
With a Little Help from My
Friends – A Comparative
Study of Decentralized Deep
Learning Strategies

Tom Hagander, Eric Ihre-Thomason

Master’s thesis
2024:E28

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

With a Little Help from My Friends
– A Comparative Study of Decentralized Deep

Learning Strategies

Eric Ihre-Thomason & Tom Hagander

Abstract

This thesis investigates various communication strategies and similarity metrics within
decentralized deep learning (DL). Decentralized learning allows organizations or users to
collaborate on improving personalized deep neural networks while maintaining the pri-
vacy of their datasets. When the distribution of data varies across participating users,
this task becomes more challenging, as not all collaboration is beneficial. This under-
scores the need for effective algorithms and similarity metrics that can identify good
collaborators without sharing private data.

Specifically, this study considers two main communication strategies: Decentralized Adap-
tive Clustering (DAC) and Personalized Adaptive Neighbor Matching (PANM). It utilizes
diverse similarity metrics such as inverse training loss, cosine similarity of weights and gra-
dients, and the inverse L2 distance between weights. Different model merging protocols
are also examined to provide a comprehensive analysis of DL strategies. Our research
provides insights into the performance of these metrics and communication strategies,
highlighting their potential for effective collaboration in DL and contributing to the de-
velopment of robust DL methods.

Keywords— Decentralized Deep Learning, Privacy-Preserving Machine Learning, Collabo-
rative Learning, Federated Learning, Similarity Metrics, Non-IID Data, Model Averaging

i

ii

Acknowledgments

We would like to sincerely thank our supervisors Edvin Listo Zec, Sarunas Girdzijauskas, Erik
Tegler and Niels Christian Overgaard for their mentorship. We greatly appreciate their valuable
insights that kept this project on track, and how they valued and listened to what we had to say.

We would also like to thank everyone in the Deep Learning Research Group at RISE for a
fun and stimulating work environment, and of course for the table tennis matches.

Many thanks also go out to Karro and Olle for making us feel at home in Göteborg, all the
other master’s thesis students at RISE for the lessons in geography and Per Hagander for being
an inspiration throughout our studies.

”Oh, I get by with a little help from my friends”

— Ringo Starr

iii

Contents

1 Introduction 1

1.1 Research Questions . 2

1.2 Aims . 2

1.3 Problem Formulation . 2

2 Mathematical Formulation 5

2.1 Supervised Learning Using Neural Networks . 5

2.2 Federated Learning . 6

2.3 Decentralized Learning . 7

2.4 Communication Strategies . 8

2.4.1 Baselines: Random, Oracle, and No Communication 8

2.4.2 Decentralized Adaptive Clustering (DAC) 9

2.4.3 Personalized Adaptive Neighbor Matching (PANM) 11

2.5 Similarity Metrics . 11

2.5.1 Inverse Loss . 11

2.5.2 Cosine Similarity of Gradients . 12

2.5.3 Cosine Similarity of Weights . 12

2.5.4 Inverse L2-Distance Between Weights . 13

2.6 Datasets, Shifts and Generating Distributions . 13

3 Experimental Setup 14

3.1 Experiment Settings - Datasets, Shifts, and Network Architectures 14

3.1.1 CIFAR-10 Animal/Vehicle Label Shift . 15

3.1.2 CIFAR-10 5 Cluster Label Shift . 15

3.1.3 Synthetic Problem . 15

3.1.4 Fashion-MNIST Covariate Shift . 16

3.1.5 Fashion-MNIST and MNIST Combined 16

3.1.6 CIFAR-100 Label Shift . 16

4 Experimental Results 18

4.1 Exploring Label Shift with the CIFAR-10 Dataset 18

4.2 Cluster Death . 24

4.3 Widening the Gap Between Oracle and Random with More Clusters 25

4.4 A More Adversarial Setting: A Synthetic Problem 27

4.5 Applying DAC to a Covariate Shift-Setting . 31

4.6 Fashion-MNIST and MNIST Combined . 33

4.7 Pretrained Models on CIFAR-100 . 35

iv

5 Discussion 39
5.1 Main Findings . 39
5.2 Impact and Future Work . 39
5.3 Limitations . 40
5.4 Conclusion . 41

Appendices 43

A Experimental Setup and Hyperparameter Tuning 44
A.1 Models . 44

A.1.1 CIFAR-10 Experiments . 44
A.1.2 Synthetic Problem . 44
A.1.3 Fashion-MNIST/MNIST . 45
A.1.4 CIFAR-100 Experiments . 45

A.2 Shifts . 45
A.2.1 CIFAR-10 Animal/Vehicle Label Shift . 45
A.2.2 CIFAR-100 Label Shift . 45

A.3 τ -tuning . 46
A.4 Summary of Hyperparameter Settings . 51

B Personalized Adaptive Neighbor Matching (PANM) 53

v

Chapter 1

Introduction

In recent years, machine learning has emerged as a leading research frontier in advancing tech-
nology and solving complex problems. Machine learning models have significantly enhanced
efficiency and predictive accuracy in industries ranging from healthcare to finance, but are also
impacting the daily life of most people through tools like chatbots and more personalized user
experiences. Training these models requires vast amounts of data, which are collected from
different sources, including mobile devices, business systems, and the internet. As the develop-
ment of machine learning technologies progresses and the demand for higher quality and larger
datasets increases, concerns about user and data privacy intensify. This highlights the necessity
for machine learning methodologies that preserve data privacy.

Today national and international regulations such as the Data Protection Act [9] and GDPR [1],
along with increasing user awareness, also push the issue of preserving user data privacy. Ad-
ditionally, corporations and organizations often possess proprietary data that cannot be shared
externally, further motivating the development of privacy-preserving frameworks. In healthcare,
the ability to ensure data privacy is especially critical. Hospitals handle sensitive patient infor-
mation that requires the highest levels of confidentiality and security. Implementing machine
learning methods that preserve data privacy in such settings would circumvent concerns about
data security while still tapping into the potential of machine learning to improve healthcare
delivery and treatment outcomes.

Federated learning [6] has emerged as the most widely adopted framework for distributed deep
learning, facilitating model training across multiple clients with private datasets. Federated
learning consists of a global model that is trained locally on private datasets, before consoli-
dating that information on a central server. This creates a model that is more capable than a
model trained on any of the private datasets. While effective, federated learning’s reliance on a
central server is a point of vulnerability and can become a bottleneck as the client base expands.
These limitations have sparked interest in fully decentralized systems, known as decentralized
learning, where clients interact in a peer-to-peer network, eliminating the need for a central
server. Decentralized learning offers improved scalability and inherent robustness, as it is less
vulnerable to single-point failures or malicious attacks.

Decentralized learning is similar to federated learning in that it enables model training across
multiple clients with private datasets. The key difference is that instead of using a central server
that creates a global model the clients themselves create local models that communicate with
each other without sharing their data. These models are specialized to their local datasets while
still gaining insights from other devices in the network. The computational cost of training is
distributed, facilitating improved learning by clients that do not necessarily have access to vast

1 Introduction

Eric Ihre-Thomason & Tom Hagander

computational resources. By enabling collaborative model training without a centralized data
pool, decentralized learning frameworks ensure that no single client (entity) holds extensive
datasets. Instead, multiple stakeholders, such as businesses and healthcare providers, can se-
curely contribute to and benefit from shared insights while maintaining strict compliance with
privacy laws. This method protects sensitive data and fosters a more robust and inclusive data
ecosystem.

Despite the many upsides of decentralized learning, it is a fairly new area of research and is not
yet implemented in any real-world applications. It is unclear which communication strategies
are most suitable for various problem settings, and which novel challenges and problems can
arise when a machine learning problem is solved in a decentralized setting. To pave the way
for decentralized learning to become a valuable tool in applications of machine learning, we
investigate the following research questions.

1.1 Research Questions

• How well do different communication strategies solve the local objectives of each client?

• How well do different similarity metrics perform compared to each other, and how does
the problem setting influence their performance?

• What problems can arise when solving a set of local objectives in a decentralized setting,
and how can these be mitigated?

1.2 Aims

In this thesis, various decentralized learning methodologies are applied across different prob-
lems and datasets. The aim is to provide a nuanced and scientific evaluation of decentralized
learning’s performance on diverse tasks, while also offering insights into the inner workings of
these methods. To achieve this, we implement state-of-the-art methods and algorithms along
with novel variations and relevant extensions of these. We characterize performance of these
methodologies by considering performance on each local task, as well as the volume of data
that has to be transmitted in the network of clients and the computational complexity of the
communication strategies implementing them.

1.3 Problem Formulation

We investigate the setting where data is distributed in relatively small volumes over several
devices or servers, each of which has the goal of training some model on that data. To sim-
ulate the skewed and unbalanced nature of data distributed across a multitude of clients in
real-world scenarios, we implement several different datasets and distribute these unevenly and
in low volumes between clients. We refer to the devices or servers as clients, the data they have
locally as their local dataset, and their model as their local model. Each client aims to produce
a model which performs a given task well on the local dataset. In this work, we focus on image

Introduction 2

A Comparative Study of Decentralized Deep Learning Strategies

classification and regression as the given tasks. The local dataset of each client is too small to
solve the given task well, creating the need to exchange information with other clients. Each
client wishes to keep their local datasets private, meaning only model parameters and data such
as model performance may be communicated between clients.

Previous works have employed federated learning to solve this problem, which creates a global
model that aims to solve the tasks of each client [6]. Broadly, federated learning consists of
training the model locally on a set of clients in parallel, which yields a set of new models. These
models are then sent back to a central server, where the weights of each model are averaged
(weighted by the size of the local dataset they were trained on) to produce a new global model.
This process is then repeated several times, which finally yields a model trained on the local
data of each client (an overview of a federated learning approach is shown in Figure 1.1b). This
algorithm is described in greater detail in Section 2.2. This approach works well to increase the
performance on the given tasks, compared to training a model on solely the local dataset, if the
data is relatively similar between clients, but not when the data distribution differs too much
between clients [11]. If the local datasets of clients are generated by very different underlying
probability distributions, the weights of the models diverge too much during the local training
step and averaging the weights of those models yields a global model that can perform worse
on each local dataset than if the models were trained only on the local data.

To address this, a decentralized approach can be used, which is referred to as decentralized
learning. With decentralized learning, clients communicate their local models directly with
each other, which allows them to choose which other clients are worth averaging models with
(an overview of a decentralized learning approach is shown in Figure 1.1c). This also has several
added benefits compared to federated learning. Each client now has a local model dedicated
to solving their specific task, as opposed to a global model which needs to generalize to all
tasks. Also, the need for a central server overseeing communication between clients is elimi-
nated, further improving the privacy of a client’s local data. However, the problem becomes
more complex, as each client needs a communication strategy to determine which other clients
they should communicate with. A client therefore needs a way to compare its dataset to that
of other clients without having access to other datasets, which we refer to as a similarity metric.

In this study, we explore two different communication strategies from previous works called De-
centralized Adaptive Clustering (DAC) [10] and Personalized Adaptive Neighbor Matching (PANM)
[5]. For each client, DAC operates by measuring and estimating a client’s similarity to other
clients during communication, thereby creating a distribution of similarities among other clients.
This distribution of similarities is then transformed into a probability distribution over all other
clients, from which a client samples which clients to merge weights with that round. Since
the client receives other clients’ models in this step, that information is used to update the
similarities of those clients. PANM operates similarly but divides the learning process into two
stages. The first stage consists of random communication to collect information on other clients
in the network. The second stage uses the information gained in the first stage to classify other
clients into either ”beneficial to communicate with” or ”not beneficial to communicate with”
while continuing to collect information. Both these communication strategies are described in
greater detail in Section 2.4.

3 Introduction

Eric Ihre-Thomason & Tom Hagander

Each of these communication strategies uses a similarity metric to determine the similarity
of local datasets between clients. Since the data is private, direct comparisons between the
datasets cannot be employed. Instead, the comparisons researched in this study are based on
the models of other clients, which are a representation of a client’s local dataset but are still
considered to be privacy-preserving enough to share. The four similarity metrics explored in
this work are:

1. Inverse training loss

2. Inverse L2 distance of weights

3. Cosine similarity of gradients

4. Cosine similarity of weights

The inverse training loss metric determines the similarity to another client by taking the inverse
of the loss produced by the other client’s local model on a client’s local data. The inverse L2

distance and cosine similarity of weights metrics determine similarity by taking the L2 distance
between the weights of two models and the cosine of the angle between the weights of two
models, respectively. The cosine similarity of gradients metric is based on the similarity score of
the cosine of the angle between the most recent training gradient of the two models. Again, these
similarity metrics will be covered in greater detail in Section 2.5. In Figure 1.1 a summary of
how traditional machine learning, federated learning and decentralized learning works is shown.

(a) Standard training of ML
models

(b) Federated approach to
training.

(c) Decentralized approach to
training.

Figure 1.1: Visualizations of how ML models are trained traditionally, in federated learn-
ing, and in decentralized learning.

Introduction 4

Chapter 2

Mathematical Formulation

2.1 Supervised Learning Using Neural Networks

Supervised learning is a type of machine learning where the goal is to learn a function ŷ = F (x)
from input-output pairs (x, y) in order to predict the output y as accurately as possible. Ideally,
we aim to do this by minimizing the loss, L(w), over the distribution P(x, y) which generates
the input-output pairs (x, y). However, this distribution is usually unobservable, and we instead
estimate F by minimizing the loss on a training set Dtrain = {(x1, y1); (x2, y2); . . . }, which is
assumed to be sampled from P(x, y). An effective way of achieving this for nonlinear functions
is through neural networks.

A neural network is a parameterized function composed of parameters, or weights, organized
in layers, where each layer progressively refines input data into meaningful output. Neural net-
works are versatile and can be adapted to many types of inputs x and outputs y. For example,
the input data x could be an image, for which the output y could be a classification of that
image. A neural network with d weights, with weights denoted w, produces output ŷ given an
input x, which can be written as

ŷ = F (x;w) (2.1)

This output ŷ can be compared to the true label y of the input x, to produce a loss. The
objective is to find weights that minimize the loss of the prediction ŷ on all examples (x, y).
This can be formulated as the optimization problem

min
w∈Rd

L(w) where L(w)
def
=

1

n

n∑
i=1

ℓ(xi, yi;w), (2.2)

where ℓ(xi, yi;w) is the loss of the prediction on example (xi, yi). In this study, we mostly have
multiclass classification problems, for which the Cross-Entropy loss,

ℓ(xi, yi;w) = −
C∑
c=1

δ(yi, c) log(ŷi,c) (2.3)

is suitable. Here, C is the number of classes to classify between, δ(yi, c) is equal to one if (xi, yi)
belongs to class c and zero otherwise, and ŷi,c is the predicted probability that xi belongs to
class c. This loss is minimized if the model with complete certainty correctly predicts the class
of each example in the dataset.

We also use the Mean Squared Error (MSE) Loss for regression tasks. In such tasks, yi can

5 Mathematical Formulation

Eric Ihre-Thomason & Tom Hagander

take on values in a continuous interval, which means a different approach than Cross-Entropy
is necessary. The MSE loss can be formulated as

ℓ(xi, yi;w) = (yi − ŷi)
2, (2.4)

where similarly ŷi is the predicted label of the model.

To solve the optimization problem in (2.2), most successful applications of deep learning use
various variants of Stochastic Gradient Descent (SGD). SGD typically involves iterating over
random subsets of data called batches to estimate the gradient of the objective function with
respect to the weights, denoted by ∇wf(w). One iteration over the complete dataset is called
an epoch. The estimated gradient is used to update the weights in the direction that potentially
lowers the loss. The update formula can be expressed as

wt+1 = wt − η∇wf(w
t), (2.5)

with η being the learning rate, which can be tuned for each specific problem. This update rule
has many more advanced variations, but this serves as a simple example of the concept of SGD.

In the setting of this work, the data is distributed over a set of clients in a network. The set of
all clients is denoted as S, and the local dataset of a client i is denoted as Di = {(xn, yn)}Ni

n=1,
where Ni is the number of data points in Di. Di is sampled from a generating probability
distribution Pi(x, y), which may differ between clients. Because all data is not available to any
model, the traditional approach of repeatedly iterating over subsets of the data to optimize the
weights using SGD is impossible. One could get close to the traditional approach by training a
model on a client, sending that model to another client and training it there, and repeating this
for many rounds for all clients in S. However, this becomes prohibitively expensive in terms of
communication as the number of clients in the network becomes large, and does not allow for
each client to have a model that is specialized to their specific optimization problem.

2.2 Federated Learning

A method that has previously been used to preserve data privacy is federated learning which
aims to make use of all the data of all the clients while keeping the communication costs low [6].
Federated learning consists of a central server that has a model w, in addition to the network
of clients. In each round of training t, the server sends out the model wt to a random subset
of clients St which are indexed by k, which train the model locally to produce a set of new
models wt+1

k . The local training for a client i consists of performing SGD to optimize the local
objective

min
w∈Rd

fi(w) where fi(w)
def
=

1

n

∑
(x,y)∼Pi

ℓ(x, y;w). (2.6)

The models produced from this are then sent back to the central server, where they are averaged,
weighted by the sizes of their local datasets, producing a new global model. We call this
averaging FedAvg, and it can be written as

wt+1 =
∑
k∈St

αkw
t+1
k where αk =

Nk

N
and N =

∑
k∈St

Nk, (2.7)

Mathematical Formulation 6

A Comparative Study of Decentralized Deep Learning Strategies

where Nk is the number of data points of client k. This process is repeated until training is
completed. There are other ways of defining how the averaging is weighted through different
choices αk, another way is described in Equation (2.12). The federated learning algorithm is
described in Algorithm 1.

Algorithm 1 Federated Learning m is the number of clients sampled in each round,
B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:
initialize w0

for each round t = 1, 2, . . . do
St ← (random set of m clients)
for each client k ∈ St in parallel do

wt+1
k ← ClientUpdate(k, wt)

N ←
∑

k∈St
Nk

wt+1 ←
∑

k∈St

Nk

N
wt+1

k ▷ Model averaging by FedAvg

procedure ClientUpdate(k, w): ▷ Run on client k
B ← (split Dk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b) ▷ η is the learning rate

return w to server

The local optimization problem can be formulated as minimizing the loss based on the gener-
ating distribution Pi(x, y) for each client i. If the data distributions Pi(x, y) differ significantly
among clients, the weights sent to the server will vary correspondingly, and FedAvg may yield a
global model that performs poorly on many if not all local optimization tasks. This is illustrated
in Figure 2.1 This implies that the effectiveness of federated learning might decrease when data
is not independent and identically distributed (IID) across clients. One study indicates that the
accuracy of a model trained with federated learning could decrease by up to 55% when clients’
data is non-IID [11]. Conversely, if the data is IID across clients, then EPi[fi(w)] = EPj [fj(w)]
for all client pairs (i, j), indicating that each local objective would be effectively the same.

2.3 Decentralized Learning

The concept of federated learning can be expanded into a decentralized setting, which eliminates
the need for a central server to coordinate the learning process. In this scenario, each client i
maintains a local model wi, aimed at solving their local optimization problem:

min
wi∈Rd

fi(wi) where fi(wi)
def
=

1

n

∑
(x,y)∼Pi

ℓ(x, y;wi). (2.8)

7 Mathematical Formulation

Eric Ihre-Thomason & Tom Hagander

Figure 2.1: An example of two clients i and j training on local data with the model that
is obtained through FedAvg of the clients in IID and non-IID settings. In the non-IID
setting, weights diverge more significantly, meaning the averaged model is further from
the optimum for the local objectives.

Clients independently train their models on their respective local datasets. Subsequently, they
receive local models from clients from a subset of S, averaging these models with their own us-
ing the FedAvg algorithm. This process is repeated for x communication rounds until training
concludes. Each client autonomously determines which other clients to interact with through
a defined communication strategy. We describe the process of obtaining a model from another
client as communicating with that client. By facilitating communication between clients with
similar data distributions, the challenges associated with non-IID local datasets can be mit-
igated. This allows a client to tailor its model more closely to its local dataset while still
benefiting from the broader data diversity within the network. A key difference between decen-
tralized learning and federated learning is that for federated learning there is one global model
and for decentralized learning each client has their own local model.

2.4 Communication Strategies

The goal of a communication strategy is to find clients with similar local data distributions and
communicate with these clients more frequently. Each communication strategy has a hyperpa-
rameter nsampled which is how many other clients a client communicates with each communica-
tion round.

2.4.1 Baselines: Random, Oracle, and No Communication

In this study, we create non-IID data by dividing clients into several clusters of clients, where
all clients in a cluster have data from the same generating distribution Pi(x, y) which differs
from the generating distributions of other clusters. To analyze how well a decentralized com-
munication strategy works we use three different baselines strategies to compare with.

The first baseline is the simplest communication strategy which is to pick clients to communicate
with at random. This serves as a floor for all of our experiments; if a communication strategy

Mathematical Formulation 8

A Comparative Study of Decentralized Deep Learning Strategies

does not outperform random communication it is not an effective strategy. Another baseline
we use to determine how well communication strategies perform is oracle communication where
each client is aware of which cluster it belongs to, and therefore only communicates within that
cluster. Theoretically, it is possible for a client using another communication strategy to out-
perform oracle if it is beneficial to communicate outside one’s cluster, but it serves as a baseline
for what a good communication strategy is. A client could benefit from communicating outside
the cluster it belongs to if other clusters are very similar or if its cluster is too small. Our third
baseline is no communication, which is when a client only trains on its local dataset without
interacting with the network.

2.4.2 Decentralized Adaptive Clustering (DAC)

DAC is a communication strategy that takes a similarity metric and forms a set of measured and
estimated similarities to other clients [10]. These similarities are used as a basis for choosing
which other clients to communicate with. As more and more communication rounds passes,
new measurements are collected and better estimates are formed, allowing clients to make more
informed decisions on which other clients to communicate with.

For client i, DAC starts the first round of communication by communicating randomly in the
network (performing FedAvg with these randomly selected clients). Similarities to these clients
are measured and stored locally in client i in a key-value map we call si. Each client k that
was communicated with, in addition to sending their local models to client i, also shares their
own similarities sk, and client i forms the temporary set of tuples (client, similarity) stwostep,
which is a concatenation of all sk. If stwostep contains information on clients not in si, si is
updated with the sampled clients’ information on those clients. If there are multiple two-step
connections to a client, say client m, meaning there multiple tuples in stwostep that contain
client m, si is updated with the estimate of the client k that has the highest similarity to client
i. An example of this is illustrated in Figure 2.2.

i

k1 k2

m1 m2

si(k1) = 1 si(k2) = 10

sk1(m1) = 7 sk2(m1) = 2

sk2(m1) = 4

Figure 2.2: An example of two-step similarity estimation in DAC. Here, clients k1 and k2
are sampled by client i. Client i measures its similarity to these, but does not have any
information on m1 and m2, while k1 and k2 do. Since the path i→ k2 → m2 is the only
path from i to m2, client i will set si(m2) = sk2(m2) = 4. From i to m1 there are two
paths, and since si(k2) = 10 > 1 = si(k1), client i will set si(m2) = sk2(m2) = 2. This
estimation of similarities allows a client to quickly gain an understanding of its similarities
to other clients in the network.

9 Mathematical Formulation

Eric Ihre-Thomason & Tom Hagander

Now that client i has an updated set of similarities si, these are used to create priors pi for all
clients in S. If S is indexed by j, pi(j) is assigned as follows:

p̂i(j) =

{
exp(si(j) · τ) if j ∈ si,

0 otherwise.
(2.9)

Here, τ is a temperature hyperparameter, defined as the inverse of what a temperature is in
typical other literature, but referred to as ’temperature’ for consistency in this study. pi is then
created as a normalized version of p̂i to reflect that it is a probability distribution with

pi =
p̂i∑|S|

j=1 p̂i(j)
. (2.10)

This is essentially a softmax function on all existing values in si where pi(i) is always zero be-
cause a client cannot sample itself. Our implementation of this softmax function differs slightly
from this definition. To avoid numerical instability, we subtract the lowest value of si(j) · τ
from all such values before performing the exponential. Since the softmax function is invariant
to constant shifts (softmax(x) = softmax(x+ c)), this is equivalent to the definition above but
avoids p̂i taking values that are too large for the computer to handle. Also, we have encountered
the situation where pi becomes a vector of zeros with a single one, which can occur for large
values of τ . This becomes a problem when pi is used to sample more than one new client. To
mitigate this, we add a small constant ϵ = 10−6 to each element in pi and re-normalize. The
priors pi are used in the next round of communication to sample new clients to communicate
with. Before each round of communication and after the last one, each client trains its model
locally.

In this study, we also introduce a variation called DAC with Min-Max scaling, which is the
same communication strategy as DAC, except for re-scaling the similarities si of a client i to the
interval [0, 1] before the softmax function is applied to produce pi. This adjustment causes the
optimal value of the hyperparameter τ to be more consistent across different similarity metrics,
which can give similarities in different ranges of R. Also, we have seen that the distribution of
similarities si(j) can differ significantly between early and later rounds of communication. DAC
with Min-Max scaling can allow for a single value of τ to be more optimal during all rounds
of communication. Other work has addressed this with other variations of DAC, such as DAC-var
[10].

Averaging model parameters based on similarity (FedSim)

We also introduce FedSim, a variation of FedAvg. While FedAvg averages the weight of models
based on the size of the local datasets they were trained on, FedSim instead weights the averaging
by the similarity of the local model to the other models in the average. The local model is given
a weighting equal to the maximum of the weightings of the other sampled models. FedSim of

Mathematical Formulation 10

A Comparative Study of Decentralized Deep Learning Strategies

client i can be expressed as

wt+1
i = α0w

t
i +

∑
k∈St

αkw
t
k (2.11)

where αk =

N−1 ·max
l∈St

pi(l) if k = 0,

N−1 · pi(k) otherwise
(2.12)

and N = max
k∈St

pi(k) +
∑
k∈St

pi(k). (2.13)

Here St is the set of sampled clients, indexed by k (and pi(k) is the probability that client i
samples client k). The idea of FedSim is to be more effective in adversarial settings, where
merging model weights with the wrong model can be very disadvantageous. If a client sam-
ples another client that it has a low similarity with, which can happen in the early rounds of
communication when a client has little information about the network, FedSim ensures that
the sampled model has a low influence on the weights of the local model. Since the baseline
communication methods do not have similarities or priors, FedSim cannot be applied to these.
A communication strategy using FedSim can still be compared to the baselines.

2.4.3 Personalized Adaptive Neighbor Matching (PANM)

Another communication strategy is PANM, which stands for Personalized Adaptive Neighbor
Matching [5]. PANM is divided into two phases and the first phases is the same as the algorithm as
the PENS (Performance-Based Neighbor Selection) algorithm [7]. Then after T1 communication
rounds (T1 is a hyperparameter) it changes into another algorithm, where it uses the clients
identified in the first phase to make estimates on which clients are in its own cluster. PANM just
like DAC uses a similarity metric to estiamte how similar it is to other clients. The details of
how PANM works is described in appendix B.

2.5 Similarity Metrics

Both DAC and PANM use similarity metrics to determine similarity between clients. As previously
mentioned, because of the private nature of the local datasets of other clients, a similarity metric
can only be based on a client’s local data, the models of other clients, and the model of the
client itself. In this study, four different similarity metrics are explored and tested.

2.5.1 Inverse Loss

A proven way [10] to measure similarity between clients is to take the inverse of the loss produced
when a model from client j predicts on the local dataset of client i, and can be expressed as

si(j) =

 ∑
(x,y)∈Di

ℓ(x, y;wj)

−1

. (2.14)

Since only client i has access to that dataset, this has to be performed on client i. The idea
is that a model wj is similar to a model wi if it performs well on the data on which wi was

11 Mathematical Formulation

Eric Ihre-Thomason & Tom Hagander

trained. If it performs well, the loss is low, meaning the similarity is high. In figures and tables
inverse loss is referred to as Inv loss.

2.5.2 Cosine Similarity of Gradients

To estimate a similarity between two clients i and j the similarity of the gradients of their model
weights is of interest. If both models evolve in the same direction in parameter space, it could
be an indication that they are trained on similar data and that merging could be beneficial. One
way to do this is by looking at the cosine similarity between these high-dimensional gradients.
Several gradients can be considered, and in this study, we explore the most recent gradient of
the local training and the change in weights since the initialization of the models.

The most recent gradient of the local training can be expressed as gt1,i = wt
i − wt−1

i and

gt1,j = wt
j − wt−1

j for clients i and j, where wt
i are the current weights of client i:s model

and wt−1
i are the model weights before the last local training. wt

j and wt−1
j are the same but

for client j. We can now formulate the cosine similarity of clients i and j based on the most
recent local training, defined as cos θ1i,j , as

cos θ1i,j =
⟨ gt1,i, gt1,j⟩
||gt1,i|| · ||gt1,j ||

. (2.15)

Similarly, the change in weights since the initialization of the models can be expressed as
gt2,i = wt

i − w0
i and gt2,j = wt

j − w0
j for clients i and j, respectively. The cosine similarity based

on the change in weights since the initialization of the models cos θ2i,j can be expressed as

cos θ2i,j =
⟨ gt2,i, gt2,j⟩
||gt2,i|| · ||gt2,j ||

. (2.16)

The similarity metric is can now be defined as

si(j) = sj(i) = α cos(θ1i,j) + (1− α) cos(θ2i,j) (2.17)

where α is a hyper-parameter, weighting the two cosine similarities. Notice that this similarity
metric is symmetric, unlike inverse training loss. Cosine similarity of gradients with α = 1 is
referred to as Cos grad in tables and figures.

2.5.3 Cosine Similarity of Weights

This similarity metric is similar to the cosine similarity of gradients and can be expressed as

si(j) = sj(i) =
⟨wt

i , w
t
j⟩

||wt
i || · ||wt

j ||
. (2.18)

The idea behind this similarity metric is similar to the one behind the cosine similarity of
weights. In tables and figures, the cosine similarity of weights is referred to as Cos weight.

Mathematical Formulation 12

A Comparative Study of Decentralized Deep Learning Strategies

2.5.4 Inverse L2-Distance Between Weights

This similarity takes the inverse of the L2 distance between the weights of two models. The
similarity between clients i and j can be written as

si(j) = sj(i) = (||wi − wj ||2)−1 . (2.19)

If two models are similar, the distance between them in the parameter space will be low, which
leads to the similarity being high. The inverse L2-distance between weights is referred to as L2
in tables and figures.

2.6 Datasets, Shifts and Generating Distributions

In this work, we have used several different datasets and model architectures to simulate settings
where data is distributed across several clients. To simulate the non-IID nature of the data in
real-world applications of decentralized learning, we have created several different dataset shifts,
which allow clients to have different generating distributions of their data, Pi(x, y). We have
employed label shifts, covariate shifts, and concept shifts. With a label shift, the distribution of
labels y differs between clusters, meaning different clients only have data with different subsets
of the set of all available labels for a classification problem. For example, if the dataset has
10 labels to classify between, a client may only have examples from that dataset that contain
the first four labels. The local optimization problem then becomes minimizing the loss on data
with only those four labels. It is important to note that the client is not aware of this, and its
local model will still have 10 outputs, one for each label in the dataset. The probability that a
client has a data point (x, y) can be written as

Pr(x, y) = Pr(x|y)Pr(y), (2.20)

according to the chain rule of probability. With a label shift, Pr(y) differs between clients, while
Pr(x|y) does not. In a real-world setting, an example of label shift is that some smartphone
users have more pictures of, say, people, while others have more pictures of, say, cats. With a
covariate shift, each client has examples (x, y) from the dataset with all available labels, but
the covariates x (in our case images x) are transformed in ways that differ from those of other
clients. Again, with a slightly varied use of the chain rule of probability, the probability that a
client has a data point (x, y) can be written as

Pr(x, y) = Pr(y|x)Pr(x). (2.21)

With a covariate shift, Pr(x) differs between clients and Pr(y|x) does not. Again, the local
optimization problem becomes correctly identifying labels for covariates with these transforma-
tions. In this work, we simulate covariate shifts by letting different clients have training data
with images rotated by different amounts. In a real-world setting, an example of covariate shift
could be patient data from different parts of the world, where the characteristics of patients
may differ but the same diseases are prevalent. With a concept shift, Pr(y|x) differs between
clients while Pr(x) does not. In the next section, we describe the shifts employed for each of
our datasets in greater detail.

13 Mathematical Formulation

Chapter 3

Experimental Setup

To run decentralized learning architectures we simulate a distributed decentralized system by
running our clients’ training and information exchange sequentially. This was implemented us-
ing Python [2], with Pytorch [8] to create and train the neural networks. All code is available
on GitHub at github.com/tomhagander/decentralized_deep_learning. The training of
the models was done on two GPUs, one NVIDIA GeForce RTX 3090 and one NVIDIA GeForce
RTX 2080 Ti.

All client models are initialized with the same weights and are given a local training dataset
and a local validation dataset. The training dataset is used to train models locally, and the
validation dataset is used for validation after each local training and each merging of models. A
round of local training starts off the training. This is followed by many communication rounds
until training is completed. We define a communication round as a round of information ex-
change with nsampled clients (the number of clients a client merges with is a hyperparameter)
repeated for each client, followed by a round of local training for each client. Each client stops
local training and FedAvg/FedSim if it has not improved its validation loss in 50 communication
rounds. When this happens, that client continues to share its local model that achieved the
highest validation accuracy with other clients that request it.

When training is concluded, each client tests its model that achieved the highest validation
accuracy on an unseen test dataset, taken from the same generating distribution as the training
and validation datasets. The average validation accuracy of clients is used to tune hyperparam-
eters, while the average testing accuracy is used as a final measure of how well the clients were
trained to solve their local objectives.

3.1 Experiment Settings - Datasets, Shifts, and Net-

work Architectures

All our different experiment settings are summarized in Table 3.1. A general description of each
setting and the neural networks used is given in this section. For all experiment settings, each
client has a local dataset where each example is unique and not present in the local dataset of
any other client. However, the generating distribution of a client is the same for all other clients
in its cluster. A more detailed overview of all the settings and hyperparameters used for each
experiment, as well as a complete description of the neural networks that were used is given in
Appendix A.

Experimental Setup 14

https://github.com/tomhagander/decentralized_deep_learning
github.com/tomhagander/decentralized_deep_learning

A Comparative Study of Decentralized Deep Learning Strategies

Dataset Shift Local model No. of clusters No. of clients
CIFAR-10 Label Custom CNN 1 2 100
CIFAR-10 Label Custom CNN 1 5 100

Synthetic data Concept Linear regression 3 99
Fashion-MNIST Covariate Custom CNN 2 4 100

Fashion-MNIST + MNIST Concept Custom CNN 2 2 100
CIFAR-100 Label ResNet-18 3 52

Table 3.1: An overview of all different experiments, each row corresponds to one experi-
ment setting.

3.1.1 CIFAR-10 Animal/Vehicle Label Shift

For the CIFAR-10 label shift experiments, we use the CIFAR-10 dataset which consists of
60000 32x32 color images in 10 classes. The classes can be split into two groups, vehicles, and
animals, with 4 and 6 corresponding labels respectively. We create 100 clients that train locally
and communicate over 300 rounds. The 100 clients are split into two clusters with 40 and 60
clients each. The smaller cluster only has data points that are labeled as vehicles and the larger
cluster only has data points labeled as animals. Each client has 400 data points for training
and 100 for validation. This is the same cluster arrangement as in [10]. We do this to be able
to compare our new methodologies to existing experiments in the literature (specifically DAC

with FedAvg and using inverse loss as the similarity metric). Also, the architecture of the local
model of each client is the same as in [10], which is a small convolutional neural network with
two convolutional layers.

3.1.2 CIFAR-10 5 Cluster Label Shift

CIFAR-10 was also split into 5 clusters for our CIFAR-10 5 cluster experiments. For these
experiments, we used 100 clients equally split into groups of 20 clients. Each cluster only
received data with two different labels and there was no overlap of labels between clusters.
Each client has 400 images for training and 100 for validation, and the experiments ran for 300
communication rounds. The model architecture is the same as for the other CIFAR-10 shift.
This experiment setting aims to study how communication strategies and similarity metrics
perform when there are more clusters and a random communication strategy is less likely to
select the correct cluster by chance.

3.1.3 Synthetic Problem

To create an adversarial synthetic problem we use linear regression. Here we assume that each
cluster is defined by its clients having data on the form yi = ⟨xi, θ∗j ⟩ + εi, for client i and
cluster j where εi denotes normally distributed noise independent of the data x. Essentially,
each cluster has an underlying data generating process defined by θ∗j which a model for that
cluster aims to learn from the data. The model is a single fully connected linear layer, aiming to
imitate the data generation process which is equivalent to linear regression. If θ∗j varies signif-
icantly across clusters, merging models from different clusters would lead to suboptimal models.

To construct the clusters, we generate three distinct θ∗j ∈ Rd, each drawn from a uniform

distribution. The feature matrix X ∈ Rn×d is populated by entries sampled uniformly from

15 Experimental Setup

Eric Ihre-Thomason & Tom Hagander

the range [−10, 10], forming a d dimensional vector with n samples for each client. Finally,
the response variable yi is computed as yi = ⟨xi, θ∗j ⟩. We use mean squared error (MSE) as
the loss function, setting d = 10 and n = 50 for each client. This synthetic setup enables a
controlled exploration of the efficacy of similarity metrics in a setting characterized by distinct,
non-overlapping data distributions.

3.1.4 Fashion-MNIST Covariate Shift

The Fashion-MNIST dataset contains 70000 28x28 grayscale images of fashion products from 10
categories. For our experiments using Fashion-MNIST, the clients were split into four clusters of
different sizes, where each cluster is characterized by a specific rotation angle of their images x.
This setup not only tests the impact of a covariate shift such as image rotation in a decentralized
learning setting but also incorporates varying cluster sizes to mimic realistic client distributions:
70, 20, 5, and 5 clients per cluster. The rotation degrees set for these clusters are 0◦, 180◦, 10◦ and
350◦, respectively. This arrangement creates three clusters with relatively similar conditions and
one notably distinct cluster - the 180◦ rotation. We run this experiment for 300 communication
rounds. The neural network used for this setting is a small CNN with two convolutional layers,
described in greater detail in Appendix A.

3.1.5 Fashion-MNIST and MNIST Combined

To create an experiment setting with more significant data shifts, we combined the Fashion-
MNIST dataset with the MNIST dataset. The MNIST dataset contains 70000 28x28 grayscale
images of handwritten numbers. It has ten labels corresponding to the numbers from zero to
nine. The clients are split into two clusters of 50 clients for a total of 100 clients. Each cluster
only gets data from one of the datasets (Fashion-MNIST or MNIST), where the labels from
Fashion-MNIST are upshifted by 10 to not collide with the labels from MNIST. All clients have
20 outputs since they are not aware of which cluster they belong to. We run this experiment
for 300 communication rounds. Both the same CNN as the one used for the Fashion-MNIST
covariate shift experiments and a Multi-Layered Perceptron is used for this setting.

3.1.6 CIFAR-100 Label Shift

A more difficult version of CIFAR-10 is the CIFAR-100 dataset, which contains images similar
to those of CIFAR-10 but with 100 different labels. This experiment aimed to investigate how
well decentralized learning strategies hold up for more difficult problems like this one, and how
initializing local models with a pretrained model influences performance. This is relevant, be-
cause in a real-world implementation of a decentralized learning framework, it would probably
be beneficial for learning to initialize models with pretrained weights, should those exist. We
therefore use ResNet-18 for this setting, which is a deep convolutional neural network with 18
layers (17 convolutional layers and 1 fully connected layer at the end). ResNet-18 has approx-
imately 11.7 million trainable parameters and is suitable for image classification tasks. The
pre-trained ResNet-18 is trained on the ImageNet dataset [4]. ImageNet is a large and widely
used dataset in the field of computer vision, containing over 14 million images categorized into
over 20,000 categories.

Experimental Setup 16

A Comparative Study of Decentralized Deep Learning Strategies

The shift implemented for this setting is a label shift into three clusters of sizes 26, 13, and
13 for a total of 52 clients. We decreased the number of clients in these experiments because
training the ResNet-18 and storing multiple versions of it is more computationally demanding
than for the networks in the other settings. Exact documentation of which labels of CIFAR-100
are included in each cluster can be found in Appendix A.

17 Experimental Setup

Chapter 4

Experimental Results

4.1 Exploring Label Shift with the CIFAR-10 Dataset

We first apply the different decentralized learning strategies on the CIFAR-10 dataset, with
the Animal/Vehicle label shift. After hyperparameters were tuned for each communication
strategy and similarity metric (the details of which can be found in Appendix A), three runs
across different random seeds were produced, and the average testing accuracies of these runs
are presented in Table 4.1 and Figure 4.1. For random, oracle and no communication there is
no FedSim since there are no priors pi(k).

Communication strategy Cluster 1 Cluster 2 Mean
& Similarity metric Animals Vehicles

FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 52.88 - 69.94 - 59.71 -
Oracle 54.39 - 74.05 - 62.25 -

No comm 30.14 - 49.21 - 37.77 -

DAC

Inv loss 53.97 53.77 73.10 72.05 61.62 61.08
Cos grad 52.28 51.06 68.62 68.73 58.81 58.13
Cos weight 51.96 52.02 69.90 71.11 59.14 59.66

L2 52.14 50.62 70.39 68.15 59.44 57.63

PANM
Inv loss 54.13 - 73.85 - 62.02 -
Cos grad 46.73 - 61.26 - 52.54 -

Table 4.1: Cluster-wise test accuracies for different communication strategies, similarity
metrics, and averaging methods on the CIFAR-10 Animal/Vehicle label shift setting.

As can be seen in the results, the random communication baseline performs well compared
to the no communication baseline, but falls a few percentage points short of the testing per-
formance of oracle communication, meaning there is performance to be gained from a good
communication strategy. Only inverse loss as a similarity metric with DAC or PANM has test
accuracies that can be considered better than random, even though that result is not significant
over the experiment runs presented.

In Figures 4.3, 4.4 and 4.5 the similarity score of each client in a cluster to all other clients
is plotted, along with the average validation accuracy per cluster before and after merging, over
each communication round. The similarity score plotted is a true measurement of the similarity,
and not the estimated and outdated similarity measurements a client actually possesses from the
communication strategy. This information is not used in the communication between clients,

Experimental Results 18

A Comparative Study of Decentralized Deep Learning Strategies

Figure 4.1: Test accuracies for different communication strategies, similarity metrics, and
averaging methods on the CIFAR-10 Animal/Vehicle label shift setting.

but used for analyzing and evaluating the overall system. This is because actually measuring
all similarities in each communication round is too expensive, communication-wise. The goal of
a communication strategy is to estimate these true similarities as accurately as possible while
minimizing the amount of communication done with other clients. These true similarities show
when it is possible for a client to distinguish between clusters; if the true similarities overlap,
even an optimal strategy could not distinguish between clusters.

For DAC with inverse loss we see that a client could theoretically distinguish between clus-
ters since all similarities of clients in its own cluster are higher than those of the other cluster.
The fact that the algorithm does distinguish between clusters is practically reflected in the
average validation accuracy before and after exchange for each cluster, since after a few rounds
the average validation accuracy increases after each merge. We see that for all the runs using
DAC, as well as PANM with Inv loss, this is the case and clients benefit from merging since they
can identify their own cluster. However, we see that random is only outperformed with Inv loss
for both communication strategies, even though the other similarity metrics also identify their
clusters well for DAC, as is illustrated in the communication heatmaps in Figure 4.2.

The reason for this could be that even the slightest out-of-cluster communication quickly brings
the performance down to the level of random communication. As can be seen in the similarities
in Figures 4.3 and 4.4, Inv loss has the greatest separation of similarities between clusters, mini-
mizing the chance of out-of-cluster communication. All other similarity metrics have similarities
that do not differ as much between clusters, especially in the earlier rounds. This is reflected
in significant reductions in the after-exchange validation accuracy in the early rounds, which
likely stem from out-of-cluster communication. This could be the reason for the random-like
performance of these similarity metrics. Only PANM with Inv loss has strong early rounds, likely
because the early rounds of PANM sample more ”safely” than those of DAC, which sample more

19 Experimental Results

Eric Ihre-Thomason & Tom Hagander

(a) FedAvg

(b) FedSim

Figure 4.2: CIFAR-10 Animal/Vehicle label shift communication heatmaps. Each row
represents a client i, and column j on that row is how many times client i has sampled
client j.

randomly initially but in exchange gain more information about the network.

PANM with Cos grad performs by far worst of all in this expermiment, and fails most signif-
icantly after 50 rounds which is where the strategy of PANM changes. The second step in PANMs
strategy is quite sensitive to how it is initialized and relies on the first part correctly identifying
which cluster a client belongs to. What likely happens is that most clients correctly identify
their cluster but a few wrongly identify their cluster. This phenomena is discussed in 4.2. We
also see that after 50 communication rounds all similarity scores go to one, which is the maxi-
mum of Cos grad, implying that all models are extremely similar to all others. A global model
that tries to generalize to all local objectives is created, but notably still performs significantly
worse than random. Once the similarities collapse as for PANM with Cos grad, no communication
strategy is going to be able to correctly identify their clusters. Inv loss is less susceptible to
this, as it in a sense compares a model to its local data (which is unchanging), while the other
similarity metrics compare models with models. Models can be corrupted through bad merging,
rendering even the best similarity metric useless if it compares models with models. Inv loss is
partially shielded to this, as its similarity estimates are based on the true and unchanging local
data. If a model does not classify the local data well, it is objectively not good to merge with.
However that same model can be very similar to the local model of that client, meaning that a
model-to-model similarity metric such as Cos grad gives that model a high similarity.

Experimental Results 20

A Comparative Study of Decentralized Deep Learning Strategies

(a) Inv loss DAC (b) Cos grad DAC (c) Cos weight DAC

Figure 4.3: For runs on the CIFAR-10 dataset, with the Animal/Vehicle label shift with
different similarity metrics, the similarity for a client in cluster 1 and a client in cluster
2 to all other clients. The clusterwise validation accuracy before and after merge at each
communication round for each similarity metric and exchange strategy is included for
comparison. FedAvg is used for all methods.

21 Experimental Results

Eric Ihre-Thomason & Tom Hagander

(a) L2 DAC (b) Inv loss PANM (c) Cos grad PANM

Figure 4.4: For runs on the CIFAR-10 dataset, with the Animal/Vehicle label shift with
different similarity metrics and communication strategies the similarity for a client in
cluster 1 and a client in cluster 2 to all other clients. The cluster-wise validation accu-
racy before and after merge at each communication round for each similarity metric and
exchange strategy is included for comparison. FedAvg is used for all methods.

Experimental Results 22

A Comparative Study of Decentralized Deep Learning Strategies

(a) Random communication (b) Oracle communication (c) No communication

Figure 4.5: Oracle/random/no communication runs on the CIFAR-10 dataset, with the
Animal/Vehicle label shift. Here the similarity is calcualted with inverse loss for a client
in cluster 1 and a client in cluster 2 to all other clients. The clusterwise validation
accuracy before and after merge at each communication round for each similarity metric
and exchange strategy is included for comparison. FedAvg is used for all communication
strategies.

23 Experimental Results

Eric Ihre-Thomason & Tom Hagander

4.2 Cluster Death

In our experiments, we identified a critical issue, termed Cluster Death, which significantly im-
pacts the performance of decentralized learning systems. Cluster Death occurs a few rounds
into training when the majority of clients correctly identify their cluster membership, but a
few clients mistakenly believe they belong to a different cluster. This leads all clients in the
cluster where a few clients have wrongly identified themselves to lose accuracy. This is because
all clients who have correctly identified their cluster still communicate with these ”delusional”
clients. Importantly, this arises when clients in the other cluster generally communicate cor-
rectly, which is the reason performance does not decrease as much with random communication.
With random communication, a client from cluster 1 may communicate with a client from clus-
ter 2, but that client has communicated with many clients from cluster 1 previously, reducing
the adversarial effect.

To replicate this behavior, we conducted an artificial experiment using the CIFAR-10 dataset
with an Animal/Vehicle label shift. We let all clients have the oracle communication strategy
initially, and after 50 rounds x = 1, 5, 25 clients in cluster 1 become ”delusional”, and start to
communicate solely with the wrong cluster. Presented in Figure 4.6 are average validation accu-
racies for cluster 1 for each of these scenarios. It becomes evident that these scenarios are very
detrimental to the performance of the whole cluster, even when only a few clients communicate
incorrectly. The validation accuracy goes down, especially immediately after the exchange, and
never recovers to the levels it had before round 50. The decrease in performance is compounded
by the fact that clients that communicate correctly receive bad models from the ”delusional”
clients.

(a) 1 delusional client (b) 5 delusional clients (c) 25 delusional clients

Figure 4.6: Impact of varying numbers of delusional clients on cluster validation accuracy.
Each subfigure represents a scenario with 1, 5, and 25 misidentified clients, respectively.

Cluster death can happen in realistic scenarios with DAC. Say that one or several clients start
communicating outside their cluster by sampling low-probability clients or having erroneously
estimated similarities. This will ”poison” the local model of those clients with models from
outside their cluster. This will result in them having higher similarities to clients outside their
cluster. Also, other clients within that cluster will, based on earlier measures of similarity,
continue to communicate with these clients, leading the poisoned models to spread within that
cluster. With PANM, the situation could be even worse, as a client in the second phase of the

Experimental Results 24

A Comparative Study of Decentralized Deep Learning Strategies

algorithm can be of the understanding that it belongs to the wrong cluster, causing it to exclu-
sively communicate outside its cluster. We belive this is what happened in the PANM with Cos
grad runs for the CIFAR-10 Animal/Vehicle label shift.

We especially notice cluster death in DAC when a client has a priors-vector p with a small
number of values significantly different from zero (fewer than the number of clients sampled).
This can arise in the early rounds when a client does not have information about many other
clients in the network, or with high values of the temperature τ . The random sampling from
the priors will sample these few high probability clients, but also a few essentially randomly,
increasing the probability of cluster death.

To address Cluster Death, we developed FedSim, a technique designed to merge weights more
cautiously and reduce the negative impact of out-of-cluster communication. Further exploration
of adaptive sampling and robust similarity measures could also mitigate this issue. FedSim di-
minishes the weighting of low-similarity clients, effectively causing the merge to only include
clients that have a high similarity score even if there is only a few. The drawback to FedSim

is that a client effectively merges with fewer clients and gets less information which diminishes
the positive aspects of gaining information from the network.

4.3 Widening the Gap Between Oracle and Random

with More Clusters

Due to of the small difference observed between random and oracle performance for the An-
imal/Vehicle label shift, we conducted further experiments on CIFAR-10 with 5 label-shifted
clusters to test the performance of different decentralized learning methodologies when clients
were less likely to randomly sample their own clusters. At this point, we decided to discontinue
using the PANM algorithm due to its stability issues with the Cosine Gradient similarity metric,
which can be seen in presented results but also in our experience with tuning the algorithm
in different variations of the experiment settings. For example, we reproduced some of the
shifts on CIFAR-10 tested in [5], and found the performance of PANM with Cos grad to remain
unstable. Instead, we focus on DAC. As before, we tuned the hyperparameters and conducted
three experiments with different random seeds for DAC, using each similarity metric with their
optimal settings, as well as for the baseline methods.

Figure 4.7 illustrates that DAC significantly outperforms random sampling across all similarity
metrics, whether using FedAvg or FedSim. Figure 4.7 and Table 4.2 show the testing accuracy
for DAC using different similarity metrics and averaging methods. Figure 4.7 shows the standard
deviation across runs and Table 4.2 shows the testing accuracy for each cluster.

Since there are more clusters there is more to gain from a good algorithm compared to random
sampling. This is reflected in the difference in testing accuracy between oracle and random (a
difference of almost 5 percentage points, see Table 4.2). Accuracies are generally higher for this
setting than the other label shift, likely because there are only two labels in each generating
distribution. If a client learns this fact well enough, the problem essentially becomes a binary
classification problem, which is easier to solve with a higher accuracy than the multiclass clas-

25 Experimental Results

Eric Ihre-Thomason & Tom Hagander

sification problem that arises in the Animal/Vehicle label shift setting.

Figure 4.7: The testing accuracies for different similarity metrics and averaging methods.
CIFAR-10, 5 cluster label shift.

These results show that DAC with any of the tested similarity metrics outperforms random.
However, all similarity metrics also fall significantly short of oracle, meaning there is room for
improvement. To further explore the limitations and potential of DAC, we move on to a more
adversarial problem, where sampling of out-of-cluster clients is more detrimental.

Experimental Results 26

A Comparative Study of Decentralized Deep Learning Strategies

Communication strategy Cluster 1 Cluster 2 Cluster 3
& Similarity metric FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 87.34 - 73.99 - 79.13 -
Oracle 91.66 - 78.64 - 83.25 -

No comm 82.31 - 66.93 - 74.07 -

DAC

Inv loss 88.1 90.86 77.83 76.77 82.14 81.36
Cos grad 91.3 90.86 77.21 77.06 81.91 82.38
Cos weight 91.01 91.23 77.46 76.51 81.16 81.45

L2 89.29 89.21 74.79 75.3 79.85 79.67

Communication strategy Cluster 4 Cluster 5 Mean
& Similarity metric FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 88.76 - 84.46 - 82.73 -
Oracle 92.2 - 91.06 - 87.36 -

No comm 83.84 - 78.25 - 77.08 -

DAC

Inv loss 88.37 91.23 88.26 88.77 84.94 85.8
Cos grad 91.44 91.11 89.23 88.59 86.22 86.0
Cos weight 91.42 91.5 88.19 87.6 85.85 85.66

L2 89.93 90.02 86.35 86.07 84.04 84.06

Table 4.2: Test accuracies for different communication strategies, similarity metrics, and
averaging methods on the CIFAR-10 5-cluster label shift setting.

4.4 A More Adversarial Setting: A Synthetic Prob-

lem

To investigate the robustness of DAC, we designed a more adversarial experimental setting. To
achieve this, we want the local objective of a cluster to be completely different than the local
objective of the other cluster/clusters. While in the problem settings previously examined a
client could gain from communicating out-of-cluster by learning, for example, low-level features
that are shared between all images regardless of the label, we here aim to create a problem set-
ting where merging out-of-cluster has no upsides. This led us to create the synthetic problem
described in Section 3.1.3. Because of the simple nature of this problem, experiments run much
faster than for the other settings. This allowed us to tune the learning rates and temperatures
simultaneously, as described in Appendix A. For the optimal hyperparameters for each setting,
each experiment was recreated with 15 different random seeds. Also, we explored the influence
of the size of the local datasets on the performance of the similarity metrics. For 50 training
examples per client, the results are presented in Figures 4.3 and 4.8.

Table 4.3 shows a large difference in loss between the oracle and random strategies for this
setting. This is likely because it is exclusively detrimental to sample out-of-cluster in this set-
ting. This is reinforced by random communication being a lot worse than not communicating
which is not the case for the CIFAR-10 label shift problem, where random is better than not
communicating, as shown in Table 4.1. For this more adversarial problem, FedSim seems to
help similarity metrics perform better than FedAvg. We can see this for the in the results in
Table 4.3.

27 Experimental Results

Eric Ihre-Thomason & Tom Hagander

Communication strategy Cluster 1 Cluster 2 Cluster 3 Mean
& Similarity metric FedAvg FedSim FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 1196.04 - 1251.50 - 2036.90 - 1494.84 -
Oracle 9.54 - 9.29 - 9.46 - 9.43 -

No comm 28.76 - 26.80 - 35.22 - 30.26 -

DAC

Inv loss 32.91 14.87 30.40 14.58 31.77 15.01 31.69 14.82
Cos grad 10.19 10.40 10.32 10.22 10.44 10.29 10.32 10.30
Cos weight 10.29 10.37 10.25 10.41 10.48 10.13 10.34 10.30

L2 21.97 10.85 19.77 10.92 21.56 10.78 21.10 10.85

Table 4.3: Test losses for different communication strategies, similarity metrics, and
averaging methods on the synthetic problem setting.

Figure 4.8: The testing losses for different communication strategies, similarity metrics
and averaging methods in the synthetic problem setting. Random and No comm are not
included because they are off the scale.

The results indicate that cosine similarity metrics outperform Inv loss and L2 metrics in this
adversarial setting. FedSim appears to mitigate performance loss to some extent compared to
FedAvg, particularly for the Inv loss and L2 metrics. Both Inv loss and L2 struggle to identify
their clusters more than Cos grad and Cos weight, as can be seen in the heatmaps in Figure 4.9.
Also illustrated in the heatmaps is a phenomenon that can arise when using DAC, in this setting
as well as others. The heatmaps contain several black vertical lines, indicating that some clients
are never sampled by any other client. This is detrimental to the overall performance of the
clients, as not all data available in the network is utilized. The reason for this phenomenon is the
initialization of DAC. In the first round, clients sample other clients randomly. In the next round,
a client only has similarity scores to these and to potential two-step neighbors of them, mean-
ing they will either sample the same clients again, or clients that those clients have sampled.
This means that if a client is not sampled by anyone in the first round, which can happen by
chance, especially if there are many clients and nsampled is low, that client will never be sampled

Experimental Results 28

A Comparative Study of Decentralized Deep Learning Strategies

(a) FedAvg

(b) FedSim

Figure 4.9: Heatmaps for the synthetic problem. The first 33 clients belong to cluster 1,
the next 33 to cluster 2, and the last 33 to cluster 3.

thoughout the course of training. This relates to the fact that the initial round of DAC is worse
at exploration of the network than other communication strategies such as PENS which PANM is
based on, and has a tendency to latch on to the clients it sampled randomly in the first round
rather than to gain more information about the network. These are some of the shortfalls of DAC.

FedSim minimizes the adversarial effect of selecting clients to sample outside ones cluster, if
the similarity to those is lower than the clients within-cluster, which is the case here. The
difference in similarity is just not large enough for FedAvg to be effective. This confirms the
importance of correct sampling for this problem setting. The reason for Inv loss struggling
to identify clusters is likely because the loss is very high initially, on the order of thousands.
Taking the inverse of such a large number will yield very small differences, so even if the clusters
exhibit differences in the early rounds, DAC will have trouble distinguishing them. L2 seems to
be a less relevant metric than the cosine similarities for this model in this setting. It is worth
noting that Inv loss and L2 had higher optimal learning rates than the cosine similarities. This
is likely because these metrics had more to gain from training harder in the first round, so that
the clusters differentiated themselves more. The cosine similarities had less trouble differentiat-
ing, meaning they could use a lower learning rate that would increase performance of the local
training while still sampling within-cluster.

Provided in Figures 4.10 and 4.11 are the relationships between the size of the training dataset
for each client and the average test loss. As can be seen in these results, the loss generally

29 Experimental Results

Eric Ihre-Thomason & Tom Hagander

Figure 4.10: Relationships between the size of the training dataset for each client and
the average test loss for each similarity metric using DAC with FedAvg.

Figure 4.11: Relationships between the size of the training dataset for each client and
the average test loss for each similarity metric using DAC with FedSim.

decreases as the size of the training set increases, which is to be expected. It can also be seen
that Inv loss and L2 struggle more than Cos grad and Cos weight when FedAvg is used, for

Experimental Results 30

A Comparative Study of Decentralized Deep Learning Strategies

all measured training set sizes, except for 10, where all similarity metrics perform equally bad.
However, when FedSim is used, L2 improves to almost match the performance of the cosine
similarities. Inv loss improves too, especially for the low training set sizes. This could imply
that FedSim is suitable in scenarios when there is little available local data, or when sampling
out-of-cluster is especially detrimental to model performance.

4.5 Applying DAC to a Covariate Shift-Setting

Another problem we studied was a 4-cluster problem using the Fashion-MNIST dataset. For
this problem we implement a covariate shift, meaning all clients have the same distribution of
labels but their images are augmented to be different between clusters. We created the covariate
shift by rotating the images, with three clusters having a maximum of 20° difference in rotation,
while cluster 2 had a rotation difference of at least 170° from any other cluster. Cluster 2 is also
smaller in size in regard to the number of clients.

This setup indicates that a random communication strategy is effective for clusters 1, 2, and 3,
as randomly selected clients are likely to belong to similar clusters. This is reflected in the test-
ing accuracies in Table 4.4, where random communication is as good as oracle communication
for these clusters. The difference in testing accuracy in cluster 2 between random and oracle
in Table 4.4 is much more significant. Additionally, almost all similarity metrics outperform
random communication for cluster 2, as depicted in Figure 4.13. Heatmaps for this problem

Communication strategy Cluster 1 Cluster 2 Cluster 3 Cluster 4 Mean
& Similarity metric FedAvg FedSim FedAvg FedSim FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 85.11 - 79.53 - 82.36 - 81.89 - 83.70 -
Oracle 86.11 - 85.19 - 82.15 - 82.60 - 85.55 -

No comm 76.36 - 75.86 - 76.23 - 76.47 - 76.26 -

DAC
Inv loss 85.49 85.51 83.73 84.72 82.44 82.64 82.31 83.02 84.83 85.08
Cos grad 85.61 85.32 83.68 77.02 82.57 82.11 81.59 81.85 84.87 83.32
Cos weight 85.81 85.24 83.59 84.67 82.74 82.34 82.35 82.13 85.04 84.82

L2 85.54 85.37 80.17 80.87 82.66 82.21 82.43 82.26 84.17 84.16

Table 4.4: Test accuracies for different communication strategies, similarity metrics, and
averaging methods on the Fashion-MNIST covariate shift setting.

are presented in Figure 4.12. As can be seen, the three clusters which are similar sample from
each other quite extensively, while avoiding the cluster with upside-down images.

31 Experimental Results

Eric Ihre-Thomason & Tom Hagander

(a) FedAvg

(b) FedSim

Figure 4.12: Heatmaps for DAC on the Fashion-MNIST covariate shift experiment setting.

Figure 4.13: The testing accuracies for different similarity metrics and averaging methods
for Fashion-MNIST covariate shift.

Experimental Results 32

A Comparative Study of Decentralized Deep Learning Strategies

4.6 Fashion-MNIST and MNIST Combined

In Table 4.5 we see the results from three runs on the Fashion-MNIST and MNIST combined
experiment with tuned hyperparameters. The difference between oracle and random commu-
nication is not very large. There is still a significant difference between random and cosine
similarity of gradients and cosine similarity of weights with FedAvg, as shown in Figure 4.14.
There is also an increase in testing accuracy when using inverse loss with FedSim compared to
FedAvg. Because the difference between oracle and random is so small, it could be assumed

Communication strategy Cluster 1 Cluster 2 Mean
& Similarity metric FedAvg FedSim FedAvg FedSim FedAvg FedSim

Baselines
Random 97.01 - 84.05 - 90.53 -
Oracle 97.68 - 85.56 - 91.62 -

No comm 89.29 - 75.15 - 82.22 -

DAC

Inv loss 97.11 96.96 82.55 84.38 89.83 90.67
Cos grad 97.29 96.91 84.99 84.54 91.14 90.72
Cos weight 97.22 96.72 84.83 84.52 91.03 90.62

L2 97.05 97.04 83.92 84.56 90.49 90.80

Table 4.5: Test accuracies for different communication strategies, similarity metrics, and
averaging methods on the Fashion-MNIST + MNIST combined setting.

Figure 4.14: The testing accuracies for different similarity metrics and averaging methods
in the MNIST and Fashion-MNIST combined experiment setting with a convolutional
neural network.

that the convolutional network is capable enough to learn both local objectives of each cluster,
leading to the high performance of random. To simulate a more difficult problem, we replaced

33 Experimental Results

Eric Ihre-Thomason & Tom Hagander

(a) FedAvg

(b) FedSim

Figure 4.15: Heatmaps for the Fashion-MNIST and MNIST combined experiment setting,
using a CNN.

Experimental Results 34

A Comparative Study of Decentralized Deep Learning Strategies

the convolutional neural network used in this setting with a less capable Multi-Layered Per-
ceptron (MLP), and redid the hyperparameter tuning and reproduction of runs on the optimal
hyperparameters, in the hopes of making the gap between random and oracle communication
larger. The results of these experiments are presented in Figure 4.16. As can be seen in these

Figure 4.16: The testing accuracies for different similarity metrics and averaging methods
in the MNIST and Fashion-MNIST combined experiment setting with a multi-layered
perceptron.

results, the MLP solves both local objectives almost as well as the CNN, indicating that an
MLP with fewer trainable parameters could have been better for what we wanted to achieve.
However, these results still succeed in showing that DAC performs similarly on different neural
network architectures for the same problem setting with all similarity metrics, with the excep-
tion of Inv loss with FedAvg. The reason for this could be insufficient tuning of hyperparameters
for the setting with the CNN.

4.7 Pretrained Models on CIFAR-100

To investigate how the similarity metrics perform for larger models, and to see if using a pre-
trained model influences the performance of different similarity metrics, we implemented a
network of clients with ResNet-18 models on the CIFAR-100 dataset. Because this setting is
more computationally complex than the other ones mentioned in this paper, we opted to only
test the similarity metrics on DAC with FedAvg. After tuning the learning rate and temperature
τ , we obtained the results found in Tables 4.6 and 4.7, and Figures 4.17 and 4.18 for the optimal
values of the hyperparameters for each similarity metric. The heatmaps for one run on each
similarity metric are presented in Figure 4.19.

35 Experimental Results

Eric Ihre-Thomason & Tom Hagander

Figure 4.17: The testing accuracies for different similarity metrics and averaging methods
on CIFAR-100 with a pretrained ResNet-18.

Figure 4.18: The testing accuracies for different similarity metrics and averaging methods
on CIFAR-100 with a randomly initialized ResNet-18.

Experimental Results 36

A Comparative Study of Decentralized Deep Learning Strategies

Communication strategy
Cluster 1 Cluster 2 Cluster 3 Mean

& Similarity metric

Baselines
Random 49.44 63.11 57.53 54.88±0.27
Oracle 50.33 65.87 58.95 56.37±0.17

No comm 20.99 41.04 34.94 29.49±0.03

DAC

Inv loss 48.16 63.07 57.53 54.23±0.21
Cos grad 47.96 62.77 56.79 53.87±0.72
Cos weight 48.80 63.09 57.46 54.54±0.04

L2 50.31 63.44 58.07 55.53±0.57

Table 4.6: Test accuracies in percentages of communication strategies and similarity
metrics across clusters for a pretrained ResNet-18 on CIFAR-100 using FedAvg. The
standard deviation in the ”Mean” column is across runs with different random seeds.

Communication strategy
Cluster 1 Cluster 2 Cluster 3 Mean

& Similarity metric

Baselines
Random 27.07 39.51 34.44 32.02±0.33
Oracle 25.82 36.83 30.89 29.84±0.11

No comm 10.76 23.09 18.54 15.79±0.21

DAC

Inv loss 26.47 39.45 34.14 31.63±0.43
Cos grad 27.07 39.15 34.58 31.97±0.39
Cos weight 26.54 38.97 34.29 31.58±0.21

L2 26.64 39.36 34.64 31.82±0.44

Table 4.7: Test accuracies in percentages of communication strategies and similarity
metrics across clusters for a randomly initialized ResNet-18 on CIFAR-100 using FedAvg.
The standard deviation in the ”Mean” column is across runs with different random seeds.

Notably, for the non-pretrained networks, the oracle communication strategy performs worse
than random, unlike all other experiments. This could be due to the lack of available data.
ResNet-18 is a large network with around 11 million trainable parameters, and we introduce it
here in a setting with comparatively small clusters, and few clients in total. Since the network
is not pretrained, it has to learn low-level features to be able to classify images correctly, and
it does this better with more diverse data, which it gets from random communication, even
though some of the clients communicated with have irrelevant labels. Likely, extending the
clusters with more clients would eventually lead to oracle outperforming random.

For the pretrained networks, oracle outperforms random with the same cluster sizes. This
could be because those neural networks already have good low-level feature recognition, and
therefore essentially only have to fine-tune their final layers to the new label distribution that
they get from their local data and from within their cluster. In this setting, only the inverse
L2-distance loss outperforms random, while the others perform significantly worse. In the
heatmaps presented in Figure 4.19b, it can be seen that only the L2 similarity metric finds
significant cluster-structure. No metric reaches the performance of oracle. This could partly be
due to insufficient hyperparameter-tuning (due to long experiment run-times the hyperparam-
eter search was done more coarsely than for other settings), but also the nature of the problem
and the architecture of the network.

37 Experimental Results

Eric Ihre-Thomason & Tom Hagander

(a) Non-pretrained

(b) Pretrained

Figure 4.19: Heatmaps for the CIFAR-100 label shift experiment setting.

In the non-pretrained setting, DAC with any similarity metric performs similar to random if
not slightly worse. As can be seen in the heatmaps in Figure 4.19a, the communication pattern
of most similarity metrics is similar to a random one. Inv loss does find significant structure,
but still samples out-of-cluster. Likely, this out-of-cluster sampling ruins the gains made from
sampling within-cluster, as we have seen for the CIFAR-10 experiments. This implies that DAC
in this setting is not able to identify the clusters well enough, even though it would not be
beneficial to do so.

Experimental Results 38

Chapter 5

Discussion

5.1 Main Findings

Testing various decentralized learning methodologies on different datasets and data shifts has
provided novel insights into the factors influencing the performance of these strategies. We have
identified specific settings in which different similarity metrics and averaging methods perform
well and where they do not. We have found that both the communication strategies DAC and
PANM are able to outperform random communication for certain similarity metrics and averaging
methods in certain settings. However, which similarity metric and averaging method performs
best varies significantly between problem settings. For example, inverse training loss is the
strongest similarity metric for the CIFAR-10 Animal/Vehicle label shift, while the similarity
metrics based on cosine similarities significantly outperform inverse training loss in the synthetic
problem setting. We also introduced the novel merging technique FedSim which outperforms
the existing FedAvg in adversarial settings and when each client has few local data points, but
can fall short of FedAvg in easier settings and when the difference in data distributions is small
between clients. We illustrate the shortfalls of the communication strategy PANM with exper-
imental results and formulate the phenomenon which we call cluster death. Furthermore, we
present experiment settings where random communication outperforms any other communica-
tion strategy, such as the CIFAR-100 label shift with a randomly initialized neural network.
This shows that properties of the network of clients such as availability of data, size of clusters,
and characteristics of the networks used have a large influence on which decentralized learning
strategy is optimal. For each communication strategy, hyperparameters such as the number
of local epochs, learning rate, temperature τ , and the number of clients sampled per round
significantly influence performance. We observed that tuning these parameters is crucial for
optimizing the performance of decentralized learning strategies.

5.2 Impact and Future Work

Our findings show that optimizing many different local objectives across clients with non-IID
data using decentralized learning methodologies is a challenging problem, with no one-size-fits-
all solutions. However, in most experimental settings in this study, we identified a combination
of communication strategy, similarity metric, and averaging method that outperforms random
communication and significantly exceeds the performance of no communication. Any real-world
implementation of a decentralized learning system would require the testing of many different
approaches, along with hyperparameter tuning for each approach. Because of this fact and
the novelty of the concept, decentralized deep learning has not yet been implemented in any

39 Discussion

Eric Ihre-Thomason & Tom Hagander

real-world applications. We believe the insights and results gained from this study have made
significant advancements in this field, but many unanswered questions remain. For example,
given the shortfalls of PANM and DAC illustrated in this study, there is room for better communi-
cation strategies that are more adaptive to different characteristics of the clients in the network
and their local objectives, and require less hyperparameter-tuning to use. Also, it remains to be
seen if the insights gained from these experiment settings hold up in a real-world scenario. Real
scenarios where it is desirable to implement decentralized learning strategies introduce some
new aspects not tested by us, such as heavily skewed local dataset sizes, a larger number of
clients, less defined clusters, and that clients only participate in the communication when and
if they are willing, such as for example when a smartphone is charging and connected to WiFi.

Other studies such as [11] have shown that introducing a small set of globally shared data
significantly diminishes the negative impact of clients having non-IID data when using feder-
ated learning. This concept could perhaps be applied in the decentralized setting, but might be
hard to accomplish if the local objectives of clients differ too much.

In this work, model averaging has consisted of averaging all weights of the neural networks.
However, it could make sense to only include certain layers of the model in the averaging. For
example, the final layers of a model is highly fine-tuned to the local objective of each client,
while earlier layers find features that are more general to all data in the network. Therefore it
could be beneficial to only average earlier layers, and to keep the final layers locally for each
client.

Furthermore, the communication strategies tested in this study do not make use of all informa-
tion available to them to make decisions on which clients to communicate with. For example,
clients could use the difference in validation accuracy or validation loss from before a merging
of models to after the merge to determine the quality of that selection of sampled clients. While
it is not possible to know which of the sampled clients contributed positively to the averaging,
sampling many sets of clients over many rounds can yield useful information on which clients
generally contribute to a good averaging of models.

5.3 Limitations

Several limitations to this work should be addressed. For example, the results show that the
average test accuracy of clients can differ significantly for the same experiment settings depend-
ing on the random seed used, meaning these algorithms are sensitive to random chance, such
as which clients sample which in the first couple of rounds when communication is largely ran-
dom. For most experiment settings, we produced simulations with three different random seeds,
due to the computational expense of each experiment run and our limited access to computing
resources. Ideally, we would have more experiments for each setting to further improve the
strength of our results, as was done for the synthetic problem, where each setting was tested on
15 different random seeds. Another consequence of our limited computing resources was that
we did not fully test the PANM communication strategy in all experiment settings. For example,
it would have been interesting to test PANM with FedSim, to see if FedSim could mitigate some
of the stability issues with PANM. We instead chose to focus on applying DAC to a larger set of

Discussion 40

A Comparative Study of Decentralized Deep Learning Strategies

experiment settings.

A limitation of decentralized learning in general is that privacy may not be entirely preserved
with model sharing. Studies have shown that partial training data can be reconstructed from
model parameters in certain settings [3].

Another limitation is our use of curated datasets like CIFAR and MNIST, and applying shifts
to these that may not reflect real-world distributions of data. Because of this, there are likely
significant differences between our experimental setup and what an actual application of de-
centralized learning would look like. However, we made efforts to reproduce our results over
many different datasets and with many different shifts, such as label shifts (for CIFAR-10
and CIFAR-100), covariate shifts (Fashion-MNIST), and concept shifts (Fashion-MNIST and
MNIST combined and the synthetic problem). The range of potential applications of decen-
tralized learning also stretches beyond the task of image classification, which we predominantly
focused on in this work. Other machine learning tasks have different datasets and models, and
the dynamics which govern effective decentralized communication may be different.

5.4 Conclusion

We believe that this thesis has shed light on how decentralized learning methodologies work as
well as shown that they can be an effective way of solving tasks where data is distributed in a
non-IID fashion among many devices. We have demonstrated cases when strategies do and do
not work effectively, and have introduced variations to existing communication strategies that
can mitigate their shortfalls. Because more and more problems are solved with machine learning
approaches, and ever more data that can be considered private is created, there is a place
in the future for decentralized learning. In addition to creating specialized machine learning
models in a privacy-preserving manner, decentralized learning can be effective in scenarios
where computational resources are scarce or costly, as it distributes the computational load.
We envision a future where different entities and stakeholders control their own data while
collaborating to improve machine learning models through collective learning.

41 Discussion

Bibliography

[1] European Parliament and Council of the European Union. Regulation (eu) 2016/679 of
the european parliament and of the council of 27 april 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/ec (general data protection regulation), 2016.

[2] Python Software Foundation. Python programming language, 2024.

[3] Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing
training data from trained neural networks. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems, volume 35, pages 22911–22924. Curran Associates, Inc., 2022.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[5] Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Member, Zhimeng
Zhang, Yongheng Wang, and Chao Wu. Towards effective clustered federated learning:
A peer-to-peer framework with adaptive neighbor matching. IEEE Transactions on Big
Data, 2022.

[6] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data. AIS-
TATS, 2017.

[7] Noa Onoszko, Gustav Karlsson, Olof Mogren, and Edvin Listo Zec. Decentralized federated
learning of deep neural networks on non-iid data. 2021.

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library, 2019. NeurIPS 2019.

[9] Sweden. Dataskyddslagen [Data Protection Act]. SFS 2018:218, 2018. Available online:
http://www.riksdagen.se.

[10] Edvin Listo Zec, Ebba Ekblom, Martin Willbo, Olof Mogren, and Sarunas Girdzijauskas.
Decentralized adaptive clustering of deep nets is beneficial for client collaboration. 2022.

[11] Y Zhao, M Li, L Lai, N Suda, D Civin, and V Chandra. Federated learning with non-iid
data. IEEE 38th International Conference on Data Engineering, 2022.

http://www.riksdagen.se

Appendices

Appendix A

Experimental Setup and
Hyperparameter Tuning

A.1 Models

A.1.1 CIFAR-10 Experiments

For the experiment settings with CIFAR-10, we used a neural network with an architecture
described in listing 1.

Listing 1 Pytorch description of the CNN used for the CIFAR10 experiments.
1 simple_CNN(

2 (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))

3 (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

4 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

5 (conv2_drop): Dropout2d(p=0.1, inplace=False)

6 (fc1): Linear(in_features=400, out_features=120, bias=True)

7 (dropout): Dropout(p=0.5, inplace=False)

8 (fc2): Linear(in_features=120, out_features=84, bias=True)

9 (output): Linear(in_features=84, out_features=10, bias=True)

10 (activation): LogSoftmax(dim=None)

11)

12 Total number of trainable parameters: 62006

A.1.2 Synthetic Problem

The model used for the synthetic problem is a single fully connected linear layer and is described
in listing 2.

Listing 2 Pytorch description of the model used for the synthetic problem.
1 LinearRegression(

2 (linear): Linear(in_features=10, out_features=1, bias=True)

3)

4 Total number of trainable parameters: 11

Experimental Setup and Hyperparameter Tuning 44

A Comparative Study of Decentralized Deep Learning Strategies

A.1.3 Fashion-MNIST/MNIST

For the Fashion-MNIST experiment setting we used a neural network with an architecture
described in listing 3. For the Fashion-MNIST and MNIST combined experiment setting, the
same network was used, but with 20 output features instead of 10, as this setting has 20 labels.
Also, an MLP with two fully connected layers was used, which is described in listing 4.

Listing 3 Pytorch description of the CNN used for the Fashion-MNIST and Fashion-
MNIST + MNIST problems

1 fashion_CNN(

2 (conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1))

3 (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

4 (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1))

5 (fc1): Linear(in_features=800, out_features=64, bias=True)

6 (output): Linear(in_features=64, out_features=10, bias=True)

7 (activation): LogSoftmax(dim=1)

8)

9 Total number of trainable parameters: 56714

Listing 4 Pytorch description of the MLP used for the Fashion-MNIST and Fashion-
MNIST + MNIST problems

1 Classifier(

2 (fc1): Linear(in_features=784, out_features=512, bias=True)

3 (fc2): Linear(in_features=512, out_features=20, bias=True)

4 (dropout): Dropout(p=0.2, inplace=False)

5)

6 Total number of trainable parameters: 412180

A.1.4 CIFAR-100 Experiments

For the CIFAR-100 experiments, we used pretrained and randomly initialized versions of the
ResNet-18 architecture, with a total of 11,227,812 trainable parameters.

A.2 Shifts

A.2.1 CIFAR-10 Animal/Vehicle Label Shift

For the CIFAR-10 animal/vehicle label shift how data is split between the clusters is shown in
Table A.1.

A.2.2 CIFAR-100 Label Shift

For the CIFAR-100 label shift experiments the data is split into three clusters and which labels
are in which cluster is presented in Table A.2.

45 Experimental Setup and Hyperparameter Tuning

Eric Ihre-Thomason & Tom Hagander

Cluster 1 Cluster 2
(60 % of data, 60 clients) (40 % of data, 40 clients)
Bird (2) Airplane (0)
Cat (3) Automobile (1)
Deer (4) Ship (8)
Dog (5) Truck (9)
Frog (6)
Horse (7)

Table A.1: Labels and their index in each cluster in the CIFAR-10 Animal/Vehicle Label
Shift experiment setting.

Cluster 1 Cluster 2 Cluster 3
(50% of data, 26 clients) (25% of data, 13 clients) (25% of data, 13 clients)
Aquatic mammals Flowers Household electrical devices
Fish Food containers Household furniture
Reptiles Fruit and vegetables Large man-made outdoor things
Insects Trees Vehicles 1
Large carnivores Large natural outdoor scenes Vehicles 2
Large omnivores and herbivores
Medium-sized mammals
Non-insect invertebrates
Small mammals
People

Table A.2: Superclasses of labels in each cluster in the CIFAR-100 Label Shift experiment
setting

A.3 τ-tuning

For each experiment setting, the optimal value of the temperature hyperparameter τ for DAC

was searched for by running experiments with different values of τ . These are presented in
Figures A.1-A.6.

Experimental Setup and Hyperparameter Tuning 46

A Comparative Study of Decentralized Deep Learning Strategies

(a) FedAvg (b) FedSim

Figure A.1: Tau tuning for all similarity metrics and averaging methods for the CIFAR-
10 Animal/Vehicle label shift.

(a) FedAvg (b) FedSim

Figure A.2: τ -tuning for all similarity metrics and averaging methods for the CIFAR-10
5 cluster label shift.

47 Experimental Setup and Hyperparameter Tuning

Eric Ihre-Thomason & Tom Hagander

(a) FedAvg (b) FedSim

Figure A.3: τ -tuning for all similarity metrics and averaging methods for the Fashion-
MNIST covariate shift.

(a) FedAvg (b) FedSim

Figure A.4: τ -tuning for all similarity metrics and averaging methods for the combined
Fashion-MNIST and MNIST problem, using the CNN.

Experimental Setup and Hyperparameter Tuning 48

A Comparative Study of Decentralized Deep Learning Strategies

(a) FedAvg (b) FedSim

Figure A.5: τ -tuning for all similarity metrics and averaging methods for the combined
Fashion-MNIST and MNIST problem, using the MLP.

(a) Randomly initialized ResNet-18 (b) Pre-trained ResNet-18

Figure A.6: τ -tuning for all similarity metrics on pretrained and non-pretrained models
for the CIFAR-100 problem.

49 Experimental Setup and Hyperparameter Tuning

Eric Ihre-Thomason & Tom Hagander

(a) FedAvg

(b) FedSim

Figure A.7: τ -tuning for all similarity metrics and different learning rates for the synthetic
problem.

Experimental Setup and Hyperparameter Tuning 50

A Comparative Study of Decentralized Deep Learning Strategies

A.4 Summary of Hyperparameter Settings

A summary of used hyperparameters for each experiment setting can be found in Table A.3

51 Experimental Setup and Hyperparameter Tuning

Eric Ihre-Thomason & Tom Hagander

H
y
p
erp

a
ra
m
eters

E
x
p
erim

en
t
n
a
m
e

C
IF
A
R
-1
0
a
n
im

a
l/
v
eh

icles
C
IF
A
R
-1
0
5
clu

ster
S
y
n
th

etic
F
a
sh

io
n
-M

N
IS
T

F
a
sh

io
n
-M

N
IS
T

a
n
d

C
IF
A
R
-1
0
0

la
b
el

sh
ift

la
b
el

sh
ift

p
ro
b
lem

co
v
a
ria

te
sh

ift
M
N
IS
T

co
m
b
in
ed

la
b
el

sh
ift

L
ea

rn
in
g
ra
te

0
.0
0
1

0
.0
0
1

0
.0
0
3
/
0
.0
0
8

0
.0
0
0
3

0
.0
0
1

0
.0
0
0
1

N
o
co

m
m

lea
rn

in
g
ra
te

0
.0
0
0
1

0
.0
0
0
1

0
.0
0
8

5
·
1
0
−
5

5
·
1
0
−
5

0
.0
0
0
1

N
o
.
o
f
lo
ca

l
ep

o
ch

s
1
/
5
/
1
0

1
1

1
1

1
N
o
.
o
f
ro
u
n
d
s

3
0
0

3
0
0

5
0

3
0
0

3
0
0

2
7
0

N
o
.
o
f
clien

ts
1
0
0

1
0
0

9
9

1
0
0

1
0
0

5
2

N
o
.
o
f
clien

ts
p
er

clu
ster

4
0
/
6
0

2
0
/
2
0
/
2
0
/
2
0
/
2
0

3
3
/
3
3
/
3
3

7
0
/
2
0
/
5
/
5

5
0
/
5
0

2
6
/
1
3
/
1
3

T
ra
in

d
a
ta

size
p
er

clien
t

4
0
0

4
0
0

5
0

5
0
0

4
0
0

4
0
0

V
a
lid

a
tio

n
d
a
ta

size
p
er

clien
t

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

E
a
rly

sto
p
p
in
g
ro
u
n
d
s

5
0

5
0

5
0

5
0

5
0

5
0

N
o
.
o
f
n
eig

h
b
o
rs

sa
m
p
led

5
5

5
4

5
5

N
o
.
o
f
la
b
els

1
0

1
0

n
a

1
0

2
0

1
0
0

N
o
.
o
f
ru

n
s
p
er

sim
ila

rity
3

3
1
5

3
3

3
O
p
tim

izer
A
d
a
m

A
d
a
m

A
d
a
m

A
d
a
m

A
d
a
m

A
d
a
m

O
p
tim

a
l
τ
:

p
re-

n
o
t
p
re-

tra
in
ed

tra
in
ed

In
v
lo
ss,

F
e
d
A
v
g

1
0

5
1
0
0
0
0

1
0

1
1

5
C
o
s
g
ra
d
,
F
e
d
A
v
g

3
0
0

1
0
0
0

1
4
0

2
0
0
0

2
0
0
0

3
0

5
C
o
s
w
eig

h
t,

F
e
d
A
v
g

2
0
0

3
0
0

1
4
0

2
0
0
0

2
0
0
0

3
0

3
0

L
2
,
F
e
d
A
v
g

3
0

3
0

1
9

1
0

3
0

3
0

5
In
v
lo
ss,

F
e
d
S
i
m

5
5

5
0
0
0

5
1

n
a

C
o
s
g
ra
d
,
F
e
d
S
i
m

2
0
0

2
0
0

1
4
0

3
0
0

1
0
0

n
a

C
o
s
w
eig

h
t,

F
e
d
S
i
m

2
0
0

2
0
0

1
4
0

3
0
0

3
0
0

n
a

L
2
,
F
e
d
S
i
m

5
1
0

1
9

1
0

3
0

n
a

T
ab

le
A
.3:

S
u
m
m
ary

of
all

ex
p
erim

en
t
settin

gs
u
sed

,
as

w
ell

as
th
e
fou

n
d
op

tim
al

h
y
p
erp

aram
eters

for
each

ex
p
erim

en
t.

Experimental Setup and Hyperparameter Tuning 52

Appendix B

Personalized Adaptive Neighbor
Matching (PANM)

PANM divides its algorithm into two stages. The first stage consists of random communication
to collect information on other clients in the network. The second stage uses the information
gained in the first stage to only communicate with clients in its own cluster.

The first stage, NSMC, which stands for Neighbor Selection Based on Monte Carlo, works by
calculating the similarity to x new random clients and comparing them to the similarity scores
of the x sampled clients from the last round. Then NSMC picks the top x similarity scores from
these (if it is the first round it samples x random clients and calculates their similarity scores).
This makes it so that after a few rounds NSMC is prone to merge with the same clients over and
over again, see the function NSMC in Algorithm 2.

The second stage starts after T1 rounds which is a hyperparameter. This stage is called NAEM

which stands for Neighbor Augmentation Based on EM-GMM and EM-GMM stands for Ex-
pectation Maximization of Gaussian Mixture Model. From NSMC each client has x clients that
a client is quite sure of belongs to their own cluster. NAEM uses this fact and assumes that the
similarity of these ”tried and tested” clients and other clients in their own cluster are normally
distributed and have a different distribution than all clients from other clusters. This can be
mathematically formulated for a client i as

si(p) ∼ N (µ0, σ
2
0), si(q) ∼ N (µ1, σ

2
1) (B.1)

∀p ∈ N∗
i , q ∈ N∗

i ,

where N∗
i refers to the true neighbors of client i (all clients in the same cluster as client i),

and N∗
i refers to the false neighbors of client i (clients not in the same cluster as client i). It

is assumed that µ0 > µ1 for a reasonable similarity metric. NAEM then uses this assumption
when sampling new clients. this is done by assuming that the previous rounds samples are
from the same cluster as the sampling client. This means, mathematically, that the samples
from the previous round belongs to the normal distribution with the higher mean (N (µ0, σ

2
0)).

NAEM then picks x new random clients that it assumes are not part of its cluster (they belong to
N (µ1, σ

2
1)). Since both these groups of clients have similarity scores we can write the probability

that a client j belongs to the probability distribution N (µr, σ
2
r)) as

Pr
(
client j belongs to N (µr, σ

2
r)
∣∣si(j)) = βr · N (si(j) | µr, σ

2
r), (B.2)

53 Personalized Adaptive Neighbor Matching (PANM)

Eric Ihre-Thomason & Tom Hagander

where βr refers to the overall probability that si(J) is generated by distribution N (µr, σ
2
r). If

we construct the function

γj,r =

{
1, if j belongs to distribution N (µr, σ

2
r)

0, otherwise
(B.3)

we can now estimate µr, σr, βr for each client j, notated as µ̂r, σ̂r, β̂r. These estimates become

µ̂r =

∑
j∈n1∪n2

γj,rsi(j)

nr
, β̂r =

nr

|n1|+ |n2|
, σ̂2

r =

∑
j∈n1∪n2

γj,r(si(j)− µ̂r)
2

nr
, (B.4)

here nr refers to the number of clients belonging to N (µr, σ
2
r)). Using these estimates each

client j gets a probability to belong to a specific distribution and it ”moves” to the distribution
that it gave the highest probability to (for example a clients goes from being in n1 to n2). The
estimates are then repeated until there is a round where no clients changes which distribution
they gave the highest probability to (in other words the same clients that where in n1 and n2

the previous loop are there now). NAEM is formulated in Algorithm 3. Since PANM uses a lot of
notation it is summarized in Table B.1. The whole PANM algorithm can be seen in Algorithm 2
and Algorithm 3.

Notation Meaning
n Total number of clients
k Size of aggregation neighbor list
l Size of neighbor candidate list
τ Round interval of NAEM in the second stage
N t

i Neighbor list of client i in round t
Bt

i Neighbor bag of client i in round t
Ct

i Neighbor candidate list of client i in round t
St
i Selected neighbors in EM-step

H t
i Neighbor estimation list in EM-step of client i

Table B.1: Specific notations for the PANM algorithm

Personalized Adaptive Neighbor Matching (PANM) 54

A Comparative Study of Decentralized Deep Learning Strategies

Algorithm 2 Personalized Adaptive Neighbor Matching (PANM)

Input: n, k, l, T1, T2, η, E, τ, w0,W
0 = {w1

0 = w0, i ∈ [n]};
Output: W T1+T2 , B

Initialize empty neighbor lists Ni

for each round t = 1, . . . , T1 + T2 do
for each client i, i ∈ [n] in parallel do

Compute E epochs of local training:
wi,t ← wi,t−1 − η∇Fi(wi,t−1)
if t ≤ T1 then ▷ First stage: Neighbor Selection

N t
i ← NSMC

(
N t−1

i , i
)

wt
i ← Aggregation

(
N t

i ,w
t−1

2
i

)
else ▷ Second stage: Neighbor Augmentation

BT1+1
i = NT1

i

if t ≡ 0 (mod τ) then
Bt

i ← NAEM
(
Bt−1

i , i
)

N t
i ← RandomSample (Bt

i)

wt
i ← Aggregation

(
N t

i ,w
t−1

2
i

)
else

Bt
i ← Bt−1

i

N t
i ← RandomSample (Bt

i)

wt
i ← Aggregation

(
N t

i ,w
t−1

2
i

)

function NSMC(N, i):
N ← N ∪ RandomSample (Ai \N) ▷ Ai is the set of all clients except i
for each client in N do

Compute si(j) ▷ j is the clients indices in N

Sort N in descending order of si(j)-score
N ← N [1 : k] ▷ Slice the list to get top k clients
return N

55 Personalized Adaptive Neighbor Matching (PANM)

Eric Ihre-Thomason & Tom Hagander

Algorithm 3 Neighbor Augmentation Based on EM-GMM (NAEM)

function NAEM(B, i):
C0 ← RandomSample (Ai \B) ▷ Ai is the set of all clients except i
C1 ← B
for each client in C0 ∪ C1 do

Compute si(j)

while the clients in C0 and C1 changes do
for r = 0, 1 do

µ̂r ←
∑

j∈Cr
si(j)

|Cr|

σ̂2
r ←

∑
j∈Cr

(si(j)−µ̂r)2

|Cr|

β̂r ← |Cr|
|C0∪C1|

for j ∈ C0 ∪ C1 do

if β̂0Φ
(

si(j)−µ̂0

σ̂0

)
> β̂1Φ

(
si(j)−µ̂1

σ̂1

)
then

C0 ← C0 ∪ j
C1 ← C1 \ j

else
C1 ← C1 ∪ j
C0 ← C0 \ j

B ← C1

return B

”Mm, I get high with a little help from my friends”

— Ringo Starr

Personalized Adaptive Neighbor Matching (PANM) 56

Master’s Theses in Mathematical Sciences 2024:E28
ISSN 1404-6342

LUTFMA-3536-2024

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Research Questions
	Aims
	Problem Formulation

	Mathematical Formulation
	Supervised Learning Using Neural Networks
	Federated Learning
	Decentralized Learning
	Communication Strategies
	Baselines: Random, Oracle, and No Communication
	Decentralized Adaptive Clustering (DAC)
	Personalized Adaptive Neighbor Matching (PANM)

	Similarity Metrics
	Inverse Loss
	Cosine Similarity of Gradients
	Cosine Similarity of Weights
	Inverse L2-Distance Between Weights

	Datasets, Shifts and Generating Distributions

	Experimental Setup
	Experiment Settings - Datasets, Shifts, and Network Architectures
	CIFAR-10 Animal/Vehicle Label Shift
	CIFAR-10 5 Cluster Label Shift
	Synthetic Problem
	Fashion-MNIST Covariate Shift
	Fashion-MNIST and MNIST Combined
	CIFAR-100 Label Shift

	Experimental Results
	Exploring Label Shift with the CIFAR-10 Dataset
	Cluster Death
	Widening the Gap Between Oracle and Random with More Clusters
	A More Adversarial Setting: A Synthetic Problem
	Applying DAC to a Covariate Shift-Setting
	Fashion-MNIST and MNIST Combined
	Pretrained Models on CIFAR-100

	Discussion
	Main Findings
	Impact and Future Work
	Limitations
	Conclusion

	Appendices
	Experimental Setup and Hyperparameter Tuning
	Models
	CIFAR-10 Experiments
	Synthetic Problem
	Fashion-MNIST/MNIST
	CIFAR-100 Experiments

	Shifts
	CIFAR-10 Animal/Vehicle Label Shift
	CIFAR-100 Label Shift

	-tuning
	Summary of Hyperparameter Settings

	Personalized Adaptive Neighbor Matching (PANM)

