
Emails, Algorithms, and Bookkeeping: Classifying

the Inbox

Croneborg, Claes
Karlsson, Viktor

Supervised by : Bogdan, Ma lgorzata

STAN40: First Year Master Thesis in Statistics

15 ECTS

Lund University

School of Economics and Management

Department of Statistics

8th June 2024

mailto:claes@croneborg.se
mailto:karlsson.vt@gmail.com
mailto:malgorzata.bogdan@stat.lu.se

Abstract

This report investigates the multi-label classification problem of expense-related documents,
aiming to be classified into nine distinct types of categories. Various machine learning methods
including Naive Bayes, Logistic Regression, Support Vector Machines, Linear Discriminant Ana-
lysis, k-Nearest Neighbors, Decision Trees, Random Forest, Gradient Boosting, and Recurrent
Neural Networks were employed and evaluated. The k-Nearest Neighbors model exhibited the
lowest overall performance, likely due to its sensitivity to individual training observations and
the impact of outliers in a limited dataset. Intriguingly, k-Nearest Neighbors performed worse
with Term Frequency - Inverse Document Frequency (TF-IDF) representation compared to Bag-
of-Words (BoW), emphasizing the importance of feature representation in k-Nearest Neighbors
models.

Among the tested models, multinomial Naive Bayes emerged as one of the top performers,
despite being initially considered as a benchmark. Linear models showed similar performance,
outperforming k-Nearest Neighbors. Tree-based models revealed that Random Forest and Gradi-
ent Boosting outperformed the simpler Decision Trees, attributing their success to the use of
multiple learners. Recurrent Neural Networks, especially those with pre-trained weights from
Skip-grams, underperformed compared to classical classifiers, most likely due to the small data-
set available.

Classical models were trained on BoW and TF-IDF representations, using a vocabulary con-
sisting of only the top-19 most discriminative features (words) for each category chosen using
cross-validation, along with eight featured-engineered variables. Two recurrent neural networks
models were employed, one with pre-trained word embeddings from Skip-grams, and one without
pre-trained word embeddings. Surprisingly, BoW-based models performed similarly or better
than TF-IDF-based models, contrary to the expectation that TF-IDF would give more emphasis
on important words. The imbalanced dataset posed challenges, particularly for one category,
which included a diverse range of documents with indistinct patterns for the models to learn.
Support Vector Machines model on TF-IDF data representation demonstrated the best perform-
ance achieving a weighted average accuracy of 86%.

Additionally, the authors present a suggested framework for reducing the vocabulary size that
significantly reduces the computational cost while still maintaining high accuracy.

Keywords: Multi-label text classification, Naive Bayes, Linear Discriminant Analysis, Lo-
gistic Regression, Support Vector Machines, k-Nearest Neighbour, Decision Tree, Random Forest,
Gradient Boosting, Recurrent Neural Network, Word Embeddings.

I

Acknowledgements

We would like to extend our sincere thanks, especially to two individuals, who have provided
essential support throughout the development of this thesis.

Firstly, we would like to thank Lucas Alexander Sørensen at Kontolink for his consistent en-
couragement and guidance. His insightful feedback and the provision of a real-life dataset were
instrumental in completing our research. Each meeting with Lucas was marked by positivity
and motivation, inspiring us to delve deeper into the topic.

We also wish to thank our supervisor, Ma lgorzata Bogdan, for her ongoing support. Expert
advice along with constructive feedback as well as her encouragement was really helpful to
navigate the challenges of this research. Her commitment and dedication gave us the confidence
and direction needed to successfully complete this thesis.

We appreciate the significant contributions and support from both Lucas and Ma lgorzata.

II

Abbreviations

NB - Naive Bayes
LR - Logistic Regression
SVM - Support Vector Machines
LDA - Linear Discriminant Analysis
KNN - K-Nearest Neighbour
DT - Decision Tree
RF - Random Forest
GB - Gradient Boosting
NN - Neural Network
RNN - Recurrent Neural Network
GRU - Gated Reccurent Unit
BoW - Bag-of-Words
TF-IDF - Term Frequency - Inverse Document Frequency
TP - True Positive
TN - True Negative
FP - False Positive
FN - False Negative

III

Contents

Abstract I

Acknowledgements II

Abbreviations III

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement and Thesis Objective . 1
1.3 Arguments of Research . 2

2 Short Literature Review 3

3 Theory 5
3.1 Classification methods . 5

3.1.1 Naive Bayes . 5
3.1.2 Linear Discriminant Analysis . 6
3.1.3 Logistic Regression . 7
3.1.4 Support Vector Machines . 9
3.1.5 K-Nearest Neighbour . 10
3.1.6 Decision Trees and Random Forest . 11
3.1.7 Gradient Boosting . 12
3.1.8 Neural Networks . 13
3.1.9 Classification of Multi-Labelled Data . 18

3.2 Optimization Algorithms . 18
3.2.1 Gradient Descent . 18
3.2.2 Stochastic Gradient Descent . 19
3.2.3 Momentum-Based Gradient Descent . 19

3.3 Vector Representation of Data . 20
3.3.1 Bag-of-Words . 20
3.3.2 TF-IDF . 21
3.3.3 Word Embeddings and Pre-training . 21

3.4 Dimensionality Reduction . 24
3.4.1 t-Distributed Stochastic Neighbor Embedding 24

3.5 Performance Tuning and Evaluation . 25
3.5.1 Imbalanced Data . 25
3.5.2 Cross-Validation and (Estimating Error on New Data) 25
3.5.3 Evaluation: Performance Metrics . 28

4 Methodology 29
4.1 Data Preprocessing . 29
4.2 Exploratory Data Analysis . 30

4.2.1 Cluster Analysis Using t-SNE . 33
4.2.2 Python Packages . 34

4.3 Predefining a Vocabulary . 35
4.4 Feature Transformation . 36
4.5 Classifier Implementation . 37

5 Result 39
5.1 Data Representation 1: Bag-of-Words . 39
5.2 Data Representation 2: TF-IDF . 41
5.3 Data Representation 3: Word Embeddings and Skip-grams 43
5.4 Comparison Between Data Representations . 45

6 Discussion 47

7 Conclusion 51

A EDA 56
A.1 Graphs . 56
A.2 Tables . 63

B Results 64

C Extra 66
C.1 Hyperparameter space . 66
C.2 Algorithm Pseudocode . 66

1 Introduction

1.1 Background

Small businesses does not usually have an accounting department, which makes efficient book-
keeping essential. When purchasing something, it has become common to receive receipts and
other expense-related documents by email, but yet managing and organizing receipts and trans-
actions manually can be time-consuming. This thesis has been written in collaboration with
Copenhagen-based company Kontolink, which aims to facilitate bookkeeping by automatically
classifying bookkeeping documents. This project aims to help this automation by incorporating
text-classification as well as natural language processing (NLP) techniques, primarily to cat-
egorize documents in emails. NLP is a relevant field where computers are used to understand,
interpret, and predict insights of the human text language. Leveraging techniques in this field,
the authors seek to implement methods to efficiently classify email documents for the mentioned
purpose.

The approach will be structured by using simpler techniques, to later proceed into more soph-
isticated models, and their performance will be compared and discussed. Grounding the meth-
odologies in previous literature, the aim is to assess their performance on limited real-life data,
to determine the most efficient strategies. Information in emails is extracted through optical
character recognition (OCR) to turn documents into data, to later being processed as what will
be discussed later. The dataset used to train the models is a dataset provided by the partner-
ship company, randomly selected from their clients. For the sake of not exposing any sensitive
information, examples during this thesis are carefully considered.

1.2 Problem Statement and Thesis Objective

The primary objective of this thesis is to establish a foundation for classifying emails into nine
different categories, all connected to book-keeping. This will to help the company enhance their
automatic paring. Different machine learning methods will be employed to categorize email
documents to achieve this goal. Comparing the different methods will contribute to the research
in the area, as well as help the collaborating company to understand what methods are most
efficient.

The specific data has some problems where all of the documents could be grouped under a
category ”expense-related”. Specific challenges in this task include the observations in the data
being limited and classes being similar . Succeeding in finding models that can distinguish
between categories acts as a pre-stage before the matching of documents and transactions is
done.

Using models to categorize multi-labeled text data consists of a few steps. The data needs to be
pre-processed as well as vectorized to be represented numerically. There are many approaches in
how this vectorization is made, for example Term Frequency, commonly known as Bag-of-Words
(BoW), and Term Frequency - Inverse Document Frequency (TF-IDF) to name two, but other
numerical representations of data are also available. Furthermore, all used models have a set

1

of hyperparameters that are tuned using cross-validation, to decide upon the best version of
the chosen models. Finally, the models are evaluated using a set-aside test set, to evaluate the
different models’ performance.

1.3 Arguments of Research

The relevance of our research is underscored by the direct application, as it assists the collab-
orating company (Kontolink), in automating the classification of emails. Existing literature has
explored theoretical aspects, and managed to achieve high accuracy. This study addresses the
tailored and practical needs of a real-life situation to streamline this processing. It thus bridges
a gap between the theory and application on real-life data.

It boils down to the research-question of which machine-learning method is most effective for
this specific problem.

2

2 Short Literature Review

A range of studies have been carried out on textual data, using machine learning techniques
to extract information and classify emails documents. One of which is the Naive Bayes (NB)
classifier, a simple yet powerful probabilistic method that makes use of the independent assump-
tion and Bayes Rule (Zhang and Teng, 2021d). It has been extensively discussed in previous
literature, for example by Rennie et al. (2003), Shams and Mercer (2013) and Xu (2018). Due to
its performance and simplicity, the NB is often used as a benchmark when incorporating more
advanced models (Rennie et al., 2003; Xu, 2018). In each of these studies TF-IDF representation
of data were used.

NB will be described more thoroughly in Section 3.1.1. It selects the most probable class under
the naive assumption of independence. In real-life problems, this is a hard assumption, and
dependency between features varies (Bird, Klein and Loper, 2009a). Provost (1999) compares
how NB performs against a rule-based method, which was significantly outperformed. Zhang
and Li (2007) used the classifier in a binary classification problem, to detect whether an email
was spam or not, and concluded it was a simple yet powerful algorithm. Zhang (2004) examined
why the NB performs so well, despite the hard conditional independence assumption, and argues
that although two features have a dependency when just these two are examined, the behavior
might not matter as much when they are examined at a larger scale with every other feature
(words). What is relevant is the prevalence, and how the pair occurs across most classes (Zhang,
2004).

Shams and Mercer (2013) conducted a comparative study of several machine learning algorithms
for binary email classification, to distinguish spam or non-spam emails. Using the TF-IDF data
representation on Random Forest (RF), Support Vector Machine (SVM), Bagging, AdaBoostM1
and NB were all used on four publicly available datasets. The study resulted in Bagging per-
forming the best. They noted that spam emails share common attributes, such as spam words,
incorrect spelling or grammar mistakes. Furthermore, Hirway et al. (2022b) created three dif-
ferent models to determine the authenticity of receipts obtained on the email. On BoW data
representation, they applied RF, SVM and the NB - where the latter performed the worst, but
close to the other two.

More studies use ML algorithms for classifying, distinguishing between spam and non-spam.
Awad and Elseoufi (2011) compare some of the most popular methods, among which NB, KNN
and SVM were used on BoW representation. These methods are applied to one of the datasets
examined by Shams and Mercer (2013). The (multinomial) NB achieved the highest accuracy,
but all methods performed above 96%. Raza, Jayasinghe and Muslam (2021) evaluated K-
means, NB, Decision Trees (DT), SVM and Gradient Boosting (GB), among other methods.
They concluded that supervised machine learning models demonstrated superior performance.

Classification of email receipts has specifically been examined before. Hirway et al. (2022a)
implemented a recurrent neural network (RNN), more specifically a Long-Short-Term-Memory
(LSTM) neural network, on a dataset consisting of receipts. In their study, they tried a binary
classification of emails as receipts or non-receipts, by only using the subject line. They found
that this type of model, with pre-trained GloVe weights, both increased accuracy and reduced
prediction time compared to less complex models RF, SVM and NB.

3

Another method that have been used is Linear Discriminant Analysis (LDA), a technique used
to find discriminative features, and maximizing the class separability. Nassara, Grall-Maës
and Kharouf (2016) examined versions of the algorithm to handle reduced dimensionality on
textual data. Park and Park (2008) did however conclude that LDA can have limitations in its
performance if the dataset is small.

Another data representation that have been used in previous studies are word embeddings
for neural networks, where words are indexed by their position in a vocabulary vector. Xu
et al. (2016) used convolutional neural network on word embeddings with pre-trained weights
generated by Skip-grams on biomedical textual data. Zulqarnain et al. (2019) also used pre-
trained weights generated by Skip-grams on a Recurrent Neural Network (RNN) with success.

4

3 Theory

Under this section, the theory behind classification methods, data representations, and theory
on techniques for examining and evaluating model performance will be presented.

3.1 Classification methods

3.1.1 Naive Bayes

The Naive Bayes text classifier is a commonly used Bayesian probabilistic model, leveraging the
assumption that words are independent of each other. As introduced in 2, the model is quite
simplistic and easy to implement, yet still able to achieve strong predictions, often used as a
benchmark model, which for example was used by Hirway et al., 2022b; Rennie et al., 2003; Xu,
2018; Zhang and Teng, 2021d.

The naive assumption means that the positioning of words does not matter for the prediction,
which understandably is a naive assumption if one would think of the grammar. It is a prob-
abilistic classifier, which aims to predict each document as one of the possible classes, and does
so by returning the class with the highest posterior probability. To do this, Bayes Rule is used,
which is defined as:

P (A|B) =
P (A,B)

P (B)
(3.1)

⇔ P (A,B) = P (A|B)P (B)

⇒ P (A,B) = P (A|B)P (B) = P (B|A)P (A)

⇒ P (A|B) =
P (B|A)P (A)

P (B)
, (3.2)

where P (B|A) is the probability of B given A, P (A) is called the prior and is the probability of
class A (Zhang and Teng, 2021a).

To estimate the class, we aim to maximize the probability of a class given the document, denoted
as k̂ = arg max

k∈K
P (k|d). Here the general notations of A and B are replaced by the class k and

document d. We can view this process as treating it as a random event which allows us to
transform the estimation using Bayes’ rule into the following expression:

k̂ = arg max
k∈K

P (k|d) = arg max
k∈K

P (d|k)P (k)

P (d)
⇒ k̂ = arg max

k∈K
P (d|k)P (k) (3.3)

Thus, the argument that is maximized belongs to the set of possible classes, k ∈ K. For each
document, we are finding the most probable class, so that the probability of the document P (d)

5

is constant for each calculation. Hence, the denominator can be left out of the equation on the
right hand side (Zhang and Teng, 2021a).

Training the classifier as is, is too big of a problem, given all the number of possible combinations
of our features, i.e. words. The use of conditional independence, and the probability chain
rule assumptions facilitates this. Documents are broken down into more basic elements. The
probability chain rule allows for rewriting P (d|k) to a product of probabilities of the words wi

in the document d = w1w2 . . . wn:

P (d|k) = P (w1w2 . . . wn|k) = P (w1|k)P (w2|w1, k) · · ·P (wn|w1w2 . . . wn−1|k),

and the assumption of conditional independence allows the removing of the sequence of words
in the condition, and it can be rewritten as

P (d|k) = P (w1|k)P (w2|k)P (w3|k) · · ·P (wn|k).

This gives that P (k|d) is proportional to the final argument in Equation 3.3, and can be rewritten
as:

P (k|d) ∝ P (d|k)P (k) ≈ ΠiP (wi|k)P (k), and our k̂ = arg max
k∈K

P (k)ΠiP (wi|k)

for every word position in each document. These calculations are typically performed in the
logarithmic space to reduce the computational time, and this also makes it a linear classifier
(Zhang and Teng, 2021a).

When working with text data, words must be transformed into tokens, then numbers such that
it is possible to model the data. To train the Naive Bayes classifier, P (k) is obtained by using
the maximum likelihood estimation, as the proportion of the number of times class k, in relation
to the size of the corpus, the number of documents. Similarly, the P (w|k) is found by finding
the proportion of a word w in documents with class k. Additionally, some kind of smoothing is
required to handle unknown words, not present in the training vocabulary, properly. Otherwise,
unknown words will yield zero probabilities. A common approach is to use a so-called add-
α smoothing, also known as Laplace smoothing. The smoothing adds one or some α to the
numerator, and the size of the vocabulary to the denominator such that there are no zero
probabilities (Zhang and Teng, 2021b).

In this thesis, the multinomial Naive Bayes will be used, to specify that the P (d|k) has a
multinomial distribution that works well with the type of count data, just as our words are
represented (Zhang and Teng, 2021b). The likelihood of a document belonging to a class is
based on the word frequencies in the specific document. The probability if document d, given
class k is presented as:

P (d|k) = P (w1, w2, . . . , wn|k) =
Nd!∏
iwi!

P (w1|k)P (w2|k) · · ·P (wn|k), (3.4)

where Nd is the number of words in the document.

3.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is widely used for classification in combination with di-
mensionality reduction that aims to find a linear combination of features that best classifies the
data. It can therefore depict the most informative directions in feature space, hence a reduced

6

vector subspace is created while maintaining class-separability. The technique has become pop-
ular because of it having a closed-form solution, its small need of hyperparameter-tuning and
its inherent capability of handling multi-labelled data. LDA assumes the data to be normally
distributed with a class-specific mean vector, a common covariance-matrix and the classes being
linearly separable. When p > 1 (our predictors or words) it therefore assumes X = (X1, · · · , Xp)
to come from a multivariate Gaussian-distribution, i.e., X ∼ N (µ,Σ). LDA can be shown to
originate from a probabilistic model that calculates the probability of an observation belonging
to class k with P (X|y = k). Since it is being modelled as a multivariate Gaussian distribution
it is therefore formulated by Equation 3.5.

P (x|y = k) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(x− µk)tΣ−1

k (x− µk)

)
. (3.5)

Observations are thereafter classified according to the population for which the pif(x|πi) is the
largest (note here that πi in f(x|πi) is the prior probability for class i and not the constant). It
is said to be a linear classifier since the score function, read decision rule, is based on a linear
combination of x defined by Equation 3.6.

δk(x) = xTΣ−1µk −
1

2
µT
k Σ−1µk + log πk, (3.6)

where µk is the mean vector and πk = Nk
N the prior probability of class k.

More specifically an observation will be classified for which class k that yields the highest δk(x),
i.e. the decision rule G(x) = arg max

k
δk(x), also equivalent to the class with the highest posterior

probability (Hastie, Tibshirani and Friedman, 2009a).

Since the covariance matrix Σ is estimated using a sample (sample covariance Σ̂) it can lead to
unstable predictions, even more so when sample size per each class is small. Thereof, Ledoit
and Wolf (2000) introduced a shrinkage parameter in order to counteract unstable estimation of
covariance matrices and the overfitting issues it might produce. Asymptotically, this estimator
does not only yield a well-conditioned estimation of the covariance-matrix, but also being more
accurate. Ledoit-Wolf estimator is defined by Equation 3.7.

ΣL-W = (1− α)Σ̂ + α
Tr(Σ̂)

p
· Ip, (3.7)

where α is the shrinkage parameter, Σ̂ sample covaraince-matrix, Tr(.) trace of matrix, p number
of features and Ip the identity matrix.

3.1.3 Logistic Regression

Logistic regression is a binary classification technique used to model the relationship between a
set of features (denoted as X) and the probability of a binary outcome (Y). Traditionally, linear
regression models were employed for this purpose, attempting to directly predict probabilities
using a linear relationship:

z = β0 + β1X1 + · · ·+ βpXp

7

However, the model would violate the properties of probabilities being p(X) ∈ [0, 1]. To ensure
the properties are not being violated a so-called Sigmoid function is introduced

σ(z) =
1

1 + e−z
=

ez

1 + ez

and the probabilities can thereafter be expressed as:

p(X) =
ez

1 + ez
=

eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
.

Logistic regression estimates the parameters β by maximizing the likelihood of the observed data,
which is typically carried out using maximum likelihood estimation or numerical optimisation.
Furthermore, the model also allows for the relationship being interpreted as the odds of an
outcome defined as the probability of an event happening divided the probability of the event
not happening. When taking the logarithm of the odds it can be expressed as linearly related
to the features which results in the logistic model of

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp.

The logistic regression model then classifies observations by fitting a separating hyperplane in
the p-dimensional feature space defined by Equation 3.8

f(x) = β⊤x + β0 = 0. (3.8)

where β ∈ Rp, and x ∈ Rp.

When p = 2, the data is separated by a line, p = 3 a hyperplane but can also be further extended
for higher dimensions. This hyperplane separates classes to effectively distinguishing between
them. As mentioned earlier the logistic regression model is naturally a binary classifier, but can
be extended to handle multiple nominal outcomes, i.e. yi ∈ 1, ...,K where it therefore models
the probability of class k by extending to:

p̂k(xi) =
exp(β⊤

k xi + β0,k)∑K−1
l=0 exp(β⊤

l xi + β0,l)
,

where βk is the weight vector for class k, and β0,k the offset for the class.

Corresponding optimisation-problem is formulated as

min
β
−C

n∑
i=1

K−1∑
k=0

[yi = k] log(p̂k(xi)) + r(β), (3.9)

where C determines the regularisation strength r(β) is the chosen penalty argument (ℓ1 or ℓ2)
(Hastie, Tibshirani and Friedman, 2017).

8

3.1.4 Support Vector Machines

An often considered best ’out-of-the-box’ supervised-learning classifier is the Support-Vector-
Machines, SVM. SVM is a linear classifier based upon a hyperplane, previously described by
Equation 3.8. Induced from this equation two implications arise; (a) labelling of newly observed
data x⋆ can be described as

ŷi =

{
1 if f(x⋆) ≥ 0,

−1 if f(x⋆) < 0,
(3.10)

(b) the orthogonal distance d from an observed data point x⋆ to the hyperplane can be expressed

as d = |f(x⋆)|
∥β∥ , or simply |f(x⋆)|, where f(x⋆) denotes the signed distance to the hyperplane and

∥β∥ the Euclidean norm of the weight vector β. Larger distances indicate higher prediction
certainty, while smaller distances imply lower certainty. Margin, defined as M = 1

∥β∥ , is the

distance from the hyperplane (decision-boundary) and the closest datapoints from each class,
also known as support-vectors. Because a separating hyperplane typically has infinitely many
solutions, SVM instead seeks to find a solution that maximises the margin, meaning maximise
the distance between the decision boundary and the sample. Optimization-problem can thereof
be formulated as

max
β,β0

M subject to
1

∥β∥
yi(β

⊤xi + β0) ≥M, i = 1, . . . , N, (3.11)

where β0 is the offset term and xi is the feature vector of the i:th observation.

Figure 3.1: Example of SVM using Soft-margin.

Up until this point only linearly perfectly-
separable data has been considered. Without
any further mathematical manipulation there
would be no solution to the optimisation-
problem when observations from different
classes overlap, meaning no hyperplane could
separate the two classes. Thereof, a so-called
’slack-variable’ is introduced:

ξi = max(0, 1− β⊤xi − β0), where ξ ≥ 0.

Introduction of the variable ensures a solution
also for non perfectly-separable data exists.
It does by allowing for (some) samples being
within the margin or even on the wrong side
of the hyperplane. This is better known as a
soft-margin classifier and is illustrated by Figure 3.1, where the modified constraints is expressed
as

yi(β
⊤xi + β0) ≥M(1− ξi). (3.12)

Because the function being optimised have constraints, a Lagrangian problem is formulated and
the optimisation problem instead becomes

L(β, β0, ξ, α, r) =
1

2
∥β∥2 + C

∑
i

ξi −
n∑
i

αi

[
yi(β

⊤xi + β0)− 1 + ξi

]
−
∑
i

riξi (3.13)

where αi and ri are the Lagrange multipliers for the constraints, and C is the penalty parameter
for the slack variables.

9

What becomes quite apparent is that one has to choose, and evaluate, the trade-off between
misclassifications and the widest margin for best generalisation. To control the trade-off, which
has to be tuned, variable C is introduced which controls the strength of the penalisation of
misclassifying. The magnitude of C is inversely proportional to regularization-strength, a small
C allows for a wider margin.

Another powerful technique employed by the SVM is the kernel-trick which extends its capabil-
ities of handling non-linearly separable data. Instead of operating solely in the original feature
space, the kernel trick maps the data into a higher-dimensional space, possibly infinitely high
dimension where it may become linearly separable. This transformation allows SVM to con-
struct a linear decision boundary in the transformed space, effectively separating the data into
their respective classes (Hastie, Tibshirani and Friedman, 2009b). The two kernels used in this
report are specified in Equations 3.14 & 3.15.

K(xi, xj) = ⟨x, x′⟩. Linear (3.14)

K(xi, xj) = exp(−γ∥x− x′∥2), Radial Basis Function, RBF (3.15)

where γ-parameter in Equation 3.15 is strictly greater than 0.

There are many options for which to maximise the performance of an SVM classifier; according
to James et al. (2023) the choice of kernel and hyperparameters can have significant impact on
the models’ performance. The RBF kernel can help adjust the amount of influence from a points
labelling, based on the distance to others controlled by γ-parameter. Adjusting the regularisation
effect can help control the bias-variance trade-off, evaluated during cross-validation. When C is
small the classifier have margins that are more narrow and less tolerant to violations. It will fit
the data hard hence low bias but high variance. On the contrary for high C, it will suffer from
higher bias but instead lower variance.

3.1.5 K-Nearest Neighbour

K-nearest neighbors, KNN is a classification technique that differs from previously mentioned
methods by adopting a memory-based approach. It doesn’t construct an explicit model, instead,
it relies on the notion of closeness in the feature space. The algorithm classifies a new observation
by a majority vote among its K nearest data points.

Note that in this context, K refers to the number of neighbors in the K-Nearest Neighbors
(KNN) algorithm and is not related to the previous use of K as the number of classes. To
clarify, we use K for the number of neighbors in the KNN algorithm and K and k for the
number of classes and individual classes, respectively. This distinction is necessary to avoid
confusion due to the different roles these variables play in our analysis.

Typically, the Euclidean distance is used to measure closeness, defined as d(i) = |xi − x0|. As
K determines the number of neighbouring data points considered, the parameter significantly
impacts the bias-variance trade-off; smaller K leads to lower bias but higher variance, while larger
K yields the opposite. Consequently, selecting an appropriate K is crucial for achieving optimal
model performance, where optimal K is found using cross-validation (Goodfellow, Bengio and
Courville, 2016f).

When transforming data into higher dimensions, the number of possible configurations increase

10

exponentially, which can result in computational inefficiency. This problem can apply to many
models models for textual data, as it inherently often is represented using sparse vectors. For
the KNN algorithm, the possible distances between points increases as the dimensions increase.
Another problem might be the possible overfitting, as the possible configurations increase beyond
the size of the training data (Goodfellow, Bengio and Courville, 2016f).

3.1.6 Decision Trees and Random Forest

Decision trees are rule-based models and their name stems from the their visual depictions as
inverted trees. They adopt a flowchart-like structure, starting with a root node. At this initial
node, the entire dataset is considered, where it is divided into two or more homogeneous subsets
based on a specific criteria. As the tree progresses downward, each node splits the data based on
a feature condition, such as whether a feature’s value is above or below a certain threshold. The
tree continuous to grow until it reaches a predefined stopping criterion, such as the maximum
depth of the tree. At the very bottom of the tree are leaf nodes, which provide predicted outcome
based on the learned rules in the tree structure (Bird, Klein and Loper, 2009a). See figure 3.2a
to see for an example of a tree.

(a) Example of a decision tree
from Lindholm et al., 2022d.

(b) Example of ensemble method of many
decision trees, such as the random forest.
Image from Lindholm et al., 2022d.

Figure 3.2: Comparison between a decision tree and a random forest

Decision Trees can be extended into ensemble methods, such as by incorporating bagging, a
technique used to reduce variance without introducing additional bias. Short for ’bootstrapped
aggregation’, it employs a group of base learners (here individual decision trees) to make pre-
dictions. The core idea is to average over predictions from the base learners, each trained on
different subsets obtained through bootstrapping the original dataset. It involves generating
subsets with replacement, meaning each observation can be selected in the same or another
bootstrapped sample.

Random Forest is an extension of the bagging technique that further reduces variance by splitting
nodes on randomly selected subsets of features. This aims to decrease the correlation among
individual trees. Randomly selecting features help prevent identical trees, which is beneficial as
dominant features otherwise could influence the decision tree nodes unfairly (Lindholm et al.,
2022d). See Figure 3.2b to see for an illustration of a Random Forest.

After the base models have been trained, their predictions are averaged. Assuming that aver-
aging reduces the variance for random variables zi, we can represent these variables formally as:
z1, z2, . . . , zB where E[zb] = µ, Var[zb] = σ2, and B is the number of models and bootstrapped

11

datasets. Averaging over these 1
B

∑B
b=1 zb gives the following:

E[
1

B

B∑
b=1

zb] = µ̂, (3.16)

V ar[zb] =
1− ρ

B
σ2 + ρσ2, (3.17)

where ρ is the correlation between two variables. If ρ < 1 the variance can be reduced by
increasing B, however, only to a limit as the expression is restricted by ρ (Lindholm et al.,
2022d).

When implementing a Random Forest classifier, several hyperparameters can be tuned to prevent
overfitting and improve generalization. Examples include the maximum depth of the trees,
the number of trees in the ensemble, and the maximum number of features considered when
performing a split. To ensure the first split significantly impacts the prediction, the impurity
is calculated using the Gini index, defined as: When implementing a Random Forest classifier,
several hyper-parameters that can be tuned to prevent overfitting and improve the generalization.
Some examples of these are the maximum depth of the tree, the number of trees that will be
used in the ensemble, and the maximum number of features to be considered when performing
a split. To ensure the first split significantly impacts the prediction, the impurity is calculated
using the Gini index, defined as:

Gini(T) = 1−
c∑

I=1

p2i ,

and measures how well particular features split the data into distinct categories. T is the
training dataset with K classes, while pi sales the probability that the sample belongs to the
class. Mixed datasets with many categories have a higher Gini score, while lower scores give a
lower uncertainty (Lindholm et al., 2022d).

3.1.7 Gradient Boosting

Gradient boosting is an algorithm that increases its performance using a loss function. It belongs
to the category of boosting techniques, which is primarily employed to reduce bias by using
many weak learners to capture some, if just a little, relationship between the input and output
variables. The idea is to use many weak learners and combine them into a strong one, reducing
the bias. Similarly to bagging, boosting is an ensemble algorithm, with the main difference being
that boosting has a sequential approach where new learners are created which learns from the
misclassifications of previous weak learners (Lindholm et al., 2022b).

In boosting, the sequential aggregation of many weak learners to form one stronger model can
be expressed as:

f (B)(x) =

B∑
b=1

f b(x), (3.18)

where f (B)(x) denotes the final model, and f (b)(x) a (previous) weak model.

The learning is done by using a user-defined loss function L(yi, ŷi), with the only restriction that
it needs to be differentiable. Analogous to the gradient descent algorithm, later described in 3.2,

12

gradient boosting calculates the gradient of the loss function during learning. For each weak
learner, the gradient of the loss function will be calculated with respect to the current prediction.
This is done for each data point, and is stored in a variable r, which can be mathematically
represented as:

rb,i =
∂L(yi, ŷi)

∂ŷi
=

∂L(yi, f
(b)(x))

∂f (b)(x)
. (3.19)

Here, b signifies the final model up to step b, and i denotes the observation.

Subsequently, the next weak learner is trained using the stored gradients r̂ (estimated), as
the new target variable. Following this, a parameter γ determines the degree to which the
new learner should be added to the previous sequence of additive models. The γ parameter is
determined by:

γ̂b = arg min
γ

b∑
i

L(yi, f
(b−1)(xi) + γf (b)(xi)), (3.20)

which minimizes the sum across all loss functions, for all observations. Here b again signifies the
final model up to step b, while (b − 1) is the previous learner. This process is repeated until a
stopping criterion (Lindholm et al., 2022b)

Finally, when presenting the final model, it can be expressed as:

f (B)(x) = f (b−1)(x) + γ̂bf
(b)(x) = f (b−1)(x) + γ̂br̂(b−1)

= f (b−1)(x) + γ̂b
∂L(yi, f

(b−1)(x))

∂f (b−1)(x)
, (3.21)

The type of weak learners can be arbitrary, and in this report, decision trees will be used. Some
hyperparameters that can be used are the number of learners, how deep the learners are allowed
to go, or the minimal samples required to split a node.

3.1.8 Neural Networks

An artificial neural network is a type of machine learning method with a wide variety of ap-
plications that can learn complex patterns through processing labeled data and can be applied
to both regression and classification. A neural network is a complex structured network with
compositions of many smaller functions, g ◦ f , connected by nodes, such that information flows
from the input to an output. A simple network can mathematically be represented as

ŷ = h(w1x1 + w2x2 + · · ·wpxp + b), (3.22)

where each input value xi has a corresponding weight wi, b represents the bias term, and h is
the activation function. Weights are parameters that regulate the significance of connections
between nodes or neurons. Biases are offsets, terms added to functions to better fit data.
The activation function is used to introduce non-linearity to the network, which is crucial in
the learning of complex patterns. A common activation function is the Rectified Linear Unit
(ReLU), which takes returns the max value of 0 and the current value: max(0,Wx + b). If the

13

complexity of the network is increased, there will be more layers or nodes in between the input
and the output (Lindholm et al., 2022c).

Consider the input X, which is a matrix or vector of input values. In a network with one hidden
layer, the operations of the network can be represented as:

h(W (1)X + b(1)) = u(1)

h(W (2)u(1) + b(2)) = u(2)

h(W (3)u(2) + b(3)) = ŷ.

Here, each u(i) represents a vector containing the hidden units in the i-th layer, after applying
the activation function h. The matrices W (i) and vectors b(i) are the weights and biases for the
connections between the layers. The final output ŷ represents the predicted value of the neural
network. Because of the weights, small values from different inputs from a previous layer are
passed to the next layer. This is a so-called feed-forward neural network, which means that
information is being fed from the input and travels in one direction (Goodfellow, Bengio and
Courville, 2016a). For clarity, this is represented in figure 3.3 below.

Figure 3.3: Graphical representation of a simple feedforward neural network with one hidden
layer.

We can see how all the inputs xi are connected to each hidden unit in the hidden layer, and how
both hidden units are connected to the output. The bias terms are marked with dashed lines for
clarity. The network can be expanded to multiple layers with many nodes, the concept of the
architecture depicted in figure 3.3 remains the same. For classification problems, the number
of units in the output layer has two nodes in the binary case or as many as the represented
classes for multi-class problems. In the case of binary classification, the final activation function
is usually a sigmoid, whereas a softmax function is often used for multi-class (Lindholm et al.,
2022c).

A neural network is a parametric model, with weights and biases being the sought-after para-
meters. These parameters are adjusted iteratively by minimizing a cost function, typically using

14

optimization techniques like gradient descent. The crucial step in the learning is computing
gradients of the cost function, with respect to the model parameters. This is done with the help
of the backpropagation algorithm (Goodfellow, Bengio and Courville, 2016a).

Backpropagation is an algorithm that makes use of the structure of the network. The algorithm
takes the error from prediction, quantified by the cost function, and propagates backward in
the network to adjust parameters to minimize the error. This is done in an iterative fashion,
where gradients of the cost function are calculated with respect to each parameter, computed
layer by layer, leveraging the chain rule of calculus. During training, the parameters are at first
initialized with some random value, which through the backpropagation are changed during
learning. Predictions are made through a feedforward process, where weights and biases are
added as it pass through all of the layers of a network. The backpropagation is done after
predictions. This iterative process continues until the model converges to a minimum of the cost
function (Goodfellow, Bengio and Courville, 2016a).

Recurrent Neural Networks

This is a family of neural nets used for handling sequential data. They process sequences of
values x(1), . . . ,x(t), and use parameter sharing which (a) enables the model to be applied to
examples (in our case documents turned into sequences) of different lengths, and (b) generalize
across these sequences. Because of this, the network does not require the sequences to have
separate parameters for each value in the time index. Consider the two sentences, ”I started
playing tennis in 2016”, and ”In 2016, I started playing tennis”. The idea of the RNN is to enable
the model to find ”2016” as relevant information, independent of the word index. As opposed
to traditional fully connected feed forward neural networks, where parameters are learned for
each input value (Goodfellow, Bengio and Courville, 2016e).

RNNs operate on a sequence that contains vectors with different time steps x(t), where t ranges
from 1 to τ . The recurrent neural networks uses a chain of events, and the repetitive structure
of the network can be presented in a form of a dynamical system.

s(t) = f(s(t−1); θ), (3.23)

where s is the state of the system at given time t, and θ represents the same parameters used
in each update.

The state is recurrent as it refers to a previous time t − 1 of the same definition, this can be
referred back τ − 1 times. For a τ = 2, the steps show

s(2) = f(f(s(1); θ); θ). (3.24)

We can also add an external signal x(t) to this system, where each state contains information
about the past sequences: s(t) = f(s(t−1), x(t); θ) (Goodfellow, Bengio and Courville, 2016e).

Moving on from this equation, there are essentially two ways to visualize the recurrent neural
networks. The first being a circuit diagram, where each component represents real-time inter-
actions with nodes indicating delays of a single time step. The second is as an unfolded graph,
which represents each component across several time steps. This has two advantages; it main-
tains the input size regardless of the sequence length, and it uses the same transition function

15

at each step. This helps to generalize the length of sequences that haven’t been seen before. In
figure 3.4 these two are represented.

Figure 3.4: Two representations of an RNN and its associated loss computation. Circuit to the
left and unfolded to the right. Image from Goodfellow, Bengio and Courville (2016a)

In the figure, y represents the training target, L the loss, which is computed to show how far
the output O is from y. For multi-class the softmax function is used, and O is unnormalized
log probabilities. U represents the input-to-hidden weight matrix, W the hidden-to-hidden
recurrent connection parameters (also called weight matrix), and V the hidden-to-output weight
matrix. In the RNN, the weight matrices are the same for every step. For each time step
t = 1, ..., τ , the equations are updated:

a(t) = Wh(t−1) + Ux(t) + b

h(t) = tanh(a(t))

o(t) = c + V h(t)

ŷ(t) = softmax(o(t)),

where b and c are the input-to-hidden and hidden-to-output biases (Goodfellow, Bengio and
Courville, 2016e). Here the hyperbolic tangent is used as the activation function.

Since textual data must be transformed into numbers to make sense in ML algorithms, we use
an embedding space representation of the data, which is described in Section 3.3.3.

Bidirectional RNNs use information from the whole sequence, and not only previous values.
They are used with a combination of RNN that moves forward, from start to end of a sequence,
and one that moves from end to start. This way, the output units at time t, O(t) are depending
both on previous and future values in the sequence, being the most sensitive to the values around
t (Goodfellow, Bengio and Courville, 2016e).

16

A problem that might arise in feedforward neural nets or recurrent neural nets is the vanishing
or exploding gradient problem. In short, vanishing gradients means that the gradients become
very small, tends towards zero, during backpropagataion and training. This halts the learning
as weights are not updated, especially if the input sequences are very long. Conversely, explod-
ing gradients are gradients that become very large during updates, which also halts learning.
Mathematically this can easily be presented if the weight matrix W is multiplied repeatedly, say
for t times, which is a multiplication by Wt. Using the eigendecomposition W = V diag(λ)V −1,
with

W t = (V diag(λ)V −1)t, (3.25)

eigenvalues λi with a magnitude not equal to 1 will result in vanishing gradients if less than 1,
or exploding if greater than 1 (Goodfellow, Bengio and Courville, 2016e).

Gated recurrent unit (GRU) is an enhanced RNN designed to address some of the limitations
of an RNN. GRU layers allow the RNN to to capture long-term dependencies and handle the
problem of the vanishing and exploding gradients. GRU networks consist of units used for
updates and resets, where the latter controls how much of the information from previous states
should be discarded, and the former how much should be used in new future states. Denoting
the current hidden state as h(t) , x(t) as the input and h(t−1) as the previous hidden state. The
update gate u(t) is computed by:

u(t) = σ(bu + ΣjUux
(t)
j + ΣjWuh

(t−1)
j), (3.26)

where bu is the bias of an update gate, Uu representing weight matrix of inputs, and Wu the
recurrent weight matrix.

The reset gate is similarly represented as:

r(t) = σ(br + ΣjUrx
(t)
j + ΣjWrh

(t−1)
j). (3.27)

The current memory can be stored in h̃(t) which represents the new information that could be
included in the update of the new hidden state h(t). This is computed using the reset gate and
current input,

h̃(t) = tanh(b + ΣjUx
(t)
j + ΣW (r(t) ⊙ h(t−1))), (3.28)

where b is the bias term, U the input weight matrix, and W still being the recurrent weight
matrix.

The new hidden state is accordingly computed by the combination of previous hidden states,
and the contained information from the current memory h̃(t) (Goodfellow, Bengio and Courville,
2016e).

h(t) = (1− u(t))⊙ h(t−1) + u(t) ⊙ h̃(t) (3.29)

When referring to recurrent neural networks in this context, or simply denoted as RNNs, we
are specifically indicating bidirectional recurrent neural networks with gated recurrent units
(GRUs).

17

3.1.9 Classification of Multi-Labelled Data

All above mentioned methods can be used for classifying labeled data, but not all of them are
designed for multi-class labels, some only for binary classification. For methods such as Logistic
Regression and SVM that does not inherently support multi-class classification, alternative
strategies are needed to adapt them for such problems. Two of the most common strategies has
become the One-vs-Rest (OvR) and One-vs-One (OvO). For both methods the classification is
decomposed into multiple binary-classification problems. For the former, also known as One-vs-
All, the classification-problem is to separate the label of interest from all the others. It means
one has to fit K-unique models, where K represents the count of unique classes in the dataset.
For the latter, OvO, a model for every unique combination of pairs are fitted, meaning

(
K
2

)
models. Predictions of new observation are then carried out with two different approaches; in
the OvR strategy, the input is classified by all K binary classifiers and corresponding class with
highest confidence score or probability is assigned as the predicted class. For OvO each of the(
K
2

)
models acts as voter, where the final prediction is applied by majority-voting (James et al.,

2023). Some of the methods however naturally supports multi-class classification hence OvR or
OvO are not necessary for such cases.

3.2 Optimization Algorithms

Under this section, the theory behind the optimization techniques in the minimization of a loss
function are presented. These are the underlying technique which training of neural networks
are built upon but can also be applied for other classification techniques.

3.2.1 Gradient Descent

Optimization of many of machine-learning models rely on the Gradient Descent, sometimes
called steepest descent optimization-algorithm. As discussed earlier the classification-methods
have an objective function J(θ) one seeks to either minimize or maximize in order to achieve the
best prediction results. To find the optimal model the cost should be at its minimum, which in
many cases is found using the gradient descent approach. Sometimes even when an analytical
solution is attainable. Gradient descent is based on finding the derivative of the cost function
with respect to its parameters, to iteratively make parameter updates in the opposite direction
of the gradient. In its simplest form gradient descent algorithm can be expressed as

θt+1 = θt − γ · ∇θJ(θ(t)), (3.30)

where γ is the so called learning rate which controls the magnitude of the coefficients updates
when multiplied by the derivative of the cost function. Here ∇θ represents the gradient with
respect to the parameters in θ. See Pseudocode 1 for clarification of algorithm (Goodfellow,
Bengio and Courville, 2016b).

Too small γ can lead to slow, computationally inefficient convergence. Conversely, too large γ can
lead to no convergence because of the updates ’jumping’ over, never finding the minimum of the
cost function. Another complication is when the cost-function is non-convex such that multiple
local minimums are attainable/found to be a solution. For such scenarios, the optimal model has
not successfully been found even though the algorithm has converged. With the same reasoning,
this is often a challenge when dealing with high-dimensional data, as they most often possess
non-convex cost functions with multiple local minima. Several approaches is available in order

18

to minimise the risk of converging to a local minima, or put differently, maximise ones chances
of finding the global minima. The most basic approach be to initialize the coefficient vector of
random values, but other more sophisticated techniques will be discussed more thoroughly in
following sections (Goodfellow, Bengio and Courville, 2016b).

3.2.2 Stochastic Gradient Descent

An extension of the ordinary gradient descent is the so called Stochastic Gradient Descent - SGD.
As the name implies the algorithm introduces a stochastic component with the main purpose of
computational efficiency. Instead of using the whole dataset X ∈ Rn×p to calculate the gradient,
an i.i.d. randomly sampled subset A ⊆ X of size m is used for the calculation of an unbiased
estimate of the derivative of the cost function, per each iteration. The size of the sub-sampled
data controlled by hyperparameter m, that can be tuned, is referred to as batch-size. While
the ordinary gradient descent will eventually converge to the minimum (hopefully global), the
introduced stochastic component induces noise hence the gradient will never reach exactly 0.
To ensure the optimization-algorithm does not become an infinite-loop, the learning rate which
was previously fixed does now exhibit linear decay until iteration T such that

γk = (1− α)γ0 + αγT ,

where α = k
T and k is the current iteration.

Most often SGD is opted for when the data is large since stochastic gradient descent only
uses one data-point per each iteration making it more computationally- and memory efficient.
However, because of the stochastic nature it may be less accurate with more erratic convergence
(Goodfellow, Bengio and Courville, 2016b).

3.2.3 Momentum-Based Gradient Descent

Momentum-based gradient descent algorithms are further enhancements of the ordinary SGD.
They introduce momentum, which can be thought of as moving average of the previous gradi-
ents, all for the purpose of faster- and less erratic convergence. One of the early optimization
technique that exploited this idea were the so-called AdaGrad introduced by Duchi, Hazan and
Singer (2011). AdaGrad adjusts the learning rate for the models individual parameters based
on the sum-of-squared historical gradients. Consequently, parameters with large partial deriv-
atives experience faster decay of its learning rates, instead those with small partial derivatives
experiences slower decay. Mathematically it is described with Equation 3.31 (Duchi, Hazan and
Singer, 2011).

θt+1,i = θt,i −
γ√

Gt,ii + ϵ
· ∇θt,iJ(θt) (3.31)

where; θt,i is the i-th parameter at time step t, γ the learning rate, Gt,ii the sum of the squares
of the gradients with respect to θt,i up to time step t, ϵ (epsilon) a small constant to prevent
division by zero, J(θt) the loss function with respect to θt and ∇θt,iJ(θt) is the partial derivative
of the loss function with respect to θt,i.

Another technique, that recently have become one of the more popular is the Adam-optimizer,
short for Adaptive Moment Estimation, first published in 2014, ’Adam: A Method for Stochastic
Optimization’ by Kingma and Ba (2017). Adam adjusts the learning rates for each parameter

19

individually based on estimates of the first and second moments of the gradients. It combines the
advantages of the formerly mentioned optimization algorithm, AdaGrad, along with RMSprop.
Mathematically, Adam is described with Equation 3.32.

θt+1 = θt −
α · m̂t√
v̂t + ϵ

(3.32)

where; θt+1 represents the parameters after the update, θt represents the current parameters
before the update, α is the learning rate, m̂t is the bias-corrected first moment (mean) estimate
of the gradients, v̂t is the bias-corrected second moment estimate of the gradients, ϵ also here
a small scalar added to prevent division by zero and maintain numerical stability (Kingma and
Ba, 2017).

Aforementioned techniques both have their advantages and disadvantages. Theoretically, Ad-
aGrad is particularly effective for sparse data as it adjusts the learning rate differently based
on the frequency of its parameters leading to faster decay for frequent ones. However, it may
experience to excessive learning-rate decay when the loss-function is non-convex, often the case
when in a high-dimensional setting. It will results result in a rapidly decreasing learning rate
and the model/optimization stops learning because the learning rate approaches zero. As for
the Adam, it is also theoretically good when dealing with sparse data as well as it being robust
to hyperparameter choices, although occasional adjustment of the learning rate may be neces-
sary where default choice is not desirable. Understanding both the strengths and limitations
of Adam is essential for effective utilization where fine-tuning parameters and consideration of
the specific data and problem at hand can enhance its performance (Goodfellow, Bengio and
Courville, 2016d).

3.3 Vector Representation of Data

All previously mentioned statistical techniques require the data to be represented numerically
with fixed dimensions. Text-data however is not being represented by numbers but instead a
string (raw-text sentences/texts) and the size of the input may very well differ, often by a lot. All
these individual sentences/texts are called documents denoted as d1, ..., dn and forms a collection
of texts referred to as corpus D. Furthermore, we denote vocabulary V = {w1, ..., w|V |}, as all
unique tokens/words present in the corpus D. Because the vector V is based on the corpus D,
which contains the unique tokens from all of the documents, it ensures the size of the vectors will
be equal irrespective of the size of each document. In the coming sections different techniques
of how to represent the words as vectors of numbers will be further discussed.

3.3.1 Bag-of-Words

Bag-of-Words (BoW), often implemented using CountVectorizer from scikit-learn, is argu-
ably the simplest transformation of text into numerical vectors (Pedregosa et al., 2011). Essen-
tially, BoW creates a vector of counts for each of the unique tokens in V for every document
di in the corpus D. This technique is often referred to as term frequency. The dataset is now
represented as matrix X ∈ R|D|×|V |, where |D| is the number of documents in the corpus and
|V | is the size of the vocabulary.

Consider the two sentences: ”The movie is good.”, ”The dog played frantically.” forms corres-
ponding vocabulary V = {”the”, ”movie”, ”is”, ”good”, ”dog”, ”played”, ”frantically”}. Docu-

20

ments using BoW-vectorization will be represented by:

Sentence 1 (BoW) : [1, 1, 1, 1, 0, 0, 0]

Sentence 2 (BoW) : [1, 0, 0, 0, 1, 1, 1],

where each element in the BoW vectors corresponds to the frequency of the corresponding word
in the sentence, based on the vocabulary V (Zhang and Teng, 2021c).

3.3.2 TF-IDF

To enhance the more simple method, Term Frequency-Inverse Document Frequency, abbreviated
TF-IDF, is another technique for vectorization of text. While term frequency depicts how often
a word occurs, it shows no connection to specific classes. Instead of only depicting the number
of occurrences of each word, TF-IDF attempts to measure the importance of a token for a
specific document in relation to all other documents in the corpus D. More specifically, TF-IDF
is constructed based on two components, namely Term Frequency-TF, and Inverse Document
Frequency-IDF. They are defined as:

TF (wi, dj) = #wi in dj , (3.33)

IDF (wi) =
|D|

#{d|d ∈ D,wi ∈ d}
, (3.34)

and TF -IDF = TF × IDF (3.35)

where wi represents a unique token and |D| the size of the corpus (Shalev-Shwartz and Ben-
David, 2022). Corresponding matrix X ∈ R|D|×|V |.

3.3.3 Word Embeddings and Pre-training

Another representation than using term frequency or TF-IDF, is using word embeddings. Word
embeddings is an alternative to a one-hot-encoding representation which gives sparse vectors to
represent words. Word embeddings are dense vectors of a fixed dimension, where the main idea
is to project words that are similar to another as closer. One of the benefits of this is that it is
possible to find similarities between words, while still being able to encode them such that they
are distinct from one another. Considering the input vectors with the size of the vocabulary |V |,
where words are one-hot encoded, i.e., with sparse high dimensional matrices, word embeddings
a more dense output vector. The words in the sentence ”The movie is good” would in the input
be represented as:

The : [1, 0, 0, 0]T

movie : [0, 1, 0, 0]T

is : [0, 0, 1, 0]T

good : [0, 0, 0, 1]T ,

the T represents transpose (Goodfellow, Bengio and Courville, 2016c).

The distributional hypothesis is a hypothesis that suggests words with similar meanings in a
context should distributionally be more similar. Meaning that semantically similar words should
occur in similar contexts, or lie closer to each other. The one-hot encoding representation does

21

not show any closeness; any pair of pair of words share the same Euclidian distance (
√

2). If
we were to add the word ”film” to the context above, it would be as different from ”movie”
as the word ”good”, they are completely independent of each other (Goodfellow, Bengio and
Courville, 2016c). Instead word embeddings create dense vectors, which can be visually depicted
as in Figure 3.5.

Figure 3.5: Visual representation of word embeddings. Image from Gautam (2020).

A way to incorporate the distributional hypothesis was introduced by Google researchers in 2013
(Mikolov et al., 2013a,b). The family of algorithms that were introduced for this purpose is called
the Word2Vec. There are primarily two architectures proposed to create embeddings, both use
a predefined size of consecutive words, a window. The first is Skip-gram, which predicts the
context (surrounding) words of a target word in the window size. The second is using continuous
bag-of-words (CBOW), which does the opposite and uses surrounding words to predict the target
word. Figure 3.6 illustrates these two methods, where w(t) is the current word, w(t− 1) is the
previous, and w(t + 1) is the next word. Both of these methods can be generated by simple
neural networks (Bird, Klein and Loper, 2009b).

In the case of Skip-grams, the concept of negative sampling is utilized. During learning, word
pairs that are not next to each other in a consecutive order, or within the window, are created
to form negative classes (d = 0 represents negative class, and d = 1 represents positive class.).
This gives samples to learn from by distinguishing between words that occur or do not occur
close to each other. The idea behind this is to minimize the similarity of words if they appear
in a different context. During training, the dot product of the embedding target vector and
the context vector is computed. This dot product is then transformed into probabilities using
the softmax function. These probabilities, denoted as P (wO,j |wI), represent the likelihood of
observing context word wO,j given the target word wI .

Word embeddings as a data representation can be used by RNNs. If not obtained with the
help of simple neural nets to get Skip-grams, an embedding layer is added to the architecture

22

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 3.6: CBOW and Skipgram illustrations. Image taken from (Mikolov et al., 2013a).

to create learn embeddings as weights are adjusted through backpropagation.

uO
j = emb’(wO,j) · emb(wI) (3.36)

p = softmax(uO
j). (3.37)

The embedding representation of context words, emb′(wo,j), where j ∈ [1, ..., 2C], C is the size of
the predefined window, and emb(wI) represents the embedding of the target word. The larger
the dot product, the closer the output value (score) will be to one. More spatially separate
vectors will hence give lower scores. The scores are evaluated to the positive and negative
labels, generated from the negative sampling, and the embeddings are updated to maximize the
predictions. In the use of a neural network, the parameters of the network are updated until
this is done. The training corresponds to maximizing

J =
1

|T |

|T |∑
i=1

2C∑
j=1

logP (di = 1|wi
I , w

i
O,j) +

k∑
m=1,wm Q

log(P (di = 0|wi
I , wm)), (3.38)

where T is the training data, Q(w) being the negative distribution. The probabilities of 1 and
0 are such

P (d = 1|wi, wO,j) =
exp(uO

j)

exp(uO
j) + k ∗Q(wO,j)

(3.39)

P (d = 0|wi, wO,j) =
k ∗Q(wO,j))

exp(uO
j) + k ∗Q(wO,j)

(3.40)

23

and k is the number of random words used for negative sampling.

Figure 3.6 shows how the placement of words in a 2D space is shifted after the learning (Bird,
Klein and Loper, 2009b). However, it is more common to have word embeddings with dimensions
in the range 50 to 100, as it gives a more free way of connecting words. In this thesis the word
embeddings used for recurrent neural networks are only generated from Skip-grams.

3.4 Dimensionality Reduction

3.4.1 t-Distributed Stochastic Neighbor Embedding

A technique for visualizing high dimensional data through a non-linear dimension reduction is
the t-distributed stochastic neighbor embedding (t-SNE), which was introduced by Maaten and
Hinton (2008). In this technique, each point is given coordinates in a low dimensional space, in
a two or three dimensional mapping, and is used to show structures within data. The idea is to
calculate distances (Euclidean) between points and convert it to conditional probabilities, and
then map the similarities in a lower dimension.

For two data points xj and xk, this conditional probability pk|j is mathematically represented
as:

pk|j =
exp(−||xj − xk||2/2σ2

j)∑
k ̸=j exp(−||xj − xk||2/2σ2

j)
, (3.41)

where σ2
j , the variance of the Gaussian distribution around xj , and is chosen such that the

perplexity will be equal to a user set value. This probability can in simple terms be said to
be the probability of xj selecting xk as a neighbor based on the probability density, given the
assumption they follow the Gaussian around xj (Maaten and Hinton, 2008).

When the data is mapped in a lower space, a crowding problem can occur where data points are
squished closer together. The technique therefore defines another probability distribution in this
reduced space, using a Student’s t-distribution. With yj and yk representing the embeddings
in a lower space of the data points xj and xk, qk|j being the lower dimension probabilities,
represented as:

qj|i =
(1 + ||yi − yj ||2)−1∑
k ̸=i(1 + ||yi − yk||2)−1

. (3.42)

The t-SNE technique aims at minimizing the difference between a probability distribution and
a second expected distribution where the Kullback-Leibler divergence is typically utilized. It
measures how two distributions P,Q diverge from one another:

KL(P ||Q) =
∑
i

∑
j

pj|i log
pj|i

qj|i
. (3.43)

The previously mentioned perplexity is a value that determines how neighbors should contribute
in the mapping in a lower dimension. A low value lean towards a greater influence of closer neigh-
bors, showing local structures, while a higher value include global geometries. The cost function

24

of this technique is non-convex, meaning different initiations can lead to different mappings, and
can be said to be a weakness of this technique (Maaten and Hinton, 2008).

3.5 Performance Tuning and Evaluation

3.5.1 Imbalanced Data

A common problem in machine learning is having an imbalanced dataset where some classes are
less represented than others. Typically, classifiers assume class distributions are similar, which
results in them favoring a well-represented class, where predictions are assigned accordingly
(Lindholm et al., 2022a).

Several approaches to addressing class imbalances have been explored in machine learning. Guo
et al., 2008 investigated techniques in modifying class distribution through over- or under-
sampling. In undersampling, observations from a majority class are randomly discarded to
handle the unevenness. This can however be problematic for small datasets. Another way of
undersampling is to randomly draw just one of a majority class, and place it together with
all from a minority class. The idea is to use a one-nearest-neighbor to remove distant ob-
servations, such that non-relevant observations are removed in training. In oversampling it is
suggested to randomly replicate minority observations. While oversampling methods like the
Synthetic Minority Oversampling Technique (SMOTE) have shown to promise in creating syn-
thetic samples from minority, it the synthetic samples risk being unrealistic and lead to a worse
generalization (Guo et al., 2008).

Moreover, Guo et al., 2008 brings forth the idea of choosing a classifier that can handle the im-
balanced dataset. Boosting and Bagging are examples of ensemble methods, that use multiple
base learners which might be successful with imbalanced datasets. Furthermore, they mention
that Naive Bayes and Neural Networks might handle the imbalance well as they give scores
for representing the degree to which class an observation belongs. In this thesis, no data aug-
mentation will be performed, but some of the used models will include boosting and bagging
techniques to see how they will perform on the data. When the data is split into a training- and
test-set, it is done so using a stratified split meaning the proportion of classes remain the same.

3.5.2 Cross-Validation and (Estimating Error on New Data)

When a model is training on data, it is important to have an understanding of its performance,
using some kind of evaluation metric. This is done by comparing the true and predicted output
values with the help of a so-called loss function. It guides the model when learning and can
help navigate through different hyper-parameters during the process. It is represented as L(y, ŷ),
where the y and ŷ represent the true and predicted value, respectively. Since the aim is to create
a model where the predicted value is as close to the true as possible, a lower loss resembles a
better-performing model (Lindholm et al., 2022e).

The loss function is a function defined by the user and can vary depending on the type of task,
the data, and whether outliers are significant or not. The squared error function is common for
regression problems, where the distance between predictions and true values is used. For binary
problems, it is common to use the cross-entropy loss which is defined as:

25

L = y · log(p) + (1− y) · log(1− p), (3.44)

where p is the probability of belonging to class 1 (positive class), and y being the true value (0 or
1). This is also known as the log loss, or the binary cross entropy. The cost function J obtains
all loss values for each data point, and is the average of all loss functions, over the training data:

J =
1

n

n∑
i

L(y, ŷ). (3.45)

For multiclass problems, the softmax function is used to generate a vector with values for each
instance, that sum to one and act as probabilities. Softmax is defined as:

softmax(z) = gm(x) =
eθ

⊤
mX∑M

j=1 e
θ⊤j X

, (3.46)

where θ is the model parameters leading to the prediction. Denoting p(yi = m) as gm(xi), we
can extend the binary cross entropy to the multiclass by:

J =
1

N

N∑
i=1

− ln gyi(xi; θ), (3.47)

where yi is the training data labels, used for indexing the probability of the loss function (Lind-
holm et al., n.d.).

Learning aims to use the parameters in the model, represented as θ, that minimizes ŷ, and thus
the cost function. The learning problem is defined as

θ̂ = arg min
θ

1

n

n∑
i

L(y, ŷ(xi; θ)). (3.48)

In short, this expression says to minimize the cost function concerning the parameters in θ, for
the training points indexed by i.

While loss and cost functions offer insights into model performance during training, they do
not provide information on its performance on new unseen data. To bridge this gap, the error
function, denoted as E(y, ŷ), is introduced. This function is utilized to assess the model’s
performance on new data. Specifically, the expected new data error, defined as

Enew
∆
= E⋆[E(y⋆, ŷ(x⋆;T)], (3.49)

indicates that Enew is, by definition, the expectation of the error function over all test data
points sampled from a distribution (x⋆, y⋆) ∼ p(x⋆, y⋆). Here, T denotes the training data, and
Enew characterizes the model’s generalization ability (Lindholm et al., 2022e).

The goal of all machine learning tasks is to minimize the expected new data error, but the
problem lies in not knowing the mentioned distribution. It is therefore commonly estimated by
using a hold-out validation set that contains randomly chosen observations in the training data,
which the model cannot learn from. The hold-out dataset is here denoted as T ′ = (x′

j ,y
′
j)

nv
j=1

where nv specifies that a subset of the original training data T is used. It is expressed as

26

Ehold−out
∆
=

1

n

nv∑
j=1

E(y′j , ŷ(x′
j , T)). (3.50)

With the assumption the points used for both training and validation are drawn from a certain
distribution, the Ehold−out is an unbiased estimate of Enew if it is performed several times. This
would however require the dataset to be large enough, such that the points perfectly randomly
can be selected from this distribution to our training and validation data (Lindholm et al.,
2022e).

Furthermore, there is a trade-off in how much data to set aside for validation, the larger the
validation set is, the lower the variance of Ehold−out is, but the less data is used for training.
Intuitively, this can be a struggle for small datasets. To handle this trade-off, there is a method
called k-fold cross-validation which utilizes the hold-out technique. Here the training data is
split into k different batches, after being shuffled. For k iterations, ℓ = 1, 2, . . . k, the model is
trained with ℓ used as validation set. All the validation errors are averaged, and the k-fold error
is defined as

Ekfold =
1

k

k∑
ℓ=1

E
(ℓ)
hold−out, (3.51)

and when all partitions are through, the model trains on all of the training data. This will give
a biased estimation of Enew. See Figure 3.7 for a visual representation of the operation.

Figure 3.7: Representation of how K-fold cross-validation works. (Lindholm et al., 2022e)

Another benefit of using cross-validation during training is to see how a model performs with
different sets of tuning parameters. However, using these techniques could potentially lead to
the model overfitting on the validation data. This is handled by setting aside a test data set,
which is not touched until the model has been tuned properly (Lindholm et al., 2022e).

27

3.5.3 Evaluation: Performance Metrics

The most widely-used measure for assessing classification performance is the classification ac-
curacy. It represents the fraction of correctly classified data points. However, accuracy may fail
to evaluate models effectively, especially when dealing with imbalanced datasets or when the
classification threshold needs to be determined. Precision and recall offer alternative metrics
that address these limitations. Precision measures the ratio of correctly classified positive in-
stances to all instances classified as positive, while recall measures the ratio of correctly classified
positive instances to all actual positive instances. The F1-score combines precision and recall
into a single performance measure, providing a balanced assessment of a classifier’s performance.
Despite their utility, precision, recall, and the F1-score do not account for true negatives, and
they are sensitive to the choice of classification threshold. In the following section, we introduce
a performance measure that mitigates these issues.

Precision =
TP

TP + FP
(3.52)

Accuracy =
TP + TN

(TP + FP + TN + FN)
(3.53)

Recall =
TP

TP + FN
(3.54)

F1-Score = 2 · Precision ·Recall

Precision + Recall
, (3.55)

where TP = True Positives, TN = True Negatives, FP = False Positives, FN =
False Negatives.

28

4 Methodology

In this section, stages of the methodology will be presented. The exploratory data analysis that
leads to adding of additional features, preprocessing, and how a predefined vocabulary is found
will be explained, as well as the approach used to defined models.

4.1 Data Preprocessing

As stated in section 3.3 the data must be vectorized before machine learning algorithms can deal
with text data. Before vectorizing, the data undergoes preprocessing, where all capital letters
are converted to lowercase and stopwords are removed. Stopwords are frequent words with little
meaning, in English, examples of such words are such as ”the”, ”and”, ”a”, is”. Since the data
used for this thesis is in danish, danish stopwords from from the python package NLTK were
used. Additionally, punctuation marks, numbers, and single letters are also removed. In the
context of this thesis, email addresses and blurred bank account numbers are also present in
many of the categories and has therefore removed as well. Once the cleaning is complete, all
words are tokenized and thereafter lemmatized. Lemmatization means the inflection of words is
reduced to their base form. A danish lemmmatizer from the python package spaCy was used for
this. As an attempt to visually describe how this is done, Table 4.1 shows how the five unique
words/tokens ”fra : telmore xxxxxxxxxxxx5015 34.” are reduced to the only word ”telmore”.

Step/Token 1 2 3 4 5

Tokenization fra : telmore xxxxxxxxxxxx5015 34.
Removal Numbers fra : telmore xxxxxxxxxxxx .
Removal Repeating Char fra : telmore x .
Removal Punctuation fra telmore x
Removal Stopwords telmore x
Removal Single Characters telmore

Table 4.1: Example with flow-chart of pre-processing of tokenized text.

29

4.2 Exploratory Data Analysis

The exploratory data analysis gives a better understanding of the data and hopefully give
important insights. From the target distribution in figure 4.1, we see an imbalance among
categories in the data. Imbalances such as these can lead to biases in classification methods
towards the most frequent classes.

Figure 4.1: Target distribution and numbers of observations per class.

The data is retrieved from PDFs from emails, from text inside emails (a body of text), or from
photos (where the data has been transformed to text data using optical character recognition).
In Figure 4.2a, it is found that most of the data originates from attachments. When analyzed
together with the categories in Figure 4.2b, it becomes clear the document type ”attachment”
is the most common across all categories except for invalid receipt and valid receipt. In these
cases, ”photo” and ”body”, respectively, are instead the most occurring. This initiates the idea
of including the document type, and how the data was retrieved, into our training data using
dummy-variables.

30

(a) Document type distributions, showing
in what format the collected data was re-
trieved from.

(b) Document type distribution per tar-
get category.

Figure 4.2: Document type distribution, and distributions per target category.

Furthermore, Figure 4.3 displays how the mean number of words varies across different cat-
egories. Adding the number of words (reduced to tokens in the preprocessing stage) for each
observation could perhaps give some information about the data. By conducting the same ana-
lysis on a set of summary statistics, it can be found there are some distinct differences across
the categories. These additional features are presented in Figure 4.4. Additional Box-plots for
remaining additional features can be found in A.

Figure 4.3: Boxplots of word counts per target category

To give a visual depiction of all of the extra features that were examined, they are represented
in a normalized heatmap in Figure 4.4. Similar to how the bar plots show different heights, the
figure visualizes how the examined features differ across all categories. During the explanatory
data analysis, the idea was to introduce the features that could show some significant variations
across the classes. To further investigate the correlation among these, the cross-correlation
among the features is presented in 4.5.

Based on on the two above Figures 4.4, and 4.5, together with box-plots in Appendix A, some
features have been chosen to be included in the dataset. Features were discarded if they had
too low of a variety across the categories, if they had a high correlation with other features

31

Figure 4.4: Normalized heatmap of additional features.

Figure 4.5: Cross-correlation between all added features.

(multicollinearity) since it may deteriorate a models capability, or if they had too few occur-
rences in the different categories. The final features that were chosen are Word Count, Aver-

32

age Wordlength, Unique Words Ratio, Capitalization Ratio, Stopword Density, Numbers Ratio,
Punctuation Density, and Single Characters Ratio. These hope to contribute with additional
information, or even serve as a regularizer to prevent overfitting.

Among the chosen features there are some notable correlations. Unique Words Ratio shares a
negative weak correlation with Word Count and a weak correlation with Capitalization Ratio.
Average word length shows a weak correlation with Stopword Density, which shares a moderate
negative correlation with Punctuation Density, and a moderate correlation with Numbers Ratio.
Numbers Ratio also shares a moderate to strong correlation with Stopword Density.

4.2.1 Cluster Analysis Using t-SNE

Using t-distributed stochastic neighbor embedding (t-SNE), high-dimensional data can be visu-
alized in two dimensions, allowing for the revelation of structures such as clusters. In Figure 4.6
the data has been transformed with both BoW and TF-IDF representations, with the predefined
vocabulary later presented in Section 4.3, along with the extra features. The extra features have
been standardized and transformed using the Yeo-Johnsson power transformation, according to
section 4.4 below. The figure shows the two-dimensional t-SNE plot for both representations.
Each class is assigned same unique color for both images. Notably, the two representations yield
different clusters.

Figure 4.6: Cluster analysis using t-SNE. Both on BoW and TF-IDF representation.

The plot in Figure 4.6 reveals distinct clusters among classes, yet some overlapping regions are
apparent, particularly for the TF-IDF representation. For the BoW representation (left), pay-
ment overview and payslip forms relatively separate clusters, while valid receipt, invoice reminder,
and supplier statement exhibit defined regions with occasional overlaps. The most frequent class
invoice, spreads over a larger region, invalid receipt has some spread out observations but resides
very close to valid receipt. The other, and bank statement are spread out in the middle, they both
overlap with valid receipt, and invoice, and the outskirts of the cluster for supplier statement.

In the TF-IDF representation, the overlaps between classes become more apparent. valid receipt
predominantly resides in the top-left cluster, together with sparse observations from all the other
classes. There is also a smaller cluster to the very right in the image, overlapping with most of the
invalid receipt observations. Being spread out in the three major clusters in the TF-IDF image,
the invoice class does not show one single distinct cluster. While supplier statement centralizes
at the bottom left, its observations are dispersed. payment overview forms two clusters, with

33

some observations adjacent to the top cluster. invoice reminder lies adjacent to these clusters.
Just as for the BoW representation, Other and bank statement classes exhibit no defined clusters,
spreading throughout the plot.

To emphasize the overlapping, Figure 4.7 displays the same transformed data as in Figure 4.6,
but with added covariance confidence ellipses. The covariance matrix along with the Pear-
son correlation coefficient ρX,Y = cov(X,Y)/σXσY to determine the orientation of an ellipse.
Standard deviations of the t-SNE transformed data are scaled based on a predefined number
of standard deviations (here 2 is used) covering ≈ 95% of the observations. The ellipses are
thereafter centered based on the median of the coordinates in each class; this is to not let every
data point have an equal influence on the center coordinates. It reveals not only the direction
in which the data is moving, but also the variability of each classes’ t-SNE transformed data.

Figure 4.7: Cluster analysis using t-SNE with covariance confidence ellpises.

The t-SNE plots reveal notable differences in class separation between the Count (BoW) and TF-
IDF representations. Not only does the TF-IDF show significant overlap as mentioned earlier,
but the within-class variability also seems larger. Because Count-data shows more distinct
clusters with lower within-class variability, it might be able to distinguish/separate classes more
easily resulting in increased accuracy/performance with better generalization.

4.2.2 Python Packages

In this exploratory data analysis, we utilized several Python packages. Pandas was employed
for data manipulation and analysis, while NumPy provided support for numerical operations.
For visualization, we used Matplotlib to create plots, and scikit-learn facilitated various
machine learning tasks such as feature extraction (TfidfVectorizer, CountVectorizer), di-
mensionality reduction (TSNE), preprocessing (LabelEncoder, PowerTransformer), and model
selection (train test split)

34

4.3 Predefining a Vocabulary

When working with small datasets in textual data, it can be beneficial to reduce the vocabulary,
such that it is not trained on all the tokens of the data (Tanaka-Ishii, Hayakawa and Takeichi,
2003). The selection of the vocabulary is however crucial, where infrequent words, or uninform-
ative words being removed from the vocabulary can increase the quality of models (Bystrov
et al., 2023).

As previously mentioned the number of unique tokens in relation to the vocabulary size in each
document is typically quite small, leading to very sparse X matrices. This not only increases
the computational cost but can also deteriorates the predictive capabilities of the model due
to the curse of dimensionality as discussed in 3.1.5. Therefore, it is desirable to reduce the
dimension of the vocabulary V focusing on fewer unique tokens and handling those not present
in the vocabulary as ’unknown’.

Figure 4.8: Test accuracy vs number of features, i.e. vocabulary size on BoW (left) and TF-IDF
(right). Models are trained on preprocessed data. Split training and testing is 80/20.

Shown in Figure 4.8 the accuracy is plotted against the number of features (words/size of
vocabulary) for each of the methods described in Section 3, for both BoW and TFIDF data-
representation. As can be seen, most of the methods does not improve when increasing the
number of words. However, especially for the TFIDF data representation, the models exper-
iences a slightly decreased accuracy with increased vocabulary size, most notably the Linear
Discriminant Analysis, Naive Bayes and KNN.

To address this, the authors have chosen to reduce the dimensionality of our vocabulary size
upon which the models are trained, motivated by two main purposes: reducing computational
cost and introducing a regularization effect. Reducing the number of words not only makes
the models more efficient but also helps mitigating overfitting by limiting the complexity of the
models.

Following the properties of SVM, (a) binary classifier distinguishing one label from all others and
(b) coefficient magnitudes can indicate confidence and/or importance, the authors have chosen
to interpret these coefficients in an OvR classifier as measures of how discriminative certain
words for each of the different classes are. Different approaches can be taken to determine how
many of these most discriminative words should be taken into account, which in this case has
been decided through cross-validation varying the number of top features (for each class) to find
the number where the models perform the best. This is illustrated in Figure 4.9.

35

Figure 4.9: Cross-validation score vs. number of most important words per category.

Classification accuracy reached its peak when the number of features were 19, meaning the top-
19 positive coefficients/words per category are to be considered for further modelling. Because
the dataset contains of nine unique labels the vocabulary will be of a fixed dimension of |V | ≤
9 · 19 = 171. Here it is greater or equal to because some words might overlap between classes
hence the vocabulary will be even smaller in such scenario.

4.4 Feature Transformation

For some of the aforementioned classifiers discussed in section 3, it assumes the data to be
normally distributed. Because the distribution of the engineered features are not approximately
normally distributed visualised by Figure A.14 in Appendix A, an appropriate transformation
(3) has to be applied. A common transformation has become the Yeo-Johnson transformation
introduced by Yeo and Johnson (2000). It aims to create more normally distributed data and
the transformation is applied using Equation 4.1.

x
(λ)
i =

[(xi + 1)λ − 1]/λ if λ ̸= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0

−[(−xi + 1)2−λ − 1]/(2− λ) if λ ̸= 2, xi < 0,

− ln(−xi + 1) if λ = 2, xi < 0,

(4.1)

where λ is a transformation parameter that controls the power and shape of the transforma-
tion applied to the data, typically estimated from the data to maximize the normality of the
transformed distribution.

A histogram of the original- and transformed data is found in Figures A.14 & A.15 in Appendix

36

A. It is reasonable to say the transformation improves the symmetry of the distribution of the
data. To validate this statement further analysis is done using the QQ-plot. Observed values
are plotted against the theoretical normal distribution and is shown in Figure 4.10 for each of
the numerical features.

Figure 4.10: QQ-plot Extra Features, Original Data (blue) and Transformed data (red).

Even though some of the features does not become normally distributed, the transformation
yields a significant improvement when transformed data (red points) is compared to the original
data (blue points).

4.5 Classifier Implementation

The classifier algorithms introduced in Section 3.1 have been selected for this thesis based on
several considerations. Naive Bayes, logistic regression, and SVM have a history of success in
handling textual data. Additionally, tree-based models have demonstrated robust performance
in textual data analysis, as evidenced by studies such as those conducted by Hirway et al.
(2022b), Raza, Jayasinghe and Muslam (2021), Shams and Mercer (2013) and Xu (2018). Linear
discriminant analysis have also had notable performances, and is interesting as it reduces the
high dimensional feature space by transforming the original features, while still managing to
separate the class discrimination.

After preprocessing, adding extra features as a results of insights discovered from the EDA, and
predefined vocabulary, the set of models introduced in 3.1 are run using a pipeline. A pipeline
is a structured workflow that enables the sequential application of transformers and models to
lists of data. This specific pipeline differs in three different ways; (1) type och model/classifier,
(2) choice of vectorizer of text and (3) transformation of numerical values.

After preprocessing has been done, the pipeline is set up. The models are all trained where the
dataset has been split into a training and test set, with 80% (912 samples) used for training
and 20% (229 samples) used for testing. These were split in a stratified manner, meaning the
class imbalance is kept for both subsets. During the training, a k-fold cross-validation of 3 was
used, and the randomized search package from scikit-learn was used for this. Additionally, the
cross-validation used 20% of the training set for the validation set, as was explained in Section

37

3.5.2. The Recurrent Neural Networks were used with word embeddings, one generated as the
pre-trained weights obtained form Skip-grams, and one with an embedding layer to create word
embeddings during training. The other models were trained using both BoW and TF-IDF
representations.

38

5 Result

In this section, the model results of three data representations will be presented. The first two
data representations use Bag-of-Words and TF-IDF vectorizers fit with the predefined vocab-
ulary, together with the added additional features. Eight different classifiers have been used
on both of these representations of data. To these representations, the additional features are
added. When experimenting with the classifiers, these features proved to shown an increase,
although marginal, in the performance, and were chosen to be kept. The third representation
uses word embeddings on which two Recurrent Neural Network has been trained.

5.1 Data Representation 1: Bag-of-Words

For Bag-of-Words when utilizing the RandomizedSearch, the following best hyperparameters
that were found are described in Table 5.1.

Model Params

NB alpha: 1.34
LR solver: lbfgs, penalty: l2, C: 2.324
SVM kernel: linear, gamma: 3.738, C: 3.275
KNN weights: uniform, n neighbors: 1, metric: euclidean
RFC n estimators: 270, min samples split: 2, max features: sqrt, max depth: None
GBC n estimators: 290, min samples split: 2, max depth: 3, learning rate: 0.465
DTC splitter: best, min samples split: 5, max depth: 10
LDA tol: 0.081, solver: lsqr, shrinkage: auto, n components: None

Table 5.1: Best parameters for each model (COUNT)

The models with corresponding hyperparameters resulted in the overall performance of precision,
recall, and F1-Score is presented in Figure 5.1. Note that since the optimal kernel for the SVM
was chosen to be linear, the value of gamma does not matter.

Most models share a similar performance for all three metrics. However, Random Forest and
the Naive Bayes classifiers marginally outperforms the other models with a weighted-average-
accuracy on the test set of 0.860 and 0.847 respectively, as shown in B.1a in Appendix B.
While most models achieved an accuracy > 0.8, KNN performed significantly worse with a mere
accuracy of ≈ 0.64. For a more in-depth understanding of the classification performance, the
confusion matrices for each model is presented in Figure 5.2.

When further analysing the models performance it is apparent all models exhibit difficulties
correctly classifying the least occurring classes, namely bank statement, invalid receipt and other.
The support for those are six, five and nine.

On classes with higher support most models performs well, however the SVM-model performs
well across all classes making it the best. NB, LR, SVM and LDA share the best performance
on the other category. KNN performs poorly overall. Lastly, the tree based models performs

39

Figure 5.1: Recall, precision and F1-score for each of the models trained on BoW data.

Figure 5.2: Confusion matrices for each of the models.

similarly, however the more enhanced tree-models Random Forest and Gradient boosting excels
when classifying the least occurring classes.

When focusing on less supported categories, it is interesting to note their alternative classifica-
tions. bank statement is often confused with valid receipt or invoice. Similarly, instances labeled
as invalid receipt are mainly misclassified as valid receipt or invoice, with occasional predictions
of invoice reminder. Lastly, the other category typically receives predictions of valid receipt.For
deeper understanding of the performance metrics, recall and precision of BoW representations
are displayed in Tables B.2, B.3 in Appendix B.

40

5.2 Data Representation 2: TF-IDF

For the TF-IDF representation, hyperparameters found during the randomized cross validation
are presented in Table 5.2.

Model Params

NB alpha: 0.091
LR solver: lbfgs, penalty: l2, C: 6.768
SVM kernel: linear, gamma: 4.041, C: 3.809
KNN weights: distance, n neighbors: 23, metric: euclidean
RFC n estimators: 200, min samples split: 2, max features: sqrt, max depth: None
GBC n estimators: 280, min samples split: 2, max depth: 3, learning rate: 0.526
DTC splitter: best, min samples split: 15, max depth: 15
LDA tol: 0.074, solver: eigen, shrinkage: auto, n components: 5

Table 5.2: Best parameters for each model (TFIDF).

Similarly precision, recall, and F1-score are presented in Figure 5.3.

Figure 5.3: Recall, precision and F1-score for each of the models trained on TF-IDF data.

For TF-IDF data-representation, the models perform similarly when evaluating precision and
recall, where SVM, Logistic Regression and Random Forest achieve similar scores. The KNN
classifier performs worse for this data representation, compared to the previous BoW represent-
ation. SVM achieves 0.860, the highest test weighted-accuracy of among all models displayed in
B.1b in Appendix B.

41

Figure 5.4: Confusion matrices for each of the models.

Confusion matrices are presented in Figure 5.4. Across all classes, SVM followed by LR achieves
best performance also able to classify the least occurring classes fairly well. Again, KNN performs
poorly predicting almost all test-observations as the most frequent class; invoice. Both LDA
and Naive Bayes demonstrate the highest performance on the invalid receipt class, and they
also exhibit comparable performance on bank statement. Notably, SVM and LDA achieves the
highest overall performance on the other category. Similar to previous data representation,
Logistic Regression performs well on the three categories with low support. Among the tree-
based models, DT is once again outperformed by RF and GB. However, none of these models
exhibit strong performance on categories with low support.

42

5.3 Data Representation 3: Word Embeddings and Skip-grams

Under this section a the performance from the recurrent neural network are to be presented. A
recurrent neural network has been fitted on tokenized data but also a model using the pre-trained
weights obtained using Skip-grams.

Figure 5.5: Architecture of the RNN. In the
second model the embedding layer is removed.

The two versions of the RNN models shares
the same core network architecture, with the
only difference being the pre-trained weights
provided to one of the models. Embedding
matrix (pre-trained weights) is determined by
the user and determines allowed vocabulary,
hence the dimension of the embedding layer.
The former gives the total number of unique
words to be used, and the latter refers to
the dimensionality in the embedding space in
which words are represented as dense vectors.
The number of trainable parameters for the
RNN with pre-trained Skip-grams is 66, 537,
and the architecture is presented in Figure
5.5. The total and number of trainable para-
meters for the RNN without Skip-grams is
2,733,037. A fairly strong dropout has been
used since the dataset is comparatively small
in relation to how many parameters are to
be estimated. Dropout for the two hidden
Bidirectional GRU-layers are 0.5 and 0.7 re-
spectively. Connecting the different layers are
the ReLU activation-function, where the last
output layers, read final prediction, is calcu-
lated through the softmax function described
by Equation 3.46. All different optimization
algorithms discussed before have been tested,
where ADAM excelled in performance and computational efficiency.

43

Figure 5.6: Confusion matrices of the RNN models.

Both models exhibit similar performance, demonstrating proficiency in predicting the most
frequent classes effectively. An evident trend is their preference for the most frequent class,
invoice, often misclassifying other classes as such. Both models encounter challenges with classes
characterized by fewer occurrences. Although they successfully classify some observations in
the test data for bank statement and invalid receipt, they struggle significantly with the other
category, resulting in many misclassifications.

Its performance metrics (weighted average) is displayed in table 5.3, where it is clear the network
without pre-trained Skip-gram weights performs better. The models were run for 20 epochs and
the loss and accuracy for both training and validation set is presented in Figure 5.7.

Model/Metric Accuracy Precision Recall F1 score

With Pretrained Skip-gram Weights 0.61 0.62 0.61 0.60
Without Pretrained Weights 0.68 0.69 0.68 0.67

Table 5.3: Results of the RNN models.

The figure illustrates that the RNN without Skip-gram weights tends to perform better initially
but reveal signs of overfitting during training, as evidenced by the notable difference in loss
and accuracy between training and validation sets. Despite this overfitting, the model achieves
a higher validation accuracy and stabilizes at a plateau of high accuracy without surpassing
it. In contrast, the RNN with Skip-gram weights shows closer alignment between training and
validation in terms of loss and accuracy. However, this model fails to achieve a sufficiently high
accuracy, suggesting that the pre-trained weights do not enhance model performance.

44

Figure 5.7: Accuracy and loss during training for the two RNN models.

5.4 Comparison Between Data Representations

Of the three different data-representation- and classification-algorithms trained and evaluated
above the best performing method is the Support Vector Machines, SVM. Achieving a weighted
average accuracy of 0.834 and 0.860 for Bag-of-Words and TF-IDF respectively, it is the method
that generalizes best regardless of how the data is represented. Neural-Network-based model did
not perform as well as the more conventional statistical techniques, only achieving an accuracy
of ≈ 0.68. However, this should improve a lot if it had more data to be trained on. It is clear
from Figure 5.7 that the peak-performance has not been reached, especially for the model with
pre-trained weights, since the loss still decreases after set number of epochs was run.

When comparing the results with the precision scores of the best model, SVM, for each of the
two data-representations, TF-IDF does seem to yield best performance with less variability in
performance across all categories. Same trend is observed for recall metric.

45

Figure 5.8: Learning Curves for Best Models, SVM.

To investigate the scalability of the best SVM models found during the RandomizedSearch, one
can investigate the learning curve. The learning curve displays how the accuracy of the model
changes with an increased sample size. Depicted from Figure 5.8, it is clear the models would
benefit from an increased training data sample size. For the TF-IDF representation, the curve
shows a stronger continuous upward trend compared to BoW representation.

46

6 Discussion

Model Performances. The K-Nearest Neighbors (KNN) model achieved the lowest overall
performance among all tested models. This outcome could be related to the calculation of
Euclidean distances between feature vectors, which makes it susceptible to large influence of
individual training observations. Given the limited size of the dataset, the impact of outliers
or noisy data points becomes more pronounced. Moreover, an intriguing observation was that
KNN demonstrated worse performance on TF-IDF representation compared BoW. This differ-
ence shows how important it is to represent features in KNN. TF-IDF focuses more on word
importance than how often they appear, essentially acting as a form of scaling. Intuitively, such
scaling should enhance the efficacy of distance calculations, yet the observed outcome suggests
this was not the case for this particular task.

Although it was shown in Figure 4.8 that the KNN classifier performed worse with a larger
vocabulary size, expressing the curse of dimensionality problem, it still performed poorly on a
smaller vocabulary size.

Previous studies have frequently utilized Naive Bayes as a benchmark due to its simplicity and
robust performance. For instance, Xu (2018), Rennie et al. (2003), and Zhang and Li (2007)
highlight its effectiveness and ease of application. These studies underscore that Naive Bayes,
despite its naive assumptions, can deliver competitive performance across various domains and
datasets.

Why the Naive Bayes model succeeds was examined by Zhang (2004), which argues that the
impact of dependencies between individual features is diminished when the entire feature set is
considered. The overall prevalence of features, and their co-occurrence patterns across different
classes, become more relevant than the dependencies between any pair of features (words). The
smaller vocabulary which was predefined, only using the most frequent words likely resulted in
noise reduction, which could have helped the assumption of feature independence for the Naive
Bayes. The results align with the suggestions of Guo et al. (2008), who recommended using
Naive Bayes for imbalanced data.

Comparison of Linear Models. The linear models SVM, LR and LDA all share a common
approach to classification, employing a hyperplane to separate classes. SVM, seeks to maxim-
ize the margin between classes by identifying support vectors which is a crucial optimization-
problem for better generalization. This as it minimizes overfitting and ensures the support
vectors lie equidistant from the decision boundary. Additionally, SVM utilizes the kernel trick
to map data into higher-dimensional spaces, aiding in class separation. Its ability to generalize
effectively, even with overlapping classes as seen in the t-SNE plots, contributes to its strong
performance.

When employing LDA for classification, it assumes linear separability among classes, requiring
a hyperplane for each class with its data points on the positive side. LDA relies on the Gaussian
assumption for each class, sharing the same covariance matrix, enabling optimal linear separ-
ation by maximizing between-class variance while minimizing within-class scatter. The means
and covariances aid in determining class centroids as well as quantifying data spread within

47

and between classes. In data-rich scenarios, estimation of class means is more reliable enhan-
cing centroid and covariance matrix accuracy, consequently improving separation. Conversely,
fewer samples lead to less reliable estimates, resulting in suboptimal hyperplane positioning and
weaker generalization. Observing the data distribution in t-SNE plots, classes with fewer obser-
vations exhibit higher spread and increased overlap with other classes. This clarifies the worse
performance of LDA on smaller classes compared to those with more observations. It’s worth
noting that despite the small dataset size, LDA performs remarkably well, contradicting Park
and Park (2008) findings.

In a similar fashion, Logistic Regression also utilizes a hyperplane in feature space but optimizes
coefficients to minimize error through the loss function. This model’s robustness in handling class
imbalance can be attributed to its sensitivity to misclassifications, particularly when they deviate
significantly from the true class. Despite challenges posed by a small dataset with overlapping
classes, logistic regression’s probabilistic interpretation and regularization techniques contribute
to its superior performance in this context.

Out of the three similar methods SVM performed the best, and one reason could be its inherent
technique for allowing misclassifications. The RandomizedSearch found the model to generalize
best when parameter C were 3.275 and 3.809 for the two data representations, BoW and TF-
IDF, respectively. These values are relatively small in relation to the parameter space explored,
as presented in Table C.1, showcasing its ability to maximize generalization when allowing for
misclassifications. It makes the model less sensitive to noisy data and outliers compared to LR
and LDA resulting in superior performance.

Comparing Tree models. While all three tree-based models performed similarly, Random
Forest and Gradient Boosting displayed a slight advantage over Decision Trees for both data
representations.

This difference can be connected to their characteristics. Gradient Boosting is a sequential
learner that learns form previous mistakes, making it strong on imbalanced datasets. It might
also perform better with smaller datasets. However, for data containing noise, particularly when
classes are very similar or there are many outliers, Gradient Boosting can be prone to overfitting
since it focuses on adjusting for misclassifications, leading to worse generalization.

Random Forest, on the other hand, benefits from an averaging effect that helps mitigate the im-
pact of noise. This strength likely contributes to the comparable performance observed between
the models. Theoretically, Gradient Boosting’s ability to perform well on imbalanced and small
datasets, it should perform better than Random Forest. However, because of it being more sens-
itive to the noisy data, Random forest out performs it. Form the hyperparameter tuning the
number of trees used in the creation of the Random Forest classifier 270 trees was used, found in
C.1. Because of the prediction being carried out using majority voting, many estimators could
lead to a robust predcition with improved generalization. It is still interesting how the Decision
Tree still performs reasonably well, given that it only is one single tree.

RNNs. The poor performance of the recurrent neural networks (RNNs) with Skip-gram em-
beddings compared to those without can be connected to several factors. Firstly, the dataset
exhibits significant class imbalance, with some classes having a relatively small number of ob-
servations. This imbalance can hinder the ability of the model to learn useful patterns, leading
to biased predictions towards the more frequent classes. This bias was evident in the confu-

48

sion matrix for the RNNs. Moreover, the quality of the Skip-gram embeddings is influenced by
various factors such as training size and parameters. It is possible that the embeddings trained
on Skip-grams were not well-suited for the characteristics of the dataset. Additionally, the per-
formance of the RNNs is influenced by hyperparameters, architecture, and learning rate. We
experimented with different combinations of these factors in a structured manner to optimize
performance. In a further study more time could be spent on the RNN to create a stronger
classifier - how good it can become on this limited data is however uncertain.

Preprocessing. The preprocessing stage involves transforming the additional features using
Yeo-Johnson, and standardization on the entire dataset. Whether this is an appropriate ap-
proach or not, particularly given the small size of the dataset, motivates a discussion on this
topic. Scaling based on the entire dataset can possibly lead to bias and overly optimistic per-
formances, as it might not represent the distributions of the individual training and test sets
accurately. It may lead to a biased scaling affecting the generalization ability of the models
leading to overfitting. Nonetheless the distributions of the two partitioned datasets might di-
verge due to the small size of the data. For this task, the former approach was selected, namely,
scaling the data before splitting it into training and test sets. One might consider changing this
to more accurately replicate real-life scenarios, especially when the size of the training and test
data is sufficiently large so that it is representative of the true population.

Generally about misclassifications. Misclassification mostly happens in the classes with
the fewest occurrences, namely bank statement, invalid receipt, and other. In the t-SNE plots (for
both BoW and TF-IDF) in section 4.2.1 it could be seen that bank statement had a high spread,
and not depicting a typical cluster, the same goes for the other category. While invalid receipt
showed to have a more distinct cluster in the dimension reduced BoW representation, it still
lies very close to valid receipt, which it most often is misclassified as. This makes sense as they
represent the same type of document, but where one has been accepted, and one has not.

Additionally, the class invoice had a wide spread in both BoW And TF-IDF t-SNE plots. This
is the most dominant class, and it overlaps with some of the other classes, motivating why
this sometimes was misclassified into other classes. The classes payslip, valid receipt, other and
invalid receipt were often misclassified as invoice.

One interesting observation is that the best model SVM on BoW representation often misclas-
sified the other category as valid receipt and not as the most dominant invoice.

The Three Poor Performing Classes. Models preform reasonably well in most of the
classes, with some exceptions. There is not only a small dataset that the models have been
trained on with a total of 1,141, with 912 used for training and 229 for test. There is also a
significant class imbalance - which was split with in a stratified manner where the distribution
between classes were kept during the training and testing. Additionally, there is one class other
which the models struggled the most with. This class contains exactly what it is named as,
everything else, except for the different classes, it is likely the instances differ much from each
other. This also explains why this specific class did not show any apparent cluster in the t-SNE
visualization. A reason for the poor performance on this class can be a mixture between the
small amount of data - this is also one of the smallest classes - and the information that lies
within this. It is therefore reasonable that the models do not find it hard to generalize, and
make correct predictions.

49

To support the statement that most models would benefit for a larger data set, the performance
of the best-performing model, SVM, on different training sizes is presented in Figure 5.8. From
the figure it was shown that the performance of SVM, especially on TF-IDF representation
exhibited a clear increase in test score when given more data. It is therefore believed that all
the models would benefit from a larger size of training data. It is however interesting to note
that the performance of the models overall is high. Recalling the insights from Figure 4.8, it was
shown that an increased vocabulary size did not necessarily increase the accuracy. Choosing a
smaller sized vocabulary can possibly help reducing the noise in the data.

50

7 Conclusion

In this thesis we have presented different kinds of models for multi-label classification for the
classification of business administrative related documents. The models employed have been
commonly used in previous literature, where some prove to perform better than others. A
multinomial Naive Bayes classifier was introduced with the idea to use it as a benchmark,
but where it succeeded as one of the best performing models. Four linear models, Support
Vector Machines, Logistic Regression, Linear Discriminant Analysis and k-Nearest Neighbour
was employed, where the three former performed similarly, and the latter the worst out of all
models. The reasons for the similar performance is likely connected to the use of hyperplane
for separating classes. Additionally, three tree-based models Decision Trees, Random Forest,
and Gradient Boosting were used where the latter two outperformed the Decision Tree. This
likely has to do with the use of many learners, rather than one large learner. Lastly, two
bidirectional recurrent neural networks were used with two gated recurrent unit layers, one with
pre-trained weights obtained form Skip-grams, and one without. The RNN with pretrained
weights performed the worst, indicating a poor initialization. The recurrent neural networks
performed worse than the classical classifiers, likely due to the dataset being too small in relation
to how many parameters are to be estimated.

Text was transformed using the common Bag-of-Words and TF-IDF representations for the
more classical models, and the recurrent neural networks were trained on tokenized data where
each word in the vocabulary is connected to a value of its position in the vocabulary vector.
Surprisingly, models trained on the BoW performed very similar or even better than to TF-IDF
which seems counter-intuitive since TF-IDF should provide more and better information of the
data.

The dataset used was imbalanced, and most models struggled with correctly classifying classes
with low support. Specifically, there is a so called other category which contained a large
spectrum of different documents; everything that is not one of the other categories. Due to the
small size of the dataset, this category likely did not show distinct patterns that the models
could learn. To name a best performing model, the SVM on TF-IDF data.

In addition to suggesting a feature engineering framework to improve performance, this paper
proposes an approach to significantly reduce dimensionality while maintaining the predictive
capabilities of the models. By leveraging the properties of SVM, the dimensionality could be
decreased from ∼ 17000 to less than two hundred, by choosing the most class-specific features
per each label. It was particularly beneficial for models such as Naive Bayes, Linear Discriminant
Analysis and k-Nearest Neighbour that all suffered when the number of features were large.

51

Bibliography

Awad, W.A and S.M Elseoufi (Feb. 2011). “Machine Learning Methods for Spam E-Mail Clas-
sification”. In: International Journal of Computer Science Information Technology 3. doi:
10.5121/ijcsit.2011.3112.

Bird, Steven, Ewan Klein and Edward Loper (Jan. 2009a). Natural Language Processing with
Python. isbn: 978-0-596-51649-9. url: https://tjzhifei.github.io/resources/NLTK.pdf.

– (Jan. 2009b). Natural Language Processing with Python. isbn: 978-0-596-51649-9. url: https:
//tjzhifei.github.io/resources/NLTK.pdf.

Bystrov, Victor, Viktoriia Naboka-Krell, Anna Staszewska-Bystrova and Peter Winker (2023).
Analysing the Impact of Removing Infrequent Words on Topic Quality in LDA Models. arXiv:
2311.14505 [cs.CL].

Duchi, John, Elad Hazan and Yoram Singer (2011). “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research 12.61,
pp. 2121–2159. url: http://jmlr.org/papers/v12/duchi11a.html.

Gautam, Harshit (2020). Word embedding: Basics. Medium. url: https : / / medium . com /

@hari4om/word-embedding-d816f643140.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016a). “Back-Propagation and Other
Differentiation Algorithms”. In: Deep Learning. http://www.deeplearningbook.org. MIT
Press, pp. 204–221.

– (2016b). “Gradient Based Optimization”. In: Deep Learning. http://www.deeplearningbook.
org. MIT Press, pp. 82–86.

– (2016c). “Neural Language Models”. In: Deep Learning. http://www.deeplearningbook.org.
MIT Press, pp. 464–473.

– (2016d). “Optimization for Training Deep Models”. In: Deep Learning. http://www.deeplearningbook.
org. MIT Press, pp. 274–329.

– (2016e). “Sequence Modelling: Recurrent and Recursive Nets”. In: Deep Learning. http:

//www.deeplearningbook.org. MIT Press, pp. 373–412.

– (2016f). “The Curse of Dimensionality”. In: Deep Learning. http://www.deeplearningbook.
org. MIT Press, pp. 155–156.

Guo, Xinjian, Yilong Yin, Cailing Dong, Gongping Yang and Guangtong Zhou (Oct. 2008). “On
the Class Imbalance Problem”. In: Fourth International Conference on Natural Computation,
ICNC ’08 Vol. 4. doi: 10.1109/ICNC.2008.871.

Hastie, T., R. Tibshirani and J.H. Friedman (2009a). “Linear Discriminant Analysis”. In: The
Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in
statistics. Springer, pp. 106–113. isbn: 9780387848846. url: https://books.google.se/
books?id=eBSgoAEACAAJ.

52

https://doi.org/10.5121/ijcsit.2011.3112
https://tjzhifei.github.io/resources/NLTK.pdf
https://tjzhifei.github.io/resources/NLTK.pdf
https://tjzhifei.github.io/resources/NLTK.pdf
https://arxiv.org/abs/2311.14505
http://jmlr.org/papers/v12/duchi11a.html
https://medium.com/@hari4om/word-embedding-d816f643140
https://medium.com/@hari4om/word-embedding-d816f643140
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ICNC.2008.871
https://books.google.se/books?id=eBSgoAEACAAJ
https://books.google.se/books?id=eBSgoAEACAAJ

– (2009b). “Support Vector Machines and Flexible Discriminants”. In: The Elements of Stat-
istical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer,
pp. 417–434. isbn: 9780387848846. url: https://books.google.se/books?id=eBSgoAEACAAJ.

Hastie, Trevor, Robert Tibshirani and Jerome Friedman (2017). The Elements of Statistical
Learning. New York, NY, USA: Springer. isbn: 978-0-387-84858-7. url: https://link.

springer.com/book/10.1007/978-0-387-84858-7.

Hirway, Chanda, Enda Fallon, Paul Connolly, Kieran Flanagan and Deepak Yadav (2022a).
“A Deep Learning Approach for Minimizing False Negatives in Predicting Receipt Emails”.
In: 2022 International Conference on Computer and Applications (ICCA), pp. 1–7. doi: 10.
1109/ICCA56443.2022.10039606.

Hirway, Chanda, Enda Fallon, Kieran Flanagan and Paul Connolly (May 2022b). “Determining
Receipt Validity from E-Mail Subject Line Using Feature Extraction and Binary Classifiers”.
In: International journal of simulation: systems, science technology. doi: 10.5013/IJSSST.
a.23.02.03.

James, Gareth Michael, Daniela Witten, Trevor Hastie, Robert Tibshirani and Jonathan Taylor
(2023). “Support Vector Machines”. In: An introduction to statistical learning with applications
in Python. Springer, 367–398. isbn: 978-3-031-38746-3. doi: 10.1007/978-3-031-38747-0.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimization. arXiv:
1412.6980 [cs.LG].

Ledoit, Olivier and Michael Wolf (Nov. 2000). A well conditioned estimator for large dimensional
covariance matrices. DES - Working Papers. Statistics and Econometrics. WS 10087. Univer-
sidad Carlos III de Madrid. Departamento de EstadÃstica. url: https://ideas.repec.org/
p/cte/wsrepe/10087.html.

Lindholm, Andreas, Niklas Wahlström, Fredrik Lindsten and Thomas B. Schön (2022a). “Ad-
ditional Tools for Evaluating Binary Classifiers”. In: Machine Learning: A First Course for
Engineers and Scientists. Includes bibliographical references and index. Cambridge, UK ;
New York, NY: Cambridge University Press, pp. 86–90. isbn: 9781108843607. url: https:
//smlbook.org/book/sml-book-draft-latest.pdf.

– (2022b). “Boosting and AdaBoost”. In: Machine Learning: A First Course for Engineers and
Scientists. Includes bibliographical references and index. Cambridge, UK ; New York, NY:
Cambridge University Press, pp. 174–187. isbn: 9781108843607. url: https://smlbook.

org/book/sml-book-draft-latest.pdf.

– (n.d.). “Classification and Logistic Regression”. In.

– (2022c). “Neural Networks and Deep Learning”. In: Machine Learning: A First Course for
Engineers and Scientists. Includes bibliographical references and index. Cambridge, UK ;
New York, NY: Cambridge University Press, pp. 133–146. isbn: 9781108843607. url: https:
//smlbook.org/book/sml-book-draft-latest.pdf.

– (2022d). “Random Forest”. In: Machine Learning: A First Course for Engineers and Scient-
ists. Includes bibliographical references and index. Cambridge, UK ; New York, NY: Cam-
bridge University Press, pp. 170–174. isbn: 9781108843607. url: https://smlbook.org/
book/sml-book-draft-latest.pdf.

– (2022e). “Understanding, Evaluating, and Improving Performance”. In: Machine Learning:
A First Course for Engineers and Scientists. Includes bibliographical references and index.

53

https://books.google.se/books?id=eBSgoAEACAAJ
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://doi.org/10.1109/ICCA56443.2022.10039606
https://doi.org/10.1109/ICCA56443.2022.10039606
https://doi.org/10.5013/IJSSST.a.23.02.03
https://doi.org/10.5013/IJSSST.a.23.02.03
https://doi.org/10.1007/978-3-031-38747-0
https://arxiv.org/abs/1412.6980
https://ideas.repec.org/p/cte/wsrepe/10087.html
https://ideas.repec.org/p/cte/wsrepe/10087.html
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf
https://smlbook.org/book/sml-book-draft-latest.pdf

Cambridge, UK ; New York, NY: Cambridge University Press, pp. 63–72. isbn: 9781108843607.
url: https://smlbook.org/book/sml-book-draft-latest.pdf.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9.86, pp. 2579–2605. url: http://jmlr.org/papers/
v9/vandermaaten08a.html.

Mikolov, Tomas, Kai Chen, Greg Corrado and Jeffrey Dean (2013a). “Efficient Estimation of
Word Representations in Vector Space”. In: arXiv preprint arXiv:1301.3781. doi: 10.48550/
arXiv.1301.3781. arXiv: 1301.3781 [cs.CL]. url: https://arxiv.org/pdf/1301.3781.
pdf.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean (2013b). “Distrib-
uted Representations of Words and Phrases and their Compositionality”. In: arXiv preprint
arXiv:1310.4546. doi: 10.48550/arXiv.1310.4546. arXiv: 1310.4546 [cs.CL]. url: https:
//doi.org/10.48550/arXiv.1310.4546.

Nassara, Elhadji Ille Gado, Edith Grall-Maës and Malika Kharouf (2016). “Linear Discriminant
Analysis for Large-Scale Data: Application on Text and Image Data”. In: 2016 15th IEEE
International Conference on Machine Learning and Applications (ICMLA), pp. 961–964. doi:
10.1109/ICMLA.2016.0173.

Park, Cheong Hee and Haesun Park (2008). “A comparison of generalized linear discriminant
analysis algorithms”. In: Pattern Recognition 41.3. Part Special issue: Feature Generation and
Machine Learning for Robust Multimodal Biometrics, pp. 1083–1097. issn: 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2007.07.022. url: https://www.sciencedirect.
com/science/article/pii/S0031320307003676.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot and E. Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12, pp. 2825–2830.

Provost, Jefferson (1999). “Naıve-bayes vs. rule-learning in classification of email”. In: University
of Texas at Austin.

Raza, Mansoor, Nathali Dilshani Jayasinghe and Muhana Magboul Ali Muslam (2021). “A
Comprehensive Review on Email Spam Classification using Machine Learning Algorithms”.
In: 2021 International Conference on Information Networking (ICOIN), pp. 327–332. doi:
10.1109/ICOIN50884.2021.9334020.

Rennie, Jason, Lawrence Shih, Jaime Teevan and David Karger (July 2003). “Tackling the Poor
Assumptions of Naive Bayes Text Classifiers”. In: Proceedings of the Twentieth International
Conference on Machine Learning 41.

Shalev-Shwartz, Shai and Shai Ben-David (2022). “How to Construct ”. In: Understanding ma-
chine learning: From theory to algorithms. Cambridge University Press, 230–232.

Shams, Rushdi and Robert E. Mercer (2013). “Classifying Spam Emails Using Text and Read-
ability Features”. In: 2013 IEEE 13th International Conference on Data Mining, pp. 657–666.
doi: 10.1109/ICDM.2013.131.

Tanaka-Ishii, Kumiko, Daichi Hayakawa and Masato Takeichi (2003). “Acquiring vocabulary for
predictive text entry through dynamic reuse of a small user corpus”. In: Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics - Volume 1. ACL ’03. Sapporo,

54

https://smlbook.org/book/sml-book-draft-latest.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://doi.org/10.48550/arXiv.1310.4546
https://arxiv.org/abs/1310.4546
https://doi.org/10.48550/arXiv.1310.4546
https://doi.org/10.48550/arXiv.1310.4546
https://doi.org/10.1109/ICMLA.2016.0173
https://doi.org/https://doi.org/10.1016/j.patcog.2007.07.022
https://www.sciencedirect.com/science/article/pii/S0031320307003676
https://www.sciencedirect.com/science/article/pii/S0031320307003676
https://doi.org/10.1109/ICOIN50884.2021.9334020
https://doi.org/10.1109/ICDM.2013.131

Japan: Association for Computational Linguistics, 407–414. doi: 10.3115/1075096.1075148.
url: https://doi.org/10.3115/1075096.1075148.

Xu, Haotian, Ming Dong, Dongxiao Zhu, Alexander Kotov, April Idalski Carcone and Sylvie
Naar-King (2016). “Text Classification with Topic-based Word Embedding and Convolutional
Neural Networks”. In: Proceedings of the 7th ACM International Conference on Bioinform-
atics, Computational Biology, and Health Informatics. BCB ’16. New York, NY, USA: As-
sociation for Computing Machinery, 88–97. isbn: 9781450342254. doi: 10.1145/2975167.
2975176. url: https://doi.org/10.1145/2975167.2975176.

Xu, Shuo (2018). “Bayesian Näıve Bayes classifiers to text classification”. In: Journal of Inform-
ation Science 44.1, pp. 48–59. doi: 10.1177/0165551516677946. eprint: https://doi.org/
10.1177/0165551516677946. url: https://doi.org/10.1177/0165551516677946.

Yeo, In-Kwon and Richard A. Johnson (2000). “A New Family of Power Transformations to
Improve Normality or Symmetry”. In: Biometrika 87.4, pp. 954–959. issn: 00063444. url:
http://www.jstor.org/stable/2673623 (visited on 07/05/2024).

Zhang, Haiyi and Di Li (2007). “Näıve Bayes Text Classifier”. In: 2007 IEEE International
Conference on Granular Computing (GRC 2007), pp. 708–708. doi: 10.1109/GrC.2007.40.

Zhang, Harry (Jan. 2004). “The Optimality of Naive Bayes”. In: vol. 2.

Zhang, Yue and Zhiyang Teng (2021a). “Feature Vectors”. In: Natural language processing: A
machine learning perspective. Cambridge University Press, pp. 41–45.

– (2021b). “Feature Vectors”. In: Natural language processing: A machine learning perspective.
Cambridge University Press, pp. 28–31.

– (2021c). “Feature Vectors”. In: Natural language processing: A machine learning perspective.
Cambridge University Press, pp. 25–34.

– (2021d). Natural Language Processing: A Machine Learning Perspective. Cambridge Univer-
sity Press.

Zulqarnain, Muhammad, Rozaida Ghazali, Muhammad Ghulam Ghouse and Muhammad Fa-
heem Mushtaq (2019). “Efficient processing of GRU based on word embedding for text clas-
sification”. In: JOIV : International Journal on Informatics Visualization. doi: 10.30630/
joiv.3.4.289. url: http://dx.doi.org/10.30630/joiv.3.4.289.

55

https://doi.org/10.3115/1075096.1075148
https://doi.org/10.3115/1075096.1075148
https://doi.org/10.1145/2975167.2975176
https://doi.org/10.1145/2975167.2975176
https://doi.org/10.1145/2975167.2975176
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1177/0165551516677946
http://www.jstor.org/stable/2673623
https://doi.org/10.1109/GrC.2007.40
https://doi.org/10.30630/joiv.3.4.289
https://doi.org/10.30630/joiv.3.4.289
http://dx.doi.org/10.30630/joiv.3.4.289

Appendix A: EDA

A.1 Graphs

Figure A.1: Distribution of word count.

Figure A.2: Boxplot of word count grouped by target.

56

Figure A.3: Most common words.

Figure A.4: Most common words grouped by target.

57

Figure A.5: Capitalization ratio in raw text.

Figure A.6: Stop words density.

58

Figure A.7: Punctuation marks per category (mean).

Figure A.8: Numbers ratio per target.

59

Figure A.9: Mean character count per target.

Figure A.10: Ratio of unique words per target of preprocessed data.

Figure A.11: Box plot of Unique Word Ratio.

60

Figure A.12: Box plot of Captalizatoin Ratio.

Figure A.13: Box plot of Account Number Ratio.

Figure A.14: Histogram Engineered Features, no Transformation.

61

Figure A.15: Histogram Engineered Features, Yeo-Johnson Transformation.

62

A.2 Tables

Datatype Null-Count Count

id object 0 1141
organizationId object 0 1141
subtype object 0 1141
docType object 0 1141
origin object 0 1141
docText object 0 1141
subject object 301 840
fromEmail object 699 442
date datetime64[us] 0 1141
createdAt datetime64[us] 0 1141

Table A.1: Information of originial dataset.

63

Appendix B: Results

(a) Test Scores of all models (COUNT).

Model Test Score

NaiveBayes 0.860
LogisticRegression 0.838
SVM 0.834
KNN 0.642
RandomForestClassifier 0.847
GradientBoostingClassifier 0.830
DecisionTreeClassifier 0.773
LinearDiscriminantAnalysis 0.782

(b) Test Scores of all models (TFIDF).

Model Test Score

NaiveBayes 0.786
LogisticRegression 0.847
SVM 0.860
KNN 0.472
RandomForestClassifier 0.834
GradientBoostingClassifier 0.825
DecisionTreeClassifier 0.769
LinearDiscriminantAnalysis 0.755

Table B.1: Test Scores of all models, Count and TFIDF.

Class/Model NB LR SVM KNN RFC GBC DTC LDA support

bank statement 0.667 0.833 0.833 0.333 0.667 0.500 0.000 0.667 6
invalid receipt 0.600 0.400 0.600 0.400 0.400 0.400 0.400 0.400 5
invoice 0.906 0.847 0.859 0.765 0.918 0.894 0.847 0.859 85
invoice reminder 0.938 0.938 0.875 0.562 0.875 0.938 0.625 0.812 16
other 0.444 0.333 0.556 0.111 0.222 0.333 0.222 0.444 9
payment overview 0.955 0.955 0.955 0.682 0.955 0.955 0.955 0.864 22
payslip 0.929 0.929 0.929 0.714 0.929 0.857 0.857 0.929 14
supplier statement 0.833 0.900 0.833 0.600 0.933 0.867 0.800 0.733 30
valid receipt 0.833 0.810 0.762 0.595 0.762 0.762 0.810 0.690 42

accuracy 0.860 0.838 0.834 0.642 0.847 0.830 0.773 0.782
macro avg 0.789 0.772 0.800 0.529 0.740 0.723 0.613 0.711 229
weighted avg 0.860 0.838 0.834 0.642 0.847 0.830 0.773 0.782 229
fit time 3.723 75.093 9.215 2.460 7.528 77.197 2.300 2.477

Table B.2: Recall of all models (COUNT)

Class/Model NB LR SVM KNN RFC GBC DTC LDA support

bank statement 1.000 0.833 0.714 0.500 1.000 0.600 0.000 1.000 6
invalid receipt 0.600 1.000 0.750 1.000 1.000 0.400 0.400 0.667 5
invoice 0.846 0.837 0.859 0.657 0.830 0.854 0.791 0.730 85
invoice reminder 1.000 0.938 0.933 0.600 1.000 1.000 0.909 0.929 16
other 1.000 0.750 0.625 0.125 0.667 0.500 1.000 0.667 9
payment overview 0.913 0.955 1.000 1.000 1.000 0.955 1.000 1.000 22
payslip 1.000 1.000 1.000 1.000 1.000 0.923 1.000 1.000 14
supplier statement 0.926 0.900 0.862 0.667 0.933 0.839 0.857 0.957 30
valid receipt 0.745 0.680 0.681 0.510 0.667 0.744 0.586 0.617 42

accuracy 0.860 0.838 0.834 0.642 0.847 0.830 0.773 0.782
macro avg 0.892 0.877 0.825 0.673 0.900 0.757 0.727 0.841 229
weighted avg 0.869 0.845 0.839 0.664 0.854 0.825 0.782 0.798 229
fit time 3.723 75.093 9.215 2.460 7.528 77.197 2.300 2.477

Table B.3: Precision of all models (COUNT)

64

Class/Model NB LR SVM KNN RFC GBC DTC LDA support

bank statement 0.667 1.000 1.000 0.000 0.667 0.500 0.167 0.500 6
invalid receipt 0.600 0.400 0.400 0.400 0.400 0.400 0.400 0.800 5
invoice 0.812 0.906 0.941 0.871 0.929 0.929 0.835 0.741 85
invoice reminder 0.938 0.938 1.000 0.312 0.875 0.875 0.688 0.875 16
other 0.333 0.333 0.444 0.000 0.222 0.222 0.222 0.444 9
payment overview 0.909 0.909 0.909 0.318 0.955 0.955 1.000 0.955 22
payslip 0.929 0.929 0.929 0.286 0.929 0.857 0.857 0.929 14
supplier statement 0.767 0.867 0.833 0.100 0.867 0.867 0.800 0.833 30
valid receipt 0.714 0.762 0.738 0.310 0.714 0.714 0.738 0.619 42

accuracy 0.786 0.847 0.860 0.472 0.834 0.825 0.769 0.755
macro avg 0.741 0.783 0.799 0.289 0.729 0.702 0.634 0.744 229
weighted avg 0.786 0.847 0.860 0.472 0.834 0.825 0.769 0.755 229
fit time 3.896 81.433 227.062 2.792 8.502 109.630 2.524 2.954

Table B.4: Recall of all models (TFIDF).

Class/Model NB LR SVM KNN RFC GBC DTC LDA support

bank statement 1.000 1.000 1.000 0.000 1.000 0.750 0.333 0.750 6
invalid receipt 0.750 1.000 1.000 1.000 1.000 0.500 0.500 0.364 5
invoice 0.812 0.802 0.816 0.457 0.790 0.849 0.798 0.778 85
invoice reminder 1.000 1.000 1.000 0.500 1.000 0.933 1.000 0.737 16
other 1.000 0.750 0.667 0.000 1.000 0.667 0.250 0.571 9
payment overview 0.625 1.000 1.000 0.412 1.000 0.955 1.000 0.955 22
payslip 0.765 1.000 1.000 1.000 1.000 1.000 0.857 0.684 14
supplier statement 0.920 0.897 0.926 0.500 0.897 0.743 0.889 0.926 30
valid receipt 0.682 0.727 0.756 0.500 0.682 0.732 0.608 0.667 42

accuracy 0.786 0.847 0.860 0.472 0.834 0.825 0.769 0.755
macro avg 0.839 0.908 0.907 0.485 0.930 0.792 0.693 0.715 229
weighted avg 0.805 0.853 0.864 0.484 0.850 0.822 0.772 0.767 229
fit time 3.896 81.433 227.062 2.792 8.502 109.630 2.524 2.954

Table B.5: Precision of all models (TFIDF).

65

Appendix C: Extra

C.1 Hyperparameter space

Model Parameter Range/Parameter space

Naive Bayes alpha [0.01, 4]

Logistic Regression C [0.001, 10]
penalty [None, l2]
solver [lbfgs, sag]

SVM C [10−5, 101.5]
gamma [0.001, 10]
kernel [linear, rbf]

KNN n neighbors [1, 30]
weights [uniform, distance]
metric euclidean

Random Forest n estimators [100, 300]
max depth [5, 10, 20, None]
max features sqrt
min samples split [2, 5, 10]

Gradient Boosting learning rate [0.001, 2]
n estimators [50, 300]
max depth [1, 2, 3, 5, 7, None]
min samples split [2, 5, 10]

Decision Tree splitter [best, random]
max depth [2, 3, 5, 10, 15, 20, None]
min samples split [1, 2, 5, 10, 15]

Linear Discriminant Analysis solver [svd, lsqr, eigen]
n components [None, 1, 3, 5, 7, 9]
tol [0.0001, 0.1]
shrinkage auto

Table C.1: Parameter Ranges for Various Models.

C.2 Algorithm Pseudocode

66

Algorithm 1 Gradient Descent - steepest descent

Require: Objective function J(θ), Initial θ(0), Learning Rate γ, Tolerance ϵ.
Ensure: θ̂.

1: t← 0
2: while

∥∥θ(t) − θ(t−1)
∥∥ > ϵ do

3: θ(t+1) ← θt − γ · ∇θJ(θ(t))
4: t← t + 1
5: end while
6: return θ̂(t−1)

Algorithm 2 Stochastic Gradient Descent - SGD

Require: Objective function J(θ), Initial θ(0), Learning Rate γ(t), Tolearance ϵ, Batch-Size m.
Ensure: θ̂.

1: t← 0
2: while

∥∥θ(t) − θ(t−1)
∥∥ > ϵ do

3: for i = 1 to n do
4: Randomly shuffle the training data Bnb×p

5: for j = 1 to nb do
6: Approximate the gradient using the mini-batch (xi, yi)
7: bd(t)← 1

nb

∑nb
j=1∇θL(xi, yi, θ

(t))

8: θ(t+1) ← θ(t) − γ(t) · bd(t)
9: end for

10: end for
11: t← t + 1
12: end while
13: return θ̂ = θ(t−1)

67

Algorithm 3 Preprocess Documents

Require: DataFrame, stop words : list
Ensure: tokenized documents

1: V ocabulary ← {} ▷ Initialize an empty dictionary to store the vocabulary
2: Tokenized Documents← [] ▷ Initialize an empty list to store tokenized documents

3: for document in DataFrame do
4: document← document.lower() ▷ Lowercase document
5: document← replace email(document) ▷ Replace emails
6: document← replace account number(document) ▷ Replace account numbers
7: document← replace punctuation(document) ▷ Replace punctuation marks
8: document← replace numbers(document) ▷ Replace numbers
9: document← replace single chars(document) ▷ Replace single characters

10: document← lemmatize words(documents) ▷ Lemmatize words
11: tokens← word tokenize(document) ▷ Tokenization
12: tokenized documents.append(tokens) ▷ Append to list
13: end for

14: for document tokens in tokenized documents do
15: document tokens← remove stopwords(document tokens) ▷ Remove stopwords
16: end for

17: return Tokenized Documents

68

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Background
	Problem Statement and Thesis Objective
	Arguments of Research

	Short Literature Review
	Theory
	Classification methods
	Naive Bayes
	Linear Discriminant Analysis
	Logistic Regression
	Support Vector Machines
	K-Nearest Neighbour
	Decision Trees and Random Forest
	Gradient Boosting
	Neural Networks
	Classification of Multi-Labelled Data

	Optimization Algorithms
	Gradient Descent
	Stochastic Gradient Descent
	Momentum-Based Gradient Descent

	Vector Representation of Data
	Bag-of-Words
	TF-IDF
	Word Embeddings and Pre-training

	Dimensionality Reduction
	t-Distributed Stochastic Neighbor Embedding

	Performance Tuning and Evaluation
	Imbalanced Data
	Cross-Validation and (Estimating Error on New Data)
	Evaluation: Performance Metrics

	Methodology
	Data Preprocessing
	Exploratory Data Analysis
	Cluster Analysis Using t-SNE
	Python Packages

	Predefining a Vocabulary
	Feature Transformation
	Classifier Implementation

	Result
	Data Representation 1: Bag-of-Words
	Data Representation 2: TF-IDF
	Data Representation 3: Word Embeddings and Skip-grams
	Comparison Between Data Representations

	Discussion
	Conclusion
	EDA
	Graphs
	Tables

	Results
	Extra
	Hyperparameter space
	Algorithm Pseudocode

