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Abstract

In this study, we have explored the viability of using machine learning models to pre-
dict the outcomes of Premier League football matches. Especially we have evaluated
the effectiveness with the Kelly Criterion as a betting strategy. We processed a com-
prehensive dataset to develop six distinct predictive models, each designed to forecast
the probability of three possible match outcomes: a home win, a draw, or an away win.
These models included various advanced machine learning techniques, and their per-
formance was enhanced through hyperparameter tuning employing both grid search
and randomized search methods.

Our methodology involved simulating an entire Premier League season, applying the
Kelly Criterion to manage and allocate bets based on the probabilistic outputs of our
models. The objective was to evaluate the potential returns on investment from each
model. Among the models tested, the neural network emerged as the most successful,
yielding a return of 35.48 times the initial bankroll. Other models demonstrated varied
levels of success, illustrating the diverse potential of machine learning applications in
sports betting.

The results of our simulations suggest that while machine learning can indeed be a
powerful tool in sports betting, its efficiency depends on several factors. The quality
of the input data and the level of sophistication of feature engineering might influ-
ence model performance. Our study highlights that further enhancements, such as
incorporating more information and/or variables in our data and exploring alternative
approaches to feature engineering, could improve predictive accuracy. Additionally,
domain knowledge remains a critical component, suggesting that a hybrid approach
combining data-driven techniques with expert insight may yield the most robust long-
term betting strategies.

In conclusion, while our findings are promising, indicating that the application of
machine learning and the Kelly Criterion can be profitable, they also underscore the
need for ongoing refinement and the integration of comprehensive domain knowledge
to fully capitalize on this approach in the competitive sports betting market.

Keywords: Premier League, Betting, Machine learning, Neural Network, XGBoost,
Random Forrest Classifier, Naive-bayes, Support Vector Machine, Logistic Regression,
Kelly Criterion, Data Science.
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Notation

ht - Home Team

at - Away team

s - Season/year

md - Match day

HW - Home Win

D - Draw

AW - Away Win

CHG - Cumulative home goals

CAG - Cumulative away goals

CHW - Cumulative home wins

CAW - Cumulative away wins

CHD - Cumulative home draws

CAD - Cumulative away draws

CHSOT - Cumulative home shots on target

CASOT - Cumulative away shots on target

CHC - Cumulative home corners

CAC - Cumulative away corners

CHF - Cumulative home fouls

CAF - Cumulative away fouls

CHY C - Cumulative home yellow cards

CAY C - Cumulative away yellow cards

CHRC - Cumulative home red cards

CARC - Cumulative away red cards
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1 Introduction

”In poker you never play your hand, you play the man across from you” This mem-
orable and famous piece of wisdom, delivered by James Bond in the movie ”Casino
Royale”, suggests that the game of poker is not solely about probabilities and math-
ematical odds. Indeed, poker is as much about understanding and predicting human
behavior as it is about the hands dealt. A well-timed bluff, leveraging this very prin-
ciple, can turn the weakest hand into the winning one. This psychological aspect of
poker raises a fascinating question about its applicability to other competitive fields,
particularly sports and the realm of sports betting.

Sports, much like poker, are not solely governed by the odds displayed on a betting
slip. These odds, set by bookmakers, reflect a combination of statistical analysis, public
perception, and historical data, so the betting companies can make the most money.
However, is it possible for a discerned gambler, armed with a deeper understanding
of the game, the players, and perhaps even the psychological dynamics at play, to
consistently outsmart these odds? Is it possible to train a machine learning model to
get all these valuable insights?

This thesis seeks to explore the intricate dance between statistical probability and hu-
man intuition in the context of betting. It will delve into whether a nuanced approach,
one that goes beyond ”just looking at the odds”, can indeed provide a strategic edge in
predicting outcomes. Through comprehensive analysis and examination of case stud-
ies, we will attempt to use our knowledge in machine learning and see if and how one
can beat the odds.

1.1 Background

1.1.1 Premier League

As stated in in section 1.2 this thesis will focus on the English football division Premier
League. The Premier League, officially founded on February 20, 1992, and since then
represents the pinnacle of the English football. It was formed when the clubs in the
First Division decided to break away from the Football League to take advantage of
lucrative television rights deals. Initially comprised by 22 teams, it has since been
reduced to 20 clubs to enhance competition and quality both domestically and on the
international stage. This league operates on a system of promotion and relegation,
which means the three teams that performed worst in the Premier League each year
gets relegated to the second division. The three teams that performs the best in the
second division gets promoted to the Premier League. (PremierLeague, 2024)

The Premier League quickly rose to become the most watched sports league globally,
broadcast in 212 territories to an estimated 643 million homes, with a potential TV
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audience of 4.7 billion people. The competition is notable not just for its intense and
unpredictable matches but also for its significant financial impact, with clubs benefiting
from a share of billions in television rights deals. For example, the domestic rights for
broadcasting 128 and 32 games were secured by Sky and BT Group, respectively, with
deals amounting to billions of pounds and expected to increase in the coming years.
(Wikipedia contributors, 2024c)

Throughout its history, the Premier League has seen 51 clubs compete, but only a select
few having won the title. Manchester United leads with 13 championships, followed
by Manchester City and others. The league has been a showcase for legendary players
and memorable moments, contributing significantly to its standing as a global sporting
phenomenon. (Wikipedia contributors, 2024c).

1.1.2 Betting

The evolution of betting and bookmaking has been deeply intertwined with the devel-
opment of sports, notably the Premier League, where it adds another layer of engage-
ment for fans. Beginning as informal wagers, the industry saw significant organization
with the emergence of bookmakers like Ladbrokes in the 1886, evolving through the
legalization of off-course betting in 1961, which paved the way for the proliferation
of betting shops across the UK. This history has been marked by continuous adapt-
ation to legal and technological changes, notably the shift to online platforms which
drastically altered the landscape for traditional bookmakers. (Turcu et al., 2020).

In recent years, the relationship between the betting industry and the Premier League
has become more formalized, with many clubs securing sponsorships and partnerships
with betting companies. This relationship underscores the significant role that betting
plays in football culture, though it also reflects the broader challenges that traditional
betting shops face in the age of online gambling. With the advent of the digital era,
bookmakers have been compelled to innovate to remain relevant, leading to a blend
of the traditional betting shop experience with the convenience and breadth of online
betting. (Casino.org, 2016).

Who set the odds

The two most usual way for bookmakers to set their odds is with In-house Analysis
and Third-party Services. In-house Analysis is when the bookmakers develop their
own algorithm to set odds. Third-party Services is when bookmakers pay another
company to make the algorithm. One thing both methods have in common is Dy-
namic Adjustment. The odds need to change during the match depending on what
is happening during and most importantly, Market Influence. Customer betting pat-
terns also play a big role. If a lot of money is being wagered on a particular outcome,
a company may adjust the odds to make other outcomes more attractive, balancing
their risk and maximizing their gain. This means that the odds are not just based on
statistics and algorithms but also on what humans think will happen. (McGrath and
Pempus, 2023)
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1.2 Problem statement & Thesis Objectives

This thesis will focus on the premier league, the highest division of English football.
With a defined data set, several models will be created with an aim of predicting
probabilities of different outcomes for a football match. These predictions for each
probability of the outcome of a match: Home Win (HW), Draw (D) or Away Win
(AW) will then be used as input to an algorithm which is based on the Kelly Criterion
theory, and is explained in section 4.7. The evaluation metric for testing the models
will be an implementation of the Kelly Criterion theory. The algorithm will be a
guidance for which team one should bet on for each match and how much, depending
on the relationship between odds set by bookmakers and the probabilities from our
model to find the most ”value” in bets. (Wikipedia contributors, 2024b) As discussed
in section 1.1.2 the markets influence has a role in what odds will be available. This
could be an advantage that our models could solely focus on statistics and not look at
which teams has the most fans who are willing to bet on them. However, the human
factor could also be a disadvantage since football is a psychological game and maybe,
only humans understand it.

The gap that we are filling in the context of today’s research is that this exact study has
never been done before. Similar studies has been made, the closest we have found being
that of Christoffersson, 2023. What distinguishes this study from Christoffersson’s is
our unique way of managing our data, the methods we are using (in particular the
Kelly Criterion) and the data we both train and test our models on. By using this
approach, we want to examine if this approach is a reliable way to make returns over
the 2022-2023 premier league season.

Lastly, we are (probably) at the end of our academic journey and want to use as much
as we can of what we have learned during our master’s degree. Instead of tuning one
model to perfection, we will create six unique models with different methods to show
what we have learned and at the same time draw conclusion on which method/s works
best for this particular data set.

Questions at Issue:

Question 1: Can we beat the bookmakers over the course of the 2022-2023 season?

Question 2: Is it possible in the long run, using the data we have and the models we
have chosen, to make our algorithm-strategy a reliable source of income on betting in
the premier league?
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2 Previous Studies

The digital age has revolutionized the concept of prediction, significantly impacting
revenue growth across various sectors, including sports. Sports predictions, often
approached as a classification problem (win, lose, draw) benefit from structured ex-
perimental methods for optimal outcomes from datasets. These predictive models are
pivotal for creating data products, aiding clubs in making informed decisions through
recommendation systems. Extending beyond club-specific models, researchers aim to
generalize these predictive frameworks for broader applicability across global sports
clubs, enhancing sports analysis and decision-making processes.(Demmert, 1973)

The historical focus of sports analysis has been on ticket sales and fan attendance,
key revenue sources for sports teams. Early empirical studies explored demand de-
terminants, including local income, stadium age, team success and local market size.
Subsequent econometric studies highlighted factors like recent team performance and
star player impact on match attendance, distinguishing between controllable variables
(e.g., opponent, match day, ticket price) and uncontrollable ones (e.g., weather condi-
tions). (Noll, Coleman and Noll, 1974)

The pandemic shifted focus towards player performance and injury prevention, requir-
ing digitized player histories. Studies utilized variables such as age, height, weight,
and anthropometric features to predict player injury predisposition and physical per-
formance, respectively (Rossi et al., 2018). Another study further examined factors
affecting player substitution times and performance metrics like acceleration and en-
ergy expenditure. (Dijkhuis, Kempe and Lemmink, 2021)

Advancements in data accessibility have propelled football analysis, with football
journals documenting match events being a primary data source. This has facilit-
ated in-depth analyses of soccer at team and individual levels, despite challenges in
assessing player performance quality due to inconsistent data handling. This evolving
field continues to explore various dimensions, including ticket sales, fan attendance,
player performance, and injury prevention, utilizing a wide range of variables and
models for comprehensive sports analysis.(Bornn, Cervone and Fernandez, 2018)

A previous study by Christoffersson, 2023 was recently made that compared the ac-
curacy of ”machine learning models with the probabilities generated by sports betting
companies”, where a Support Vector Machine Support Vector Machine model per-
formed the best with a 52.4 % accuracy whereas the betting companies had 40.4 %.
The author considered the lowest betting odds set by the betting companies as the
outcome their models deemed most probable.
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3 Data

3.1 Dataset

The data is imported from Kaggle and consist of every premier league match and
statistics since the 1993-1994 season. (Azarenka, 2024)

The raw data (before preprocessing) can be found in table 3.1.

Columns Descriptions

Season Which season the game is played
Date Specific date the game is played
Time The time of the date
HomeTeam The team that plays at home for the match
AwayTeam The team that plays away for the match
FullTimeHomeTeamGoals How many goals the home team scored this game
FullTimeAwayTeamGoals How many goals the away team scored this game
FullTimeResult H for home team win, D for draw, A for away team win
HalfTimeHomeTeamGoals How many goals the home team scored this game at

half time
HalfTimeAwayTeamGoals How many goals the away team scored this game at

half time
HalfTimeResult The result at half time
Referee The referee of the game
HomeTeamShots How many shots the home team took
AwayTeamShots How many shots the away team took
HomeTeamShotsOnTarget How many shots the home team took on target
AwayTeamShotsOnTarget How many shots the away team took on target
HomeTeamCorners How many corners the home team was awarded
AwayTeamCorners How many corners the away team was awarded
HomeTeamFouls How many fouls the home team committed
AwayTeamFouls How many fouls the away team committed
HomeTeamYellowCards How many yellow cards the home team committed
AwayTeamYellowCards How many yellow cards the away team committed
HomeTeamRedCards How many red cards the home team committed
AwayTeamRedCards How many red cards the away team committed
MarketAvgHomeTeam The average market odds on a home team win
MarketAvgDraw The average market odds on a draw
MarketAvgAwayTeam The average market odds on an away win

Table 3.1: Description of the data before preprocessing
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3.2 Data Preprocessing & Feature engineering

First, we need to divide the data into training and a test set. This was done with
a 80% to 20% ratio in favor for the training data. Both these samples will be used
during the training process. At last we will exclude the latest season (2022-2023) of
the premier league and use it as present observation. All of our final results will be
based on this latest season, and from now on will be called betting data. In summary
we will have 3 data samples, train data, test data and bet data.

Since we want to use data from earlier in the season to predict probabilities for match
outcomes, we can’t use data from the same game as we are predicting. To get around
this problem the data gets cumulative summed after each round a team plays. For
example at the start of each season every team has zero wins, goals, fouls, corners etc.
But for each game that have been played these statistics changes and keeps getting
added to until a new season begins. This is done using a -1 lag where we index the
matches for each team through the date the match is played.

Football is constantly changing and for every season the team goes through a Transfer
Window, which is a period were the team can sell and buy new players. This window
is open during January and August and at the end of August a new season begins.
These two factors might make the historical data less valuable for future predictions.
If we would to use too much historical data, it could be bad for a model when the data
is changed and restructured too much(McCausland, 2020). Because of this, we made
a decision to structure our data in a cumulative way and reset it for every season.

However, we can extract some valuable information in historical data. We have created
three variables (5GHW, 5GAW, 5GH, 5GA, 5GCH, 5GCA in table3.2) that contains
some past observation that represents a team’s currentform. Form is how well the
teams performs under a shorter time period. Measuring form in football can be an
important factor in determining the current shape a team is in at the moment. We
decided to strictly look at the last 5 games for this, since we believe it could be a
reasonable number of games to indicate how well a team will perform before any given
game.

There is no Perfect Number of Games to look at when calculating form. If you con-
sider too few games then a really bad or good game could have a higher influence.
With too many games the metric could be more evenly distributed but will not have
as much valuable information since a team’s form generally doesn’t last very long.
(Krishnan, 2023). In our case we have settled to look at five past games to decide
form. Furthermore we will derive three variables as form from the past 5 games:

• Number of games won

• Goals scored

• Goals conceded

A well known fact in football is that it is a significant advantage to play at home rather
than away. The advantage comes from a combination of psychological, supporting fans,
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field knowledge etc. (Wikipedia contributors, 2024a) This phenomenon is also visible
in our data set, in Figure 3.1 the distribution of match outcome is visible and the most
frequent outcome of a match is that the home team wins.

This advantage is the ground for how the data is processed, as shown in Figure 3.2
we split almost every column in two 2 columns depending on if a team plays home or
away.

Columns Descriptions

HomeTeam Which team plays at home
AwayTeam Which team does not play at home
Date Specific date
HT The team that plays at home for the match
AT The team that plays away for the match
CHG How many goals has the home team cumulative scored

during the season
CAG How many goals has the away team cumulative scored

during the season
CHW Cumulative home wins for the home team
CAW Cumulative away wins for the away team
CHD Cumulative draws for the home team
CAD Cumulative draws for the away team
CHSOT Cumulative shots on target for the home team
CASOT Cumulative shots on target for the away team
CHC Cumulative corners for the home team
CAC Cumulative corners for the away team
CHF Cumulative fouls for the home team
CAF Cumulative fouls for the away team
CHY C Cumulative yellow cards for the home team
CAY C Cumulative yellow cards for the away team
CHRC Cumulative red cards for the home team
CARC Cumulative red cards for the away team
5GHW Number of wins of the last 5 games played for the home

team
5GAW Number of wins of the last 5 games played for the Away

team
5GH Number of goals scored of the last 5 games played for the

home team
5GA Number of goals scored of the last 5 games played for the

Away team
5GCH Number of goals conceded of the last 5 games played for

the home team
5GCA Number of goals conceded of the last 5 games played for

the away team

Table 3.2: Description of the data after prepossessing

Table 3.2 displays every variable that will be included in every model that later will
be explained and built. Since each variable is quite unique some models will prefer
one variable over the other. Instead of test every set of variable for each method a
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Figure 3.1: Distribution of match outcomes

Figure 3.2: Arsenal Accumulated Goals (season 2021-2022)

regularization part will be added to some models and the tuning part will be further
explained in chapter 5. Doing so we can use the same set of variable for each model
but still let the models choose which variables that are the most important.

3.3 Descriptive Statistics

Figure 3.1 shows how the match outcome is distributed in our data set. The outcome
which is the most frequent is home team win. In our data, 3836 of all 8360 matches
ended in a home win, which is just around 46%.

Figure 3.2 shows how Arsenal goals evolves during the season. Arsenal scores more
goals when they are playing at home then away. This does not only apply for Arsenal.
The Figure also shows how our data is structured by always going up or sometimes
stay the same if in this case arsenal does not score any goal.

What was done with arsenal goals over a season was also done on every variable
displayed in table 3.2. This Figure shows how the variable conceded goals is distributed
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Figure 3.3: Arsenal Accumulated Goals Conceded (season 2021-2022)

Figure 3.4: Arsenal Goals Scored in the Last 5 Games (season 2021-2022)

for home and away games played by the team arsenal.

As described in section 3.2 3 more variables were added to the data that only considered
the last 5 games to include the teams’ form in the model. In Figure 3.4 one of these
variables is plotted over one season. The Figure shows Arsenals goals scored in the
past 5 games. The Figure clearly shows Arsenal’s form during the season, there is a
clear correlation when they score lots of home goals they also score a lot of away goals
indicating the teams high form during the seasons. Which also is clear when they are
in a bad form.

Figure 3.5: Arsenal Performance (season 2021-2022)

9



Betting and the Kelly Criterion

As described in section 1.2 we want to bet on premier league matches to try to make
a profit. But how much return of investment does basic betting strategies yield.

Model Accuracy Kelly Fraction

Always Bet on home win 0.48 35.48
Always Bet on Away Win 0.23 -30.48
Always Bet on Draw 0.29 -57.04
Fixed Probabilities NaN 3.37

Table 3.3: Basic Betting Strategies, Accuracy and Kelly Fraction

In table 3.3 the profit and accuracy is displayed depending on if one bets that: the
home team wins, the away team wins or if the match ends in a draw. The accuracy
is describing how many of the bets would have been correct. More specifically how
many home wins there were this season if one choose the first basic betting strategy.
The Kelly Fraction is calculated by setting your bankroll to x, then multiplying this
number with the odds and adding the money won on the bet if you win or subtract the
amount you played if the bet is lost. In the end the Kelly Fraction will show the rate
of change of the initial bankroll x. Later in this thesis we will train models to calculate
the probability of each outcome for each match. However, the fixed probabilities comes
from historical match outcomes from all of our dataset which is displayed in Figure
3.1. These probabilities then gets fed through an algorithm named Kelly Criterion
Theory, which will be be explained more thoroughly in section 4.7. In short terms,
the algorithm puts the odds for a mach against the probabilities to tell you how much
one should bet and on what outcome. Without any modeling it is a safe bet to always
put money on the team that plays at home. It should be stated for the record, that
the odds used is the market average before each game.

Outcome Mean Odds

Home Win 2.87
Draw 4.22
Away Win 4.57

Table 3.4: Mean odds for each outcome for bet data

In table 3.4 and Figure 3.6 it is shown how odds during season 2022-2023 are distrib-
uted. Odds cant go under 1 otherwise the player could lose money independent of the
outcome and the odds can go as high as possible.

The distribution for a home win odds is skewed to the right, with a concentration of
lower odds (between 1 and 3) and a long tail extending towards higher odds. This
suggests that the majority of games had relatively low odds for a home team win,
indicating that home win were often considered probable. The distribution is positively
skewed, possibly following a log-normal distribution.
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Figure 3.6: Distribution of odds in bet data

Similarly, the distribution of draw odds is also positively skewed, with a high concen-
tration of odds between 2 and 4. The tail extends to higher values, suggesting that
draws were generally considered as less likely outcomes. This distribution shape could
also represent a log-normal or exponential distribution.

Lastly, the distribution of away win odds is the most skewed, with a very high frequency
of low odds, specifically below 2.5. This shape indicates that away wins were generally
less probable, with many games favoring the home team. The distribution is positively
skewed with a heavy right tail, suggesting a log-normal or exponential distribution.
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Position Club P W D L GF GA GD P Form

1 Man City 37 27 7 3 93 33 60 88

2 Arsenal 37 27 5 5 89 28 61 86

3 Liverpool 37 23 10 4 84 41 43 79

4 Aston Villa 37 20 8 9 76 56 20 68

5 Spurs 37 19 6 12 71 61 10 63

Table 3.5: Premier League Table (Top 5 teams date: 2024/05/17)

The official premiere league table that is updated after every match played is structured
as table 3.5. We have had this structure as inspiration to for our data preprocessing.

• P - Games Played

• W - Won

• D - Draw

• L - Loss

• GF - Goals for (Goals Scored)

• GA - Goals Against (Goals Conceded)

• GD - Goal Difference

• P - Points

• - Game Won

• - Game Drawn

• - Game Lost

So for every input our models get will be similar to how a person sees the table before
a game. The key difference is that we have spited the data in home and away games
and we don’t include points in our inputs.
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4 Theory

4.1 Logistic regression

Logistic regression is a statistical technique that models the probability of a binary
outcome as a function of one or more independent variables. This approach is par-
ticularly useful for situations where the response variable is categorical and has two
outcomes.

The logistic model specifies the probability that the response variable Y equals one of
the categories, which can be written as:

P (Y = 1|X) =
eβ0+β1X

1 + eβ0+β1X
(4.1)

The Model estimates the log odds, or logit, which is the natural logarithm of the odds
that Y = 1

log

(
P (Y = 1|X)

1− P (Y = 1|X)

)
= β0 + β1X (4.2)

The linear relationship between the log odds and the predictor variable allows for the
estimation of the coefficients β0 and β1 through maximum likelihood estimation. The
resulting logistic function is an S-shaped curve that outputs a probability between 0
and 1 for any given value of X.

(James et al., 2020)

4.1.1 Multinomial Logistic Regression

Multinomial logistic regression extends the logistic regression model to multiclass prob-
lems where the outcome Y can take on more than two categories. It is particularly
useful for predicting probabilities of the different possible outcomes in a classification
problem.

In the multinomial logistic model, the probability of the response variable Y being in
class k given predictor variables X is modeled as:

P (Y = k|X) =
eβk0+βk1X1+...+βkpXp

1 +
∑K−1

l=1 eβl0+βl1X1+...+βlpXp
(4.3)
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For k = 1, ..., K-1, and for the baseline class K:

P (Y = K|X) =
1

1 +
∑K−1

l=1 eβl0+βl1X1+...+βlpXp
(4.4)

Each outcome class k has a separate linear predictor composed of the coefficients and
features. These predictors calculate the log odds of being in class k versus the baseline
class K. The coefficient are again estimated using the method of maximum likelihood.

(James et al., 2020)

Lasso (Least Absolute Shrinkage and Selection Operator) is a type of regularization
technique that aims to enhance the predictive performance of models while simultan-
eously addressing overfitting issues. In the context of logistic regression, it involves
adding a penalty term to the loss function, encouraging sparsity in the coefficient
estimates.

To derive the logistic regression model, the mathematical objective is to minimize the
negative log-likelihood of the data, which is typically expressed as:

L(β) = −
n∑

i=1

[
yi(β0 + β1Xi1 + . . .+ βpXip)− log(1 + eβ0+β1Xi1+...+βpXip)

]
(4.5)

In a lasso-regularized logistic regression model, an additional penalty term is added
to this loss function to constrain the coefficients, preventing them from becoming too
large:

Lλ(β) = −
n∑

i=1

[
yi(β0 + β1Xi1 + . . .+ βpXip)− log(1 + eβ0+β1Xi1+...+βpXip)

]
+ λ

p∑
j=1

|βj|

(4.6)

Where:

• n: Number of data points.

• yi: Response variable for the i-th data point.

• βj: Coefficients of the model.

• λ: Regularization parameter controlling the strength of the penalty.

In multinomial logistic regression, the penalty term is applied to each set of coefficients
corresponding to each class. The inclusion of the absolute value of coefficients in the
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penalty term forces some of them to shrink to zero, effectively performing feature
selection.

Lasso regularization is especially useful in high-dimensional data where multicollinear-
ity and overfitting are common concerns. By selecting a subset of relevant features, it
enhances model interpretability and predictive performance.

(Ranstam and Cook, 2018)

4.2 Random Forest Classifier

Random forests are an ensemble learning method that combines the simplicity of
decision trees with the power of averaging in order to improve predictive accuracy
and control the amount of over-fitting. The random forest algorithm enhances the
bagging technique by adding an extra layer of randomness to the model. The model
randomizes the selection of features to split on at each node of each tree where it
applies a bootstrap aggregating technique to develop multiple trees.

4.2.1 Overview of random forests

The random forest model operates by constructing a large number of decision trees at
training time and outputting the class that is the mode of the classes (classification)
or mean prediction (regression) of the individual trees. Mathematically, the prediction
of a random forest is given by:

ŷ =
1

B

B∑
b=1

Tb(x) (4.7)

Where Tb is the b-th decision tree, and B i the total number of trees in the forest. Each
tree is built on a bootstrapped sample of the data, and at each split, a random subset
of m predictors is chosen from the full set of p predictors. This procedure decorrelates
the trees and helps to reduce the variance of the model without a substantial increase
in bias.

4.2.2 Out-of-Bag Error Estimation

Random forests utilize out-of-bag (OOB) error as a convenient substitute for cross-
validation to estimate the test error. Each tree is constructed using a different boot-
strap sample and not used in the construction of the k-th tree. These OOB cases are
used to get a running unbiased estimate of the classification error as trees are added
to the forest.
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4.2.3 Variable Importance Measures

Random forests provide not only a prediction model but also a straightforward means
for feature selection. In the context of random forests, variable importance is measured
as the mean decrease in Gini impurity or the increase in accuracy when a variable is
used for splitting. (Lindholm et al., 2022). The mean decrease in Gini impurity when
variable Xj is used in a split across all trees can be expressed as:

VI(Xj) =
1

B

B∑
b=1

(
Ginibefore(b)−

(
Nleft

N
Giniafter, left(b) +

Nright

N
Giniafter, right(b)

))
(4.8)

Here, VI(Xj) represents the variable importance of feature Xj, B is the total num-
ber of trees, Ginibefore(b) is the Gini impurity of the parent node before splitting,
Giniafter, left(b) and Giniafter, right(b) are the Gini impurities of the left and right child
nodes after the split, and Nleft and Nright are the number of samples in the left and
right splits, with N being the total number of samples at the parent node. (James
et al., 2020).

The Gini impurity for a node is typically calculated as:

Gini(b) = 1−
K∑
k=1

p2k,b (4.9)

Where pk, b is the proportion of class k observations at node b and K is the number
of classes.

This equation sums the decreases in Gini impurity for each tree when feature Xj is
used for splitting, then averages these decreases across all trees in the forest to obtain
the overall variable importance score for Xj

(James et al., 2020).

4.3 XGBoost

A powerful machine learning algorithm which recently has gained popularity and at-
tention is XGboost (eXtreme Gradient Boosting). This because of its capabilities in
the effective way it can handle a number of different predictive modeling tasks. It’s de-
signed to be highly flexible, adaptable and efficient and the optimized distributed gradi-
ent boosting library emerges because of its ability to handle both high-dimensional and
large-scale data. (Chen and Guestrin, 2016).
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4.3.1 XGBoost’s objective function

The objective function of XGboost, which consists of a regularization term and a
differentiable convex loss function, is the core of XGBoost’s methodology. Formally,
it can be represented as:

L(ϕ) =
∑

l(ŷi, yi) +
∑

Ω(fk), (4.10)

Where Ω is the penalty term that introduces regularization and penalizes the com-
plexity of the model, and l represents the loss function that computes the difference
between the predicted class ŷi and the actual class yi. In order to reduce overfitting,
and enhance the model’s ability to generalize well to new data, the two-component
objective function mentioned in equation 4.10 is significant in reducing overfitting.

XGBoost applies a framework of gradient boosting, where sequentially new models are
added in order to minimize and correct errors made by already existing models. The
algorithm focuses on minimizing the loss function at each step, given by:

L(t) =
∑

l(yi, ŷi(t− 1) + ft(xi)) + Ω(ft), (4.11)

Where ft is the function represented by the model added at the t-th iteration. This
step-wise approach in the optimization process helps in progressively reducing residuals
and to improve the accuracy of the model. (Chen and Guestrin, 2016).

4.3.2 System Optimization

XGBoost incorporates numerous system-level optimizations that boost its efficiency.
Key enhancements such as approximate algorithms for tree learning and recognition of
sparse data patterns contribute significantly to its design. These choices in system ar-
chitecture allow XGBoost to effectively process extensive datasets, rendering it highly
scalable and versatile across various computational settings. Chen and Guestrin, 2016.

The platform’s effectiveness, ability to scale, and reliability position it as a tool for
a variety of tasks in machine learning. XGBoost stands out due to its solid theoret-
ical underpinnings combined with practical optimizations in system design, ensuring
superior performance across diverse applications. Chen and Guestrin, 2016.

4.4 Support Vector Machines

4.4.1 SVM for binary classification

Support Vector Machines (SVMs) presents a framework for both binary and multi-
class classification. By extending the concept of a linear classifier, SVMs aim to find
an optimal hyperplane which maximizes the margin between two or more classes.
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For linearly separable classes, the SVM seeks a decision boundary:

XTβ + β0 = 0 (4.12)

which maximizes the margin M, the distance between the closest points of the classes
to the hyperplane, defined as:

M =
1

∥β∥
(4.13)

The optimization problem for finding the maximum margin hyperplane is given by:

max
β,β0

M subject to
1

∥β∥
yi(x

⊤
i β + β0) ≥ M, i = 1, . . . , N (4.14)

(Hastie, Tibshirani and Friedman, 2008).

Soft Margin and Slack Variables

In practice, classes may overlap. To handle cases where the classes can’t be separated,
SVM introduces slack variables ξi allowing some points to be within the margin or
misclassified. The modified constraints are:

yi(x
⊤
i β + β0) ≥ M(1− ξi), ξi ≥ 0 (4.15)

and the objective is to minimize:

∥β∥ subject to
N∑
i=1

ξi ≤ K (4.16)

where K is a constant enclosing the sum of slacks.

(Hastie, Tibshirani and Friedman, 2008).

The Langrangian Dual Form

The problem’s dual form introduces Lagrange multipliers ai, offering a way to solve
the SVM that only involves inner products:

LD = −
N∑
i=1

αi +
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
⊤
i xj (4.17)
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Under this formulation, the decision function becomes:

Ĝ(x) = sign

(
N∑
i=1

αiyix
⊤
i x+ β0

)
(4.18)

SVM and Kernels

To capture non-linear relationships, SVMs use kernel functions K(x,x’) to compute
inner products in a transformed feature space. For example, the radial basis function
(RBF) kernel is defined as:

K(x,x′) = exp(−γ∥x− x′∥2) (4.19)

allowing the SVM to construct non-linear boundaries in the original feature space.

(Hastie, Tibshirani and Friedman, 2008).

4.4.2 Multi-Class SVMs

By design, SVMs are mainly binary classifiers. However, multi-class classification tasks
can be handled by employing different strategies. These include the popular one-vs-
all (OvA) and one-vs-one (OvO) approaches. The OvA approach involves training a
single classifier per class, with the samples of that class as positive samples and all
other samples as negative. The OvO approach involves training a binary classifier for
every pair of classes.

(Hastie, Tibshirani and Friedman, 2008).

One-vs-All

In the OvA approach, we train K separate binary classifiers fk(x) for K classes. For
each classifier, the decision function determines whether an instance belongs to one
class or to any of the other classes. The classifier fk(x) has the form:

fk(x) = x⊤βk + β0k (4.20)

For each k, the corresponding optimization problem with slack variables ξik) :

min
βk,β0k

1

2
||βk||2 + C

N∑
i=1

ξik (4.21)
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is subject to

yik(x
⊤
i βk + β0k) ≥ 1− ξik, ξik ≥ 0, ∀i (4.22)

where yik = 1 if the true label yi = k and yik = -1 otherwise, and C is the penalty
parameter.

One-vs-One

In the OvO approach, K(K-1)/2 classifiers are built wher each onf is trained on data
from two classes. For classes j and k, the classifier fjk(x) is trained on the subset of
the training data that belongs to j and k. The classification decision is made based on
a voting scheme where each classifier votes for one class. The final predicted class is
the one with the most votes.

(Hastie, Tibshirani and Friedman, 2008).

Multi-Clas SVM Loss Function

The multi-class SVM can be formulated as a single optimization problem. The loss
function is defined as:

L =
1

2

K∑
k=1

||βk||2 + C
N∑
i=1

∑
j ̸=yi

max(0, 1− ξij) (4.23)

where ξij is the slack variable for the i-th instance when considering the margin relative
to the j-th class.

(Hastie, Tibshirani and Friedman, 2008).

Kernal Extension for Multi-Class SVM

For non-linear decision boundaries, kernel functions are incorporated into multi-class
SVMs:

K(x,x′) = ϕ(x)⊤ϕ(x′) (4.24)

where ϕ(·) is a non-linear mapping to a high-dimensional space. The multi-class SVM
classifier using the kernal trick can be written as:
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f(x) = argmax
k

(
N∑
i=1

αikyikK(xi,x) + β0k

)
(4.25)

where aik are the Lagrange multipliers from the dual problem of the k-th binary
classifier.

(Hastie, Tibshirani and Friedman, 2008).

4.5 Naive-Bayes

Naive Bayes (NB) classifiers are probabilistic models based on applying Bayes’ theorem
where assumptions about independence between the variables are applied. There is
empirical evidence that NB classifiers are well-suited for high-dimensional datasets.

4.5.1 Bayes’ Theorem Foundation

The core of the NB classifier is Bayes’ theorem, which in the context of classification,
is expressed as:

P (Y = k|X = x) =
P (X = x|Y = k)P (Y = k)∑K
l=1 P (X = x|Y = l)P (Y = l)

(4.26)

where P (Y = k|X = x) is the posterior probability that an instance x belongs to class
k, P (X = x|Y = k) is the likelihood of instance x given class k, and P(Y = k) is the
prior probability of class k.

(James et al., 2020).

4.5.2 Independence Assumption

Naive Bayes simplifies the computation of the likelihood P (X = x|Y = k) by assuming
that the features in X are conditionally independent given the class label Y, such that:

P (X = x|Y = k) =

p∏
j=1

P (Xj = xj|Y = k) (4.27)

where Xj is the j-th feature of instance X, and p is the total number of features.
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4.5.3 Parameter Estimation

For a dataset with N instances, K classes, and p features, the parameters of Naive
Bayes are estimated as follows:

π̂k =
Nk

N
(4.28)

where Nk is the number of instances in class k.

P̂ (Xj = xj|Y = k) =
1

Nk

∑
i:yi=k

I(xij = xj) (4.29)

where I is an indicator function that is 1 if xij = xj and 0 otherwise.

(James et al., 2020).

The final classification decision for an unseen instance x is made by choosing the class
with the highest posterior probability:

ŷ = argmax
k

P̂ (Y = k|X = x) = argmax
k

π̂k

p∏
j=1

P̂ (Xj = xj|Y = k) (4.30)

(James et al., 2020).

4.6 Fully Connected Neural Network

A deep learning method that is used for many different applications is fully connected
neural networks. Fully connected neural networks are what you can call ”structure
agnostic”, meaning that they don’t make any special assumptions about the input.
Because of this, fully connected neural networks are capable of learning any function
from any kind of data whether they are images, videos, numeric and so on.

(Ramsundar and Zadeh, 2016).

A fully connected neural network, also known as a dense network, is composed of
multiple layers where each neuron from one layer is connected to every neuron in the
subsequent layer. The fundamental structure of a fully connected layer within such a
network is depicted in Figure 4.1.
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Figure 4.1: A fully connected layer in a deep neeural network

4.6.1 Mathematical Representation

Each layer in a fully connected neural network performs a linear transformation fol-
lowed by a nonlinear activation. Let x ∈ Rm be the input vector to a fully connected
layer. The output y ∈ Rn of this layer is given by:

y = σ(Wx+ b) (4.31)

Where:

• W represents the weight matrix of dimensions n×m.

• b is the bias vector of length n.

• σ denotes the nonlinear activation function, applied element-wise. Common
choices for σ include the sigmoid, ReLU (Rectified Linear Unit), and tanh func-
tions.

(Ramsundar and Zadeh, 2016).

4.6.2 Neurons in Networks

Historically, the nodes in these networks are referred to as ”neurons”. This terminology
comes from an analogy to neurons in the biological brain, as initially suggested by
early neural network models proposed by Warren S. McCullogh and Walter Pitts in
the 1940s. These mathematical models were designed to mimic the binary output of
biological neurons. (Ramsundar and Zadeh, 2016).
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4.6.3 Weight Regularization

To prevent overfitting and improve the generalization of the model, weight regulariz-
ation techniques are applied. These techniques modify the loss function used to train
the network by adding a penalty term related to the magnitude of the weights:

L′(x,y) = L(x,y) + α∥θ∥p (4.32)

where L is the original loss function, θ represents the weights of the network, α is a
tuning parameter, and | · |p is a norm representing either L1 or L2 regularization:

• L1 Regularization (Lasso): |θ|1 =
∑

i = 1N |θi|

• L2 Regularization (Ridge): |θ|22 =
∑

i = 1Nθ2i

(Ramsundar and Zadeh, 2016).

4.6.4 Training Techniques

Minibatching

In practice, especially with large datasets, the training data is divided into small
batches. This approach, known as minibatching, not only facilitates training on limited
memory resources but also introduces noise into the gradient descent process, which
helps in escaping local minima. (Ramsundar and Zadeh, 2016).

Learning Rates

The learning rate is a critical hyperparameter that influences how much the weights
are adjusted during training. Modern optimizers like Adam automatically adjust the
learning rate during training, which helps in stabilizing the training process. (Ram-
sundar and Zadeh, 2016).

4.7 Kelly Criterion Theory

The Kelly Criterion is a mathematical formula used to determine the optimal size of a
series of bets. Developed by John L. Kelly Jr. in 1956, it originates from information
theory, specifically the concept of maximizing the rate of wealth growth. The Kelly
Criterion has found applications in gambling, investing, and risk management due to
its effectiveness in balancing the trade-off between risk and reward. The Kelly criterion
formula is is written as:
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Figure 4.2: The Theoretical Kelly Index

b =
(odds ∗ probability)− 1

odds− 1
(4.33)

• b is the fraction of the bankroll to wager

• odds are the betting odds, given by market average

• probability are the probabilities calculated by our model(s)

The bankroll is the initial money one would like to gamble with for every bet the
formula calculates how much of the bankroll should be put into that bet. This approach
makes every win and loss small and over a long period of time generate a steady and
reliable source of income.

Figure 4.2 illustrates the relationship between the bet size or position size and the
return. The curve reaches its peak at the ”Optimal Kelly” point, indicating the bet
size that maximizes expected return.

To the left of this peak, smaller bets result in suboptimal growth, while to the right,
larger bets increase risk disproportionately, potentially leading to significant losses.
This balance ensures that while maximizing returns, risk exposure remains controlled,
making it a powerful strategy for both gambling and investment decisions.

(Poundstone, 2010)

4.8 Grid & Random Search

When building a machine learning model, tuning hyperparameters is crucial for optim-
izing the performance of algorithms. Two popular methods for this are Grid Search
and Random Search.
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4.8.1 Grid Search

methodically explores a predefined subset of the hyperparameter. It involves choosing
a grid of hyperparameter values and evaluating their performance. The grid contains
what hyperparmeters the search should try and which values for each hyperparameter.
This approach ensures a check of each combination within the grid, which can be set
when dealing with real or unbounded parameters. And returns the set of hyperparma-
ters that yielded the highest choosen evaluation metric e.g. accuracy. Grid search is
especially beneficial when hyperparameter interactions are significant since it evaluates
all possible combinations.

I = PN (4.34)

• I is the number of iterations the search will do

• P is the predefined number of values each hyperparameter can take

• N is the number of hyperparameters

4.8.2 Random Search

on the other hand, selects hyperparameter values randomly within the defined search
space. This method does not try every possible combination but samples them stochastic-
ally. It is particularly effective when the parameter space is large or when only a few
hyperparameters significantly influence the algorithm’s performance. Random search
can be applied to discrete, continuous, and mixed spaces. When executing random
search one also predefined the number of iterations that should be conducted.

4.8.3 Grid vs Random Search

As illustrated in Figure 4.3, the primary difference between Grid Search and Random
Search is in the pattern of their search. The Figure only displays if two hyperpara-
meters are tested, in our case we will have more and therefore the Figure explaining
our search will be in a higher dimensions.

In ”Grid Search” part of Figure 4.3, the search points are structured and align along
grid lines, covering the space uniformly. This systematic approach can be parallelized
easily since each parameter combination is independent. However, it might become
inefficient in high-dimensional spaces where many combinations yield similar results
or are irrelevant.

In contrast, the ”Random Search” part in Figure 4.3 shows a scattered pattern of
points, indicating the random selection of hyperparameters. This randomness allows
the method to explore a wider range of values with fewer iterations. As a result,
random search can often find better parameters faster than grid search, particularly
in cases where the optimal settings are sparsely located within the search space.
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Figure 4.3: Grid vs Random Search

In summary, while Grid Search guarantees that every possible combination within
the grid is evaluated, Random Search provides a more dynamic exploration of the
search space, which can lead to quicker discoveries of optimal solutions, particularly
in complex parameter spaces.

(Liashchynskyi and Liashchynskyi, 2019)
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5 Method

5.1 Data extraction

As previously mentioned in section 3, the process of extracting the data was not the
most complicated. In fact, we solely had to download a CSV file to extract the data.

5.2 Data preprocessing & feature engineering

Given our data structure, we had to preprocess some variables and perform feature
engineering in order for us to build a model that could use the historic data to make
predictions for our probabilities. In section 3.2 we delved into the variables we created.
In that section we mention that we use cumulative statistics that for each game gets
updated and reset by the end of the season. These cumulative statistics is also divided
into two groups, home statistics and away statistics. This data preprocessing is done
with the r library dplyr. With dplyr it is possible to group the data by one selected
variable, in our case season. Further, from match statistics create a new variable with
the cumulative sum for each game round by mutating the cumulative sum using lag.
This is done to every variable that include any match statistics from table 3.1

Before the models where created we had to make a change in the test set. A team
named Nottingham Forrest has never played in the premier league before. This mean
that every model wont recognize the level for home/ away team that is Nottingham
Forrest. What we did is that we gave Nottingham Forrest the coefficient of the team
that came last in the prior season. The reasoning behind this change is that the
best team in the second division (EFL championship) should be the closest team in
regarding performance as the worst team in the premier league.

5.3 Model building & tuning

Every model is built in a unique way to try to maximize the methods advantages.
During the training process we try to maximize the methods capabilities as much as
possible given our computational power and time.

5.3.1 Fixed Probabilities

Rather than building a model to try to predict a match outcome there are some
more unsophisticated betting methods are: pure feeling, always bet on the lowest
respectively highest odds or only bet for one outcome e.g. Home Win. In this project
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there will be one unsophisticated method as a base method or benchmark. The model
that will be presented will just be by looking at the past match outcome. As presented
in figure 3.1 around 46% of all matches we have looked at have been a home win, 25%
of the matches has concluded in a draw and 29% of the matches has ended in a Away
win. These statistics has been set as fixed for every match in the 2022-2023 season,
followed by applying the Kelly criterion algorithm.

5.3.2 Logistic regression

The first model we built was a multinomial regression where variable selection was
performed using LASSO, meaning that our α=1. We did this because we wanted a
starting point and to see if our model could make any sense of the data.

5.3.3 Random Forest

For our Random Forest model, we also started with a base model. However, we decided
that we were going to tune it in order to optimize the model’s performance. We used
grid search for the tuning.

Parameter grid

The parameters we tuned, including the grids, can be seen in table 5.1. We performed
the grid search with 5 cross validations.

Parameters Grid

Max depth 40, 50, 60, 70, 80, 90, 100
Max features 2, 1, 3, 4, 5
Min samples leaf 7, 6, 5, 8, 9, 10, 11
Min samples split 14, 16, 12, 10, 18
Number of estimators 300, 600, 1000, 1100, 1300, 1500

Table 5.1: The grid of parameters searched for Random Forest

5.3.4 XGBoost

For XGBoost, due to the computational cost we experienced using the Grid Search for
our Random Forest model, we used randomized search instead. We did this because
it took approximately 10 hours to run the code using grid search. The Randomized
search was performed using 10 early stopping rounds, ”mlogloss” as our evaluation
metric and with no verbose. We iterated the randomized search 20 times using 5 cross
validations. The parameters that was configurated in our Randomized Search can be
found in table 5.2.
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Parameters Grid

Number of estimators Random integer between 50 and 150
Learning rate 0.05, 0.1
Max depth Random integer between 3 and 7
Minimum child weight Random integer between 1 and 3
Subsample 0.7, 0.8, 0.9
Gamma 0.1, 0.2
Alpha (Regularization) 0, 1e-2
Lambda (Regularization) 1, 1e-2

Table 5.2: The grid of parameters of our randomized searched for XGBoost

5.3.5 Support Vector Machines

For SVM the same applies as for the previous methods. We performed a random search
where we had to limit the hyperparameters even more because of computational cost.
For example, we only did 5 iterations and 3 CV folds. The parameters that was
configurated in our Randomized Search can be found in table 5.3.

Parameters Grid

C (Regularization
parameter)

Exponential distributed with scale 10

Kernel Linear, rbf
Gamma ’scale’

Table 5.3: The grid of parameters of our randomized searched for XGBoost

5.3.6 Naive-Bayes

For our Naive-Bayes model, we performed a grid search with 5 cross validations. Our
only parameter was variable smoothing, where we generated 100 values between 100

and 10−9 on a logarithmic scale.

5.3.7 Neural Network

Below is the detailed architecture of the neural network used in our experiments:

heightLayer (type) Output Shape Param #
InputLayer (None, 31) 0

Dense (ReLU) (None, 64) 2048
Dropout (0.5) (None, 64) 0
Dense (ReLU) (None, 32) 2080
Dropout (0.3) (None, 32) 0
Dense (ReLU) (None, 16) 528

Dense (Softmax) (None, 3) 51
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Params

• Total params: 4,707

• Trainable params: 4,707

• Non-trainable params: 0

Compilation Parameters

• Optimizer: Adam (learning rate: 1.0× 10−5, clipvalue: 1.0)

• Loss function: Categorical Crossentropy

• Metrics: Accuracy

Regularization and Convergence

• Early Stopping: Monitored on validation loss, patience: 5, restore best weights:
True

When a data point is fed into the neural network, it first enters the input layer, which
has 31 features. From there, the data flows through several layers, each designed
to transform the input in a specific way to learn patterns from the data. The first
transformation occurs in a dense layer with 64 neurons, using the ReLU activation
function to introduce non-linearity, helping the network learn complex patterns. This
layer’s weights are initialized using the GlorotUniform method, ensuring optimal initial
weights.

After the first dense layer, a dropout layer randomly sets 50% of the neuron outputs to
zero during training, which helps prevent overfitting by ensuring that no single neuron
becomes too influential on the outcome. The process repeats through another dense
layer and dropout layer sequence, further refining the network’s ability to generalize.

The data continues to a final dense layer of 16 neurons, again using ReLU, before
reaching the output layer. The output layer has 3 neurons (corresponding to three
classes) and uses the softmax activation function to output probabilities of each class,
indicating the network’s prediction.

The architecture was developed through a trial and error approach, relying on qualit-
ative guesses about what configurations might yield good performance. By iteratively
adjusting the layers, neuron counts, and dropout rates, we tried to optimized the
network to balance learning capacity and generalization to unseen data.
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5.4 Kelly Criterion

The Kelly Criterion is a formula used to determine the optimal size of a series of bets.
It maximizes the expected logarithm of wealth and is given by equation 4.33.

The odds are gather from the data set made by Azarenka, 2024 and is the market
average from the top bookmakers in the UK before the game starts, because of the
Dynamic Adjustment discussed in section 1.1.2. The Dynamic Adjustment is not
included in our models, all of the bets are placed before the match begins.

5.4.1 Algorithm Implementation

We implement the Kelly Criterion in Python and apply it to a DataFrame containing
betting odds and predicted probabilities for different outcomes.

The Kelly criterion algorithm calculates the optimal fraction of the bankroll to wager
using the Kelly Criterion. It takes the probability of winning (prob) and the odds
(odds) as inputs and returns the fraction to bet.

Then calculate bets function applies the Kelly Criterion to each possible outcome
(Away win, Draw, Home win) and selects the outcome with the highest positive Kelly
fraction. The chosen outcome, the fraction to bet, and the expected profit are then
calculated. If the actual outcome matches the chosen bet, the profit is calculated as
the fraction times the net odds; otherwise, the profit is negative, representing the loss
of the bet fraction.

Using the Kelly Criterion to determine bet sizes allows for a disciplined and math-
ematically sound approach to betting. By integrating machine learning models to
predict outcome probabilities, this method aims to maximize long-term growth of the
bankroll.
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6 Results

6.1 Comparison

Model Training Accuracy Kelly Fraction

Logistic Regression 0.47 3.54
Neural Network 0.46 35.48
Random Forest Classifier 0.45 -0.08
XGBoost 0.42 -0.16
Support Vector Machine 0.46 3.85
Naive-Bayes 0.40 2.43

Table 6.1: Model performance

Table 6.1 shows how well the different model preformed in terms of the match outcome
classification accuracy and the profit or loss expressed as the fraction from the Kelly
criterion. The accuracy for the different models are quite similar, the lowest scoring
model is Naive-Bayes with an accuracy of 40%, compared to The logistic regression
obtaining the highest accuracy of 47%. In section 1.2 the stated objective was not to
obtain the highest accuracy, but yield the highest profit. The profit and loss column
displayed as a fraction from the Kelly criterion algorithm shows that the neural network
model made the most money from our betting data. With a fraction of 35.48, which
means if someone bets one Swedish crown on each of the 380 matches in the betting
data, they would have made 35.48 Swedish crowns as a profit. Two models lead to a
loss after all of the bets were placed, Random Forest Classifier and XGBosst.Navie-
Bayes had the lowest accuracy but it still yield a profit in the end, illustrating that
accuracy is not the most important metric for this particularly problem.

When we compare the results to the basic betting strategies presented in table 3.3,
no model came close to the loss given by always betting on a draw or away win. The
logistic regression and neural network got the same result as always betting on win
and fixed probabilities.
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6.2 Multinomial Logistic Regression

Outcome Mean Probability

Home Win 0.46
Draw 0.25
Away Win 0.29

Table 6.2: Mean probabilities for each outcome for Logistic Regression

Figure 6.1: Distribution of outcomes for the Logistic Regression

As shown in Figure 6.1 the logistic regression sets all the probabilities for each outcome
to the same value for each of the 380 matches in our bet data. This also mean that
in table 6.2 the Mean Probability is the value that each outcome has, and there is
no spread or variance. The mean probability is very close to the match outcome
distribution in our training and test data.

In the end the logistic regression yielded a profit of 3.54 times the wagered money.
Since the probabilities are the same for every outcome for each match the only different
is the size of the bets, which is depended on the odds.
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6.3 Random Forest Classifier

Outcome Mean Probability

Home Win 0.43
Draw 0.26
Away Win 0.31

Table 6.3: Mean probabilities for each outcome for Random Forest

Figure 6.2: Distribution of outcomes for the Random Forest

Our Random Forest Classifier had a little wider spread than the logistic regression.
The mean probability for a home win was around 43 %, draw 26 % and away win 31 %,
as can be seen in table 6.3. In Figure 6.2, we can see the distribution of the different
probabilities for each game. We can see that the lowest probability for a home win is
about 35 %, and the highest being about 55 %. For draws the interval was between
approximately 15 % and 35 %, and for away wins between 20 % and 40 %. This model
seems that take more information into account, although it didn’t make any returns
but lost 8 % of the original bankroll, as can be seen in table 6.1. The distributions
also looks rather normal.
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6.4 XGBoost

Outcome Mean Probability

Home Win 0.44
Draw 0.25
Away Win 0.31

Table 6.4: Mean probabilities for each outcome for XGBoost

Figure 6.3: Distribution of outcomes for the XGBoost

Our XGBoost model had similar mean probabilities for each outcome. Namely 44 %
for home win, 25 % for draw and 31 % for away win, which can be found in table
6.4. If we take a look at the distribution of the probabilities, we can also see that the
interval as well as the distribution is pretty close to those of the Random Forest. In
table 6.3 it can be noted that XGBoost has an interval between 37.5 and 52.5 % for
home win, 15 and 35 % for draws, and 17.5 and 37.5 % for Away wins. These also
looks rather normally distributed. As can be seen in table 6.1, the model also made
losses of 16 % of our bankroll.
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6.5 Support Vector Machine

Outcome Mean Probability

Home Win 0.46
Draw 0.25
Away Win 0.29

Table 6.5: Mean probabilities for each outcome for SVM

Figure 6.4: Distribution of outcomes for the SVM

The mean probabilities of our SVM model are also similar to both the XGBoost and
Random Forest. SVM had a mean probability of 46 % for home win, 25 % for draw,
and 29 % for away win, as per table 6.7. In Figure 6.4, the interval of the distribution
of the probability for each outcome is narrow. A home win lies somewhere between 45
and 47 %, draw 23.5 and 26 % and away win 28 and 30.5 %. In table 6.1 we can see
that SVM did make a return with a 3.85 multiplier of our bankroll
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6.6 Neural Network

Outcome Mean Probability

Home Win 1.00
Draw 0.00
Away Win 0.00

Table 6.6: Mean probabilities for each outcome for Neural Network

Figure 6.5: Distribution of outcomes for the Neural Network

Our neural network on the other hand set the probability of each game as a certain
(100 %) home win. Although (or because of) this unsophisticated nature, it managed
to make a return with a 35.48 multiplier on our initial bankroll. When the probability
of a outcome is 100% the Kelly criterion will always lead to a bet fraction of 100%.
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6.7 Naive Bayes

Outcome Mean Probability

Home Win 0.45
Draw 0.25
Away Win 0.30

Table 6.7: Mean probabilities for each outcome for Naive-Bayes

Figure 6.6: Distribution of outcomes for the Naive-Bayes

Our Naive Bayes model had a mean probability of 45 % on home win, 25 % on draw
and 30 % on away win. The distribution ranges from 42 to 49 % for home win, 24.7
to 25.2 % for draw and 26 to 33 % for away win. Compared to home and away win,
draw only has a 0.5 % range of different probabilities whilst it is 6 % for home win
and 7 % for away win.

6.8 Kelly Criterion

As stated in section 4.7 the Kelly criterion tries to find the optimal betting strategy
based on odds and probabilities. In the same section Figure 4.2 shows the theoretical
Kelly index. In comparison to our empirical index illustrated in Figure 6.7 it is clear
that the empirical index dose not match the theoretical index perfect but comes quite
close to having the same shape. 6.7 is the index for fixed probabilities/ the probabilities
generated by the logistic regression.

Figure 6.8 illustrates the empirical Kelly index for the neural network. In comparison
to 4.2 the neural network does not follow the theoretical index. However, it resulted
in the highest profit.

The rest of the models dose not follow the theoretical index and are included in ap-
pendix B
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Figure 6.7: The Empirical Kelly Index (Logistic Regression)
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Figure 6.8: The Empirical Kelly Index (Neural Network)
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7 Discussion

7.1 Other approaches regarding feature engineer-

ing

The data is historical data over time where each match for a team comes after another,
which is obvious. This means that the data could be structured as a time series where
the next game depends on the last game. The field of time series analysis has yet to be
experimented with in this paper but could have huge potential. The data preprocessing
was built around seasons and could have been built around a longer time period or a
shorter.

As discussed in section 3.2 the transfer window has a strong correlation to a team’s
performance, the window enable team to sell players that are not preforming well and
buy players from other teams that are preforming well. This window is open two
times each season once during winter and once during the summer, which could be
an argument that the data should be structure for half a season instead of one whole
season.

We have a lot of historical data that is consistently structured throughout the dataset.
However, football is constantly evolving, and our models do not account for these
changes. This issue could be addressed by using fewer data points or by adjusting the
data structure based on the era in which the match was played. These hypothetical
eras must then be assigned.

Other approaches we could have considered would be to reshape our form-variables to
take into account either more or less games. We felt that 5 games was optimal since
it is an indication of a team’s current performance. However, some teams go on to
have great forms over the course of both more or less games, which means that some
information might have gone to waste using this approach. In the future, this might
be something worth looking into more deeply in order to enhance the predictability as
much as possible.

There is no definite way to determine which data prepossessing or feature engineering
is the best without testing them all. Therefore we cannot say if any of the previous
discussion points would increases the model performance.

7.2 More information that could have been utilized

In football, many factors beyond statistics contribute to a match’s outcome. We have
previously discussed how the players on a team are a significant factor, but it does not
end there. Even if a team has the best player, that player could be injured in a previous
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game and thus unable to play in the next match. Furthermore, a player does not need
to be injured to be unable to play; various other circumstances can affect who gets
the chance to play. To utilize this information, our model could benefit from knowing
which players are participating in the game. The squad is common knowledge before
the game starts, making it possible to incorporate this information into our models.

The managers, who train and instructs the player on what to do also has a big role in
the teams performance. Mangers is nothing our models have considered and could ad
some valuable information for our models to train on.

Psychology also plays a role in how the match will end, it is hard to monitor or gather
data to show this. Some games are more important then others, it could be rivalry or
position depending match which contributes to how the player preforms.

Other data that could have been utilized would be for example weather data, does
a team perform particularly well under a certain weather condition? Another factor
that hugely influences a team’s ability to be competitive is the amount of money they
are spending. Therefore, it might be interesting to look into the squad’s market value,
total salary or money spent in a transfer window which might be beneficial for this
type of analysis.

7.3 Result reliability

In the betting world there is very small margins that decide if one makes or lose, this
was made clear when we tuned our models and very small changes could result in
either a profit or a big loss. We only place bets over one season and could have done
it for multiple seasons and see how much we could make over a longer time period.
However, this would lead to a smaller training set.

7.4 Evaluation Metric

For all our models accuracy was the evaluation metric in the training phase to evaluate
how well a model preforms. But, that is not what our models were build to predict,
our findings were never about correctly predict a match outcome, rather predicting
good probabilities to find value bets. A way to get around this is to create your own
evaluation metric. In the end trained models were evaluated with the Kelly criterion
where we simulated a season and if it would be possible to use this algorithm as an
validation metric during training, we might be able to better understand which model
performs better than the others.
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7.5 Kelly Criterion

The Kelly criterion works best when the probabilities are known and accurate. How-
ever, since we are predicting probabilities, we cannot assume they are correct. Our
models do not exhibit very high accuracy, and the predicted probabilities vary, in-
dicating that they are not reliable. Calculating probabilities for a football match is
inherently challenging due to the game’s dynamic nature and the many unforeseen
events that can occur. As discussed in section 7.4, using an evaluation metric other
than accuracy could improve the effectiveness of the Kelly algorithm. Another ap-
proach to optimize the Kelly algorithm is to adjust the dependent variable. In the
preprocessing phase of this thesis, it is possible to create three variables corresponding
to the different outcomes. Using these three variables, we can develop an algorithm
that defines the probabilities for each outcome after the match has been played. With
these new variables, we could then perhaps train our models.

7.6 Model building & tuning

Even though we can see some indicators that this is a viable approach and the fact that
we have managed to make returns for some of our models on the 2022-2023 premier
league season, we are confident that the models can be tuned to be even more precise.
As mentioned earlier, the data in it’s natural state can be viewed as a multivariate
time series, this could potentially be interesting to try and capture when modelling.

For example, the fact that all our models were very biased towards the home side where
the probability for this outcome over all of our models were between approximately
32.5 and 100 % indicates that the models aren’t capturing a lot of information.

7.6.1 Neural Network

One of the most interesting findings in our opinion were the the results the neural
network yielded. Every observation in our bet data got a 100% probability of a home
win which was presented in 6.6. This lead to that every bet that was placed was home
win and 100% of the bankroll according to the Kelly criterion algorithm. This results
in the same fraction as always bet on home win.

With our quite simple architecture the variance in our data was easiest to describe
with only which team played at home. As we can see in table 6.1 the neural network
did not only generate the highest profit but also almost the highest accuracy.

This finding could be an interesting thing to further investigate. By manipulating the
data or changing the architecture to see what happens and figuring out why the neural
network always prefers the home team.

As discussed in section 7.3, we work with very small margins, which the network
appears to agree with, leading it to often choose the simplest answer. In section 3.3,
our data shows that 46% of all the matches in our dataset ended in a win for the
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home team, which matches the accuracy of the neural network. This suggests that
this might be a viable betting strategy in the long run. However, this requires more
in-depth research. Conversely, the betting data shows a 48% home win rate, indicating
that this particular season had more home wins than average. This suggests that the
neural network might not perform as well in other seasons, and the success of this
betting strategy in this particular season could be coincidental.

7.6.2 Logistic Regression

Similarly to the neural network, the logistic regression gave a fixed probability for each
match. But instead of giving the outcome home win a 100% as the neural network, the
logistic regression distributed the probabilities the same way as our fixed probabilities
in table 3.3. The logistic regression is also a simple model with no tuning that lead
to a simple answer. In section 3.2 the home game advantage is presented and now
backed up with the results from both the neural network and the logistic regression.

Figures 6.5 and 6.1 describes the distribution for the probabilities set by the logistic
regression and the neural network. if these plots are compared to Figure 3.6, it shows
more similarities than all of the other models. Not necessarily value vice, more of how
the histograms are displayed. So the betting companies probably have a better model
to define outliers but our logistic regression and neural network finds the true variance
without defining outliers and therefore predicting every probability the same.

Both the logistic regression and the neural network had an element of regularization,
the logistic regression used a method called lasso. This regularization technique is the
explanation to why all of the variable are the same for each match. lasso sets every
variable to zero, except for the home and away team variable. Which also explains
why lasso and fixed probabilities in table 3.3 had the same results. In the training
data 46% of all matches ended in a home win and was also the probabilities set for a
home win by lasso regression.

7.6.3 Rest of the models

XGBoost, Naive Bayess, Support Vector Machine and Random Forest Classifier all had
pretty similar results. Regarding of accuracy, Kelly fraction or how the probabilities
are distributed. Figures 6.2, 6.3, 6.4 and 6.6 shows that the interval between the
highest and lowest probability for each respectively outcome of a match is rather small,
which further backs up our finding that when working with bets the margins between
profit and loss are very small. The mean probabilities for each outcome very close to
to the fixed probabilities indicating that almost every model seams to converges to
the outcome distribution presented in table 3.1, expect from the neural network which
takes it one step further and sets the home win probability to one.
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8 Conclusion

8.1 Question 1

Both yes and no, some of our models have resulted in a profit during this season.
But our betting data has small bias with more home win then the rest of the data.
However our best model, the neural network yielded a significant profit during the
2022-2023 season. In section 1.2 it is presented that the goal of this thesis was to find
the margin between that market influence and the odds set by the bookmakers and
having a model that consistently makes money over a long period of time. With the
result presented in table 6.1 and the following discussion in section 7 we cant say we
have found a way to consistently make money. Even though on paper some of the
model have made money their results are not reliable.

With models that highly favor the home team and yields probabilities very close to
the outcome distribution presented in Figure 3.1 our results have been based on luck
rather than reliable predictions. The bookmakers constantly makes money, it would
not be a good business if they did not. So they have figured out something we could
not. It is obvious that the bookmakers with their resources would make better models
then us, with more experience and computational power

8.2 Question 2

We can’t with a 100% certainty conclude that the answer to this question is a pure
yes. However, we have seen indications that using data to build statistical models for
predictions can be a tool to be utilized among other things when deriving a betting
strategy, for the professional gambler. By looking at just pure data, such as we have
done over 2022-2023 season, we have seen varied results. Some models have actually
made a return while some haven’t, and the reliability in our results can’t be trusted
fully.

A data-driven approach is something that can be used to make more informed decision.
But to purely rely on just that and let an algorithm do the job is not a recommendation.
As we have previously stated and discussed, there are very small margins you are
dealing with when working with betting. In order for this to be a profitable strategy
in the long run, over the course of many years and season, one must have domain
knowledge. Domain knowledge, in combination with statistical modelling however,
might be a recipe for long term success as a player in the betting market.
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Appendix B

Graphs
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Figure B.1: The Empirical Kelly Index (Navie Bayes)
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Figure B.2: The Empirical Kelly Index (Random Forrest Classifier)
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Figure B.3: The Empirical Kelly Index (Support Vector Machine)
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Figure B.4: The Empirical Kelly Index (XGBoost)
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