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Abstract

Sperm whales (Physeter macrocephalus) communicate with one another us-
ing an intricate language made up of sequences of clicks. Recent studies have
begun to dig deeper into the structure and content of these vocalisations in an
effort to detect and extract significant patterns and features. Whether or not
the results of such research will eventually allow us to translate sperm whale
speech into something akin to a human language is a subject of debate. Re-
gardless of the ultimate outcome, the insight is of interest to many scientific
fields, including conservation biology and bio-inspired engineering. For this
project, over 1400 audio clips recorded between 1952 and 1995 were processed
in order to isolate clicks from background noise. Frequency analysis on over
5000 detected clicks yielded dominant frequencies in the range of 2 kHz to 10
kHz with varying frequency distributions. It was possible to group the clicks
into distinct categories based on their frequency contents, dominant frequen-
cies, and number of strongly represented frequencies. This paper illustrates
the performance of methods for automatically detecting click onsets in noisy
data, as well as an effective approach for fitting an estimated signal envelope
to clicks based on a Gumbel probability density function. Several patterns
in the spectral features of sperm whale clicks were identified. The recurring
patterns in the value and number of dominant frequencies in each click sug-
gest the existence of multiple distinct click types, and several examples of
potential click categories are described in this paper. There also appears to
be a noteworthy relationship between the geographical location, dominant
frequency, and spectral envelope parameters of clicks. Further studies will
be necessary to validate and refine the results described here, which suggest
that sperm whale vocalizations consist of a more rich and complex combina-
torial structure than has previously been described and that this structure
varies systematically between geographical locations.



Populärvetenskaplig sammanfattning

Vad pratar valar om? Kan man prata med valar? Några forskare tror att det
är möligt och de vill översätta valarnas språk. Kaskeloter (Physeter macro-

cephalus) är stora marina däggdjur som finns i hav över hela världen. Dessa
valars läte består av två typer av klick-ljud. De första är ekolokaliseringsklick
för att hitta bytesdjur och navigera, men man vet lite om den andra. På 1950-
talet började vetenskapen undersöka kaskeloters vokalisering och kom att tro
denna andra typ av klick är som ett mänskligt språk. Kaskeloter turas om
att göra komplexa serier av klick i specifika möster, ungefär som meningar.
Nu, med nya teknologier inom artificiell intelligens, tänker forskarna att de
kan tyda vad valar säger.
Organisationen CETI, som arbetar med att förstå hur kaskelottens språk
fungerar, studerar kanskeloter utanför ön Dominica i Karibien. Med hjälp av
artificiell intelligens de har börjat sammanställa en sorts ordlista och ett alfa-
bet aspekter för kaskelot tal. Liknande metoder som används för att studera
mänskligt språk och musik kan även användas på valars läten. De flesta av
dessa metoder kommer från statistisk signalbehandling. Man kan beskriva
ett klick som en kombination av frekvenser och tidsmässiga egenskaper. Om
det finns mönster, kan de koda viktig information om innebörden av klicket.
Svårigheten ligger i att hitta dessa mönster och avkoda deras betydelse. Den
här rapporten beskriver några egenskaper hos klick som identifierats med
hjälp av signalbehandlingsmetoder. Resultaten tyder på ett ännu mer kom-
plext "alfabet" än vad som hittills har beskrivits för kaskeloter. Det finns
fortforande mycket arbete kvar att göra, men ju mer människor lär sig desto
mer komplext och intressant verkar kanskeloters språk.

1



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Brief background on spectral analysis . . . . . . . . . . . . . . 3
Sperm whale communication . . . . . . . . . . . . . . . . . . . 4
Acoustic monitoring of sperm whales . . . . . . . . . . . . . . 6

Background and related research . . . . . . . . . . . . . . . . . . . 7
The Dominican Sperm Whale Project and Project CETI . . . 7
Published results from CETI and DSWP . . . . . . . . . . . . 7
Precedent in other cetaceans . . . . . . . . . . . . . . . . . . . 8
Motivating questions for this paper . . . . . . . . . . . . . . . 10

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Onset detection . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Rough cut-outs . . . . . . . . . . . . . . . . . . . . . . 12
Analytic signal . . . . . . . . . . . . . . . . . . . . . . 13
Local standard deviation . . . . . . . . . . . . . . . . . 14
Spectral sum . . . . . . . . . . . . . . . . . . . . . . . 14

Click analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Envelope fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Onset detection . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . 20
Fitted envelope . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Revisiting motivating questions . . . . . . . . . . . . . . . . . 28

Appendix A: Vocalisation terminology . . . . . . . . . . . . . . . . 29
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



Introduction
The ocean and all it contains has long been a mysterious and inaccessible
place from a human perspective. We are only able to directly observe a small
fraction of the marine world. Various tools have made it more accessible and
unlocked some mysteries over time, but proportionally there is still nearly as
much to be explored in our oceans as there is on other planets [10]. When
the first recordings of sperm whales were analysed for their spectral proper-
ties in the mid 20th century, observation showed that individuals produced
different patterns of clicks. It was initially assumed that the patterns were
simply some version of a personal identifier, akin to a human name [21].
Changing methods of listening to and recording sound underwater, as well
as more efficient methods for statistical analysis were necessary before the
level of intricacy in sperm whale communication could even be guessed at.
The challenge of understanding sperm whale vocalisations is of at least dual
interest. One such interest comes from the ecological perspective, as having
such a direct insight into the lives of these keystone marine mammals could
be very useful to interpreting the well being of both whale populations and
the ecosystem that they inhabit and in turn putting more effective protec-
tions in place. From a more technical and mathematical perspective, coming
up with ways to interpret a completely unknown system of communication
provides an opportunity for innovation and advancement of statistical meth-
ods and machine learning techniques. In this paper, methods from signal
processing, including musical analysis and human formant recognition, are
modified to suit the composition of whales’ clicks.

Methods and tools from spectral analysis

Collections of recorded sperm whale vocalisations date back to the 1950s,
pre-dating some of the most fundamental tools in modern signal processing
and spectral analysis. The eponymous Joseph Fourier is generally credited
with the method of describing a function using its constituent frequencies,
as described in his 1807 memoir Analytical Theory of Heat [15]. Although
traces of similar ideas are found in work done by Leonhard Euler in the 18th
century as well as in work from other notable mathematicians of the past
[11]. In the 21st century the Fourier transform has become ubiquitous in
most, if not all, scientific disciplines, and is one of the most important con-
cepts in signal processing and analysis. In 1965 J. W. Cooley and J. W.
Tukey published their fast Fourier transform (FFT) algorithm, a more ef-
ficient way to digitally compute the discrete Fourier transform (DFT) [11].
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Cooley and Tukey’s FFT algorithm requires a number of operations propor-
tional to N · log(N) to compute N coefficients as opposed to older methods
which required N2 operations [9]. This optimization was a significant im-
provement, and facilitated analysis of larger volumes of data more rapidly
and with a lower computational cost. Applying the FFT to time series data
such as recorded sperm whale vocalisations translates the data into the fre-
quency domain, allowing for identification of spectral features. In human
speech and music the FFT and other spectral analysis techniques have been
widely used to study and describe various features and their significance, as
well as to develop tools such as music transcription and speech recognition
[15]. Some of the techniques that have already been developed for other ap-
plications might be useful in less familiar contexts, such as whale speech.

Sperm whale communication

Sperm whales are marine mammals that live in groups in nearly every part
of the world’s oceans. They are known to be highly social creatures, demon-
strating strong bonds between individuals and a distinct capacity for so-
cial learning1. Sperm whales communicate using a complex arrangement
of broadband clicks, but just how nuanced these clicks and the information
they are capable of conveying is still uncertain to humans. Early observations
from marine biologists and other observers identified certain patterns in the
click sequences, which have come to be known as codas, and noted that the
codas were often specific to certain groups of whales [1]. A "conversation"2

between whales consists of multiple codas which whales exchange, sometimes
repeating or simultaneously sounding the same codas [18]. Codas are rec-
ognizable patterns of approximately 3 to 10 clicks lasting under 2 seconds,
with different groups of sperm whales around the world utilizing distinct sets
of patterns. In the well-studied Eastern Caribbean Clan near the island of
Dominica for example, 22 distinct coda types have been identified [3]. The
clicks within a unit consist of several decaying pulses separated by around 3-4
milliseconds (figure 2), the interval between pulses is thought to depend on

1Young sperm whales have even been described as going through a "babbling" phase
of language acquisition before they learn to use the same vocalizations as the adult whales
[1].

2It should be noted that the use of anthropocentric terms such as "conversation" or
"grammar" must be taken as convenient descriptors rather than strict definitions, as it is
uncertain to what degree whale vocalizations mirror the structure of human language. It
is possible that whales communicate in a way that no existing human concept can acutely
describe. The use of quotations throughout this paper is meant to serve as a reminder of
this distinction.
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the reverberation within the whale’s spermaceti organ, and thus is dependent
on the size of the whale [1] (figure 1).

Figure 1: Diagram of sound production in sperm whales (above) and bot-
tlenose dolphins (below). The exact mechanisms are still being studied, but
sound production is believed to be controlled by air forced through these
nasal complexes.
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Figure 2: Example wave-form of a sperm whale click.

Coda clicks are easily distinguished from the sperm whales’ higher-frequency
echolocation clicks, but any potential distinctions among coda clicks them-
selves are more subtle. New technologies and statistical methods have im-
proved scientists’ abilities to both collect and analyze marine audio data.
Consequently, the potential for successfully interpreting sperm whale vocal-
izations has increased greatly. For now, the purpose and meaning of sperm
whale codas largely remains a mystery.

Acoustic monitoring of sperm whales

The effort to intentionally record whales whenever the opportunity pre-
sented itself began around 1957, although earlier recordings also do exist
[21]. Whales in general began to become more prominent in the cultural
and scientific zeitgeist with the "save the whales" movement that followed
Roger Payne’s discovery of singing in humpback whales at the end of the
1960s and led to the dismantlement of the whaling industry [8]. In the case
of sperm whales as well as other species, recordings of their vocalisations
have for the most part been taken using arrays of hydrophones hung off the
sides of a boat. By 1977 temporal patterns in recordings taken in the North
Atlantic were beginning to be formally studied and described [21]. However,
the understanding that these clicks might make up a complex socially learned
language would not gain solid footing for another couple of decades.
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Background and related research

The Dominican Sperm Whale Project and Project CETI

The Dominican Sperm Whale Project (DSWP) began in 2005, principally
led by Dr. Shane Gero, with the aim of conducting a long-term and in-depth
study of the sperm whale population residing near the Caribbean island of
Dominica [16]. The DSWP has followed the same population of whales for
nearly 20 years, building an understanding of their behaviours and relation-
ships. Project CETI (Cetacean Translation Initiative) branched from the
DSWP in 2020, and was specifically focused around the project of interpret-
ing the whales’ language by leveraging new robotic technologies including
more advanced machine learning tools and recording devices, coupled with
computer algorithms, specifically designed for collecting large amounts of
high-quality recordings of marine mammals [8]. CETI has studied the vocal-
izations of the Dominican sperm whale population through many different
lenses. Cryptographers, marine acousticians, roboticists, statisticians, lin-
guists and other experts have contributed their perspectives, and they have
been able to propose quite a few potentially important features and qualities
of conversations, codas, and individual clicks (see Appendix A). In order to
get better results from unsupervised machine learning and generative mod-
els, CETI has put the infrastructure in place to vastly increase the amount of
data they have at their disposal. The acoustic biologging tags, called D-tags,
deployed to record vocalizations are attached directly to the whales [18], and
therefore their data is much more uniform, cleaner, and can also comprise
contextual information about a whale’s identity and behaviour. In contrast
to the traditional hydrophone recordings, the relative predictably of the tag
recordings also makes more streamlined and accurate automated processing
and click detection possible. While this thorough study is integral to any
possibility of decoding or replicating sperm whale communication as CETI
hopes to do, it is quite costly in terms of time and resources, and it is not
necessarily clear if or how the new findings might compare to populations
outside of the Eastern Caribbean Clan.

Published results from CETI and DSWP

One of the first publications to come from the DSWP on the topic of sperm
whale codas in 2008 described observations of the temporal structure of co-
das and the apparent call-and-response and overlapping patterns in coda
exchanges between whales [17]. Not long after, in 2011, the DSWP team
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offered evidence against the idea that codas were simply individual identi-
fiers. Using comparisons between the inter-click-intervals (ICIs) and relative
shapes of the clicks in a set, they suggested that sperm whales might in fact
be communicating much more information than had previously been believed
[2]. In 2019, so called deep learning, inspired by contemporary analysis of hu-
man speech, was applied to the problem of identifying and classifying clicks
from spectrograms. Using Convolutional Neural Networks (CNNs) the team
achieved a 99.5 % accuracy rate in detecting the presence or absence of a
click, with a 97.5% accuracy in classifying codas from the Dominican sperm
whale data set, and 93.6% accuracy for the Eastern Tropical Pacific data set
which includes a larger number of coda types [5]. In 2022 CETI garnered
wide attention through a popular-science-style article outlining their project
and the belief that the complexity of sperm whale communication may well
be at the same or a similar level to human language [1]. An attempt to use
generative adversarial network (GAN) models to determine significant fea-
tures of whale codas was described by Beguš et al. in 2023, and the results
supported the generally held belief that codas are a primary distinguishing
feature [3]. The GAN approach, which the team labeled “causal disentangle-
ment with extreme values”, also suggested that spectral mean and regularity
across all clicks within a coda may be important. While machine learning
decreases the human bias in attempting to interpret vocalizations, some stud-
ies have emphasized this nonobjectivity by drawing direct parallels to human
languages or even music. Sharma et al. drew direct comparisons between
certain aspects of codas and the musical concepts of ornamentation, rubato,
rhythm and tempo [18]. On the other hand, Beguš et al. described certain
features as analogous to human vowels, diphthongs, and pitch [4]. With lin-
guistics and music theory being well-developed fields of study, methods for
describing diversity among human languages or musical principles can be
useful comparisons in the investigation of whale speech. So far most studies
have focused on larger-scale variations, especially at the level of codas and
conversations. Comparatively little has been reported about the properties
of individual clicks and the potential distinctions on a smaller-scale.

Precedent in other cetaceans

Bottlenose dolphins (Tursiops truncatus) have been studied far more than
other cetacean species because they can be studied and kept in captivity rel-
atively easily. Much like sperm whales, dolphins use vocalisations for both
echolocation and communication. Their clicks have been described as be-
longing to certain categories of frequency distributions. Click types defined
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by Houser et al. in 1999 formed seven groups:

1. unimodal low dominant frequency

2. unimodal low dominant frequency with a higher secondary frequency

3. bimodal equally dominant high and low frequencies

4. unimodal high dominant frequency with lower secondary frequency

5. unimodal high dominant frequency

6. wideband over frequency range without distinct peaks

7. 3 or more distinct regions in the frequency range

In dolphins, as well as false killer whales (Pseudorca crassidens), the catego-
rization was done for broadband echolocation clicks with peaks in the range
of 46-100 kHz [12]. A later study described four distinct general categories
of dolphin click types using defining characteristics including duration, peak
frequency and number of peaks in a click [7]. Other work has described a
high level of finesse in dolphin echolocation clicks, and posited that they
are capable of muscular regulation this precision [19]. While sperm whale
coda clicks are distinct from their echolocation clicks, if they are capable of
controlled frequency modulation, it is plausible that, as with dolphin echolo-
cation, communicative clicks could similarly be categorized based on their
frequency patterns. It has previously been suggested that dolphin clicks, or
those of other cetaceans, might be better modeled by a Gumbel-like func-
tion than by more traditional envelope functions [6]. The Gumbel function
therefore might be well-suited to modelling sperm whale clicks.
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Motivating questions for this paper

Taking inspiration from prior research in dolphin vocalisations and contem-
porary studies on sperm whales,

• can multiple patterns be identified in the frequency content of different
clicks produced by sperm whales?

• can an appropriate method of estimating the signal envelope be defined
and implemented based on a Gumbel density function? Are the result-
ing Gumbel parameters useful descriptors of the shape of an individual
click?

In summary, can distinguishing features in the spectrum and shape of indi-
vidual clicks be identified and defined such that the clicks themselves can be
effectively described by a simplified set of parameters?

Methods

Data

Over 1400 sperm whale audio clips recorded between 1952 and 1995 and the
associated metadata are openly available on the Watkins Marine Mammal
Sound Database webpage from the Woods Hole Oceanographic Institution
and New Bedford Whaling Museum [13]. The quality, duration, and content
of the clips varies greatly. In general, recordings were taken using a hy-
drophone array attached to a boat with sample rates between 10 and 166.6
kHz, and the clarity of the whales’ clicks depends on the levels of back-
ground noise and distance between the whale(s) and the recording device
among other factors. Some of the clips were not usable for this investigation
due to the clicks being nearly indistinguishable from the general noise. After
sorting out clips with especially high levels of noise, other species vocalising,
or indistinguishable clicks, 804 recordings totaling 76.44 minutes were chosen
for analysis and a subset of 421 were marked as especially good quality.

Onset detection

Due to the inconsistencies between datasets, automating a reliable system
for detecting clicks in the data presented a substantial challenge. Multiple
approaches were attempted and compared in order to determine which, if
any, worked well across the majority of the data. The approaches were based
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on methods for onset detection in music transcription as described by Klapuri
and Davy in Signal Processing Methods for Music Transcription [14]. The
sperm whale clicks are transient events, which are for the most part easy to
pick out visually and audibly from a waveform or spectrogram representation
of a recording (figure 3).

Figure 3: An example of the spectrogram representation of a 5-click coda.
The 5 clicks stand out clearly in this relatively low-noise sample.

Based on the nature of the clicks, the transient event onset detection is
the most applicable of the methods mentioned by Klapuri and Davy. This
method as well as two modified versions were tested on random samples of
the full available data set. In all, four methods for detecting clicks were
compared using hand-annotated data.
Initial exploration of the collection of recordings showed that a high-pass
filter in the range 2000-4000 Hz removed the periodic noise, which comes
from sources including boats or the movement of water, that is present in
some of the recordings without a significant change effect on the click peaks,
thus a 4000 Hz Butterworth high-pass filter of order 4 was applied prior to
initial click-identification and removed once clicks had been isolated. This
is in keeping with other analyses where a band-pass filter ranging from 2000
Hz to 20 kHz was used [5]. The band-pass filter was also tested on this data,
but it reduced the contrast between clicks and noise enough to make click
detection less effective. Some data exploration also resulted in a relatively
heuristic method of giving a first-glace description of a recording.
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Rough cut-out

After applying the filter, a "blurred" version of the data was created by
replacing each value by the maximum value in some neighborhood, resulting
in a semi-smooth line over the noise, with a rough box around potential clicks
(figure 4a). Labelling this "blurred" signal

Sblur = {bn|max(S[n� fs� : n+ fs�])} (1)

where S is the filtered signal, fs is the sample rate, and bn in the first and
last � seconds took the maximum value between the beginning or end of the
data and either � seconds before or after as appropriate so that Sblur had
the same length as the original signal S. � = 0.003 was chosen and adjusted
thorugh some trial-and-error such that pulses within the same click would
not be separated.

(a) "Blurred" signal Sblur(1) with the
original 3-click signal for reference.
The "blurred" signal forms a rough
outline around the signal peaks.

(b) Absolute value of the analytic sig-
nal Dhil (2) shown against the origi-
nal 2-click signal.

(c) Local standard deviation Dsd (3)
against original signal with 5 clicks.

(d) Spectral sum gradient Dspec (4)
against original signal with 3 clicks.

Figure 4: Examples of how each onset detection method compares to the
waveform of a sequence of clicks. The same click sequence is shown in all
figures, zoomed in or out for better perspective of each method.
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Intervals around potential clicks were defined based on where Sblur re-
mained above some threshold. The height threshold began at Lblur = µblur +
�blur, where µblur = E[Sblur] is the mean over the entire clip and �blur =q
E[(Sblur � µblur)2] is the standard deviation. The limit was increased by

max(Sblur)
100 if more than 30 intervals per second were identified. The mini-

mum and maximum values of the "blurred" data then were used to assign a
signal-to-noise ratio (SNR), typically defined Psignal

Pnoise
where P is the power of

the desired signal or background noise. In this case,

SNR =
max(Sblur)

min(Sblur)
.

This measure of SNR served as both a descriptor of the audio clips and to
filter out the clips where the click onset detection would not be sufficiently
reliable.

Analytic signal

Two approaches were tested to mark significant changes in the energy of the
signal based on methods described by Klapuri and Davy for onset detection
in musical pieces [14]. The transient event onset detection was implemented
by using a Hilbert transform H for determining the analytic signal

SA = S + i · H,

where
H =

1

⇡

Z 1

�1

S(t� ⌧)

⌧
d⌧

is the Hilbert transform of the signal. An envelope may then be created
around the waveform by calculating |SA|. Finally, representing the envelope’s
rate of change using the gradient,

Dhil = r|SA| (2)

Sudden changes in the data should be reflected by peaks in the gradient
(figure 4b). This approach was implemented numerically in Python using the
signal library in the SciPy package [20]. The indices of peaks over a defined
height limit and with a specified minimal distance in between peaks were
extracted. Minimum height and distance limits were selected such that peaks
within the same click were not included. The high variation in individual
recordings combined with the differences between separate recordings meant
that a flexible height limit must be used.
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Local standard deviation

Inspired by the previous method (2) and observations of the data, a similar
procedure was also applied to the local standard deviation of the waveform

Dsd = {dn|std(S[n� ⇣ : n+ ⇣])} (3)

with ⇣ = 10. Thus, each dn represents the local standard deviation, and
peaks in Dsd represent a significant change in the data (figure 4c). As with
Sblur, the standard deviation values at the ends of the audio sample were
taken over a smaller range in order to maintain the same length as the orig-
inal signal.

Spectral sum

Since clicks are often clearly visible in spectrogram representations of record-
ings, another variation on the method in (2) based on a frequency-based
estimate was applied using the short-time Fourier transform (STFT),

Dspec = {sn|r
X

k

|STFTn|} (4)

In other words, each element of Dspec is the sum of power over the frequency
range k in the corresponding frame, such that when a broad-spectrum event
is present it is reflected by a larger value for sn (figure 4d). The spectral-
based onset detection (4) was designed to identify peaks in the gradient of
the transformed vector, Dspec, with an initial height threshold of Lspec =
µspec + �spec, where µspec is the mean over the entire clip and �spec is the
standard deviation defined as they were for the previous method (1). If
more than 30 clicks per second were identified, the height threshold would
be raised by max(Dspec)

100 until fewer than 30 clicks per second were included.
For the onsets based on the envelope-gradient Dhil, a "blurred" outline was
created, similar to what was done for Sblur (1). The minimum value of the
result minhil was taken and used to set the initial threshold for identifying
peaks Lhil = minhil + �hil with the standard deviation �hil of |Dhil| being
defined as before. An equivalent procedure was taken for the local standard
deviation vector Dsd (3).
The minimum height minsd based on the "blurred" vector was added to twice
the standard deviation, i.e. Lsd = minsd + 2 · �sd, to set the initial height
limit for peak-finding. The SciPy was again used, with the corresponding
height limit and a minimal distance of 0.015 seconds, to identify the peaks
in Dhil (2) and Dsd (3). For both of the two previous methods, if the number
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of detected peaks was greater than 30 per second, the height limit would be
increased by a fraction of the maximum value until the number fell below
the threshold. The minimal distance of 0.015 seconds was based on the fact
that click length varies but is made up of several pulses around 3-4ms [1],
however, many of the recordings have a large amount of reverberation or
echoes. Because of the presence of reverberation as well as the characteristic
pulses of the clicks, peaks within 20ms after the previous one were removed
post-detection.

Click analysis

To isolate clicks for further analysis, the chunks cut out based from Sblur

(1) were narrowed down, first by checking whether any onsets based on the
envelope-gradient method, Dhil (2), were present in that interval. If no on-
sets were detected, the section would be passed over. If more than one was
found, the interval was checked to determine if it needed to be broken into
multiple clicks or shortened. The remaining sections were refined so that the
length was in the range of approximately 0.015-0.03 seconds with a signifi-
cant shift in energy present within the first few milliseconds and the starting
and ending points falling at the time where Dsd (3) was minimal within the
appropriate time span and section isolated by (1).
The spectral properties of each click were then examined in the time-frequency
domain by means of a periodogram. The periodogram is traditionally ex-
pressed as

R(f) =
1

n

����⌃
n�1
t=0 wtxte

�i2⇡ft
����
2

with window function wt. Various windows were tried against a selection
of test clicks to compare performance, attempts to use a Gumbel-style win-
dowing function gave wide main lobes and a smooth representation (figure
5), however a Hann window was ultimately chosen for analysis. The Hann
window is often used for broadband random signals, and has minimal effect
on frequency resolution and reduces spectral leakage. The window function
is defined

wt = 0.5� 0.5cos(
2⇡t

M � 1
) 0  t  M � 1.

Spectral peaks from the periodogram were collected for the clicks isolated
in each audio clip with a SNR value above five. The clicks were categorised
based on the clearly prominent frequency peaks and labelled as belonging to
one of six general categories; figure 5 is a good example of two fairly clear
peaks.
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Figure 5: Comparison of Gumbel and Hanning windows. A customized win-
dow based on the Gumbel distribution gives more readibility on the log-scale,
but reduces peak accuracy.

The frequency information, could then itself be examined and compared.
In many clips there was a constant and strong noise just above 30000 Hz, if
and when this was picked out as a peak in the periodogram, it was excluded
as it was clearly not part of the click. The peaks in the periodogram were
found by scaling the periodogram such that the values were between 1 and 0
and a uniform limit could be applied. This limit was set to a minimum height
of 0.5 to considered a peak. The categories were defined based on categories
used in previous studies on dolphin clicks, adjusted based on observations
of common patterns in the whale click data. The categorisation was done
algorithmically, marking each click as having either

1. one lower dominant frequency

2. one higher dominant frequency

3. two equally dominant frequencies (height difference of <0.1 on the
scaled periodogram)

4. a dominant frequency followed by a secondary frequency

5. a secondary frequency followed by a dominant frequency
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6. more than two frequency peaks

Another measurement, the click spectral centroid, was also considered. It is
calculated as the sum of the magnitudes an from the Fourier transform of
the signal, weighted by the corresponding frequency xn divided by the sum
of the magnitudes [14],

SC =
⌃xnan
⌃an

,

and was calculated for each detected click. The centroid does not provide the
same level of detail as the periodogram peaks, but gives an average measure
of where power is concentrated in the data.

Envelope fitting

The shape of a click in standard wave form is characterised by a sudden and
sharp initial increase in amplitude, which tapers off more slowly as a series
of pulses of decreasing amplitude. Due to these characteristics, a Gumbel
density function (figure 6) was deemed suitable to fit a smooth estimated
signal envelope to the click waves. Here let S denote the original click signal,
and s samples from S. The maximum Gumbel density function takes two
arguments, µ defining the centre on the x-axis and � defining the spread.

g(s) =
1

�
e�

s�µ
� e�e

� s�µ
�

.
The envelope was fit by first transforming the click data using a Hilbert
transform (figure 13a) and the analytic signal as defined in the calculation
of Dhil (2). In the style of an empirical distribution function, the scaled
cumulative sum of SA is found by

F (t) =

Pt
j=1 sAi

PT
j=0 sAj

, t = 1, ..., T

(figure 13b). The Gumbel cumulative distribution function (CDF) can be
expressed as

G(s) = e�e
�(s�µ)

�
.

If G(s) is double log-transformed it becomes a linear function,

eG(s) = �log(�log(G(s))) = �log(�log(e�e
�(s�µ)

�
)) =

(s� µ)

�
.
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F (s) is transformed in the same way, giving eF (s). Fitting by least-squares
a line y(s) = as + b to the log-transformed eF (s), and taking a = 1

� and
b = �µ

� = �aµ, gives the parameter values for the envelope as � = 1
a and

µ = �b
a .

Using the resulting µ and �, let z = S�µ
� , the function representing the

desired envelope is
1

�
eze�ez

.

Figure 6: Shape of a Gumbel PDF with µ=0 and �=2. The shape of the
curve is reminiscent of the general shape of a single sperm whale click.

Results

Onset detection

Potential onsets could be detected with reasonable reliability by applying a
4000 Hz high-pass filter to the signal to reduce noise, and using a combina-
tion of the "cookie-cutter" or "blurred" method (1) and the envelope gradient
method (2). Testing against an annotated subset of the data to assess the
performance of this and the three other onset detection methods showed that
the accuracy of number of clicks found was similar for all methods. Figure
7 shows visually how the onset detection processes perform on a fairly clear
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example clip.

Figure 7: Example of onset detection applied to clip 88002001 from the
dataset. All four methods correctly identified the four clicks in the clip.

The detection process was carried out on the set of 804 audio clips, 424 of
which were annotated and could be used to check detection accuracy (figure
8). All methods performed very well on the least noisy data, however for
the less clear data the gradient-based methods, especially Dsd (3) and less
dramatically Dhil (2), tended to result in more false negatives, while Dspec

(4) is quite sensitive in noisy data occasionally returned a large number of
false positives.
The clicks used in the spectral analysis were isolated using a combination
of the two most effective detection methods. this combined onset detection
process returned the correct number of clicks at a rate of 63.208% with a
mean error of 0.877. The accuracy is slightly lower than it was using only
the cut-outs, but included fewer false positives.
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Figure 8: Histograms of error for each onset detection method. The error is
based on an annotated subset of the data, such that the number of detected
onsets can be compared to the true number of audible clicks. Envelope
gradient (equation 2) returned a correct count rate of 43.396% with a mean
error of 1.670, for the cut-outs (equation 1) this increased to 63.443% and
1.722, the standard deviation (equation 3) gave 56.604% and -0.47406, and
spectral gradient (equation 4) 58.726% and 3.0731.

Frequency analysis

Sperm whale clicks contain frequencies primarily within the range 2000 Hz
and 20,000 Hz. Individual clicks last approximately 20 milliseconds, but
this length varies, presumably depending on the whale’s size. For the clicks
extracted, the two common dominant frequencies could immediately be ob-
served in the spectral centroid distribution (figure 9), where the primary peak
falls around 3500-5000 Hz and a secondary peak appears above 7500 Hz.
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Figure 9: Histogram of spectral centroids of detected clicks and first quantile,
median, and third quantile shown in the box plot. The centroids are not
exact measurements of dominant frequencies, but reflect where energy is
concentrated on the frequency spectrum. In this case frequencies are clearly
concentrated in two places, just below 5000 Hz and just below 10000 Hz.

In the periodograms of individual clicks, similar patterns could be seen
in the distributions of frequency as those previously described for bottlenose
dolphin clicks. Implementing an automatic sorting method based on simple
rules, it was possible to assign clicks to each category (figure 10). For clicks
with a single lower frequency, the mean peak frequency was 2535 Hz, and the
mean in higher single-peak clicks was 8345 Hz. It may even be possible to split
the lower dominant frequencies into more specific frequency groups (figure
11). The remaining categories all had means between 4000 and 5000 Hz
accounting for all peaks in the frequency distribution (figure 12). The exact
frequencies that were dominant in the multi-peak clicks were less clustered
around certain values, but fell within the same range as the single-frequency
clicks and had a similar shape.
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Figure 10: Overlay of categorized zero-padded periodograms of clicks. These
plots show the general shape of each category using the examples from the
available data, and not intended to serve as especially detailed descriptions.
The number of clicks in each category, read left-to-right top-to-bottom, were
1867, 444, 153, 619, 485, 1339.

Figure 11: Periodograms of single low-frequency category with <3000 Hz in
blue and 3000-6000 Hz in orange. Visually, the separation into two specific
low-frequency groups results in two clear peaks.
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Figure 12: Histogram of dominant frequencies for clicks in each category.

Fitted envelope

The envelope function was well suited to clicks that were extracted cleanly
by the detection algorithm. The example in figures 13a-13d illustrates the
steps of fitting the envelope and the final result. The wave and the envelope
plotted together in figure 13d have been scaled to 1. As a measure of how
well the envelope fit the data, the squared residuals were taken at the linear
stage shown in 13c. In order to account for divergent behaviour at the ends
of the transformed cumulative sum, caused by taking a double log of values
approaching 1 as log(log(1)) = log(0) ! �1, the envelope fitting process
was repeated with an additional step of truncating the cumulative sum at
the beginning and end before fitting the linear line. Envelope functions were
fit to a total of 5133 detected clicks. Truncating the values used to fit the
line reduced the mean of the squared residuals from 99.166 to 22.836.
A comparison of the clicks was done based on their � parameter, most domi-
nant frequency, and recording location. There may be latent variables associ-
ated with geographical location where the whale recordings were made, since
it is related to the year and possibly other unknown circumstantial details. It
does however appear that the click frequency and spread, represented by the
�, is correlated with geographic location (figures 14 and 15). The clearest
distinct groups are those from Dominica (figure15a), which cover a larger
range of dominant frequencies but have generally lower � values, and Malta
(figure 15j), which have mostly lower dominant frequencies but a wider range
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of �s.

(a) Absolute value of the analytic sig-
nal SA of click (b) Scaled cumulative sum of SA

(c) Fitted line of transformed cumu-
lative sum with vertical lines mark-
ing the 5% of points at each end that
were truncated to improve the esti-
mation of the signal envelope.

(d) Click wave and Gumbel envelope
with parameters determined by the
fitted line

Figure 13: Process of fitting a Gumbel-style envelope to a single click.
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Figure 14: Click parameters and location. The values are largely concen-
trated in one area, but the variation seems to differ based on location.
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(a) Dominica (b) Bequia

(c) St. Vincent (d) Browns Bank

(e) Gully, SE Sable Island (f) South of Sable Island

(g) Ligurian Sea (h) N of Selina, Sicily

(i) Madeira (j) Malta

Figure 15: Click parameters for individual locations.
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Discussion
The structure of sperm whale clicks is much more nuanced than it immedi-
ately appears from the perspective of a human observer. Even using older
and noisy data, certain spectral characteristics could be extracted from the
data. The results are in general agreement with contemporary reports from
other parties, but might suggest more variation than has been previously
reported in terms of the frequency distributions. If these categories can be
confirmed by additional testing, they would add even more complexity to pro-
posed "phonetic alphabet" of sperm whales. The distributions of dominant
frequencies may fall into categories similar to those previously defined for
dolphin clicks rather than the binary categorisation that has been suggested.
The categories described in this report could be supported by a large number
of examples from the dataset and detected clicks, but even more specificity
may be possible. It would be beneficial to validate or negate all categories
tested, here and elsewhere, by alternative methods such as machine learning.
While coda patterns have been the primary means of identification and in-
vestigation since sperm whale codas first became a subject of interest, the
potential of finding defining features on a smaller scale could be useful as
a complement, or when entire codas cannot be taken from a recording. In
figures 14 and 15 the range of � values and strongest dominant frequencies
appeared to vary based on the ocean region. In some regions, such as near
Madeira, the frequencies fell within a wider range of values while �s remained
within a narrower range. In other areas however, such as near Dominica, the
opposite was true. Studies on different sperm whale acoustic data sets could
give more insight into what distinctions are significant in the frequency con-
tent of clicks. The variation in dolphin clicks was linked to different contexts
or environments. Accordingly, click features, as with codas types, may vary
geographically or by population. Machine learning may also be a useful tool
in order to validate differences in frequency patterns. Considering the ap-
parent clustering in click shape and frequency by location, more detailed
investigation into the cause of the grouping would be appropriate. Further
studies might take into account more contextual variables, and data could be
deliberately collected for the purpose of examining the connection between
click frequencies and context.
There are several potential sources of error that may have affected the re-
sults of this study. The frequency and location information may be related
to or affected by the varying methods and sources of the recordings. Differ-
ent arrangements of hydrophones and their position relative to the vocalising
whale might affect the frequency recorded. The inconsistencies in sampling
rate may also influence the resulting audio. Similarities in the recording
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conditions for each location, such as the date or equipment, could result in
clearer clustering than would be present had those factors been controlled
for. These factors should be taken into consideration in any future studies.
Initial click onset detection in noisy and variable data could be performed
reasonably well with minimal assumptions about the nature of the transient
event. Even when employing conservative limits to avoid false positives, a
large number of clicks could be extracted with good accuracy. Depending on
the purpose of this type of detection, limits could be adjusted or one method
in particular could be used in isolation. Multiple validation could also be
used under the assumption that if all four methods agree to some level of
precision, a transient event is present.

Revisiting motivating questions

The motivating questions described earlier in this paper were all addressed
in this study. The results can be summarised as follows:

• patterns in the frequency content of clicks could be heuristically deter-
mined and clicks sorted into categories depending on the number and
values of dominant frequencies. The categories proposed and tested
here were initially based on the categories that have been defined in
past studies on dolphin clicks, and adjusted according to observed fre-
quency characteristics of clicks. Further work will be necessary in order
to confirm or improve the suitability of the categories applied to sperm
whale clicks.

• the Gumbel-style signal envelope estimation fit clicks fairly well, es-
pecially those clicks which were cleanly extracted from high quality
recordings. Truncating the transformed cumulative sum before fitting
a line further improved the estimation. Considering the � parame-
ter from the estimated signal envelope in conjunction with the most
dominant frequency and recording location for each click, showed some
apparent clustering, suggesting that they represent significant features
of the clicks.
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Appendix A: Vocalisation terminology

Figure 16: A single click

- Click: A single vocalization within a coda made up of several rapid
pulses [1].

- Inter-pulse-interval (IPI): Time between the pulses in a click.

- Coda: Short burst of clicks (<2s) that can be categorized into discrete
patterns based on number of clicks and time between them [18].

- Inter-click-interval (ICI): Time elapsed between individual clicks
within a coda.

- Duration: Sum of ICIs in a coda [18].

- Rhythm: Normalised ICI category (ratios in ICIs rather than mea-
sured time) [18].

- Spectral frequency: [4]

- Coda level: Mean frequency on a coda-level spectrogram.
- Click level: clicks isolated prior finding the mean frequency

across all clicks in a coda.
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Figure 17: A coda with 5 clicks and ship noise in the background

- Acoustic regularity: Standard deviation of click spectral means in a
coda [4].

- Exchange: Coda “conversation” between two or more whales, with
matching, overlapping and repeating of codas.

- Rubato: Structure in variation in coda duration over an exchange
(One whale might repeat a coda over the course of an exchange, but
slightly alter the duration from one repetition to another) [18].

- Ornamentation: “Extra” clicks at end of a coda that otherwise matches
the others in an exchange [18].

- Tempo drift: Difference in two codas’ durations from the same speaker
[18].

- Tempo: Duration, independent of rubato [18].

- Chorusing: Interactive exchange between two or more whales.

- Conversational context: Features (e.g. ornamentation) depend on
the larger-scale context or patterns in an exchange [18].
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Figure 18: Part of an exchange between two sperm whales

- Biological context (cues): Activity or position of an individual dur-
ing or immediately post/prior to vocalization (e.g. diving, encountering
another individual, etc.).

- Trajectories: Directional formant frequencies [4].

- Coda dipthongs: Rising, falling, rising-falling and falling-rising for-
mant patterns are observed on individual codas, defined by formant
frequency trajectories [4].

- Coda vowels: Recurrent spectral properties, likened to formant fre-
quencies in human language [4].

- A-type: Single pronounced spectral peak below 10kHz (around
5800Hz).

- I-type: Two spectral peaks below 10kHz (around 3700Hz and 6200
Hz).
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