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Abstract
With the objective to classify a tabular data set of breast cancer patients with a high accuracy the self-
supervised model VIME [1] is studied. The influence of several hyperparameters during pre-training is
investigated and AUC of the downstream task is regarded as the measurement of performance. A larger
unlabeled synthetic data set is generated using the Synthetic Data Vault (SDV) [2]. Different sizes is then
pre-trained on and the result evaluated in the downstream task. Using synthetic data gives result of similar
standard to the original set. Moreover an alternative mask generator implementing the correlations between
features using two different methods is proposed. Both methods produce effective results compared to the
original stochastic version and have arguably great potential for further research.



CONTENTS

Populärvetenskaplig beskrivning
Det har varit svårt att missa uppsvinget av den allmänna tillgången till AI de senaste åren. Juridiken, ar-
betsmarknaden och industrin behöver alla anpassa sig fort för att hänga med. Med chattbotar och generativ
AI som kan skapa en bild föreställande precis vad som helst på bara några minuter är det svårt att inte
bli imponerad. I media har det uttryckts fascination men även en slags rädsla för hur framtiden ska se ut.
Vad som inte är lika välkänt är den artificiella intelligens vi redan har inkorporerat i våra liv. Äger du en
smartphone med ansiktsigenkänning eller en självkörande bil har du redan stått öga mot öga med AI. Musik-
och översättningsappar är ytterligare två exempel.

En del av artificiell intelligens kallas maskininlärning vilket är ett paraplybegrepp för olika metoder för
att träna modeller och algoritmer till att bli ännu bättre med minimal direkt hjälp från människor. Dessa
modeller kan bli otroligt duktiga på att hantera stora mängder data och hitta mönster och korrelationer.
Detta kan i sin tur leda till effektiva förutsägelser om framtida data.

Antalet utbildade och kunniga dataspecialister ökar snabbt men det gör även efterfrågan på det de kan
producera. Därmed är det viktigt att kunna bygga och träna modeller med så lite mänsklig interaktion som
möjligt. Större nätvärk och datamängder ger generellt fördelaktigare resultat men detta till en kostnad då de
kräver mer tid och arbete. Därför sysslar dataingenjörer och forskare med att på olika sätt optimera modeller.
Ett exempel är ett relativt nytt koncept som kallas självövervakat lärande. Detta är ett koncept som kräver
minimal mänsklig interaktion samtidigt som det kan ge bättre resultat än helt oövervakade motsvarigheter.
Dessa modeller har huvudsakligen byggts med avseende på bilder och texter. På senare år har dock även
tabulär data börjat användas. En stor fördel med denna typ av lärande är att det inte krävs lika mycket
annoterad data (där svaret man ska hitta är känt, så att man kan träna direkt på det) som andra typer.
Stora mängder annoterad data kan vara tidskrävande och därmed kostandsdrivande att ta fram. Därför har
förslag för att effektivisera självövervakat lärande på tabulär data varit fokus i många artiklar på senare tid
och även i den här.
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1 INTRODUCTION

1 Introduction
Machine learning is a branch of artificial intelligence (AI) which has been greatly advanced in recognition and
applications in the past years. Due to the great technological advances of the world a considerable amount
of information is stored digitally. Machine learning models of all types have been developed and is it an
increasingly growing field. Existing models implement all types of data such as images, tabular data and
texts. Their mutual goal is to find patterns or correlations in the input data and make relevant predictions
by optimizing weights and hyperparameters during training [3].

As a general rule larger models as well as data sets tend to generate more accurate results [4]. There
are however disadvantages to these attributes. Computational requirements and time are two factors which
can be negatively affected. Therefore other ways of improving the results with a smaller cost are often
explored. In this paper various propositions are made and analyzed with the aim to advance the progress
made by an existing self-supervised learning model named VIME and postulated by Yoon [1]. Using data
representing medical features of breast cancer patients the influence of hyperparameters in VIME is analyzed.
Additionally the consequences of using different sizes of a larger synthetic data set for pre-training is studied.
A method implementing the correlations between the medical features is explored with the hope to advance
the general model.

1.1 Self-supervised learning
Supervised learning is a method of training algorithms using a labeled dataset which is purposely divided
for training, validation and testing. Characteristic supervised tasks include classification and regression.
The labels can be seen as a type of categorization. In real-world examples the existence of labels for larger
data sets is sparse and the process of labelling is an expensive one in terms of time and resources. Due to
the manual process potential generalization errors can not be ignored. Therefore supervised learning is not
always the preferred method.

In contrast, unsupervised learning trains using no labels. Self-supervised learning (SSL) can be described as
a subsection of unsupervised learning since it usually is not given external labels for training. Self-supervised
learning is a process where a model learns features from unlabeled data as a type of pre-training which then
improves the training of labeled data. Largely unlabeled data sets can then be utilized and in that sense it
can be argued that this process is superior to supervised learning. In particular, the general objective is to
find relevant representations from data without labels. This is a relatively new field and most models are
developed for data in image or text form. The results have been highly successful and preferable compared to
supervised models. Several studies have been made on self-supervised learning with images. One task that
has been the focus of several papers is the jigsaw puzzle. In simple terms an image is divided into a number
of tiles which are then rearranged. A network then tries to solve the puzzle by finding the original image as
a pretext task. This process generates information about the image which then can be assistive in a down-
stream task. This particular approach was implemented by Noroozi and Favaro in 2017 [5]. They concluded
that due to the pretext task the network becomes competent in identifying the tiles as parts of the whole
image as well as their placements. The results can be argued to be a great advancement in self-supervised
learning and an indicator that the field should be further explored.

The use of self-supervised models on tabular data is however less explored yet has been effective in published
studies. Hajiramezanali et al.in 2022 [6] proposes STAb which implements self-supervised representation
learning on tabular data with stochastic regularization. Another effective implementation is VIME [1] which
will be introduced in the following section.
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1 INTRODUCTION

1.2 VIME
VIME was introduced in 2020 by Yoon, J. [1] as a proposition for advancing the field of self-supervised
learning, on tabular data in particular. The model can be described as a systematic framework which takes
advantage of large unlabeled data sets. By pre-training and producing a smaller representation of the data
the accuracy of a downstream task, where a smaller amount of labeled data is used, can be optimized.

There are different ways of pre-training self-supervised networks. One method which is relevant for this
study can be described by an encoder function denoted by e : X → Z which uses an unlabeled data sample x
as input and creates a latent representation z as a function of the input. It contains meaningful information
of the data accompanied by so called pseudo-labels ys ∈ Ys. This representation is then used in a so called
downstream task.

A sample of an unlabeled dataset x ∈ Du together with a mask vector m = [m1, ...,mj ]
⊺ is used as in-

put into a pretext generator gm. The mask is generated with the same dimensions as x and its elements mi

take on randomly distributed binary values from a Bernoulli distribution with a probability pm which is used
as a hyper parameter. In the pretext generator the mask vector now acts as a guide to which values should
be masked by being layered on top of the data sample, gm : X × {0, 1}d → X . The values chosen by m are
interchanged with other values x̄ in their respective columns which will generate a corrupted sample x̃ as
described below.

x̃ = gm(x,m) = m⊙ x̄+ (1−m)⊙ x (1)

The output of the pretext generator is used as an argument to the encoder e which transforms it into a
representation of the latent space denoted by z. The randomness of the generator determines the difficulty
of reconstructing x from the latent representation and can be modified by increasing or decreasing the pa-
rameter pm. The reconstruction is rendered in two discrete steps. Yoon proposes two MLPs that perform
mask vector estimation and feature vector estimation, respectively, as pretext tasks.

The mask vector estimator sm uses the latent representation to find a vector which should describe which
features have been corrupted sm : Z → [0, 1]d. This is represented in a vector m̂ = (sm ◦ e)(x̃). In a similar
way the feature vector estimator sr instead tries to predict the actual values of the sample x, its output the
vector x̂.

A loss function lm is defined as the sum of the binary cross-entropy losses for the dimensions of the mask
vector m.

lm(m, m̂) = −1

d
[

d∑
j=1

mj log [(sm ◦ e)j(x̃)] + (1−mj) log [1− (sm ◦ e)j(x̃)]] (2)

Moreover a reconstruction loss lr is introduced.

lr(x, x̂) =
1

d
[

d∑
j=1

(xj − (sr ◦ e)j(x̃))2] (3)

When training the entire model including the encoder e as well as the two estimators sm and sr simultaneously
the objective becomes to optimize the losses. Finally a combined optimization task is constructed, where the
encoder and the estimators are trained.

min
e,sm,sr

Ex∼pX ,m∼pm,x̃∼gm(x,m)[lm(m, m̂+ α · lr(x, x̂)]

A parameter to adjust the weight of the reconstruction loss is denoted as α.

The encoder and its latent representation can then be used in a downstream task. The objective is gen-
erally to make z contain as much relevant information as possible. Subsequently the latent representation
z is arguably the most important part of the pre-training and the main goal should be to optimize it by
maximizing quality while keeping the size small.
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2 METHOD

Figure 1: Diagram taken from the article describing the VIME model [1]. The data set as well as the
generated mask are combined in the pretext generator where the masked values are corrupted and this is
sent into the encoder. Furthermore the two MLPs built to reconstruct the corruption is given the output of
the encoder and returns the feature and mask with some loss.

2 Method
The basis for this project is VIME and the general objective is to find potential improvements. For trans-
parency the main code can be found on GitHub1. As an initial task different hyperparameters are tested
when pre-training on the breast cancer data (see section 4.1). Primarily the influence of the structure and
size of the two estimators as well as the size of the latent representation is evaluated. The result is determined
through the value of the AUC in the downstream task. For accurate results the average value over five runs
through the entire pipeline is calculated along with the standard deviation.

The synthetic data set is evaluated in a similar way where the hyperparameters are modified while pro-
ducing results. Moreover, different sizes of the data set are considered separately and their results compared.
This part of the investigation is done to be able to understand the quality of the synthetic data as well as if
larger data sets make a difference.

Figure 2: In this figure the uppermost part represents the task of analyzing the synthetic data and the lower
one instead corresponds to the original breast cancer data. This lower part incorporates two different paths
for the mask generator. However, every path arrive at the same MLP for the downstream task.

When having an understanding of the impact of model structure the mask generator is remodeled. The corre-
lation between the features of the breast cancer data set is taken into account and the choice of which values
to corrupt is implemented. This is done with the intention to improve the amount of relevant information in

1https://github.com/TovaJahnke/Self-supCMG
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2 METHOD

the latent representation that is sent to the network performing the downstream task. The complete pipeline
is depicted in Figure 2.

2.1 Breast cancer data
The original data set studied in this report is referred to as breast cancer data and contains information
about women with a breast cancer diagnosis received at Skåne University Hospital located in Lund, Sweden
between January 2009 and December 2012. Information about preceding results related to the diagnoses
was collected from the Swedish National Quality Registry for Breast cancer as well as public mammography
screening program records. The general features were instead obtained from medical records. The data was
collected and studied by Dihge et al. in 2019 [7]. There are 800 rows which represent the amount of patients
as well as 27 columns with medical features describing the patients. Each patient has been assigned a binary
label "N0" which confirms or denies the find of metastases in the respective patients lymph nodes. This is
conveyed through a binary value.

In total the columns chart 9 continuous and 12 categorical features. The continuous ones include tumor
size, degree of severeness and general medical features such as age, height, weight and BMI. There are 4
columns describing the status of progesterone and estrogen in the patient’s body, two of these are binary and
the others are continuous. The last continuous feature Ki67 is a measure of how quickly the cancer cells are
dividing [8].

Furthermore, there are five columns representing the position ("C500", "C502", "C503", "C504" or "C505")
of the main tumor. They can collectively be regarded as one feature and therefore the mask generator has
been designed such that if one of the position columns are corrupted so are the other ones. The same is true
for the three binary columns representing the particular tumor diagnosis since it can be classified as either
1, 2 or greater than 2.

The binary feature "Mammography screening" corresponds to if the patient has been diagnosed using this
method or not. Other binary features relay each patient’s menopause status, if more than one tumor has
been found as well as if the cancer has been found in both breasts or not, respectively. If unilateral, there is
a feature named "Side" which conveys in which breast the tumor has been found.

It is useful to train models on this specific data set since it can lead to classification with a high accu-
racy which in turn could help surgeons decide if the risk of a more complicated surgery is worth taking or
not. Generally surgeons check for metastases during surgery for removing the main tumor. This process does
however involve risks in damaging important nerves in the patient’s arm. The main goal is to give them more
information to make educated decisions without having to perform complex surgeries.

2.2 Synthetic data
An additional data set is generated for the purpose of improving the results. This is a synthetic data set which
is produced as a synthetic alternative based on the original breast cancer data. As a result the eligibility of
this method can be evaluated.

To generate the synthetic data set the Python library Synthetic Data Vault (SDV) [2] is utilized and the
code can be found in Appendix A (5). It was created at the MIT Data to AI lab in the year of 2016 and
has since progressed to DataCebo which is the current developer. The SDV library contains several different
synthesizers which have been developed for different purposes although with the mutual objective of creat-
ing synthetic data through recognizing patterns in the original data. For this particular case the Tabular
Variational Autoencoder (TVAE) [9] was applicable. The "N0" label is removed from the breast cancer set.
In the first part, the encoder compresses the data into a representation in the latent space with dimensions
that are defined in the code. This is achieved by creating one mean vector and another standard deviation
vector. These are in turn utilized to generate a random latent vector zs [10]. A sample of these vectors is
then given to the decoder which will generate an output. For each of these samples the TVAE is trained using
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back-propagation. In Table 1 the values of the hyperparameters are shown. The loss which is a combination
between reconstructing and regularization loss between the inputs and outputs is compared and missing data
is handled in the synthesizer. The number of epochs and the batch size are optimized during training. Lastly
the output is a generated matrix of data with similar properties to the original which in this report is referred
to as the synthetic data set.

The generated data set consists of 100 000 rows of artificial patients and different subsets of this is used
when training to be able to analyze the impact of larger sets as well as the quality of the synthetic data.

Hyperparameters Values

Number of epochs 5000
Batch size 75
L2-scale 1 ·10−3

Loss factor 2

Size of encoder hidden layer (70, 50)
Size of decoder hidden layer (50, 70)

Table 1: List of hyperparameters and their respective values of the TVAE when generating the synthetic
data.

2.3 Preprocessing data
The breast cancer data Dbc and the synthetic data Dsynth are both normalized using z-score normalization
as a part of the data preprocessing part seen in Figure 2. This is a normalization method which uses the
mean µx and standard deviation σx in the following way, where x ∈ D is a column in the raw data and x′

its normalized counterpart.
x′ =

x− µx

σx
(4)

2.4 Masking
For the synthetic data pre-training as well as the upper pipeline of the breast cancer data in Figure 2 the
labels are removed from the original data set and the data points are put into two different mask generators.
The Stochastic Mask Generator (SMG) creates a binary matrix m the size of the unlabeled data set Du it is
given. The placements of ones and zeros are random and their ratio pm is a hyperparameter of the encoder
as proposed in VIME [1]. The synthetic data set is only applied using this method. The masked values are
then corrupted through being substituted with another value of the respective column.

With the purpose of analyzing the effect of implementing the feature correlations a Correlation Mask Gen-
erator (CMG) is constructed. It is initialized using the same stochastic method as for the Stochastic Mask
Generator (SMG). Once again pm i.e the ratio of masked values is treated as a hyperparameter. To determine
which features should be considered correlated a correlation coefficient is calculated between every feature,
pairwise. This is calculated using Pearson correlation with the exception of comparing two binary features. In
this case Matthews correlation is applied. Pairs that produce a correlation coefficient higher than or equal to
the absolute value of 0.5 are treated as correlated. Since the mask vector is layered on top of the data sample
each of its elements is mapped one-to-one to each element in the data sample. Therefore it is now possible
to augment the mask vector to take the correlations into account. This is done using two different approaches;

(1) The values of the generated mask vector corresponding to the elements of a correlated pair are put equal
to each other.

(2) The values of the generated mask vector corresponding to the elements of a correlated pair are ensured to
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2 METHOD

not be equal to each other.

Since the ratio of 1s and 0s is modified the representative parameter pm is now recalculated and the new one
is referred to as pnewm .

Formally, two features A and B considered correlated are put into a correlation matrix M5. For each
row i in M one of the two elements are chosen using a random choice method. The chosen element will
be considered the pair’s primary Pi = Ai ∨ Bi ∀i. The secondary value Si is then left. For approach (1)
the mask vector value of the primary element is what the secondary value’s mask vector value is set to as
well, mS,i = mP,i. In approach (2) the secondary’s mask vector value is put to one minus the primary’s,
mS,i = |1−mP,i|.

M =


A1 B1

A2 B2

...
...

Ai Bi

 (5)

The encoder stack of the pre-training model converts the now corrupted data to the latent representation z.
Its architecture is kept constant with one hidden layer consisting of 27 nodes.

2.5 Downstream task
The downstream task is the same for all pre-training models. The objective is to classify the breast cancer
data into two classes. These classes corresponds to the binary "N0"-label. The encoder created during pre-
training is now used for the downstream task. Its parameters are frozen to make sure they are not a part of
training once again. For all models the labeled breast cancer data set Dl is used for testing with the same
split of the data used in the pre-training.

The MLP used for the binary classification is linear with no hidden layers (i.e. a perceptron). The is
on behalf of understanding the influences of the different implementations of the pretraining without any in-
crease in performance due to the model of the downstream task. Using a more advanced MLP may produce
a more accurate result that is not an effect of the representation learning.

In a similar way to the pre-training the test loss is plotted and observed. The measurement used to evaluate
performance is AUC.

2.6 Implementation details
The Multilayer Perceptrons (MLPs) performing the mask vector and feature estimations use the latent
representation as input and have one hidden layer each. The amount of nodes hs in these layers are uniformly
modified throughout the experiment. During each respective run 30% of the data is used for validation and
the remaining 70% for training. The specific split is kept constant using seed = 10. The validation loss is
noted and visualized as a function of steps using Tensorboard [11]. The graph is studied to ensure convergence
and to rule out overfitting. Additional parameters which are kept constant are shown in Table 2.

Model Batch size Learning rate α Epochs

Pre-training 400 0.0001 3.0 3000
Downstream 200 0.0001 - 5500

Table 2: Hyperparameters held constant during training.
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3 RESULT AND DISCUSSION

3 Result and Discussion

3.1 Breast cancer data
In Table 3 the results of the downstream task when using a pre-trained encoder of different sizes are shown.
They are also illustrated in Figure 3 where the standard deviations can be observed in the error bars. The
variable hs represents the amount of hidden nodes in the estimators. The size of the latent representation is
denoted by zs. The values are averages taken of five consecutive runs through the whole chain. It is quite
clear that using a very small latent representation gives unclear and undesirable results. A zs at 27 or above
gives better results, in particular in combination with more hidden nodes.

hz zs = 2 zs = 10 zs = 16 zs = 27 zs = 35

2 0.51 0.60 0.64 0.66 0.69
8 0.56 0.66 0.70 0.71 0.72
27 0.58 0.73 0.74 0.75 0.78
35 0.57 0.73 0.74 0.76 0.77

Table 3: Average AUC values of five consecutive executions of the downstream task using an encoder pre-
trained on the breast cancer data.

Figure 3: Average AUC for different sizes of hidden nodes and latent representation for the breast cancer
data with the standard deviations shown as error bars.

.

It can be argued that the AUC seem to increase with increasing latent representation size zs. Values above
35 of zs were not tested since the primary objective of this task was to find optimal hyperparameters for
implementing the synthetic data as well as the Correlation Mask Generator (CMG). Due to this it is not of
interest to find the absolute best model in terms of which one gives the highest AUC. Conversely the smallest
models in terms of zs and hs may not produce unbiased results in the other tasks due to their limited capa-
bility to separate data and store relevant information, respectively. With this in mind the choice of structures
to use when analyzing the impact of the hyperparameter pm as well as the different implementations of the
mask generators is made. Putting both sizes zs and hs to 27 is the first selection and zs, hs = (10, 8) is the
second.

When analyzing the influence of the different mask generators a range of the hyperparameter pm was tested.
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3 RESULT AND DISCUSSION

Since it is defined as the ratio of masked values an updated value pnewm was calculated when using the Cor-
relation Mask Generator (CMG). These values are tabulated in Table 4. For method (1) defined in Section
4.4 it was approximately unaffected. However, the same can not be said for method (2). For the lower half
of the range the new ratio is greater than the original value. When reaching 0.50 the ratios are essentially
the same and for the upper half the trend reverses. Furthermore, when pm is put to zero pnewm becomes 0.15.

pm pnewm for CMG (1) pnewm for CMG (2)

0.00 ≈ 0.00 ≈ 0.15
0.10 ≈ 0.10 ≈ 0.22
0.20 ≈ 0.20 ≈ 0.38
0.30 ≈ 0.30 ≈ 0.41
0.40 ≈ 0.40 ≈ 0.45
0.50 ≈ 0.50 ≈ 0.50
0.60 ≈ 0.60 ≈ 0.57
0.70 ≈ 0.70 ≈ 0.58
0.80 ≈ 0.80 ≈ 0.70
0.90 ≈ 0.90 ≈ 0.79

Table 4: Tabulated values of the hyperparameter pm and the approximative values of its updated counterpart
pnewm , for the two methods using the CMG.

The AUC values of the downstream task obtained when pre-training using the different mask generators are
shown in Figure 4. Analyzing these results the first conclusion to be made is that the defined correlations
of features in the breast cancer data indeed affect the results. This is a fair assertion when observing the
variations in results when incorporating the Correlation Mask Generator (CMG). When using the original
SMG it can be expected for the AUC to decrease with increasing pm since it essentially increases the difficulty
and randomness for the estimators. Observing the result for the smaller sizes in part (b) of Figure 4 such a
pattern can be confirmed. Though it could be stated that both or either one of the hyperparameters hs and
zs are too great for pm to make a significant difference in the larger model since the behavior of its result is
almost uniform.
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3 RESULT AND DISCUSSION

(a)

(b)

Figure 4: An illustration of the relationship between the updated ratio pnewm and AUC, for two different
combinations of zs and hs. The tabulated version along with standard deviations is found in Appendix B
(5).

It is clear that the larger sizes of both zs and hs are superior to the smaller ones in regards to having pre-
dominantly better and more stable results. In part (b) of Figure 4 the values of the AUC notably fluctuate,
in particular for the two methods using the CMG. This is to be expected when taking into account that an
increased number of nodes is beneficial in general. It could also be argued that when applying the CMG a
larger model is increasingly important.

For lower values of the ratio the two methods of the CMG are superior to their stochastic counterpart.
To hypothesise the cause of the elevated result of method (2) for smaller pnewm it could be argued that if only
one feature value of a correlated pair is masked the other could assist in the mask and feature estimation
since their correlation still can be easily found by observing other values of the same feature columns.

Interestingly, the result of the CMG method (2) decreases significantly when reaching a pnewm of around
0.5. An explanation for this could be that when more values are initially masked and one of the elements
of a correlated pair is made sure to be changed the estimators may not have enough uncorrupted values to
find these correlations. This would account for the decrease as well as the dissimilar behavior of the other
implementations in the same illustration.

The method (1) result does not exhibit this fast decreasing behavior. Instead it follows a gradual down-
ward slope. It could be argued that making sure all correlated pairs are either both masked or both not
masked should make it harder for the estimators to find the mask vector and corrupted features. As a result
it could be that the encoder finds a representation of the data that otherwise would be overlooked in lieu of
the defined correlated features.

Based on these results it could be said that the implementation of correlated features was successful for
lower pm in regards to the comparison of the SMG in part (a) of Figure 4.

11



3 RESULT AND DISCUSSION

3.2 Synthetic data
For simple comparison with the breast cancer data set the synthetic data set was first applied with 800 data
points. The downstream result after pre-training on this synthetic data subset can be seen in Fig 5. Overall
the AUC increases moderately for bigger hs and zs. Another observation is the significant fluctuations when
having less hidden nodes, as illustrated by the error bars. This is also true for smaller z as the deviations
decrease for larger latent representations.

When observing the results for larger sizes of synthetic data it can be observed that the AUC increases
when going up to 2000 and 5000 data points but at 10 000 there is no clear increase. Moreover, the standard
deviations increase with larger data sets for hs equal to 2 as well as 8 as seen in Figures 6, 7 and 8.

Figure 5: AUC for different sizes of hidden nodes
and latent representation for 800 data points of
synthetic data.

Figure 6: AUC for different sizes of hidden nodes
and latent representation for 2000 data points of
synthetic data.

Figure 7: AUC for different sizes of hidden nodes
and latent representation for 5000 data points of
synthetic data.

Figure 8: AUC for different sizes of hidden nodes
and latent representation for 10 000 data points
of synthetic data.

For 10 000 data points the highest AUC is 0.77 which was achieved with zs = 35 and hs = 27. This makes
sense when comparing to the value for the same model with the breast cancer data in Table 3. The same
AUC was achieved with 5000 data points for both zs, hs = (27, 27) and zs, hs = (35, 27) which was the
highest for this subset as well. When going down to 2000 data points the highest result was 0.75 and this
for zs, hs = (35, 27). The subset that stands out in this regard is the smallest one where the highest AUC
was 0.74 for zs, hs = (35, 35). This means that 800 data points of the synthetic data is not enough to give
results of the same standard as the ones for the breast cancer data. It could be argued that the quality of
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the synthetic data is not as good as the original it is based on. However it should be mentioned that it is
not a significant difference, based on this argument.

Lu et al. argues in their review of synthetic data generation in machine learning [12] that synthetic health-
care data can be beneficial when considering patient confidentiality. If the generated data can imitate the
distribution of the original data the privacy of each patient can be preserved. It should be mentioned that
this is not only advantageous for ethical reasons but for juridical as well. In Sweden there is the Patient Data
Act [13] which limits the access to such information and similar laws are currently in place in other parts of
the world. Using this as an argument the results of this investigation can be seen as successful. Even though
it has not been observed that the synthetic data generates significantly preferable results it can not be said
to be inferior to the breast cancer data when implementing enough data points.

4 Conclusion and outlook
The proposed self-supervised model VIME [1] was studied and potential improvements were proposed in this
thesis. A breast cancer data set consisting of a number of patients with their respective medical features was
used as well as a generated synthetic counterpart. The correlations between these features were utilized in
the mask generator determining which values to corrupt.

In conclusion the VIME model works well on the breast cancer data implemented in this study. This is
also true for the synthetic data generated and tested. Using enough data points gives a result of similar
accuracy as for the original. This is a highly valuable result and can be particularly beneficial when dealing
with medical data.

Moreover, interesting and favorable results were achieved when implementing correlations of features in
the pre-training. A significant increase in performance was seen, in particular when initially masking less
then half of the data points. It may also be stated that further investigation into different larger models
would be beneficial when implementing correlations. Another approach could be to in more depth analyze
the correlations between the features. Even though Pearson correlation seems to work relatively well it is
linear which means it only picks up on one type of relationship. One example could be using the maximal
information coefficient (MIC) [14] which has the ability to find a wider range of correlations.

5 Acknowledgements
A thank you to Max Svensson for granting permission to his code on GitHub2 which was helpful for getting
started with VIME. Another big thanks to Mattias Ohlsson for supervising this project!

2https://github.com/msvenssons/Mix-Encoder
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List of abbreviations
AUC - Area Under Curve

BMI - Body Mass Index

CMG - Correlation Mask Generator

ER - Estrogen Receptor

MIC - Maximal Information Coefficient

MLP - Multilayer Perceptron

PR - Progesterone Receptor

SMG - Stochastic Mask Generator

TVAE - Tabular Variational Autoencoder
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Appendix A
# 1. Loading the data
import pandas as pd

from sdv.datasets.local import load_csvs

# assume that my_folder contains a CSV file named 'guests.csv'
datasets = load_csvs(

folder_name='./',
read_csv_parameters={

'skipinitialspace': True,
'encoding': 'utf-8',
'sep': '\t'

})

# the data is available under the file name
data = datasets['dataN0_NA-all-toSytheticML']
data.head()

from sdv.metadata import SingleTableMetadata

metadata = SingleTableMetadata()

metadata.detect_from_dataframe(data)

#metadata.visualize()
metadata

# 2. Creating a synthesizer

An SDV **synthesizer** is an object that you can use to create synthetic data. It learns patterns from the real data and replicates them to generate synthetic data.
from sdv.lite import SingleTablePreset
from sdv.single_table import TVAESynthesizer

synthesizer = TVAESynthesizer(
metadata, # required
enforce_min_max_values=True,
enforce_rounding=True,
epochs=5000,
batch_size=75,
compress_dims = (70,50),
decompress_dims = (50,70),
embedding_dim = 20,
l2scale = 1E-3,
loss_factor = 2

)

#synthesizer = SingleTablePreset(
# metadata,
# name='FAST_ML'
#)
synthesizer.fit(

data=data
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)

# Save for later use
#synthesizer.save('my_synthesizer.pkl')

losses = synthesizer.get_loss_values()

# Plot VAE loss
plot = losses['Loss'].plot(title='Training loss')

# Uncomment if we should use the save one
#synthesizer = SingleTablePreset.load('my_synthesizer.pkl')

NGen = 10000
synthetic_data = synthesizer.sample(

num_rows= NGen
)

# save the data as a CSV
#synthetic_data.to_csv('dataN0-Synth-NaN.csv', sep = '\t', na_rep = 'NaN', index=True)

synthetic_data

# 4. Evaluating real vs. synthetic data

SDV has built-in functions for evaluating the synthetic data and getting more insight.

from sdv.evaluation.single_table import run_diagnostic

diagnostic = run_diagnostic(
real_data=data,
synthetic_data=synthetic_data,
metadata=metadata

)

from sdv.evaluation.single_table import evaluate_quality

quality_report = evaluate_quality(
data,
synthetic_data,
metadata

)

quality_report.get_details('Column Shapes')
from sdv.evaluation.single_table import get_column_plot

fig = get_column_plot(
real_data=data,
synthetic_data=synthetic_data,
column_name='Tumörlokalisation',

# column_name='Tumörstorlek',
# column_name='ER',

metadata=metadata

16
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)

fig.show()
from sdv.evaluation.single_table import get_column_pair_plot

fig = get_column_pair_plot(
real_data=data,
synthetic_data=synthetic_data,
column_names=['Tumörstorlek', 'BMI'],
metadata=metadata

)

fig.show()

# 5. Saving and Loading
We can save the synthesizer to share with others and sample more synthetic data in the future.

synthesizer.save('my_synthesizer.pkl')

synthesizer = SingleTablePreset.load('my_synthesizer.pkl')

17
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Appendix B

zs, hs = (27, 27)

pm AUC

0.1 0.72 ± 0.01
0.2 0.72 ± 0.02
0.3 0.72 ± 0.02
0.4 0.73 ± 0.02
0.5 0.73 ± 0.03
0.6 0.71 ± 0.03
0.7 0.72 ± 0.03
0.8 0.71 ± 0.05
0.9 0.71 ± 0.05

Table 5: Average AUC values when using the
Stochastic Mask Generator (SMG) for zs, hs =
(27, 27) and varying pm.

zs, hs = (10, 8)

pm AUC

0.1 0.72 ± 0.02
0.2 0.67 ± 0.03
0.3 0.69 ± 0.03
0.4 0.68 ± 0.05
0.5 0.65 ± 0.04
0.6 0.61 ± 0.05
0.7 0.61 ± 0.05
0.8 0.62 ± 0.06
0.9 0.64 ± 0.05

Table 6: Average AUC values when using the
Stochastic Mask Generator (SMG) for zs, hs =
(10, 8) and varying pm.

zs, hs = (27, 27)

porgm pnewm AUC

0.1 ≈ 0.1 0.75 ± 0.02
0.2 ≈ 0.2 0.75 ± 0.02
0.3 ≈ 0.3 0.74 ± 0.02
0.4 ≈ 0.4 0.74 ± 0.03
0.5 ≈ 0.5 0.74 ± 0.02
0.6 ≈ 0.6 0.73 ± 0.04
0.7 ≈ 0.7 0.72 ± 0.05
0.8 ≈ 0.8 0.71 ± 0.05
0.9 ≈ 0.9 0.69 ± 0.06

Table 7: Average AUC values when using method
(1) with the Correlation Mask Generator (CMG)
for zs, hs = (27, 27) and varying pm.

zs, hs = (10, 8)

porgm pnewm AUC

0.1 ≈ 0.1 0.70 ± 0.06
0.2 ≈ 0.2 0.71 ± 0.05
0.3 ≈ 0.3 0.70 ± 0.06
0.4 ≈ 0.4 0.65 ± 0.06
0.5 ≈ 0.5 0.69 ± 0.07
0.6 ≈ 0.6 0.64 ± 0.07
0.7 ≈ 0.7 0.65 ± 0.08
0.8 ≈ 0.8 0.65 ± 0.07
0.9 ≈ 0.9 0.61 ± 0.07

Table 8: Average AUC values when using method
(1) with the Correlation Mask Generator (CMG)
for zs, hs = (10, 8) and varying pm.
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zs, hs = (27, 27)

pm pnewm AUC

0.00 ≈ 0.15 0.75 ± 0.02
0.10 ≈ 0.22 0.75 ± 0.02
0.20 ≈ 0.38 0.75 ± 0.03
0.30 ≈ 0.41 0.73 ± 0.03
0.40 ≈ 0.45 0.73 ± 0.03
0.50 ≈ 0.50 0.73 ± 0.05
0.60 ≈ 0.57 0.70 ± 0.06
0.70 ≈ 0.58 0.66 ± 0.06
0.80 ≈ 0.70 0.66 ± 0.05
0.90 ≈ 0.794 0.63 ± 0.06

Table 9: Average AUC values when using method
(2) with the Correlation Mask Generator (CMG)
for zs, hs = (27, 27) and varying pm.

zs, hs = (10, 8)

porgm pnewm AUC

0.00 ≈ 0.15 0.72 ± 0.04
0.10 ≈ 0.22 0.68 ± 0.08
0.20 ≈ 0.38 0.69 ± 0.06
0.30 ≈ 0.41 0.66 ± 0.04
0.40 ≈ 0.45 0.64 ± 0.05
0.50 ≈ 0.50 0.67 ± 0.04
0.60 ≈ 0.57 0.66 ± 0.06
0.70 ≈ 0.58 0.62 ± 0.05
0.80 ≈ 0.70 0.63 ± 0.05
0.90 ≈ 0.79 0.61 ± 0.05

Table 10: Average AUC values when using
method (2) with the Correlation Mask Genera-
tor (CMG) for zs, hs = (10, 8) and varying pm.

19



REFERENCES

References
[1] J. Yoon, Y. Zhang, J. Jordon, and M. van der Schaar, “Vime: Extending the success

of self- and semi-supervised learning to tabular domain,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11 033–11 043. [Online]. Available: https:
//proceedings.neurips.cc/paper_files/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf

[2] “The synthetic data vault. put synthetic data to work!” https://sdv.dev/, accessed: 10 May 2024.

[3] S. Brown, “Machine learning, explained,” https://mitsloan.mit.edu/ideas-made-to-matter/
machine-learning-explained, Apr. 2021, accessed: 2024-05-14.

[4] J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin, “More is better in modern machine learning: when
infinite overparameterization is optimal and overfitting is obligatory,” 2024.

[5] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,”
2017.

[6] E. Hajiramezanali, N. L. Diamant, G. Scalia, and M. W. Shen, “STab: Self-supervised learning
for tabular data,” in NeurIPS 2022 First Table Representation Workshop, 2022. [Online]. Available:
https://openreview.net/forum?id=EfR55bFcrcI

[7] L. Dihge, M. Ohlsson, P. Edén, P.-O. Bendahl, and L. Rydén, “Artificial neural network models to
predict nodal status in clinically node-negative breast cancer,” BMC Cancer, vol. 19, p. 610, 2019.
[Online]. Available: https://doi.org/10.1186/s12885-019-5827-6

[8] U. S. government, “NCI Dictionaries — cancer.gov,” https://www.cancer.gov/publications/dictionaries,
[Accessed 16-05-2024].

[9] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling tabular data using con-
ditional gan,” in Advances in Neural Information Processing Systems, 2019.

[10] P. Edén and M. Ohlsson, Introduction to Artificial Neural Networks and Deep Learning. Lund, Sweden:
Computational Science for Health and Environment (COSHE) - Lund University, 2023.

[11] “Tensorboard,” https://www.tensorflow.org/tensorboard, accessed: 06 May 2024.

[12] Y. Lu, M. Shen, H. Wang, X. Wang, C. van Rechem, T. Fu, and W. Wei, “Machine learning for synthetic
data generation: A review,” 2024.

[13] Stockholm County Council, “The patient data act,” https://www.slso.regionstockholm.se/en/
Safeandsecurecare/Lawsandregulations/#:~:text=The%20Patient%20Data%20Act.,-The%20rules%
20for&text=Among%20other%20things%2C%20this%20law,written%20by%20another%20healthcare%
20organisation, 2023, accessed: 2024-05-15.

[14] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S.
Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations in large data sets,” Science,
vol. 334, no. 6062, pp. 1518–1524, 2011. [Online]. Available: https://doi.org/10.1126/science.1205438

20

https://proceedings.neurips.cc/paper_files/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
https://sdv.dev/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://openreview.net/forum?id=EfR55bFcrcI
https://doi.org/10.1186/s12885-019-5827-6
https://www.cancer.gov/publications/dictionaries
https://www.tensorflow.org/tensorboard
https://www.slso.regionstockholm.se/en/Safeandsecurecare/Lawsandregulations/#:~:text=The%20Patient%20Data%20Act.,-The%20rules%20for&text=Among%20other%20things%2C%20this%20law,written%20by%20another%20healthcare%20organisation
https://www.slso.regionstockholm.se/en/Safeandsecurecare/Lawsandregulations/#:~:text=The%20Patient%20Data%20Act.,-The%20rules%20for&text=Among%20other%20things%2C%20this%20law,written%20by%20another%20healthcare%20organisation
https://www.slso.regionstockholm.se/en/Safeandsecurecare/Lawsandregulations/#:~:text=The%20Patient%20Data%20Act.,-The%20rules%20for&text=Among%20other%20things%2C%20this%20law,written%20by%20another%20healthcare%20organisation
https://www.slso.regionstockholm.se/en/Safeandsecurecare/Lawsandregulations/#:~:text=The%20Patient%20Data%20Act.,-The%20rules%20for&text=Among%20other%20things%2C%20this%20law,written%20by%20another%20healthcare%20organisation
https://doi.org/10.1126/science.1205438

	Introduction
	Self-supervised learning
	VIME

	Method
	Breast cancer data
	Synthetic data
	Preprocessing data
	Masking
	Downstream task
	Implementation details

	Result and Discussion
	Breast cancer data
	Synthetic data

	Conclusion and outlook
	Acknowledgements

