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Abstract

In this thesis, we first give an introduction to the framework of Chiral Perturbation Theory.
Following this, we proceed to conduct a detailed two-loop order calculation within Chiral
Perturbation Theory, aimed at analyzing pseudoscalar meson masses and decay constants
while incorporating isospin breaking effects. Our calculations account for both quark mass
and charge isospin breaking effects in determining the masses, while focusing solely on
quark mass correction for the decay constants. Throughout this work, we provide explicit
expressions for both the masses and decay constants.



Populärvetenskaplig beskrivning

In the vast landscape of quantum field theories, such as the electroweak theory and quan-
tum chromodynamics (QCD), lies a fundamental question: how do we effectively describe
phenomena at lower energy scales when the true nature of high-energy physics remains
elusive? This puzzle is elegantly addressed by Effective Field Theories (EFT), which sift
through the complexities of high-energy interactions to focus on the essential physics at
play in the low-energy realm.

Think of EFT as a skilled cartographer simplifying a map: just as cities are represented
by dots, EFT distills the behavior of particles and forces to their most relevant aspects.
This approach allows physicists to zoom in on specific features, separating the essential
from the extraneous much like examining a map in detail.

Take, for instance but also what we investigate in this thesis, the realm of QCD, where
the coupling constant decreases as energy scale increases. This characteristic enables the
use of perturbation theory at high energies. However, in the low-energy domain, where
the coupling constant becomes much bigger than one, perturbation theory fails to suffice.
The non-perturbative nature of QCD in the low-energy region is actually not difficult to
understand, here, the degrees of freedom shift from quarks and gluons to hadrons, similar
to focusing on cities rather than the intricate details of their architecture.

The low-energy behavior of QCD can be understood through the lens of Chiral Perturbation
Theory (ChPT), an effective field theory specifically tailored to describe the interactions of
hadrons. ChPT is constructed such that its shares the same approximate chiral symmetry
as QCD, just as the spatial arrangement of cities is preserved in the distribution of points
on a map.

As technological advancements propel experiments probing low-energy QCD to unprece-
dented precision, the need for equally precise theoretical calculations intensifies. Despite
past research yielding invaluable insights, there are still some uncertainties that persist,
particularly the isospin breaking effects, which stem from differences in masses and charges
between u and d quarks. In this work, we’ve incorporated these effects and corrected the
calculations for the masses and decay rates of particles, thereby establishing formulas to
predict these observable properties more accurately.
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1 Introduction

Being a small branch of the whole physics world, particle physics holds the honor of being
the most fundamental part by studying the fundamental constituents of matter and the
forces acting upon them at the smallest scales imaginable.

In this thesis, we mainly focus on an essential component of particle physics, mesons.
Mesons are composite particles, consisting of a quark and an anti-quark, or in their super-
position, bound together by the strong nuclear force (as illustrated in Fig. 1).

Figure 1: The meson octet, arranged by isospin I3, strangeness S, and electric charge Q.

The theory that describes this strong nuclear force is Quantum Chromodynamics (QCD),
whose coupling constant g has a special property, asymptotic freedom. The renormalization
group equation for g demonstrates that g increases as the scale decreases. This property
validates the use of perturbation theory in the high-energy regime, but also leads to the
fact that the theory is completely non-perturbative in the low energy regime.

The non-perturbative nature of QCD in the low-energy region is not difficult to understand,
because the physical degrees of freedom in this part are not quarks and gluons but hadrons.
Therefore, a low-energy effective field theory named Chiral Perturbation Theory (ChPT)
has been developed to describe hadrons.

Recently, as the precision of low-energy QCD experiments continues to advance, corre-
sponding higher order calculations are needed to enhance the accuracy of our theoretical
prediction for the measurements. In the previous research, observables (e.g., mesons’ mass
and decay constants) have already been calculated up to two-loop order in ChPT [1, 2, 3].

Nevertheless, the significance of isospin breaking effects remained a notable uncertainty.
Early studies incorporated quark mass difference corrections up to two-loop order [4] and
Electromagnetic (EM) corrections up to one-loop order [5, 6]. This thesis extends these
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studies by evaluating both quark mass and EM isospin breaking effects in meson masses
and quark mass corrections in decay constants to Next-to-Next-to-Leading Order (NNLO).

The organization of this thesis is as follows: Sec. 2 revisits the prerequisite concepts of
ChPT, including symmetry breaking and the Goldstone theorem. Sec. 3 introduces the
underlying principles of effective theory and the fundamental theory of ChPT, QCD. The
ChPT Lagrangian is constructed then in the fourth section. In Sec. 5, we discuss the
theoretical expressions for phenomena such as mass and decay constants in the isospin
symmetric limit, and Sec. 6 details the corrections due to isospin breaking effects. Sec. 7
provides a summary of the results, and Sec. 8 concludes the thesis, while the Appendices
contain the explicit results and a list of functions employed in the analysis.

2 Symmetry Breaking and the Goldstone Theorem

In this section, we will briefly review Spontaneous Symmetry Breaking (SSB), Goldstone’s
theorem and explicit symmetry breaking, Our derivations roughly follow Refs. [7, 8, 9, 10].

2.1 Spontaneous Symmetry Breaking in the Linear Sigma Model

Consider a complex scalar field ϕ with Lagrangian

L = (∂µϕ
†)(∂µϕ) +m2ϕϕ† − λ

4
ϕ2ϕ†2. (2.1)

This Lagrangian is invariant under the global U(1) transformation ϕ(x) → eiαϕ(x) for
constant α. For m2 > 0 the theory is unstable around ϕ = 0. We can obtain the vacuum
by simply minimizing the potential

V0(ϕ) = −m2|ϕ|2 + λ

4
|ϕ|4, (2.2)

this is satisfied when

|ϕ|2 = 2m2

λ
. (2.3)

So now there are an infinite number of equivalent vacua |Ωθ⟩ with vacuum expectation
value:

⟨Ωθ|ϕ |Ωθ⟩ =
√

2m2

λ
eiθ (2.4)

for any constant θ. Since all the vacua are equivalent (by symmetry), we can pick any
convenient parameterization. One common choice is the |Ω⟩ that makes ⟨Ω|ϕ |Ω⟩ real:

⟨Ω|ϕ |Ω⟩ = v =

√
2m2

λ
. (2.5)
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Instead of writing ϕ(x) = v + ϕ̃(x), with ϕ̃(x) a complex field as in many textbooks, it is
often more convenient to expand around v by parameterizing ϕ(x) in terms of two fields
σ(x) and π(x) as

ϕ(x) =

(
v +

1√
2
σ(x)

)
ei

π(x)
Fπ , (2.6)

with Fπ a constant and has the same dimension as π, just as we can write a vector in
Cartesian or polar coordinates. Then the V (x) only depend on σ(x), and not on π(x).
Plug our new fields into the Lagrangian,

L =
1

2
(∂µσ)

2 +

(
v +

1√
2
σ(x)

)2
(∂µπ)

2

F 2
π

−
(
−m

4

λ
+m2σ2 +

1

2

√
λmσ3 +

1

16
λσ4

)
. (2.7)

By choosing Fπ =
√
2v we can make the π kinetic term canonically normalized. This

theory is called a linear sigma model.

Upon inspection of the terms quadratic in the fields, one finds after spontaneous symmetry
breaking one massless boson and one massive boson:

m2
σ = 2m2,

m2
π = 0,

(2.8)

the massless boson is often referred to as the Nambu-Goldstone Boson (NGB) and corre-
sponds to the broken symmetry (U(1) in this case).

2.2 Goldstone’s Theorem

We will now present a comprehensive overview and proof of the Goldstone theorem, as
referenced in Zee [8], which was exemplified in the preceding subsection. The theorem
states that the spontaneous breaking of a continuous symmetry within a theory yields a
massless boson for each generator of the symmetry that has been broken. The proof is as
follows.

From Noether’s theorem, we know that every continuous symmetry is associated with a
conserved charge Q, which commutes with the Hamiltonian

[H,Q] = 0. (2.9)

Denote the ground state by |Ω⟩, by adding an appropriate constant to the Hamiltonian
H → H + c, we can always have

H |Ω⟩ = 0. (2.10)

When the symmetry is still valid, the ground state is also invariant under the symmetry
transformation, eiθQ |Ω⟩ = |Ω⟩, or in other words, Q |Ω⟩ = 0.
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However, after the symmetry is spontaneously broken, which means that we have chosen a
particular ground state, the vacuum is not invariant under the symmetry transformation,
eiθQ |Ω⟩ ≠ |Ω⟩, in other words, Q |Ω⟩ ≠ 0.

Consider the state Q |Ω⟩ in spontaneously broken symmetry case, the eigenenergy of this
state is

HQ |Ω⟩ = −QH |Ω⟩+ [H,Q] |Ω⟩ = 0, (2.11)

the second equality follows from Eq. 2.9 and Eq. 2.10. Thus, we have found another state
Q |Ω⟩ with the same energy as |Ω⟩.

In quantum field theory, the conserved charge Q is associated with a local current, that is

Q =

∫
ddxJ0(x⃗, t) (2.12)

where d denotes the dimension of space and the conservation of Q indicates that the integral
can be evaluated at any time. Consider the state

|s⟩ =
∫

ddxe−ik⃗·x⃗J0(x⃗, t) |Ω⟩ (2.13)

which has spatial momentum k⃗ since

P i |s⟩ =
∫

dDxe−ik⃗·x⃗(−J0(x⃗, t)P i + [P i, J0(x⃗, t)]) |Ω⟩ = ki |Ω⟩ (2.14)

where in the second equality, we use the fact that P i |Ω⟩ = 0, [P µ, ϕ(x)] = −i∂µϕ(x) and
then integrating by parts. As the momentum k⃗ tends to zero, |s⟩ goes over to Q |Ω⟩, which
has zero energy. This implies that as the momentum of the state |s⟩ approaches zero, its
energy goes to zero. Referring to the relativistic dispersion relation

E2 = p⃗2 +m2, (2.15)

this indicates that |s⟩ describes a massless particle. Thus, a spontaneously broken symme-
try generator Q yields a massless scalar |s⟩, which is also called the Goldstone state.

Since quantum field theory is a Lorentz invariant theory, we can always perform a Lorentz
boost J0 → Jµ. Therefore, the matrix element of the current between the vacuum and
the Goldstone state |s⟩ is nonzero, ⟨Ω| Jµ(x) |s⟩ ≠ 0. Assuming the four-momentum of the
state |s⟩ is pµs , Lorentz invariance require the matrix element to take the form [7]

⟨Ω| Jµ(x) |s⟩ = i
√
2Fpµs e

ips·x, (2.16)

here
√
2 is introduced due to convention and F is a constant coefficient with the dimensions

of energy which reflects the ”strength” of symmetry breaking, which is often referred to as
”decay” constant since it is proportional to the amplitude between vacuum and a one-NGB
state.
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As demonstrated, each NGB corresponds to a conserved charge that does not leave the
vacuum invariant. That is, for each broken charge Qa, we can construct a Goldstone
state with the ground state Qa |Ω⟩. In the specific example discussed in Sec. 2.1, the
U(1) symmetry is associated with a single charge Q = α that alters the vacuum, resulting
in the emergence of only one NGB. In general, if the Lagrangian is left invariant by a
symmetry group G with n(G) generators, but the ground state only remains invariant
under a subgroup H of G with n(H) generators, then there are n(G)− n(H) (dim(G/H))
NGBs, in other words, the NGBs live in the quotient G/H .

To illustrate this statement, consider a general symmetry breaking G → H, we denote
the vacuum which is invariant under H by V⃗ . By Goldstone’s theorem, this will give rise
to n(G) − n(H) NGBs, which we label ϕ⃗ = (ϕ1, . . . ϕi). Since we are only interested in
these modes, i.e., in the low energy region, the fluctuations of the massive fields can be
neglected1. In this limit, recalling that before a specific choice of vacuum was made, the
entire manifold was symmetric under G, and since we have ignore the massive components
in V⃗ , the Goldstone field ϕ⃗ can be parameterized in terms of a matrix representation of G,
R(g), acting on V⃗ :

ϕi = Rij(g)Vj = Rij(g)Rjk(h)Vk = Rij(gh)Vj, g ∈ G, h ∈ H, (2.17)

where in the second equality I used the fact that V⃗ is invariant under H. This shows that
ϕ⃗ is a function of the elements of the coset space gH ≡ {gh|h ∈ H} or we can say that ϕi

live in the quotient G/H. This association is unique due to the property of cosets, namely
that non-identical cosets are disjoint.

2.3 Explicit Symmetry Breaking

We will now consider the effect of adding small symmetry-breaking terms to the action
which explicitly breaks the symmetry. As we shall see, the spontaneous breakdown of
an approximate symmetry does not result in the emergence of massless NGBs but rather
gives rise to low-mass spinless particles, commonly referred to as pseudo-Nambu-Goldstone
Boson (pNGB).

Consider adding a small perturbation to our Lagrangian of Eq. 2.1 and modify the poten-
tial, here we parameterize the field by ϕ = 1√

2
(ϕ1 + iϕ2) for better illustration:

V (ϕ) = V0(ϕ) + V1(ϕ) = −m
2

2
ϕiϕi +

λ

16
(ϕiϕi)

2 + aϕ2, i = 1, 2 (2.18)

where V1(ϕ) = aϕ2 is a small correction and breaks the U(1) symmetry of the Lagrangian.
The conditions for the new minimum of the potential read

ϕ1 = 0,
λ

4
ϕ3
2 −m2ϕ2 + a = 0, (2.19)

1I will illustrate it in detail in Sec. 3.1
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where we have chosen a particular ground state. Since we introduce a small correction, we
can solve this cubic equation for ϕ2 using perturbative ansatz

ϕ2 = ϕ
(0)
2 + aϕ

(1)
2 +O(a2). (2.20)

The solution reads

ϕ
(0)
2 = ±

√
4m2

λ
, ϕ

(1)
2 = − 1

2m2
, (2.21)

the condition for a minimum excludes ϕ
(0)
2 = −

√
4m2

λ
. Expanding the potential with

ϕ(x) =
√

4m2

λ
− a

2m2 + ϕ̃(x) we obtain, for the masses

m2
ϕ1

= a

√
λ

4m2
,

m2
ϕ2

= 2m2 + 3a

√
λ

4m2
.

(2.22)

An important characteristic observed is that the original NGBs, denoted as ϕ1, now acquire
mass, with the squared mass being proportional to the symmetry breaking parameter a.
Such particles are identified as pNGBs. As will be demonstrated in Sec. 4, the eight
mesons depicted in Fig. 1 are exactly examples of such pNGBs.

3 Effective Theory and Chiral Symmetry of QCD

3.1 Effective Field Theory

Before delving into ChPT, it is crucial to outline the principal characteristics of the Effec-
tive Field Theory (EFT) approach. EFT is fundamentally designed to provide a low-energy
approximation of a physical system, capturing essential features while excluding the com-
plexities of high-energy processes. This methodology enables precise predictions within a
specific energy regime, while avoiding unnecessary complications from the irrelevant de-
grees of freedom.

The construction of an EFT is tailored to the physical problem under investigation. Often,
in scenarios where the EFT serves as a weakly coupled, low-energy approximation of a more
comprehensive ultraviolet theory, it suffices to consider only the light fields. However, the
identification of relevant degrees of freedom can sometimes pose challenges, as illustrated
by ChPT in Section 4.

A pivotal aspect of utilizing EFT is ensuring that observables retain a consistent correlation
with those from the fundamental theory. This coherence is achieved by developing, as
outlined by S. Weinberg, the most general possible Lagrangian that is consistent with the
symmetries of the underlying theory [11].

10



However, given that we are employing the most general Lagrangian, it introduces poten-
tially an infinite number of terms, complicating the computation of physical observables.
To avoid having an infinite number of contributions to physical observable, EFT imposes
two key constraints: first, it demands only finite precision for the results; second, it confines
itself to a specified energy domain. The EFT is then used to calculate physical quanti-
ties in terms of an expansion in p/Λ, where p stands for energy, momenta or masses that
are smaller than the scale Λ related to the underlying theory. Therefore, for a specified
accuracy (such as to a certain order), we only need to compute a finite number of terms
tailored to the precision required.

Take, for example, our Lagrangian (Eq. 2.7) in Sec. 2.1, if we consider a process that
occurs at energies significantly below the σ mass mσ, i.e., q ≪ mσ, then σ clearly cannot
appear in the initial or final state but only in the internal lines (propagator) which are
experimentally un-observable; the propagator of σ, ∆ = i/(q2 −m2

σ) will be replaced by
the lowest-order expansion in the small quantity q/mσ, namely

i

q2 −m2
σ

→ − i

m2
σ

+O(m−4
σ ). (3.1)

In this way, we end up with a theory that only involves the π field, given that we can
treat the σ propagator as a constant, and the original effect of the σ will be replaced
by additional modes of π self-interactions whose couplings involve factors of 1/m2

σ. The
effective Lagrangian describing only π in the LO is,

Leff =
1

2
∂µπ∂

µπ +
1

4v2m2
σ

(∂µπ∂
µπ)2 +O(m−4

σ ) (3.2)

To verify this, consider the process π(p1) + π(p2) → π(p3) + π(p4). In the original theory,
the scattering amplitude is determined by three Feynman diagrams (Fig. 2a, 2b and 2c )
in the tree level and can be directly read out from the Lagrangian (Eq. 2.7):

Mfund = − 2

v2

(
i(p1 · p2)(p3 · p4)

s−m2
σ

+
i(p1 · p3)(p2 · p4)

t−m2
σ

+
i(p1 · p4)(p2 · p3)

u−m2
σ

)
, (3.3)

where s = (p1 + p2)
2, t = (p1 − p3)

2 and u = (p1 − p4)
2 are Mandelstam variables. Since

we have restrict ourselves to very low energies, such that {s, |t|, |u|} ≪ m2
σ, the amplitude

can then be approximated as

Mfund =
2i

v2m2
σ

[(p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)] +O(m−4
σ ). (3.4)

In the effective theory, we only need to consider one diagram (Fig. 2d), thus the corre-
sponding amplitude is

Meff = 2× 4× i

4v2m2
σ

[(p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)]

=
2i

v2m2
σ

[(p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)],
(3.5)
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(a) (b) (c) (d)

Figure 2: (a)(b)(c). Diagrams contributing to π(p1) + π(p2) → π(p3) + π(p4) in the
fundamental theory, plain line and dash line denote π field and σ field, respectively. (d).
Diagram contributing to π(p1) + π(p2) → π(p3) + π(p4) in the effective theory, plain line
denotes π field.

which exactly reproduces the leading-order contribution in the fundamental theory.

If we want to distingush our NGB π in this theory from the massive field σ, we can take
the limit that mσ → ∞ and λ → ∞, but keeping Fπ = 2m√

λ
fixed to decouple the σ field.

Then the effective Lagrangian (Eq. 3.2) reduces to

Leff =
1

2
∂µπ∂

µπ, (3.6)

which is a theory of a free π. This Lagrangian is an example of a nonlinear sigma model,
which is the linear sigma model in which the σ field has been decoupled [9].

3.2 Power-Counting Scheme

To practically apply Weinberg’s theorem on constructing EFT, one must first establish a
scheme for organizing the effective Lagrangian. This should be followed by a systematic
approach to assess the significance of diagrams generated by the interaction terms of this
Lagrangian when calculating a physical matrix element.

In general, an effective Lagrangian can be organized as a string of terms2 with an increasing
power of momentum p,

Leff = L (1) + L (2) + L (3) + · · · , (3.7)

where the superscript refer to the order of the terms. To illustrate this, consider the
effective Lagrangian (Eq. 3.2). Here, the superscript (1) denotes the terms like ∂µπ∂

µπ,
that have the Leading Order (LO), O(p2) of momentum. Correspondingly, the superscript
(2), represents the term, such as (∂µπ∂

µπ)2, that have the Next-to-Leading Order (NLO)
dimension, O(p4).

2The term we are talking about here does not include the coefficients in the Lagrangian
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Now that we have derived the form of the most general Lagrangian, we need a methodology
to identify which Feynman diagrams contribute to a specific order in a given process. To
that end, we analyze each diagram under a simultaneous re-scaling of all external momenta,
qi → tqi, and the masses, mi → tmi. As we will show below, this results in an overall re-
scaling of the amplitude M of a given diagram,

M (tpi, tmi) = tDM (pi,mi), (3.8)

in which the dimension D is determined by

D = nNL +
∑
i

Nidi −
∑
f

2If , (3.9)

where n is the number of space-time dimensions, NL the number of independent loops,
Ni the number of vertices of interaction type i with di derivatives or masses and If the
number of internal lines of field f (Here we only consider the scalar field).

To verify this power-counting formula, we can first note that the propagator ∆f (k,m) of
a field of type f in the form

∆f (k,m) ∼ i

k2 −m2
. (3.10)

Internal lines are described by a propagator in n dimensions which under re-scaling behaves
as ∫

dnk

(2π)n
i

k2 −m2
→
∫

dnk

(2π)n
i

t2((k/t))2 −m2)

k=tk′
= tn−2

∫
dnk′

(2π)n
i

k′2 −m2
.

(3.11)

Also, the derivatives and masses in each interaction of type i introduce di momentum
factors into the integrand, can be re-scaled as

δn(q)qdi → δn(tq)(tq)di = tdi−nδn(q)qdi . (3.12)

Adding the contributions Eq. 3.11 and Eq. 3.12, and an additional factor n from the
overall momentum-conserving delta function. We can read the dimension

D = n+
∑
i

Ni(di − n) +
∑
f

If (n− 2). (3.13)

Combining the relationship between loops, internal lines and vertices

NL =
∑
f

If −

(∑
i

Ni − 1

)
, (3.14)

results in Eq. 3.9.

D = nNL +
∑
i

Nidi −
∑
f

2If . (3.15)

Using this power-counting formula alongside a specified accuracy requirement for a physical
quantity, we can subsequently identify all the Feynman diagrams that require calculation.
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3.3 The QCD Lagrangian

As the EFT Lagrangian is constrained by the symmetries of the underlying theory, the
initial step involves identifying the symmetries inherent in the fundamental theory, QCD.
Consider the QCD Lagrangian,

L =
6∑

f=1

q̄f (iD/−mf )qf −
1

2
TrGµνG

µν , (3.16)

where Dµ = ∂µ + igAµ is the covariant derivative, qf are the quark fields with f being the
flavor index (we have hidden the Dirac-spinor and color indices), Aµ = Aa

µTa are the eight
gluon fields with Ta being SU(3) generators, and Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] being
the gluon field strength.

The quark mass spectrum exhibits an intriguing feature: the six quark flavors can be
divided into the three light quarks u, d and s and the three heavy flavors c, b and t,

mu,md,ms ≪ Λ ∼ 1GeV ≤ mc,mb,mt, (3.17)

where the scale Λ is associated with the masses of the lightest hadrons containing light
quarks, e.g., mρ = 770MeV. For low-energy QCD, we need only focus on three light
quarks, thereby reducing the dimension of the flavor space from six dimensions to three.
The Lagrangian of interest is as follows,

L =
3∑

i=1

q̄i(iD/−mi)qi −
1

2
TrGµνG

µν . (3.18)

Note that since the Dirac spinor is the direct sum of Weyl spinors, we can use the projection
operator in the spinor space to perform chiral decomposition of the quark field,

q = qL + qR, where qL =
1

2
(1− γ5)q, qR =

1

2
(1 + γ5)q, (3.19)

the Lagrangian can then be rewritten to

L =
3∑

i=1

(q̄LiiD/qLi + q̄RiiD/qRi − q̄LimiqRi − q̄RimiqLi)−
1

2
TrGµνG

µν . (3.20)

We observe that the kinetic term decouples the left-hand and right-hand fields, while the
mass terms couple them together. Considering the small mass of light quarks, we can
make the approximation that the quark mass is zero, leading to the Lagrangian in the
chiral limit,

L 0 =
3∑

i=1

(q̄LiiD/qLi + q̄RiiD/qRi)−
1

2
TrGµνG

µν . (3.21)
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This Lagrangian by itself evidently respects a U(3)L × U(3)R symmetry, it is invariant
under transformation

qL → LqL and qR → RqR, (3.22)

where L ∈ U(3)L and R ∈ U(3)R are unitary transformations. This can be seen by,

q̄LiD/qL → q̄LL†iD/LqL = q̄LiD/qL and

q̄RiD/qR → q̄RR†iD/RqR = q̄RiD/qR.
(3.23)

The symmetry group U(3)L ×U(3)R can be further decomposed into SU(3)L × SU(3)R ×
U(1)V × U(1)A. Within this decomposition, the U(1)A transformation, where q → eiαγ5q,
is not preserved due to quantum corrections, and is often referred to as anomalies [12].
While it is a symmetry of the Lagrangian, it does not manifest in observable phenomena,
leaving the residual symmetry group as SU(3)L × SU(3)R × U(1)V .

The U(1)V symmetry corresponds to the baryon number conservation, under which both
left- and right-handed quarks of all flavors pick up a common phase. The remaining
symmetry, SU(3)L × SU(3)R, is known as ”chiral symmetry,” under which the left- and
right-handed fields transform according to their respective SU(3)L and SU(3)R matrices.

4 Chiral Perturbation Theory

4.1 Breaking of Chiral Symmetry

Since the QCD Lagrangian in the chiral limit L 0 possesses a chiral symmetry SU(3)L ×
SU(3)R, from symmetry consideration involving the Hamiltonian H0 only, one would ex-
pect that all of the hadrons should follow the same symmetry group. Therefore, we can
define vector and axial-vector charge operator

QV a ≡ QRa +QLa
P−→ QV a (4.1)

and
QAa ≡ QRa −QLa

P−→ −QAa (4.2)

through the linear combinations of charge operator QRa and QLa which commute with H0

since they correspond to the chiral symmetry, and thus QV a and QAa also commute with
H0

[H0, QV a] = [H0, QAa] = 0. (4.3)

From the expression of these two operators, one can tell that they have opposite parity, and
therefore for states of positive parity one would always expect the existence of degenerate
states of negative parity which can be seen as follows.
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Define |i,+⟩ being an eigenstate of H0 with positive parity denotes by ′+′ and eigenvalue
Ei,

H0 |i,+⟩ = Ei |i,+⟩
P |i,+⟩ = + |i,+⟩ ,

(4.4)

such as, e.g., a member of the lowest-lying baryon octet (in the chiral limit). Now we can
construct a new state |ψai⟩ = QAa |i,+⟩, from Eq. 4.2, Eq. 4.3 and Eq. 4.4, we have

H0 |ψai⟩ = H0QAa |i,+⟩ = QAaH
0 |i,+⟩ = EiQAa |i,+⟩ = Ei |ψai⟩ ,

P |ψai⟩ = PQAa |i,+⟩ = PQAaP
−1P |i,+⟩ = −QAa(+ |i,+⟩) = − |ψai⟩ .

(4.5)

If we insert a set of complete basis

|ψai⟩ = QAa |i,+⟩ =
∑
j

|j,−⟩ ⟨j,−|QAa |i,+⟩ = −
∑
j

ta,ij |j,−⟩ , (4.6)

where −ta,ij represent the matrix elements of ⟨j,−|QAa |i,+⟩, we can then expand the
state |ψai⟩ in terms of the members of a multiplet with negative parity.

However, the low-energy spectrum of baryons does not contain a degenerate baryon octet
of negative parity, which means that the above arguments are incomplete. Indeed, we have
tacitly assumed that the ground state of QCD is annihilated by the generators QAa. Let a

†
i

and b†j denote operators creating states |i,+⟩ and |j,−⟩, with opposite parity respectively,

i.e., |i,+⟩ = a†i |Ω⟩ and |j,−⟩ = b†j |Ω⟩. We assume that under SU(3)L × SU(3)R the
creation operators are related by3

[QAa, a
†
i ] = −ta,ijb†j. (4.7)

The usual chain of arguments then works as

|ψai⟩ = QAa |i,+⟩ = QAaa
†
i |Ω⟩ =

(
[QAa, a

†
i ] + a†iQAa

)
|Ω⟩ = −ta,ijb†j |Ω⟩ = −ta,ij |j,−⟩

(4.8)
where in the forth equality, we naively use QAa |Ω⟩ = 0. However, if the ground state is
not annihilated by QAa, QAa |Ω⟩ ̸= 0, the reasoning of Eq. 4.8 does no longer apply, then
the state |ψai⟩ can not be expanded to negative parity states, which explains why we do
not observe them in the experiments.

If we recall our arguments in Sec. 2.2, we can identify that this is exactly the spontaneous
symmetry breaking, the ground state is now only annihilated by QV a but not QAa, which
means that SU(3)V instead of SU(3)L × SU(3)R is approximately realized as a symmetry
of the ground states (hadrons). In addition, the hadron spectrum also suggests that the
octet of the pseudoscalar mesons is special in the sense that the masses of its members

3Here, we analogize the commutator of charge and field operators, [Qa(t),Φi(y⃗, t)] = −ta,ijΦj(y⃗, t),
which can be calculated through Noether’s theorem for infinitesimal transformations which are linear in
the fields, Φi(x) → Φ′

i(x) = Φi(x)− iϵa(x)ta,ijΦj(x).
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are small in comparison with the other mesons, which indicates that they are candidates
for the NGBs of the spontaneous chiral symmetry breaking, and the small mass of the
pseudoscalar mesons can be explained by the explicit chiral symmetry breaking caused by
small quark masses.

This chiral symmetry breaking happened 14 billion years ago, when the temperature of
the universe cooled below TC ∼ ΛQCD and confined hadrons instead of quark-gluon plasma
appeared. Although it has not been proven from QCD itself, the ground state of QCD
apparently has a non-zero expectation value for the quark bilinears (quark condensate):

3V 3 = ⟨Ω| q̄q |Ω⟩ = ⟨q̄q⟩ = 3 ⟨ūu⟩ = 3 ⟨d̄d⟩ = 3 ⟨s̄s⟩ , (4.9)

where the approximate SU(3)V symmetry of the ground state in chiral limit suggests that
⟨ūu⟩, ⟨d̄d⟩ and ⟨s̄s⟩ have the same expectation value. If we rewrite the quark condensate
in terms of left- and right-handed fields

⟨q̄q⟩ = ⟨q̄LqR⟩+ ⟨q̄RqL⟩ , (4.10)

we observe that the quark condensate is not invariant under chiral symmetry but remains
invariant under SU(3)V , which rotates left- and right-handed fields the same way. Like
⟨Ω|ϕ |Ω⟩ = v in Sec. 2.1, this specific ground state breaks the SU(3)L×SU(3)R symmetry
to SU(3)V .

4.2 Parameterization of the Field and Construction of Effective
Lagrangian

In Sec. 2.2, we have shown that the NGBs ϕi live in the quotient G/H which means that ϕ⃗
is a representation of the coset gH.4 Now, the symmetry group relevant to the application
in QCD are

G = SU(3)L × SU(3)R = {(L,R)|L ∈ SU(3)L,R ∈ SU(3)R}
H = {(V ,V)|V ∈ SU(3)} ∼= SU(3)V ,

(4.11)

the manifold G/H is the same as the manifold of the group SU(3) locally and gives rise
to dim(G/H) = 8 NGBs. This follows easily by observing that a typical coset is

gH = (L,R)H = (L,R)(R†,R†)H = (LR†,1)H g ∈ G, (4.12)

where we use the rearrangement theorem from group theory in the second equality. Hence
the coset can be characterized by the elements LR† = U ∼ SU(3), since the second

4It is common to refer to particles as representations of certain groups. For instance, Weinberg identifies
the state of a single particle as irreducible representations of Poincaré group in Ref. [13]. But actually, it’s
important to note that this terminology does not imply that the particle itself is a specific representation
of the group, but rather that the particle field serves as the basis for a particular representation.
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argument is a unit matrix. We can obtain the transformation behavior of U under G by
multiplying the coset gH from the left with g ∈ G:

g̃gH = (L̃, R̃)(LR†,1)H = (L̃LR†, R̃)(R̃†, R̃†)H = (L̃(LR†)R̃†,1)H, (4.13)

thus
U = LR† → U ′ = L̃(LR†)R̃† = L̃UR̃†. (4.14)

The matrix representation U of SU(3) can be parameterized in terms of a set of coordinates
ϕi(x) in the coset space G/H, as:

U =exp

(
i

∑8
i=1 ϕi · λi
F0

)
= exp

(
i
ϕ

F0

)

=exp

 i

F0

π
0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K̄0 − 2√

3
η


 (4.15)

where λa are Gell-Mann matrices and the constant F0 is introduced to make the argument
of the exponential function dimensionless as it has to be. Since a bosonic field has the
dimension of energy, F0 also has the dimension of energy. We express the final result of U
in terms of physical fields, e.g.,

π+ =
1√
2
(ϕ1 − iϕ2). (4.16)

Now, with nothing but symmetry to guide us, we are able to construct the most general
Lagrangian involving U that is invariant under SU(3)L × SU(3)R, that is

L =Lp2 + Lp4 + Lp6 + · · ·

=
F 2
0

4
Tr[(∂µU)

†(∂µU)]

+ {L1Tr[(∂µU)
†(∂µU)]2 + L2Tr[(∂µU)

†(∂νU)]Tr[(∂
µU)†(∂νU) + . . . }+ . . . ,

(4.17)

where the terms displayed between curly brackets are of O(p4) and ’. . . ’ in the end consists
of terms with higher order momentum. The Li are referred to as Low-Energy Constants
(LECs) whose numerical values can not be determined by chiral symmetry but should, in
principle, be determined by the parameters in QCD or from experiments. The purpose
of the multiplicative constant F 2

0 /4 is to generate the standard form of the kinetic term
(∂ϕa)

2/2.

4.3 The ChPT Lagrangian

So far, we have developed the majority of ChPT, and now only the final ”capping work”
remains. The effective Lagrangian constructed in the last subsection is based on the ideal

18



SU(3)L × SU(3)R symmetry. However, in reality, this symmetry is broken explicitly by
the quark masses. We have shown in Sec. 2.3, through a simple example, that explicit
symmetry breaking lead to pNGBs with finite masses.

Now, we proceed to systematically incorporate the slight breaking of chiral symmetry into
the framework, following the approach outlined by Gasser & Leutwyler [14, 15]. This is
achieved by utilizing the external field method within the assumption that QCD is chirally
symmetric. We first need to introduce the Lagrangian of QCD with external fields.

L = L 0 + q̄ [γµ (vµ + γ5aµ)− (s− iγ5p)] q (4.18)

where vµ, aµ, s, p are external c-number fields that couple to vector and axial-vector cur-
rents, as well as scalar and pseudoscalar quark densities, respectively. In practice, these
external fields can be replaced depending on the phenomenon under investigation. For
instance, the electroweak interaction can be introduced through vµ and aµ; through the
scalar sector s, the mass terms of quark can be introduced by Higgs interaction.

To apply these external fields in the construction of ChPT Lagrangian, we need to en-
capsulate these fields in blocks whose transformation properties are consistent with chiral
symmetry. To that end, we first rewrite the QCD Lagrangian by left- and right-handed
fields

L = L 0 + q̄Lγ
µlµqL + q̄Rγ

µrµqR − 1

2B
[q̄RχqL − q̄Lχ

†qR], (4.19)

where constant B is introduced for future use, and

lµ ≡ vµ − aµ, rµ ≡ vµ + aµ, χ ≡ 2B(s+ ip), (4.20)

Thus, under transformation (L,R) ∈ SU(3)L × SU(3)R, they must change as

lµ → LlµL† + iL∂µL†, rµ → RlµR† + iR∂µR†, χ→ LχR†, (4.21)

so that the Lagrangian is invariant under a chiral transformation. By analogy to gauge
theory, for any object A transforming as LAR†, e.g., U and χ, we can introduce the
covariant derivative as

DµA ≡ ∂µA− irµA+ iAlµ. (4.22)

In addition to this, we can also borrow forms and terminology in gauge theory to define
the field strength tensors

F µν
L ≡ ∂µlν − ∂νlµ − i[lµ, lν ] → LF µν

L L†

F µν
R ≡ ∂µrν − ∂νrµ − i[rµ, rν ] → RF µν

R R†.
(4.23)

whose transformation properties are much simpler than lµ and rµ, allowing for easier track-
ing when we constructing the Lagrangian.

Now, the ChPT Lagrangian can be written in terms of U, χ, F µν
L , F µν

R and covariant deriva-
tives Dµ. Following the underlying chiral symmetry SU(3)L × SU(3)R, we can obtain the
ChPT Lagrangian:
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Lχ =Lp2 + Lp4 + Lp6 + · · ·

=
F 2
0

4
⟨(∂µU)†(∂µU)⟩+

F 2
0

4
⟨χU † + Uχ†⟩

+
{
L1 ⟨(DµU)

†(DµU)⟩2 + L2 ⟨(DµU)
†(DνU)⟩ ⟨(DµU)†(DνU)⟩

+ L3 ⟨(DµU)
†(DµU)(DνU)

†(DνU)⟩+ L4 ⟨(DµU)
†(DµU)⟩ ⟨χU † + Uχ†⟩

+ L5 ⟨(DµU)
†(DµU)(χU † + Uχ†)⟩+ L6 ⟨χU † + Uχ†⟩2

+ L7 ⟨χU † − Uχ†⟩2 + L8 ⟨χU †χU † + Uχ†Uχ†⟩
− iL9 ⟨F µν

R (DµU)(DνU)
† + F µν

L (DµU)
†(DνU)⟩+ L10 ⟨UFL

µνU
†F µν

R ⟩
+H1 ⟨FR

µνF
µν
R + FL

µνF
µν
L ⟩+H2 ⟨χχ†⟩

}
+ . . . .

(4.24)

Again, the terms displayed between curly brackets are of O(p4) (From Ref. [14, 15]) and
’. . . ’ in the end consists of terms with higher order momentum. The derivation and explicit
expression of O(p6) terms can be found in Ref. [16]5. And from now on, we will use ⟨·⟩ to
denote trace Tr(·).

5 Phenomenology in Isospin Symmetric Limit

Now that we have established ChPT on theoretical grounds, it is time to depict its con-
nections to real-world phenomena.

5.1 The Leading-Order Masses

Comparing Eq. 4.19 and Eq. 3.20, we observe that the quark masses are introduced
by replacing s with M ≡ diag(mu,md,ms). We can employ a similar approach in our
ChPT Lagrangian. By doing so, however, we explicitly break the chiral symmetry, as we
substitute a constant matrix for a field. The NGBs then naturally acquire a small mass
and become pNGBs.

Before tackling the issue of masses, we must address some ”historical legacy issues,” namely
the undetermined constant B. One approach to determine it is by utilizing the QCD
vacuum energy density ⟨HQCD⟩. In the original QCD theory, this value is

⟨HQCD⟩ = ⟨q̄Mq⟩ = mu ⟨ūu⟩+md ⟨d̄d⟩+ms ⟨s̄s⟩ . (5.1)

5In this article, different building blocks are used to construct the ChPT Lagrangian, but in general
they are equivalent.
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For the effective ChPT, consider the ground state (Umin = 1), the vacuum expectation
value of energy density is

⟨Hχ⟩ = −F
2
0

4
⟨(χ+ χ†)⟩ = −F 2

0B(mu +md +ms). (5.2)

Comparing their derivative with respect to (any of) the light-quark masses mq, and com-
bining Eq. 4.9, we have

∂ ⟨HQCD⟩
∂mq

∣∣∣∣
mu=md=ms=0

=
1

3
⟨q̄q⟩ = V 3,

∂ ⟨Hχ⟩
∂mq

∣∣∣∣
mu=md=ms=0

= −F 2
0B.

(5.3)

The constant B is thus related to the scalar singlet quark condensate and decay constant
F by

B = −V
3

F 2
0

(5.4)

Now if we expanding the exponential U = 1 + iϕ/F0 + · · · , and identifying the quadratic
terms in the LO ChPT Lagrangian,

Lχ ⊃− B

2
⟨ϕ2M⟩

=− B

2

[
2(mu +md)π

+π− + 2(mu +ms)K
+K− + 2(md +ms)K

0K̄0

+(mu +md)π
0π0 +

2√
3
(mu −md)π

0η +
1

3
(mu +md + 4ms)η

2

]
,

(5.5)

note that there exists a term that mixes the π0 and η. For simplicity, we will consider the
isospin symmetric limit from this point onward in this section, i.e., mu = md. Therefore,
we can directly read off that6

m2
π,p2 = m2

π0,p2 = m2
π±,p2 = 2Bm̂,

m2
K,p2 = m2

K0,p2 = m2
K̄0,p2 = m2

K±,p2 = B(m̂+ms),

m2
η,p2 =

2

3
B(m̂+ 2ms),

(5.6)

where m̂ = (mu +md)/2 = mu = md and the p2 in subscript indicates the LO.

6Note that π±, K± and K0 are physical fields. We need first express them in ϕi, and then calculate
their masses.
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5.2 Exact Propagator and Pole Mass

Now that we have obtained the LO masses, we can define the lowest order propagator as

Pϕ(p
2) =

1

p2 −m2
ϕ,p2 + i0+

, ϕ = π,K, η. (5.7)

In general, the exact propagator ∆ϕ acquires corrections from an infinite number of di-
agrams, and can be expressed as the sum of a single geometric series constructed by
connecting graphs that cannot be split by cutting a single propagator. Such graphs are
called One-Particle-Irreducible (1PI) diagrams. For example, Fig. 3a is a 1PI, but Fig. 3b
is not.

�

1

(a)

�

1

(b)

Figure 3: (a). Example of one-particle-irreducible graphs. (b). Example of non-1PI, the
graph falls apart into two separate pieces when cutting an internal line.

Therefore, the exact propagator is

i∆ϕ =� =�+�+�+ · · · , (5.8)

where the filled circles correspond to the sum of 1PI and the lines to lowest order prop-
agator. Defining Πϕ as the sum of all 1PI, which is often referred to as self-energy, we
find

i∆ϕ =iPϕ + iPϕ(iΠϕiPϕ) + iPϕ(iΠϕiPϕ)
2 + · · · = iPϕ(1 + ΠϕPϕ)

−1

=
i

p2 −m2
ϕ,p2 +Πϕ + i0+

(5.9)

On the other hand, the exact propagator can also be expressed in the Källén–Lehmann
form [17, 18]:

i∆ϕ(p
2) =

i

p2 −m2
ϕ,phy + i0+

+

∫ ∞

4m2
ϕ,phy

dsρ(s)
i

p2 − s+ i0+
, (5.10)

where m2
ϕ,phy is the physical mass of the field and ρ(s) =

∑
n | ⟨p, n|ϕ(0) |Ω⟩ |2δ(s−M2) is

the spectral density, in which M is the mass of the multi-particle state |p, n⟩, specified by
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a three-momentum p⃗ and other parameters (such as relative momenta among the different
particles) that we will collectively denote as n. We particularly observe that that i∆ϕ has
an isolated pole at p2 = m2

ϕ,phy with residue one.

Since these two forms of propagators are equivalent, we expect that Eq. 5.9 also has a pole
at p2 = m2

ϕ,phy with residue one,

m2
ϕ,phy −m2

ϕ,p2 +Π(m2
ϕ,phy) = 0. (5.11)

Considering our use of the lowest order propagator, to clearly illustrate the concept of
residue one, we can expand Πϕ around p2 = λ̄2,

Πϕ(p
2) = Πϕ(λ̄

2) + (p2 − λ̄2)Π′
ϕ(λ̄

2) + Π̃ϕ(p
2, λ̄2), (5.12)

where the remainder Π̃ϕ(p
2, λ̄2) depends on the choice of λ̄2 and by definition satisfies

Π̃ϕ(λ̄
2, λ̄2) = Π̃′

ϕ(λ̄
2, λ̄2) = 0. Taking λ̄2 = m2

ϕ,phy and applying the condition of Eq. 5.11,
we then obtain for the propagator

i∆ϕ(p
2) =

i

(p2 −m2
ϕ,phy)[1 + Π′

ϕ(m
2
ϕ,phy)] + Π̃ϕ(p2) + i0+

=
iZϕ

p2 −m2
ϕ,phy + ZϕΠ̃ϕ(p2) + i0+

,

(5.13)

where we have introduced the wave function renormalization constant via the residue of
the exact propagator

Zϕ =Res[∆ϕ(p
2),m2

ϕ,phy] = lim
p2→m2

ϕ,phy

(p2 −m2
ϕ,phy)∆ϕ(p

2)

=
1

1 + Π′
ϕ(m

2
ϕ,phy)

.
(5.14)

Introducing renormalized field as ϕR = (Zϕ)
−1/2ϕ, the renormalized propagator is given by

i∆R
ϕ (p

2) =

∫
d4xeip·x ⟨T [ϕR(0)ϕR(0)]⟩

=
i

p2 −m2
ϕ,phy + ZϕΠ̃ϕ(p2) + i0+

(5.15)

which corresponds to the propagator in Lehmann–Symanzik–Zimmermann (LSZ) reduction
formulae [10].

In practical applications, it is more convenient to use the non-renormalized propagator
since ChPT is a non-renormalizable effective theory. Expand the physical mass and the
self-energy in chiral orders

m2
ϕ,phy = m2

ϕ,p2 +m2
ϕ,p4 +m2

ϕ,p6 +O(p8),

Πϕ(p
2) = Π

(4)
ϕ (p2) + Π

(6)
ϕ (p2) +O(p8),

(5.16)
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applying this expression in the Eq. 5.11, then using Taylor expansion around m2
ϕ,p2

f(m2
ϕ,phy, p

2) = f(m2
ϕ,p2 , p

2) + (m2
ϕ,phy −m2

ϕ,p2)
∂

∂p2
f(p2)

∣∣∣∣
p2=m2

ϕ,p2

(5.17)

to express the arguments in lowest quantities, we obtain (by comparing chiral order)

m2
ϕ,p4 = −Π

(4)
ϕ (m2

ϕ,p2),

m2
ϕ,p6 = −Π

(6)
ϕ (m2

ϕ,p2)−m2
ϕ,p4

∂

∂p2
Π

(4)
ϕ (p2)

∣∣∣∣
p2=m2

ϕ,p2

,
(5.18)

where the second term in m2
ϕ,p6 comes from the expansion of Π

(4)
ϕ (p2) around m2

ϕ,p2 .

5.3 Higher Order Masses

Having established the expression for higher order masses, we can focus our efforts on
calculating the self-energy Π

(2n)
ϕ . Following the power counting scheme, the Feynman

diagrams underlying our loop and counterterm analyses are the ones depicted in Fig. 4.
According to the argument presented in the last section, we only need to consider the
pseudoscalar for both incoming and outgoing cases (Fig. 4c) when evaluating masses.

The one-loop analysis was originally carried out by Gasser and Leutwyler [14] in SU(2)
basis (where we only consider up and down quark) and SU(3) in [15]. Here we shall briefly
summarize the theoretical analysis within the SU(3) basis for one-loop level.

At the one loop level, there are two amplitudes that contribute to the self-energy, the
unitarity diagram from the chiral Lagrangian Lp4 and the tadpole diagram from Lp2 (Fig.
4e and 4f). To calculate these diagrams, we first need to extract the relevant vertices from
the Lagrangian, which can be read off as

L = L 4ϕ
p2 + L 2ϕ

p4 , (5.19)

where L 4ϕ
p2 and L 2ϕ

p4 are given by

L 4ϕ
p2 =

1

48F 2
0

[
⟨ϕ4χ⟩ − 2 ⟨ϕ2∂µϕ∂

µϕ⟩+ 2 ⟨ϕ∂µϕϕ∂µϕ⟩
]
,

L 2ϕ
p4 =

1

F 2
0

{
2L4 ⟨χ⟩ ⟨∂µϕ∂µϕ⟩+ 2L5 ⟨χ∂µϕ∂µϕ⟩ − 4L6 ⟨χ⟩ ⟨ϕ2χ⟩

−4L7 ⟨ϕχ⟩2 − 2L8[⟨ϕ2χ2⟩+ ⟨ϕχϕχ⟩]
} (5.20)

Consider the special cases where the incoming and outcoming particle are both π0 fields,
applying the Feynman rules for scalar particles allows us to obtain the self-energy at the
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one-loop level:

Π
(4)

π0π0(p
2) =− iMπ0π0

=−
m2

π,p2

6F 2
0

[
A(m2

π,p2) + A(m2
η,p2) + 2A(m2

K,p2)
]
+

p2

3F 2
0

[2A(m2
π,p2) + A(m2

K,p2)]

−
32Bm2

π,p2

F 2
0

[(2m̂+ms)L6 + m̂L8] +
16Bp2

F 2
0

[(2m̂+ms)L4 + m̂L5]

(5.21)
where A(m2) represents the relevant Feynman integral, and is defined in Appendix. C
along with all other Feynman integrals we will encounter at one- and two-loop level.

We observe that A(m2) is a divergent integral, and through the dimensional regularization,
its infinite part are expressed in Appendix. C.2. To that end, we have to use renormaliza-
tion scheme to subtract these divergence. In this work, we have employed the version of
Modified Minimal Subtraction (MS) that is customary in ChPT [2, 14, 15, 19, 20].

Following MS, let Li denote any of the O(p4) low-energy constants, we can redefine it as

Li ≡ (µc)−2ϵ

(
−1

32π2ϵ
Γi + Lr

i (µ)

)
= (µ)−2ϵ

(
−1

32π2
Γiλ+ Lr

i (µ) +O(ϵ)

)
, (5.22)

where ln c = −1/2(ln 4π−γ+1), µ is the renormalization scale and we have suppressed the
explicit µ-dependence of the Lr

i in the expression hereafter. The coefficients Γi are given
in Ref. [15]. Analogously, the coefficients at O(p6) are given by

Ci ≡ (µc)−4ϵ
(γ2i
ϵ2

+
γ1i
ϵ1

+ Cr
i (µ)

)
= (µ)−4ϵ (γ2iλ2 + γ1iλ1 + Cr

i (µ) +O(ϵ)) , (5.23)

the coefficients γ2i and γ1i are given in Ref. [16]. The divergent quantities λ, λ1 and λ2
are consistent with that in Appendix. C.

Since the coefficients Γi are properly chosen so that they can cancel all the infinities in the
loop integral, if we apply Eq. 5.22 and Eq. C.9 into Eq. 5.21, we can get the result for
m2

π0,p4 as

m2
π0,p4 =− Π

(4)

π0π0(m
2
π,p2)

=m2
π,p2

{
m2

π,p2

32π2F 2
0

lnm2
π,p2 −

m2
η,p2

96π2F 2
0

lnm2
η,p2

+
16B

F 2
0

[(2m̂+ms)(2L
r
6 − Lr

4) + m̂(2Lr
8 − Lr

5)]

} (5.24)

in which we can find that the expression for the mass is finite now (Note that we have
suppressed the explicit µ-dependence of the expression). The realization in O(p6) is similar
but involves much more terms and more complicated integrals.
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Figure 4: The set of diagrams contributing to the 1PI. (a). axial-vector (in) and axial-
vector (out), (b). pseudoscalar (in) and axial-vector (out), (c). pseudoscalar (in) and
pseudoscalar (out), (d)− (l). the respective diagrams when the dashed lines are replaced
with the external legs of (a), (b) or (c). The plain line is a pNGB propagator, a dot, a
cross and a square represent a vertex of O(p2), O(p4) and O(p6), respectively.

5.4 Decay Constant

The decay constant of NGBs is defined via Eq. 2.16. In our ChPT case, the current that
corresponds to the broken symmetry is Jµ

Aa = Jµ
Ra − Jµ

La. To express this in the leading
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order, we consider the infinitesimal transformations

L = 1− iεLa(x)
λa
2
,

R = 1− iεRa(x)
λa
2
.

(5.25)

First, we set εRa = 0 and utilize Noether’s theorem to construct Jµ
La

Jµ
La =

∂δLp2

∂(∂µεLa)
= i

F 2
0

4
⟨λa∂µU †U⟩ , (5.26)

then analogously, by setting εLa = 0, we obtain

Jµ
Ra =

∂δLp2

∂(∂µεRa)
= −iF

2
0

4
⟨λaU∂µU †⟩ , (5.27)

combining Eq. 5.26 and Eq. 5.27, the axial-vector reads

Jµ
Aa = Jµ

Ra − Jµ
La = −iF

2
0

4
⟨λa{U, ∂µU †}⟩ = −

√
2F0∂

µϕa + · · · , (5.28)

where in the third equality, we expand U and retain the leading term. Now evaluate the
matrix element between vacuum and a one-NGB state we find (in isospin symmetric limit):

⟨Ω| Jµ
Aa(x) |ϕb(p)⟩ = ⟨Ω| −

√
2F0∂

µϕa |ϕb(p)⟩ = −
√
2F0∂

µe−ip·xδab

=i
√
2F0p

µe−ip·xδab,
(5.29)

which indicates that F0 is the lowest order value of the real decay constant Fϕ.

To calculate this observable to higher orders, we follow the usual LSZ reduction formalism.
The matrix-element in momentum space for any n incoming and n′ outgoing states is

Ai1···in,f1c...fn′ = ⟨f |i⟩

=(−i)n+n′
n+n′∏
i=1

lim
p2i→m2

i

(p2i −m2
i )G

R
i1···in,f1···fn′ (p1, · · · , pn, pn+1, · · · , pn′).

(5.30)

The function GR is the full (n + n′)-point Green function generated by the n + n′ fields
ϕi1(p1), · · ·ϕf1(pn+1), · · · .The LSZ formula is valid provided that the field obeys (Note that
the requirements here are defined in position space)

⟨Ω|ϕR(x) |Ω⟩ = 0 and ⟨p|ϕR(x) |Ω⟩ = e−ipx. (5.31)

However, these normalization conditions conflict with our original field in ChPT Lagrangian
Eq. 4.24, which we shall use to calculate the Green function. To that end, we utilize the
renormalized field we defined in Sec. 5.2 and rewrite our formula accordingly as

Ai1···in,f1···fn′ =
(−i)n+n′√
Zi1 · · ·Zf1

n+n′∏
i=1

lim
p2i→m2

i

(p2i −m2
i )Gi1···in,f1···fn′ (p1, · · · , pn+1, · · · ), (5.32)
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the Green function G is now generated by bare fields ϕi(pi) in the ChPT Lagrangian.

For the decay constant, we need only consider the case where one of the external legs
correspond to the axial current and another is pNGB field. However, due to one ex-
ternal leg being an axial-vector, the true propagator does not conform to a ’geometric
progression’. Consequently, we model this propagator by combining a true pseudoscalar-
pseudoscalar propagator (∆ϕ) with the axial-vector–pseudoscalar one-particle-irreducible
component (Πµ

ϕ,A), as illustrated in Fig. 5. Therefore, we get

Aµ
a,A = ⟨Ω| Jµ

Ac(0) |ϕa(p)⟩ = i
√
2Fϕp

µδac

=
−i√
Za

lim
p2a→m2

a

(p2a −m2
a)∆

ab
ϕ (p2a)Π

bµ
ϕ,A(p

2
a)δac,

(5.33)

with an implicit summation over b. The diagrams that contribute to Πµ
ϕ,A are those illus-

trated in Fig. 4b.

�
a b c

1

Figure 5: Exact axial-vector–pseudoscalar propagator, which contribute to the decay con-
stant. True pseudoscalar-pseudoscalar propagator ∆ϕ is denoted by the empty circle on
the left-hand-side, and the left-hand-side is the axial-vector–pseudoscalar 1PI. a, b and c
denotes the type of pseudoscalar or axial-vector.

In the isospin symmetric limit, the exact propagator ∆ϕ is diagonal because there are
no mixing fields. Applying the definition of wave-function-renormalization constant (Eq.
5.14), and define Aϕ(p

2) through −Πµ
ϕ,A(p

2) =
√
2Aϕ(p

2)pµ, the expression for the real
decay constant is

Fϕ =
√
Zϕ(p2)Aϕ(p

2) (5.34)

Similar to the approach utilized in evaluating mass, we expand Fϕ, Π
′
ϕ and Aϕ in chiral

orders.
Fϕ = Fϕ,p2 + Fϕ,p4 + Fϕ,p6 +O(p8),

Zϕ(p
2) ≡ ∂

∂p2
Πϕ = Z(2)

ϕ (p2) + Z(4)
ϕ (p2) + Z(6)

ϕ (p2) +O(p8),

Aϕ(p
2) = A (2)

ϕ + A (4)
ϕ (p2) + A (6)

ϕ (p2) +O(p8),

(5.35)
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combining with the Taylor expansion of
√
Zϕ (since Aϕ starts from the second chiral order,

we only need to expand to O(p4) here)√
Zϕ(p

2) =
(
1 + Π′

ϕ(p
2)
)−1/2

= 1− 1

2
Π′

ϕ(p
2) +

3

8

(
Π′

ϕ(p
2)
)2

+ · · ·

= 1− 1

2

(
Z(2)

ϕ (p2) + Z(4)
ϕ (p2)

)
+

3

8

(
Z(2)

ϕ (p2)
)2

+O(p6),

(5.36)

applying this expression in the Eq. 5.34 and performing the Taylor expansion to express
the arguments in lowest order, we obtain,

Fϕ,p2 = A (2)
ϕ = F0

Fϕ,p4 = −1

2
Z(2)

ϕ A (2)
ϕ + A (4)

ϕ ,

Fϕ,p6 = −1

2
Z(4)

ϕ A (2)
ϕ +

3

8

(
Z(2)

ϕ

)2
A (2)

ϕ − 1

2
Z(2)

ϕ A (4)
ϕ + A (6)

ϕ ,

(5.37)

where we have utilized the fact that ∂Π
′(4)
ϕ /∂p2 = ∂A (4)

ϕ /∂p2 = 0, and all right-hand sides
are evaluated at p2 = m2

ϕ,p2 . Similarly to the procedure for calculating masses, following
two-loop integral calculations, dimensional regularization, and renormalization, we will
arrive at a finite value for the decay constant Fϕ.

6 QCD Isospin Breaking Effects

In this section, we will extend the analysis of masses and decay constants to include isospin
breaking effects. Previously, in Sec. 5, we operated under the assumption that up and
down quarks are identical. However, in practice, these quarks can be differentiated by
their distinct masses and charges. Consequently, isospin breaking arises from two primary
sources: the difference in quark masses, mu −md, and EM interactions [4].

6.1 Quark Mass Correction

Given the distinct treatment of up and down quarks, an immediate issue arises: the mass
term in Eq. 5.5 induces a mixing contribution between the π0 and η meson fields, expressed
as Lmix = (−2B/

√
3)(mu −md)π

0η. A significant consequence of this mixing is that the
exact pseudoscalar-pseudoscalar propagator, ∆ϕ, is no longer diagonal, since the incoming
state does not necessarily coincide with the outgoing state. The pole of the propagator
can be found now as places where the determinant of inverse of ∆ vanishes

det∆−1 = det (P−1 +Π) = 0, (6.1)
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note that we now use matrices ∆, P and Π with elements ∆ij, Pij and Πij to denote the
exact propagator, lowest order propagator and self-energy, respectively.

However, before proceeding with further calculations, the kinetic term must be brought to
the canonical form. Working at lowest order, we can diagonalize ∆ through a field rotation
(since there is only mixing between π0 and η, only this block is non-diagonal and needs to
be considered.) (

π0

η

)
R−→
(
π0
3

η8

)
=

(
cos ϵ sin ϵ
− sin ϵ cos ϵ

)(
π0

η

)
, (6.2)

where the mixing angle satisfies

tan 2ϵ = −
√
3

m̃

ms − m̂
, (6.3)

in which m̃ = 1/2(mu − md) is the quark mass difference. After carrying out this π0η
rotation, the LO mass can be directly calculated as

m2
π+,p2 =m

2
π−,p2 = 2Bm̂,

m2
π0
3 ,p

2 =2Bm̂+
4B

3
(ms − m̂) sin2 ϵ+

4B√
3
m̃ sin ϵ cos ϵ,

m2
K+,p2 =m

2
K−,p2 = (ms +mu)B,

m2
K0,p2 =m

2
K̄0,p2 = (ms +md)B,

m2
η8,p2

=
2

3
B(m̂+ 2ms)−

4B

3
(ms − m̂) sin2 ϵ− 4B√

3
m̃ sin ϵ cos ϵ,

(6.4)

Consequentially, in this new basis (π±, π0
3, K

±, K0, K̄0, η8), the lowest order propagator P
is also diagonalized

Pij =
δij

p2 −m2
i,p2

, (6.5)

yet the self-energy Π only starts, by definition, at NLO, so it does not need to be diagonal.
We have only used the fact here that a lowest order mixing angle ϵ is well-defined. There
is, of course, no reason for this to hold true at higher orders and indeed it is not the case
already at O(p4).

Performing the same expansion of the real massesm2
ϕ,phys and self-energy Πij as in Eq. 5.16

(where the subscripts i and j represent the incoming and outgoing particles, respectively),
and combining the pole equation Eq. 6.1, we have

0 =det (P−1 +Π) = det

(
P−1
33 +Π33 Π38

Π83 P−1
88 +Π88

)
=(P−1

33 +Π33)(P
−1
88 +Π88)− Π2

38

=(m2
ϕ,phys −m2

3,p2 +Π
(4)
33 +Π

(6)
33 )(m

2
ϕ,phys −m2

8,p2 +Π
(4)
88 +Π

(6)
88 )

− (Π
(4)
38 +Π

(6)
38 )

2 +O(p8)

(6.6)

30



in which we use 3 and 8 to represent π0
3 and η8 fields defined in Eq. 6.2, respectively.

Additionally, we use the fact that the matrix Π is symmetric. Solving this equation by
expanding around m2

ϕ,phy and fitting the chiral order, we obtain for π0
3 cases

m2
3,p4 =− Π

(4)
33 (m

2
3,p2),

m2
3,p6 =− Π

(6)
33 (m

2
3,p2)−m2

3,p4
∂

∂p2
Π

(4)
33 (p

2)

∣∣∣∣
p2=m2

3,p2

+
1

∆m2
38

(Π
(4)
38 (m

2
3,p2))

2,
(6.7)

where ∆m2
38 = m2

3,p2 −m2
8,p2 . The mass for η8 can be obtained by using the same formula,

but interchanging 3 ↔ 8, and the remaining masses can be obtained by using the formula
in the isospin symmetric limit (Eq. 5.18).

Similarly, our approach to calculating the decay constant also needs to be improved, as
now the self-energy Π is no longer a diagonal matrix. However, from the derivation of the
LO decay constant Eq. 5.28, Eq. 5.29 and the fact that the self-energy starts from O(p4),
we can still safely normalize our decay constant Fϕ to F0 at the lowest order.

In order to obtain the higher order decay constant, we first need to adjust our quantities
in Eq. 5.33 to accommodate isospin-breaking cases. For simplification, we can define
P ≡ P−1 +Π, then the propagator ∆ is the inverse of P (analogous to Eq. 5.9)

i∆(p2) = iP−1(p2) =
i

detP(p2)

(
P88(p

2) −P38(p
2)

−P38(p
2) P33(p

2)

)
. (6.8)

With this expression of the propagator and the definition of wave-function-renormalization
constant in Eq. 5.14, we obtain, considering π0 first

Z3 =Res[∆33(p
2),m2

3,phy] = lim
p2→m2

3,phy

(p2 −m2
3,phy)∆33(p

2)

=
1

∂
∂p2

(detP(p2))|p2=m2
3,phy

P88(m
2
3,phy),

(6.9)

and analogously, for η8 case

Z8 =
1

∂
∂p2

(detP(p2))|p2=m2
8,phy

P33(m
2
8,phy). (6.10)

Applying this expression in Eq. 5.33, the decay constant in the isospin-breaking case is
then given by (considering the π0

3 case)

F3 =
1√
Z3

lim
p2→m2

3,phy

(p2 −m2
3,phy)[∆33(p

2)A3(p
2) + ∆38(p

2)A8(p
2)]

=
1√
Z3

[
P88(m

2
3,phy)A3(m

2
3,phy)− P38(m

2
3,phy)A8(m

2
3,phy)

]
lim

p2→m2
3,phy

p2 −m2
3,phy

detP(p2)

=
1√

P88
∂

∂p2
(detP)

(P88A3 − P38A8),

(6.11)
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where all functions are taken at p2 = m2
3,phy.

As usual, we perform a chiral expansion to the quantities

Fϕ = Fϕ,p2 + Fϕ,p4 + Fϕ,p6 +O(p8),

Aϕ(p
2) = A (2)

ϕ + A (4)
ϕ (p2) + A (6)

ϕ (p2) +O(p8)

Πij(p
2) = Π

(4)
ij (p

2) + Π
(6)
ij (p

2) +O(p8)

Zij(p
2) =

∂

∂p2
Πij ≡ Z(2)

ij (p2) + Z(4)
ij (p2) + Z(6)

ij (p2) +O(p8),

(6.12)

after expanding around m2
3,p2 , one explicitly obtains for the π0

3 case

F3,p2 =A (2)
3

F3,p4 =A (4)
3 − 1

2
Z(2)

33 A (2)
3 − Π

(4)
38

∆m2
38

A (2)
8

F3,p6 =A (6)
ϕ − 1

2
Z(4)

33 A (2)
3 − 1

2
Z(2)

33 A (4)
3 +

3

8

(
Z(2)

33

)2
A (2)

3

+
Z(2)

38 Π
(4)
38

∆m2
38

A (2)
3 − 1

2

(
Π

(4)
38

∆m2
38

)2

A (2)
3 − Π

(4)
38

∆m2
38

A (4)
8

− Π
(6)
38

∆m2
38

A (2)
8 +

Π
(4)
38 Π

(4)
88

(∆m2
38)

2
A (2)

8 +
1

2
Z(2)

33

Π
(4)
38

∆m2
38

A (2)
8 ,

(6.13)

where all functions are evaluated at p2 = m2
3,p2 . Again, the case for η8 can be obtained by

using the same formula with interchanging 3 ↔ 8, and the remaining decay constants can
be obtained by using the formula in the isospin symmetric limit (Eq. 5.37).

6.2 EM Correction

Another notable distinction between up and down quarks is their differing electric charges.
Consequently, when considering the coupling of quarks to an external EM four-vector
potential Aµ, the corresponding field is given by

rµ = lµ = −AµQ, (6.14)

where Q = diag(2e/3,−e/3,−e/3) is the quark-charge matrix and e being the elementary
charge. The external field part of QCD Lagrangian is therefore (focusing on EM only)

Lext =q̄Lγ
µlµqL + q̄Rγ

µrµqR

=Aµ(q̄Lγ
µQqL + q̄Rγ

µQqR).
(6.15)

However, since Q is not proportional to the unit matrix, this term is not invariant under
chiral transformation. To that end, we employ a similar trick as introducing the quark
mass matrix into the ChPT Lagrangian.
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To ensure the chiral symmetry of the QCD Lagrangian, we introduce local spurious QR

and QL instead of the charge matrix Q[21], which transform under SU(3)L × SU(3)R as

QL → LQLL†,

QR → RQRR†.
(6.16)

The Lagrangian is modified,

Lext = Aµ(q̄Lγ
µQLqL + q̄Rγ

µQRqR), (6.17)

and is now invariant under chiral transformation.

We have now established the coupling of photons to quarks. For low-energy photons, this
coupling is illustrated in Fig. 6a, where photons depart from the quark. The corresponding
vertices in ChPT are depicted in Fig. 6b, with the photon coupling expressed in the
covariant derivative, treating the photon as an external field. Conversely, for high-energy
virtual photons, although the vertex configuration remains the same as that for low-energy
photons, these photons are not observable as they are immediately absorbed by another
quark, as shown in Fig. 7a. For such photons, it is necessary to construct a new type of
effective Lagrangian, represented by the shadow vertex in Fig. 7b.

�
qL/R qL/R

γ

1

(a)

�
ϕ ϕ

γ

1

(b)

Figure 6: Low-energy photon coupling. (a). The coupling of soft photon with quarks from
QCD. (b). The coupling of soft photon with corresponding pNGB from ChPT, the empty
circle represents the vertices from Eq. 4.24.

Hence, considering that the low-energy effective Lagrangian must encompass all permissible
terms consistent with the symmetry, the inclusion of these new blocks QL,R entails addi-
tional terms in the lowest-order ChPT Lagrangian. Now incorporating EM interactions
(considering also the relevant kinetic term),

Lχ =Le2 + Lp2

=− 1

4
F µνFµν −

λ

2
(∂µA

µ)2 + C ⟨QRUQLU
†⟩+ Lp2

=− 1

4
F µνFµν −

1

2
(∂µA

µ)2 + C ⟨QUQU †⟩+ Lp2 ,

(6.18)
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Figure 7: High-energy photon coupling. (a). The coupling of high-energy virtual photon
with quarks from QCD. (b). The coupling of virtual photon with corresponding pNGB
from ChPT, the shaded circle represents the new vertex in LO.

where in the second equality we choose Feynman gauge (λ = 1). Fµν is the field strength
tensor of the photon field Aµ, Fµν = ∂µAν − ∂νAµ, λ is the gauge fixing parameter and C
is a low-energy constant which is independent of the quark masses and not fixed by chiral
symmetry alone. At the end of the expression, we identify QL.R with the charge matrix Q
just as we replace s with M in the case of mass.

Now at lowest-order, the quadratic terms of this extra Lagrangian is

Le2 ⊃ −2e2C

F 2
0

(π+π− +K+K−), (6.19)

thus it contributes an equal amount to the square of the masses of charged fields π± and
K±,

m2
π±,e2 = m2

K±,e2 = 2e2
C

F 2
0

, (6.20)

but does not contribute to the mass of neutral fields π0, K0, K̄0 or η, nor does it affect
π0 − η mixing.

The calculations conducted so far in this subsection have been confined to the lowest
order. Importantly, there is no foundational reason to assume that EM corrections affect
only charged fields, especially at higher orders. Indeed, this assumption does not hold even
at the one-loop level.

In this thesis, we limit our analysis to the one-photon contribution to the mass, corre-
sponding to the e2 order, Therefore, we can ignore any terms at O(e4), which also helps us
get rid of the e4 order divergence. However, prior to calculating the additional one-photon
loop, it is necessary to incorporate contributions from chiral invariant local terms of order
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e2. The e2p2 order Lagrangian was derived by Urech [6], which consists of 14 terms, each
with an LEC Ki, has the form:

Le2p2 =K1F
2
0 ⟨(DµU)

†(DµU)⟩ ⟨Q2⟩+K2F
2
0 ⟨(DµU)

†(DµU)⟩ ⟨QUQU †⟩
+K3F

2
0 [⟨(DµU)

†QU⟩ ⟨(DµU)†QU⟩+ ⟨(DµU)QU
†⟩ ⟨(DµU)QU †⟩]

+K4F
2
0 ⟨(DµU)

†QU⟩ ⟨(DµU)QU †⟩
+K5F

2
0 ⟨((DµU)

†(DµU) + (DµU)(D
µU †))Q2⟩

+K6F
2
0 ⟨(DµU)

†(DµU)QU †QU + (DµU)(D
µU †)QUQU †⟩

+K7F
2
0 ⟨χU † + Uχ†⟩ ⟨Q2⟩+K8F

2
0 ⟨χU † + Uχ†⟩ ⟨QUQU †⟩

+K9F
2
0 ⟨(χU † + Uχ† + χ†U + U †χ)Q2⟩

+K10F
2
0 ⟨(χU † + Uχ†)QUQU † + (χ†U + U †χ)QU †QU⟩

+K11F
2
0 ⟨(χU † − Uχ†)QUQU † + (χ†U − U †χ)QU †QU⟩

+K12F
2
0 ⟨(DµU)†[cRµQ,Q]U + (DµU)[cLµQ,Q]U

†⟩
+K13F

2
0 ⟨cRµQUcLµQU

†⟩+K14F
2
0 ⟨cRµQcRµQ+ cLµQcLµQ⟩ ,

(6.21)

in which cRµQ = −i[rµ, Q] and cLµQ = −i[lµ, Q]. In the same vein as the definition of Li,
the coupling constant Ki are characterized as

Ki = (µ)−2ϵ

(
−1

32π2
Σiλ+Kr

i (µ) +O(ϵ)

)
, (6.22)

the coefficients Σi are given in Ref. [6].

The methodology for calculating masses with EM contributions closely mirrors the original
approach. At the one-loop level, this process requires integrating two additional diagrams,
as illustrated in Figures 8a and 8b. Additionally, to capture the EM correction terms, we
must utilize a modified Lagrangian with extra EM correction terms instead of the old one
to calculate the original one-loop again to obtain additional terms.

In fact, we can also only consider the new contributions and treat them as the EM correction
to the original mass. Similarly, we need first to identify the vertices that are involved in
the one-photon loop calculation from the original Lagrangian (Eq. 4.24), which are

L
2ϕAµ

p2 = −1

2
⟨ϕ∂µϕQAµ⟩+

1

2
⟨ϕQAµ∂

µϕ⟩ ,

L
2ϕ2Aµ

p2 =
1

2
⟨ϕ2Q2AµAµ⟩ −

1

2
⟨ϕQAµϕQAµ⟩ .

(6.23)
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Figure 8: The set of additional diagrams contributing to the 1PI when we consider the
contribution of one-photon. (a)− (o). The respective diagrams for the calculation of mass
are those the dashed lines are replaced with the external legs of Fig. 4c . The plain line is
a pNGB propagator, the wiggly line is a photon propagator, a dot and a cross represent a
vertex of O(p2) and O(p4), respectively.
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In addition with the vertices from the extra Lagrangian (Eq. 6.18 and Eq. 6.21)

L 4ϕ
e2 =

C

12F 4
0

(
⟨Q2ϕ4⟩ − 4 ⟨QϕQϕ3⟩+ ⟨Qϕ2Qϕ2⟩

)
,

L 2ϕ
e2p2 =(K1 +K2) ⟨Q2⟩ ⟨∂µϕ∂µϕ⟩+ (−2K3 +K4) ⟨Q∂µϕ⟩ ⟨Q∂µϕ⟩

+ 2(K5 +K6) ⟨Q2∂µϕ∂µϕ⟩ −K7 ⟨Q2⟩ ⟨ϕ2χ⟩
−K8

(
⟨Q2⟩ ⟨ϕ2χ⟩+ 2 ⟨χ⟩ ⟨Q2ϕ2⟩ − 2 ⟨χ⟩ ⟨QϕQϕ⟩

)
−K9

(
⟨Q2ϕ2χ⟩+ ⟨Q2χϕ2⟩

)
− 2K10 ⟨Qϕ2Qχ⟩

+ (K10 +K11)
(
−⟨Q2ϕ2χ⟩ − 2 ⟨Q2ϕχϕ⟩ − ⟨Q2χϕ2⟩

+2 ⟨QϕQϕχ⟩+ 2 ⟨QϕQχϕ⟩) .

(6.24)

Consider the cases where the incoming and outgoing particle are both π± fields, after
applying the Feynman rules for scalar particle and photon to the diagrams that are involved
(Fig. 4d-4f and Fig. 8a-8b), the self energy can be obtained as

Π
(4)

π±π±,e2p2(p
2) =− iMπ±π±,e2p2

=− e2C

3F 4
0

[16A(m2
π±,p2) + 2A(m2

π0,p2) + 8A(m2
K±,p2) + A(m2

K0,p2)

+ 2A(m2
η,p2) sin

2 ϵ]− e2

2
A(mAµ) + e2[mAµB(m2

π±,p2 ,mAµ , p
2)

− 2m2
π±,p2B(m2

π±,p2 ,mAµ , p
2)− 2A(mAµ) + A(m2

π±,p2)

− 2p2B(m2
π±,p2 ,mAµ , p

2)] +
4

9
e2p2(6K1 + 6K2 + 5K5 + 5K6)

− 4e2
[
2

3
m̂K7 +

(
ms +

8

3
m̂

)
K8 +

(
1

3
m̃+

5

9
m̂

)
K9

+

(
1

3
m̃+

23

9
m̂

)
K10 + 2m̂K11

]
.

(6.25)

Combining the regularization and renormalization procedure, we can get the result for EM
correction at one-loop order

m2
π±,e2p2 =− Π

(4)

π±π±,e2p2(m
2
π±,p2)

=− e2

8π2

C

F 4
0

[
2m2

π,p2 lnm
2
π±,p2 +m2

K±,p2 lnm
2
K±,p2

]
− e2

16π2
m2

π±,p2

(
3 lnm2

π±,p2 − 4
)
+

4e2

3
m̃ (−3Kr

8 +Kr
9 +Kr

10)

− 4e2

9
m2

π±,p2(6K
r
1 + 6Kr

2 + 5Kr
5 + 5Kr

6 − 6Kr
7

− 15Kr
8 − 5Kr

9 − 23Kr
10 − 18Kr

11) + 8e2m2
K±,p2K

r
8

− 16e2C

F 4
0

[(
m2

π±,p2 + 2m2
K±,p2 − m̃

)
Lr
4 +m2

π±,p2L
r
5

]
,

(6.26)
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in which the mass terms with superscript or subscript (i.e. m2
π±,p2 or m2

η8,p2
) are the bare

mass with quark mass correction in Eq. 6.4. While setting m̃ = 0, we recover the results
of Ref. [6].

For the O(e2p4) order, the basic principle is the same, we need first obtain all the vertices
we need and performing the calculation of all the two-loop diagrams. However, since the
most general Le2p4 has not been constructed yet, we have to introduce a local counterterm
based on power counting to make the finial amplitude finite.

For O(e2p4) order, all the possible counter terms are

−Π
(6)

e2p4,ϕ

∣∣∣∣
CT

=R1,ϕm
4
π±,p2e

2 +R2,ϕm
4
K±,p2e

2 +R3,ϕm̃
2e2

+R4,ϕm
2
π±,p2m

2
K±,p2e

2 +R5,ϕm
2
π±,p2m̃e

2 +R6,ϕm
2
K±,p2m̃e

2

(6.27)

in which the coefficients are defined as

Ri,ϕ ≡(µc)−4ε

(
β2i,ϕ
ε2

+
β1i,ϕ
ε1

+Rr
i,ϕ(µ)

)
=(µ)−4ε

(
β2i,ϕλ

2 + β1i,ϕλ+R
′r
i,ϕ(µ) +O(ε)

)
,

(6.28)

to cancel the divergent terms in loop integrals. Note that we utilize λ and λ2, rather than
λ1,2, as used in Eq. 5.22 and 5.23. This adjustment is achieved by shifting the finite term
Rr

i,ϕ(µ) to R
′r
i,ϕ(µ). The detailed expressions for β2i,ϕ and β1i,ϕ are listed in Appendix. A.

7 Analytical Results

Given the extensive length of the explicit formulae for the two-loop order results, this
section will only present a sample of the one-loop contributions. The set of one-loop
results is detailed in Appendix B. Meanwhile, the two-loop results are compiled in the
supplementary material.

7.1 Masses

In general, the physical masses can be split to two-loop order as follows:

m2
ϕ,phy = m2

ϕ,p2 +m2
ϕ,e2 +m2

ϕ,p4 +m2
ϕ,e2p2 +m2

ϕ,p6 +m2
ϕ,e2p4 +O(e4, p8, e2p6), (7.1)

in which the quark masses correction are considered, and m2
ϕ,p2 and m2

ϕ,e2 have already
been given in Eq. 6.4 and Eq. 6.20, respectively. In this thesis, quark mass corrections at
the O(e2p4) order are not included, as their inclusion would result in excessively lengthy
expression.
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For simplicity, we only give the formulae for charged pion here, since the m2
π±,e2p2 has been

given in Eq. 6.26, the remaining one-loop correction from O(p4) order is

m2
π±,p4 =

m2
π±,p2

F 2
0

{[
m2

π±,p2

32π2
− sin2 ϵ

72π2
(m2

K±,p2 + 2m2
π±,p2 −

m̃

2
) +

m̃ sin 2ϵ

96
√
3π2

]
lnm2

π0
3 ,p

2[
− cos2 ϵ

144π2
(2m2

K±,p2 − m̃) +
m2

π±,p2

288π2
(1 + 8 sin2 ϵ)− m̃ sin 2ϵ

96
√
3π2

]
lnm2

η8,p2

+8[(2m2
K±,p2 +m2

π±,p2 − m̃)(2Lr
6 − Lr

4) +m2
π±,p2(2L

r
8 − Lr

5)]
}

(7.2)

Again, the mass terms with superscript or subscript (i.e. m2
π±,p2) are the bare mass with

quark mass correction. Setting m̃ = 0, we find that this result agrees with that presented
in Eq. 5.24.

7.2 Decay Constants

Since the electromagnetic correction to the decay constant involves more kinds of external
legs than we showed in Fig. 4a [22], we only calculated the decay constants with quark
mass correction here.

Analogously, the decay constants have the form

Fϕ = Fϕ,p2 + Fϕ,p4 + Fϕ,p6 +O(p8), (7.3)

where the LO Fϕ,p2 is just the LEC F0 in the ChPT Lagrangian. In this subsection, we
will use Fπ± as an illustration, the one-loop contribution is

Fπ±,p4 =+ 4(2m2
K±,p2 − m̃)

Lr
4

F0

+ 8m2
π±,p2

Lr
4

F0

+ 4m2
π±,p2

Lr
5

F0

− 1

32F0π2
m2

π±,p2 lnm
2
π±,p2

− 1

192F0π2

(√
3m̃ sin 2ϵ+ 6m2

π±,p2 − 6m2
π±,p2 sin

2 ϵ
)
lnm2

π0
3 ,p

2

− 1

64F0π2
m2

K±,p2 lnm
2
K±,p2

+
1

64F0π2
(m̃−m2

K±,p2) lnm
2
K0,p2

+
1

192F0π2
(
√
3m̃ sin 2ϵ− 6m2

π±,p2 sin
2 ϵ) lnm2

η8,p2
.

(7.4)

Several properties emerge from our results. Firstly, we observe that the expressions for
masses and decay constants are finite. This finiteness is achieved as the divergent parts of
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the LECs in the Lagrangian and the local counterterms, which we introduced manually,
effectively cancel the infinite terms arising from the loop integrals.

Furthermore, the analysis reveals generally two types of terms in the results. First, there
are terms that are analytic in the bare meson masses, exemplified by expressions like m2

ϕ,p2

multiplied by the renormalized LECs, i.e., Lr
i . However, there are also non-analytic terms

of the type, such as lnm2
ϕ,p2 (the so-called chiral logarithms) or Li2(x) which are contained

within H̄(m1,m2,m3, p
2) (which arise from the two-loop contributions and are not shown

here), which do not introduce new parameters. Such a behavior is an illustration of the
mechanism found by Li and Pagels [23], who noticed that a perturbation theory around a
symmetry which is realized in the Nambu-Goldstone mode results in both analytic as well
as non-analytic expressions in the perturbation theory [10].

8 Conclusion

In this thesis, we have performed detailed calculations of the masses and decay constants
of eight mesons within ChPT up to NNLO, with a specific focus on incorporating isospin
breaking effects due to quark mass differences and EM interactions. Our analysis of the
meson masses included both quark mass and EM corrections. By comparing our results
with existing studies, notably the works referenced [3, 4, 6], we confirmed the consistency of
our findings with previous research, thereby strengthening the validity of our computational
approaches and theoretical models.

For the EM corrections at the two-loop level, despite the absence of a fully developed
O(e2p4) order ChPT Lagrangian, our confidence in the results remains strong and stems
from several factors. Firstly, we successfully canceled all logarithmic and non-local di-
vergences in the infinite parts of the additional amplitude. This ensures that our local
counterterm effectively cancels all divergences from the loop integral. Moreover, in the
analysis of the loop integrals in diagrams shown in Fig. 8i and 8j, we identified and
confirmed the cancellation of λ3 terms that arise due to the recurrence relation when sim-
plifying the tensor integral to a scalar integral. This aspect of our research highlights the
need for ongoing development in the theoretical structure of ChPT, especially regarding
higher-order corrections.

The calculation of decay constants proved more challenging, primarily due to the increased
complexity of two-loop diagrams involving virtual photons. Given these complexities, we
restricted our corrections to those involving quark masses only and used the results from
Ref. [24] to systematically remove all divergent terms from the amplitudes, affirming the
accuracy of our corrections.

Looking forward, while in this thesis the counterterms for the two-loop calculations are
relatively straightforward, but owing to the current gaps in the O(e2p4) order ChPT La-
grangian, there is a clear and pressing need for further theoretical advancements. The
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development of this new Lagrangian will be crucial for enhancing our understanding of
mesonic properties at higher orders. Additionally, EM corrections to the decay constants
also require additional study. Presently, we have only considered O(e2) order EM correc-
tions. As experimental techniques advance and the precision of measurements improves,
addressing higher-order EM corrections, which involve more complex multi-photon dia-
grams, will become increasingly important. This not only poses a significant theoretical
challenge but also a substantial opportunity to deepen our understanding of QCD in the
non-perturbative regime.

Overall, the work presented in this thesis contributes to the broader effort of improving
the precision and scope of theoretical predictions in particle physics, offering insights that
could be pivotal for future experimental and theoretical explorations in the field.
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A O(e2p4) Counterterms

In this Appendix, we list the coefficients for our local counterterm as detailed in Eq. 6.28.
However, as noted in Section 7, the quark mass corrections at the O(e2p4) order are not
included in this thesis. Therefore, we have that

R3,ϕ = R5,ϕ = R6,ϕ = 0. (A.1)

For the charged pion, we have

β21,π± =
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F 2
0 (16π)

2

(
35

3
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18

C

F 4
0
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,
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For the neutral pion we obtain
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For charged kaon, we obtain

β21,K± =
3

2

1

F 2
0 (16π)

2
,

β11,K± =− 1

384

1

F 2
0 π

4
−
(
4Lr

7 + 3Lr
6 −

11

3
Lr
5 − 3Lr

4

)
C

F 6
0 π

2

−
(
11

12
Kr

11 +
209

216
Kr

10 +
11

216
Kr

9 +
83

72
Kr

8 −
11

24
Kr

6 −
13

216
Kr

5

− 5

72
Kr

4 +
5

36
Kr

3 −
7

9
Kr

2

)
1

F 2
0 π

2
.

(A.8)

43



β22,K± =
1

F 2
0 (16π)

2

(
40

3
− 119

12

C

F 4
0

)
,

β12,K± =− 823

18432

C

F 6
0 π

4
− 875

9216

1

F 2
0 π

4
−
(
1

2
Lr
9 +

3

2
Lr
8 + 3Lr

6 +
3

4
Lr
5 +

3

2
Lr
4

)
1

F 2
0 π

2

−
(
18Lr

8 + 4Lr
7 + 32Lr

6 −
115

6
Lr
5 − 39Lr

4 −
145

27
Lr
3 −

49

9
Lr
2 − 14Lr

1

)
C

F 6
0 π

2

−
(
89

18
Kr

11 +
1631

324
Kr

10 +
29

324
Kr

9 +
295

54
Kr

8 +
29

108
Kr

7 −
16

9
Kr

6 −
17

108
Kr

5

− 29

108
Kr

4 −
25

54
Kr

3 −
239

108
Kr

2 −
29

108
Kr

1

)
1

F 2
0 π

2
.

(A.9)

β24,K± =
1

F 2
0 (16π)

2

(
19

6
+

1

36

C

F 4
0

)
,

β14,K± =− 179

18432

C

F 6
0 π

4
− 121

9216

1

F 2
0 π

4
−
(
3

2
Lr
6 +

3

4
Lr
4

)
1

F 2
0 π

2

−
(
−2Lr

8 − 8Lr
7 + 22Lr

6 −
7

6
Lr
5 −

57

2
Lr
4 −

49

54
Lr
3 −

14

9
Lr
2 −

8

3
Lr
1

)
C

F 6
0 π

2

−
(
13

18
Kr

11 +
581

648
Kr

10 +
113

648
Kr

9 +
491

216
Kr

8 +
13

108
Kr

7 −
7

36
Kr

6 −
7

54
Kr

5

+
2

27
Kr

4 −
4

27
Kr

3 −
43

108
Kr

2 −
13

108
Kr

1

)
1

F 2
0 π

2
.

(A.10)

For the neutral kaon we obtain
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For the eta, we have
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B Explicit results for the masses and decay constants

In this appendix, we will present the result of O(p4, e2p2), the two-loop order are collected
in the supplement file since they are to lengthy. All the LO mass terms presented in the
results represent bare masses, which include corrections for quark masses as detailed in Eq.
6.4. The results for the neutral pion π0

3 and eta η, due to their length, are also included in
the supplementary material together with the two-loop results.

B.1 Masses

The expression for mass are given in Eq. 7.1 combine with the result for π± in Sec. 7, and
we will show all the left results here.

For charged kaon, we obtain
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For neutral kaon, we have
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B.2 Decay Constants

The expression for decay constants are given in Eq.7.3 with the result for π± in Sec. 7.

For charged kaon, we have
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For neutral pion, we obtain

FK0,p4 =+
4

F0

[(2m2
K±,p2 +m2

π±,p2 − m̃)Lr
4 + (m2

K±,p2 − m̃)Lr
5]

− 1

64F0π2
m2

π±,p2 lnm
2
π±,p2

+
1

384F0π2

[√
3(6m̃+m2

π±,p2 + 2m2
K±,p2) sin 2ϵ+ 3(−m2

π±,p2 + m̃)

+6(−2m2
K±,p2 +m2

π±,p2 + m̃) sin2 ϵ
]
lnm2

π0
3 ,p

2

− 1

64F0π2
m2

K±,p2 lnm
2
K±,p2

+
1

32F0π2
(m̃−m2

K±,p2) lnm
2
K0,p2

+
1

384F0π2

[√
3(m̃+m2

π±,p2 + 2m2
K±,p2) sin 2ϵ+ 3(m2

π±,p2 + 3m̃

−4m2
K±,p2) + 6(2m2

K±,p2 −m2
π±,p2 − m̃) sin2 ϵ

]
lnm2

η8,p2
.

(B.6)

C Loop integrals

In this Appendix, we collect all the Feynman integral we encountered with their definitions
and properties. We use dimensional regularization here throughout in d dimensions with
d = 4 − 2ε. We will start by discussing the general form of loop integrals that need
to be addressed in this paper and introduce the procedure to simplify them into tensor
integrals. Then, with the help of Kira program [25], the tensor integrals can be written as
a combination of scalar integrals, which will be listed in the end.

C.1 General Integral and Simplification

In general, the integrals encountered in this thesis can be summarized in the following
form. A general one-loop integral is

I(d)(v1, v2, p
2) =

1

i

∫
ddk

(2π)d
1

av11 a
v2
2

N(k2, kp), (C.1)

where N(k2, kp) is a polynomial and

a1 = k2 −m2
1, a2 = (k − p)2 −m2

2. (C.2)

A general two-loop integral is
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2) =
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where N(k21, k
2
2, k1p, k2p, k1k2) is also a polynomial and

c1 = k21 −m2
1, c3 = (k1 − p)2 −m2

3, c5 = (k1 − k2)
2 −m2

5,

c2 = k22 −m2
2, c4 = (k2 − p)2 −m2

4.
(C.4)

Individual one-loop and two-loop integrals in this thesis can be specified by the power
of denominators vi and by the function N . Tarasove [26] has provided a solution to the
problem of reducing two-loop integral to a scalar integral (N = 1), the evaluation of the
integrals is performed in four steps in his paper. However, with the help of Kira program,
one only needs to simplify the integrand as much as possible to a tensor integral, the rest
can be automatically completed by Kira to obtain a scalar integral.

The simplification procedure is just a matter of tedious algebra. For one-loop integral, we
can perform
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(C.5)

After this progress, the one-loop integral will become tensor or scalar integral. For scalar
integral, when v1 = 1, v2 = 0 or v1 = v2 = 1, these correspond to the one-loop integral A
and B in Appendix. C.2. As for other scalar cases, one can obtain them by derivation w.r.t
m2

i of A or B until the denominator matches the certain order. This derivation method is
also valid when we are dealing with two-loop scalar integral.

For two-loop integral, we can still start the simplification with the repeated use of the
substitutions:
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After performing these substitutions, the two-loop integral will become either tensor or
scalar integral, as in the one-loop cases. In this thesis’s calculation, we will only encounter
the two-loop scalar integral with v2 = v3 = v5 = 1, v1 = v4 = 0 (integral H in Appendix.
C.3), or its derivative w.r.t masses.
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These simplification procedures are not universal, and sometimes we will end up with inte-
grals with irreducible numerators. Such integrals are often referred to as tensor integrals,
which have the form:

1

i

∫
ddk

(2π)d
1

av11 a
v2
2

kµ1 · · · kµn ,

1

i2

∫
ddk1
(2π)d
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(C.7)

Here, in our thesis, all the internal momentum contract with the external momentum p.

Using recurrence relation, integration-by-parts and Lorentz-invariance identities, program
Kira can perform the reduction of the tensor integrals to scalar integrals and further reduce
the results to their simplest form. Here, we have used this package to assist us in processing
the integrals. The integralfamilies.yaml file for Kira in our cases is defined as follows:

integralfamilies:
- name: "twoloop1"

loop_momenta: [r,s]
top_level_sectors: [31]
propagators:

- [ "r", 0]
- [ "r-p1", m1]
- [ "s", m1]
- [ "s-p1", m1]
- [ "r+s", m1]

- name: "twoloop2"
loop_momenta: [r,s]
top_level_sectors: [31]
propagators:

- [ "r", 0]
- [ "r-p1", m1]
- [ "s", m2]
- [ "s-p1", m1]
- [ "r+s", m2]

As these two types of integrals represent all the two-loop integrals we encountered. And
the kinematic relation information are given in the file kinematics.yaml

kinematics:
incoming_momenta: [p1]
outgoing_momenta: [q1]
momentum_conservation: [p1,q1]
kinematic_invariants:

51



- [m1, 2]
- [m2, 2]

scalarproduct_rules:
- [[p1,p1], m1]
- [[q1,q1], m1]

symbol_to_replace_by_one: m1

Then, with the assistance of Kira, Feynman integrals are simplified to scalar integrals.

C.2 One-Loop Scalar Integral

The simplest one for one-loop scalar integral is what we defined A integral:

A(m2) =
1

i

∫
ddq

(2π)d
1

q2 −m2
. (C.8)

The explicit expression for A is well known,

A(m2) =
m2

16π2
[λ− lnm2 +O(ε)], (C.9)

where λ = 1/ε + C0 and C0 = ln(4π) + 1 + Γ′(1) is a constant. The divergence of A is
isolated in λ and the rest is the finite part. Note that we have suppressed the explicit
µ-dependence of the logarithm term ln(m2/µ2).

Next, we define the scalar integral with two different propagators
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The evaluation procedure is standard and we obtain
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where
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C.3 Two-Loop Scalar Integral

In this thesis, we need only deal with one kind of two-loop scalar integral (and its derivative
w.r.t mass), which is defined as,

H(m2
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After the extraction of the divergent parts, we have (from Ref. [3])

H(m2
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2
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2
3, p
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(16π2)2

{
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2
λ2(m

2
1 +m2

2 +m2
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1

2
λ1
[
m2

1(1− 2 lnm2
1)

+m2
2(1− 2 lnm2

2) +m2
3(1− 2 lnm2
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2

]
+H̄(m2

1,m
2
2,m

2
3, p

2)
}
+O(ε),

(C.14)

in which λ2 = λ2 + C2
0 , λ1 = λ+ C0 and the finite part H̄ is
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2
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Here m2
4 = m2

1m
2
2m

2
3, δm = m2

1 −m2
2 −m2

3 and λm = λ(m2
1,m

2
2,m

2
3), where

λ(x, y, z) = (x− y − z)2 − 4yz (C.16)

is the Källén function.

The expression of the function Ψ is dependent on the relation between its three variables. In
the case when λm ≥ 0, there are three possible situations. First, we considerm1+m2 ≤ m3,
the expression of Ψ is

Ψ(m2
1,m

2
2,m

2
3) =

−
√
λm

{
2 lnx1 lnx2 − ln
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1
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3
− 2Li2(x1)− 2Li2(x2)
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(C.17)

with

x1 =
m2

3 +m2
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2 −
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2m2
3

, x2 =
m2

3 +m2
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√
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3

, (C.18)

and the dilogarithm Li2(x) defined by

Li2(x) = −
∫ x

0

dt

t
ln(1− xt). (C.19)
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For the other two cases m1 + m3 ≤ m2 and m2 + m3 ≤ m1, one can obtain them by
relabelling masses in Eq. C.17.

When λm ≤ 0,

Ψ(m2
1,m

2
2,m

2
3) = 2

√
−λm {Cl2(2 arccos z1) + Cl2(2 arccos z2) + Cl2(2 arccos z3)} , (C.20)

with
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. (C.21)

The Cl2(x) in the expression is Clausen’s function, and is defined by

Cl2(x) = −
∫ x

0

dt ln

∣∣∣∣2 sin t2
∣∣∣∣ = −i(Li2(eix)− Li2(1))−

πx

2
+ i

x2

4
. (C.22)

In practice, the derivative of Ψ with respect to the mass m2
i is also important. Here we

show the case with m2
1, the other two can be obtained by switch the variables.

∂
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(C.23)

which will allow one to easily evaluate all the necessary derivatives.

The expression of the function J also depend on the relation of its four variables, below
the threshold p2 < (m1 +m2 +m3)

2, we have

J(m2
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2
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2
3, p

2) =

∫ ∞

(m2+m3)2
dσ

√
λ

(
1,
m2

2

σ
,
m2

3

σ

)
×
∫ 1

0

dxJ2(x, σ, p
2), (C.24)

where

J2(x, σ, p
2) = ln
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+
p2x(1− x)
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. (C.25)

Above the threshold p2 ≥ (m1 +m2 +m3)
2, the function J develops imaginary parts and

they can then be evaluated from its dispersive representation
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The imaginary parts are given by (in d=4)
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with
m2

23 = p2 +m2
1 − 2|p|E1,
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1 − (m2 +m3)
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(C.28)

In this thesis, due to the structure of the ChPT Lagrangian, identical NGBs fields must
appear in pairs at each vertex. Consequently, all H(m2

1,m
2
2,m

2
3, p

2) functions encountered
by us have m2 and m3 that are necessarily the same. Therefore, even though we only
consider the on-shell case where p2 equals the real mass of incoming particles, we can still
use the results from the off-shell case, where the external momentum p2 = (m1−m2+m3)

2.

At this pseudo-threshold value, p2 = (m1 −m2 +m3)
2, the explicit expression of the finite

part H̄(m2
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2
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2), as given by Caffo et al.[27], is
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in which

I(m1,m2,m3) = Li2

(
1− m3

m2

)
− Li2

(
−m1

m2

)
+ log

(
m3

m1 +m2
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log

(
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. (C.30)

The diagrams in Figure 8i and 8j introduce additional terms proportional to λ. Conse-
quently, terms of the order O(ε) in the H functions are necessary. Although these results
can be found in Ref. [28, 29], in the results of this thesis, we use H̄(ε,m1,m2,m3, p

2) to
denote such terms.
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