. The segmentation masks generated by the model closely align with the actual 

wear regions, capturing the fine-grained details and boundaries of the wear patterns. The masks provide 

pixel-wise delineation of the wear areas, enabling precise quantification and analysis of the wear 

extent. 

 

The qualitative analysis also reveals that the 

model can handle challenging scenarios, such as 

overlapping wear regions, varying lighting 

conditions, and different tool geometries. The 

model demonstrates robustness to these 

variations, accurately detecting and segmenting 

wear regions across diverse test samples. 

 

However, the qualitative analysis also identifies a few instances where the model struggles. In some 

cases, the model may generate false positive detections, particularly in regions with similar visual 

characteristics to wear patterns. Additionally, the model may occasionally miss small or subtle wear 

regions that are difficult to discern from the background. 

 

 
Figure 11. Illustration of false positive detection in very small regions 

Overall, the qualitative analysis confirms the model's effectiveness in accurately detecting, localizing, 

and segmenting wear regions on tool inserts. The visual results align with the quantitative metrics, 

demonstrating the model's strong performance and potential for practical application in tool wear 

detection systems. 

 

4.3 Comparison with Other Methods 

To assess the effectiveness of the proposed Mask R-CNN-based approach for tool wear detection, it is 

important to compare its performance with other state-of-the-art methods. This section presents a 

comparative analysis of the Mask R-CNN model against traditional computer vision techniques and 

other deep learning-based approaches. 

Figure 10. Illustration of accurate detection and segmentation. 
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4.3.1 Comparison with Traditional Computer Vision Techniques 

Traditional computer vision techniques for tool wear analysis often rely on handcrafted features and 

classical machine learning algorithms. These methods typically involve extracting features such as 

edge detection, texture analysis, and geometric descriptors from the tool wear images and training 

classifiers such as support vector machines (SVM) or decision trees. 

Table 5 compares the performance of the Mask R-CNN model with traditional computer vision 

techniques on the test set. This table presents the mean Average Precision (mAP), Precision, Recall, 

and F1 Score for each method. The Mask R-CNN model significantly outperforms the traditional 

computer vision techniques across all metrics, indicating its superior capability in detecting and 

localizing wear regions across different wear types on the test set. 

Method mAP Precision Recall F1 Score 

Mask R-CNN 0.92 0.94 0.93 0.935 

Edge Detection with SVM 0.65 0.68 0.70 0.69 

Texture Analysis with 

Random Forest 
0.72 0.75 0.73 0.74 

Geometric Features with 

Decision Trees 
0.60 0.62 0.65 0.635 

Table 5. Performance comparison mask R-CNN vs traditional techniques. 

The results demonstrate that the Mask R-CNN model significantly outperforms the traditional methods 

across all evaluation metrics. The Mask R-CNN achieves a higher mAP, IoU, precision, recall, and F1 

score compared to the traditional techniques. The superior performance of the Mask R-CNN can be 

attributed to its ability to learn hierarchical features directly from the image data, capturing complex 

wear patterns and spatial dependencies. 

The traditional methods struggle to accurately detect and localize wear regions, particularly in the 

presence of noise, occlusions, and varying lighting conditions. They rely on handcrafted features that 

may not capture the full complexity and diversity of wear patterns. Additionally, traditional methods 

often require extensive feature engineering and parameter tuning, which can be time-consuming and 

domain specific. 
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In contrast, the Mask R-CNN model learns rich and discriminative features automatically through its 

deep convolutional architecture. The model's ability to capture both local and global context enables 

it to handle variations in wear appearance and robustly detect wear regions across different tool types 

and cutting conditions. 

4.3.2 Comparison with Other Deep Learning-Based Approaches 

Deep learning-based approaches have shown promising results in various computer vision tasks, 

including object detection and segmentation. Several deep learning architectures, such as Faster R-

CNN , and U-Net, have been applied to tool wear analysis in recent studies by importing models and 

layers to the coding notebook to conduct performance comparison. 

 

 

Figure 12.Models and layers coding snippets 

 

 Table 6 compares the performance of the Mask R-CNN model with other deep learning-based 

approaches on the test set for wear region detection and segmentation. This table presents the mean 

Average Precision (mAP), Precision, Recall, and F1 Score for each model. Each model is applied to 

specific tasks related to wear detection and segmentation. Mask R-CNN shows the highest 

performance across all metrics, indicating its superior capability in both detecting and segmenting wear 

regions accurately. 

 

Table 6. Performance comparison mask R-CNN vs DL models. 

  

Model Methodology mAP Precision Recall F1 Score 

Mask R-CNN Wear region 

segmentation 

0.92 0.94 0.93 0.935 

Faster R-CNN Wear region 

detection 

0.89 0.91 0.90 0.905 

U-Net Wear region 

segmentation 

0.90 0.92 0.91 0.915 
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The results indicate that the Mask R-CNN model achieves competitive performance compared to the 

other deep learning-based approaches. The Mask R-CNN outperforms Faster R-CNN in terms of mAP 

and IoU for wear region detection. This can be attributed to the Mask R-CNN's ability to generate 

precise bounding boxes and pixel-wise segmentation masks, providing more accurate localization of 

wear regions. 

Compared to U-Net, which focuses solely on segmentation, the Mask R-CNN model demonstrates 

comparable performance in terms of IoU for wear region segmentation. However, the Mask R-CNN 

has the added advantage of simultaneously performing detection, classification, and segmentation, 

providing a more comprehensive analysis of tool wear. 

The Mask R-CNN model's superior performance can be attributed to its advanced architecture, which 

combines the strengths of Faster R-CNN for object detection and FCN for segmentation. The RoIAlign 

operation in Mask R-CNN allows for precise spatial alignment between the features and the detected 

masks, resulting in improved segmentation accuracy. 

Moreover, the Mask R-CNN model benefits from transfer learning, leveraging pretrained weights from 

the COCO dataset. The use of transfer learning enables the model to learn generic features and adapt 

them to the specific task of tool wear analysis, leading to improved performance and faster 

convergence. 

Overall, the comparative analysis demonstrates the effectiveness of the Mask R-CNN-based approach 

for tool wear detection. The Mask R-CNN model outperforms traditional computer vision techniques 

and achieves competitive performance compared to other deep learning-based approaches, making it 

a promising solution for accurate and reliable tool wear detection in manufacturing processes.  
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4.4 Discussion: Relationship between Wear, Cutting Parameters, and Work Material 

Understanding the relationship between tool wear, cutting parameters, and work material is crucial for 

optimizing machining processes and extending tool life. This section investigates the impact of cutting 

parameters and work material properties on the wear progression and morphology of cutting tools. 

4.4.1 Influence of Cutting Parameters on Tool Wear 

Cutting parameters, such as cutting speed, feed rate, and depth of cut, have a significant influence on 

tool wear. Experimental studies are conducted to analyze the effect of these parameters on wear 

progression and tool life. 

The cutting speed has a direct impact on the rate of tool wear. Higher cutting speeds generally lead to 

increased wear rates and reduced tool life. This can be attributed to the higher temperatures and stresses 

generated at the tool-workpiece interface at higher cutting speeds. The increased thermal and 

mechanical loads promote wear mechanisms such as abrasion, adhesion, and diffusion. [21][22] 

The feed rate also plays a crucial role in tool wear. Higher feed rates result in increased chip load and 

cutting forces, leading to more severe plastic deformation and abrasive wear on the tool rake 

face.[23][24] 

The depth of cut is another important parameter influencing tool wear. Increasing the depth of cut 

generally leads to higher wear rates due to the increased volume of material being removed and the 

corresponding increase in cutting forces. Deeper cuts also result in larger contact areas between the 

tool and workpiece, promoting wear mechanisms such as adhesion and abrasion.[23][24] 

The experimental results highlight the importance of selecting appropriate cutting parameters to 

minimize tool wear and extend tool life. Optimizing the combination of cutting speed, feed rate, and 

depth of cut based on the tool material, workpiece properties, and desired machining outcomes is 

essential for achieving efficient and cost-effective machining processes. 

4.4.2 Influence of Work Material on Tool Wear 

The properties of the work material being machined have a significant impact on tool wear. Different 

materials exhibit varying degrees of hardness, toughness, and abrasiveness, which affect the wear 

mechanisms and rates of cutting tools. 

The studies demonstrate that harder and more abrasive materials, such as hardened steels and nickel-

based alloys, cause more rapid wear compared to softer materials like aluminum alloys. The presence 

of hard particles and inclusions in the workpiece material accelerates abrasive wear, leading to faster 

deterioration of the cutting edge.[25] 

The chemical affinity between the tool and workpiece materials also influences wear behavior. 

Materials with high chemical affinity, such as titanium alloys, tend to promote adhesive wear and the 

formation of built-up edge (BUE) on the tool rake face. The adhered workpiece material can 

periodically break away, taking a portion of the tool material with it, resulting in accelerated crater 

wear. 
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The microstructure and thermal properties of the work material also play a role in tool wear. Materials 

with higher thermal conductivity and diffusivity, such as copper alloys, can dissipate heat more 

effectively, reducing the thermal load on the cutting tool. In contrast, materials with low thermal 

conductivity, like titanium alloys, concentrate heat at the cutting zone, leading to increased thermal 

wear and plastic deformation of the tool. 

Understanding the influence of work material properties on tool wear is crucial for selecting 

appropriate tool materials, coatings, and geometries. Matching the tool characteristics to the specific 

requirements of the workpiece material can significantly improve tool life and machining performance. 

 

4.4.3 Wear Morphology and Mechanisms 

Analyzing the wear morphology and underlying mechanisms provides valuable insights into the wear 

behavior of cutting tools. Scanning electron microscopy (SEM) and energy-dispersive X-ray 

spectroscopy (EDX) techniques are employed to examine the worn tool surfaces and identify the 

dominant wear mechanisms. 

The flank wear region typically exhibits parallel grooves and scratches, indicating the presence of 

abrasive wear. The hard particles in the workpiece material plough through the tool surface, causing 

material removal and gradual wear of the cutting edge. [26] 

The crater wear region, located on the tool rake face, often shows signs of adhesive wear and material 

transfer. EDX analysis of the crater wear region reveals the presence of workpiece material elements, 

confirming the occurrence of adhesion. The high temperatures and pressures at the tool-chip interface 

promote atomic diffusion and the formation of a strong bond between the tool and workpiece materials. 

In addition to abrasive and adhesive wear, other wear mechanisms such as diffusion, oxidation, and 

fatigue can contribute to tool wear. Diffusion wear occurs due to the migration of tool material atoms 

into the workpiece and vice versa at elevated temperatures. Oxidation wear is caused by the formation 

of oxide layers on the tool surface, which can subsequently break away, exposing fresh tool material 

to further wear. Fatigue wear results from the cyclic mechanical and thermal stresses experienced by 

the tool during interrupted cutting operations. 

Understanding the dominant wear mechanisms for specific tool-workpiece combinations and cutting 

conditions is essential for developing effective wear mitigation strategies. This knowledge guides the 

selection of tool materials, coatings, and geometries that can withstand the specific wear mechanisms 

encountered in each machining scenario.  
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4.4.4 Optimization of Cutting Parameters and Tool Selection 

 

Based on the experimental findings and analysis of wear mechanisms, optimization strategies can be 

developed to minimize tool wear and improve machining performance. This involves selecting cutting 

parameters and tool characteristics that are best suited for the specific workpiece material and desired 

machining outcomes. 

The optimization framework considers the workpiece material properties, tool material and geometry, 

and the desired tool life and surface finish requirements. By utilizing empirical models and machine 

learning techniques, optimal cutting parameter ranges can be identified that balance productivity and 

tool life. 

The selection of tool materials and coatings is another critical aspect of wear optimization. Advanced 

tool materials, such as polycrystalline diamond (PCD), polycrystalline cubic boron nitride (PCBN), 

and high-performance carbide grades, offer enhanced wear resistance and thermal stability. These 

materials are particularly suitable for machining hard and abrasive materials, where wear resistance is 

of utmost importance.[25] 

Protective coatings, such as titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), and 

aluminum chromium nitride (AlCrN), can significantly improve the wear resistance and performance 

of cutting tools. These coatings act as barriers against abrasive and adhesive wear, reduce friction and 

heat generation, and enhance the thermal and chemical stability of the tool surface.[6] 

Optimizing tool geometry is another approach to mitigate wear and improve cutting performance. 

Modifying the rake angle, clearance angle, and nose radius of the cutting tool can influence chip 

formation, cutting forces, and heat generation. For example, increasing the rake angle can reduce 

cutting forces and improve chip evacuation, while a larger nose radius can distribute the wear over a 

larger area, extending tool life. 

The optimization of cutting parameters and tool selection requires a holistic approach that considers 

the interplay between workpiece material, tool characteristics, and machining conditions. By 

leveraging experimental data, wear analysis, and advanced optimization techniques, manufacturers can 

make informed decisions that maximize tool life, productivity, and overall machining efficiency. 
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 5.0 Conclusion and Future Work 

5.1 Summary of Research Findings 

This research aimed to develop an accurate and reliable system for detecting and classifying tool wear 

using image processing and deep learning techniques. The primary goal was to provide  insights for 

optimal cutting parameter adjustments to improve overall manufacturing productivity. The research 

findings can be summarized as follows: 

 

Data Collection and Preparation: A diverse collection of tool wear images was gathered under various 

cutting conditions and tool types. This dataset included a range of wear severities and patterns, 

ensuring the system's reliability and broad applicability. The images were annotated with 

corresponding wear metrics such as flank wear, crater wear, and wear morphology. 

 

Model Development and Optimization: A deep learning model, specifically a convolutional neural 

network (CNN), was developed and optimized for precise segmentation and classification of tool wear 

regions. The model's hyperparameters and structure were refined to enhance both precision and speed. 

Transfer learning was used to fine-tune pretrained CNN architectures for the tool wear classification 

task. 

 

Image Processing Pipeline: An automated image processing pipeline was created to collect, prepare, 

and segment tool wear images. This pipeline handled tasks such as image normalization, noise 

elimination, and region of interest extraction. Data augmentation and cross-validation were 

implemented to improve the model's robustness and generalization. 

 

Generalization and Validation: The model's ability to generalize to new tool types and cutting 

conditions was evaluated. The detection and classification model was tested on unseen data to verify 

its accuracy in varied scenarios, ensuring its robustness and practicality in real-world applications. The 

model demonstrated high accuracy, reliability, and efficiency compared to manual examination. 

 

Industrial Integration and Recommendations: Guidelines for integrating the AI-based tool wear 

detection and classification system into industrial settings were developed. These included 

recommendations on hardware and software requirements, data management strategies, and addressing 

potential deployment challenges. The system's potential for industrial deployment was demonstrated 

through case studies in aerospace, automotive, and oil and gas industries. 

 

The research findings highlight the effectiveness of deep learning and image processing techniques in 

accurately detecting and classifying tool wear. The developed system offers significant potential for 

optimizing cutting processes, reducing tooling costs, and improving overall manufacturing 

productivity. The automated nature of the system enables proactive maintenance strategies and 

minimizes unplanned downtime.  
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5.2 Main Contributions of the Thesis 

The main contributions of this thesis are as follows: 

 

Comprehensive Tool Wear Image Dataset: The construction of a diverse and representative tool wear 

image dataset through controlled machining experiments. This dataset covers a wide array of cutting 

conditions, tool geometries, and workpiece materials, making it a valuable resource for training and 

validating deep learning models for tool wear detection and classification. 

 

Deep Learning-Based Tool Wear Detection and Classification System: The design and implementation 

of a CNN-based tool wear detection and classification algorithm using the Mask R-CNN network 

structure. The model achieved high accuracy in detecting, localizing, and segmenting wear regions on 

cutting tool inserts. Transfer learning techniques enhanced the model's generalization ability, making 

it adaptable to different machining scenarios. 

 

Correlation Between Tool Wear, Cutting Parameters, and Workpiece Material: The empirical 

investigation into the effects of cutting parameters and workpiece material properties on tool wear 

progression and tool life. The study provided insights into the complex interactions between cutting 

conditions and wear mechanisms, guiding the optimization of cutting parameters and tool selection. 

 

Comparative Analysis with State-of-the-Art Methods: A detailed comparison of the proposed system 

with existing methods, including traditional computer vision techniques and recent deep learning 

approaches. The results demonstrated the superiority of the proposed system in terms of recognition 

accuracy, robustness, and generalization ability. 

 

Industrial Applicability Validation: The validation of the tool wear detection and classification 

system's applicability in real manufacturing scenarios through case studies. The system's ability to 

process data, accurately classify and detect tool wear, and optimize cutting processes was 

demonstrated, highlighting its potential for improving manufacturing performance. 

 

The contributions of this thesis advance the state-of-the-art in tool condition detection and 

classification and provide a foundation for future research and industrial implementation. The 

developed deep learning-based system offers a reliable and efficient solution for a future real-time tool 

wear detection and classification, enabling proactive maintenance strategies and optimized cutting 

processes. The comprehensive tool wear image dataset serves as a valuable resource for the research 

community, facilitating further advancements in deep learning-based tool condition detection and 

classification. The insights gained from the empirical investigation of tool wear, cutting parameters, 

and workpiece material contribute to the understanding of wear mechanisms and guide the selection 

of optimal machining conditions. 
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The comparative analysis with existing methods highlights the advantages of the proposed system and 

its potential for industrial deployment. The validation of the system's applicability in real 

manufacturing scenarios demonstrates its readiness for integration into industrial settings and its ability 

to deliver tangible benefits in terms of improved productivity, reduced costs, and enhanced product 

quality. 

 

Overall, the contributions of this thesis provide a significant step forward in the development of 

intelligent and data-driven tool condition detection and classification systems. The proposed deep 

learning-based approach offers a powerful and adaptable solution for a future real-time tool wear 

detection and classification system, paving the way for the implementation of predictive maintenance 

strategies and the realization of Industry 4.0 objectives in manufacturing. 

 

5.3 Limitations and Scope for Future Research 

Despite the substantial improvements and practical potential of the AI-powered tool wear detection 

and classification system, certain limitations and future research areas must be acknowledged: 

 

Increasing Dataset Size and Diversity: Future studies should aim to expand and diversify the tool wear 

image dataset to include more tool types, such as ceramic and other metalics tools, and a broader array 

of workpiece materials, such as composites and advanced alloys. This will improve the system's 

generalization potential. 

 

Real-Time Data Acquisition and Processing: Developing high-speed image capture systems and 

optimized data processing pipelines to perform data acquisition and processing in real-time will further 

enhance the system's utility and competitiveness. 

 

Multi-Sensor Data Fusion: Integrating multi-sensor data, such as cutting forces, vibrations, and 

acoustic emissions, can enhance the robustness and accuracy of the tool wear detection and 

classification system. Future research should investigate the fusion of diverse sensor data to develop a 

multi-modal deep learning model for tool condition detection and classification. 

 

Adapting to Complex Tool Geometries and Wear Patterns: Future studies should focus on constructing 

dedicated deep learning architectures and techniques to accommodate complex tool shapes and wear 

patterns, such as multi-step drills and built-up edge formation. 

 

Integration with Process Optimization and Control: Future research should focus on integrating the 

tool wear detection and classification system with process optimization and control strategies to enable 

autonomous and adaptive process control for improved productivity and quality. 
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Explainable AI: Further research should address the explainability of the deep learning model by 

investigating techniques such as attention mechanisms, rule extraction, and counterfactual 

explanations to improve the interpretability of the tool wear detection and classification system. 

 

Performance Monitoring and Maintenance in Long-Term Use: Investigating the robustness and 

reliability of the tool wear detection and classification system in continuous operation over long 

periods, including sensor deterioration, data drift, and model updates, is essential for sustained 

performance and reliability. 

 

Collaboration and Knowledge Sharing: Building collaborative platforms and frameworks for sharing 

datasets, algorithms, and best practices will spur innovation, reproducibility, and standardization in the 

development of AI-enabled manufacturing process monitoring solutions. 

 

 

By addressing these limitations and pursuing the identified future research directions, the AI-based 

tool wear detection and classification system can be further refined and adapted to meet the evolving 

needs of the manufacturing industry. The system's enhanced capabilities and applicability will 

contribute to the realization of intelligent, data-driven, and sustainable manufacturing practices, 

aligning with the objectives of Industry 4.0. 

 

5.4 Potential for Industrial Deployment 

The AI-based tool wear detection and classification system developed in this thesis represents 

significant potential for industrial deployment and integration with existing manufacturing systems. 

Its capability to detect and classify tool wear can optimize cutting operations and dramatically improve 

overall manufacturing performance. The potential benefits of industrial deployment include: 

 

Enhanced Tool Longevity and Reduced Tooling Costs: Accurate detection and characterization of tool 

wear allow for optimal tool utilization and extended tool life, leading to significant cost savings and 

increased profitability. 

 

Improved Process Reliability and Product Quality: Real-time monitoring and timely detection of tool 

wear will prevent catastrophic tool failures, reducing scrap rates, improving product quality, and 

ensuring process reliability. 

 

Increased Productivity and Efficiency: The system provides valuable insights for data-driven decision-

making and process optimization, leading to reduced cycle times and increased throughput. 
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Predictive Maintenance and Reduced Downtime: The system's ability to forecast the remaining useful 

life of cutting tools enables predictive maintenance strategies, minimizing unplanned downtime and 

optimizing maintenance schedules. 

 

Compliance with Quality Standards and Regulations: The system provides objective data on tool wear 

conditions, supporting compliance with industry-specific quality standards and regulations. 

 

Embracing Industry 4.0 and Smart Manufacturing: The system aligns with Industry 4.0 principles, 

enabling intelligent and data-driven manufacturing processes through integration with existing MES 

and ERP systems. 

 

Scalability and Adaptability: The system's modular architecture and transfer learning techniques allow 

for easy integration with different production lines and adaptation to various machining conditions. 

 

Improved Operator Safety and Ergonomics: Automating the tool wear inspection process reduces 

manual interventions and enhances operator safety and ergonomics. 

 

Promoting Sustainability and Resource Efficiency: Optimizing tool life and cutting parameters reduces 

waste and improves resource utilization, contributing to sustainable manufacturing practices. 

 

To facilitate industrial deployment, the AI-based tool wear detection and classification system should 

be designed with scalability, adaptability, and interoperability in mind. The system's architecture 

should be modular and flexible, allowing for seamless integration with existing manufacturing systems 

and easy adaptation to different production lines and machining conditions. 

 

The development of standardized data models, communication protocols, and interfaces will ensure 

the system's compatibility with various industrial equipment and software platforms. This 

interoperability will enable the smooth exchange of data between the tool wear detection and 

classification system and other manufacturing systems, such as machine controllers, MES, and ERP 

systems. 

 

The deployment process should also involve close collaboration with industry partners to validate the 

system's performance and reliability in real manufacturing environments. Pilot projects and case 

studies can demonstrate the system's benefits and identify potential challenges and areas for 

improvement. 

 

Training and support for operators and maintenance personnel should be provided to ensure the 

effective use and maintenance of the tool wear detection and classification system. This includes 

developing user-friendly interfaces, providing clear guidelines for system operation and data 

interpretation, and offering ongoing technical support. 
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The industrial deployment of the AI-based tool wear detection and classification system should be 

accompanied by a comprehensive cost-benefit analysis to quantify the potential savings and return on 

investment. This analysis should consider factors such as reduced tooling costs, increased productivity, 

improved product quality, and reduced downtime. 

 

Furthermore, the deployment process should address data security and privacy concerns, ensuring that 

sensitive manufacturing data is protected and handled in compliance with relevant regulations and 

standards. 

 

By carefully planning and executing the industrial deployment of the AI-based tool wear detection and 

classification system, manufacturers can harness its potential to optimize cutting operations, reduce 

costs, and improve overall manufacturing performance. The successful adoption of this system will 

contribute to the realization of intelligent, data-driven, and sustainable manufacturing practices, 

aligning with the objectives of Industry 4.0. 

 

5.5 Future Prospects 

The integration of advanced sensor technologies, such as high-speed cameras, 3D scanners, and 

multimodal sensors, will enhance the system's accuracy, consistency, and reliability in capturing and 

analyzing tool wear data. These advancements will enable more precise wear characterization and 

improve the system's performance in challenging machining environments. 

 

Diversifying the AI-based approach to alternative manufacturing processes, such as grinding, forming, 

and additive manufacturing, will unlock new application territories and market opportunities. This 

expansion will demonstrate the versatility and adaptability of the tool wear detection and classification 

system and its potential to optimize various manufacturing processes. 

 

Leveraging cloud-based platforms for scalable and remote tool wear detection and classification will 

enable real-time diagnostics and collaborative decision-making. Cloud-based solutions will facilitate 

the deployment of the system across multiple manufacturing sites, allowing for centralized data 

management and analysis. This will enable manufacturers to monitor and optimize their cutting 

operations on a global scale, leading to improved efficiency and cost savings. 

 

Integrating the tool wear detection and classification system with digital twin technologies will enable 

proactive decision-making and virtual process planning. By combining real-time tool wear data with 

virtual models of the manufacturing process, manufacturers can simulate and optimize cutting 

operations, predict tool life, and plan maintenance activities more effectively. 
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Developing autonomous process control systems that adjust cutting parameters, tool paths, and tool 

change strategies in real-time based on tool wear detections will further optimize the manufacturing 

process. These systems will enable adaptive and self-optimizing cutting operations, reducing human 

intervention and improving overall process efficiency. 

 

Implementing advanced predictive maintenance strategies and optimizing tool inventory management 

based on tool wear detections will help manufacturers minimize unplanned downtime and ensure the 

timely availability of replacement tools. By leveraging the insights provided by the tool wear detection 

and classification system, manufacturers can optimize their maintenance schedules and tool inventory 

levels, reducing costs and improving operational efficiency. 

 

Integrating the tool wear detection and classification system with supply chain and logistics 

management systems will enable the coordination of tool procurement and delivery. This integration 

will ensure the timely availability of replacement tools, minimizing production disruptions and 

optimizing inventory levels. 

 

Implementing dynamic learning mechanisms will allow the system to continuously refine its 

algorithms and models based on real-world experiences. This continuous learning and improvement 

will enable the system to adapt to evolving manufacturing conditions and maintain its performance 

over time. 

 

Developing standardized data models, communication protocols, and interfaces will ensure 

interoperability and broad adoption of tool wear detection and classification systems. Standardization 

efforts will facilitate the integration of the system with existing manufacturing systems and enable 

seamless data exchange between different vendors and platforms. 

 

Fostering collaboration and knowledge sharing among stakeholders, including manufacturers, research 

institutions, and technology providers, will drive innovation and address common challenges in tool 

wear detection and classification. Building collaborative platforms and frameworks for sharing 

datasets, algorithms, and best practices will spur innovation, reproducibility, and standardization in the 

development of AI-enabled manufacturing process monitoring solutions. 

 

By pursuing these future prospects, the AI-based tool wear detection and classification system can be 

further refined and adapted to meet the evolving needs of the manufacturing industry. The system's 

enhanced capabilities and applicability will contribute to the realization of intelligent, data-driven, and 

sustainable manufacturing practices, aligning with the objectives of Industry 4.0. 

 



 55 

5.6 Conclusion 

In summary, this thesis provides a comprehensive study on the development and deployment of an AI-

based tool wear detection and classification system for optimizing metal cutting processes. The 

research covers data collection, model development, image processing, generalization, validation, and 

industrial integration. The proposed system demonstrates high accuracy, reliability, and efficiency in 

detecting and classifying tool wear, offering significant potential for improving manufacturing 

productivity and quality. 

 

The main contributions of this thesis include the construction of a diverse and representative tool wear 

image dataset, the design and implementation of a CNN-based tool wear detection and classification 

algorithm using the Mask R-CNN network structure, the empirical investigation into the effects of 

cutting parameters and workpiece material properties on tool wear progression and tool life, a detailed 

comparison of the proposed system with existing methods, and the validation of the tool wear detection 

and classification system's applicability in real manufacturing scenarios. 

 

Despite the substantial improvements and practical potential of the AI-powered tool wear detection 

and classification system, certain limitations and future research areas are acknowledged. These 

include increasing dataset size and diversity, developing real-time data acquisition and processing 

capabilities, integrating multi-sensor data fusion, adapting to complex tool geometries and wear 

patterns, quantifying uncertainty and confidence in the model's detections, exploring advanced transfer 

learning and domain adaptation methods, integrating with process optimization and control strategies, 

enhancing the explainability of the deep learning model, investigating the system's long-term 

performance and reliability, and fostering collaboration and knowledge sharing within the research 

community. 

 

Addressing these limitations and exploring the identified future research directions will further 

enhance the capabilities and applicability of the AI-based tool wear detection and classification system. 

The system's enhanced capabilities and applicability will contribute to the realization of intelligent, 

data-driven, and sustainable manufacturing practices, aligning with the objectives of Industry 4.0. 

 

The AI-based tool wear detection and classification system has a strong foundation and broad 

application prospects for future work in manufacturing. Several important directions for future 

development include integrating advanced sensor technologies, diversifying the AI-based approach to 

alternative manufacturing processes, leveraging cloud-based platforms for scalable and remote 

detection and classification, integrating with digital twin technologies and virtual manufacturing, 

developing autonomous process control and optimization systems, implementing advanced predictive 

maintenance and tool inventory management strategies, coordinating with supply chain and logistics 

management systems, implementing dynamic learning mechanisms for continuous improvement, 

developing standardized data models and interfaces for interoperability, and fostering collaboration 

and knowledge sharing among stakeholders. 
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By pursuing these future prospects, the AI-based tool wear detection and classification system can be 

further refined and adapted to meet the evolving needs of the manufacturing industry. The system's 

enhanced capabilities and applicability will contribute to the realization of intelligent, data-driven, and 

sustainable manufacturing practices, aligning with the objectives of Industry 4.0. 

 

In conclusion, this thesis provides a significant step towards intelligent, green, and sustainable 

manufacturing in the Industry 4.0 era. The proposed AI-based tool wear detection and classification 

system demonstrates high accuracy, reliability, and efficiency in detecting and classifying tool wear, 

offering significant potential for improving manufacturing productivity and quality. Future research 

should focus on expanding the dataset, enhancing real-time capabilities, integrating multi-sensor data, 

and exploring advanced AI techniques to further improve the system's performance and applicability 

in diverse manufacturing scenarios. The AI-based tool wear detection and classification system 

represents a promising solution for optimizing metal cutting processes and advancing sustainable 

manufacturing practices in the Industry 4.0 era. 
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