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Abstract

This thesis investigates the application of spline regression models to predict the Probability of
Default (PD) under varying macroeconomic conditions, exploring whether these models can en-
hance predictive accuracy over traditional linear models and compare favorably to XGBoost. The
study analyses the non-linear dynamics between PD and key macroeconomic indicators within a
Swedish small-sized corporate loan portfolio from 2008 to 2022. Spline models, particularly cubic
splines, are compared against linear models and XGBoost in terms of predictive performance.

The results indicate that while spline models show potential in capturing complex non-linear rela-
tionships, their performance in out-of-time validation does not consistently surpass that of linear
models. However, spline models provide a more nuanced understanding of the interactions between
PD and macroeconomic variables, which could be crucial during turbulent economic periods. XG-
Boost demonstrated superior accuracy and generalization capabilities, particularly in handling
diverse macroeconomic conditions without predicting excessively high PD values.

Based on these findings, spline models can serve as an effective intermediary, balancing the inter-
pretability of linear models with the higher accuracy of XGBoost. This work contributes to the
credit risk modeling discourse, particularly within the IFRS 9 framework, suggesting that incor-
porating non-linear modeling techniques such as splines could offer a more flexible and potentially
more accurate approach to PD prediction.

Keywords: Probability of Default (PD), Linear regression, Splines, XGBoost, Macroeconomic
indicators, Credit risk modeling
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Chapter 1

Introduction

1.1 Background & Motivation

One of the main concerns of banks and other financial institutions is to guarantee financial stabil-
ity and prevent events such as the financial crisis of 2008. To prevent these types of crashes, it is
imperative that banks manage their credit risk - the risk that the bank’s obligors fail to repay their
loans. Due to the risk of a customer defaulting, the bank has a regulatory requirement to hold
a certain amount of capital to cover this potential future loss. The size of this capital allocation
is decided by modeling the Expected Credit Loss (ECL) for the bank’s loan portfolios. One of
the key factors that affect ECL is the Probability of Default (PD), which is the likelihood that a
customer fails to make its scheduled repayment on a debt. Accurate modeling of PD is important
to ensure sufficient and effective estimation of regulatory capital.

As a response to the 2008 financial crisis, the International Financial Reporting Standard 9 (IFRS
9) was introduced. The crisis highlighted significant deficiencies in the previous standard, IAS 39,
particularly in the way that financial instruments were reported and impairment losses on financial
assets were recognized. One of the key motivations for the introduction of IFRS 9 was the need
for a forward-looking ”expected loss” impairment model as opposed to the ”incurred loss” model
under IAS 39, which was criticized for delaying the recognition of credit losses (Frykström and Li,
2018). The expected loss model under IFRS 9 requires banks and other institutions to account
for expected credit losses from when financial instruments are first recognized, and to update
the amount of expected credit losses recognized at each reporting date to reflect changes in the
credit risk of the financial instruments. This approach aims to address the issue of ”too little, too
late” provisions for loan losses and to provide more timely information about expected credit losses.

The method most widely used by financial institutions to predict PD is logistic and linear regres-
sion, where both systematic risks such as macroeconomic conditions as well as idiosyncratic risks,
i.e. client specific risks are assumed to drive the default probability. In the banking sector, the
calculation of PD is approached in three distinct manners: through-the-cycle (TTC), point-in-time
(PIT), and a hybrid of both. The TTC methodology relies on individual risk factors, thereby re-
maining unaffected by prevailing economic conditions. Conversely, under the IFRS 9 framework,
the PIT model modifies this stable PD to reflect more immediate circumstances, incorporating
adjustments for economic downturns or growth phases, as illustrated in Figure 1.1. The IFRS 9
models use relevant macro variables such as gross domestic product (GDP), unemployment rate,
house prices, interest rates and commodity prices, which will be the focus of this thesis (Frykström
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and Li, 2018).

Figure 1.1: TTC vs PIT probability of default. From Frykström and Li (2018).

During extreme events, such as the Covid-19 pandemic, the statistical correlations between macroe-
conomic risk drivers and PD estimates, typically assumed to hold under normal conditions, may
not remain valid. This results in erroneous predictions of the probability of default and in turn
ECL estimates. To be able to handle such events in the future, for example in the case of another
pandemic, capturing the changing dynamics between PD and its risk drivers under turbulent
macroeconomic conditions are of key importance to ensure accurate loss predictions for banks.
Since one of the assumptions of logistic regression is that there is a linear relation between log-
odds of PD and the independent variables, other approaches need to be considered to be able to
model different correlations under different states of the economy.

The problem with non-linearity has been highlighted by the European Banking Authority (2023).
This authority, which monitors European banks’ implementation of IFRS 9, states that the ef-
fect of non-linearity on the ECL estimates in 2021 is limited, which raises concerns that adverse
macroeconomic scenarios are not taken into account. Thus, the ultimate ECL values might not
comprehensively account for the uncertainties inherent in various macroeconomic projections and
may fail to accurately represent the non-linear relationship between macroeconomic factors and
the final ECL values. This indicates that there is a risk of inaccurately representing potential losses
if the macroeconomic conditions significantly diverge from the initial baseline assumptions. Par-
ticularly in situations of high macroeconomic uncertainty, it is essential for financial institutions
to properly incorporate the effects of non-linearity into their ECL calculations. Additionally, they
express that there is a necessity for regulatory authorities to intensify their examination of these
institutions’ methodologies in reflecting such non-linear impacts (European Banking Authority,
2023).

Spline regression is a popular approach for modeling non-linear relations. Spline methods employ
piecewise polynomial functions to model distinct segments of data. This approach segments the
dataset into intervals, fitting each with its own polynomial function. These polynomials are then
seamlessly joined at their boundaries, known as knots, creating a smooth overall function. This
technique allows for a flexible and accurate representation of data, particularly useful in scenarios
requiring interpolation or smoothing across diverse data trends (Brooks, 2019). A stylistic example
of a simple first order spline regression can be seen in Figure 1.2.
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Figure 1.2: Example of a simple, linear spline model fitted to data showing a regime shift.
From Brooks (2019, p. 587).

This thesis primarily investigates the application of spline techniques to model the non-linear re-
lationships between PD and various macroeconomic factors, assessing whether these models offer
superior predictive accuracy over traditional linear models. Additionally, machine learning meth-
ods such as XGBoost have been shown to outperform traditional linear credit risk models (Hild,
2021). Therefore, XGBoost will be considered for comparison to evaluate whether spline techniques
can match the predictive accuracy of these machine learning models. This comparison will provide
a broader perspective on non-linear modeling techniques and their effectiveness in capturing the
dynamics of PD in response to macroeconomic changes.

1.2 Problem Statement

This thesis will address the following research questions:

• Can spline regression offer a more accurate model than an ordinary linear fit for the possibly
non-linear dynamics between different macroeconomic variables and portfolio PD?

• Can spline models achieve predictive accuracy comparable to that of XGBoost in PD pre-
diction?

1.3 Delimitations

The scope of this thesis is specifically focused on data obtained from a Swedish small-sized corporate
loan portfolio. Consequently, the findings are primarily applicable to the Swedish market and
entities that are characteristic of small corporate structures. It is also important to note that
the research will concentrate exclusively on modeling of the default probability. PD is just one
component of the ECL calculation, which also encompasses other critical parameters such as loss
given default (LGD) and exposure at default (EAD). The investigation of LGD and EAD falls
outside the ambit of this study. Further, the data used in the analysis is limited to the years 2008
- 2022.
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1.4 Related Work

Several previous works have explored the area of PD modeling based on macroeconomic variables.
Antonsson (2018) analysed the significance and effect of GDP, house price index, repo rate, and
unemployment rate on default frequency in a Swedish retail credit portfolio between 2008 - 2015.
The method used was multiple linear regression with ordinary least squares (OLS) to fit the pre-
dictor coefficients. Further, several time-lagged values of the mentioned variables were tested from
a monthly lag of 1 to 13. The credit portfolio was segmented into three risk classes (low, medium,
high) and a model was fitted to each segment. The work concluded that different lagged values of
GDP and repo rate were the only statistically significant macroeconomic variables in explaining
the variance of default frequency for the analysed Swedish retail credit portfolio.

In their investigation, Hild (2021) assessed the performance of various statistical methodologies
for default classification (default or no default) within US mortgage loan portfolios, employing
quarterly data between 2001 and 2015. Thus, the dependent variable was defined as the likelihood
of a borrower defaulting within a given quarter (3-month PD), incorporating both macroeconomic
and borrower-specific variables. The study compared traditional statistical approaches, including
logistic regression (both with and without LASSO for variable selection) and linear discriminant
analysis, against more contemporary machine learning techniques such as LightGBM and XG-
Boost. The comparative analysis was based on metrics such as the area under the ROC curve
(AUC), Brier score, and the absolute error in the predicted PD. Their findings revealed that,
generally, machine learning models surpassed traditional methods in performance, albeit at the
expense of reduced interpretability of the model parameters. This motivates the scope of my the-
sis, as the focus of this study is on traditional, easily interpreted and explained, models - while
incorporating flexible methodologies like splines for enhanced adaptability and also comparing its
performance with similar machine learning methodologies.

Ali and Daly (2010) applied logistic regression to model PD with macroeconomic explanatory vari-
ables on both a US and an Australian portfolio with quarterly data from 1995 to 2009. They found
that GDP, total debt-to-GDP ratio as well as short-term interest rates statistically significantly
explained portfolio default rates in both countries. This provides useful input for the work of my
thesis, by motivating the use of these macroeconomic variables for explaining default rates.

In their study, S. Li et al. (2022) present a novel approach to estimating corporate PD through a
single-index hazard model utilizing penalized spline (P-spline) techniques, demonstrating superior
predictive accuracy over traditional models. This methodology’s effectiveness, particularly during
the financial crisis of 2008, underscores the potential of spline regression to address the complex,
non-linear dynamics between financial indicators and default probability. This research serves as
a foundational reference for my thesis, where I aim to explore spline regression’s applicability to
portfolio-level PD modeling in relation to macroeconomic factors.

Bellotti and Crook (2012) analysed UK retail credit card data from 1999 to 2005, modeling LGD
using both macroeconomic and account-level variables. While their period of analysis notably
lacked major economic downturns, Bellotti and Crook (2012) established that macroeconomic
variables such as bank interest rates and unemployment levels improved the model fit and were
statistically significant in predicting LGD. Their study supports the inclusion of these variables in
my thesis, as one can expect LGD and PD to be driven by similar macroeconomic factors.
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This thesis builds upon previous research, such as the work by Antonsson (2018) focused on
linear correlations between PD and macroeconomic variables, by applying non-linear techniques,
such as those used by S. Li et al. (2022), to more accurately forecast default probabilities in
unpredictable economic environments. This method not only builds on established findings but
is also specifically tailored to the Swedish small corporates sector, aiming to enhance credit risk
management approaches.

1.5 Outline

This theis is structured as follows: Chapter 2 describes the data used for modeling. Chapter 3
describes the methods used for data processing, as well as statistical and econometric theory related
to the modeling. Chapter 4 presents the empirical results, model performance and evaluation.
Chapter 5 discusses the results and its eventual drawbacks and limitations. Chapter 6 concludes
key takeaways from the data analysis and modeling as well as gives proposals of possible further
research.
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Chapter 2

Data

The default data used in this thesis was provided by Nordea, and consists of the number of
performing customers as well as the number of these customers that default within the next 12
month period, for a specific segment, at a given date. As mentioned earlier, the segment analysed is
small corporates in Sweden. From this, the 12-month observed default rate (ODR) was calculated
as the percentage-wise proportion of customers who defaulted out of all performing customers at
each given month. This 12-month ODR is used as a proxy for 12-month PD and is thus the target
variable in the modeling. The data is provided on a monthly frequency between the dates 2007-
12-31 and 2022-06-30 which results in 175 data points. The period under study covers a variety
of economic conditions, including the financial crisis of 2008, the Covid-19 pandemic, as well as
relatively stable phases in the intervening years. Figure 2.1 illustrates the observed default rate
over the entire time period. Note the pronounced shift around 2010, where there is a significant
spike in the default rate over approximately 12 months, followed by a subsequent drop. This
phase likely exerts a considerable influence on the models’ estimations. Investigations did not
yield obvious causes and no remedial actions was taken. Following the surge around 2010, the
default rate exhibits a gradual decline until it reaches a pronounced peak starting in 2018. This is
succeeded by a significant downturn, which coincides with the ending years of the pandemic. The
Y-axis has been omitted and the data masked to maintain confidentiality. Consequently, the data
shown here and in Chapter 4 has been altered from its original form.
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Figure 2.1: Trajectory of the observed default rate throughout the time period under study.
Y-axis omitted and data is masked for confidentiality reasons.

The methodology used to calculate defaults over a 12-month horizon on a monthly basis inherently
introduces autocrrelation in the default rate due to the significant overlap in sequential months.
Despite this, the 12-month ODR is used as the dependent variable as this is in line with stan-
dard banking practices, where a 12-month PD is commonly used for credit risk assessment. To
mitigate the impact of autocorrelation and ensure the robustness of the linear regression analysis,
heteroskedasticity and autocorrelation consistent (HAC) estimators, such as those proposed by
Newey and West (1987), are employed. This approach corrects for the presence of autocorrelation
and potential heteroskedasticity in the error terms, providing more reliable standard error esti-
mates.

The macroeconomic data was gathered from different public sources such as Sveriges Riksbank and
Statistiska Centralbyr̊an (SCB). The selection of macroeconomic variables is based on the results of
the statistical significance in explaining PD found in related works as well as on economic intuition.
A total of 12 macroeconomic variables were considered in this study. A summary of the variables
is seen in Table 2.1 below.
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Table 2.1: Overview of macroeconomic variables

Variable (code) Description Unit Source Frequency

Repo Rate Average monthly interest rate % Sveriges Riksbank Monthly

UR
Unemployment rate,
15-74 years. Seasonally
adjusted and smoothed

% SCB Monthly

FX Rate
Exchange rate (USD/SEK).
Monthly average

SEK per USD Sveriges Riksbank Monthly

GDP growth (YoY)
Year-over-year economic
growth rate

% SCB Quarterly

CPIF
Consumer price index
with fixed interest rate (1987=100)

Index SCB Monthly

OMXSPI
OMX Stockholm price index,
end of period (29/12/95=100)

Index Nasdaq Nordic Quarterly

LT Rate
10-year government bond yield,
end of period

% MarketWatch Quarterly

ST Rate
3-month treasury bill yield,
average

% Sveriges Riksbank Quarterly

ELEC
Electricity producer
price index (2019=100)

Index Eurostat Quarterly

GAS
Price of oil,
gasoline

SEK per tonnes
of oil equivalent

IEA Quarterly

GC
Government consumption,
real

MSEK
SCB /
Trading Economics

Quarterly

Note: All variables pertain to the Swedish economy.

Since many of the variables are acquired at a quarterly frequency, this data must be imputed to
provide a consistent monthly time series, which is described in section 3.1.1.
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Chapter 3

Theory & Methodology

This chapter explains the theory and methods used in the analysis, covering everything from how
the data was prepared to the techniques for choosing variables, fitting the models, and evaluating
their performance. It outlines the key steps taken to ensure that the analysis is solid and the
results are trustworthy.

3.1 Data Handling

Before constructing the model for PD as a function of the macroeconomic variables, the raw data
was analysed to avoid missing or irregular values, and to ensure it aligned with the assumptions
of the regression techniques used.

3.1.1 Imputation

For the macroeconomic variables used in this thesis, the frequency at which the variables were
observed differed between monthly and quarterly frequency. To avoid a major loss of information
leading to less powerful estimates in the models, the choice was made to disaggregate the quar-
terly time series to a monthly frequency. The benefits of disaggregation was weighed against the
potential drawbacks of modeling on interpolated data - which is not common practice at financial
institutions like Nordea. However, as the purpose of this thesis is more a proof of concept rather
than to produce a regulatory compliant model ready for use, the pros of more data were consid-
ered greater than the cons of lesser data quality. In this thesis, due to it’s restrictive nature, the
quarterly macroeconomic series were converted using linear interpolation.

However, for further research, more sophisticated methods are available for such conversions, as
demonstrated by the works of Cuche and Hess (1999) and Chow and Lin (1971). Specifically, Chow
and Lin (1971) introduced a statistical technique that employs regression analysis on related higher-
frequency indicators to interpolate lower-frequency GDP data into more granular monthly data.
This method not only enhances the accuracy of the interpolated series but also aligns closely with
the underlying economic trends on a monthly basis. Building on the advancements of Chow and
Lin (1971), Cuche and Hess (1999) further refined the methodology for estimating monthly GDP
figures by employing a general Kalman filter framework. This approach, demonstrated through
their work on Swiss data from 1980 to 1998, incorporates related series and addresses the challenges
of non-stationarity within the data. By leveraging the flexibility and dynamic updating capabilities
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of the Kalman Filter, they provide a robust model that significantly improves the interpolation of
lower-frequency GDP data.

3.1.2 Lagged macroeconomic variables

As stated by Bellotti and Crook (2012), the dependence between a macroeconomic variable and
credit risk may not be immediate. For example, a change in interest rate may affect an obligors
payment capacity several months later. Therefore, lagged versions of the macroeconomic variables
with a lag from 1 to 12 months were included in the modeling.

3.1.3 Exploratory data analysis

To analyse the characteristics of the raw data, an exploratory data analysis (EDA) was conducted.
EDA was first introduced by Tukey (1977), and consists of visually and graphically presenting
the data with for example scatter plots to spot missing data, outliers and overall trends and dis-
tributions of the dataset. Since the data was distributed over a number of years, the raw data
was visualized over time using line plots with markers and analysed for outliers and trends. In
the default dataset, used to calculate the ODR, some outliers in the number of performing cus-
tomers were found. In one of the data points, there was a decrease of 2,000 performing customers,
which unexpectedly returned to normal levels in the following month. The disappearance and
quick return of such a large number of customers was considered unreasonable, indicating a poten-
tial fault in the data due to reasons not explored further. To correct this, the specific data point
was replaced with the mean of the number of performing customers in the two surrounding months.

To investigate the relationship between the default rate and the selected macroeconomic variables,
scatter plots with regression lines were utilized, using the seaborn library’s pairplot function.
This analysis aimed to uncover potential non-linear relationships among the variables, suggesting
that splines and generalized additive models (GAMs) might offer a more accurate depiction of
these dynamics compared to traditional linear models. This approach allowed for a quick overview
of how macroeconomic factors interact with the probability of default, highlighting the complexity
of these relationships and the importance of adopting flexible modeling techniques to capture them
effectively.

3.1.4 Stationarity tests

A stationary process is characterized by a constant mean, variance and auto-correlation structure
(Brooks, 2019). Therefore, a stationary process does not show any obvious trends over time and
crosses the mean frequently. A key requirement for modeling time series data is that all variables
- both dependent and independent - should exhibit stationarity. If the data is not stationary, it
can result in misleading models indicating a strong relationship between variables, with a high
R2 and significant coefficients, even when there is no actual connection between the variables.
Using stationary variables ensures that the relationships modeled are consistent over time. Conse-
quently, the macroeconomic variables and the observed default rates were evaluated for stationary
behaviour before they were used in the modeling.

One of the most widely used test for stationarity is the Augmented Dickey-Fuller (ADF) test. The
objective of the test is to test the null hypothesis H0 : ψ = 0 versus H1 : ψ < 0 in
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∆yt = ψyt−1 +

p∑
i=1

αi∆yt−i + ut (3.1)

where ∆yt = yt − yt−1 and ut is the white noise zero mean, constant variance error term. The
inclusion of p lagged differences of the dependent variable, ∆yt, serves to absorb any temporal
dependencies or patterns in the dependent variable (Brooks, 2019). This is done to make certain
that the error term ut does not exhibit autocorrelation. If the null hypothesis H0 is rejected,
the series does not contain a unit root, providing evidence that the series is stationary. The test
statistic is defined as

DFτ =
ψ̂

SE(ψ̂)
(3.2)

which is the estimate from (3.1) divided by its standard deviation. This statistic is compared to
critical values for the test distribution, and the null hypothesis is rejected if it is less than the
critical value at a given significance level. The p-value in the ADF test measures the likelihood of
seeing our test results if the null hypothesis were actually true. If this p-value is below a threshold,
such as 5%, we have sufficient evidence to reject the null hypothesis and conclude that the data is
stationary. For this thesis, the ADF test was conducted in Python with adfuller function from
the Statsmodels package.

Another test commonly used to test stationarity of a time series is the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992). While the ADF test focuses on detecting a
unit root as evidence of non-stationarity, the KPSS test approaches the problem from the opposite
direction. Its null hypothesis, H0, posits that the series is stationary around a deterministic trend
or level, against the alternative hypothesis, H1, that the series is non-stationary due to a unit root.
The test assumes the series can be decomposed to a deterministic trend, a random walk and a
stationary error as:

yt = ξt+ rt + εt (3.3)

where rt is the random walk defined as

rt = rt−1 + ut (3.4)

with iid errors ut ∼ N (0, σ2
u) and intercept r0. The null hypothesis is simply σ2

u = 0. If ξ is set to
zero, the test is done on level stationarity instead of around a trend. The KPSS test statistic is
defined as follows:

η =

∑T
t=1 S

2
t

T 2s2(l)
(3.5)

where St is the partial sum of deviations from the sample mean, T is the number of observations,
and s2(l) is an estimate of the long-run variance of yt. The test statistic thus assesses the level of
stationarity of the series by examining the severity of its deviation from a deterministic trend or
level, rejecting the null hypothesis of stationarity for large values. For this thesis, the KPSS test
was conducted using the kpss function from the Statsmodels package in Python.

In their study, Schlitzer (1995) concluded that the individual power of the ADF and KPSS test are
low, especially for small samples sizes. However, they show that a combined ADF-KPSS approach
can be used to reduce the number of erroneous conclusions. Therefore, the KPSS test is employed
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in tandem with the ADF test to provide a robust framework for determining stationarity. While
the ADF test identifies the absence of a unit root to suggest stationarity, the KPSS test verifies
that the series does not exhibit structural changes or a stochastic trend. As underscored by Brooks
(2019), the time series should be concluded stationary from both tests for the results to be robust.
Therefore, in this study, the variables that did not pass both tests were considered non-stationary.

Variables that proved to be non-stationary from the joint ADF and KPSS tests, must be trans-
formed to become stationary before being used in the modeling. There were mainly two methods
used to transform the variables. For macroeconomic variables expressed as a percentage (such as
interest rates), differencing from last quarter was calculated as

xdiff,t = xt − xt−3 (3.6)

and for the other variables (such as indices or prices) the growth rate from last quarter was
calculated as

xgrowth,t =

(
xt − xt−3

xt−3

)
× 100 (3.7)

where xt is the value in the current month and xt−3 is the value from three months prior.

Despite the tests suggesting non-stationarity in the 12-month observed default rate series, the
decision was made to use it as the dependent variable in the modeling without employing dif-
ferencing transformations to achieve stationarity. This strategy was chosen based on that models
aimed at predicting changes in PD would demonstrate weak accuracy in the long-term predictions.
Additionally, given the default rate’s intrinsic constraint within the 0 to 1 range and grounded in
economic logic, it is logical to infer that the PD will maintain long-term stationarity, as it cannot
indefinitely increase. However, going forward, it is acknowledged that the development of a model
is based on a response variable exhibiting potential non-stationary behaviour, which might not
fully align with the assumptions of regression analysis.

3.1.5 Train-test split

The macroeconomic data and observed default rates exhibited atypical patterns starting from
2020, likely due to the Covid-19 pandemic. In this period, the macroeconomic conditions were
worsening, yet contrary to expectations of a surge in the default rate, it unexpectedly declined. To
accommodate this anomaly in the PD model training, the dataset was partitioned into three dis-
tinct periods. Data from 2008 to 2018 was allocated as a training set to capture the pre-pandemic
economic conditions. For testing, two distinct subsets were created: the first, spanning from 2018
to 2020, encapsulates a period considered to reflect relatively stable conditions. The second test
set, ranging from 2020 to mid-2022, encompasses the timeframe where the pandemic’s impact was
most pronounced, resulting in irregular data trends. This division allows for a more nuanced eval-
uation of the PD model’s robustness across varying parts of the economic cycle.

As explained in section 3.3.2, cross-validation in the training set is also employed which is a more
sophisticated version of train-test split used for model selection. However, this ”in-sample” and
”out-of-sample” data split is used in tandem with cross-validation to evaluate the performance of
the chosen models on completely unseen data.
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3.2 Modeling Theory

This sections explains the different theories and methods used for creating linear and non-linear
models for the default probability.

3.2.1 Multiple linear regression on transformed PD

Multiple linear regression allows us to express the relationship between the explained variable yt
and the explanatory variables xkt as:

yt = β0 + β1x1t + β2x2t + . . .+ βkxkt + ϵt, (3.8)

which can be written in matrix form as y = Xβ + ϵ where

y =


y1
y2
...
yT

 , X =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
...

. . .
...

1 x1T x2T . . . xkT

 , β =


β0
β1
...
βk

 , ϵ =


ϵ1
ϵ2
...
ϵT


In this study, y contains the historical default rates, X the k different explanatory macroeconomic
variables, β their corresponding coefficients as well as ε the residuals. The linear regression model
makes the following key assumptions (Brooks, 2019):

• Linearity: The relationship between the dependent and independent variables is linear.

• Independence: Observations are independent of each other.

• Homoscedastic and normal errors: The error terms are assumed to be independent and
identically distributed, following a normal distribution with zero mean and constant variance
across all levels of the independent variables.

• No multicollinearity: None of the independent variables should be highly correlated with
any of the other independent variables.

To ensure that the output of the model is bounded between zero and one, since we want to
predict a probability, we transform PD into log odds, as this operation enables us to maintain
the unbounded characteristics necessary for linear regression. The transformation is defined as
y = logit(PD) = ln

(
PD

1−PD

)
= Xβ, which re-expresses the PD across the entire real number line.

When the predictions are subsequently re-transformed, they revert to being confined within the
interval [0, 1]. Note that log refers to the natural logarithm here. Therefore, the coefficients,
β1, β2, . . . , βk, are interpreted as the change in the log odds of PD for a unit change in the corre-
sponding macroeconomic variable, holding all other factors constant. The PD is thus calculated
as:

P (default) =
eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk
(3.9)

To find the coefficient estimates, β̂, ordinary least squares (OLS) estimates are used (Brooks,
2019). This is done by minimizing the residual sum of squares,

L = ϵ̂T ϵ̂ = (y −Xβ̂)T (y −Xβ̂) = yTy − 2β̂
T
X′y + β̂

T
X′Xβ̂ (3.10)
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which after differentiated w.r.t. β̂ and set to zero yields the coefficient estimates:

β̂ = (XTX)−1XTy (3.11)

The significance of the parameter estimates are then tested using the traditional t-test or z-test,
utilizing the standard errors of the coefficient estimates. The heteroskedasticity and autocorrelation
consistent (HAC) standard errors, as introduced by White (1980) and further developed by Newey
andWest (1987), provide a way to adjust the variance-covariance matrix of the parameter estimates
to account for possible heteroskedasticity and autocorrelation in the error terms. By employing
these robust standard errors, hypothesis testing remains valid even when the classical assumptions
of homoskedasticity and no autocorrelation are violated. Since the analysed default dataset is
noted to have autocorrelation, HAC estimators are employed for the linear regression models in
this thesis.

3.2.2 Univariate smoothing splines

To create a more flexible model, able to capture a non-linear dependence between the target and
predictor variables, first let’s consider the univariate model

yi = f(xi) + ϵi, (3.12)

where yi represents the dependent variable, xi the independent variable, f denotes an unknown
smooth function supposed to capture the relationship between the two, and ϵi are iid N(0, σ2)
errors (Wood, 2017). To be able to approximate the smooth function using the same estimation
methods as in linear regression, f is expressed as

f(x) =
k∑

j=1

bj(x)γj, (3.13)

where bj(x) is a basis functions in a chosen space of functions, basis, of which f is supposed to be
an element. Thus, bj(x) with coefficients γj are used to construct the function that estimates f . A
simple example of a basis are all polynomials up to a certain degree k. The challenge with such a
basis, however, lies in its asymptotic behaviour; polynomial functions can exhibit extreme values
at the bounds of the domain, leading to poor extrapolation outside the local interval - commonly
referred to as Runge’s phenomenon.

To mitigate this problem, one can use a spline, which is a function built up of sections of polyno-
mials, joined together at so called knot points (Wood, 2017). These polynomials are non-zero only
in a close vicinity of its corresponding knot points, thus restricting its impact in the asymptotes.
A spline function of any specified degree is the result of the weighted sum of these basis functions,
which are polynomials of the same degree. A naive approach would be to use a piecewise linear
basis, where bj(x) are ”tent”-like functions, starting at 0, increasing to 1 at the corresponding
knot point, to then decrease to 0 at the next. An issue with this spline basis is that the result is a
non-smooth function with discontinuities in the first derivative, since it’s built of first order poly-
nomials (such as the spline seen in Figure 1.2). A better choice of basis, as described by De Boor
(1978) and Wood (2017), is the piecewise cubic basis consisting of polynomials of order 3, which
still today is the most popular choice for degree of a spline basis. The third order polynomials
are connected so that they not only meet but also have matching first and second derivative at
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the knot points, resulting in a function that is continuous up to the second derivative. Proof show
that, out of all functions f which interpolate any set of data points, this cubic spline interpolation
is the smoothest in terms of minimizing

”wiggliness” =

∫ xn

x1

f ′′(x)2 dx (3.14)

There are many ways to represent cubic splines, but a popular approach is to use the so called
B-spline basis, which has the sought after local property that each basis function influences solely
the interval across the m+ 3 neighboring knots, where m+ 1 is the polynomial order of the basis.
The spline function with k evenly spaced knots can thus be expressed as

f(x) =
k∑

i=1

Bm
i (x)γi, (3.15)

where the basis functions are defined recursively as

Bm
i (x) =

x− xi
xi+m+1 − xi

Bm−1
i (x) +

xi+m+2 − x

xi+m+2 − xi+1

Bm−1
i+1 (x) for i = 1, . . . , k (3.16)

and the first order basis function as

B−1
i (x) =

{
1, if xi ≤ x < xi+1

0, otherwise
(3.17)

An illustration of a smooth cubic spline function constructed from this basis is seen in Figure 3.1
below.

Figure 3.1: Rank 10 cubic B-spline. The thin curves show the weighted basis functions,
B2

i (x)γi, which summed together gives the smooth spline function, f, represented by the
thick line. The knots are located where each basis function peaks. Adapted from Wood
(2017, p. 205).

Substituting (3.15) into (3.12) yields a linear model y = Xγ + ϵ in terms of the basis coefficients
γj with X now containing the basis functions as Xt = [1, B2

1(xt), B
2
2(xt), ..., B

2
k(xt)]. To estimate
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these coefficients and find f̂ , instead of solely minimizing the residual sum of squares as in linear
regression, one minimizes the penalized least squares;

n∑
i=1

(yi − f(xi))
2 + λ

∫
f ′′(x)2 dx (3.18)

where λ is the non-negative smoothing parameter that balances the fit to the data against the
smoothness of the spline function. A λ of zero leads to a spline that is free to pass as close as
possible to each data point, potentially leading to a curve that overfits the data. As λ approaches
infinity, f becomes a straight line. This hyperparameter needs to be finely tuned, often via cross-
validation, to ensure a good fit to the trends of the data without capturing any noise that might be
present. Assuming λ is known, using some numerical approximation of the second derivative, D,
and writing the integration as a quadratic form using the coefficients, the minimization objective
of penalized least squares (3.18) can be written as;

∥y −Xγ∥2 + λγTSγ (3.19)

where S = DTD. The closed form solution of the coefficient estimates can now be found:

γ̂ =
(
XTX+ λS

)−1
XTy (3.20)

Note however, that we have not chosen the dimension of the basis, k (which essentially is the
number of basis functions and thus knots for each f(xi)), the location of the knots nor the choice
of smoothing parameter λ. Common practice is to choose k larger than thought to be necessary,
and place the knots equally spaced over the independent variable, to then let λ and the penalized
regression control the model flexibility and form of f̂(x) (Wood, 2017). Thus, in the pyGAM package
used to implement GAMs in this thesis, the default value of k is set to 20, such that it is large
enough for the spline to be able to capture the form of the true function while also maintaining
computational efficiency. Although this value might seem large and prone to overfitting, consider-
ing the data used in this thesis, the penalty term will shrink the coefficients of many of the basis
functions so that the final model has a lower dimension than this.

To determine the optimal λ, a common approach is to use cross-validation techniques, measuring
the model’s predictive performance for different λ and choosing the parameter that yields the
lowest score. Ordinary cross-validation (OCV) involves sequentially leaving out each data point,
fitting the model to the remaining data, and assessing the model’s prediction for the omitted point.
This is quantified by the OCV score:

Vo =
1

n

n∑
i=1

(f̂
[−i]
i − yi)

2

where f̂
[−i]
i represents the model’s prediction fitted without the i-th data point, and yi is the actual

value. The objective is to select λ that minimizes this score, indicating superior predictive capabil-
ities. However, fitting the model n times is computationally expensive. An efficient alternative to
OCV is generalized cross-validation (GCV), which utilizes the influence matrix A and only needs
to make one fit to each model (Golub et al., 1979). The GCV score is calculated as:

Vg =
n
∑n

i=1(yi − f̂i)
2

[n− tr(A)]2

18



where f̂i is the predicted value from the model using all data points, tr(A) is the trace of the
influence (hat) matrix A = X(XTX+ λS)−1XT which is used as an approximation of the degrees
of freedom of the model, and n is the number of observations. Ultimately, this is an efficient
approximation to the ”leave-one-out” OCV. Thus, the optimal smoothing can be found through
searching over a range of lambda values and choosing the one with the lowest Vg. Additionally,
a more accurate approximation of the effective degrees of freedom is given by 2tr(A) − tr(AA),
which can lead to improved estimates of the GCV score and the smoothing parameter (Wood,
2017).

3.2.3 Additive models

To create a model where the target variable depends on several independent variables, an additive
model can now be constructed, where smooth functions described in the previous section is fit to
each independent variable as:

yt = α + f1(x1t) + f2(x2t) + ...+ fk(xkt) + ϵt (3.21)

where α is a constant and fi(xi) are cubic splines from (3.15) fit to each macroeconomic vari-
able xi for each data point 1 . . . t. This can also be expressed in a linear form y = Xγ + ϵ
where X = (1,X1, ...,Xk) containing the basis functions for each independent variable and
γT = (α,γT

1 , ...,γ
T
k ) the corresponding basis coefficients. Consequently, the additive model can

be estimated in a manner analogous to the univariate model by minimizing the penalized least
squares, with one smoothing parameter per independent variable (assuming λi are known);

∥y −Xγ∥2 +
k∑

i=1

λiγ
TSiγ (3.22)

which results in the coefficient estimates and hat matrix:

γ̂ =

(
XTX+

k∑
i=1

λiSi

)−1

XTy,

A = X

(
XTX+

k∑
i=1

λiSi

)−1

XT

(3.23)

Therefore, due to the additive nature and similarity with the linear regression framework, much of
the theory from multiple linear regression can be applied to additive models as well - for example
confidence and prediction intervals as well as feature selection with p-values.

Furthermore, the inclusion of multiple functions within the model presents a challenge in determin-
ing unique estimates for each function, a so called ”identifiability problem”. Specifically, consider
a model containing two functions: both f1 and f2 can only be estimated with an uncertainty of an
additive constant. This is because the addition of a constant to f1 and its simultaneous subtrac-
tion from f2 would yield the same predictions from the model. Consequently, constraints must be
applied to ensure the model’s identifiability prior to the estimation process. A good choice is the
sum-to-zero constraint (Wood, 2017):

n∑
i=1

f1(xi) = 0 (3.24)
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This constraint solely adjusts the vertical positioning of f1 to achieve a mean of zero, without
altering its original shape or penalty value.

To determine the optimal smoothing parameters, a k-dimensional random grid search (where k
is the number of macroeconomic variables) is implemented across 2000 points within the range
[10−3, 103]. This approach involves randomly selecting combinations of parameters from a uniform
distribution and evaluating each using the GCV score (Servén and Brummitt, 2020). The combi-
nation yielding the lowest GCV score is selected as the optimal parameter set for the model.

I also experimented in finding the optimal smoothing parameters by implementing a time series
cross-validation and testing all combinations of lambdas between [10−3, 103] with 30 equally spaced
points and choosing the lambda combination that yielded the lowest average RMSE scores. This
gave approximately the same optimal lambdas as the grid search using GCV.

3.2.4 Effective degrees of freedom

A measure of the complexity of a model is the effective degrees of freedom (EDoF), which corre-
sponds to the effective polynomial degree of the smooth fit that is estimated by the spline function
(Ventrucci and Rue, 2016). For a spline function, such as the one in equation (3.15), the EDoF
is calculated as the trace of the hat matrix A in equation (3.23), and thus ranges from 0 (when
λ→ ∞) to the number of basis functions and dimension of the spline term k (when λ = 0) (Wood,
2017).

3.2.5 XGBoost

As this thesis focuses on spline models but also includes a comparison with XGBoost, this sec-
tion provides a brief introduction to the theory behind it. Short for eXtreme Gradient Boosting,
XGBoost is a powerful and efficient implementation of gradient tree boosting tailored for both
regression and classification problems, developed by Chen and Guestrin (2016).

XGBoost is an ensemble method that combines the predictions of multiple regression trees to make
a final prediction. Each tree in the ensemble contributes an additive function fk(x) to the final
prediction ŷi. The prediction for a given input xi is:

ŷi = η
K∑
k=1

fk(xi) (3.25)

where η is the learning rate, reducing the impact of each individual tree, and K is the number of
trees (M. Zou et al., 2022). To ensure the model generalizes well and avoids overfitting, XGBoost
incorporates a regularized objective function, L(ϕ), defined as:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (3.26)

This objective function combines a loss term, l(ŷi, yi), which measures the error between the
predicted and actual values - typically the Mean Squared Error (MSE) for regression tasks - with
a regularization term that penalizes the complexity of the model. The regularization term, Ω(fk),
is applied to each tree fk to control its complexity, and is defined as:
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Ω(f) = γT +
1

2
λ∥w∥2 (3.27)

Here, γ penalises the total number of leaves in the tree, T , and λ controls the L2 regularization
on the leaf weights (w). This regularization helps to keep the model simple, preventing overfitting
by penalizing complexity and the influence of individual data points.

XGBoost trains the model additively. Starting with an initial prediction, it iteratively adds new
trees to improve the prediction. At each iteration t, a new tree ft is added to minimize the
objective:

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (3.28)

where ŷ
(t−1)
i is the prediction from the previous iteration, and ft is the new tree being added.

To optimize this objective, XGBoost uses a second order Taylor approximation, simplifying the
optimization process and allowing for the calculation of optimal weights for the tree leaves. For a
fixed tree structure, the optimal weight of leaf j is given by:

wj = −
∑

i∈Ij gi∑
i∈Ij hi + λ

(3.29)

where Ij represents the set of data points that fall into leaf j, gi is the gradient and hi the hessian

of the loss function with respect to the prediction from the previous iteration ŷ
(t−1)
i . The respective

optimal value of the regularized objective is:

L(t) = −1

2

T∑
j=1

(∑
i∈Ij gi

)2∑
i∈Ij hi + λ

+ γT (3.30)

This value serves as an evaluation metric for the decision tree. It combines the fit of the tree to the
data, reflected by the sum of gradients and hessians of the loss function, with the complexity of the
tree, moderated by the regularization parameters λ and γ. A lower score indicates a better trade-
off between accuracy and simplicity, signifying a more optimal tree structure. A greedy algorithm
is typically used to build the tree, starting from a single leaf and iteratively adding branches to
minimize the loss function while considering the regularization term. Specifically, each potential
split is evaluated based on the reduction in the loss function, or gain, defined as:

Gain =
1

2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ (3.31)

where IL and IR are the subsets of data points for the left and right leaves after the split (chil-
dren), and I = IL∪ IR represents the parent leaf. Thus, if the gain of the split is lower than γ, the
branch is not created. For further details of the XGBoost algorithm, see Chen and Guestrin (2016).

To use XGBoost, certain hyperparameters need to be set by the user:

• Learning rate (η): This controls the step size at each iteration while moving towards a
minimum of the loss function. A smaller value makes the model more robust but requires
more boosting rounds.
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• Max depth: The maximum depth of a tree. Increasing this value makes the model more
complex and more likely to overfit.

• Number of estimators (K): The number of boosting rounds. More boosting rounds
improve the model’s performance but also increase computation time and may lead to over-
fitting.

• Gamma (γ): The minimum loss reduction required to make a further partition on a leaf
node of the tree. The larger gamma is, the more conservative the algorithm will be.

• Min child weight: The minimum sum of instance weight (hessian) needed in a child. In
simpler terms, it ensures that any node being split contains a sufficient number of data points.
A larger value prevents overfitting.

• Lambda (λ): L2 regularization term on weights, helping to reduce overfitting.

• Alpha (α): L1 regularization term on weights.

These hyperparameters enable the user to tune the model according to the complexity and size
of their data, to find a balance between bias and variance. One popular method for finding the
optimal hyperparameters is GridSearchCV (M. Zou et al., 2022). By defining a range for each
parameter, training a model for each configuration, and then evaluating each combination using
cross-validation, the optimal set of hyperparameters can be determined.

3.2.6 Implementation

The linear models were implemented using the statsmodels package in Python. To implement
GAMs for this thesis, the pyGAM package is utilized (Servén and Brummitt, 2020). This package
is commonly employed for similar purposes, as evidenced by its use in studies such as Yang et al.
(2021) and Siems et al. (2024). Although the statsmodels package also supports GAMs, it was
not selected due to its inability to make predictions outside the range of the explanatory variables
used in training. Additionally, the mgcv package by Simon Wood, which is referenced extensively
as a primary source for GAM theory in this thesis, could be another good option. However,
because this is implemented in R, it was not chosen for use in this work. The XGBoost models are
implemented using the xgboost package in Python.

3.3 Model Criteria

This section describes the methods used to select the most suitable and well-performing models for
predicting PD, given the analysed dataset. Throughout the model selection process, only models
where all coefficients show significance using the p-value threshold of 0.05 are considered.

3.3.1 How many explanatory variables?

To limit the model’s complexity and facilitate its interpretability, a cap was set on the number
of independent variables to three. This means that only models with one, two, or three macroe-
conomic variables were considered. The rationale behind this approach is to ensure the models
remain comprehensible and interpretable while still capturing the essential economic dynamics.
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By adhering to this convention, the study aims to produce models that align with established
modeling practices within the financial industry.

3.3.2 Time series cross-validation

As described by Hyndman and Athanasopoulos (2018), traditional K-fold cross-validation pred-
icated on the assumption that data points are independent and identically distributed is not
suitable for time series data due to the inherent auto-correlation that is often present. The corre-
lation between training and testing sets together with shuffling could adversely affect the accuracy
of generalization error estimates. Thus, a better option is to use cross-validation that preserves
the temporal dimension of the data. One such option is so called chained or expanding window
cross-validation. This technique modifies the traditional K-fold methodology by extending the
training dataset with each iteration to include all data up to the Kth fold, while the (K+1)th fold
serves as the test set. This method facilitates a realistic forecast scenario by leveraging historical
data up to the point of each prediction period, thereby avoiding the inaccuracies associated with
small or future-informed training sets. The forecasting model’s effectiveness is assessed by calcu-
lating a performance metric, such as the root mean square error (RMSE), across all test folds,
with the goal of selecting the model that demonstrates the lowest average RMSE and thus best
generalization. Therefore, expanding window cross-validation from the Scikit-learn package is
used in this study as illustrated in Figure 3.2 below.

Figure 3.2: Illustration of expanding window cross-validation used for time series data.
However, in this study K blocks of test sets are used rather than each individual data
point. From Hyndman and Athanasopoulos (2018, p. 69).

3.3.3 Multicollinearity

One underlying assumption in regression analysis is the absence of perfect correlation between the
independent variables. Should they be uncorrelated, adding or removing one should not affect the
estimates of the others. However, there will always be some degree of correlation present among
the explanatory variables. When two or more predictor variables in a multiple regression model
are highly correlated - such that one can be linearly predicted from the others - the condition is
referred to as multicollinearity (Brooks, 2019). This results in difficulties in distinguishing the in-
dividual contribution of each explanatory variable, leading to high coefficient standard errors and
potentially causing insignificance, despite a high R2 indicating a good model fit. Multicollinearity
can also result in highly sensitive model coefficients, with the addition or removal of an indepen-
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dent variable greatly changing the value or significance of the other variables.

A way of measuring multicollinearity is by calculating the Variance Inflation Factor for each inde-
pendent variable, expressed as:

V IFi =
1

(1−R2
i )

(3.32)

where R2
i represents the coefficient of determination from regressing the explanatory variable xi

against all other independent variables in the model. A higher VIF indicates more severe mul-
ticollinearity between the variable in question and the rest of the explanatory variables in the
model. The VIF has a minimum value of one when the tested variable is completely independent
from other variables. Generally, a VIF under 5 suggests multicollinearity is not a concern, but
a value of 5 or above signals a need for corrective measures. However, as a rule of thumb, some
researchers consider a VIF of 10 as the threshold for significant multicollinearity that requires
attention (Brooks, 2019).

Firstly, one could ignore the problem with multicollinearity if the model is satisfactory, since it may
not always significantly affect the t-ratios of variables that would have been significant otherwise.
Secondly, another approach is to remove one of the collinear variables to eliminate the problem.
However, this could introduce omitted variable bias. Lastly, transforming the correlated variables
into a ratio and using this ratio in the regression is an alternative strategy. In this study, the
second approach is used. Hence, all models where any of the explanatory variables indicates a VIF
greater than 5 were excluded from the model selection.

3.3.4 Intuitive signs

As previously mentioned, the macroeconomic factors included in the model selection process are
selected through economic intuition and based on previous studies, hypothesized to be connected to
the probability of default among corporates in Sweden. Thus, there is also a common conception
of whether each of these variables are positively or negatively correlated to PD. To align this
knowledge with the model selection, a requirement is set so that the sign of the independent
variable is the same as the ”expected” sign according to economic theory. Thus, no model included
in the final selection has non-intuitive correlations between the macroeconomic variables and PD.

3.4 Model Evaluation

This section presents the different theories and methods applied to evaluate and compare the
performance of the different models.

3.4.1 Accuracy metrics

Accuracy measures are used to compare different models’ capacity to predict actual data, either
from the training set (in-sample) or from future unseen data (out-of-sample). The measure best
fit for evaluating in-sample might not be the one best fit for out-of-sample evaluation. Thus, one
should choose measure based on how well it offers insight into out-of-sample accuracy (Makridakis,
1993). Further, there is no best overall measure that fits to all datasets. However, if such a measure
were to exist it would take the form of a relative measure, that is, expressed as a percentage, as one
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would otherwise compare numbers with different magnitude. As there is no ”one size fits all”, two
different loss functions are used in this study to provide robust results. The two metrics used to
compare the accuracy and predictive performance of the different models are: Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE). This is similar to the approach used
by Brooks et al. (2001), where they employed different time series models to predict the FTSE
100 index movements based on futures prices and used Mean Absolute Error (MAE) and RMSE
as measures of prediction errors.

RMSE is chosen as it is one of the most commonly used loss functions. It has the beneficial
property that it ensures that the error’s magnitude corresponds to that of the predicted quantity
(Han et al., 2022). The measure also puts larger emphasis on outliers and is calculated as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.33)

Further, as described by Makridakis (1993), MAPE is a relative metric that integrates the most
beneficial aspects of various accuracy measures. It is defined as

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.34)

As this is a relative measure, it is highly interpretable and has a lower bound of zero (Brooks,
2019). There are however a few flaws with this measure that needs to be addressed. Firstly, it
is not symmetric in the sense that equal errors above and below the actual value does not yield
the same MAPE. Secondly, it can inflate the percentage errors if the actual value, yi, is small or
close to zero as can clearly be seen by the denominator in (3.34). It is acknowledged that there are
different adjusted version of MAPE mitigating these flaws, but to maintain the intuitiveness of the
measure, the original MAPE is used in this study. Moreover, given that the target variable (PD)
ranges from 0 to 1 across all data points, the amplification of errors for small values is expected
to be consistently applied across all observations, suggesting that MAPE remains a suitable loss
function for the dataset analysed in this thesis.

For a model to demonstrate strong generalization capabilities, it is essential that it performs well on
both in-sample and out-of-sample data. Consequently, models that exhibit the lowest RMSE and
mean absolute percentage error (MAPE) during in-sample cross-validation are subject to further
evaluation on the out-of-sample data. The model that achieves the lowest loss scores across both
datasets is then ultimately selected.

3.4.2 Regression assumptions

Further, the models under consideration are assessed for their adherence to the assumptions of re-
gression analysis, as fulfilling these criteria is imperative to ensure the model’s reliability for both
predictive and inferential analyses. This includes verifying the independence and normality of the
residuals for the validity of statistical tests, and examining for homoscedasticity to guarantee that
the variance of the error terms is constant across different values of the independent variables.
Following the principles outlined by Hyndman and Athanasopoulos (2018), there are two crucial
attributes that warrant extra attention in residual analysis. Firstly, it is essential that residuals
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exhibit no correlation; the presence of correlation suggests remaining predictive information in the
residuals that could improve forecast accuracy. Secondly, residuals should have a mean of zero to
prevent forecast bias; a non-zero mean indicates systematic overestimation or underestimation in
the model predictions. The properties of homoscedasticity and normal distribution of the errors
are useful but not essential.

To check the normality of the residuals, a graphical approach is to use a quantile-quantile plot (QQ-
plot) which plots the quantiles of the empirical distribution against the quantiles of the theoretical
distribution that the data is assumed to follow (Chambers et al., 2018). Should the assumption
hold true and the residuals follow a normal distribution, the points on the plot are expected to
align closely with the line y = x.

A statistical test that can be used in tandem with the QQ-plot is the Jarque-Bera test with the null
hypothesisH0 : Residuals are normally distributed againstH1 : Residuals are not normally distributed
(Brooks, 2019). A high p-value thus indicates normal errors and the residuals are thus considered
normal if the JB p-value is above 0.05.

Further, autocorrelation often appears in the residuals when one applies a regression model to
data with a time series structure - violating the assumption of independent errors in the estimated
model (Hyndman and Athanasopoulos, 2018). The independence of the residuals can be tested
using the Durbin-Watson (DW) test, with the null hypothesis H0 : ρ = 0 against H1 : ρ ̸= 0, where
ρ is from the regression on two subsequent error terms:

ϵt = ρϵt−1 + νt (3.35)

where νt ∼ N(0, σ2). However, for computational reasons, the test statistic is calculated directly
from the error terms as

DW =

∑n
t=2(ϵt − ϵt−1)

2∑n
t=1 ϵ

2
t

≈ 2(1− ρ) (3.36)

For further details on the last approximation, see Brooks (2019), chapter 5. Given that−1 ≤ ρ ≤ 1,
it follows that 0 ≤ DW ≤ 4, where DW = 0 signifies perfect positive autocorrelation, DW = 4
signifies perfect negative autocorrelation andDW = 2 indicates no autocorrelation in the residuals.
Since the DW test statistic does not follow a standard statistical distribution, a p-value cannot be
directly calculated. However, there are upper and lower critical values presented by Durbin and
Watson (1951) which can be used for hypothesis testing.

Another way to analyse the autocorrelation in the residuals is through the autocorrelation function
(ACF) plot which visualizes the autocorrelation function as a function of lag length (Box et al.,
2015), together with a 95% confidence interval. A high value outside the confidence interval at
a certain time step indicates strong correlation between the residuals at that interval, suggesting
significant influence of past values on the current value.

3.5 Linear Model Development Process

This section details the practical steps undertaken in the development and selection of the pre-
dictive models for PD. The process began with preliminary testing of the individual significance
of each macroeconomic variable. This was achieved through single-factor models to ensure that
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only variables with a consistent impact on PD were considered for further analysis. Subsequently,
all possible combinations of one, two, and three significant variables were created, utilizing time
series cross-validation to assess model performance in-sample as well out-of-sample. This itera-
tive approach aimed to identify the model configuration that provided the best balance between
complexity and predictive accuracy, as measured by RMSE and MAPE.

3.5.1 Single-factor significance testing

The initial phase of model development focused on the individual assessment of each macroeco-
nomic variable’s predictive power regarding PD. This involved constructing single-factor linear
models for each variable and evaluating their performance through 5-fold cross-validation on the
in-sample dataset. Variables were considered significant and retained for further analysis if their
associated models demonstrated significance in at least 50% of the cross-validation folds, using a
p-value threshold of 0.05.

3.5.2 Multi-factor models

Following the identification of individually significant variables, the next step were the exploration
of variable combinations. Models comprising each combination of one, two, or three macroeconomic
variables were constructed and evaluated. The models were evaluated using time series cross-
validation in-sample as well as trained on the whole in-sample test to then be evaluated on the
two out-of-sample periods.

3.5.3 Final model selection

Lastly, the models that did not fulfill the criteria described in Section 3.3 were removed. Out of the
remaining adequate models, which were sorted on average CV RMSE, the model that exhibited the
lowest RMSE and MAPE on the out-of-sample data was chosen as the best model for predicting
PD. This model was then further analysed according to Section 3.4.2, to assess its compliance with
the assumptions of linear regression and to confirm its overall suitability.

3.6 Cubic Spline Model Development Process

A major aspect of the cubic spline model development involved determining the appropriate
macroeconomic variables for inclusion in the model. The decision was whether to solely incor-
porate variables that exhibited significance during the linear model development phase or to also
include variables that were initially discarded. Therefore, firstly the linearly significant variable
combinations were tested, to see if a non-linear dependence could improve the linear models’ pre-
dictive accuracy.

Secondly, the variables that were initially discarded due to insignificance were also fit with a cubic
spline model, with the hypothesis of their potential to capture non-linear relationship that a linear
model may not have adequately been able to capture.
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3.6.1 Variables from linear model selection

For each combination of variables deemed adequate from the linear model development phase,
cubic spline functions were fit for each variable. For each GAM model, a grid search to find the
optimal smoothing parameter yielding the lowest GCV score was conducted, selecting an optimal
smoothing parameter for each macroeconomic variable. The evaluation criterion remained the
same as for the linear models, using time series CV to gauge model performance in-sample as well
as testing on the two out-of-sample periods using RMSE and MAPE.

The spline models were then sorted on average CV RMSE and the model with the lowest out-
of-sample RMSE and MAPE was selected as the optimal spline model. This selected model
was then reviewed to assure its adherence to the principles of regression analysis, confirming its
overall appropriateness for the study’s objectives, as detailed in Section 3.4.2. Furthermore, partial
dependence plots showcasing the possibly non-linear dependence between each macroeconomic
variable and PD with 95% confidence intervals were created. These partial dependence plots could
then be used to analyse whether the smooth function fit through penalized least squares is too
”wiggly” (λ too low) or smooth enough (λ okay) through a visual inspection.

3.6.2 Variables that indicate a non-linear relationship

As previously mentioned, a second hypothesis was that a reasonable approach would be to not
only fit GAMs to the variables deemed significant in the linear regression, but to also test the
variables rejected in the linear single-factor significance test. The Regression Specification Error
Test (RESET), developed by Ramsey (1969), is a method for assessing the adequacy of linear re-
gression models. It evaluates whether incorporating non-linear transformations of the independent
variables could enhance the model’s ability to predict the dependent variable. This approach is
based on the premise that if these non-linear transformations significantly contribute to explaining
the dependent variable, it suggests that a simple linear model may not accurately capture the un-
derlying relationship, indicating a potential for improvement by considering polynomial or other
non-linear forms. The test is done on a regression using higher orders of the fitted linear model
ŷ = β0 + β1x together with the original regression:

y = α1 + α2ŷ
2 + α3ŷ

3 + · · ·+ αkŷ
k + β1x+ ϵ (3.37)

and then testing the joint significance of the α’s using an F-test. If the null hypothesis that all
αk = 0, k ≥ 2 is rejected, this suggests that the linear model is misspecified and non-linear trans-
formations could be a better approach, such as a GAM.

Therefore, the variables that were not used in the linear model development phase was tested using
the RESET test. The variables for which the null hypothesis was rejected was then included in
the selection for a GAM model with up to 3 variables in a similar manner as previously described
and sorted based on average RMSE.

3.6.3 Variables from best linear model

Further, a model with the exact same macroeconomic variables as the linear model with the low-
est RMSE was chosen to investigate if a spline model with the same variables could improve the
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predictive accuracy.

Lastly, a model with these same variables but with a mix of linear and spline terms to the different
variables were tested as a ”mixed” model.

3.7 XGBoost Model Development Process

Similar to R. Li et al. (2020), backward feature elimination was used to select which macroeco-
nomic variables to include in the first XGBoost model. This process starts with a model that
includes all macroeconomic variables and then step-by-step eliminates the variable with the lowest
importance (F-score) until only two variables remain. The final model therefore consists of the
two variables most frequently used in splits for predicting PD. Additionally, an XGBoost model
using the same variables as the best linear model was created for comparison purposes with the
other modeling techniques.

To ensure a fair comparison between the predictive performance of spline models and XGBoost,
the decision was made to limit the number of macroeconomic variables in the XGBoost models
to only two. This aligns with the linear and spline models, which also contain only two or three
variables, to maintain interpretability. Although XGBoost is typically used with a larger number
of predictor variables, this constraint was necessary to create a balanced comparison and evaluate
the models under similar conditions.

As described in Section 3.2.5, a grid search using the GridSearchCV method was used to opti-
mise the XGBoost model’s hyperparameters. The parameter grid included three values for each
of the following hyperparameters: max depth, gamma, lambda, alpha, min child weight, number
of estimators, and learning rate. For each point on the grid, a 3-fold cross-validation was applied,
with the negative mean squared error as the evaluation metric. Therefore, the combination of
hyperparameters that yielded the XGBoost model with the lowest average MSE was selected.

Given that the dataset comprises only around 150 data points and the model includes only two
variables, the hyperparameters for the grid search were set conservatively to avoid overfitting. The
max depth values were set to 2, 3 and 4, while the n estimators values were set to 3, 7 and 10.
Initially, larger hyperparameters were tested, but this led to significant overfitting. This selection
ensures the model remains appropriately simple for the limited data.
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Chapter 4

Results

This chapter presents the empirical findings of the data analysis, model selection procedures for
the linear and non-linear models as well as the evaluation results of the best fitted models.

4.1 Data Transformations and Significance

From the stationarity tests, many of the macroeconomic variables indicated non-stationarity. They
were thus transformed according to Section 3.1.4. The macroeconomic variables that were included
in the final models, after transformation to yield stationarity, can be seen in Appendix A.

Among the total 143 macroeconomic variables considered (including their lagged versions), 42
were deemed significant following the single-factor significance test outlined in Section 3.5.1. Con-
sequently, these variables were incorporated into the model development process. These 42 vari-
ables are different lagged versions of GDP growth, unemployment rate (UR), electricity producer
price index growth (ELEC), government consumption (GC) growth, repo rate (differenced), short-
term and long-term interest rate (ST Rate, LT Rate) (differenced) and share price index growth
(OMXSPI).

4.2 Linear Regression Models

An overview of the top 5 linear models based on average cross-validation RMSE is presented in
Table 4.1 below.
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Table 4.1: Top 5 linear models based on average CV RMSE.

Features
CV

RMSE
CV

MAPE
OOT 1
RMSE

OOT 1
MAPE

OOT 2
RMSE

OOT 2
MAPE

UR,
GC growth lag 3

0.001426 20.76 0.002863 28.48 0.002711 32.18

GDP growth,
UR lag 1,
GC growth lag 3

0.001499 21.14 0.002869 28.52 0.002752 29.32

UR lag 2,
GC growth lag 3,
OMXSPI growth lag 12

0.001570 22.83 0.002766 27.92 0.002782 31.36

GDP growth,
UR lag 1

0.001576 22.49 0.003031 30.26 0.002647 29.91

UR lag 3,
OMXSPI growth lag 12

0.001670 24.49 0.002907 29.28 0.003033 34.04

Note: Several models share variables in different combinations and lags. However, models with
identical variable combinations, differing only by a single lag in one variable, are excluded from this
table as they are considered nearly identical.

It is important to note that the model with the lowest average RMSE from cross-validation might
not have the lowest RMSE and MAPE on out-of-time set 1. However, average RMSE from cross-
validation is considered a more reliable metric because it evaluates model performance across
multiple test sets, whereas OOT 1 is just a small dataset spanning 2 years and can be more
affected by outliers and, hence, has more uncertainty attached to it. Consequently, based on Table
4.1, the model exhibiting the lowest average RMSE from in-time cross-validation is chosen for
detailed examination, as it is deemed to best generalize to new data, aligning with the thesis’s
objective. A summary of this model is shown in Table 4.2.

Table 4.2: Summary of the best linear model.

Feature Coefficient

Constant -x (0.482)
UR y∗∗∗ (0.061)
GC growth lag 3 -z∗∗ (0.041)

Durbin-Watson 0.221
Jarque-Bera p-value 0.293

Note: Coefficients omitted for confidentiality. Standard errors are
reported in parentheses.
∗p < .10, ∗∗p < .05, ∗∗∗p < .01

The predicted versus actual probability of default across the training and testing periods for the
optimal linear model is depicted in Figure 4.1. This figure shows that the linear model manages
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fairly well to capture the trends of the data used for training, up until 2018, but its performance
during the first OOT period (beginning in 2018) indicates a lack of response. The second OOT
period presents an atypical scenario: despite macroeconomic indicators suggesting an expected
rise in PD (due to Covid-19), observed PD values actually decreased, likely due to extraordinary
government interventions. This anomaly makes the period less critical for model evaluation, as
the inverse relationship observed is not typical of the correlation between macros and PD.

2008 2010 2012 2014 2016 2018 2020 2022
Date

12
m

 d
ef

au
lt 

ra
te

 [%
]

OOT 1 OOT 2

Observed
Predicted

Figure 4.1: Actual versus observed PD for the linear model with the lowest average RMSE
from cross-validation. Trained on all data up until 2018 (before OOT 1). Y-axis omitted
and data masked for confidentiality reasons.

The QQ-plot and ACF of the residuals for the linear model are illustrated in Figure 4.2 below.
From 4.2a it is seen that the residuals indicate normality since the observations follow the diagonal
line well, except for some observations in the tails. Furthermore, the Jarque-Bera p-value from
Table 4.2 indicates that the null hypothesis of normally distributed errors should not be rejected.

Notably, Figure 4.2b reveals strong autocorrelation among the residuals, with several lags showing
values significantly different from zero outside the blue confidence interval. This persistent autocor-
relation in the residuals suggests that the model may not be capturing all the predictive structure
in the data, which could be due to time-dependent processes or omitted variables. Probably this
stems from the inherent autocorrelation in the 12m PD used as the target variable. These findings
indicate an opportunity for model enhancement to account for the temporal dependencies not yet
addressed in the current model formulation.
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(a) QQ-plot for the residuals of the
linear model with the lowest average
RMSE from cross-validation.
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(b) ACF plot for the residuals of the
linear model showing strong autocor-
relation, with 95% confidence intervals
in blue shading. Observations outside
these intervals carry significant auto-
correlation.

Figure 4.2: Residual diagnostics for the linear model: (a) QQ plot, and (b) ACF plot.

4.3 Cubic Spline Models

Table 4.3 summarizes the different spline models considered, yielding the lowest average RMSE for
each selection of macroeconomic variables. The following sections give a more detailed description
and evaluation of each model.

Table 4.3: Summary of the spline models yielding the lowest average RMSE from each variable
selection.

Features EDoF
CV

RMSE
CV

MAPE
OOT 1
RMSE

OOT 1
MAPE

OOT 2
RMSE

OOT 2
MAPE

GDP growth lag 3,
UR lag 3

10.6 0.001855 24.50 0.003319 30.26 0.005492 66.71

ST RATE diff lag 12,
GC growth lag 12

8.3 0.001725 25.78 0.002366 24.54 0.002420 23.83

UR,
GC growth lag 3

9.5 0.001848 27.98 0.003085 30.23 0.003772 45.80

UR,
GC growth lag 3

5.7 0.001398 20.87 0.003003 29.48 0.003810 46.17

Note: The last two models are (1) with spline terms for both variables and (2) with a spline
term on the first variable and linear term on the second variable. EDoF shows the total
effective degrees of freedom.

From top to bottom in the table, the models are referenced to as spline model 1, 2, 3 and 4. For ref-
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erence, ST Rate is short-term interest rate (3-month T-bill yield), GC is government consumption
and UR is unemployment rate.

4.3.1 Variables from linear selection

Let us take a closer look at spline model 1. Table 4.4 presents a summary of the cubic spline
model that achieved the lowest average RMSE on cross-validation, utilizing the same variable pool
selected during the linear regression model development phase. The combination of macrovariables
that yielded the lowest average RMSE was GDP growth lag 3 and unemployment rate lag 3.

Table 4.4: Summary of spline model 1.

Feature Smoothing parameter (λ) EDoF

GDP growth lag 3∗∗∗ 38.4 5.8
UR lag 3∗∗∗ 3.1 4.8

Durbin-Watson 0.65
Jarque-Bera p-value 0.85
GCV 0.0134

∗p < .10, ∗∗p < .05, ∗∗∗p < .01

Smoothing parameters were selected from grid search with a 2000 x 2 grid drawn from a uniform
distribution on [10−3, 103] using GCV as selection criteria.

Figure 4.3 illustrates the partial dependence plot for each macroeconomic variable included in
spline model 1, accompanied by 95% confidence intervals. The left plot shows a nearly quadratic
relationship between PD and GDP growth lag 3. One explanation for this shape is as follows:
Firstly, negative GDP growth often correlates with higher default rates, a common occurrence
during economic crises. Secondly, unusually high GDP growth may result from increased govern-
ment spending, also typically seen in crisis situations. This spending can temporarily inflate GDP
figures. However, there may be a delayed effect on the default rates, which remain high until the
impact of this spending is realized in the economy.
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Figure 4.3: Partial dependence plots for spline model 1. 95% confidence intervals in red.
λ1 = 38.4, λ2 = 3.1. Note the bump in right plot (UR ≈ 8), which may be due to
undersmoothing.

Figure 4.4 displays the predicted versus actual probability of default across the training and testing
periods for spline model 1. Note the spikes in the predictions in out-of-time period 2, probably
due to unseen values of the macroeconomic factors, i.e., values lying outside the intervals of the
independent variables the model was trained on. Note further that the limits on the y-axis changed
from Figure 4.1 due to these outliers.
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Figure 4.4: Actual versus observed PD for spline model 1 with the lowest average RMSE
from cross-validation. Trained on all data up until 2018 (before OOT 1). Y-axis omitted
and data masked for confidentiality reasons.

The QQ-plot and ACF plot for the residuals of spline model 1 are seen in Figure 4.5. The
residuals seem to follow a normal distribution since the quantiles in the sample follow the theoretical
quantiles very well. Furthermore, the residuals from spline Model 1 exhibit autocorrelation at
shorter lags compared to the linear model, possibly suggesting that it captures the data’s temporal
structure more effectively in the immediate term.
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(a) QQ-plot for the residuals of spline
model 1 with the lowest average RMSE
from cross-validation.
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(b) ACF plot for the residuals of spline
model 1 with the lowest average RMSE
from cross-validation, with 95% confi-
dence intervals in blue shading. Ob-
servations outside these intervals carry
significant autocorrelation.

Figure 4.5: Residual evaluation plots for spline model 1: (a) QQ-plot and (b) ACF plot.

4.3.2 Variables rejected from linear RESET test

Table 4.5 presents a summary of spline model 2, which is the model that achieved the lowest
RMSE and MAPE on out-of-sample set 1, incorporating variables that were not used in the
linear regression selection and was rejected in the linear RESET test, described in section 3.6.2.
The variables yielding the lowest average RMSE from CV are short-term interest rate lag 12
(differenced) together with government consumption growth lag 12.

Table 4.5: Summary of spline model 2.

Feature Smoothing parameter (λ) EDoF

ST Rate diff lag 12∗∗∗ 3.5 7.1
GC growth lag 12∗∗ 102.5 1.2

Durbin-Watson 0.28
Jarque-Bera p-value 0.57
GCV 0.0385

∗p < .10, ∗∗p < .05, ∗∗∗p < .01

The partial dependence plots for each macroeconomic variable included in spline model 2 is illus-
trated in Figure 4.6, accompanied by 95% confidence intervals.
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Figure 4.6: Partial dependence plots for spline model 2. 95% confidence intervals in red.
The y-axis represents the marginal effects. λ1 = 3.5, λ2 = 102.5.

Figure 4.7 displays the predicted versus actual probability of default across the training and testing
periods for spline model 2. The ”wiggly” pattern observed in the predicted PD is due to the nature
of the macroeconomic variables that are used in the model. As variables defined as relative and
absolute change, respectively, they inherently exhibit volatility, leading to difficulties in capturing
the overall trends of the observed PD.
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Figure 4.7: Actual versus observed PD for spline model 2 with the lowest average RMSE
from cross-validation. Trained on all data up until 2018 (before OOT 1). Y-axis omitted
and data masked for confidentiality reasons.

The QQ-plot and ACF plot for the residuals of spline model 2 are seen in Figure 4.8. The resid-
uals seem to follow a normal distribution since the quantiles in the sample follow the theoretical
quantiles very well. Further, similar to spline model 1, the residuals from spline model 2 exhibit au-
tocorrelation at shorter lags compared to the linear model, possibly suggesting that it captures the
data’s temporal structure more effectively in the immediate term. However, observe the non-zero
autocorrelation at lag 20, potentially indicative of non-stationary behaviour of the macroeconomic
variables underlying the model.
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(a) QQ-plot for the residuals of spline
model 2 with the lowest average RMSE
from cross-validation. Trained on all
data up until 2018 (start of OOT 1).
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(b) ACF plot for the residuals of spline
model 2 with the lowest average RMSE
from cross-validation, with 95% confi-
dence intervals in blue shading. Ob-
servations outside these intervals carry
significant autocorrelation.

Figure 4.8: Residual evaluation plots for spline model 2: (a) QQ-plot and (b) ACF plot.

4.3.3 Variables from best linear model

Below is a summary of spline model 3 and 4, which are the models using the same variables as the
linear model with the lowest RMSE. Model 3 has spline functions on both variables while model
4 contains a mix of linear and spline terms. Figure 4.9 depicts the actual versus predicted values
from spline model 3 and 4.
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(a) Spline model 3: Splines on both UR
and GC growth lag 3.
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(b) Spline model 4: Spline on UR and
linear term on GC growth lag 3.

Figure 4.9: Comparative predictions from spline models 3 and 4. Trained on all data up
until 2018 (before OOT 1). Y-axis omitted and data masked for confidentiality reasons.

The partial dependence plots is shown in Figure 4.10 below. Note that the spline term of GC
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growth lag 3 has such a large penalizing factor that the fit reduces to almost a linear effect, which
makes model 3 very similar to model 4 where a linear term was explicitly fit. The zero width of
the confidence interval stems from the sum to zero constraint presented in equation (3.24), exactly
determining where the straight line passes through zero.
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(a) Spline model 3: Splines on both UR
(λ1 = 1.7) and GC growth lag 3 (λ2 =
759).
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(b) Spline model 4: Spline on UR (λ1 =
80) and linear term on GC growth lag
3.

Figure 4.10: Partial dependence plots of spline models 3 and 4.

The residual analysis plots are seen in Figure 4.11. The ACF plots indicate that the mixed model
has slower decaying autocorrelation in the residuals, and the QQ plots indicate residuals that
follow a normal distribution. The autocorrelations tend towards zero with increasing lag lengths,
which is good.
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(a) QQ plot for spline model 3.
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(b) ACF plot for spline model 3.
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(c) QQ plot for spline model 4.
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(d) ACF plot for spline model 4.

Figure 4.11: QQ and ACF plots for the residuals of spline models 3 and 4.

4.4 XGBoost Models

Table 4.6 below summarises the accuracy metrics of the two XGBoost models. Note that the CV
RMSE value of the first model is lower than those of any of the linear and spline models.

Table 4.6: Summary of the XGBoost models.

Features
CV

RMSE
CV

MAPE
OOT 1
RMSE

OOT 1
MAPE

OOT 2
RMSE

OOT 2
MAPE

UR,
ST Rate diff lag 9

0.001364 18.33 0.002736 27.74 0.003103 37.19

UR,
GC growth lag 3

0.001540 22.02 0.003013 29.84 0.003292 39.01

Note: The first model uses the backward-selected variables, while the second
uses the variables from the best linear model.
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4.4.1 Variables from backwards selection

Table 4.7 below summarises the first XGBoost model. When comparing the Durbin-Watson statis-
tic to those of the other models, this XGBoost model exhibits the lowest level of autocorrelation
in the residuals. Additionally, the Jarque-Bera p-value indicates that the residuals follow a normal
distribution.

Table 4.7: Backwards XGBoost model hyperparameters and residual statistics.

Hyperparameter Value

Learning Rate 0.25
Max Depth 3
Number of Estimators 10
Gamma 0
Min Child Weight 3
Lambda (L2 Regularization) 1.5
Alpha (L1 Regularization) 0

Durbin-Watson 0.99
Jarque-Bera p-value 0.4

Figure 4.12 displays the predicted versus actual PD across the training and testing periods for the
XGBoost model with variables from backwards selection. The model captures the upward trend
of PD in OOT 1 more accurately than the linear and spline models. It also avoids predicting
excessively high values in OOT 2, as opposed to the spline models.
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Figure 4.12: Actual versus observed PD for XGBoost backwards selected model. Trained
on all data up until 2018 (before OOT 1). Y-axis omitted and data masked for confiden-
tiality reasons.

The residual analysis plots for the backward-selected XGBoost model are shown below. Figure
4.13a shows that the residuals follow a normal distribution well, except for two outliers, and Figure
4.13b indicates that the autocorrelation decays quickly, at approximately the same rate as in spline
model 1. These two outliers in the residuals are omitted when calculating the residual test statistics
in Table 4.7.
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Figure 4.13: Residual evaluation plots for XGBoost model with backwards selection of
variables: (a) QQ-plot and (b) ACF plot.

4.4.2 Variables from best linear model

Table 4.8 below summarises the second XGBoost model, using the same macroeconomic variables
as the best linear model.

Table 4.8: Hyperparameters and residual statistics for the XGBoost model with the same
variables as the best linear model.

Hyperparameter Value

Learning Rate 0.3
Max Depth 3
Number of Estimators 7
Gamma 0
Min Child Weight 1
Lambda (L2 Regularization) 1.5
Alpha (L1 Regularization) 0.01

Durbin-Watson 0.38
Jarque-Bera p-value 0.19

Figure 4.14 displays the predicted versus actual PD across the training and testing periods for the
XGBoost model with the same variables as the best linear model.
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Figure 4.14: Actual versus observed PD for XGBoost with same variables as the best linear
model. Trained on all data up until 2018 (before OOT 1). Y-axis omitted and data masked
for confidentiality reasons.

The residual analysis plots for the model are shown below. Figure 4.15a shows that the residuals
follow a normal distribution well, except for values above the first quantile, and Figure 4.15b
indicates autocorrelation decaying at a slower rate than for the backwards selected XGBoost model.
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Figure 4.15: Residual evaluation plots for XGBoost model with the same variables as the
best linear model: (a) QQ-plot and (b) ACF plot.

As the XGBoost model with backwards selection of variables performs best, it is selected for further
comparison with the other models.

4.5 Model Comparison

As previously mentioned, the purpose of this thesis is to assess whether spline models have superior
predictive accuracy over linear models, as well as how they perform relative to XGBoost. To assess
the generalization capabilities of the linear model versus the various spline models on unseen data,
this section includes a closer examination of the two out-of-time periods. It specifically evaluates
the accuracy of each model’s predictions against the observed default rates within these time
frames. Figure 4.16 shows the predicted versus observed default rates during OOT 1 for the
different models. During this period, there is a rise in the observed default rate that none of
the models seem to be able to capture fully. However, it can be seen that the XGBoost model
demonstrates the smallest errors during this period, indicating its superior performance.
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Figure 4.16: Predictive performance of all models on out-of-time period 1. Note the
horizontal line to use as a reference for comparison with plot of OOT 2. Y-axis omitted
and data masked for confidentiality reasons.

Figure 4.17 shows the predicted versus observed default rates during OOT 2 for the different mod-
els. A notable aspect is the spikes in the predictions from spline model 1, where unusually large
predictions likely result from the model encountering previously unseen values of the macroeco-
nomic variables. This underscores spline models’ sensitivity to unseen data. In contrast, XGBoost
demonstrates a more robust handling of these unseen data points, maintaining stable and more
accurate predictions. Moreover, note the different limits of the y-axes in the two figures.
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Figure 4.17: Predictive performance of all models on out-of-time period 2. Note the
horizontal line to use as a reference for comparison with plot of OOT 1. Y-axis omitted
and data masked for confidentiality reasons.
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Chapter 5

Analysis & Discussion

5.1 Interpretation of Results

For the convenience of the reader, here is a recap of the spline models discussed in the following
section.

Table 5.1: Descriptions of the spline models.

Description

Spline Model 1 Variables selected from the pool of significant variables
from linear single-factor significance test.

Spline Model 2 Variables rejected from the linear RESET test.

Spline Model 3 Variables from best linear model. Splines on both vari-
ables.

Spline Model 4 Variables from best linear model. Mix of linear and
spline terms.

5.1.1 Predictive accuracy

All spline models, with the exception of spline model 2, show a higher pseudo-R2 compared to the
linear model - indicating a better fit to the training data; however, they do not achieve a better
cross-validation RMSE, apart from spline model 4. Additionally, these models do not demonstrate
any large improvements in predictive accuracy for OOT periods 1 and 2. This suggests that the
spline models may have overfitted to the training data.

Although spline model 2 exhibits the lowest RMSE in out-of-time periods 1 and 2, an inspection
of the predicted values in Figure 4.16 reveals that its apparent superiority in RMSE in OOT 1 is
attributed to the model’s tendency to fluctuate around a higher mean value, rather than effectively
capturing underlying data trends. Additionally, the other models fail to predict the increasing PD
values observed in the period. The same reasoning applies to OOT 2 (seen in Figure 4.17), where
the superior predictive accuracy of spline model 2 appears to be more a result of chance rather
than it being a better model.
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Analysing the different models’ performance during periods of the Covid-19 pandemic (OOT 2),
only spline model 2 shows an improvement from the linear model in terms of RMSE and MAPE.
Spline models 1 and 3 yielded higher predictions compared to the linear model during the period,
aligning with expectations of rising default rates during the pandemic (although the observed
default rate decreased). This suggests that while the spline models did not enhance predictive
accuracy for OOT 2 in this study, they could potentially excel at forecasting extreme values in
future crises, particularly if trained on a larger dataset of similar scenarios, especially considering
the pandemic’s unique economic distortions due to stimulus measures. These results thus support
the statement by Hyndman and Athanasopoulos (2018, Chapter 5.8) that ”cubic splines usually
give a better fit to the data. However, forecasts of y become unreliable when x is outside the range
of the historical data”.

In summary, spline model 4 has the lowest RMSE from cross-validation on the in-time set, showing
a slight increased accuracy from the best linear model, and spline model 2 exhibits the lowest RMSE
and MAPE on both out-of-time periods. The performance of the spline models analysed in this
study thus seem to be similar, if not worse, than that of the linear models.

5.1.2 Non-linear dynamics and smoothing

The partial dependence plots, specifically the function estimated for GDP growth lag 3 in Figure
4.3, indicate that there might be a non-linear relationship between this macroeconomic variable and
PD. The function derived for the unemployment rate lag 3 appears to suggest a predominantly lin-
ear relationship, where the observed fluctuations may be due to insufficient amounts of data across
all values of the independent variable rather than due to inherent non-linearity in the underlying
relationship. Should the relationship between a macroeconomic factor and PD be linear, Figure
4.10a and 4.6 illustrate that the application of penalized least squares combined with the smoothing
parameter, determined through GCV, reduces the dimension of the spline to yield a linear function.

Furthermore, Figure 4.10 demonstrates that the spline terms are capable of capturing a nearly
linear yet dynamic response across different regions of the independent variable, such as the unem-
ployment rate in this case. To test this adaptability was a central objective of this study, given the
hypothesis that introducing such ”thresholds” where the correlations between a macroeconomic
variable and PD change could enhance predictive accuracy under turbulent conditions.

As Wahba and Wang (1995) describe, when the sample sizes are small, there is a probability that
the GCV estimator of the smoothing parameter λ will yield an extremely small value, resulting
in severe under-smoothing of the function f̂(xi). This issue was encountered in this study, as
seen in the low λ values and resulting functions depicted in Figures 4.3, 4.6, and 4.10a. It can
be questioned whether these are truly the optimal smoothing parameters, since the function fits
appear to be relatively ”wiggly”, potentially modeling noise rather than capturing an underlying
trend between the macroeconomic variable and PD. This issue could be mitigated by having a larger
sample of data, or by introducing a more robust estimator for the optimal smoothing parameter,
such as the restricted maximum likelihood (REML) estimator, as suggested by Wood (2017). The
REML estimator is less prone to over-fitting as its optimum tends to be more pronounced than
for GCV, and it is less likely to create phantom minima in the absence of genuine signals in the
data. Different smoothing estimators were not tested in this study due to lack of implementation
in the pyGAM package. Another mitigation to this issue would be to use a better estimator of the
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effective degrees of freedom expressed in Section 3.2.2 for a more accurate GCV score estimate.

5.1.3 Residual analysis

The diagnostics of the residuals reveal that while the models generate errors with a normal dis-
tribution (indicated by Jarque-Bera p-values larger than 5% and by the QQ-plots), there is sub-
stantial autocorrelation across various lag lengths for all models. The reason for this is most
likely the inherent autocorrelation in the target variable - being a 12-month PD at a monthly
frequency. However, based on the Durbin-Watson test statistics and the ACF plots, the spline
models demonstrate reduced autocorrelation in the residuals compared to the linear models. This
suggests that the spline models may be better at accounting for the underlying patterns in the data.

To address the time series dependency in the target variable and mitigate autocorrelation issues
apparent in all models, introducing an autoregressive term of order 1 (AR(1)) was considered.
This adjustment could potentially enhance the accuracy of one-step-ahead predictions. However,
it might also impair the performance of long-term forecasts, particularly if the model is intended
for use over extended periods, such as projecting 10 to 15 years ahead. Additionally, incorpo-
rating lagged values of the dependent variable in a regression model violates the non-stochastic
assumption of the independent variables, potentially resulting in biased coefficient estimates for
smaller datasets (Brooks, 2019). Therefore, it was ultimately decided not to include this term in
the models.

5.1.4 Final model selection

Considering the RMSE values, spline model 4 emerges as the preferable choice due to its superior
generalization abilities as suggested by the cross-validation in the in-time sample. This model seems
to strike an effective balance by integrating a spline term that captures the non-linear dynamics
of the unemployment rate, alongside a linear term for government consumption. One drawback is
that the model predicts excessively high values in out-of-time period 2, likely due to encountering
macroeconomic values in the test data that were not present in the training set combined with the
uncertain asymptotic behaviour of spline models. This issue could potentially be mitigated in the
future by expanding the training dataset to include a broader range of macroeconomic conditions
and extreme data points, thus enhancing the model’s robustness and accuracy in predicting under
diverse scenarios.

In discussing spline models versus linear models, an important consideration worth emphasizing
is the trade-off between predictive accuracy and model interpretability. Spline models may of-
fer enhanced accuracy; however, the clarity of linear models cannot be overlooked, especially in
environments such as banking, where interpretability is crucial due to stringent regulatory require-
ments. Evaluating whether the improved performance is substantial enough to justify transitioning
from a well-understood linear model to a more complex spline model is essential. In this study,
the improved cross-validation RMSE of around 0.003 percentage units of spline model 4 may not
be large enough to give up the best linear model.
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5.1.5 Comparison with XGBoost

The XGBoost model with variables selected through backward elimination, with its CV MAPE of
18.33% compared to 20.87% and 20.76% of the best spline and linear models respectively, shows
that it is more accurate and generalizes better than the other models for predicting PD. It also
yielded lower MAPE than all other models (except for one spline model) in out-of-time period 1,
indicating a better fit to unseen data. Furthermore, as seen in Figure 4.17, XGBoost avoids pre-
dicting excessively high values when encountering previously unseen data, demonstrating superior
robustness and generalization compared to the spline models. From the Durbin-Watson statistic,
it is closer to 2, indicating better handling of autocorrelation in the residuals. This demonstrates
that, although it is originally designed to handle extensive datasets and many variables, XGBoost
can work effectively also for smaller datasets and only two dependent variables if the hyperparam-
eters are tuned correctly.

This result shows that XGBoost can find complex non-linear dependencies between the macroe-
conomic variables and PD, offering an even more flexible modeling approach than spline mod-
els. However, the greatly reduced interpretability of this machine learning model is a significant
downside. While spline models provide a balance between capturing non-linear relationships and
maintaining some level of interpretability, XGBoost’s complex nature makes it challenging to ex-
plain the underlying decision process to stakeholders, especially in highly regulated industries like
banking where model transparency is crucial. Therefore, despite XGBoost’s superior performance
in terms of predictive accuracy, the choice of model should consider the trade-off between accuracy
and interpretability based on the specific application requirements.

Additionally, the implementation and use of XGBoost were simpler than fitting a good spline
model, particularly when dealing with numerous variables. XGBoost does not require careful
checking of partial dependence plots for all macroeconomic variables to ensure the smoothing pa-
rameters are correctly set. This makes XGBoost a more practical choice for situations with a high
number of independent variables.

In conclusion, the linear models were the least accurate, the spline models showed intermediate
performance, and XGBoost was the most accurate in predicting PD. This confirms the hypothesis
that spline models can serve as a good intermediary between the highly interpretable but biased
linear models and the accurate yet less interpretable machine learning ”black box” models.

5.2 Limitations of the Study

One aspect that can be explored further in this study is the quality of the data. As mentioned
in section 2, many of the originally quarterly observed macroeconomic variables were interpolated
to acquire a monthly frequency on all time series. Consequently, much of the data for the inde-
pendent variables consists of interpolated rather than directly observed values. This interpolation
might impact both the reliability and quality of the data, potentially affecting the robustness of the
models trained and tested on it. As described in section 3.1.1, there are more accurate imputation
methods than simple linear interpolation that could be used to mitigate these issues. Another
approach would be to simply build the models on quarterly frequency to avoid having to impute.
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A further limitation arises from the application of the GCV method used to find the optimal
smoothing parameter, which is primarily designed for non-time-series data and assumes indepen-
dent and identically distributed observations of the target variable. In this study, the observed
default rate clearly does not fulfill these assumptions as the observations have autocorrelation.
This discrepancy may undermine the suitability of GCV, potentially affecting its effectiveness and
the validity of estimating the optimal smoothing parameter.

Another challenge in this study is associated with the target variable, namely the default rate. As
it is computed based on performing customers that vary each month, the variations in default rate
could be attributed to changes within Nordea’s portfolio or the departure of customers for rea-
sons unrelated to their credit performance, thereby altering the number of performing customers.
This variability introduces uncertainties in the representativeness of this calculated default rate
as a ”proxy” for actual PD. Ideally, analysing a consistent portfolio or the same set of customers
over a period would provide a clearer indication that the observed changes in default rate reflect
actual probabilities of default, rather than fluctuations in customer numbers. Additionally, since
the PD is calculated on a 12-month basis but reported monthly, there is inherent autocorrelation
within the target variable, complicating the modeling process without the use of specific time-
series models. The default rate series also indicated non-stationarity from the joint ADF & KPSS
test. Despite these complexities, the decision was made to maintain this frequency of reporting for
the PD without differencing, to preserve the long-term predictive capabilities and relevance of the
models. Another drawback of using monthly data is its high volatility, with the number of defaults
varying significantly from month to month, which could potentially be mitigated by aggregating
the data quarterly.

Finally, another limitation of this study stems from the restricted time period covered by the data,
which includes only a few distinct crises. Unfortunately, the dataset does not encompass enough
diverse crisis scenarios to thoroughly train the models on such data. The implications of this are
seen in the spline models’ predictions in the out-of-time periods. However, with an extension of
the dataset to include additional years or more varied crisis data in the future (including wider
value ranges of the independent variables), one could get a better understanding of how the spline
models’ performance might yield an improvement over linear models.

It is also important to acknowledge the inherent difficulty in making predictions during a crisis.
Such periods involve unexpected developments and deviations from normal patterns, making ac-
curate modeling and forecasting challenging. Crises are defined by their anomalous nature and
the breakdown of established relationships. Therefore, while models can be trained to account for
past emergencies, their ability to predict future ones remains limited due to the possibly unique
and unforeseen circumstances that define each new crisis.
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Chapter 6

Conclusion

6.1 Answering the Research Questions

This thesis aimed to evaluate the efficacy of spline regression compared to traditional linear models
and ”black box” ML models such as XGBoost in predicting the probability of default under varying
macroeconomic conditions. The central research questions were:

1. Can spline regression models provide a more accurate prediction of PD than linear models,
reflecting non-linear dynamics between macroeconomic variables and PD?

2. How do spline models compare to XGBoost in terms of predictive accuracy?

The analysis lend support to the expectation that spline models, particularly spline model 4
(which consists of a mix of linear and spline terms), displayed a slightly improved accuracy in
cross-validation on the in-time dataset compared to linear models. However, this did not trans-
late into superior performance during out-of-time periods, suggesting potential overfitting to the
training data. The spline models’ inability to consistently outperform linear models suggests limi-
tations in their current configuration, particularly in handling extreme values outside the range of
the training data.

Overall, while spline models hold promise for modeling non-linear relationships, their application
in PD prediction requires careful consideration of their tendency to overfit and their sensitivity to
the range of input data.

Moreover, the utility of spline models extends beyond predictive accuracy. These models can
provide critical insights into the relationships between macroeconomic variables and PD. Spline
models can serve as a tool for preliminary analyses to reveal partial dependencies and unusual
patterns in the data. By visualizing these relationships, practitioners can determine whether the
interaction between a macroeconomic variable and PD exhibits non-linear characteristics before
committing to more restrictive model forms like linear regression.

In comparison to XGBoost, the results demonstrated that XGBoost outperformed both linear and
spline models in predictive accuracy. With an average MAPE from cross-validation of 18.33%
(compared to 20.76% and 20.87% for the optimal linear and spline model respectively), XGBoost
showed superior accuracy and generalization capabilities. It avoided excessively high predictions
on unseen data, highlighting its robust handling of diverse macroeconomic conditions. However,
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the trade-off is the reduced interpretability of the model, which can be a drawback in industries
requiring high transparency.

In conclusion, while spline models were slightly more accurate than linear models, they did not
achieve the same level of predictive performance as XGBoost. This demonstrates that spline models
can serve as a valuable intermediary, balancing interpretability and accuracy between traditional
linear models and more complex machine learning approaches like XGBoost.

6.2 Future Research

For future research, it would be interesting to analyse the stability of spline models in response
to new data. Similarly to how one tests the stability of coefficient estimates of a linear model, it
would be interesting to analyse how the smooth fits of the spline models evolve as additional data
points are introduced. Such an analysis was not included in this thesis due to time constraints,
but it is critical for understanding the robustness of these models over time.

Future research could also investigate the impact of using different spline basis functions on model
fit and performance. This study utilized penalized B-splines; however, exploring other bases such
as the ”thin plate regression splines” as used by B. Zou et al. (2016), which do not require selecting
knot locations, could enhance model objectivity and robustness. Thin plate regression splines is
based on radial basis functions (RBF), as explained by Naumann et al. (2020), which inherently
accommodate multivariate inputs, making them particularly suitable for modeling complex, non-
linear interactions between multiple risk factors in credit risk analysis. As stated earlier, RBFs do
not require the selection of knot locations, thereby increasing model robustness and objectivity by
eliminating a source of potential bias.

Lastly, investigating if different estimators for the smoothing parameter λ, such as the REML
method, could yield improvements over the GCV method for the endeavors of this study would be
of interest.
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Appendix

Evolution of macroeconomic variables in data period

Below the evolution of all macroeconomic variables that were included in the final models selected
is presented, over the entire training and test sets used.
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Figure 1: Trajectory of the unemployment rate throughout the time period under study.
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Figure 2: Trajectory of the government consumption growth throughout the time period
under study.
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Figure 3: Trajectory of the GDP growth throughout the time period under study.
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Figure 4: Trajectory of the differenced short-term interest rate throughout the time period
under study.
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