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Abstract

Every day more devices all over the world are connected to networks. Some of
these devices have microphones that could potentially be used in a networked ar-
ray. This opens up the possibility to determine where sounds in the environment
are produced, given the positions of the microphones are known. This thesis in-
vestigates the feasibility of using a number of network connected speakers with
built-in microphones to track where a sound came from. The proposed system
tries to position sounds by synchronising the clocks between devices and sending
the audio streams from their microphones to a server to be processed. The server
estimates the difference in arrival time of the signal between the devices. This
results in a series of differences that can be used in multilateration to estimate the
location of origin. The results are then visualised in a graph. The investigated sys-
tem displays decent results when positioning sounds in a controlled environment,
with differences in appropriate configurations for different types of sounds. The
results show that more reliable synchronisation methods would allow for greater
precision with the suggested approach.
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Chapter 1
Introduction

This introduction chapter aims to give the reader an understanding of why this
thesis was conducted, what previous work that has been done on the subject as
well as determine limitations and scope for the thesis. Lastly it also introduces
the research questions to be answered.

1.1 Background

The world is becoming more and more connected. Everything from fridges to
speakers can be connected to a network. This opens up possibilities to aggregate
data from multiple units, something which might not previously have been possi-
ble. This data collection comes with its own challenges, and a real-time system
has high demands on latency, scaling and correct concurrency handling.

This thesis explores the possibilities of using an array of network connected
microphones to determine the location of a sound source. Furthermore it aims
to achieve an implementation that can be run in real-time within a reasonable
processing budget, while still being able to display the position on e.g. a floor plan
with enough accuracy to be useful. This could then be used in a surveillance system
to detect disturbances and direct attention to a possibly problematic situation.
For example detecting the sound of a window shattering, even if no camera is
aimed directly at that window at the moment. An operator could then possibly
investigate further with other surveillance equipment or get the position to check
what happened in person by moving to the estimated location.

Axis Communications

Axis Communications develops and manufactures network devices such as cameras
and speakers and surrounding technologies including management software. Many
of their products contain different types of sensors, relevant to this thesis project is
that many of them contain microphones. In a distributed surveillance system with
microphones at several different known locations interesting data can be extracted
about the environment and the sound sources within it.

This thesis project aims to estimate the position of a sound source based on
data received by the microphones in a distributed system of Axis devices.

1



2 Introduction

1.2 Research questions

The report aims to answer the following questions:

R1. How can position tracking of a noise source be implemented using networked
devices with built-in microphones and known positions?

R2. What is such a system’s performance and accuracy limits when dealing with
different types of sound sources (e.g. short and sharp sounds compared to
continuous sounds, or a specific known sound compared to a more vaguely
classified sound)?

R3. How can the positional data be visualised?

R4. Is real-time analysis and visualisation of this data viable on standard hard-
ware?

R5. What are the real world applications for this data?

1.3 Scope

To achieve a useful result and to make sure the project was achievable in the time
given for a master’s thesis some thought was given to limiting the scope of the
project.

• The project will not develop or train any neural networks or machine learn-
ing algorithms.

• The project will not take extra steps to handle situations with more than
one applicable noise source, although they may still be tested to ascertain
the current system’s limitations.

• The system will only attempt to position signals in two dimensions, and will
therefore assume that the signal came from a predetermined plane.

• The system will be primarily tested in an office setting due to availability.

• The clocks on the sensor devices can be synchronised by a variety of means,
but no novel synchronisation tools will be implemented for the thesis, and
as such the live synchronisation is limited to the options that are available
(NTP with a common server on a local network, or a basic implementation
of ptpd2[19]).

• The project will attempt to be real time applicable, meaning low-cost-of-
computation approaches will be generally favoured.

1.4 Related work

There are many previous studies conducted on the matter of locating a sound
source with multiple sensors. A few have even been done at Axis Communications.
In a thesis project by Chan & Karlsson[3] the goal was to detect a gun shot, classify
it as such and then determine where it originated from. The results were promising
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and showed that good enough synchronisation could be achieved to give satisfying
location estimates. The proposed system did, however, have some drawbacks such
as needing to calibrate it with a number of sounds first to compensate for latency
in the solution. It also propose an edge detection algorithm to determine when
an event occurs. This has the drawback of not being able to position continuous
sounds, other than when they initially start.

Farzone and Smidje conducted a similar study[6] where a sound would be
positioned and the estimated position would be used to aim a camera at that
location. A setup with external microphones were used and the data was sent
over the network to a server to be processed in real time. The resulting system
could, to a satisfactory degree, estimate the location and aim the camera. This
is very similar to what this thesis aims to achieve but instead of aiming a camera
the intention is to show the location on a map in real-time.

Summary

In the above chapter a brief overview of previous work has been presented, the
research questions established, and the scope and limitations clarified. With this
as background, the next chapter will discuss the underlying theory.
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Chapter 2
Theory

This chapter aims to give a brief explanation of the theoretical concepts it touches
upon, and of the mathematics involved, as well as what factors will impact a
positioning system’s precision.

2.1 Introduction to acoustic localisation

Localisation using acoustics is a very common way of determining the position
of a sound source. For example, it is used by animals such as bats which use
echolocation as a navigational tool. It is also used in a different way in military
operations to, for example, locate artillery weapons. Humans are able to use these
techniques instinctively to some extent with some people, particularly people with
poor eye sight, using it as a navigational tool in everyday life[13].

Passive and active localisation

The example of bats’ echolocation is a form of active localisation, where the object
being positioned emits a signal and the response to that signal (i.e. the echo) is
used to gain information about the surroundings or the object’s own position. This
is the same technique used in sonar devices in submarines where a loud ping is
emitted. The technique differs from passive localisation. In passive localisation the
signal is instead assumed to be present in the environment, having been emitted by
an external source, rather than by the positioning system, such as in the case with
military positioning of artillery weapons. Certain techniques, discussed later, are
used to separate what is perceived to be the real signal from the background signal,
i.e. the noise. This means that a system using passive localisation can theoretically
position any signal (within the system’s frequency range). In practice this requires
a certain amount of filtering to extract signal from the background noise of the area
as the calculated position of said noise would end up being essentially random in
many real use cases. This filtering can be done in several different ways including,
but not limited to, standard signal processing filters, volume thresholds, correlation
thresholds and sound classifiers[11].

5



6 Theory

2.2 Comparing signals

For a signal to be useful to a positioning system it needs to be identified at several
different sensors. Identifying which signals are the same is not a trivial matter. A
signal captured at two different sensors will rarely, if ever, be exactly the same in a
real life scenario. Electromagnetic radiation travelling through a sparse medium or
a vacuum, such as radio waves sent into space, lose very little of their information
over distance compared to sound waves. Signals degrade in intensity over distance
according to the inverse square law[17]. Electromagnetic radiation carries its own
energy and can propagate even without the need of a medium. Sound waves
are elastic waves and therefore propagate by actually moving physical particles,
necessitating a medium to travel through. Propagating through a medium causes
the waves to weaken over distance as they transfer part of their energy to the
surrounding medium[4]. This also attenuates the signal, changing its frequency
content.

Figure 2.1: Illustration of the differences in a snap signal captured
at different sensors

Signals also move at different speeds through different mediums. The speed
at which a sound propagates changes when it moves through even very small
variations in temperature and pressure within the same environment. The rate of
change in these properties is also reliant on the frequency content of the specific
signal. This means that audio signals travelling through air will quickly change
and get a different representation.

The weaker a signal is the lower the Signal-to-Noise Ratio (SNR) becomes,
and the harder it is to extract useful data. Therefore the most that can be done
with an audio signal in a real scenario is to establish a quantifiable measure of
similarity between two signals, and use that information to determine when two
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signals are similar enough to be considered the same.
In Figure 2.1 the effects of an acoustic signal degrading can be clearly seen

in data extracted from a real test where data was collected from three of the
microphones used in the system. A single signal, in this case a person snapping,
gets represented slightly differently and arrives at slightly different times in the
different sensors. There is a clear similarity between the signals visually, but they
are not the same. Thus the challenge is quantifying this similarity and extracting
useful positioning data from it. For example a simple assumption might be that
a signal with a low amplitude has come from further away than a signal with a
higher amplitude, but this might not always be the case. Different frequencies are
attenuated at varying rates in the atmosphere based on factors that are difficult to
account for [8] without already having information on the sound’s source position
or frequency content. This makes the relative distance of a sound with previously
unknown characteristics impossible to calculate accurately based purely on the
amplitude. Instead it is clear that another measure of similarity between signals is
needed, one that can hopefully also extract some other useful information about
the signal, such as the delay between the times when the signals arrive at the
sensors. There exists a simple such measure, and it is the cross-correlation of
the two signals. Cross-correlation effectively measures the similarity between two
signals as a function of the relative delay[5], something that is very useful for an
audio positioning system.

The cross-correlation of a continuous real valued signal is defined as:

(f ⋆ g)(τ) ≜
∫ ∞

−∞
f(t)g(t+ τ)dt (2.1)

or more specifically, for discrete values

(f ⋆ g)[n] ≜
∞∑

m=−∞
f [m]g[m+ n]. (2.2)

When these are applied to two signals that are identical, or identical except
for scaling of the amplitude, the output will peak at zero lag n = 0. If the signals
have that same relation but are also shifted by a certain amount the peak of the
cross-correlation will in turn be shifted by that same amount. In the case of digital
audio extracted through microphones, this means that the amount of samples that
one signal is shifted compared to another can be calculated through the discrete
case of the above equations, by simply returning the index of the maximum value
in the output.

The cross-correlation is a powerful enough tool that it can return a quantifiable
measurement of how similar they are, and with which offset they would be most
similar, even though they are not the same. Theoretically this should be enough
for a solution to the Time Difference of Arrival (TDOA) calculation, but testing
showed that it is not very resilient to the types of acoustic interference that will
appear in a real life scenario. The algorithm would theoretically give the correct
estimate of the TDOA in an environment with no reverberance, no other sound
sources, and a completely even medium for signal propagation. A real acoustic
environment very rarely exhibits these traits, and as such there is a need for a
method that is more robust to this kind of signal degradation.
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2.2.1 Generalized Cross-Correlation with Phase Transform (GCC-PHAT)

With multiple similar devices placed in the same environment, as required for the
system to work, the noise contributed by the environment itself will inevitable be
similar between devices. Noise from objects in the environment and from electrical
interference in the devices will therefore show a high correlation. Thankfully, most
of the information that is important specifically to calculating the offset between
the two signals is preserved in the phase information.

GCC-PHAT works by implementing a weighting component to the cross-
correlation which makes it less prone to uncorrelated noise. The weight is based
on normalisation and multiplies the samples with the inverse of the absolute value,
ideally resulting in samples of unit amplitude in the frequency domain. This re-
sults in ignoring amplitude information while preserving the phase. This can have
benefits in reverberant environments and other less optimal conditions.[12]

2.3 Multilateration

Given just a single sensor and the arrival time of a signal all that can be deduced
is that the signal was sent before it arrived to the sensor. This information is not
very useful for positioning the source.

However, with two sensors there is a lot more information to be gained. Using
the TDOA information about the source position can be extracted. First, the
simple two dimensional case is considered, with two sensors and two arrival times
of a signal at those sensors, t1 and t2.

Figure 2.2: Possible sources
of a signal arriving at
both sensors simultane-
ously

Figure 2.3: Possible sources
of a signal with a specific
earlier arrival time at the
leftmost sensor

With two sensors, if the signal arrives at the same time (given that the signal
has travelled through a relatively evenly distributed medium) it can be deduced
that the signal was sent from a point with roughly equal distance from the two
sensors. This set of possible points forms a straight line as seen in Figure 2.2.
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If the signal is instead shifted in time in the two sensors the difference in
distance can be calculated by calculating the extra distance that the signal would
travel during that time offset. Then all possible points that would have that
distance offset form one half of a hyperbola as demonstrated in Figure 2.3.

These two cases both present a simplified version where only the intersection
between the z = 0 plane is visualised. More generally the TDOA problem can be
framed in three dimensions as

δ1 =
√

(xt − x1)2 + (yt − y1)2 + (zt − z1)2

δ2 =
√

(xt − x2)2 + (yt − y2)2 + (zt − z2)2

δ1 − δ2 = c(t1 − t2)

(2.3)

where c represents the speed of the signal. Solving for (x, y, z) provides a hyper-
boloid which is generally formulated as

x2

a2
+

y2

b2
− z2

c2
= −1 (2.4)

More specifically, since the sign of the TDOA is known, the system solves to
one half of a hyperboloid. Within the scope of this thesis it is assumed that the
signal originates from a point within a plane spanned by the sensors, similarly to
the case in figures 2.2 and 2.3. As such the points of interest are on the line of
intersection between the hyperboloid and the plane spanned by the sensors, which
can be assumed to be z = 0. This simplifies the equation to the two dimensional
case for the TDOA calculation, as

δ1 =
√

(xt − x1)2 + (yt − y1)2

δ2 =
√
(xt − x2)2 + (yt − y2)2

δ1 − δ2 = c(t1 − t2)

(2.5)

This system solves to a hyperbola as

x2

a2
− y2

b2
= 1 (2.6)

Since the sign of the TDOA is still known the final solution is only one of the arcs
of the above hyperbola.

Now, assuming that the signal did originate from the given plane, the TDOA
can be used to calculate a parabolic function of possible origin points.

To actually position a signal to more accuracy than any point along this infinite
parabola a third sensor is needed. Each new sensor provides TDOA measurements
from each other sensor, so with three sensors three TDOA measurements can be
calculated.

In an ideal environment with perfect signal preservation and no synchroni-
sation errors these three measurements can actually be perfectly represented by
just two values. With the time when the signal first arrives at a sensor as T0 and
the arrival times at the other two sensors as T1 and T2, the two TDOA values
(T0 − T1) and (T0 − T2) also contain all the information necessary to construct
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(a) Hyperbolas that all intersect in a single
point.

(b) Hyperbolas that intersect in 3 distinct
points.

(c) Hyperbolas where some of the parabolas
never intersect

Figure 2.4: Different cases for how the hyperbolas might intersect

the third value (T1 − T2). This holds true for any number of sensors, as all events
(T0 − TN ) can be placed on the same timeline with N comparisons to T0. In this
idealised world the solution to the positioning problem would be found quite easily
at the intersection of the two parabolas in a closed-form solution[14]. If the third
parabola is calculated anyway, just for the sake of completeness, it will intersect
the same point, and the solution is found in that point as seen in Figure 2.4a.

Unfortunately, once again a real acoustic environment is a limiting factor,
and while calculating two parabolas does (usually) lead to a solution, it is not
necessarily an exact nor a theoretically correct solution.

Environmental noise and inter-device synchronisation will inevitably lead to
shifts in the hyperbolas by some amount, and even a small shift will lead to a differ-
ent case, where calculating all three hyperbolas will yield not a single intersection
point, but three, as seen in Figure 2.4b

These three points are therefore all presented as possible solutions to the posi-
tioning problem. It is possible at this point that there is a singular solution to the
problem but that it lies above or below the plane that the calculations assume,
needing a three dimensional solver to be perfectly positioned. Within the scope of
the thesis, however, it can be assumed that the sound did originate in the plane,
so any solution outside of the plane would be inaccurate by default, and would
only be possible through some sort of measurement error. The thesis also assumes
that a sound has a singular point as a source even if this may not always be the
case, introducing another source of errors that will offset the hyperbolas. With
this in mind the centroid of the triangle, the mean of all intersection points, can
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be used as an acceptable approximation of the true solution in this simple case.
Another problem arises when the hyperbolas do not form three intersections

that lie in the plane. Depending on the magnitude of noise and the actual differ-
ences between the arrival times of the signals between 0 and 6 intersections could
actually form. When this happens the positioning problem has much less obvious
solutions. As can be seen in Figure 2.4c the previous method does not yield a sat-
isfactory answer in this case. One could also easily imagine a case where a small
shift in one of these hyperbola that would otherwise form an intersection near the
correct point causes an intersection very far away.

Given an input signal with enough noise there will inevitably be occurrences
of this nature. There are different ways to handle these cases, but it is not easy
to know which way will be more accurate for any specific case. Without knowing
the nature of the noise well enough to accurately compensate for it the divergent
hyperbolas cannot be avoided, but if that knowledge was possible to extract there
would be no divergent hyperbola after applying said compensation. There is also
the issue of sensor placement, which heavily impacts both the likelihood of a diver-
gent hyperbola and the potential impact of it. In general signals that come from
outside the area spanned by the devices have a smaller tolerance for divergence
and experience a larger shift in the position of intersections, while signals that
come from an approximately equidistant point from all the sensors (i.e. the centre
of the area spanned by the sensors) experience the smallest shift.

With all this in mind choosing which estimation to return from a case where
parabolas diverge comes down to how the system values false negatives relative to
false positives.

The simplest case is returning a negative whenever an intersection between
two of the parabolas can not be found, and treating it as not having gotten a
signal, which would constitute a false negative. Other estimation techniques, such
as choosing the centroid of the intersection points that were actually found, will
lead to errors, and as such risk constituting a false positive, even if the answer
might be within error tolerance.

With more than three sensors a more precise location estimate can be achieved.
It can be assumed that the inaccuracies introduced by noise and synchronisation
errors don’t lead to an offset in any specific direction as long as the sensors are
well distributed and are frequently re-synchronised. If that is the case then any
offsets introduced should follow a distribution centred on the correct point. This
means that as more sensors are used the average position of each intersection
point should converge closer to the correct solution. However, the further a sensor
is from the signal the worse the SNR becomes, meaning that introducing more
sensors will likely not improve the accuracy if they are not sufficiently close to the
sound source, and could instead reduce it. This accuracy loss can be mitigated
by weighting the values based on some factor that correlates with signal strength,
such as overall measures amplitude, or the value of the correlation peak with other
sensors.

With at least four sensors it is also possible to produce a solution in three
dimensions, as long as the sensors themselves span three axes, i.e. they are not
positioned in the same plane. This has the same limitations as the previous case,
meaning that in most real cases the hyperboloids will likely not intersect in a
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single point, but in several different points in space. Theoretically this holds for
N sensors that span N − 1 dimensions, but the practical use cases for more than
three dimensions are limited.

2.4 Limiting factors for positional accuracy

There are many factors that affect the maximal accuracy a positioning system is
able to achieve. No system will be able to position every signal perfectly, instead
it is more reasonable to measure the system’s accuracy by looking at the average
error when it positions a signal well, as well as the amount of false positives, false
negatives and true negatives. Some specific factors are important enough for the
accuracy that they deserve separate consideration.

2.4.1 Device synchronisation

Once the similarity of two signals has been established, and the estimation of the
time offset has been calculated, one issue remains. Within a distributed system
such as the one in this thesis each device has its own clock, and sending data across
a network does not take a consistent amount of time, so the arrival time of the
packets will not be a reliable measurement of when they were captured. To solve
this the data is tagged with a timestamp of when the signal was captured. The
data point that is most important for positioning, the time offset between when the
signals arrived at each device, is completely dependent on this synchronisation for
the comparison to be valid. As such the accuracy in the time difference estimation
is limited by the synchronisation between devices.

There are many ways to synchronise device clocks, the most common of which
uses NTP servers [15]. This provides a baseline level of synchronisation between
the units that is acceptable for most users, as it tends to keep accuracy to the tens
of milliseconds, increasing to about a millisecond in optimal scenarios such as a
local network with a dedicated NTP server.

Network Time Protocol (NTP)

Network Time Protocol or NTP[15] for short is a very commonly used synchroni-
sation method used by computers today. A common use case is to automatically
synchronise the clock in a computer to an NTP-server that acts like a master
clock and tells the client what time it is. This allows for computers to set the
correct time without the user having to input it manually. It also comes with the
added benefit of compensating for clock drift automatically. All clocks drift by
some amount, meaning they deviate from the correct time. Each second will not
be treated as exactly one second and over time these small errors compound and
result in an increasingly incorrect clock until synchronised again. The solution to
this is to just let the computer re-synchronise its clock with the NTP-server on
regular intervals to ensure that the clock does not drift too far. NTP is not ideal
in time sensitive scenarios since the synchronisation can vary greatly. With an
average internet connection it can reach synchronisation of around 10 milliseconds
which would result in an accuracy loss of about 3 meters for each measured value.
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Under ideal circumstances NTP could reach an accuracy of less than 1 millisecond
but in worst case could result in over hundreds of milliseconds, and it is difficult
to confirm how well synchronisation is working.

Precision Time Protocol (PTP)

Precision Time Protocol or PTP[18] is another synchronisation method that can
achieve much better synchronisation between units than NTP. It is more commonly
used in scenarios where accurate synchronisation is important such as in digital
sound equipment for live audio applications, and situations such as the one covered
in this thesis. PTP has an array of features to improve synchronisation over NTP
such as better latency compensation and selection of a so-called grandmaster clock
in the network. The grandmaster clock is the reference time all the other devices
tries to synchronise against. The PTP network automatically detects the clock
source that is deemed the best one. If a new device is added which is deemed a
better clock by the network, the grandmaster clock is changed to the new device.
To ensure the devices are synchronised, the grandmaster clock sends out a Sync
event as well as the time that it was sent. The receiver notes the time it thinks
the messages arrived and responds with a Delay request to the grandmaster clock.
The grandmaster then responds with when it received the Delay request. Now the
receiver knows when the Sync and Delay request where sent and received according
to the two parties. This is enough for the receiver to accurately calculate how much
to adjust the clock to be in sync with the grandmaster.

2.4.2 Speed of sound

The thesis project system uses microphones, which are sensors that specifically
measure acoustic signals, i.e. sound. Sound travels at a speed of approximately
343 metres per second in normal pressure and room temperature air [17]. This
speed varies depending on multiple factors, such as temperature, air pressure and
humidity. However, these factors can be assumed to be close enough to equal
across all devices across the system as they are all within the same network and
therefore very likely to be facing the same atmospheric conditions. Due to this
relative homogeneity the speed of sound is simply assumed to be a static 343
metres per second within the system.

When measuring the TDOA between multiple distributed sensors the accuracy
that would be lost with a certain amount of desynchronisation can therefore be
approximated as

|∆TDOA| = |TDOAestimated − TDOAexpected|
Hyperbolaerror = 343 ∗ |∆TDOA|.

(2.7)

Thus, a synchronisation error of a single second would lead to an accuracy loss of
up to 343 meters in the estimated difference in arrival time, something that would
render the system completely useless at estimating the location of an acoustic
source with any sort of accuracy in most environments. The sound would need to
be extremely loud to be measurable in microphones at large enough distances that
an intersection point being shifted by 343 meters would still provide an acceptable
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estimate, and a hyperbola being shifted by 343 meters might shift the intersection
points by much more than that. As such it is clear that a much higher degree of
synchronisation than a second is needed for the calculations to be correct.

A similar positioning system to the one presented in this thesis could be con-
structed to position any type of signal, and the importance of synchronisation
would depend heavily on the speed of that signal. If a similar system was set up
at room scale intended to measure the TDOA of light emitted by some source
the synchronisation demands would be extremely tight, while a system working
at an intergalactic scale might not care about losing a few thousand kilometres in
accuracy. Luckily, sound is a relatively slow moving signal, and there are several
synchronisation methods that can operate within the necessary accuracy to give a
decent result, as explained in Section 2.4.1.

2.4.3 Signal characteristics

The precision one can achieve in a positioning system is also dependent on the
characteristics of the signal itself. When it comes to sound a sharp, clearly defined
sound can be positioned with a higher resolution than a long repetitive sound.
Consider the case of a basic sinusoidal tone, such as a standard A note at 440 Hz.
Each second the signal oscillates 440 times, and as such a second long signal of this
tone would have 440 different time offsets where the signals would be considered
the same, and it would become impossible to extract which specific offset is most
correct based on just the phase information. In contrast a single instance of very
loud sound preceded by and followed by complete silence would only have one
overlap where the peaks would align, leading to a much more obvious correct
answer. All signals in a real life scenario will probably end up on a scale somewhere
in between these examples, with overall sharper sounds, such as a snap or clap,
being easier to correctly position, and more periodic sounds, such as speech or
string instruments, being harder.

2.4.4 Reverberance and reflection

When using a system based on this theory in a real acoustic scenario it is unlikely
that the area is acoustically perfect, and that all signals have taken the shortest
route to the sensor. The ideal choice of locale for accurate positioning would be
an anechoic chamber where as much sound as possible is absorbed by the walls,
and almost nothing is reflected. Normally sound reflects off of walls and objects
in the room and these reflections can cause false correlation spikes and lead to
inaccurate positioning.

An example of this can be seen in Figure 2.5, where a wall leads to a correlation
being found with a much larger t2 than the line-of-sight case, which will lead to
an inaccurate position. This problem would be further exacerbated if there was a
wall positioned in between the source and one of the sensors. This would need to
be included in the TDOA calculations, which is out of scope for this thesis project.
As such it is assumed at the basic level that there are no reflections, and that all
signals have taken a line-of-sight path to the sensor, which will sometimes lead to
false positives. However, since these reflected signals have grown weaker due to
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Figure 2.5: A basic example of reflection off of a wall leading to a
false TDOA

having taken a longer path the correlations can often fall under the correlation
threshold due to the lack of signal strength, so the system is partially resistant to
this case.

Summary

This chapter has provided the reader with some insight in the fundamental con-
cepts of this thesis. It has presented information on the topics of acoustic localisa-
tion with techniques such as multilateration. It also introduces signal comparison
with cross correlation and some factors that might impact the positional accu-
racy. This should be a sufficient foundation to grasp the upcoming chapter that
describes the method used as well as some details of the implementation.



16 Theory



Chapter 3
Method

This chapters purpose is to describe how the research in the thesis was conducted.
Further it describes how the proof-of-concept system was implemented as well as
how the testing was carried out.

3.1 Equipment

3.1.1 Axis Devices

The system was implemented to be used with a set of identical network speakers.
The devices are powered using Power over Ethernet, have a 2.5-inch speaker and a
built in microphone. They run a version of Linux OS and have built in functionality
to synchronise its clock using NTP, either automatically or by setting a specific
NTP-server as a source. Software is also publicly available to synchronise the
devices with an open source PTP[18] implementation called ptpd2[19]. It is also
possible to adjust the gain level of the microphone from the interface provided
by the device. The microphones have a frequency response of 50-12000 Hz, and
as such any signal should be in that range to be represented as accurately as
possible. It is still possible that signal outside this range is captured, but the
amplitude might not be correct.

3.1.2 Network

The network used for testing, as illustrated in Figure 3.1, consisted mainly of
a router, a Power over Ethernet (PoE) capable switch and regular twisted pair
cables. The switch is responsible for power delivery and connections to the network
speakers. The router is mainly used for DHCP capabilities as well as allowing a
computer to connect to the network using WiFi. The network has no access to
the internet and is thus solely a local network.

3.2 Implementation overview

Previous work at Axis [3] [6] used C code to retrieve data and MATLAB to process
it, often taking several seconds to classify and analyse data. This is an approach
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Figure 3.1: Network setup used in testing

that will make it difficult to get results in real time. Instead a synchronous pipeline
approach was chosen.

The system was constructed as a series of Python modules[23] to which a con-
figuration file could be supplied to control the parameters of the system. Python
is flexible enough to be compatible with the streaming pipelines that Axis devices
already use, while also being able to perform the calculations necessary to de-
termine the signal source location. It also simplified the process of setting up a
replicable environment for potential further development of the system.

The system presented in this thesis consists of a set of physical devices to
collect and send audio data as well as a Python program that uses threads to
synchronously perform tasks from all the following modules:

• Data retrieval

• Signal filtering

• TDOA calculation

• Positioning

• Presentation

A visualisation of the system’s pipeline can be found in Figure 3.2. The im-
plementation to send data from the devices to a specific target, in this case an
IP address, was already done, barring some configuration changes. All the work
listed above was implemented in Python code as part of this thesis.

3.3 Producing sound

To test the system two main methods of producing sound was used, snaps and
speech. This was done to cover both ends of the spectrum of sharp sounds and
non-sharp sounds as described in Section 2.4.3.
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Figure 3.2: Graphical representation of pipeline
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Figure 3.3: Example waveform of a finger snap

Figure 3.4: Example waveform of speech

3.3.1 Snaps

The snaps were simply produced by snapping with the fingers in the same plane
as the sensors. This results in a sharp short sound that does not reverberate a lot.
A visualisation of this can be found in Figure 3.3

3.3.2 Speech

The speech was produced by pronouncing a series of so called Harvard Sentences.
Harvard Sentences are phonetically balanced and are intended to be used in testing
speech quality[1]. An example of such a sentence is "Smoky fires lack flame and
heat.", which is one of the sentences used for testing in this thesis. This ensures a
more fair comparison between measurements since the same sentences are repeated
in every instance of testing. The sounds produced this way is more continuous and
not as sharp as a snap. An example of this can be seen in Figure 3.4.

Another difference is that while the sound of a speaking person will spread
outwards in every direction, it will be stronger in a cone in front of the person.
This is not the case for something like a snap, whose sound spreads out more
evenly. Given that the theory requires a signal to arrive at multiple sensors to be
able to position a sound, the angle the speaker is facing can also become important.
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3.4 Retrieving audio data

The units developed by Axis can send out audio data in several different ways.
However, many of these ways introduce latency which for normal use is well within
reasonable limits, but which is difficult to compensate for within the limitations
of this thesis. Using the API to extract the data results in latency differences far
above acceptable limits, so the system is limited to using lower latency methods
to meet synchronisation demands.

Instead a GStreamer-based application on the devices is used to capture au-
dio, timestamp it and send it in RTP packets over a network. This allows for a
configuration file to be supplied to the device with some options for latency pro-
files and clock synchronisation. This module is based on the GStreamer library, a
multimedia framework. GStreamer has features that allow it to manipulate and
synchronise multiple data streams, and has a Python binding scheme, making it
a good choice for the capturing end of the pipeline as well.[7]

The GStreamer pipeline that was implemented captures the RTP packets sent
over UDP by the GStreamer application on the devices, aligns the data using the
timestamps, interleaves it so that adjacent samples were captured at the same
time, and sends it to the next step of the program, which filters the signal.

3.5 Signal Filtering

As the thesis had high synchronisation requirements the audio data was fetched
as early in the audio pipeline as possible to avoid scheduler inaccuracies, meaning
minimal audio processing had been performed on the device. This lead to the
audio data having a weak Signal-to-Noise Ratio, necessitating the use of audio
filters. Depending on what frequency band the signal is expected to be in the
system has very different filtering needs. One relatively predictable noise source
is electrical noise. With the gain needed to get a good signal there was a large
amount of electrical noise at 50 Hz, which could be reduced using a notch filter or
a comb filter to also get rid of higher resonant frequencies. A graph of the noise
profile during the benchmarking process can be seen in Figure 3.5, where a clear
spike is seen at 50 Hz and many of its resonant frequencies. There is also a large
amount of generally low frequency background noise probably mainly caused by
ventilation systems which necessitated the use of a high pass filter or bandpass
filter.

Figure 3.5: Frequency content of unfiltered background noise in the
benchmarking environment
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For this purpose the Python package SciPy[20] has several useful functions. A
bandpass filter was chosen due to the possibility of filtering out the low frequency
hum while maintaining most of the signal. It was implemented as a Butterworth
filter of the 4th order with cascaded second-order functions and forward-backward
filtering to preserve delay information (which also essentially makes it an 8th order
filter). The bandpass filter reduced the background noise to the frequency content
seen in Figure 3.6.

Figure 3.6: Frequency content of bandpass filtered background noise

When benchmarking the system both speech and sharper sounds such as snaps
were used as described in Section 3.3. In the case of snaps, bandpass filtering lead
to the the frequency content seen in Figure 3.7.

Figure 3.7: Frequency content of bandpass filtered snap signal and
surrounding noise

A notch filter (as well as a series of intermittent notch filters, i.e. a comb
filter) was also tested to filter out the electrical noise but deemed to provide too
little benefit for the cost of phase shifting near the affected frequencies, which
decreases the accuracy of phase-based TDOA estimation techniques for signals in
those bands.

3.5.1 Noise injection

It was found that while the bandpass filter worked decently for some methods for
TDOA estimation (cross-correlation) it worked less well for the more robust GCC-
PHAT. The electrical noise in the background was weak compared to the signal,
but it was strongly correlated between units as it had a very consistent frequency
of 50 Hz (and its harmonics). This lead to the system attempting to position the
background noise at an equidistant point from all sensors, as the electrical noise
was synchronised between the units, since they were all plugged into the same
local grid.
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This was solved by dithering the signal by adding some amount of randomness
onto a periodic signal to reduce its periodicity. In implementation this was done
by adding random Gaussian noise with a median of 0 as to not influence the
mean amplitude of the signal. The standard distribution was chosen based on the
typical standard distribution of the noise that the system encountered, scaled with
a configurable factor from 0 (no added noise) to any float number. Any number
close to or above 1 would lead to massive degradation of the overall Signal-to-Noise
Ratio as most of the signal would be hidden by the random noise. In practice,
numbers between 0.02-0.15 seemed to be best at preserving signal while reducing
the chances of either correlating based on the electrical noise or random TDOA
estimates due to too much injected noise.

3.6 Calculating the TDOA

The TDOA is calculated by taking the data buffers received from the devices, col-
lating them, and pairwise calculating the cross correlations on the collected audio
data. The collating is performed by appending the latest buffer to the previous
buffer. This was done to prevent the system from missing a signal that ends up
in different buffers at two devices because of the time difference. Essentially each
set of data is checked for correlation twice, once grouped with the set of data that
came before it and once with the set that came after it. The minimum buffer
size was chosen to ensure that any signal emitted within the zone that the system
operates in will arrive with at most one buffer of time difference according to

nsensors = Number of sensors

bsample =
Bytes
sample

= 2

∆max =
Dmax

v
=

Maximum distance between sensors
Speed of sound

S = 48kHz = 48000 samples/s
Bsize = Buffer size ≥ nsensors ∗ bsample ∗∆max ∗ S.

(3.1)

Once the buffers are collated the cross-correlation is calculated, yielding a set
of TDOAs expressed in number of samples. Given a known sample rate, these
differences in samples can be converted into time shifts in seconds. By extension
one can convert the difference in seconds to a difference in distance the signal has
travelled by incorporating an estimate of the speed of the signal as explained in
Section 2.3.

In the code implemented for the system these calculations are done using either
the SciPy[20] or NumPy[16] packages, depending on if the regular cross-correlation
or the GCC-PHAT solution is selected, respectively. The regular cross-correlation
uses SciPy’s built in function signal.correlate() from the signal package[22].

The GCC-PHAT implementation is slightly more complex. First the Fast
Fourier Transforms (FFT) for the two signals are calculated. Then one of the sig-
nals is multiplied with the conjugate of the other signal which gives the frequency
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Figure 3.8: Example of cross correlation

function of the cross-correlation. The next step is dividing the elements of the
multiplied signals with their respective absolute values. This is what differentiates
the regular cross-correlation from the GCC-PHAT. Once this is done the Inverse
FFT is calculated to return the signal to the time domain.

The next step is finding where the maximum value is located in the signal
by finding its index. Once the index and the length of the signal is know, it is
possible to determine the time offset in samples. If the middle sample of the signal
is assigned to be index 0 and index x is the sample where the maximum was
located, then the offset is the signed distance between index 0 and x. An example
of this can be found in Figure 3.8 where the peak can be seen at around -7000
samples. Meaning the peak of the first audio signal occurs roughly 7000 samples
before the peak of the second audio signal. This can in turn be converted in to
seconds since the sample rate is known.

3.7 Estimating the position of the sound source

To estimate the position of the sound source the TDOAs and the locations of the
sensors are used to construct a set of parabolas as explained in Section 2.3. To
find the intersections of two hyperbolas the SciPy package was once again used in
the implementation. This time using fsolve from the optimize package[21]. fsolve
solves the equation by finding a root to the constructed equations using methods
that are optimised for efficiency. This resulted in a set of points representing the
intersections of the hyperbolas as explained in section 2.3. This set of points can be
quite large, as with 6 sensors over a hundred intersections can be found. Therefore
some methods of removing the less likely estimates are needed.

Any calculated intersection that is not deemed to be a "reasonable estimate"
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is thrown out. A reasonable estimate can be defined in several ways, but it should
be obvious that an intersection several thousand kilometres away is not something
that could be picked up by this system, and allowing those values to be part
of the overall calculation made the estimated positions completely useless when
the SNR was low. As such a reasonable estimate for the benchmarking case was
chosen to be any position within the area spanned by the sensors, or outside it
by less than a configurable buffer zone of a few metres. The physical room where
the benchmarking took place was itself smaller than this buffer zone, and as such
the removal of any values outside this zone should not have removed any correct
estimates from the calculations. This subset of possibly valid intersections then
go through a further selection process.

It is unlikely that an intersection calculated from sensors that received little
signal is more accurate than an intersection from two sensors with a better SNR.
Because of this the intersections were sorted based on the average correlation
strength of the TDOA estimates that they were calculated from, and a subset
of the first n intersections (configurable in the configuration file) was used to
calculate the actual position. As correlation strength is simply a measurement of
the highest absolute value of the correlation it does not automatically imply that
any intersections calculated from that TDOA value are better predictors of the
position. The measurement is, however, highly correlated with signal strength,
which should in turn be highly correlated with TDOA estimation accuracy.

From the points in this subset an estimate of the true position is taken in one
of two ways. The simplest method was to simply take the average of all points,
which is a low complexity calculation, but not very resilient to outliers. Therefore
a second method was implemented which incorporates a further weighting based
on the correlation score raised to a configurable exponent. This allows a system
operator to adjust the system to situations with higher or lower SNR. Then the
SciPy optimize package [21] is utilised again, this time using the minimize function
with the Nelder-Mead solver type and the aforementioned weighting. This overall
minimises the impact of outliers and places more importance on correlations that
had a higher signal strength, allowing the system to take into consideration more
samples with a lower risk of introducing poor data.

3.8 Visualisation

The visualisation module of the pipeline was implemented using the Python library
Matplotlib[9] to display the estimated position. This was done in real time by
plotting the intersection points and centroid calculated in the previous step.

Early in the project only three sensors were used, and therefore only three
intersection points were plotted, and connected by lines to form a triangle similar
to Figure 2.4b. The centroid of the triangle was displayed as a plausible estimate
for the most likely point of origin. To signal an estimate as more recent the older
plots changed their line style to progressively more dashed lines, providing an effect
similar to fading out. The colour of the lines also changed to signify the strength
of the correlation that caused the localisation event. The effect is displayed in
Figure 3.9, where a sound source is seen moving left to right at around y = 4 and
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Figure 3.9: An illustration of the early visualisation method for a
signal moving from left to right (not to scale)

producing enough signal to reach the positioning threshold 4 times.
When more sensors were introduced new visualisation methods were needed.

Plotting the outline of all intersections was no longer as interesting, as many of
the predictions are very close together. Instead each intersection used to estimate
the signal’s position was displayed as a circle with a low opacity, making it easier
to see when many estimates were stacked on top of each other. Showing all the
estimates used for the calculation makes it easier to see which devices might be
poorly synchronised and causing an offset, as well as improved the understanding
of how accurate the estimate was likely to be.

In Figure 3.10 the true position is marked with a blue star. The spread of the
potential values becomes obvious, implying a relatively poor accuracy. However,
the actual predicted position, marked with the red cross, is still less than a metre
off.

In Figure 3.11 it is visually clear that the estimated position is quite likely
to be the correct one as a very large majority of the samples fall within a very
small area, with only a few outliers, and the predicted position is off by less than
5 centimetres. The blue star is not shown as it would almost completely overlap
the red cross.

As mentioned in Section 3.7 most position estimates did not benefit from using
the full set of intersections, and as such the examples shown in Figure 3.10 and
3.11 are mostly for demonstrational purposes, and in actuality the system usually
displayed (and calculated) fewer intersection points.
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Figure 3.10: An example screenshot of the visualisation of a snap
sound emitted at (1.3, 2.0) with relatively poor sensor synchro-
nisation

Figure 3.11: An example screenshot of the visualisation of a snap
sound emitted at (1.3, 2.0) with manual sensor synchronisation
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3.9 Configuration

There are many variables and parameters that affect the performance of the system
and these were collected and stored in a configuration file which the system then
loaded the data from. This enabled more rapid testing of different configurations,
as there was no need to search through the code to change the values. It also
facilitated the automation of comparing the effectiveness of different values. The
system used the following variables and parameters:

• Buffer size, how much data was included in each buffer

• Filter type(s) and cutoffs, to control which filters, if any, are applied

• Correlation method, to control which correlation method to choose

• Correlation threshold, to control the sensitivity of the system

• Sensor layout, to give the system information about which sensors it has
access to and their positions

• Visualisation data, e.g. how many estimates to display at once

• Benchmarking data, to control options relevant for gathering quantifiable
results

3.10 Benchmarking

To achieve quantifiable results of the system’s performance a visual indication of
the position is not enough. Instead a more objective measurement of the accuracy
of a position estimate needed to be established. The first step in this process
involved implementing a way to run through the same test data multiple times,
saving the data that entered the system in a format that could be processed in
the same way at a later time. This was accomplished by splitting the pipeline
right before the data was sent to the correlating module, and saving the data to a
WAVE-file, as well as by implementing a way to parse said files rather than read
live data from the GStreamer pipeline.

Once the system could parse input files a module for the actual benchmarking
process was implemented, where an audio file could be sent through the pipeline
with a set of configuration files. Benchmarking files of different acoustic scenarios
could then be run through the program once for each configuration file provided,
to produce a file with the configuration settings used for a certain test run and its
calculated positions. This data could later be analysed, compared to the ground
truth, and presented to provide quantifiable results for the thesis. This process
was also automated by a script used to parse the data and calculate some useful
measurements such as the mean error.

Summary

This chapter has described the implementation methods used in this study. It
described the hardware setup as well as the design of the software. Finally it
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described how sound was produced to test the system and how the benchmarking
was carried out. The upcoming chapter will describe what results this setup was
able to achieve during testing.
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Chapter 4
Results

In this part of the thesis the results of the implementation described in Chapter
3 are presented. First through an overview of the different ways in which results
were gathered along with some visual examples, then with actual measurements
of the system’s accuracy and performance presented through tables.

4.1 Initial testing

The first experiments were conducted in an uncontrolled environment in an office
area during the development of the solution, as seen in Figure 4.1. This provided
an early indication of whether the implementation could position any sounds what
so ever. The program produced some promising results in this setting by sometimes
being able to very accurately determine where a sound came from. However, since
the office area is uncontrolled, other sound sources could interfere with the testing
and the layout of microphones was probably not optimal, with walls (marked grey
in the figure) potentially causing reflections and resulting in faulty estimates. This
resulted in a lot of false positives and false negatives in initial testing, meaning
a sound was either discovered and positioned incorrectly or the intended sound
was not positioned at all respectively. The testing did however give a decent
approximation of whether the system worked at all or if some recent change had
made an impact on its accuracy. When it could somewhat reliably position sounds
a more controlled test session was performed.

4.2 Benchmarking session

A first attempt was made at gathering more structured and measurable data, but
very varied results were achieved. As such a repeatable way to test the same files
was necessitated as described in Section 3.10. Once this was implemented a new
benchmark session was initiated.

Six devices were set up in a large approximately rectangular room and con-
nected to the same router, as shown in Figure 4.2. The device clocks were synchro-
nised with an implementation of ptpd2 to the leader device positioned at (0, 0).
The devices were laid down flat on tables of the same height and rotated so that
the microphones all faced the centre of the area. The distances between the micro-
phones of all devices were measured with a measuring tape, providing a reasonable
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Figure 4.1: An overview of the initial testing setup

amount of accuracy where the positions should not be displaced by more than a
couple centimetres.

The system was then started and configured to produce an output file of the
audio that was recorded by all six devices. A test sequence of sounds was produced
during each system run. Then the system was restarted and a new sequence
of sounds was produced. All the data was recorded and saved, along with the
approximate position(s) where sound was created.

The following test sequences were recorded:

• A noise profile where no signal was produced

• Repeated snaps at a location, two different locations

• Snaps along a straight path inside the sensor area(one vertical, one horizon-
tal)

• Speech at consistent location, three different locations (one outside the sen-
sor area)

• Speech along a straight path inside the sensor area (one vertical, one hori-
zontal)

• A synchronisation control, with snaps very close to each device’s microphone

With these files the system could be fine tuned to the different scenarios to
provide an estimate of the best case accuracy, as well as tested with a setup that
gives the best general performance. It was also at this point that the positioning
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Figure 4.2: Benchmarking setup
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was updated to reflect the usage of more than three sensors at a time, as previously
the implementation only supported selecting exactly three of the sensors to use
for the positioning.

4.3 Accuracy

Only some of the files produced were used to get quantifiable results. These
were the files where the signal was repeatedly coming from the same location, as
calculating the error of those positions was a lot simpler, rather than having to
compare the estimated position at a certain time. The results for these files can
be seen in Section 4.5.

The files with moving signals were also tested, but as the ground truth available
for those positions was unreliably measured (by estimating the position while
walking) any numerical error estimates would also be unreliable. Instead, they
were used to produce Figure 4.3 which give a visual indication of the system’s
performance when estimating the position of a moving signal. As can be seen in
Figure 4.3a and Figure 4.3b the tracking is decent for snap sounds. It is possible to
determine which path the different sounds were produced along, even if the exact
positions are slightly shifted. In contrast the tests with speech in Figure 4.3c and
Figure 4.3d, the path is harder to distinguish. It is however possible to make a
guess as to where the sounds came from due to their grouping.

For the data tables each file was run 5 times to mitigate the randomness factor
of the noise injection, and the results of all 5 runs were collated and processed to
produce 3 metrics.

First the Mean Absolute Error (MAE), formulated as the sum of the euclidean
distances between each estimation and the ground truth divided by the number of
estimates, represented mathematically as

MAE =
1

n

n∑
i=1

√
(x− x̂i)2 + (y − ŷi)2 (4.1)

where

• MAE is the mean error of distance.

• n is the number of detected sound instances

• (x, y) are the actual coordinates where the sound was emitted.

• (x̂i, ŷi) are the predicted coordinates for the i-th detected sound instance.

Similarly to the MAE the Mean Square Error (MSE) was also calculated,
formulated as the sum of the squares of the euclidean distances between each esti-
mation and the ground truth, divided by the number of estimates. It is represented
with the same input data as the MAE with MSE as the mean squared error of
distance as

MSE =
1

n

n∑
i=1

(x− x̂i)
2 + (y − ŷi)

2 (4.2)
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(a) Positioning snaps moving from left to right

(b) Positioning snaps moving from bottom to top
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(c) Positioning speech moving from left to right

(d) Positioning speech moving from bottom to top

Figure 4.3: Example figures of the moving test signals
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Because the synchronisation of the system is not perfect, many errors in positioning
are actually not errors in the position estimation, but errors in the synchronisation,
which affects the expected position. As such another interesting measure is the
density or spread of the values, which gives an idea of how the system would
perform without synchronisation errors. This will be referred to as the Mean
Absolute Error with Bias Correction (MAEBC). The selected method of evaluating
this value was to take the Mean Error as compared to the geometric average of
the selected points rather than to the ground truth, represented mathematically
as

MAEBC =
1

n

n∑
i=1

√
(x− x̂i)2 + (y − ŷi)2 (4.3)

where

• MAEBC is the mean error of distance from the estimates to the average
point.

• n is the number of detected sound instances

• (x, y) are the average estimated coordinates.

• (x̂i, ŷi) are the predicted coordinates for the i-th detected sound instance.

The MAEBC essentially becomes a measurement of the spread of the positions.
A low value indicates that the predicted positions are clustered together, while
a high value indicates that they are further apart. This in turn relates to the
synchronisation error as the system’s synchronisation was relatively stable during
each run. This means the expected error in TDOA was also relatively stable.

It is important to note that while the MAEBC does give some indication of
how much the error could be reduced by better synchronisation, it is not a direct
measurement of that metric. The relationship between errors in signal arrival
time and errors in predicted position is not linear, as one can easily deduce from
e.g. Figure 2.4c and the related hyperbolic equations. Different magnitudes of
desynchronisation will lead to different magnitudes of positioning error depending
on the sign of the TDOA inaccuracy and the location the sound was emitted from.
As such the MAEBC is mostly intended to give a vague estimate of how much
better the system could perform under good synchronisation conditions.

4.3.1 Configuration

As explained in Section 3.3 the system was tested on two different classes of sound.
These classes, roughly represented as sharp sounds and non-sharp sounds, made
different demands of the positioning system, and as such performed better under
different configurations. As such each input file was tested with three configura-
tions, one optimised for detecting snaps, one optimised for detecting speech, and
one intended to provide good results for both classes of sound. The differences
between the configurations are shown in Table 4.1.

These configurations were arrived at by experimentation with the benchmark-
ing files, and through seeing which features impacted which type of sound posi-
tively or negatively. For example snaps have a frequency content with a lot of high
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Configuration Buffer Size Filter(Hz) Min Corr. Corr. Used

Snap Small (8000) 180-14000 7 8
Generic Medium (12000) 80-14000 5 12
Speech Medium (12000) 80-14000 3 8

Table 4.1: Variation between the different configurations

frequencies, and could thus filter out more of the noise below 180 Hz without losing
accuracy, while speech has a wider frequency content and sometimes performed
poorly if all frequencies below 180 Hz were filtered out.

4.4 Tables of Results

The data for the benchmarking session is presented on the following pages in Tables
4.2-4.10. They contain the average error for each of the metrics described above,
as well as 95% Confidence Interval (CI) margins and the associated upper bound
(labelled as U.B. in the tables) for that Confidence Interval. These were calculated
using the normal distribution calculations in the stats library of scipy[20]. The
tests of snaps had an expected amount of events as each snap is a single sound
and the system is expected to position each one. This also shows that some
configurations for snaps found more than the expected amount of snaps, which
means the system is vulnerable to false positives if an inappropriate configuration
is used. It is more difficult to estimate an expected amount of positions for speech
as it is a more continuous signal and not easy to separate into a discrete amount
of events. As such the speech tests were simply labelled with the amount of events
detected for each test, as well as a lower and upper bound for the amount of events
detected in each run to show the variance introduced by the noise injection.

4.5 Synchronisation

The synchronisation of the devices varied between test sequences, and as such some
performed much better than others. As can be seen in the difference in results
in Table 4.2 and 4.5 the synchronisation and measurement error is responsible for
≥ 90% of the error, and the Mean Absolute Error with Bias Correction of the
snaps that were not manually synchronised is still rather large (even though it is
considerably smaller than the corresponding Mean Absolute Error).

The manual synchronisation of the files whose errors are represented in Tables
4.2 -4.4 was achieved by calculating the sample offset that a snap emitted at
(1.3, 2.0) should have between sensors, and then manually shifting those audio
streams so that each snap peak had the correct sample offset. Therefore the manual
synchronisation actually corrects for both synchronisation errors and measurement
errors in the positions of both the devices and the sound source, as the correct
offsets are calculated assuming each device was positioned exactly where it was
measured to be positioned.



Results 39

Snap results, manually synchronised

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 0.09008 ±0.0151 0.10518
MSE (m2) 0.01133 ±0.00434 0.01567
MAEBC (m) 0.08568 ±0.0156 0.10128

Expected Events Detected events Discrepancy Detection rate

55 55 0 1.0

Table 4.2: Snaps at (1.3, 2.0), manually re-synchronised, with snap
configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 0.1428 ±0.0268 0.1696
MSE (m2) 0.0305 ±0.0099 0.0404
MAEBC (m) 0.1362 ±0.0262 0.1624

Expected Events Detected events Discrepancy Detection rate

55 55 0 1.0

Table 4.3: Snaps at (1.3, 2.0), manually re-synchronised, with
generic configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.1508 ±0.2328 1.3836
MSE (m2) 2.7071 ±0.6546 3.3617
MAEBC (m) 1.1964 ±0.0652 1.2616

Expected Events Detected events Discrepancy Detection rate

55 99 +44 1.8

Table 4.4: Snaps at (1.3, 2.0), manually re-synchronised, with
speech configuration
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Snap results, no manual synchronisation

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.0198 ±0.103 1.1228
MSE (m2) 1.1700 ±0.221 1.391
MAEBC (m) 0.4301 ±0.0584 0.4885

Expected Events Detected Events Discrepancy Detection Rate

55 48 -7 0.8727

Table 4.5: Snaps at (1.3, 2.0), no re-synchronisation, with snap
configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.0522 ±0.0925 1.1448
MSE (m2) 1.2254 ±0.1604 1.3857
MAEBC (m) 0.3826 ±0.0714 0.454

Expected Events Detected Events Discrepancy Detection Rate

55 54 -1 0.9818

Table 4.6: Snaps at (1.3, 2.0), no re-synchronisation, with generic
configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.0749 ±0.1103 1.1851
MSE (m2) 1.3484 ±0.2734 1.6219
MAEBC (m) 0.7713 ±0.1607 0.9321

Expected Events Detected Events Discrepancy Detection Rate

55 62 +7 1.1273

Table 4.7: Snaps at (1.3, 2.0), no re-synchronisation, with speech
configuration
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Speech results

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 0.8168 ±0.0655 0.8823
MSE (m2) 0.7431 ±0.1285 0.8716
MAEBC (m) 0.3467 ±0.0634 0.4101

Test Duration Tests Run Detected Events Events per Run

22.08s 5 69 (12 ≤ n ≤ 17)

Table 4.8: Speech at (4.32, 6.30), no re-synchronisation, with
speech configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 0.9357 ±0.0743 1.01
MSE (m2) 0.9216 ±0.1502 1.0718
MAEBC (m) 0.2549 ±0.0486 0.3035

Test Duration Tests Run Detected Events Events Per Run

22.08s 5 33 (6 ≤ n ≤ 7)

Table 4.9: Speech at (4.32, 6.30), no re-synchronisation, with
generic configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 0.91 ±0.1468 1.0568
MSE (m2) 0.9851 ±0.3529 1.338
MAEBC (m) 0.445 ±0.1171 0.5622

Test Duration Tests Run Detected Events Events Per Run

22.08s 5 29 (5 ≤ n ≤ 6)

Table 4.10: Speech at (4.32, 6.30), no re-synchronisation, with snap
configuration
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4.6 Performance

The system as a whole was created with the goal of achieving real-time positioning.
That is, a live system in an acoustic environment should be able to position a sound
and display it visually in a short enough time that the sound and the positioning
of it seems coupled to an observer. Since the system is built to run indefinitely
while the devices are online this also effectively formulates the requirement that
"processing a given amount of data should take less time than producing that
data". If this was not the case the system would lag further and further behind
the current time, or would need to start dropping buffers in order to catch up.

The system implemented for the thesis passed this test on the hardware avail-
able with one important caveat, namely that there was not a constant signal. The
system was constructed such that every buffer gets sent to the correlation module,
but only buffers with a correlation above a certain threshold are treated as signal
and sent to the positioning module, which was the most computationally expen-
sive task. Because of this a buffer that appears to have a signal takes more time
to process than a buffer without one. The sizes of the buffers can be varied, but
must be at least a certain amount as shown in Equation 3.1.

Buffer size
(samples)

Time Allotted
(s/buffer)

Empty B.
(s/buffer)

Signal B.
(s/buffer)

Visualised B.
(s/buffer)

4000 0.0418 0.0328 0.0377 0.2595
20000 0.2123 0.1771 0.2033 0.4059

Table 4.11: Performance results on a mid-range laptop

Some data was collected for various cases, as can be seen in Table 4.11. At the
maximum resolution of 4000 samples per buffer per channel each buffer contains 42
ms of data and buffers without a signal took 33 ms to process, while each buffer
with a signal took 260 ms. This means the system was real time applicable as
long as only 4% of the buffers contained signal, and if more signal was present the
system would not be able to keep up. At 20000 samples per channel the percentage
of buffers containing signals that could be handled increased to 15.3%. The slow
performance for buffers containing signals was mostly due to the visualisation
module. All the positional data could be calculated and saved at any buffer size
from 4000-20000 without exceeding the performance budget, but displaying it
using the implemented methods (matplotlib) proved expensive.

This is currently an issue that could be easily mitigated with more powerful
hardware, as the system was being run from a work station laptop. For scalabil-
ity purposes, however, future implementations of similar systems could focus on
achieving some form of distributed solution. One very simple solution would be
to offload the actual visualisation to another computing unit by e.g. sending it to
a web socket that then captures and displays the data. There is also the possi-
bility of making part of the entire system, including the calculations, distributed
across the actual devices used. This might be the most suitable solution as the
system already uses a set of distributed devices with some amount of calculation
capabilities, but it would also require some large changes in the current system.
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Summary

The system seems to display a satisfactory ability to determine the location of
origin of a sound, depending on the configuration. The data shows that the system
is heavily impacted by errors in measurement and synchronisation. It also shows
that the configuration impacts which sounds it is able to position well, as the
speech configuration performed the worst when positioning snap sounds, mainly
due to false positives, but performed the best when positioning speech. In the
best case scenario of perfect synchronisation and minimal measurement errors the
precision has a 95% Confidence Interval upper bound of less than 11cm.

With the hardware used visualisation was a potential bottleneck for the per-
formance, and as such only a certain percentage of buffers could be visualised
without the system falling behind. The calculations themselves were within the
performance budget, and with more powerful hardware, or a more decoupled visu-
alisation solution, the percentage of buffers that could be visualised would increase.
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Chapter 5
Discussion

This chapter summarises the results of the thesis and discusses threats to the
validity of those results. It also touches on real life use cases and some ethical and
environmental considerations for this type of system.

5.1 Validity

The system as a whole performs the tasks it was designed for, but has relatively
low general applicability. With six sensors set up in relatively close proximity the
position of sounds could be somewhat reliably estimated given a decent synchro-
nisation was achieved, and the results for the optimal case of positioning sharp
sounds with perfect synchronisation were very promising at under 11 cm.

5.1.1 Development choices

Since the results with sharp sounds (snaps and clinking in glass/porcelain) proved
much more reliable than other sounds (mainly speech and music) early on in the
development process those sounds were more heavily used to estimate the accuracy
during development as parameters were adjusted and feature sets changed. As
such the system has always been more focused on sharp sounds, and alternative
solutions that might have been better at estimating the TDOA of other types of
signals may have been ruled out as the performance for sharp sounds was worse.

5.1.2 On the subject of noise

The system relied on noise injection as described in Section 3.5.1 in order to prevent
most buffers from correlating based on the background noise of the sensors. This
has both positive and negative effects regarding the validity of the results. Firstly,
it is always possible that the quality of the results, both good and bad, are in some
part based on the random seed used for the noise. This had to be accounted for
by running each test several times to get an estimate of the variance. The random
seed could be fixed to a certain value to reproduce the exact same values every
run, but that would remove the one advantage that actually came from introducing
noise, namely a more generalised result. As random noise is added the signal is
slightly changed, meaning running the system multiple times produces slightly
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different results, and thus the problem of overfitting [10] to the benchmarking
data is partially mitigated. Because the input signal becomes slightly different
the testing should also cover the case where an input signal starts out as slightly
different, e.g. a snap that produces a slightly different sound. This should mean
a better generic performance that won’t risk leaning too heavily on a fine tuning
of the parameters to the specific input files that were produced.

5.2 Improving system accuracy

The accuracy of the system was very dependent on the signal and surroundings. A
more robust system could theoretically position more types of sounds to a higher
amount of precision.

5.2.1 Synchronisation

While the devices within the system were synchronised with PTP[18] there is still
a question of how well that synchronisation of the device clocks translates to the
synchronisation of the timestamps that are sent with the captured audio signals.
Since the devices are running an operating system stack which is scheduling many
different tasks it is unclear how well the device clock synchronisation transfers to
the actual synchronisation of the audio streams on the receiving end. Tests done
on the system suggested that the synchronisation was consistent once the system
started, but could have a static offset of a not insignificant amount of samples
depending on when the devices first connected.

Once the system is up and running, it somewhat ensures stable continued
synchronisation. Any packet loss from one of the sources is detectable, and if
packets are not lost, the devices will each supply a constant signal stream at their
specified sample rate. Since the system was tested on small local networks with
physical connections there was minimal packet loss, which should mean that the
relative synchronisation stayed consistent during each run of the system.

5.2.2 Adaptive filtering

The system only implemented a simple bandpass filter in the end, but much more
advanced filtering techniques exist. An adaptive filter could extract a noise profile
of the environment to more specifically target certain frequencies, and improve the
signal-to-noise ratio further.

Adaptive filtering could be implemented to modify the filter parameters au-
tomatically over time based on the current properties of the signal or to base the
filter parameters on data gathered from the environment in a calibration sequence.
Both of these alternatives could lead to better system performance in the average
case, but excessive filtering could also cause signal degradation.

5.2.3 Calculating reflections

If the system is given more information about its surroundings it’s possible to cal-
culate possible reflection vectors and thereby eliminate some errors. This would
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require any implementation of the system to also include information about where
any walls or similar obstacles are present, but should give the system fewer false
positives where sounds are erroneously positioned partially based on reflected
sound instead of sound that’s taken the shortest path.

This could also give the system a more precise metric for determining when
a position is unreasonable, as it currently only bases it on the area spanned by
the sensors. If there are walls or similar obstacles within that area the current
system can still suggest that a sound came from inside a wall or other unreasonable
positions. This data could however be difficult to gather as it would require a lot
of manual measurements.

5.3 Real world applications

With a working implementation of the suggested system there is an array of dif-
ferent use cases. One example is monitoring of a facility that already has a setup
of network connected devices with built-in microphones. This means an operator
or somebody working in the area can "examine" the area for any disturbances. It
is also possible that this could be used in symbiosis with a setup of surveillance
cameras to be able to aim a camera at a point of interest discovered based on the
estimated location of the sound source. This would be similar to the suggested
system used by Farzone and Smidje[6]. This could be used to discover events that
might not be registered by for example a directional camera, since a microphone
might have a less directional coverage area. This could reduce the amount of
cameras needed to surveil an area.

Knowing the position of a person could also open possibilities to implement
beamforming and similar techniques to play sounds aimed at a specific position
for better sound accuracy, or to offset audio recordings from the environment to
synchronise the signal at each receiver, thereby achieving a better signal-to-noise
ratio in the recorded audio.

5.4 Portability

The system was constructed to be relatively easy to set up. As long as there
are RTP packets with interleaved signals from sensors with known locations and
synchronised clocks being sent to a device that can run Python it should be possible
to set up the system for any type of signal through the configuration file. Setting
up the Python environment itself is also a simple task as a virtual environment
was utilised, limiting potential compatibility issues.

This means that the system can be implemented using practically any hard-
ware capable of recording a signal and transmitting it as long as there is some
means of synchronisation across the devices and a central computer powerful
enough to run the calculations.
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5.5 Future work

The system has many possible improvement areas, some of which are mentioned
in Section 5.2. However, there are other areas than positioning accuracy that can
be improved upon or modified with an application of further theory outside the
scope of this thesis.

5.5.1 Sound classification

While there are advantages to the approach of positioning every sound there are
also disadvantages. Positioning is a computationally intensive task and for scala-
bility purposes it would be better to position only the sounds that are important.
What is important will vary from system to system, but implementing a classifi-
cation module to distinguish between important and non-important signals could
be more system agnostic. A solution based on machine learning such as that seen
in previous work at Axis by Chan & Karlsson[3] is a viable idea, although their
implementation is also computationally expensive and has a narrow scope, only
classifying whether something is or is not a gunshot.

A classifier could theoretically be trained to identify many more sounds, open-
ing the door to many possibilities for data gathering. Similar techniques are being
used today in monitoring animal populations and other ecological factors[2], re-
ducing the manual workload and increasing the accuracy of population counts.

One could imagine similar systems in place in all sorts of disciplines. Tracking
sneezes or coughing in hospitals to predict hot spots for infections. Monitoring
traffic flow in busy intersections to gather congestion data and improve future road
design. Quickly finding people who are hurt or yelling in large masses of people,
such as during a concert or in a theme park.

All these methods rely on a robust classification module that needs to be
trained with preexisting data sets, something which was not within the scope of
this thesis, but which could easily be hooked into the system as an extension of
the filtering module.

5.5.2 Better presentation of data

The system currently presents data in a human readable fashion, giving an idea of
both when the event happened, where the most likely location is, and an approx-
imation of the correlation strength i.e. the certainty of that location. However,
there are still ways to communicate these factors, and perhaps other factors, more
clearly. A future implementation could present more data about each sound. Cou-
pled with a classification module the user could choose to see only specific groups
of sounds, or to display sounds with an icon representative of what the sound was
classified as.

The most important feature to add if the system is to be used in security or
surveillance would be some sort of database and timeline system. Currently the
system has no way to check old data other than manually interpreting text files or
by rerunning an entire file of audio data and observing it. A timeline feature where
the user could scroll through and replay old positioning data would greatly help a
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human operator in analysing the data should the system ever be made available
as part of a product or solution.

5.5.3 Scaling to more devices and multi-microphone devices

The tested implementation scales rather poorly to a larger quantity of device for a
few reasons. Since all the calculations are done on a single computer in the setup
used in the experiments one might end up with a much higher load of computations
which might not be feasible. It might be possible to scale further than the current
performance by simply having a CPU with more cores and an implementation
that handles threads in a more performant way, but this could potentially become
expensive. A more distributed system where the workload is shared among the
device in the network would be preferable for scalability, since the increased load
from more calculations is not placed on a single device. This does however pose
some additional difficulties when it comes to distributing the workloads, especially
if the devices are also performing other tasks.

Introducing more sensors also further exacerbates the problem of sensor se-
lection. Deciding which sensors to use for calculations is not a trivial problem to
solve in an optimal way, and calculating every single correlation is a costly solu-
tion. Sensors far from the sound source might result in worse measurements and
can decrease accuracy. However more sensors could potentially result in better
results. This is something that could be studied further and would probably be
necessary for real world applications in larger systems.

5.6 Ethical considerations

When implementing any type of surveillance system it is important to consider
the ethical impacts. As the system was developed at a company with a security
and surveillance profile and has explicit compatibility with their products it can be
assumed that any ethical considerations would be made by the company according
to their normal procedure before the system was implemented in any product
released to the public. Such considerations have been made for other products,
and there are already privacy features in place such as dynamic masking to prevent
personally identifying information in video footage.

That being said the system in this thesis could well be extended to allow for a
surveillance system that could collect data that would be considered an invasion
of privacy. Tracking of objects can be used in many different ways, and the same
underlying techniques that allows the system to position sounds have long been
used in military applications for both defensive and offensive purposes. The system
has no inherent ties to any personal data, but it could possibly be connected to
something like a voice recognition system to further the capabilities of a large scale
surveillance system. However, that would represent quite a small part of such a
system, and the position of objects to such a high degree would be quite a small
part of the important data.

With enough positional data from enough sources it is possible to extract
patterns that are otherwise impossible to see in how people or objects move. This
data could be used to predict future movement patterns to improve overall mobility
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or for more ethically questionable activities, like advertising more in areas with
a lot of movement. But in general this type of use of the technology would be
cumbersome, and other types of technology, such as video analysis, would probably
be simpler.

In conclusion it is the opinion of the thesis writers that the technology has
use cases within both ethical and non-ethical scenarios, but that the non-ethical
scenarios would require a much more advanced implementation to the point where
the system presented in this thesis becomes a very minor part of the overall system.

5.6.1 Environmental impact

Another ethical concern is the environmental impact of the system. It is a fact that
producing data with the system means spending energy to perform the calcula-
tions. With tighter demands on sensor selection and a more distributed workload
the impact could be reduced, but never removed. Any use of this system will sim-
ply have to take the processing power into account, and perhaps change variables
such as the system’s uptime to reduce the energy usage.

On the other hand a system such as this could potentially use less equipment
than a video surveillance system performing similar tasks. A microphone array
streaming data and only storing positional info could have a much lower power
usage and lower storage demands, and might use much less materials to produce.
However the specific scenarios where positioning data is useful on its own are prob-
ably quite rare. Instead enhancing a current system with positioning capabilities
seems more likely, where there could be a need for fewer cameras if they are able
to, for example, rotate to observe sound events as implemented by Mazdak &
Smidje[6].

5.7 Summary

The research questions established in Section 1.2 can now be answered with the
background and results of the thesis.

R1. How can position tracking of a noise source be implemented using net-
worked devices with built-in microphones and known positions?

It can be implemented by estimating the Time Difference of Arrival (TDOA) of a
signal arriving at different sensors through the use of the correlation peak of the
signals, as explained in Section 3.6. These TDOA values can then be combined as
described in Section 3.7 to estimate the position.

R2. What is such a system’s performance and accuracy limits when dealing
with different types of sound sources?

On a standard consumer grade laptop the system was able to run continuously and
save positioning data no matter how much signal was present. It was, however,
only able to display a certain amount of data to the screen without falling behind,
as explained in Section 4.6. This problem could be solved by either investing in
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stronger hardware, or implementing a more distributed approach which off-loads
the visualisation to another processing unit, or at least a different thread.

The accuracy varied for different types of sound, as can be seen in the tables in
Section 4.5. As a general rule, with decent synchronisation around a 1 m accuracy
could be achieved, while sharper sounds and optimal synchronisation increased
the accuracy in a best case scenario to around 10 cm as seen in Table 4.2.

R3. How can the positional data be visualised?

There are many possible ways of displaying the data, and matplotlib[9] is one
viable option to display data in several different ways, as shown in Section 3.8. It
did, however, use a lot of the performance budget, as can be seen in Table 4.11, due
to not being optimised for showing updated data, and having to redraw certain
data points each frame.

R4. Is real-time analysis and visualisation of this data viable on standard hard-
ware?

Based on the results achieved it is a very viable approach with ≤ 6 units. The
system itself should be able to be expanded to include more units with no major
issues as long as some sort of distributed method is adopted, especially for the
visualisation.

R5. What are the real world applications for this data?

There are several ways to use this data, e.g. to alert a security operator or to
improve the quality of recorded audio as described in Section 5.3 on the real
world applications. Many more use cases would open up if the system were to be
expanded upon as described in Section 5.5 on future work, e.g. by implementing
sound classification or by scaling the system to a much larger amount of devices.
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Appendix A
Additional tables

Further tables of results are presented below as the gathering of this data was
described in Section 4.2. They were placed in the appendix due to the generally
worse results for these files, stemming mainly from a lack of synchronisation, as
none of these files have been manually synchronised. This made the results less
representative of the system’s potential performance under good synchronisation
conditions, and made it more difficult to compare results between tests.

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.5403 ± 0.2181 1.7584
MSE (m2) 3.0537 ± 0.7529 3.8066
MAEBC (m) 1.0677 ± 0.1766 1.2443

Expected Events Detected Events Discrepancy Detection Rate

55 56 +1 (+1) 1.0182

Table A.1: Snap at (4.32, 6.30), with snap configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.9712 ± 0.1316 2.1027
MSE (m2) 4.1287 ± 0.4966 4.6254
MAEBC (m) 0.617 ± 0.0782 0.6951

Expected Events Detected Events Discrepancy Detection Rate

55 55 0 (±0) 1.0

Table A.2: Snap at (4.32, 6.30), with generic configuration

55
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Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.6768 ± 0.2147 2.8915
MSE (m2) 7.8495 ± 0.9814 8.8309
MAEBC (m) 1.3862 ± 0.2571 1.6433

Expected Events Detected Events Discrepancy Detection Rate

55 58 +3 (+1) 1.0545

Table A.3: Snap at (4.32, 6.30), with speech configuration

Test Duration Tests Run Detected Events Events Per Run

16.32s 5 0 0

Table A.4: Speech at (1.3, 2.0), with snap configuration.
No events were detected with this configuration

Test Duration Tests Run Detected Events Events Per Run

16.32s 5 0 0

Table A.5: Speech at (1.30, 2.0), with generic configuration.
No events were detected with this configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 1.9492 ± 0.344 2.2932
MSE (m2) 4.8161 ± 1.761 6.577
MAEBC (m) 1.6928 ± 0.3148 2.0075

Test Duration Tests Run Detected Events Events Per Run

16.32s 5 147 (28 ≤ n ≤ 31)

Table A.6: Speech at (1.30, 2.0), with speech configuration



Additional tables 57

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.6925 ± 0.4171 3.1096
MSE (m2) 8.5631 ± 2.5989 11.1619
MAEBC (m) 1.4303 ± 0.255 1.6853

Expected Events Detected Events Discrepancy Detection Rate

35 30 -5 (−1) 0.8571

Table A.7: Snap at (2.80,−1.0), outside of sensor area, with snap
configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.9641 ± 0.4364 3.4004
MSE (m2) 9.5292 ± 2.3699 11.8991
MAEBC (m) 0.9942 ± 0.2093 1.2036

Expected Events Detected Events Discrepancy Detection Rate

35 16 -18 (−5 : −3) 0.4571

Table A.8: Snap at (2.80,−1.0), outside of sensor area, with generic
configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.2446 ± 0.3237 2.5683
MSE (m2) 5.8566 ± 1.5609 7.4175
MAEBC (m) 1.8821 ± 0.363 2.2451

Expected Events Detected Events Discrepancy Detection Rate

35 31 -4 (−1) 0.8857

Table A.9: Snap at (2.80,−1.0), outside of sensor area, with speech
configuration
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Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.6552 ± 0.2233 2.8785
MSE (m2) 7.7771 ± 1.3017 9.0788
MAEBC (m) 1.316 ± 0.2489 1.5649

Test Duration Tests Run Detected Events Events Per Run

20.0s 5 57 (9 ≤ n ≤ 14)

Table A.10: Speech at (2.80,−1.0), outside of sensor area, with
snap configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 3.1627 ± 0.1355 3.2982
MSE (m2) 10.3516 ± 0.8818 11.2334
MAEBC (m) 0.8919 ± 0.0986 0.9905

Test Duration Tests Run Detected Events Events Per Run

20.0s 5 74 (14 ≤ n ≤ 15)

Table A.11: Speech at (2.80,−1.0), outside of sensor area, with
generic configuration

Error Metric Estimate 95% CI Margin 95% CI U.B.

MAE (m) 2.991 ± 0.1396 3.1307
MSE (m2) 9.6874 ± 0.8905 10.5779
MAEBC (m) 1.8687 ± 0.1646 2.0333

Test Duration Tests Run Detected Events Events Per Run

20.0s 5 147 (28 ≤ n ≤ 31)

Table A.12: Speech at (2.80,−1.0), outside of sensor area, with
speech configuration
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