
Analysing Functional Data of

Two-Dimensional Arguments using

Tensor Spline Orthonormal Bases

Freja Wikstrand

Supervised by: Krzysztof Podgórski

STAN40: First Year Master Thesis in Statistics

15 ECTS

Lund University
School of Economics and Management

Department of Statistics
Spring 2024

Abstract

This thesis establishes a theoretical framework for constructing orthonormal
tensor spline bases, to transform two-dimensional functions into a coherent set
of coefficients, for easier analysis of functional data. Through empirical testing
on image datasets, the method showcases promising results, underscoring its
utility in pattern recognition tasks. This research lays a foundation for further
exploration into advanced data analysis techniques, with implications extending
to multidimensional functional representations and computational modelling.

1

Contents

1 Introduction 3

2 Functional Data 4

2.1 Hilbert Space of Square Integrable Functions 5

2.2 Orthonormal Basis Functions . 5

3 Splines 7

3.1 Tensor Space of Splines in R2 . 7

3.2 R-Package: Splinets. 9

3.2.1 Splinet for Two Dimensions . 9

3.3 Analysis of Functional Data in Two Dimensions. 11

4 Experiment: Clothing Classification 12

4.1 Data Presentation . 12

4.2 Method . 13

4.2.1 Creating the Splines . 13

4.2.2 Principal Component Analysis . 14

4.2.3 Classification . 15

4.3 Results . 16

5 Discussion 19

6 Conclusion 22

Bibliography 23

A R-code: Functions for Two-Dimensional Splines 24

2

1 Introduction

Functional data is a fascinating field of study that delves into data consisting
of entire functions rather than individual data points. This unique approach is
believed to enable a richer understanding of complex, dynamic systems, making
it particularly powerful in capturing and analysing variability over continuous
domains. Functional data analysis provides a versatile framework for addressing
real-world problems in diverse fields such as biology, economics, and engineering,
offering insights that traditional data analysis methods might overlook.

In recent years, the emergence of deep learning has revolutionised the field of
functional data analysis, offering powerful tools for extracting insights from com-
plex and high-dimensional functional datasets. Deep learning techniques, such
as neural networks, have shown promise in handling the intricate relationships
and patterns present in functional data. However, despite their effectiveness,
deep learning models often face challenges in interpretability, generalisation to
new datasets, and robustness to noise and outliers.

Another method of working with functional data is to use splines, how-
ever when dealing with two-dimensional functions, the use of splines encounters
challenges due to increased complexity and potential limitations. Splines, while
effective in representing one-dimensional curves, can become computationally
demanding and less intuitive when extended to two dimensions. Issues may
arise in terms of defining appropriate knots, managing increased data dimen-
sionality, and ensuring smoothness across both dimensions.

Balancing accuracy and computational efficiency becomes a delicate chal-
lenge, motivating the exploration of alternative methods for representing and
analysing two-dimensional functions. This thesis aims to explore numerical
approximation, evaluation, and analysis methods for splines applied to two-
dimensional functions, while also considering the potential role of deep learning
in augmenting these methods and overcoming their limitations.

3

2 Functional Data

Functional data refers to data where the observations are functions, as opposed
to individual data points. Instead of having a set of numbers or vectors as
your data, you have functions. Functional data analysis (FDA) is a statistical
framework designed to analyse and make inferences about such functional data.

Let F (t) be a random function representing our functional data. We can
think of this as a function that takes time t as an input and gives us some
observed value. In functional data analysis, we often decompose F (t) into a
mean function µ(t) and some fluctuation around the mean ϵ(t):

F (t) = µ(t) + ϵ(t) (2.1)

Here, µ(t) represents the average behaviour of the functional data, and ϵ(t)
captures the variability or randomness. Statistical methods in functional data
analysis aim to estimate the mean function µ(t), model the variability ϵ(t), and
make inferences about the underlying processes generating the functional data.

It is important to note that functional data analysis involves concepts from
functional analysis and often uses tools like functional principal component anal-
ysis (FPCA) to analyse the variability in the data. Multidimensional functional
data has more than one input, in this report the focus will be on two-dimensional
data, defined as

F (x, y) = µ(x1, x2) + ϵ(x1, x2) (2.2)

4

2.1 Hilbert Space of Square Integrable Functions

Our main objects are functions, as such, we need to study their properties.
Functions can be viewed as elements in the Hilbert space of the square integrable
functions. For a set D ⊆ Rd, where Rd is the d-dimensional space of real
numbers, the Hilbert Space is denoted by

L2 =

{
f : D → R;

∫
D
|f(x)|2dx < ∞

}
(2.3)

For the purpose of this thesis d ∈ {1, 2}, where D = [a, b], and D = [a, b]× [c, d],
respectively. The square integrable functions can be viewed as vectors in L2,
the norms and inner products for these functions is denoted

||f || =

√∫
D
|f(x)|2dx (2.4)

< f, g >=

∫
D
f(x)g(x)dx (2.5)

From here we further state that f is orthogonal to g (hereafter denoted f ⊥ g),
if < f, g >= 0, and f is normalised if ||f || = 1.

2.2 Orthonormal Basis Functions

In order to analyse functional data, we want to project it onto a subspace of

L2, spanned by a basis of functions. Let {ei}∞i=1 ⊆ L2 such that

∞∑
i=1

αiei ∈ L2,

where αi ∈ R. Then we have an infinite linear combination of functions. Using
this, we can find a function

f ∈ H =

{ ∞∑
i=1

αiei, αi ∈ R

}
(2.6)

Here ei is called a basis in H, and any function f in that space can be found
using a linear combination of the basis functions.

A good basis for inner product spaces is orthonormal (see [Debnath and Mikusinski, 1999,
Chapter 3] for a more in-debt study into the benefits of an orthonormal basis
when working with inner-product subspaces). That is

ei ⊥ ej , i ̸= j (2.7)

||ei|| = 1 (2.8)

With an orthonormal basis, if f ∈ H, then f =

∞∑
i=1

< f, ei > ei and ||f ||2 =

∞∑
i=1

< f, ei >
2.

5

From here on, we assume all H ⊆ L2 to be finite dimensional, meaning there
is a finite orthonormal basis in H; {ei}di=1. Then any function in L2 can be
projected onto H by using the formula

PHf =

d∑
i=1

< f, ei > ei ∈ H (2.9)

PHf will henceforth be referred to as f̂ . In one dimension, we see that an
orthonormal basis would yield

f̂ =< f, e > e =

∫ b

a

f(x)e(x)dx · e (2.10)

In two dimensions we want to choose an orthonormal basis e1, e2:

e1(x1) e2(x2)

x1 ∈ [a, b] x2 ∈ [c, d]

||e1|| = 1 ||e2|| = 1

e1 ⊥ e2

Then we get that

f̂ =

2∑
i=1

< f, ei > ei =< f, e1 > e1+ < f, e2 > e2 (2.11)

=

∫ d

c

∫ b

a

f(x1, x2)e1(x1)dx1dx2 · e1 +
∫ d

c

∫ b

a

f(x1, x2)e2(x2)dx1dx2 · e2 (2.12)

For the purpose of ei outside the integral, we can treat it as a constant Bi,
which is later substituted back into their original functional form.

=

∫ d

c

∫ b

a

f(x1, x2)e1(x1)dx1dx2 ·B1+

∫ d

c

∫ b

a

f(x1, x2)e2(x2)dx1dx2 ·B2 (2.13)

=

∫ d

c

∫ b

a

(B1e1(x1)+B2e2(x2))f(x1, x2)dx1dx2 =< (B1e1+B2e2), f > (2.14)

6

3 Splines

A spline is a piece wise-defined curve that is formed by combining several simpler
curves. It is like connecting dots with a smooth curve rather than a jagged line.

Suppose you have a set of data points (x, y), and you want to create a smooth
curve S(x) that passes through these points. Using n basis functions, which are
points of references for finding the spline, the spline can be defined as:

S(x) =

n∑
i=1

Ci ·Bi(x) (3.1)

Here Ci are coefficients and Bi(x) are basis functions. These basis functions are
typically chosen to be smooth and defined over small intervals. The coefficients
Ci are determined such that the spline passes through the given points.

Using the theory from chapter 2, we can use our orthonormal basis such
that Ci =< f, ei >, and Bi = ei. Many functions in functional data may be too
complex to describe with one singular curve, and as such, using splines allows
for finding changes in the function.

3.1 Tensor Space of Splines in R2

We assume we have two sets of orthonormal basis functions

OBi1(x1), x1 ∈ [a, b], i = 1, 2, ..., n1 (3.2)

OBj2(x2), x2 ∈ [c, d], j = 1, 2, ..., n2 (3.3)

such that

||OBi1|| = 1 ∀i, OBi1 ⊥
i̸=i′

OBi′1 (3.4)

||OBj2|| = 1 ∀j, OBj2 ⊥
j ̸=j′

OBj′2 (3.5)

7

Now we define a space containing all the linear combinations of the first set, as
well as one for the second set.

H1 =

{
n1∑
i=1

αiOBi1, αi ∈ R

}
, H2 =


n2∑
j=1

βjOBj2, βj ∈ R

 (3.6)

In order to map two-dimensional data to one dimension, we also need to define
the tensor product (denoted ⊗):

OBi1 ⊗OBj2 : [a, b]× [c, d] → R (3.7)

(OBi1 ⊗OBj2)(x1, x2)
def
= OBi1(x1)OBj2(x2) (3.8)

The new basis basis functions will then be a tensor product between the two
dimensions, which are also orthonormal to eachother. This can be proven by
finding the norm and inner products of the functions.

||OBi1 ⊗OBj2|| =
∫ d

c

∫ b

a

OBi1(x1)OBj2(x2)dx1dx2 (3.9)

=

∫ b

a

OBi1(x1)dx1 ·
∫ d

c

OBj2(x2)dx2 = ||OBi1|| · ||OBj2|| = 1

(3.10)

< OBi1 ⊗OBj2, OBi′1 ⊗OBj′2 > (i, j) ̸= (i′, j′)

(3.11)

=

∫ d

c

∫ b

a

OBi1(x1)OBj2(x2)OBi′1(x1)OBj′2(x2)dx1dx2 (3.12)

=

∫ b

a

OBi1(x1)OBi′1(x1)dx1 ·
∫ d

c

OBj2(x2)OBj′2(x2)dx2 (3.13)

=< OBi1, OBi′1 > · < OBj2, OBj′2 >= 0 (3.14)

Since at least one of the inner functions above is 0 due to orthogonality between
bases and (i, j) ̸= (i′, j′), we can see that the inner product indeed becomes 0.
We can then conclude that the resulting set

H1 ⊗H2 = lin{OBi1 ⊗OBj2, i = 1, ..., n1, j = 1, ..., n2} (3.15)

contains linear combinations of orthonormal square integrable functions, and is
a subspace of L2; the Tensor Space of Splines in R. Then the projection of f
onto H1 ⊗H2 becomes

f̂ =

n1∑
i=1

n2∑
j=1

< f,OBi1 ⊗OBj2 > OBi1 ⊗OBj2 (3.16)

8

3.2 R-Package: Splinets

In the R-package splinets, splines are represented efficiently by expanding them
using Taylor series at specific points called knots. This representation considers
the areas of support, making it suitable for handling sparse functional data.

The goal is to find the best functional fit, in the least square sense, using
splinets for data that consists of sampled values of functions or splines built
over another set of knots. This optimal fit is then used for functional data
analysis. The package can be used to find splines for one-dimensional data
using an orthonormal basis. [Liu et al., 2023]

Figure 3.1: The figure presents an illustrative example of four orthonormal basis
splines generated by Splinet in one dimension.

3.2.1 Splinet for Two Dimensions

Using the package, one-dimensional orthogonal basis splines can be found, as
well as the coefficients when projection a function. It can also evaluate the
spline for a new set of x1 and x2. However, Splinet at its current form can not
do this for two dimensions.

f̂ =

n1∑
i=1

n2∑
j=1

< f,OBi1 ⊗OBj2 > OBi1 ⊗OBj2 (3.17)

Looking at the above expression we start by finding a way to approximate
< f,OBi1 ⊗ OBj2 >. Since this is a double integral, it can be approximated

9

using double sums.

< f,OBi1 ⊗OBj2 > =

∫ d

c

∫ b

a

f(x1, x2)OBi1(x1)OBj2(x2)dx1dx2 (3.18)

≈
N2∑
l=1

N1∑
k=1

f(xk1, xl2)OBi1(xk1)OBj2(xl2)∇x1∇x2 (3.19)

where (a ≤ x11 < x21 < ... < xN11 ≤ b), (c ≤ x12 < x22 < ... < xN22 ≤ d) and
∇x1 = x(k+1)1 − xk1 ∀k, ∇x2 = x(l+1)2 − xl2 ∀l.

To better calculate this, we can create matrices such that:

FN1,N2
=

 f(x11, x12)∇x1∇x2 · · · f(x11, xN22)∇x1∇x2

...
. . .

...
f(xN11, x12)∇x1∇x2 · · · f(xN11, xN22)∇x1∇x2

 (3.20)

(3.21)

(OB1)N1,n1
=


OB11(x11) OB11(x21) · · · OB11(xN11)
OB21(x11) OB21(x21) · · · OB21(xN11)

...
...

. . .
...

OBn11(x11) OBn11(x21) · · · OBn11(xN11)

 (3.22)

(3.23)

(OB2)N2,n2 =


OB12(x12) OB12(x22) · · · OB12(xN22)
OB22(x12) OB22(x22) · · · OB22(xN22)

...
...

. . .
...

OBn22(x12) OBn22(x22) · · · OBn22(xN22)

 (3.24)

Then we can find our coefficients via matrix multiplication.

Cn1,n2
= (OB1)N1,n1

FN1,N2
(OB2)

T
N2,n2

(3.25)

≈

 < f,OB11 ⊗OB12 > · · · < f,OB11 ⊗OBn22 >
...

. . .
...

< f,OBn11 ⊗OB12 > · · · < f,OBn11 ⊗OBn22 >

 (3.26)

In order to evaluate our spline for a new set x1 and x2, where (a ≤ x11 < x21 <
... < xM11 ≤ b), (c ≤ x12 < x22 < ... < xM22 ≤ d) we can once again use matrix
multiplication.

SM1,M2
= (OB1)

T
M1,n1

Cn1,n2
(OB2)M2,n2

(3.27)

such that f̂(xk1, xl2) = SM1,M2(k, l). By using the above calculations, together
with two sets of orthonormal basis-splines from Splinets, we can calculate splines
for two-dimensional functions.

10

Figure 3.2: The figure depicts sixteen basis splines generated by combining the
basis splines from Figure 3.1 along one axis with the same basis along the second
axis. In the images, darker points represent higher values, while brighter points
indicate lower values.

3.3 Analysis of Functional Data in Two Dimensions

Our method condenses each observation into a matrix of coefficients. Addition-
ally, the utilisation of spline basis functions inherently captures the directional
relationship between these coefficients. Consequently, the matrix representation
of coefficients becomes redundant, as the splines already encode the directional
information within the data.

Therefore, we can streamline our analysis by focusing directly on the individ-
ual coefficients. Each coefficient can be treated as a distinct variable, eliminating
the need to maintain them in matrix form. By projecting additional observa-
tions onto the same subspace using identical basis splines, each observation
consists of n1 × n2 variables.

For further analysis, we can employ classical statistical methods, including
hypothesis testing, regression analysis, and various classification techniques.

11

4 Experiment: Clothing
Classification

The classification of clothing items from images is a fundamental task in com-
puter vision with numerous practical applications, such as online retail, image
retrieval, and fashion recommendation systems.

The objective of this experiment is twofold: first, to validate the performance
of using two dimensional spline when classifying the images in our data, and see
how it compares to previous methods within deep learning. Secondly, a brief
study into how the choice of knots, and the order of smoothness for the splines
will affect the performance.

Hopefully this method will be able to facilitate the development of more
efficient and versatile applications in the domain of computer vision.

4.1 Data Presentation

The dataset used in this experiment consists of 70,000 images of clothing items,
each resized to a resolution of 28 × 28 pixels. These images are categorised
into ten distinct classes, representing various types of apparel: T-shirt, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Boot.

Each image is labelled with its corresponding class, facilitating supervised
learning tasks such as classification and evaluation. The balanced distribution
of samples across categories ensures that the model encounters an equitable rep-
resentation of each class during training, minimising the risk of class imbalance
biases.

To ensure an unbiased evaluation of our classification method, 10,000 images
are set aside as a separate test dataset. This test data remains unseen by
the model during training and validation stages, serving as an independent
benchmark for assessing the generalisation performance of our approach.

12

Figure 4.1: Each image above represents a sample from one of the classes in the
dataset, showcasing the diversity of clothing items included in the experiment.

4.2 Method

This section outlines the methodology employed to develop an algorithm util-
ising Splines for the classification of images within the dataset. Leveraging the
versatility and expressive power of Splines, we present a systematic approach to
extracting discriminative features from image data, which hopefully facilitates
more accurate and efficient classification.

4.2.1 Creating the Splines

Given the inherent characteristics of Splines, particularly their sensitivity to
details at image edges, a preprocessing step is employed to mitigate potential
information loss. To address this, each image undergoes a resizing procedure
aimed at preserving edge details. Specifically, 3 pixels are added along the
borders of the images, effectively expanding them to a size of 34 × 34 pixels.
Consequently, the first and last 3 rows, as well as the first and last 3 columns,
are padded with zeros. This resizing strategy ensures that crucial edge infor-
mation is retained, thereby enhancing the overall fidelity of the image data and
facilitating more accurate feature extraction and classification.

In the process of generating basis splines, two critical hyper-parameters de-
mand consideration: the order of smoothness and the number of knots. These
parameters play pivotal roles in shaping the characteristics of the resulting
splines and consequently influence the overall flexibility and complexity of the
spline basis. Notably, adjusting the order of smoothness governs the degree of
curvature accommodated by the splines, while varying the number of knots dic-
tates the granularity of the spline representation across the data range. While
typically in two dimensions, this would entail four hyper-parameters, as each
axis would have its own set, in this experiment, we will utilise the same basis
for both axes for simplicity.

13

Finding the Coefficients

Once these hyper-parameters are judiciously determined based on the specific
requirements for the task at hand, the next step involves the construction of
orthonormal basis splines. Leveraging established methodologies outlined in
Chapter 3, these basis splines forms a foundational framework. Subsequently,
the constructed basis splines serve as the building blocks for representing each
image within the dataset. Employing the prescribed methodology, the corre-
sponding splines for every picture are derived, encapsulating essential structural
and contextual information inherent to the image, into a set of 784 variables.

4.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a widely-used dimensionality reduction
technique employed to transform high-dimensional data into a lower-dimensional
representation while preserving the essential structure and variance of the origi-
nal data. Given the multitude of variables obtained from the splines, identifying
key features becomes paramount.

The fundamental concept behind PCA is to identify a set of orthogonal axes,
known as principal components, along which the data exhibits the maximum
variance. By projecting the data onto these principal components, PCA ef-
fectively captures the most significant sources of variation within the dataset,
facilitating compact and informative representations.

Mathematically, given a dataset X with n samples and p features, PCA
involves the following steps:

1. Standardise the dataset by centering the data around the mean and
scaling it to unit variance:

Xstandardised =
X− µ

σ

where µ is the mean vector and σ is the standard deviation vector.
2. Covariance Matrix Computation: Compute the covariance matrix C

of the standardised data:

C =
1

n− 1
X⊤

standardisedXstandardised

3. Eigen Decomposition: Perform eigen decomposition on the covariance
matrix to obtain eigenvalues and eigenvectors:

Cvi = λivi

where λi and vi are the eigenvalues and eigenvectors, respectively.
4. Principal Components Selection: Select the top k eigenvectors cor-

responding to the k largest eigenvalues to form the transformation matrix Vk.
The hyperparameter k in PCA denotes the number of principal components

retained in the reduced-dimensional space. Selecting an appropriate value for
k is crucial, as it directly influences the amount of variance preserved in the

14

reduced representation. A higher value of k retains more variance but may lead
to overfitting and increased computational complexity, while a lower value of k
sacrifices some variance for simplicity and computational efficiency.

In this experiment, PCA is applied to each of the ten classes in the dataset,
resulting in a unique transformation matrix for each class. By following these
steps, we ensure that the PCA transformation for each class captures the most
relevant features, allowing for effective dimensionality reduction and improved
classification performance.

4.2.3 Classification

To classify a new vector of variables, the vector undergoes transformations spe-
cific to each class. The steps are as follows:

1. Remove Zero Variance Variables: Zero variance variables, which
were identified and removed during the training phase for each class, are also
removed from the new vector.

2. Scaling: The remaining variables in the new vector are scaled using
the mean and standard deviation values saved from the training data for each
class. Let x be the new vector and µclass and σclass be the mean and standard
deviation vectors for the class. The scaled vector xscaled is computed as:

xscaled =
x− µclass

σclass

3. Projection onto Principal Components: The scaled vector is then
projected onto the subspace spanned by the top k principal components of the
class. If Vk is the matrix of the first k eigenvectors (principal components) for
the class, the projection xprojected is given by:

xprojected = VkV
⊤
k xscaled

4. Calculate Distance: The distance between the original scaled vector
xscaled and its projection xprojected is calculated using the Euclidean distance:

d = ∥xscaled − xprojected∥2

These steps are repeated for each class, resulting in a distance value for each
class. The class with the smallest distance value is selected as the predicted
class for the new vector.

In summary, the class whose projection has the shortest distance from the
original scaled vector is chosen as the classification result.

15

4.3 Results

In this section, we present the findings of our experiments. We first discuss
the selection of the order of smoothness and the number of knots for the spline
approximations. Subsequently, we describe the process of choosing the optimal
number of principal components for the Principal Component Analysis (PCA).
The accuracy of our classification model, based on these parameters, is also
evaluated and compared to previous approaches.

Choosing Order of Smoothness and Number of Knots

Figure 4.2: The figure juxtaposes original images, each measuring 34×34 pixels,
with their corresponding projections onto splines, visualized at a resolution of
270× 270 pixels. The basis splines are created with 31× 31 knots and an order
of smoothness equal to 2.

To determine the optimal order of smoothness and the number of knots, we
ensure that they are dyadic, as this configuration provides the best efficiency for
the Splinet package [Liu et al., 2023, page 46]. Ensuring dyadic form involves
choosing an order of smoothness (k) and an integer (N) greater than 1, such
that the number of knots along one axis is 2Nk−1. Additionally, the number of
knots should not exceed the number of pixels along the axis (34), as exceeding
this number tends to introduce extraneous details into the image, leading to
overfitting.

16

As we plan to use Principal Component Analysis (PCA) later in the process
(as mentioned in Section 4.2.2), it is crucial to choose hyperparameters that
allow the approximated images to closely match the original images, while still
adhering to the dyadic form.

After testing various combinations of k and N on the test data and calcu-
lating the mean absolute error, we found that using 31 knots and an order of
smoothness of 2 provided the closest approximation to the original images. This
configuration will be used in subsequent steps. Notably, an order of smoothness
of 4 also performed comparably well with 31 knots.

Choosing k

Cross-validation was employed on the training data to evaluate the accuracy
of the algorithm for different values of k, the number of principal components.
The training data was divided into ten subsets. Each subset was sequentially
set aside as test data while the remaining subsets were used for training. The
algorithm’s performance was evaluated on the test subset, and this process was
repeated for all ten subsets. The mean ratio of correctly classified images was
used to measure accuracy for each value of k.

Figure 4.3: The figure illustrates the accuracy for different values of k between
1 and 100, where k = 86 is marked as green.

Starting with low values of k, we incrementally increased k until we observed
a decline in accuracy. The optimal value, k = 86, provided the best performance,
yielding an accuracy of 79.69% during cross-validation.

17

Final Result

Using the parameters attained above, the model was tested on the test data,
achieving an accuracy of 79.23%. This can be compared to the results in
[Basna et al., 2023a], where the images were treated as one-dimensional splines.
There, the highest accuracy attained was 78.6%, indicating there is an improve-
ment when using tensor products to attain two-dimensional orthonormal bases.

18

5 Discussion

In this thesis, we have theoretically explored and empirically tested a method
for using tensor splines to handle two-dimensional functions. While the results
are not extraordinary, they show promise, indicating that with further refine-
ments, this method could become an efficient approach. Several areas have been
identified for potential improvement.

The Issue of Hyperparameters

The selection of hyperparameters, particularly the number of knots and the
order of smoothness, significantly impacts the accuracy of image evaluation.
Adhering to the dyadic formula, as discussed in Section 4.2.1, limits the possible
choices for the number of knots, potentially excluding the optimal combination
of knots and smoothness order.

In this thesis, we assumed that the configuration producing approximations
closest to the original images is the best choice, particularly in the context of
PCA. However, this assumption may not hold true, especially since the com-
parison ignores areas between pixels, which can bias the results towards con-
figurations with a higher number of knots. Here, the only upper limitation
considered was the original number of pixels, whereas other constraints might
also be relevant.

Additionally, it is reasonable to believe that the number of knots has a
more substantial effect on accuracy than the order of smoothness. Therefore,
maintaining the dyadic relationship between these parameters might not yield
the most accurate image representations.

Future research could focus on developing a more sophisticated mathemati-
cal framework for selecting hyperparameters for two-dimensional splines. This
could involve optimising the trade-off between the number of knots and the or-
der of smoothness to improve the overall performance and accuracy of the spline
approximations.

19

Choice of Model

The choice of model is crucial in high-dimensional data analysis. In our ex-
ample, we used Principal Component Analysis to identify subspaces that best
described each class and then classified a data point based on the closest sub-
space. However, exploring other models for classification might yield better
results. Investigating alternative approaches could enhance the performance
and robustness of the classification system.

The Possibilities in Two-Dimensional Splines

An important issue in the given dataset is that some classes are very similar,
which can confuse the model. For instance, shirts and coats have a higher
tendency to be misclassified (see figure 5.1). Coats and shirts are often classified
as pullovers, while shirts and t-shirt are frequently mistaken for each other.
Knowing these issues, one potential solution is to group these similar classes and
then focus on specific parts of the image to differentiate within these groups.

Working in two dimensions allows for a more intuitive approach to focus
on specific parts of the function compared to treating it as a one-dimensional
function. This could improve the model’s ability to accurately classify similar
classes by emphasising distinguishing features.

Overall, while the current results indicate room for improvement, the ap-
proach shows potential. Further studies and refinements could lead to significant
advancements in the application of tensor splines for two-dimensional functions.

20

Figure 5.1: The figure illustrates the classification results for each class using the
model from the experiment. Each subplot corresponds to a true class, where bars
indicate the classification outcomes. Green bars denote correct classifications,
while red bars indicate incorrect classifications.

21

6 Conclusion

The method of transforming a two-dimensional function into a set of coefficients
using tensor products of splines proves to be a robust approach for handling
functions within high-dimensional data frameworks. Exploring the properties
and applications of such transformations holds promise for effectively analysing
two-dimensional functional data. Moreover, laying this groundwork can pave
the way for extending the methodology to functions of higher dimensions, po-
tentially opening new avenues in data analysis and computational modelling.
By leveraging the versatility and efficiency of spline-based transformations, re-
searchers can advance their capabilities in processing and interpreting complex
datasets across various domains.

22

Bibliography

[Basna et al., 2023a] Basna, R., Nassar, H., and Podg’orski, K. (2023a).
Splinets – orthogonal splines and fda for the classification problem.

[Basna et al., 2021] Basna, R., Nassar, H., and Podgórski, K. (2021). Machine
learning assisted orthonormal basis selection for functional data analysis.

[Basna et al., 2023b] Basna, R., Nassar, H., and Podgórski, K. (2023b). Em-
pirically driven spline bases for functional principal component analysis in
2d.

[Basna et al., 2024] Basna, R., Nassar, H., and Podgórski, K. (2024). Spline
based methods for functional data on multivariate domains.

[Debnath and Mikusinski, 1999] Debnath, L. and Mikusinski, P. (1999). Intro-
duction to Hilbert Spaces with Applications. Academic Press Inc, 2 edition.

[Douglas Carroll et al., 2003] Douglas Carroll, J., E. Green, P., and Latting, J.
(2003). Analyzing Multivariate Data. Thomson Learning.

[Gába et al., 2021] Gába, A., Talská, R., Machalocá, J., and Hron, K. (2021).
Compositional splines for representation of density functions. Computational
Statistics, 36:1031–1064.

[Johnson and Wichern, 2014] Johnson, R. and Wichern, D. (2014). Applied
Multivariate Statistical Analysis. Pearson, 6 edition. New International Edi-
tion.

[Liu et al., 2023] Liu, X., Nassar, H., and Podgorski, K. (2023). Functional data
analysis using splines and orthogonal spline bases.

23

A R-code: Functions for
Two-Dimensional Splines

Here is the R-functions used for handling two-dimensional splines in this thesis.
To use these one must have the R-package Splinets installed.

###

#Function: splinet_2dim(xknots, yknots, smorder = 3)

The function finds and returns a list of two sets of

orthonormal basis spline objects.

#Inputs:

xknots: n+2 vector, the knots

(presented in the increasing order)

used for the x-axis

yknots: n+2 vector, the knots

(presented in the increasing order)

used for the y-axis

smorder: integer, the order of the splines,

the default is smorder=3.

#Output:

A list two orthonormal basis spline objects;

OB_1 for the x-axis, and OB_2 for the y-axis

###

splinet_2dim <- function(xknots, yknots, smorder = 3){

OB_1 <- splinet(xknots,smorder,norm = T)

OB_2 <- splinet(yknots,smorder,norm = T)

return(list("OB_1"=OB_1,"OB_2"=OB_2))

}

24

###

#Function: project_2dim(f, splines, x.set, y.set)

The function projects a function f

to find and return coefficients

for two-dimensional basis splines.

#Inputs:

f: A matrix of estimated values for the

double integral of the function

splines: A list of splines as

attained from the splinet_2dim

x.set: A vector of the values of x

on which the integral values of f

was observed.

y.set: A vector of the values of y

on which the integral values of f

was observed.

#Output:

The list of splines is returned with

an additional element "Coeff",

containing the coefficients for the

projection of f onto the basis splines.

###

project_2dim <- function(f, splines, x.set, y.set){

OB1x <- evspline(splinesOB_1os,

x=x.set)[,2:(length(splinesOB_1os@der)+1)]

OB2y <- evspline(splinesOB_2os,

x=y.set)[,2:(length(splinesOB_2os@der)+1)]

splines$Coeff <- t(OB1x)%*%f%*%OB2y

return(splines)

}

25

###

#Function: evsplines_2dim(object, x=NULL, y=NULL, N=250)

The function takes a list of splines

with projected coefficients as

returned from project_2dim, and

evaluates them for a set x and y.

#Inputs:

object:

A list of splines with

coefficients as attained from

project_2dim.

x: vector, the arguments at which

the splines are evaluated along

the x-axis; If x is NULL, then

the splines are evaluated over

regular grids per each interval

of the support. The default

value is x=NULL.

y: vector, the arguments at which

the splines are evaluated along

the y-axis; If y is NULL, then

the splines are evaluated over

regular grids per each interval

of the support. The default

value is y=NULL.

N: integer, the number of points per

an interval between two

consequitive knots at which the

splines are evaluated. The

default value is N = 250;

#Output:

Returns a matrix containing the

values of the evaluated Spline at

each coordinate (x,y) attained from

x, y or N.

###

evsplines_2dim <- function(object, x=NULL, y=NULL, N=250){

OB1x <- evspline(objectOB_1os,x=x,

N=N)[,2:(nrow(object$Coeff)+1)]

OB2y <- evspline(objectOB_2os,x=y,

N=N)[,2:(ncol(object$Coeff)+1)]

f_hat <- OB1x%*%object$Coeff%*%t(OB2y)

return(f_hat)

}

26

	Introduction
	Functional Data
	Hilbert Space of Square Integrable Functions
	Orthonormal Basis Functions

	Splines
	Tensor Space of Splines in Lg
	R-Package: Splinets
	Splinet for Two Dimensions

	Analysis of Functional Data in Two Dimensions

	Experiment: Clothing Classification
	Data Presentation
	Method
	Creating the Splines
	Principal Component Analysis
	Classification

	Results

	Discussion
	Conclusion
	Bibliography
	R-code: Functions for Two-Dimensional Splines

