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Abstract
Prefetching is a well known concept for CPUs but for GPUs it is fairly
unexplored. The memory management of a GPU plays a crucial role
in its performance, and cache prefetching has the potential to lower
the overall latency. This thesis compares different types of prefetching
methods for GPUs and remaking some CPU prefetchers to fit the
GPU architecture. All these prefetchers were then put inside the
system level cache (SLC), between the GPU and external memory.

Five different methods were tested on framework based on ARM’s
GPU model. The thesis was mainly based upon prefetching tech-
niques discussed in the following papers: Adaptive Stream Detec-
tion[11], Best-offset [18], Many-thread aware [17], APOGEE [26],
and Last-level collective cache prefetcher [19]. The prefetchers pro-
duced in this thesis were either heavily inspired by or implemented
as closely as possible to the designs in the papers.

The thesis concludes that for graphics workloads the best prefetch-
ers implemented can achieve 0.51-1.29% decrease in GPU cycles on
average, depending on the chosen GPU configurations, while also
lowering the estimated energy usage.
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Prefetching is the process of guessing what data a system wants, before it asks for it.
This idea has been used for Central Processing Units (CPUs) for a long time but is
rather unexplored for Graphic Processing Units (GPUs). This thesis will look at five
different prefetchers and evaluate their performance.

Accessing the main memory can sometimes slow
things down because, even though the processor is
fast, it’s held up waiting for the memory to catch
up. This is due to the fact that accessing the main
memory takes a rather long time. The solution is
using something called cache. Cache consists of
small memory units that are much faster than the
main memory. These units are placed in multiple
levels between the processor and the main mem-
ory. When the processor needs to access data, it
goes through all the levels of cache until it finds
the data it’s looking for in the nearest level. Then,
it retrieves that data and sends it back to the pro-
cessor through all the levels again. When new data
arrives at a level where it isn’t already stored in
the cache, it gets placed there so that it can be
found faster the next time.

Normally a GPU consists of two levels of cache
but sometimes a third one called System Level
Cache (SLC) is added. In this thesis, different
prefetching approaches are evaluated for this third
level of cache for a GPU that is performing com-
plex tasks, in this case demanding mobile graph-

ics.
The main tasks for a prefetcher is to decide

on three main topics. What data to prefetch,
how much to prefetch, and also when to prefetch.
When deciding what to prefetch the simple ap-
proaches often look at the difference between con-
secutive cache requests. If this difference is regular
for several requests in a row, prefetch requests are
sent to the main memory. And if the differences
are not in any way regular, no prefetch requests
are sent. So the challenge is how do we make sure
that we only prefetch when a pattern is present
and do nothing when there is no pattern present.

In the thesis five different prefetching methods
were tested. Three used more simple difference
calculation, one used a scoring system to find the
pattern, and another used probability theory. It
was found that in most of the cases tested there
was a performance increase of 1.3% at best. It
was also seen that the energy consumption went
down. It can then be concluded that the intro-
duction of prefetching has a positive effect on the
performance on the GPU model used.
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1 Introduction
In this chapter the overall topic of the thesis will be presented as well as the
project goal.

1.1 Context
System Level Cache (SLC) is an optional extension of the cache levels between
a Graphics Processing Unit (GPU) and the DRAM which can play a pivotal
role in increasing the performance of the system. The workloads for GPUs
are increasing in complexity with developments in, for example, graphics ren-
dering, scientific simulations, and machine learning. These complex tasks are
heavily dependent on the GPUs memory management scheme, which includes
the algorithms used for deciding which data to be available at each cache level.
Prefetching is a method for loading the cache with data that is anticipated to
be used at a later time. The objective of the method is to reduce data access
latency by ensuring relevant data is pre-loaded in the cache. The method can
exist in both hardware and software, however only hardware solutions will be
discussed in this thesis.

Prefetching is widely used for Central Processing Units (CPUs), where it
has been thoroughly studied [20]. Multiple algorithms have been developed
including the common stride, stream and the global history buffer. Prefetch-
ing for GPUs is not as widely studied but in recent years more studies have
emerged testing both modified CPU prefetchers and exploring new prefetching
methods[17], [19], [23].

1.2 Project goal
The goal of this project is to investigate different prefetching algorithms that can
be implemented for the SLC of a GPU and decide upon which of these explored
algorithms would have the highest performance increase and are able to be
implemented on a GPU model provided by ARM. The next step is to implement
and modify the chosen algorithms to function on the GPU model. The objective
is to be able to measure the performance gain between the different algorithms
compared to the GPU model without prefetching, for complex workloads. In
the model provided by ARM the SLC is only connected to the GPU, so having
it shared with the CPU will not be considered in this thesis.

1



2 Background
In this chapter the theory used throughout the work will be presented start-
ing with broad topics of GPU architecture and ending with recently developed
methods for GPU prefetching.

2.1 Basics of computer graphics
The visuals on a computer screen is made up of pixels. The goal of generating
or rendering computer graphics is to paint every single pixel in a certain color
according to the 2D image that is to be portrayed on the screen [4].

The visuals in graphics is called a scene which contains different models
or objects, each model or object has different properties such as surface and
lighting. The models in the scene are in turn made up of render primitives.
Render primitives are simple geometrical shapes like triangles. Afterwards the
view of the scene is determined and this is called a camera. This determines
the angle and location of the view. To make all the objects fit the screen we
need to move them from their coordinate system to one that can be represented
in the 2D space, so move from 3D to 2D. These steps of rendering are called
the rendering pipeline and consists of three steps, application, geometry, and
rasterizer[1].

2.2 GPU architecture
The Graphics Processing Unit (GPU) is a specialized hardware component used
to accelerate computer graphics. More recently GPUs have also been used for
image processing and training of neural networks. This is due to its parallel
structure. The parallel structure means the hardware is split into several cores
where each core contains several threads where a group of threads is called a
warp.

A GPU is a pipelined structure with specialized hardware consisting of Input-
assembler stage, Vertex shader, rasterizer and pixel shader[29]. The pipelined
structure as well as the fact that each stage is very wide, in terms of being able
to execute a lot of instructions simultaneously, enables its high parallelism.

The input-assembler stage reads primitive data (points, lines and/or
triangles) from user-filled buffers and assembles the data into primitives
that will be used by the rest of the pipeline. The input-assembler can
assemble vertices into several different primitive types[25].

The vertex shader is the programmable shader stage in the rendering
pipeline that handles the processing of individual vertices. This stage must
always be active for the pipeline to execute. The vertex shaders usually
perform transformations to the post-projection space [28].

Texture mapping is the process of putting textures such as images and
patterns on top of existing triangles in a frame. This texture data has to
be obtained from the main memory, and to reduce latency, texture caches
are introduced to the system. These texture caches have a high hit rate
since heavily reuse data of neighbouring pixels [8].
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A rasterizer is the pipeline stage that converts vector information (com-
posed of shapes or primitives) into a raster image (composed of pixels)
to display real-time 3D graphics. During this process, each primitive is
converted into pixels, while interpolating per-vertex values across each
primitive. Rasterization includes clipping vertices to the field of view of
a perspective virtual camera system called view furstum. It does this by
performing divide by z which is used to convert the 3D coordinates to a
2D screen[25].

A pixel shader is the part of the pipeline that enables shading. A pixel
shader is a program that combines constant variables, texture data, inter-
polated per-vertex values, and other data to produce per-pixel outputs.
The rasterizer stage invokes a pixel shader once for each pixel covered by
a primitive[25].

The architecture used in the GPU model provided by ARM uses a tile based
architecture and the configurations used for this model are intended for high-end
mobile devices.

2.3 Cache hierarchy
The reason of introducing caches inside a system is to reduce the overall latency
of memory requests by exploiting two factors: temporal and spatial locality.
Temporal locality refers to the fact that recently used data will probably be
used again, while spatial locality refers to the presumption that data that exists
nearby recently used data will be needed in the future. Caches are normally
divided into two or three layers named L1, L2 and L3 [9]. SLC refers to an
additional cache level outside of the GPU that can also be shared with the CPU,
display controller, and ISP. The division of cache follows a structure where the
cache closest to the computational unit, the L1 cache, is the smallest one, and
the further away the bigger the caches get. Systems often contain multiple L1
caches that belong to their own computational units, while L2 caches are shared
between them all.

GPUs generally contain two layers of caches, L1 and L2, as can be seen in
the simple model in figure 1. The L1 cache is the smallest and fastest cache and
is supposed to hold the data that is most frequently accessed. The L2 cache is
a bigger cache than L1 that is shared between more computational units. The
SLC is an extension of this model which places a third even bigger cache between
L2 and the off-chip dynamic random access memory (DRAM) to further reduce
the latency of the memory requests. In this thesis the SLC is only connected to
the GPU and is not shared with the CPU.

Managing caches was originally done by the software but nowadays it is
hardware managed. Managing the cache inside a GPU can be very challenging
because of the large amount of threads and low cache sizes. Lal, S., Varma,
B.S. and Juurlink discusses this subject in the paper A Quantitative Study of
Locality in GPU Caches for Memory-Divergent Workloads [16]. They emphasize
the problem by comparing the size of CPU caches per thread with GPU caches
per thread and state that CPU caches per thread are normally in the sizes of
16 KB, 128KB and 1MB for L1, L2 and SLC respectively. For GPUs on the
other hand the sizes per thread range between 32-102 B for L1 and L2 [16].
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This clearly shows the difficulty of management, especially for irregular GPU
applications that further complicates the problem.

Core_0 Core_n

Texture cache

L1 cache

Texture cache

L1 cache

Crossbar

L2 cacheL2 cache

System Level Cache
(optional)

DRAM

GPU

Figure 1: A simple overview of a GPU cache hierarchy

Inside a GPU the threads are grouped in warps, usually containing 32
threads. When discussing locality inside the cache architecture it can help to
divide it into intra-warp locality and inter-warp locality. Intra-warp locality is
the cause of a warp requesting an address and later requesting it again while
inter-warp locality means that a warp requests an address that is later requested
by another warp.

Lal, S., Varma, B.S. and Juurlink analyzed the cache line usage of a NVIDIA
GPU and observed that on average 57% of the cache lines were never re-used,
however a large number of them got evicted too early. The study also tried
the system using infinite cache sizes and noted that this number then declines
to 30%, which proves that with better cache management there is a lot of
performance to be gained. This could for example be done by introducing a
SLC to the GPU.

2.4 Cache structure
A cache memory is divided into multiple lines, called cache lines or blocks. These
cache lines are the smallest possible data entries that can be loaded into the
memory. Every data entry in the main memory is mapped to a line in the cache,
and this can be done in multiple different ways. The simplest mapping method
is known as direct mapped, wherein each main memory address is assigned to a
specific cache line. However, since the size of the cache is much smaller, many
addresses will be mapped to the same cache location. Consequently, frequent
data replacements within cache lines may occur, leading to a phenomenon known
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as thrashing, where cache entries are replaced repeatedly without being utilized.
[5]

One solution to this problem is to use a set associative cache. To use this
method the cache memory is divided into a number of sets, each set containing
multiple cache lines. Each main memory address is now mapped to a line in
all of these sets, but it can only exist in one of them. For example a 4 way
associative cache implies that each data entry in the main memory could exist
in 4 different locations in the cache.

There are more decisions to be taken when designing a cache and some of
them are connected to a subject called cache policies. Cache policies decide on
rules for how the cache will act when receiving read and write requests. If a
cache miss takes place, meaning that the requested data does not exist in the
cache memory, it has to take a decision to fetch the data to the cache memory
or not. The chosen allocation policy will decide this. If a read allocate policy is
used, the cache will only allocate its lines to read requests, while a write allocate
policy will allocate both read and write requests in the cache [5].

When allocating a cache line you also need a replacement policy to decide
upon which line to allocate and how to handle data that already is allocated
in that position. If a cache line contains dirty data, meaning data that has not
been updated to the main memory, it has to write this data to the main memory
before replacing the cache line. This phenomena is called eviction and the cache
line selected for replacement is called victim. [13]

Choosing a victim can be done in multiple ways and some of the most com-
mon ones are pseudo-random, least recently used, most recently used, and first
in first out. These different policies will all have impact on how the cache
memory will function and could increase the hit rate if chosen wisely.

A cache also contains write policies for deciding how to handle write requests.
There are two main write policies, one is called write-through and decides that
writes are performed to both the cache and the main memory simultaneously,
meaning that they contain the same data. The other one is called write-back,
and using this method will cause the cache to contain updated data while the
main memory contains old data, when an eviction takes place it is therefore
very important that this updated data is written to the main memory [5].

2.5 Challenges for memory accesses
The main challenge of managing the memory of a GPU is to minimize the
latency for each memory request. There are a lot of factors that will impact
this latency, including bandwidth limitations, contention, data movement and
memory hierarchy. [15]

The bandwidth determines how much data can be transferred per unit of
time. There are two ways of increasing this, either by increasing the size of the
link, meaning being able to send larger memory requests, or by parallelisation
which enables many memory accesses to be sent during the same time period.
When a memory is shared between many units contention can occur, meaning
that conflicts take place when the units are fighting over the same memory.
Contention issues are solved by inferring rules on the link for example a queue
system [6]. Solving contention issues can be crucial for increasing the latency of
a system since long delays can occur when the link is highly utilized.
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The challenge of managing data movement involves deciding how and which
data should be moved between the different cache levels and decisions regarding
when to evict, bypass, promote or prefetch cache lines need to be taken. This
has to be done carefully to not cause too much strain on the link while still
maintaining performance. Cache pollution, which refers to when data is loaded
into the cache without being used, has to be reduced. This is a big challenge
in the case of prefetching since it is about speculating on what requests will
appear in the future, and if these speculations are wrong, cache pollution will
occur. A prefetching unit that can adapt to different workloads may therefore
be required to achieve desired behaviour.

Another challenge is how the memory hierarchy is built. This includes how
many levels of caches are used, number of slices and their interconnections. This
has to be chosen with respect to the balance between the required performance,
cost and power consumption of the GPU.

An important factor when managing cache memory is timeliness. When
prefetching it is preferred to have as many timely prefetches as possible, a timely
prefetch refers to a fetch that is not too early nor too late. In figure 2 the
timeliness of prefetching can be seen, if a prefetch is performed too late you will
lose some of the speedup that could have been gained and if done too early it
will be a burden to the system without any performance gain at all. The goal of
a prefetcher is to make the prefetches in the timely period as often as possible.
However, since multiple requests are being handled simultaneously, having a
late prefetch may in some cases impact the performance less since the system
can process something else meanwhile [17]. This is especially true for GPU’s
since they are more parallelized than CPU’s.

timelylate early

prefetch
request sent

prefetch data
arrived

prefetch
evicted

Time

Figure 2: Figure describing the concept of timeliness for a prefetch request. For
example: If a request for an address arrives during the first period, the prefetch
request was too late, and if a request arrives in the latest period the prefetch
request was sent too early, meaning that it was already evicted.

2.5.1 Prefetching design aspects

The main tasks for a prefetcher is to decide on three main topics. What data to
prefetch (next line or to follow a specific pattern), how much to prefetch (how
many cachelines to fill) and also when to prefetch (eg., after consecutive cache
misses, high confidence or as often as possible). [23]

When deciding what to prefetch the simple approaches often look at the delta
between consecutive cache requests, called stride. If this stride is considered to
be the distance to the next line in the memory it is instead refereed to as a
stream. Prefetchers based on stride and stream patterns also need the workload
to exhibit such behaviours in its cache accesses for the prefetcher to function.
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This is a big challenge in the design since you would like to utilize when the
read pattern is very regular and predictable but also for the system to not slow
down during periods of irregularity. The best way would be to have a prefetcher
that is able to predict both regular and irregular patterns, but this is a very
difficult challenge. An issue for hardware based approaches of prefetching is to
observe and act upon short strides and streams (less than 5 requests). This is
because it will take at least 2 requests for the prefetcher to detect a stream or
stride and then the prefetcher will struggle to make an impact since the stride
is already or soon to be finished [11].

Another relevant term is the distance of the prefetch request. This value
represents how far in the future it should prefetch the data, this value should be
chosen to maximize the amount of timely requests as mentioned in figure 2. This
is a hard task since the optimal distance may vary throughout the applications
runtime.

How much to prefetch is often referred to as the degree of the prefetcher and
it is simply the number of lines it fetches each time a request is sent from the
prefetcher. This number could also vary depending on how confident the system
currently is about the patterns observed.

When to prefetch can be decided in a lot of different ways, a common method
is to calculate a confidence value that represents how likely the prefetches will
be useful for the cache, meaning that they are going to lead to a cache hit.
If this confidence value is above a certain threshold the prefetcher would then
issue a prefetch request.

If the stride for the memory requests of an application is constant, this
approach will provide good results. But if the application has a irregular access
pattern, methods using stride values will have more difficulties finding good
prefetch address candidates. This also applies for stream prefetchers were the
next cachelines are used instead of calculating the deltas.

When evaluating a prefetcher the accuracy of the prefetcher can be calculated
according to equation 1

Accuracy =
Prefetch hits

Total number of prefetches
(1)

This value will tell how large percentage of the issued prefetches that leads to
a hit. Keeping this value as high as possible will be crucial for not polluting
the system without any performance gain, however there may be cases were it
is worth it to have lower accuracy if the system can handle the extra load and
it leads to a larger number of total prefetch hits.

2.6 Prefetching models
In this section simple prefetching methods will be discussed. These were origi-
nally developed for CPUs but the main concepts can be applied when designing
prefetchers for GPUs.

2.6.1 Stride Prefetcher

Stride prefetchers function by calculating the delta between recent memory ac-
cesses. These delta values are then used to predict the next memory access
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and prefetch this data into memory beforehand [10]. If the following for loop is
being executed:

for(i = 0, i < 100, i++){

C[i] = A[2*i] * B[3*i]

}

the stride prefetcher would be able to calculate the stride of the memory accesses
in A and B by subtracting the memory addresses of the accesses. If a(k) and
b(k) are the memory addresses of the variables A[k] and B[k] you could calculate
the stride as strideA = a(k)− a(k · 2) and strideB = b(k)− b(k · 3) for different
k values. If we focus on the load request when k=2 for A, the stride would be
calculated to a(2)−a(4). The prefetcher would then issue a prefetch depending
on its degree D, that decides how many data should be requested. The general
formula for the prefetches addresses would then be a(k+stride·i) where i ranges
from 1 to D. If D = 3 and k = 2 it would issue a prefetch request for addresses
a(4 + 2 · 1), a(4 + 2 · 2) and a(4 + 2 · 3) since the stride is equal to two. The
prefetcher manages this by saving information about every load request in a
stride prediction table (SPT) containing stride prediction entries (SPEs), which
contain the stride, base address, degree as well as other information like warp
or core identification [19].

It is also common for the SPE to contain a confidence value. This value
increases if the stride for the newly loaded data is the same as the previous
stride, and decreases or is set to zero if they are different. If this value is below
a certain threshold (CONFTHRESH) the SPE will not issue prefetches for the
entry.

2.6.2 Stream Prefetcher

Stream prefetchers utilize cache misses to detect patterns in the cache structure.
It identifies this in k consecutive accesses [11], for example, three accesses. After
the first miss is detected at line X, the stream is started. Then when the second
miss is detected at line X + Y a pattern is guessed. And at the third miss at
line X + Z (where Z > Y ) confirms the pattern. Then the next line X + D
(where D is the next line following the pattern) is prefetched. So the choice
of k consecutive accesses decides on how accurate vs. how many prefetches are
taken. All this information is stored in a stream table by the stream prefetcher.
It is filled upon confirmation of the direction of the stream. This table contains
multiple entries per page and stores prefetching-metadata for several pages at
once. A miss can only trigger prefetching if such an entry exists for the same
page [24].

2.6.3 Global History Buffer

The Global History Buffer(GHB) is a way to improve advanced prefetchers that
store history data. GHB is a way to make sure that there is less stale data
stored both reducing area and increasing speed. It is implemented as a FIFO
queue with n entries that holds the n most recent cache misses. Each entry
in the FIFO queue is an Index Table (IT) that is accessed with a key as in
conventional prefetch tables. The entries in the IT contain pointers into the
GHB. This is not a prefetching method in itself but an extra tool to increase
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performance in for example stride prefetching by clearing out stale data making
the look up of previously prefetched data faster [22].

2.6.4 Adaptive Stream Detection

Hur and Lin presents an improvement on the standard stream prefetcher in
the paper Memory Prefetching Using Adaptive Stream Detection [11]. Their
solution of deciding when to prefetch is statistically based using a histogram
called Stream Length Histogram (SLH). They define time periods called epochs
defined by a certain number of memory accesses, and during each epoch all the
stream lengths are recorded into the SLH. A decision on which addresses to
prefetch is then taken based upon the stream lengths recorded in the SLH.

The method uses a function called lht(i) which represents the number of
read requests that are part of a stream with length i or longer. The i value
can be 1 < i < fs where fs is a variable representing the maximum stream
length to be tracked. It then uses this lht function to calculate the probability
of the current stream to be of a certain length k. They present a simple way of
deciding if to prefetch or not based on the lht values by calculating the following
inequality:

lht(i) < 2 · lht(i+ 1)

To be able to track this information the authors divided the process into two
parts called Stream Filter and Likelihood Tables. In the Stream filter the current
streams are tracked. Each entry saves the last accessed address, the length of the
stream, the streams direction and its lifetime. The direction is simply comparing
if the addresses are increasing or decreasing and the lifetime indicates when the
entry should be evicted.

Every time an entry is updated, meaning that a new address belonging to
that stream is found, the length is updated as well as the lifetime being increased
with the predetermined value, LIFETIMEEXT . This causes the system to
not evict the entry since a stream was found. At every cycle it also decreases
the lifetime value of all the entries and evicts those that became zero.

The Likelihood Tables are divided into LHT_curr and LHT_next the first
one containing SLH information about the current epoch and the second is used
for saving information to be used for the next epoch. These tables contain lht
values for all the tracked stream lengths for both positive and negative direction.

Every time a stream of length k is evicted from the Stream Filter the
LHT_curr is decremented by k for all i where 1 ≤ i ≤ k and LHT_next
is instead incremented by the same values. At the end of each epoch all the
streams in the Stream Filter are evicted and the values are used to modify the
LHT_next. Then the values from LHT_next is copied to LHT_curr and
LHT_next is cleared.

The method can then use the LHT table to obtain the inequality as described
before by checking if LHT_curr(i) < 2·LHT_curr(i+1) is true and a prefetch
should be issued. Where i is the currently observed stream length.

In the follow up paper Feedback Mechanisms for Improving Probabilistic
Memory Prefetching Hur and Lin presents further improvements on the Adap-
tive Stream Detection prefetcher [12]. This improvements consisted of three
main features: Length-based stream detection, Adaptive epoch length and Vari-
able length prefetching. The length-based stream detection is a mechanism that
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controls the lifetime of streams in a way that favors short streams by reducing
the LIFETIMEEXT value for longer streams, thus freeing up more space for
shorter streams in the Stream Filter. The adaptive epoch length automatically
adjusts the epoch length based on a calculated similarity score at the end of each
epoch. The similarity score is simply the average difference of all the current
and previous LHT values, if this score is above a certain threshold the tables
are classified as dissimilar. When a dissimilar table is observed the system will
try to reduce the epoch length by a factor of 2 or increase it with a factor of 2
until it achieves similarity.

The last improvement called variable-length prefetching is the mechanism of
prefetching multiple lines at the same time depending on the inequality:

lht(i) < 2 · lht(i+ k)

where the k value is the number of consecutive lines to be prefetched. This is
simply an extension of the inequality presented in the earlier paper, allowing
for more requests to be sent simultaneously. The paper also describes a throttle
mechanism that hinders prefetches of multiple lines when the internal buffers
are more than half full. The authors states that this reduces the risk of putting
too much strain on the system [12].

2.6.5 Best-offset prefetcher

In the paper Best-offset hardware prefetching P. Michaud presents a prefetcher
that is based on a score system to select the best possible offset to use for
prefetching [18]. The term offset is similar to the earlier described stride but
in this case it refers to a fixed stride being used during a longer period. The
method uses epochs like the case of the Adaptive Stream Detection prefetcher
with a fixed length (LIFETIME). During these epochs a fixed number of the
latest request are saved in a Recent Requests (RR) table which is later used to
find the best offset. The method includes a list of possible offsets to evaluate and
each epoch is divided into a number of rounds equal to the number of offsets to
be evaluated. During each round the incoming request addresses are subtracted
with the value of the current offset. If the result can be found in the RR table
the method assumes that if a prefetch requests would have been sent, it would
have lead to a hit. It therefore increases the score of this offset by one. When the
epoch is finished it compares the scores of all the offsets and selects the best one
to be used for prefetching during the next epoch. If the score obtained during
the last epoch is above a certain threshold the prefetcher will issue prefetches for
every cache miss and prefetch hit depending on a PREFETCHITS parameter.
The prefetcher will use the best offset from the latest epoch during the current
epoch. The prefetcher is of degree one but it is still considered rather aggressive
according to the authors since it sends out a lot of requests in total, however
adjusting the threshold for the score values can change this behaviour.

Another prefetcher called the Aggregate Stride Prefetcher is also closely
related in function to the best-offset prefetcher [3], however it trains the different
offsets simultaneously, requiring more hardware resources for the selection, but
potentially also acquiring a better performing offset. The prefetcher also ignores
some of the most recent prefetch requests to make the offsets more timely,
since the method makes its decision based on older data. There is also another
similar prefetcher presented in the paper Multi-Lookahead Offset Prefetching [27]

10



that is based on similar ideas as the Aggregate stride prefetcher and the Best-
offset prefetcher. The authors refer to lookaheads as different time horizons
where different amount of recent accesses are ignored, which differs from the
Aggregate Stride Prefetcher which has uses a fixed number. The Lookahead
Offset Prefetcher simultaneously calculates scores for 16 different lookaheads.
These 16 scores correspond to ignoring none to ignoring all of the last 15 recent
memory accesses.

2.6.6 Many-thread aware prefetcher

Lee et al. presents a algorithm for GPU prefetching in the paper Many-Thread
Aware Prefetching Mechanisms for GPGPU Applications [17]. The paper is
focused around both software and hardware based solutions. The hardware
based solution includes two parts, one for per warp stride and one for inter-
thread prefetching. Inter-thread prefetching refers to a thread prefetching data
to another thread than itself.

The Scalabale Hardware Prefetcher Training used further develops on the
concepts of standard stride training to enable it to save stride information per
warp in a per warp stride (PWS) table. The paper also proposes a method
called Stride promotion which enables the model to share stride information
between these PWS tables. The model assumes that when a few warps have
the same stride, all warps will likely have the same stride. They set a threshold
of three PWS tables having the same stride for this stride promotion to take
place. When this happens the stride information is moved from the PWS table
to a global stride (GS) table.

In parallel to this mechanism another mechanism is looking at inter-thread
stride using an inter-thread prefetching (IP) table which is trained with soft-
ware. Similar to the case of the per warp prefetching this algorithm waits for
three different warps having the same stride for the same PC to issue a prefetch
request. The model also features a throttling mechanism to minimize the risk
of the prefetching causing any negative impacts on performance. This throt-
tling mechanism manages how many prefetches are being executed based on
the number of early evicted prefetches and intra-thread merges. These merges
occur when a prefetch request is late and a demand request is coming at the
same time. The throttling behaviour can be observed in table 1.

Early eviction rate Merge Action
high - no prefetch
medium - fewer prefetch
low high high prefetch
low low no prefetch

Table 1: Table of throttling mechanism for Many-thread aware prefetcher
[17]

2.6.7 APOGEE prefetcher

The APOGEE prefetcher utilizes interactions with the memory system and
looks for consistent memory access patterns between the threads of a warp. It
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contains two prefetching parts called Fixed Offset Address (FOA) and another
called Thread Invariant Access (TIA).

General for APOGEE, is if a consistent pattern is detected in the addresses
then information about these addresses are stored in a table.

The APOGEE prefetcher looks at the memory access pattern and if a con-
sistent pattern is detected, it is stored in a table. The information stored, see
table 2, is Program Count, the address accessed by one thread, its offset with
the adjacent thread and how consistent the offset is across the adjacent thread
called confidence. Once the confidence reaches a certain level it prefetches data
based ib the offset and what is called distance. The distance is how far ahead of
the last access the data should be fetched. Tid is the thread index and references
all indices in the GPU which in turn are then split into warps.

Load PC Address Offset Confidence Tid Distance PF Type PF State
0x253ad 0xfcface 8 2 3 2 0 00

Table 2: Example of a prefetch table used by APOGEE [26].

For the FOA prefetching it looks for the same offset between addresses with
the same PC. If the offset is the same as previously the confidence is increased,
and if not, the confidence is set to zero and a new offset is calculated. It also
takes into account the difference in thread indices. And for the TIA the PF
Type is flagged and the offset is zero, since what is happening is that all the
threads want to access the same address at different times. The issue with this
is to have the SPT keep the value and fetch in a timely manner. To make sure
that the prefetch is not too late or early the PF State is used with three states:
00, 01 and 10. Once a load of the corresponding entry happens the state is
set to 00. After the computation of its future address, if a prefetch request is
sent, the state is changed to 01. Transition from state 01 to 10 occurs when the
data comes back from memory to the cache. Whenever a new load of the same
entry occurs, the state is reset to 00. So if an entry is in the 01 state when a
request for the same entry arrives it means that the prefetching is too slow and
the method needs to increase the prefetching distance.

2.6.8 Last-level collective prefetcher

Michelogiannakis et al. proposes a stride based prefetcher for CMP’s. A CMP
(cellular multiprocessor) is a multiprocessing architecture for Intel CPUs from
Unisys providing up to 32 processors that are crossbar connected to a memory
and several PCI cards [2]. But it is also stated in this paper that this architecture
also could be interesting for GPUs. The method further develops on the strided
prefetcher by also implementing groups of SPEs. The SPEs are put into a
reference preditiction table (RPT). The entries in this table are based on the
following hash function:

(
PCrequest%NumLinesRPT

4
+ CoreID)%4 (2)

With this hash function, all SPEs with the same PC value have to be in one of
four RPT lines. Hence the modulo four in the hash function. When an SPE
gets a confidence level over CONFTHRESH the SPE is placed in a group with
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other SPEs from the same PC. The SPE with the lowest base address is placed
in a group table connected to the PC and the rest are put in a doubly-linked list
with this first SPE. This results in that whenever one of the SPEs are triggered
the rest of the group is also fetched. The order of the list matters to utilize the
order of the fetches, see equation 3.

Base1, ...BaseN , ...,

(Base1 + S1), ..., (BaseN + SN ), ...,

(Base1 + S1 ·D1), ...(BaseN + SN ·DN )

(3)

13



3 Method
In this chapter, the work’s methodology will be presented, as well as general
information about the GPU model which was used to obtain performance results
for different implemented prefetching algorithms.

3.1 GPU model
A GPU framework developed by ARM based on their hardware was used for
implementation and testing of the prefetching methods. The model is a software
model of ARM’s GPU hardware and tries to mimic the hardware as close as
possible in terms of functionality and performance. The model also allows for
changing the specifications of the GPU meaning that we can obtain results for
the prefetcher implementation for different cache sizes and number of cores.

The model has a naive approach regarding the connection to the DRAM
since it assumes that it takes a fixed number of cycles for every memory request
to come back. Which is not a completely accurate representation of the system.
The simulation also only takes into account the GPU in the simulation so the
DRAM is not shared with any other components. If running system tests with
requirements on more accurate representation of other components the simulator
gem5 can be used. Gem5 is a system level simulation tool used to make more
accurate system simulations for hardware. However due to lack of time this was
not considered in this thesis.

The baseline model used for the system level cache does not contain any
prefetching mechanism. It does however always fetch the whole cache line when
receiving a memory request. The data available from requests to the system
level cache is the following:

ID: containing information about which L2 cache slice it came from (unit
ID), its sequential number, transaction type (read or write) and which core
sent the request (core ID).

Request reason: which GPU block sent the request and why.

Address: address to be fetched.

Cache flags: containing information about if the data is cacheable and
bufferable.

3.2 Workflow
The first step of our process was to understand the current SLC implementation.
Logs were printed for different signals inside the system to gain understanding.
Benchmarks were run on the current implementation to provide a baseline result
for further comparison.

The SLC logs were exported to python for data exploration purposes. A
simple fixed stride prefetcher was built outside of the GPU model for early
testing. During this testing different values for degree and cache sizes were tested
and plotted. The next step was to bring this fixed stride prefetcher into the GPU
model and to compile the code and perform benchmarks. Parameters for the
method were implemented as global variables that could be changed with flags
during runtime, this increased the efficiency of testing different configurations
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of the prefetch models. The same process was later used for the rest of the
prefetching algorithms explored.

The benchmarks used during testing of the models were gaming benchmarks
provided by ARM. The benchmarks contain frames from different mobile games
and 28 of these were selected to use for comparison of the prefetching models.
The result numbers focused on were cycle count, SLC hit rate, external read
requests, power estimate, energy estimate and prefetch accuracy.

3.3 Implemented prefetching models
In this chapter the implemented prefetchers will be presented. First, basic
models like the Naive Stride Prefetcher, and later more complex models like the
Adaptive Stream Detective Prefetcher and Modified Best-offset Prefetcher.

3.3.1 Decision of implemented prefetchers

All of the prefetchers described in the background section were analyzed in
terms of being able to be implemented or not. Some of the prefetchers use
information for their prefetches that is not available at the SLC of our model. In
these cases the model has been skipped like the case of the Many Thread Aware
Prefetcher and APOGEE. However the Naive Stride Prefetcher and Adaptive
Degree Prefetcher implemented are both using some of the concepts provided
in the APOGEE and Many Thread Aware Prefetcher papers. The Adaptive
Stream Detective Prefetcher was able to be implemented in a very similar way
as described in the paper and the Best-Offset Prefetcher implemented is slightly
changed, thus called modified, but still has the same main functionality as the
original.

3.3.2 Naive Stride Prefetcher, NSP

The first prefetcher implemented was a fixed stride prefetcher inspired by the
APOGEE paper. It puts all memory requests in a Stride Prediction Table (SPT)
containing Stride Prediction Entries, (SPEs) containing five values:

Address: previous memory request address

Confidence: number that represents the number of consecutive memory
requests having constant stride

Recently_prefetched: boolean that represents if the current SPE has
been prefetched recently without getting updated afterwards.

Lifetime: number that represents the remaining read access cycles until
the SPE gets evicted from the table.

Positive: if the prefetcher uses positive or negative fixed stride

At every read request the SPT is updated according to following:

1. Two address are calculated for, one for positive and one for negative
fixed stride. This value is simply the address subtracted by fixed stride
and the address added with the fixed stride.
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2. If one of these addresses are found in an SPE in the SPT, the confidence
value for that SPE increases by 1 and the lifetime with LIFETIMEEXT.
Recently_prefetched is set to zero for that SPE. If no matching SPT is
found and there is free spaces in the table, a new SPE will be created with
initial lifetime equal to the LIFETIME parameter.

3. All the lifetime values get deducted by 1.

Depending on the model parameter PREFETCHHITS the prefetcher will prefetch
on only cache misses or both cache misses and hits. During a prefetch, a function
is called that returns a queue of addresses to be fetched from the DRAM. In the
code example in listing 1 it can be seen how the prefetcher inserts the prefetch
addresses in the prefetching queue. The prefetching is heavily dependent on
the fixed variables DEGREE, CONFTHRESH and DISTANCE. These vari-
ables were implemented as global runtime configuration parameters, enabling
easy testing of different configurations during testing and when running bench-
marks. It should be noted that the prefetcher is only using the confidence value
to pass the threshold and is not adapting in any way to how confident it is.
Having a more adaptive model will be tested in later models.

For keeping the values in the SPT recent, a lifetime method similar to the
one in the Adaptive Stream Detection Prefetcher was used, meaning that if a
SPE is not used for a fixed amount of read accesses it will be evicted from the
SPT.
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Figure 3: Flow diagram for the basic idea of prefetching
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Listing 1: Code of the getPrefetch() function

for (SPE spe : SPT) {

i f ( spe−>con f idence >= CONFTHRESH && ! spe>recent ly_pre f e t ched ){

for ( int i = 1+DISTANCE; i < 1+DISTANCE+DEGREE; i++){

prefetch_queue . push ( spe−>address + i ∗ spe−>s t r i d e ) ;
}
spe−>recent ly_pre f e t ched = true ;

}

}
return prefetch_queue ;

3.3.3 Adaptive Degree Prefetcher, ADP

The two main differences between ADP and NSP is that the stride is not fixed
and that the confidence level decides the degree of the prefetch. ADP also uses
reason to categorize the strides, thus only requiring to compare one stride in
the SPT. The stride is decided such that when a reason that is not logged in
the SPT a new SPE is logged in the SPT with an initial stride of zero. At the
next occurrence of the request reason incoming it takes the new address and
subtracts the logged address and save it as the new stride. Now for each time
this stride is found in a row the confidence in the SPE is increased by one, see
figure 4.

When the confidence has reached the CONFTHRESH a prefetch is started
just like NSP. Now since ADP has, as in the name, adaptive degree this means
that the higher the confidence the higher the degree. So for a SPE with high
confidence will prefetch more lines than an SPE with low confidence based on
the paper from Jaekyu Lee et. al [17]. But instead of using WARPs as they do
in the paper the ADP uses request reasons as a way to make the information
less random for the pattern detector.
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Figure 4: A graph of how prefetches are put into the prefetch queue for the
ADP

3.3.4 Adaptive Stream Detective Prefetcher, ASDP

The ASDP implemented is close in function to the one described in the paper
Memory Prefetching Using Adaptive Stream Detection [11] mentioned in the
background. The method includes four configuration parameters that can be
varied and the authors does not provide any recommendation for the values of
these. The parameters are:

EPOCHLENGTH: the number of cycles of an epoch, meaning before
LHT_curr is updated.

LIFETIME: the number of cycles before an entry is evicted from the
Stream filter

LIFETIMEEXT: the number of lifetime that is added to entries each
time they are observed.

DEGREE: the maximum number of prefetch requests sent out at a time,
if they fulfill the inequality.
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Multiple iterations of tests were performed to decide these parameters and
the best ones were used during comparison to the other prefetchers. In the pa-
per they only issued prefetch request at a time of two consecutive cache misses.
In our implementation prefetch requests could be issued from cache hits as well,
depending on the input flag PREFETCHHITS. Also, the improvements length-
based stream detection, adaptive epoch length and variable length prefetching
from the follow-up paper were implemented [12]. However, the throttle mecha-
nism used in the paper was not used since it did not lead to improved perfor-
mance.

3.3.5 Modified Best-Offset Prefetcher, MBOP

The best-offset inspired prefetcher implements a scoring table like in the original
paper [18]. However it does not divide each epoch into rounds and instead
calculates the offset to all the previous 16 accesses, and increases these offsets
scores by one. This behaviour more resembles the Aggregate Stride Prefetcher
[3]. There were also trials for increasing the degree by considerering multiple
lookaheads like for the multi-lookahead prefetcher [27], but this implementation
was not able to provide any further performance increases and is therefore not
included in the thesis.

3.3.6 Last-level collective prefetcher

The prefetcher that was implemented based on this model used the same design
with RPT and group table. There were only two things that differed from the
original paper [19] which was that the hash function was changed and that when
an SPE did not match the correct stride with the same hash function it was
removed instead of lowering the confidence. The new hash function was done
by concatinating Core ID and Reason. This gives each reason from each core its
own entry to be able to find the best possible stride. The reason for not using
PC was because it was not sent to the SLC and was therefore not available.
And the reason for instantly removing the SPE when a stride did not match
was because it gave an increase in performance.
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4 Results
In this chapter benchmark results for the different prefetching models will be
presented. The results will be focused around one GPU configuration while
remaining configurations will be presented in Appendix A.

4.1 Simulation parameters
The simulation parameters seen in table 3 were used for the GPU model provided
by ARM. We will refer to this configuration as the standard configuration.
The standard configuration was the one being used during the creation of the
prefetchers while the other configurations were used later during testing.

Parameter Value
Number of cores 4
L2 cache slice size 256 KiB
Number of L2 slices 1
L3 cache slice size 1024 KiB
Number of L3 slices 1
L3 associativity 4 way

Table 3: Simulation parameters used for the GPU model

4.1.1 Prefetching model parameters

The different models have parameters that change the behaviour of the said
model. Various different parameters were evaluated for each one of the models
and the best observed parameters were further used for the final testing. The
best model was regarded as the one providing the largest average decrease of
cycle count on the chosen 28 gaming applications.

Parameter Value
DEGREE 3
DISTANCE 0
CONFTHRESH. 0
LIFETIME 80
LIFETIMEEXT 40
TABLESIZE 8
PREFETCHHITS false

Table 4: Parameters used for the NSP model
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Parameter Value
DEGREE 2
DISTANCE 0
CONFTHRESH 0
EPOCHSIMTHRESH 100
EPOCHLENGTH adaptive (min:256, max:8000)
LIFETIME 80
LIFETIMEEXT 80
TABLESIZE 16
PREFETCHHITS true

Table 5: Parameters used for the ASDP model

Parameter Value
DEGREE 1
SCORETHRESH 50
EPOCHLENGTH 300
MAXOFFSET 32
NRRECENT 16
PREFETCHHITS false

Table 6: Parameters used for the MBOP model

Parameter Value
DISTANCE 1
CONFTHRESH 0
TABLESIZE Nr. of AXI Reasons (48)

Table 7: Parameters used for the ADP model

Parameter Value
DEGREE 2
CONFTHRESH 0
RPTTABLESLIZE Nr. of cores · Nr. of AXI Reasons (192)
GTTABLESIZE Nr. of AXI Reasons (48)

Table 8: Parameters used for the LLC model
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4.8 Averages

Measurement NSP ADP ASDP MBOP
GPU cycles [%] −0.77 −1.04 −0.94 −1.29
Cache hit rate [%] +1.5 +5.5 +2.0 +6.0
External read requests [%] +3.9 +14.1 +3.6 +8.6
Estimated energy [%] −0.28 −0.32 −0.38 −0.50
Estimated power [%] +0.50 +0.74 +0.56 +0.81
Prefetch Accuracy [%] 58 59 66 80

Table 9: Table containing the average percentage differences compared to base-
line and average prefetch accuracy of all the applications for the GPU configu-
ration 4 cores and 1 slice.

4.9 Summary
4.9.1 Cycle count

Looking at figure 5 it is noticeable that for most of the tests all of the prefetchers
have a positive impact on the cycle count. However, in application 13 an increase
of around 2% can be observed for the ADP which represents a decrease in
performance. In the best case scenarios a cycle count decrease of around 4.1%
can be seen for the MBOP and in general this method is the best performing
one in regards to the average in table 9. It should however be noted that the
performance of the ADP is rather similar to the one of MBOP and for some
applications it exceeds the MBOP in cycle reduction.

4.9.2 Hit rate

The ADP and MBOP always have a positive impact on hit rate, see figure
6. The other two prefetchers have mostly a positive impact with some smaller
negative changes in hit rate. The average cache hit rate change is positive for
all of them, see table 9. It can be observed that there is not a clear correlation
between cache hit rate and cycle count as the largest hit rate increases do not
correspond to the largest decreases of cycle count.

4.9.3 Read requests

In figure 7 the increase of external read request count can be seen for each
prefetcher. For all of the prefetchers except for ADP the increase of read requests
is rather uniform across the tests. It can be observed that NSP and ASDP have
the lowest increase in general, see table 9. The ADP exhibits the most irregular
behaviour of the prefetchers, and it has values between 37% and 3% which
means that its behavior is very application dependent.

4.9.4 Power and energy estimation

Power and energy estimations can be seen in figures 8 and 9. In the power esti-
mation, figure 8, it can be observed that in almost all cases the prefetchers lead
to an increase in power consumption. Looking at energy estimation in figure 9
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we can instead see that for most cases there is a change in the negative direc-
tion. Comparing 8 and 5 with the energy, one can observe that the applications
with the largest decreases of cycle count have the largest increase in power and
decrease in energy. It should be noted that both the power and energy numbers
are rather naive estimates, since the DRAM is not properly modelled and also
since the operations inside of the SLC is not taken into account for the esti-
mates. The estimates should therefore not be regarded as accurate but more as
an indication.

4.9.5 Prefetch Accuracy

Figure 10 shows the accuracy of the prefetchers for each application. It can be
seen that MBOP performs the best out of the four. It should however be noted
that this number is highly correlated to the number of external read requests.
If a model issues more read requests it is expected to have a lower accuracy,
as is the case for the ADP. The NSP and ASDP do have lower accuracy and
lower cache hit rate which means that both prefetchers make worse prefetch
predictions in general compared to MBOP. The ADP and NSP which are both
based on the strided prefetcher share similar accuracy which is expected, but it
can be seen that the ADP is more aggressive issuing a larger number of external
read requests, thus increasing the cache hit rate.

4.9.6 Status on LLC prefetcher

The LLC prefetcher implemented ended up being very restrictive, in other words
the increase in requests is too low to have a clear impact on performance. This
leads to it having very similar performance to the baseline or worse and it was
thus not included in the results.

4.10 Other GPU configurations
The simulations were performed for multiple other GPU configurations, see
Appendix A. The results differ on a large scale compared to the results presented
in this chapter. It should be noted that none of the prefetchers implemented had
any specific way of handling a multiple slice setup which may lead to sub optimal
performance since some memory access patterns may get lost when requests are
sent to different slices. The time spent on parameter search for these models
was also lower than the case of the standard configuration. These results are
still included to point out some of the difficulties of designing a prefetcher that is
usable for a broad range of GPU configurations. Additional GPU configuration
experimentation in terms of SLC cache size, cache associativity and buffer sizes
were also performed, however due to lack of time this was not properly analyzed
and is therefore not included in the thesis.

The 1 core and 1 slice configuration favors the ADP instead of the MBOP in
terms of cycle count, see figure 11 in appendix A.1. The cycle count reduction
is however smaller for all of the prefetchers meaning that they perform worse
compared to the standard configuration. It can especially be seen for NSP and
ASDP which have most of their results close to 0.25% decrease. Looking at the
4 core and 2 slice cycle count results in figure 17 it can be noted that the MBOP
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and ADP are performing rather similar but having more applications where it
leads to increases in cycle count compared to the 4 core 1 slice configuration.

For the case of the 14 core and 8 slice configuration the cycle count values
tend to behave more irregularly than in the case of the other configurations,
see figure 23. For this configuration the NSP and ASDP lead to a decrease in
performance for a majority of the applications. The ADP is the only prefetcher
showing a somewhat regular performance increase for this configuration.

The number of external read requests vary a lot on the different configu-
rations for the ADP. For NSP and ASDP it varies less and for MBOP it is
rather stable. This is easily readable in the avarages in tables 10, 11 and 12. It
can also be noted that the avarage accuracy is unstable between the different
configurations, except for the MBOP. By looking at the accuracy and external
read request number simultaneously you can see that they act according to ex-
pectations in regards to the cache hit rate, meaning that having low accuracy
can still lead to high cache rate if enough read requests are being sent and vice
versa.

The values in the following tables are taken from the figures in appendix A.

Measurement NSP ADP ASDP MBOP
GPU cycles [%] −0.18 −0.80 −0.17 −0.52
Cache hit rate [%] +3.3 +23.2 +3.8 +19.2
External read requests[%] +3.5 +30.0 +4.1 +12.5
Estimated energy [%] +0.11 −0.22 −0.10 −0.24
Estimated power [%] +0.29 +0.58 +0.07 +0.29
Prefetch Accuracy [%] 64 59 70 77

Table 10: Table showing the average percentage differences compared to baseline
and average prefetch accuracy for each measurement for the GPU configuration
with 1 core and 1 slice.

Measurement NSP ADP ASDP MBOP
GPU cycles [%] −0.35 −0.51 −0.28 −0.49
Cache hit rate [%] +0.27 +1.61 −0.01 +3.88
External read requests [%] +9.7 +43.7 +1.9 +12.9
Estimated energy [%] −0.22 −0.29 −0.14 −0.24
Estimated power [%] +0.13 +0.23 +0.14 +0.26
Prefetch Accuracy [%] 38 32 56 72

Table 11: Table showing the average percentage differences compared to baseline
for each measurement and average prefetch accuracy for the GPU configuration
with 4 core and 2 slices.
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Measurement NSP ADP ASDP MBOP
GPU cycles [%] −0.15 −1.18 +0.15 −0.27
Cache hit rate [%] +1.10 +1.05 +0.95 +2.73
External read requests [%] +4.05 +95.70 +3.58 +11.98
Estimated energy [%] −0.09 −0.50 +0.08 −0.09
Estimated power [%] +0.10 +0.72 −0.05 +0.21
Prefetch Accuracy [%] 37 20 43 72

Table 12: Table showing the average percentage differences compared to baseline
for each measurement and average prefetch accuracy for the GPU configuration
with 14 core and 8 slices.
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5 Discussion
In this chapter the acquired results will be discussed to compare the performance
of the models in terms of GPU cycles, hit rate, number of requests, accuracy
and power estimation numbers.

5.1 Evaluation of performance
MBOP is the prefetcher being able to lower the cycle count the most using the
standard GPU configuration. It is also the most energy efficient prefetcher which
makes it the best overall prefetcher for this configuration. The explanation for
this performance increase over the remaining prefetching models is the models
ability to observe and act upon complex address patterns using the models
scoring system, and since it is a degree one prefetcher it keeps the read requests
on a stable level. The ADP which offers the second best performance on the
standard configuration does suffer from its high prefetch degree, leading to very
high number of read requests in most of the applications. This should in return
impact the energy and power numbers negatively, however in the estimates
acquired this does not seem to be the case as ADP is still able to decrease
the overall energy consumption. To find out whether this is accurate the tests
would need to be performed using a model which includes a more representative
DRAM, like running it on gem5. The same argument can be said for the other
GPU configurations, in all of them the ADP heavily impacts the external read
requests while still achieving promising energy estimations.

For the other GPU configurations it should however be noted that the ADP
is in favor in terms of the GPU cycles, looking at the averages in table 10, 11,
12 one can observe that it performs the best on all of these configurations. This
performance increase looks to be coming from the prefetches of the method
being more timely, since the cache hit rate is actually not the highest of the
three models in the 4 core and 2 slice and 14 core and 8 slice configurations.
The reason for the better timeliness of the method is likely due to its high
degree of fetching, meaning it fetches a long distance in the future. This does
come at a cost however, since the accuracy is low for the model, which means
that a lot of prefetches are not being used and is only polluting the system. To
improve this, further work could be done on the adaptive part of the model to
try and minimize the number of useless fetches. Adaptive distance was never
implemented for the model, and it could be a usable way of reducing the number
of read requests (by lowering degree) while still maintaining the good timeliness
of the model.

The slice architecture makes it so that continuous strides can be hard to de-
tect. Since there is a separate prefetcher in each slice of the SLC our prefetchers
are unable to look at all incoming read requests from all L2C. This makes it
harder to find long patterns sent from the L2C since it can easily be broken off
by the following request being sent from a different core connected to a different
L2C resulting in being received by a different slice in the SLC and, in extension,
a different prefetcher. This is one of the most limiting factors to the prefetchers
since it inhibits their basic idea of finding long patterns of address requests.

Looking at the average decrease of the cycle count may not always be the best
way of evaluating the performance of the prefetchers. The GPU manufacturers
may have different prioritization for the different applications, meaning that
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improving some of them would be more beneficial than others. This should in
that case also be considered when deciding on a prefetcher. There may also be
restrictions regarding the case of performance decrease because of the prefetcher.
If a prefetcher that never causes increases in cycle count is required, one would
need to redesign the implemented prefetchers taking this into account, probably
leading to them being more restrictive in their fetching, leading to lower, but
more safe performance gains.

Another thing that should be taken into account is the area cost for each
prefetcher. In this thesis the prefetchers were never implemented in hardware
descriptive language and estimates for these area costs are therefore hard to
obtain. Multiple optimizations of the models could have been tried to reduce
the estimated area, for example, saving only the last bits when calculating the
strides for some of the prefetchers. This would lead to smaller area for both
the memory and computational units used, since bit length would be lower.
However, in general, the NSP model would be the model with the overall lowest
area cost because of its simple algorithm and since it has the smallest table size
of the prefetch models evaluated. For the remaining models, its hard to conclude
much since they include more complicated logics. In regards of table size ASDP
and MBOP have smaller tables of 16, compared to ADPs 48, but in regards of
computational logic it would be the opposite, ASDP and MBOP is estimated to
require more computational hardware than ADP. In the end, to draw conclusions
about area costs, the models should be optimized and implemented in hardware
descriptive language for better estimations.

The gem5 model which is a system simulator was not used in this master
thesis since there were no time to get it working. We assume that more accurate
test results would have been generated. But the results that is generated from
the model is accurate enough to make predictions on how good the different
prefetchers are compared to baseline and against each other but might not give
us very precise performance numbers.

5.2 Further exploration
An improvement possibility to take into account would be ways of combining the
different prefetchers to try and achieve improved performance. Implementing a
confidence based system like the ADP for the MBOP prefetcher could lead to the
MBOP prefetcher fetching more data with hopefully the same high accuracy,
leading to better overall performance. One could also do experiments trying
to incorporate the ASDP’s histogram into one of the other prefetchers to see
if this would lead to any improvements for short streams. It should however
be noted that the more advanced the prefetchers become more area and power
will be used by the prefetchers, which in the end, might lead to overall worse
performance.

When running the GPU model with configurations of 2 or more cache slices
the prefetchers are struggling finding as good access patterns, since the accesses
are divided between the slices and there is no current way of communicating
between these. Having a prefetching control unit that is communicating and
snooping on the addresses arriving at all the cache slices could therefore lead
to a better solution. This controller would in that case be able to see the same
patterns as the case for 1 slice, thus enabling the system to achieve similar
performance gains to the standard configuration. This was not implemented
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during this thesis due to lack of time.
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6 Conclusion

6.1 Summary
In the end, it can be concluded that using a prefetcher in the SLC can lead to
performance increases for gaming graphic workloads. Different prefetchers can
have vastly different results and for the standard configuration used in this thesis
the MBOP performed the best overall. However for the other GPU configuration
used the ADP seem to have a slight edge. It can also be concluded that the
performance changes heavily depending on the gaming application used and
that for some of them all prefetchers tested are having difficulties improving the
performance.

6.2 Future research
In extension to the suggested explorative work described earlier it should also
be noted that there exists a lot of prefetch algorithms that were not imple-
mented in this thesis. Some interesting ones are the Long short term memory
based hardware prefetcher which implements a neural network to predict the
future accesses [30], Snake: a variable-length chain-based prefetcher which uses
chains of variable strides [21], WaSP: warp scheduling to mimiic prefetching in
graphics workloads, which exploits localities in graphic workloads using warp
information[14] and the Treelet prefetching for ray tracing, which uses a tree
data structure to manage its prefetches [7].
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A Results for other GPU configurations
In thus appendix the gathered measurements for the other gpu configurations
are provided. The number of slices are the same for L2 cache and SLC.
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