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Abstract—This study delves into the potential of contactless
palmprints within large-scale biometric frameworks, focusing
on improving candidate narrowing through an encoder-based
approach. Utilizing deep neural networks and trained via semi-
hard triplet learning, the research transforms palm images into
distinctive feature vectors for precise identification and candidate
selection. Comprehensive analysis involving various architectures,
datasets, and preprocessing techniques achieved a closed-set
rank 10 retrieval rate of 99.4% on the HandID and Tongji
datasets. Additionally, the Average Number of Hands (ANH)
metric was introduced for model comparison, revealing that
Model 62 outperformed others across multiple tests. Although the
models are not yet sufficient as standalone end-to-end classifiers,
they exhibit strong potential when combined with additional clas-
sifiers. Comparisons to previous studies underscore the promising
performance of palmprint biometrics, highlighting their potential
in specific domains like access security and payment.

Index Terms—Contactless Palmprint Recognition, Machine
Learning, Deep Neural Network, Triplet Learning

I. INTRODUCTION

The field of biometrics harnesses the unique and universal
characteristics of individuals to verify identities and plays a
pivotal role in modern security, access, and law enforcement.
There are a multitude of modalities available, each possessing
benefits and drawbacks. Among the most popular modalities
is fingerprint identification, often depicted in detective nar-
ratives and now integrated into nearly every mobile device.
Fingerprints have several advantages, such as small sensor
requirements, high information density, and the ability to
differentiate even amongst identical twins [1]. However, the
recent COVID-19 pandemic has shown some limitations for
fingerprint biometrics, such as reliance on contact and the
potential for distortions [2]. Another popular modality is face
recognition, which performs well due to the large amount of
data available but suffers criticism on the basis of privacy
concerns.

Similarly to fingerprints, palmprints are also rich with
biometric information such as the principal lines, wrinkles,
and ridges [3]. Palmprints offer distinct advantages over
fingerprints, including the potential for application in lower
resolutions [4] and containing additional identifying details
due to their increased size. They also possess advantages over
facial recognition in terms of privacy concerns and controlled
data acquisition. As recently as May 2023, Beijing Metro
launched a pilot program for fare payement via palmprint,
citing hygiene and accessibility as the main benefits [5].

Despite these advantages, research on the usage of palm-
print biometrics remains relatively limited compared to other
modalities. This thesis addresses this gap by exploring the ef-
fectiveness of deep neural network embeddings for contactless
palmprint recognition, providing a comprehensive analysis of
various methods and their performances.

In modern biometrics, machine learning has emerged as the
dominant approach. Originally, models based on handcrafted
features dominated the field, but the last decade has seen
significant progress in deep neural networks trained on large
datasets [4]. Fingerprint and face recognition have greatly
benefited from this new approach, bolstered by decades of

data collection. Recently, an increasing number of palmprint
datasets have become available, prompting the question of
whether similar success can be achieved for palmprints us-
ing these advanced machine learning techniques. This thesis
aims to determine the potential of these techniques, focusing
on the implementation and efficacy of deep neural network
embeddings for contactless palmprint recognition.

A. My Work and Contribution

This study investigates developing machine learning models
for palmprints to be used in large-scale biometrics systems.
Specifically, it aims to address the many-to-few classification
problem, which involves narrowing down a large number of
potential candidates to a few likely matches. Doing so would
save computational time by not applying more complicated
and time consuming models on a large number of candidates.
The goal is to create a model that can achieve a high rank 10
retrieval rate, meaning that the correct individual is among the
top ten candidates retrieved by the model. By addressing this
research question, I seek to advance palmprint biometrics and
facilitate their integration into new products.

The objective of the model is to accurately ascertain the
identity of individuals within a known database based on
an unseen palm image. My hypothesis posits that a model
that embeds each input palm image into a distinct feature
vector should sufficiently differentiate between individuals.
Functioning essentially as an encoder, the model processes
palm images and outputs corresponding feature vectors. The
primary aim is to devise a training pipeline that ensures the
encoder generates a unique feature vector for each input image,
with images of the same palm yielding highly similar feature
vectors. These unique encodings could then be used as part of
a larger pipeline for classification.

B. Preface

This master’s thesis was conducted at Precise Biometrics,
located in Lund, Sweden, based on topics suggested by the
company. While Precise Biometrics provided data, a laptop,
and guidance, all research and writing was undertaken by me.

II. PREVIOUS WORK

The extensive research conducted in fingerprint and facial
biometrics has great value and applicability to palmprint recog-
nition. Fingerprints and palmprints share the characteristic
of having distinct ridges, while facial recognition encounters
similar challenges to palmprints, such as background noise,
region of interest (ROI) framing, and varying lighting and
pose conditions. This section reviews previous work in these
biometric areas and discusses its relevance to palmprint recog-
nition. Additionally, studies specifically on palmprints are
presented, analyzing their applicability and limitations.

In 2015, Schroff et al. [6] introduced FaceNet, a model
that improved facial biometrics in large-scale systems by
using compact embeddings to map face images to feature
vectors. FaceNet utilized a deep neural network (DNN) trained
with triplet learning, detailed in Sec. III-A, to generate these
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embeddings. FaceNet encountered two major problems: the
pose and the illumination of the subject were highly varied.
These are also problems within palmprints, as the hand poses
and lighting of the images complicate model precision. Hand
pose affects the principal line position and ridge counts, while
illumination can significantly alter pixel intensities. FaceNet
achieved generalization towards these by using a large dataset
of labeled faces, a luxury not as available for palmprints,
leaving it uncertain if existing datasets can provide palmprint
models with similar generalization.

In 2019, Afifi at Google [7] presented the 11k Hands dataset,
featuring images of the palm and back of the hand, which was
used to train a gender classification model. Afifi highlighted
the advantage of palmprints in the controlled conditions in
which images are taken. Like Schroff et al., Afifi employed
a deep convolutional neural network but added a dual-stream
approach, meaning they add a separate pipeline trained on a
detailed version of the images. Their preprocessing applies
a smoothing filter to create a low-frequency image that the
original image is then divided by to obtain a high-frequency
’detailed’ image.

Also in 2019, Thapar et al. [8] introduced PVSNet, which
used the palm-vein structures underneath the palm surface
for identification. They claimed that palm-vein images offer
advantages in preventing spoofing and do not require physical
sensor contact. Using these images, they trained an encoder-
decoder using a deep convolutional neural network with triplet
learning, explained in Sec. III-A, inspired by U-net. An
alternative to the palm-vein images are ’surface’ images, which
are taken with a wavelength that highlights the surface ridges.
Furthermore, ’subdermal’ images of the palm’s capillary beds
could be used; an alternative not explored by Thapar et al. The
question of whether to employ surface, subdermal, or normal
images will be a subject of analysis in this report.

Most recently, Grosz et al. [9] presented a new state-of-
the-art model for palmprint identification that combined a 50-
layer deep neural network and a visual transformer to generate
image embeddings. Classification was performed using the
Euclidean distance between embeddings. Grosz et al. attribute
their improvements to a large, newly captured dataset, soon
to be publicly available. Grosz et al.’s paper was found after
the results were already in hand, and since it has similar
approaches to mine, their results are a valuable benchmark.
However, the lack of overlap between their test datasets and
mine limits direct comparability.

III. THEORY & METHODS

This section presents the necessary theory and approach
used in this study to develop a deep neural network (DNN)
for palmprint analysis. Essentially, the network processes
a 200x200-pixel image of a palm and generates a 128-
dimensional embedding vector. Identification is performed by
embedding an unseen palm and measuring the L2 norm to
nearby enrolled embeddings, as illustrated in Fig. 2. Enrolling
involves encoding palm images from an individual and calcu-
lating the average embedding vector. Each palm was treated

as a different class, meaning each person has two classes. For
stability, each 128-dimensional embedding is constrained to
the 128-dimensional hypersphere. The many-to-few problem,
meaning reducing the number of candidates, is addressed by
returning a list of the 10 most similar candidates based on
euclidean distance in the 128-dimensional feature space. The
proposed model’s training strategy relies on triplet learning,
explained in Sec. III-A, inspired by the principles presented
by FaceNet [6] and PVSNet [8]. The training pipeline is
illustrated in Fig. 1.

Figure 1: Training pipeline including preprocessing, data aug-
mentation and training using triplet learning.

Figure 2: Testing Pipeline: enrolling a set of images and then
comparing verify images to the enroll images. The trained
encoder creates embeddings of the images, from which an
average is taken to get a palm embedding.

A. Triplet Loss

Triplet learning consists of training on three images: an
’anchor’ serving as a reference point, a ’positive’ image
depicting the same palm as the anchor, and a ’negative’ image
portraying another palm. The objective of triplet learning
is to iteratively train the model to embed the anchor and
positive images similarly while creating a clear separation
from the negative image. Conceptually, triplet learning aims
to minimize the L2 norm between all embeddings of the same
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Figure 3: Visualization of triplet learning. After learning,
the distance between the anchor and positive embeddings is
smaller, while the distance between the anchor and negative
embeddings is greater.

palm (anchor-positive pairs) while maximizing the norm be-
tween embeddings of different palms (anchor-negative pairs),
as shown in Fig. 3. The pytorch function TripletMarginLoss
is used, which is mathematically defined as:

L(a, p, n) = max[||f(a)−f(p)||2−||f(a)−f(n)||2+margin, 0],

where a, p, and n represent the anchor, positive, and negative
images, respectively, and f(·) is the mapping of the neural
network. The margin hyperparameter defines the ’closeness’
criterion between the anchor-positive pair and the anchor-
negative pair. If the negative image lies closer to the anchor
than the positive image does anchor, the margin constitutes
the minimum separation of the two pairs. This means that the
model learns to discriminate between positive and negative
images effectively. When the margin is not violated, i.e., when

||f(a)− f(p)||2 − ||f(a)− f(n)||2 + margin < 0,

the resulting loss function is 0, and the model learns nothing.
Therefore, it is vital to properly tune the margin and select
triplets effectively.

B. Triplet Selection

The naı̈ve approach to selecting triplets is to randomly
determine a positive image from the anchor’s class alongside a
negative image from a different class. However, this selection
scheme often results in 0 loss since the margin is not violated
for a negative image far from the anchor, resulting in wasted
computational time without learning.

For triplet learning, hard and semi-hard triplet selection, also
called hard or semi-hard negative mining, are the most popular
methods. Hard triplet selection involves selecting triplets such
that the negative image is as close to the anchor as possible,
while the positive image is randomly selected from the anchor
class. This forces the model to train on triplets it finds difficult
to differentiate, improving performance but potentially leading
to local minima issues, as outlined in [6]. Semi-hard triplet
selection means selecting negative images whose embeddings
are farther away from the anchor embedding than the positive
image’s, but still as close as possible, ensuring non-zero loss
during training. See Fig. 4 for a visualization. Although tech-
niques exist to avoid the local minima of hard triplet selection,

(a) Hard triplet selection : The
positive is randomly selected
from the blue class and the
negative is the closest different
class.

(b) Semi-hard selection: The
positive is randomly selected
from the blue class and the
negative is the closest different
class farther from the positive.

Figure 4: Comparison of triplet selection techniques. Each
color indicates a different class.

as described in [10], I initially chose the simpler approach
of semi-hard triplet selection with the intention of revisiting
the choice later. However, complications with implementation
resulted in only trying semi-hard triplet selection throughout
the entire study.

To practically implement semi-hard negative triplet selec-
tion, a distance matrix between all training images is pre-
calculated at the beginning of each epoch using the model,
which is then used as a reference throughout the entire epoch.
This approach is less precise than caluclating new distances for
each batch but significantly reduces computational complexity.
Compared to the naı̈ve approach, my approach has a higher
computational cost but yields superior results by allowing
the proper implementation of semi-hard triplet selection. As
the model learns to differentiate images of different classes,
they will begin spreading out due to the margin enforcing
the minimum distance, thus increasing the risk of finding no
suitable triplets for learning in later epochs. To compensate
for this, two strategies are employed. Firstly, the embeddings
are constrained to the 128-dimensional hypersphere. Secondly,
inspired by Thapar et al. [8], the margin is dynamically
increased over the course of the model training. To ensure the
model trains sufficiently on the final margin, most models were
trained using a ’flat’ margin, which means the final half of
epochs all utilized the final margin, see Fig. 5 for illustrations
of the margins used.

C. Dataset Analysis

In this section, I discuss the various datasets used to train
and test the model. Multiple previous palmprint studies have
graciously provided datasets for academic use, and internal
collections at Precise Biometrics have also supplemented the
datasets. During data collection, images of entire hands are
taken, but only the central part of the palm is used for
the model. Fig. 6 shows example images from the Tongji
dataset, with Fig. 6d used for preprocessing. Most datasets
had 200x200-pixel ROI images available; when they did not,
Precise Biometrics provided tools for ROI extraction. A list
of the datasets used is provided in Tab. I.
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Figure 5: Visualization of margins used by the 3 models. Flat
margin implies training half the epochs on the final margin.

TABLE I: Datasets used including number of unique hands
and total images. Casia and Google11k contains images of
both sides of the hand; only those of the palm were used.

Dataset # of Unique Hands Total Images Source
Training

Casia (Palmar) 617 5286 [11]
Google11k (Palmar) 190 5380 [7]

IITD 455 2512 [12]
MPD 200 16000 [13]

Precise Biometrics 1 224 1321 Internal
Precise Biometrics 2 42 334 Internal

Testing
HandID 1 (H. 1) 77 365 Internal
HandID 2 (H. 2) 80 795 Internal

Tongji 600 12000 [14]

My models were trained using the datasets labeled ’Train-
ing’ in Tab. I, with 20% of the data removed and used as a
validation set. Special care was taken to perform the validation
split based on individuals in order to avoid having the same
person in both the training and validation sets. Additional
models were also trained on individual datasets to gauge if
any datasets were adversely affecting the models. In particular,
MPD was removed and used as a test set in one ablation study
since it appeared very uniform. Two collections were provided
by Precise Biometrics for testing: HandID 1 and HandID 2,
consisting of 77 and 80 palms, respectively. The Tongji dataset
was obtained after initial results were obtained and thus was
not used for training, but it served as a sizable test set due to
its considerable 12000 images.

There are two major factors that vary in palmprint images:
illumination and pose, as visualized in Fig. 6. Both Google11k
and IITD include pose variation by asking the subject to open
and close their hand while using uniform light. Casia does
not specify pose variation and uses uniform light, while MPD
has open hands with varied light. The internal collections,
Precise Biometrics 1 and Precise Biometrics 2, have variations
in lighting but not in poses. HandID 1 and HandID 2 contain
no variation in pose, with HandID 1 exhibiting significantly
more variation in illumination than HandID 2. Tongji has a
slight variation in pose and a large variation in illumination.
An overview of the dataset variation is shown in Tab. II.

In conclusion, there is some variation within both pose

TABLE II: Pose and light variation in the datasets.

Dataset Pose Variation Light Variation
Casia (Palmar) ? ×

Google11k ×
IITD ×
MPD × ×

Precise Biometrics 1 & 2 ×
HandID 1 ×
HandID 2 × ×

Tongji

(a) Low illumination image with
fingers spread apart.

(b) High illumination image with
fingers spread apart.

(c) High illumination image with
fingers held together.

(d) Grayscale region of interest of
Fig. 6a.

Figure 6: Various illuminations and poses of original images
of different hands from the Tongji dataset.

and illumination in the training datasets, but it may not be
sufficient to ensure that models will generalize well to these
variations. Differences in pose are difficult to simulate through
preprocessing, but illumination differences could be replicated.

Some of the datasets, specifically HandID 2 and Tongji,
contain both ’enroll’ and ’verify’ images. For Tongji, these
are images taken in different sessions six months apart. For
HandID 2, each person has two sets of verify images: surface
and subdermal. The surface image is taken with a wavelength
that results in a heightened surface resolution of the image,
as illustrated in Fig. 7. Fig. 7a shows an enroll image taken
with a regular phone camera, and Fig. 7b shows the surface
image. The subdermal image is taken with a wavelength that
highlights the palm’s capillary beds but is not available for
illustration. These vary slightly from the vein-structure images
used by PVSNet [8]. Either surface or subdermal could feasi-
bly be used as the verification image in the model; however,
both suffer from the issue of being a different modality than
both the enroll images and the training set, which are regular
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light images.

(a) HandID 2 enroll image, taken
with a phone camera using regular
light.

(b) HandID 2 ’surface’ verify im-
age, captured at a wavelength em-
phasizing the palm surface.

Figure 7: Normal and surface images of the same hand from
HandID 2.

D. Preprocessing and Data Augmentation

Palmprints contain many ridges and lines, which have a
high contrast compared to the surrounding area. To enhance
these lines, high-frequency ’detailed’ images were created
by elementwise dividing the original images by a smoothed
version of the image, similar to the approach by Afifi [7].
Fig. 8 illustrates this preprocessing step. Specifically, Fig.
8a shows the original image from the dataset, while Fig.
8b depicts the detailed preprocessing of that image. Models
were trained on the original dataset, the detailed dataset, and
both datasets combined. When training on both datasets, the
original and detailed images of the same hand were treated
as the same class to prevent the model from learning to
differentiate based on camera type. The test datasets, including
the surface and subdermal images of the HandID 2 dataset,
were also preprocessed into detailed versions.

Properly training deep neural networks (DNNs) requires
vast amounts of data. The 30000 training images are only
about 10% of the data used in similar studies, such as that
by Grosz et al. [9]. To bolster the dataset, various data
augmentation techniques were employed, as presented in Tab.
III. The data augmentation involves adding noise, performing
gaussian blur, flipping the images horizontally, and erasing
a randomly sized rectangle from the image. Since the model
utilizes triplet learning, each augmentation operation involving
rectangle removal or horizontal flipping was applied equally to
all three images to avoid training a right/left hand invariance.
Conversely, noise and blur were applied only to the anchor
image to increase the model’s robustness against sensors that
might provide noisy or blurry images. The augmentation
parameters were obtained through a brief hyperparameter
optimization on the validation set. Fig. 8c shows an image
with data augmentation.

In summary, preprocessing and data augmentation were
crucial steps in preparing the palmprint images for model
training. By creating detailed versions of the images and

(a) Original Image (b) Detailed Image

(c) Augmented Image

Figure 8: Preprocessing and data augmentation used. Images
of the same hand.

TABLE III: Data augmentation applied during training. Noise
added had 0 mean and 0.1 variance. Various torchvision
packages were utilized. Gaussian blur was implemented using
transforms.functional.gaussian blur with either a 50/50 kernel
size of 3 or 1. Horizontal flipping was implemented using
transforms.functional.hflip. Random erasing was implemented
using transforms.RandomErasing.

Augmentation Batch Chance Parameter
Noise 70% N(0,0.1)

Gaussian Blur 70% Kernel: 3/1 (50/50)
Horizontal Flipping 50% -

Random Erasing 40% Rectangle 2-21 % of the image

applying various augmentation techniques, I aim to enhance
the model’s ability to generalize to different lighting and pose
conditions, as well as increase its robustness to noise and blur.
These steps ensured that the model was trained on a diverse
set of images, improving its performance and reliability in
real-world applications.

E. Network Architecture

The architecture of the neural network is based on the
Zeiler& Fergus model [15], featuring convolution layers with
5 x 5 or 3 x 3 kernels and ReLU activation. Down-sampling is
performed using 2 x 2 max-pooling layers, and optimization
is done using the ADAM optimizer. The detailed architecture
is outlined in Tab. IV.

Different model iterations were tested, as described in more
detail in the ablation study in Sec. V-C. Throughout the
project, three models emerged as the best performing on
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TABLE IV: Architecture of neural network used.

Layer Size in Size out Kernel
Conv2d 200x200x1 200x200x32 5x5

MaxPool2d 200x200x32 100x100x32 2x2
Conv2d 100x100x32 100x100x64 3x3

MaxPool2d 100x100x64 50x50x64 2x2
Conv2d 50x50x64 50x50x128 3x3

MaxPool2d 50x50x128 25x25x128 2x2
Conv2d 25x25x128 25x25x256 3x3

MaxPool2d 25x25x256 12x12x256 2x2
Conv2d 12x12x256 12x12x512 3x3

MaxPool2d 12x12x512 6x6x512 2x2
Conv2d 6x6x512 6x6x1024 3x3

MaxPool2d 6x6x1024 3x3x1024 2x2
Flatten 3x3x1024 9216x1x1 -

Linear 1 9216x1x1 512 -
Linear 2 512 256 -
Linear 3 256 128 -

different metrics. These models, referred to as models 52, 62,
and 74, will be presented in the subsequent sections.

F. Training the Model

The models were trained using an NVIDIA GeForce RTX
3090 GPU. A validation set containing 20% of the images,
distributed similarly to the training set as shown in Tab. I, was
used for hyperparameter tuning. The training process involved
using different datasets, a varying number of epochs, batch
sizes, margin adjustments, and learning rates. Each model’s
specific configuration is shown in Tab. V. The different train-
ing strategies for the models aimed to optimize the models for
both accuracy and generalization, leveraging detailed prepro-
cessing and data augmentation to enhance performance.

TABLE V: Hyperparameters of trained models. Margins are
illustrated in Fig. 5.

Model Datasets Epochs Batch Margin Learning Rate
52 Detailed 30 64 0.5-1 Flat 0.00002
62 Og+Detailed 15 24 0.5-0.65 0.00002
74 Og+Detailed 50 24 0.6-0.8 Flat 0.000015

G. Evaluation Metrics

To evaluate the quality of the models, several evaluation
metrics were utilized on the three test datasets. Previous works,
such as [9], utilize the true accept rate (TAR) at 0.01% false
accept rate (FAR) as a benchmark for model performance.
This metric measures the end-to-end model capability and
incorporates the potential for misclassifying a person, making
it a very useful industry standard. However, I do not use
TAR at 0.01% FAR because my model’s goal is to narrow
down to the 10 most similar candidates. These candidates
could then be fed into a classifier, such as a support vector
machine, to create an end-to-end classifier where TAR at
0.01% FAR would be a suitable evaluation metric. If the
person in question is not enrolled in the model, it would be
significantly quicker computationally to identify them at this
later stage. Consequently, all tests are conducted on a closed-
set, meaning the correct person is assumed to be enrolled in
the database already. While this approach does not allow for

direct comparison with previous studies using TAR at 0.01%
FAR, I can still compare using the closed-set rank 1 retrieval
rate, as reported by Grosz et al. [9].

Evaluation metrics were calculated by encoding all images
in the test dataset and then iteratively removing one image to
verify against the rest. For the HandID 2 and Tongji datasets,
an additional test was performed by encoding all enroll images
and iteratively encoding the verify images.

1) Average Number of Hands: Since the goal of the model
is to narrow down the number of candidates for identifica-
tion and not necessarily provide an end-to-end identification
pipeline, I introduce the Average Number of Hands (ANH).
This metric measures how many unique enrolled palms lie
closer to the palm being verified than the correct person does;
an ANH of 1 means that the most similarly encoded palm
comes from the same person.

To calculate ANH, all enroll images are encoded before
iteratively encoding the verify images and checking which
enrolled images lie closest, as shown in Fig. 2. The score
of an image is determined by the number of people checked,
including the image itself, before finding an enrolled image
with the same class as the verify image. The average of all
verify images is the ANH for that dataset. Since the encodings
are limited to a 128-dimensional hypersphere, a larger dataset
should result in a larger ANH, as more data makes the closest
hand less likely to be of the same class.

ANH was also used as the evaluation metric for the impact
of different embedding dimensionalities. For these tests, model
62 was used as a baseline, changing only the size of the final
output layer, as it appeared to be the best-performing model
at the time.

2) Closed-set Rank 1/10 Retrival Rates: Two additional
metrics useful for assessing the model’s identification perfor-
mance are the closed-set rank 1 and rank 10 retrival rates.
Rank N retrieval rates can be thought of as returning a list of
the N most similar enrolled hands, and closed-set means that
the hand tested is guaranteed to be enrolled. Closed-set rank 1
retrieval rate effectively shows how well the model performs
as an end-to-end classifier on a given dataset. It calculates
the percentage of times the most similar enroll image to a
varify image is of the same class. Closed-set rank 10 retrival
rate provides an overview of the model’s performance on the
many-to-few problem of narrowing down options. It calculates
the percentage of times an image of the verify class is present
within the 10 most similar enroll images returned for each
verify image.

IV. RESULTS

This section presents the experimental results obtained from
the models, including the Average Number of Hands (ANH),
closed-set rank 1 and 10 retrieval rates, and the effects of
varying embedding dimensionalities. Each model’s results
were obtained by training three identical models with different
seeds, and the mean and standard deviation were calculated.
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A. Average Number of Hands

The ANH results for the three models are shown in Tab.
VI. I observe that model 62 outperforms the other models
across all datasets, closely followed by model 74, and model
52 performs significantly worse. The results on HandID 2 are
significantly better than on HandID 1, while HandID 2 Surface
and HandID 2 Subdermal perform poorly. The larger Tongji
dataset performs about the same as HandID 1.

TABLE VI: ANH of my models on the test datasets. HandID
2 (H. 2) contains three versions of the images: enroll, surface
(Sur.) and subdermal (Sub.). For Tongji, the enroll images are
used.

Model H. 1 H. 2 H. 2 Sur. H. 2 Sub. Tongji
52 1.42 1.19 5.29 5.60 1.38

±0.04 ±0.01 ±0.64 ±1.21 ±0.06
62 1.29 1.10 3.78 3.55 1.32

±0.06 ±0.03 ±0.38 ±0.49 ±0
74 1.37 1.20 3.92 3.88 1.44

±0.04 ±0.03 ±0.46 ±0.48 ±0.12

B. Closed-set Retrieval Rates

The closed-set retrieval rates using only enroll images are
presented in Tab. VII. Here we also observe that model 62
narrowly outperforms model 74 and significantly outperforms
model 52 across all datasets. Model 62 achieves a rank 10
retrieval rate of around 99.36% on both the HandID 1 and
HandID 2 datasets. The rank 1 retrieval rates for model 62
are more varied, at around 92-95%. The results on Tongji are
the best, reaching a rank 10 retrieval rate of 99.54%.

TABLE VII: Closed-set rank 1 (R. 1) and rank 10 (R. 10)
retrieval rates for the three models (M.) on the enroll images
of test sets HandID 1 (H.1), HandID 2 (H.2) and Tongji (T.).

M. H.1 R.1 H.1R.10 H.2 R.1 H.2R.10 T. R.1 T. R.10
52 92.42 98.81 85.45 98.91 97.17 99.42

±0.72 ±0.13 ±1.51 ±0.15 ±0.34 ±0.0623
62 94.88 99.36 91.65 99.37 98.24 99.54

±0.47 ±0.26 ±2.50 ±0.36 ±0.050 ±0.019
74 91.87 99.36 88.09 99.33 97.16 99.34

±0.85 ±0.52 ±1.93 ±0.21 ±0.49 ±0.15

After testing using the enroll images, the performance of
the models on the verify images of HandID and Tongji are
presented in Tab. VIII. These perform substantially worse than
only using the enroll images for all models, especially on the
surface and subdermal images.

C. Embedding Dimensionality

The ANH for models with varying embedding dimensional-
ities is shown in Tab. IX. The results show minimal differences
between the embedding dimensionalities.

V. DISCUSSION

A. Semi-Hard vs. Hard Triplet Selection Schemes

One of the initial decisions was whether to apply hard
or semi-hard triplet selection, as described in Sec. III. Hard

TABLE VIII: Closed-set rank 1 (R. 1) and rank 10 (R. 10)
retrieval rates for the three models (M.) on the HandID 2 (H.
2) and Tongji (T.) dataset using the verify images. Both surface
(Sur.) and subdermal (Sub.) images are included.

M. R.1 Sur. R.10 Sur. R.1 Sub. R.10 Sub. T. R.1 T.R.10
52 36.87 82.05 36.96 81.26 60.96 87.35

±2.78 ±1.61 ±2.94 ±2.60 ±5.51 ±2.35
62 45.45 88.42 47.51 88.85 74.72 93.90

±0.56 ±1.97 ±1.62 ±1.56 ±1.59 ±0.80
74 43.13 88.24 42.16 88.90 66.57 90.79

±1.25 ±1.35 ±1.61 ±1.02 ±0.87 ±0.87

TABLE IX: ANH of various embedding dimensionalities.
Model 62 was used as a baseline for all the models.

Embedding Dim. HandID 1 HandID 2 Tongji
64 1.43± 0.02 1.12± 0.03 1.33± 0.06

128 1.29± 0.06 1.10± 0.03 1.32± 0.000028
256 1.29± 0.023 1.12± 0.0069 1.27± 0.059
512 1.29± 0.076 1.09± 0.022 1.31± 0.047

triplet selection poses the risk of getting stuck in local min-
ima, but previous studies, such as Xuan et al. [10], present
modifications to the loss function that mitigate these risks.
However, integrating these modifications with the existing
MarginLossFunction proved challenging, and other questions
were prioritized. Consequently, semi-hard triplet selection was
used initially and continued throughout the study due to
its acceptable performance. Further research into hard triplet
selection could yield interesting results, and a proper imple-
mentation would likely match the efficacy of semi-hard triplet
selection.

B. Performance and Comparison

The results are best understood in context with each other
and with previous studies. This section provides a comparative
perspective and outlines the rationale behind the findings.

1) Average Number of Hands: The Average Number of
Hands (ANH) performance, presented in Tab. VI, is a novel
metric used here to compare the models. Unsurprisingly,
model 52 consistently performed the worst due to its simpler
data augmentation strategy. When only one version per model
was trained, this was not certain, but with the larger sample
size presented in Tab. VI, I can dismiss model 52 as inferior
to my other models. This result highlights the importance of
data quantity in deep neural networks. Models 62 and 74 were
trained on double the amount of data using the heavy data
augmentation outlined in Sec. III-D. The results indicate that
model 62 outperforms model 74 by a narrow margin across
all datasets.

Interestingly, the models performed better on HandID 2 than
on HandID 1, likely due to the controlled lighting conditions
during HandID 2’s collection, as displayed in Tab. II. This
implies that my models have not achieved the desired gener-
alization to light conditions. One possible explanation for this
is that not enough images in the training dataset have lighting
variations; only Precise Biometrics 1 and Precise Biometrics
2 contain light variations but account for only around 5.4%
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of the data. If the Tongji dataset had been available during
training, which contains both variations in pose and light, the
models are likely to generalize better to these variations.

In Sec. III-G1, I hypothesized that a larger dataset would
have a worse ANH due to the increased candidates for
missclassification. However, the similar ANH results between
HandID 1 and the much larger Tongji dataset disprove this
hypothesis and suggest that the 128-dimensional feature vector
space remains manageable even with a larger dataset.

For HandID 2, the performance significantly dropped when
classifying subdermal and surface images compared to enroll
images. This drop is attributed to the different modalities of
these images, and preprocessing was insufficient to bridge
this gap. An attempt to combine surface and subdermal em-
beddings by averaging proved ineffective, resulting in worse
performance. Using surface or subdermal images for the train-
ing of a palmprint classifier remains possible but is severely
limited by the amount of data available.

2) Closed-Set Rank 1/10 Retrieval Rate: The closed-set
rank 1 retrieval rate shown in Tab. VII for enroll images is
around 92-95%, insufficient for end-to-end classification. In
comparison, Grosz et al. [9] achieved a rank 1 retrieval rate of
99.71% on the Casia dataset, highlighting the gap between the
datasets and methodologies. Specifically, Grosz et al. utilized
around 10 times the data and trained a multi-streamed model
utilizing both a deep neural network and a visual transformer.
My models, while not intended as final classifiers, could serve
as a strong pre-classifier for a support vector machine, given
the 99.4% rank 10 retrival rate, which would be an interesting
subject for future research. The results shown by [9] indicate
that improvements remain possible, and I believe that further
model refinement could improve the rank 10 retrieval rate to
near 100%.

Model 62 outperforms the others in rank 1 retrieval rates, al-
though rank 10 retrieval rates showed no significant difference
between models 62 and 74. This indicates a slight superiority
of model 62 over model 74.

Verification when enrolling with one subset of images and
then verifying with another yielded significantly worse results,
as seen in Tab. VIII, reinforcing the challenge of generalizing
across different image modalities and conditions. The Tongji
dataset, with verify images collected 6 months later, performed
significantly better than HandID 2’s, whose verify images were
surface and subdermal images. There is minimal difference
between using surface and subdermal images, both resulting
in a rank 1 retrieval rate of around 44 % and a rank 10
retrieval rate of around 88%. From these results, it is evident
that the model does not properly generalize to the surface
and subdermal images. In order to do so, I believe adding
images of surface and subdermal modality to the training
dataset would be necessary.

Likewise, comparing the Tongji verify results in Tab. VIII
to the results of using only the enroll images for Tongji in Tab.
VII, we see that using the enroll images performs significantly
better. This is more surprising than the case for HandID 2,
since Tongji’s verify images are of the same modality as

its enroll images. Using the Tongji verify images, model 62
achieves a rank 10 retrieval rate of 93.9% versus 99.54%
when using only enroll images. This result likely stems from a
difference in the enroll and verify Tongji datasets, performed
in collections 6 months apart.

C. Ablation Study

This section discusses the various models and hyperparam-
eters tested during the study, aiming to justify the final model
choices.

1) Training on Different Datasets: Apart from training
models on all datasets presented in Tab. I, models were
also trained on individual datasets. These models unilaterally
performed worse than the models trained on all data. MPD
is a dataset of specific note that contains a large quantity
of images that visually appear very similar to one another.
An untrained, newly initiated model trained on this dataset
performed surprisingly well; this led me to believe that MPD
might be the cause of significant overfitting, and a model was
trained without this dataset. However, this model performed
worse than the previous best models. No other datasets were
singled out in this way, thus it remains a possibility that other
combinations of datasets could lead to improved results.

2) Embedding Dimensionality: Like Schroff et al. present
in [6], I also investigate the impact of embedding vector length
on model performance. In their study, they find that embedding
dimensionalities of 64, 128, 256, and 512 all have similar
results. They posit that this is because the larger embedding
vectors need more training to achieve the same accuracy.
Grosz et al. [9] also try similar dimensionalities around this
range and conclude that the difference is minimal. Similarly,
I found very limited differences in such models, as shown
in Tab. IX. Furthermore, the results in Tab. VI bolster this
since the models achieve similar ANH on HandID 1 and
Tongji datasets, which have significantly different amounts of
images. I suspect that this is due to the lack of complexity
of palmprints when compared to the dimensionality required
for embedding linguistic meaning, such as in large language
models; the quality of the images is not sufficiently high that
enough details can be picked up to warrant a higher embedding
dimensionality. An interesting future study would be to try
more extreme embedding dimensionalities to observe when
the invariance breaks and ascertain why.

3) Comparison to Simple Hand Crafted Feature Vector:
In order to ascertain how my models perform compared to
a baseline, simple handcrafted features were created on the
original + detailed dataset by taking a single averaging con-
volution of the 200x200-pixel image. I attempt to emulate the
128-dimensionality by using an 18x18 kernel with stride 18,
resulting in a feature vector of 121 dimensions. After obtaining
the handcrafted feature vectors for each image, the same steps
are taken as with the model testing: calculating a distance
matrix for each test point and then comparing the points to
see whether they are closest to another point of the same class
or not. This resulted in an ANH of 5.34, compared to 1.13 for
model 62. Conversely, using an untrained, newly initialized
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model with random parameters resulted in an ANH of 5.51.
These results thus appear very similar and, unsurprisingly,
much worse than those of my trained models.

4) Palmprint as a Competitive Biometric Modality: My
results, as well as those of [9], indicate that palmprints, as
a biometric modality, exhibit promising potential for security
access applications. However, it is essential to recognize that
while palmprint models show competence in distinguishing
individuals, they do not yet surpass the comprehensive de-
velopment and application of fingerprint and face recognition
technologies. In scenarios like mobile phones, where finger-
print sensors and facial recognition are predominant and effi-
cient, palmprints are unlikely to supplant them. Yet, in contexts
such as office access or personal payments, palmprints offer
advantages, including not storing sensitive facial images and
enabling user-initiated interactions, like raising one’s hand for
authentication, unlike facial recognition systems that lack such
user prompts. It is possible that the growing development
and increased research into palmprints will bring them to the
forefront of biometric modalities in the coming decade.

VI. CONCLUSION

In conclusion, my models confirm the hypothesis that
employing an encoder adequately addresses the many-to-few
issue in narrowing down candidates for palmprint recognition.
This study introduces the Average Number of Hands (ANH)
metric, providing a new way to compare model performance.
While my proposed model, model 62, is not flawless and
would be insufficient as a standalone end-to-end classifier,
its 99.4% closed-set rank 10 retrieval rate indicates potential
when combined with another classifier. Although there are
challenges with different image modalities and the need for
more robust pre-processing techniques, recent advancements in
palmprint biometrics underscore its emergence as a formidable
contender alongside fingerprint and face biometrics. Future
research could explore the implementation of hard triplet
selection, test different dataset combinations, and investigate
extreme embedding dimensionalities to further optimize per-
formance. With ongoing development, palmprint technology
could become a preferred biometric modality in specific do-
mains such as access security and payment, complementing
existing systems and offering unique advantages.

USE OF AI
ChatGPT 3.5 and 4o were used in a limited amount through-

out this work. Most questions asked were regarding the syntax
of relatively simple Python functions. The code supplied was
always tested and usually worked after resolving some com-
piling errors through further communication with ChatGPT.
ChatGPT was also used to refine paragraph structures for
academic writing. The AI spellchecker QuillBot was also used
thoroughly, mainly adding commas and changing prepositions.
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