

Reproducibility in Diabetes

Research Articles Using

Machine Learning Classifiers

 Faezeh Aliverdi

Supervised by: Krzysztof Podgórski

STAN40: One Year Master Thesis in Statistics

15 ECTS

DATA SCIENCE COURSE PACKAGE

 Lund University

School of Economics and Management

Department of Statistics

Spring 2024

1

Abstract

Diabetes is a chronic disease that affects lots of people all around the world. It greatly
impacts the health of those with it and places many demands on healthcare services. Early

detection of diabetes can significantly improve treatment outcomes, lower the chances of

future health issues, and help patients to have a better healthier life.

In this study, I evaluated the reproducibility of the performance of various machine

learning (ML) classifiers from the four articles in predicting diabetes using two datasets: the
updated Pima Indians Diabetes Database and the Diabetes Health Indicator from the

Behavioral Risk Factor Surveillance System. Reproducing results in medical ML research is
crucial for validating accuracy, ensuring generalizability, and building trust. The medical

community can integrate ML into disease prediction and treatment protocols more safely and

effectively by testing and reproducing results.

Using thorough data preprocessing methods, I prepared the datasets for analysis. Then, I

utilized a range of ML algorithms, including support vector machine, decision trees, random
forest, naive Bayes, logistic regression, and k-nearest neighbors to predict the diabetes cases

on these datasets. I compared the performance of ML algorithms in terms of accuracy,

precision, recall, F1-score, specificity, and area under the curve. The experimental results
demonstrated that the random forest method is the most effective across different algorithms

and datasets. In addition, the results show that I could achieve approximately similar results
to previous articles on these datasets, supported by the outcomes of different ML algorithms.

The slight differences between my findings and those in previous articles may be due to

updates in the Pima Indians Diabetes Database and the specific methods I used for data

preparation.

Keywords: Diabetes diagnosis, reproduction, ML algorithms, performance metrics.

2

Contents
Abstract .. 1

1. Introduction .. 5

2. Data Description .. 7

2.1 Source of Data.. 7

2. 2 Data Preprocessing.. 7

2.2.1 Summary of Preprocessing for each dataset ... 9

3. Methodology .. 11

3.1 Support Vector Machine (SVM) .. 11

3.2 Random Forest (RF) .. 12

3.3 Logistic Regression (LR) ... 13

3.4 Naive Bayes (NB) .. 13

3.5 Decision Trees (DT) ... 14

3.6 K-Nearest Neighbours (KNN) ... 15

3.7 Performance Metrics .. 15

4. Results and Discussion .. 18

4.1 First article ... 18

4.2 Second article ... 19

4.3 Third article .. 20

4.4 Fourth article .. 21

5. Conclusions .. 24

References .. 25

Appendix .. 26

3

List of Figures

Figure 1. The distribution of each class before (left) and after (right) data augmentation in the

Diabetes Health Indicator dataset. ... 9
Figure 2. Classification of data by SVM. .. 12
Figure 3. Representation of the correlation matrix for the Diabetes Health Indicator dataset

used in the fourth article. ... 28
Figure 4. Representation of the correlation matrix for the Pima Indians Diabetes Database

dataset used in the second article.. ... 29

List of Tables

Table 1. Overview of preprocessing steps applied to each dataset. ... 10
Table 2. ML approaches and validation methods used in the four selected articles. 16
Table 3. Pseudocode for reproducing the approach presented in the first article, which uses

SVM for early prediction of diabetes... 18
Table 4. Comparison of the results of this study and the first article....................................... 19
Table 5. Pseudocode for reproducing the approach presented in the second article for the

early prediction of diabetes using ML classifiers. ... 19
Table 6. Comparison of the results of this study and the second article. 20
Table 7. Pseudocode for reproducing the approach presented in the third article for the early

prediction of diabetes using ML classifiers. .. 20
Table 8. Comparison of the results of this study and the third article...................................... 21
Table 9. Pseudocode for reproducing the approach presented in the fourth article for the early

prediction of diabetes using ML classifiers. .. 22
Table 10. Comparison of the results of this study and the fourth article. 22
Table 11. Description of the Diabetes Health Indicator dataset [5]. .. 26

4

List of Acronyms

ML: Machine Learning

SVM: Support Vector Machine

BMI: Body Mass Index

IQR: Interquartile Range

SMOTE: Synthetic Minority Over-sampling Technique

RBF: Radial Basis Function

RF: Random Forest

LR: Logistic regression

NB: Naive Bayes

AUC: Area Under Curve

ROC: Receiver Operating Curve

DT: Decision Tree

KNN: K-Nearest Neighbours

TP: True Positives

TN: True Negatives

FP: False Positives

FN: False Negatives

5

1. Introduction

Diabetes is a major health problem around the world. It occurs when high levels of
glucose remain in the blood for a prolonged period because the body cannot use it properly.

This condition arises when the pancreas does not produce sufficient insulin or when the body

cannot effectively utilize the insulin it has.

Early detection of diabetes is crucial for preventing the progression of disease and

minimizing the risk of severe complications such as heart disease and kidney damage. By
identifying diabetes at an early stage, individuals can manage their condition more effectively

through lifestyle changes. This approach reduces healthcare costs by preventing the need for
stronger treatments and dealing with serious health problems that come with later stages of

diabetes [1].

Machine learning (ML) techniques are employed to identify patterns that aid in the early
diagnosis of diabetes. Data scientists still face a big challenge: ensuring research results can

be reproduced. It is essential to consistently reproduce results across different studies in the
domain of using ML approaches to predict diabetes. It helps prove that the models are

reliable and suitable for practical use in healthcare environments.

In this study, I concentrate on evaluating the reproducibility of four selected articles by
reconstructing their ML models and methodologies to compare the original results with those

obtained through replication. This study significantly contributes to medical informatics by
assessing the reproducibility of ML models for diabetes prediction. Through thorough testing

and validation of results, the medical community can integrate ML approaches into disease

prediction and treatment protocols more safely and effectively. In addition, it provides
practical insights for healthcare professionals while also highlighting the importance of

research ethics and transparency. The selected articles have utilized a variety of ML
algorithms, such as support vector machine (SVM), naive Bayes (NB), decision trees (DT),

logistic regression (LR), random forest (RF), and k-nearest neighbor (KNN). The primary

datasets discussed across these studies include the Pima Indians Diabetes Database and the
Diabetes Health Indicators2015 Dataset, which feature comprehensive health data crucial for

diabetes prediction.

Early and accurate diabetes prediction is crucial, as early detection can greatly improve

both the management and treatment results [1]. There is a wide range of research on using

ML to predict diabetes, showing a strong need for new ways to manage this disease. In this
study, I reviewed several articles that applied various ML techniques for predicting diabetes.

In particular, I chose four relevant articles that used notable ML algorithms and whose

databases were publicly accessible. The four discussed articles are:

1. Kumari, V.A. and Chitra, R., 2013. Classification Of Diabetes Using Support Vector

Machine. International Journal of Engineering Research and Applications, 3(2),
pp.1797-1801. [2]

2. Hasan, M.K. et al., 2020. Diabetes prediction using ensembling of different machine
learning classifiers. IEEE Access, 8, pp.76516-76531. [3]

3. Sisodia, D. and Sisodia, 2018. Prediction of Diabetes Using Classification

Algorithms. Procedia Computer Science, 132, pp.1578-1585. [4]
4. Chang, V. et al., 2022. An Assessment of Machine Learning Models and Algorithms

for Early Prediction and Diagnosis of Diabetes Using Health Indicators. Healthcare

Analytics, 2, p.100118. [5]

6

In the first article [2], Kumari and Chitra utilized a SVM algorithm and 10-fold cross-
validation for predicting diabetes using the Pima Indians Diabetes Database [6]. Their

research demonstrated that SVM is effective in diagnosing diabetes. In the second article [3],
Hasan et al. (2020) explored the performance of different ML and ensemble ML classifiers in

predicting diabetes using the Pima Indians Diabetes Database, showing enhancements in both

accuracy and reliability compared to single-model techniques. However, in this study, I will
focus only on the ML classifiers. In the third article [4], Sisodia and Sisodia employed a

variety of ML techniques to assess their effectiveness in diagnosing diabetes using the Pima
Indians Diabetes Database. In the fourth article [5], Chang et al. (2022) introduced a

comprehensive evaluation of various ML models and algorithms for the early prediction and

diagnosis of diabetes using the Diabetes Health Indicators BRFSS2015 dataset [7].

The primary objective behind selecting these specific articles was to evaluate the

reproducibility of their respective ML algorithms. By focusing on reproducibility, this study
aims to contribute significantly to validating ML as a reliable tool in the predictive diagnosis

of diabetes.

The rest of this study is organized as follows. Section 2 will introduce the datasets used,
provide a summary of the key variables, and describe the design of the predictive models.

Sections 3 and 4 contain the analysis of the results’ reproducibility and the models’

performance evaluation. Section 5 includes the study’s conclusions.

7

2. Data Description

In this section, I discuss the datasets I use in my study. I describe how the datasets are
prepared and define the important variables. For preparing the datasets, I followed the

methods mentioned in the articles, which included normalizing or standardizing the data,

removing duplicate rows, and fixing missing values. However, for feature engineering, I use a

different method.

 2.1 Source of Data

As previously mentioned, the datasets utilized in this research are sourced from the
Kaggle.com website. The first three articles used the Pima Indians Diabetes Database and the

fourth article Diabetes Health Indicator BRFSS2015 dataset provided by the National

Institute of Diabetes and Digestive and Kidney Diseases.

Pima Indians Diabetes Database is provided by the National Institute of Diabetes and

Digestive and Kidney Diseases. This dataset includes various medical diagnostic
measurements critical for predicting diabetes. It includes health data crucial for predicting

diabetes in Pima Indian women. This dataset has 768 records, each representing a different
patient, and is available from the Kaggle.com website. It contains several important health

measures like glucose level, blood pressure, Body Mass Index (BMI), and insulin level. With

8 variables related to diabetes symptoms and one outcome variable showing whether diabetes
is present, this dataset helps analyze what factors contribute to diabetes, supporting detailed

predictive studies.

In the fourth article analyzed, the Diabetes Health Indicator BRFSS2015 dataset from the

centers for disease control and prevention (CDC) is utilized. The dataset “BRFSS2015.csv” is

a clean set of 253,680 survey answers collected by the CDC in 2015. It has a main variable
called “Diabetes_binary”, which marks people as '0' if they do not have diabetes and '1' if

they have prediabetes or diabetes. 21 other variables in the dataset include various health and
personal details. It is important to note that the Diabetes_binary is not balanced, which may

require specific analytical approaches to address potential biases in model training and

evaluation.

2. 2 Data Preprocessing

The data preprocessing steps are carefully designed to make sure the datasets are ready

for further analysis and model training. These steps are essential for getting reliable and

accurate results from the models.

 Data Cleaning

For the Pima Indians Diabetes Database and the Diabetes Health Indicator BRFSS2015

dataset, the following data cleaning procedures are applied:

Handling missing values: In the Pima Indians Diabetes Database, several important features

like glucose levels, blood pressure, skin thickness, insulin, and BMI contain zero values,
which do not make sense medically. Specifically, the 'Glucose' feature has 5 instances of zero

values, 'Blood Pressure' has 35, 'Skin Thickness' accounts for 227, 'Insulin' shows 347, and

'BMI' has 11 zero entries. These zeros are treated as missing data. To fix this, for the second

8

article, I replaced the zeros with statistical measures (mean) from the respective feature
values, keeping the data reliable for analysis. For the first article, I also considered removing

rows containing these zero values from the dataset entirely. However, there are no zero values

in the features of the Diabetes Health Indicator BRFSS2015 dataset.

Removal of duplicates: I removed any duplicate entries from the datasets to make sure they

do not negatively affect the models’ learning. This was especially important for the Diabetes
Health Indicator dataset, where I found and removed 24,206 duplicate entries, unlike the

fourth article, which did not address these duplicates.

Outlier rejection: Outlier rejection is a crucial step in data preprocessing, especially in tasks

involving ML. Outliers can significantly distort the results of data analysis and statistical

modeling. It is important to identify and possibly remove the outliers to improve the accuracy
and performance of data analysis. Interquartile Range (IQR) is a commonly used statistical

method to detect outliers. It measures the statistical spread of the middle 50% of the data.
IQR is calculated by subtracting the first quartile (25th percentile) from the third quartile

(75th percentile). Any data points outside these bounds are typically considered outliers. For

the second article, I used outlier rejection.

 Data Transformation

Data transformation methods were used to normalize and standardize the data, ensuring

that all data points were on a similar scale and preventing any single feature from having too

much influence on the predictions. This is important because it helps ML models learn and
make predictions more effectively. Normalization, often done using min-max scaling, brings

all numerical values into a range between 0 and 1. Standardization was applied using the
standard scaler to bring all features to a mean of zero and a standard deviation of one. I

applied the standard scaler for the first three articles, while for the fourth article, I used min-

max scaling.

 Feature Engineering

Correlation analysis is used to find out how strongly each feature is related to diabetes

prediction. This step is important for picking out the most helpful features, allowing us to

concentrate on variables that have a big impact on diabetes risk. The features with strong
correlations are selected because their values are closely linked to whether or not someone

has diabetes, making them effective for predicting diabetes in ML models.

In the second article, for ML algorithms like the KNN, RF, and NB, six features were

manually selected: 'Pregnancies', 'Glucose', 'Blood Pressure', 'Skin Thickness', 'Insulin', and

'Diabetes Pedigree Function'. Additionally, for the DT algorithm, four features were manually

selected: 'Glucose', 'Insulin', 'Skin Thickness', and 'BMI'.

In the fourth article, for ML algorithms such as the KNN, RF, LR, and NB, eight features
were manually selected: BMI, Age, High Blood Pressure, High Cholesterol, General Health,

Physical Health, Difficulty Walking, and Income.

For the first article and the third article, I did not use the feature engineering method.

 Data Augmentation

Synthetic Minority Over-sampling Technique (SMOTE) is a method used to balance

class distribution in datasets by artificially generating new examples in the minority class.
This method creates new synthetic examples to balance the number of instances between

classes. It works by taking samples from the minority class and creating similar, but slightly

altered, new samples. This helps ensure that the training dataset has an equal number of

9

examples from each class, making it better for training the model. I used the SMOTE
technique to balance the classes in the Diabetes Health Indicator dataset, as suggested in the

fourth article. Figure 1 illustrates the distribution of each class of the Diabetes Health

Indicator dataset after using the SMOTE technique.

Figure 1. The distribution of each class before (left) and after (right) data augmentation in the

Diabetes Health Indicator dataset.

2.2.1 Summary of Preprocessing for each dataset

In this section, I provide the summary of the preprocessing process applied to each

dataset, presented in Table 1.

The first article used the Pima Indian Diabetes Database. The preprocessing steps
involved removing all missing values and performing data transformation using the standard

scaler. In the second article, which is also based on the Pima Indian Diabetes Database,
missing values were replaced with the mean values from the respective features. Additionally,

outlier rejection was performed on the dataset. Standard scaling was used to make the dataset

uniform. Feature selection was executed, with either 4 or 6 features being selected based on
their correlation. The third article also utilized the Pima Indian Diabetes Database. Like the

second article, it replaced missing values with mean and did not address duplicate rows or
outlier rejection. The standard scaler was used for data transformation without any feature

selection or data augmentation. The fourth article employed the Diabetes Health Indicator

dataset. This study removed all duplicated rows. Data transformation was conducted using
min-max scaling, and eight features were selected based on correlation. Additionally, the

article used SMOTE for data augmentation to address the class imbalance of the response.

10

Table 1. Overview of preprocessing steps applied to each dataset.

Article Dataset Missing

values

Duplicated

rows

Outlier

rejection

Data

transformation

Features

selection

Data

argumentation

First

article

Pima

Indian

Diabetes

Databas

e

Remov

e all

missing

values

 _ _ Standard scaler _ _

Second

article

Pima

Indian

Diabetes

Databas

e

Replac

e the

zero

values

with

the

mean

 _ Outlier

rejection

by

interqua

rtile

range

Standard scaler 4 and 6

features

were

selected

with

correlatio

n

 _

Third

article

Pima

Indian

Diabetes

Databas

e

Replac

e the

zero

values

with

the

mean

 _ _ Standard scaler _ _

Fourth

article

Diabetes

health

indicator

 _ Remove

all

duplicated

rows

 _ Min-max

scaling

8 features

were

selected

with

correlatio

n

SMOTE

11

3. Methodology

In this section, I discuss the methods used in four different articles that focus on
predicting diabetes with various ML algorithms. Each study uses a clear and organized

approach to developing models, which involves training the models with different ML

algorithms and evaluating their performance.

3.1 Support Vector Machine (SVM)

SVM is one of the popular nonlinear supervised ML models. The objective of the SVM
algorithm is to find a hyperplane in an N-dimensional space (, where N is the number of the

features) that distinctly classifies the data points. In this study, SVM aims to find the best

hyperplane that separates the dataset into two classes (for binary classification like both
Diabetes datasets). In one-dimensional space, the hyperplane is a point, in two-dimensional

space, the hyperplane is a line and in three-dimensional space, the hyperplane is a surface that
divides space into two parts. Each class lies on either side. SVM can help us choose the best

hyperplane, which maximizes the margin. Maximizing this distance can minimize the risk of

misclassifying examples from the test dataset [8].

Another concept in SVM is called support vectors. Support vectors are the data points

that lie closest to the hyperplane. They are the data points most difficult to classify and
determine which hyperplane we should choose. For SVM, only the difficult points, which are

support vectors, impact the decision boundary. Moving a support vector moves the decision

boundary [1].

As illustrated in Figure 2, the hyperplane can be described mathematically by the

equation 𝑤⋅𝑥+𝑏=0, where 𝑤 is a weight vector that points perpendicular to the hyperplane,

and 𝑏 is a bias term that adjusts the position of the hyperplane along the direction of 𝑤. The

weight vector helps determine the orientation of the hyperplane, while the bias shifts it closer

to or farther from the origin. The space or margin between the dividing line (hyperplane) and

the nearest data points from each class is calculated as 2/∥𝑤∥ . In simple terms, this margin is
the safe zone that helps prevent misclassification. To make this margin as wide as possible,

SVM tries to make the value of ∥𝑤∥ (the length or size of the weight vector 𝑤) as small as

possible. However, while doing this, SVM also ensures that all the training data points are

correctly classified. This means each data point 𝑥𝑖 must meet the requirement 𝑦𝑖(𝑤⋅𝑥𝑖 + 𝑏)≥1,

where 𝑦𝑖 is the class label. This condition helps to make sure the data points are not only

classified correctly but also stay as far away from the hyperplane as possible, within their

correct sides [1].

12

Figure 2. Classification of data by SVM, reproduced from [1].

Radial Basis Function (RBF) Kernel in SVM

The RBF is a kernel of SVM that measures the distance between a data point and a fixed

support vector and maps this distance onto a higher-dimensional space. It is defined as

𝐾(𝑥𝑖,𝑥𝑗) = exp(−𝛾∥𝑥𝑖−𝑥𝑗∥2), where 𝛾 is the kernel parameter, and 𝑥𝑖 and 𝑥𝑗 are the support

vector and a test data point. A larger 𝛾 value results in a smoother decision boundary. This

kernel allows each support vector to influence only nearby points (determined by 𝛾), making

the classifier adaptable to more complex data patterns [9].

The first and third articles both used SVM. In the first article, the SVM model uses the

RBF kernel, which is a popular choice for classification problems involving non-linear data.
It transforms the feature space into a higher dimension where the separation hyperplane can

easily classify the data points into different categories. In the first article, the authors split the

data into the 46% train set and 56% test set. Then, the 10-fold cross-validation was used
during the training phase to validate the performance of SVM. This method splits the whole

dataset into ten equal sections. The model is trained on nine of these sections and tested on
the remaining one. This process is repeated ten times, each time a different section is used for

testing. This ensures that all parts of the data are used for both training and testing, helping to

make a thorough and fair evaluation of the model.

The third article does not mention any specific kernel, which means it likely uses the

basic linear kernel. This method works well when the data can be clearly separated by a
straight line, or when a simple straight boundary is enough to classify the data accurately.

Instead of splitting the data into separate training and testing sets, the third article uses 10-

fold cross-validation directly to assess how well the SVM model works.

3.2 Random Forest (RF)

RF [10] is a supervised ML algorithm that can be used for both classification and

regression tasks. The algorithm is very adaptable and can be applied to various datasets
because of its straightforward and flexible nature. RF constructs an ensemble of DTs, each

trained on different bootstrapped samples. Each DT is created using a random selection of
features at every division point. This approach helps protect the trees against errors and

inaccurate forecasts. Typically, about two-thirds of the data is utilized in these randomly

selected bootstrapped datasets. Once the trees are built, the algorithm tests each observation
through all the trees and averages their outcomes. This process enhances the accuracy of

13

predictions and helps prevent overfitting. Through these steps, the algorithm ensures more

reliable results.

Generally, the primary benefit of utilizing the RF algorithm in this study is its
adaptability and high efficiency across various data types. It has a minimal risk of overfitting

as there are sufficient trees in the model, and it can quickly generate predictions as it only

uses a subset of features.

In the second article, the RF algorithm was used as part of a wider study of ML

techniques. Instead of splitting the data into separate training and testing sets, the study used
the 5-fold cross-validation to assess the RF model. This involves dividing the whole dataset

into five equal sections, training the model in four sections, and testing it in the remaining

one. This process is repeated five times, each time a different section is used for testing. This
technique ensures that every data point is used in both training and testing, improving the

overall reliability of the model’s performance measures. The RF model was configured with
100 decision trees, using the “gini” criterion for splits, and a fixed random state for

reproducibility “random_state =100”.

In the fourth article, the RF model was employed, and the dataset was explicitly split into
training and testing sets with 80% of the data used for training and 20% for testing. This

setup is a common practice for evaluating the model’s performance on unseen data, ensuring
that the model is not only fit to the training data but also capable of generalizing well to new

unseen instances. The RF employed 10 trees and focused on the entropy criterion to measure

the quality of splits and a fixed random state for reproducibility “random_state =42”. These

setup were chosen to enhance the reliability and consistency of the model’s predictions.

3.3 Logistic Regression (LR)

LR [11] is a type of regression analysis used in predictive modeling, particularly suited
for binary classification tasks. This means it predicts outcomes that have two possible states,

such as yes or no, true or false, 0 or 1, or high or low. If the probability is below 0.5, it is
rounded down to 0, and if it is above 0.5, it is rounded up to 1. The algorithm uses an S-

shaped sigmoid function, presented in equation (1) below, which takes any real-valued

number (𝑦) and maps it onto a range between 0 and 1:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦) =
1

1 + 𝑒−𝑦
 (1)

In the fourth article, the LR was employed, and the dataset was split into training and

testing sets with 80% of the data used for training and 20% for testing. The model used was a
standard LR from the scikit-learn library, configured with L2 regularization to prevent

overfitting and 'liblinear' as the solver, which is well-suited for small to medium-sized

datasets and binary classification problems. The main hyperparameters discussed include the

penalty type and solver.

3.4 Naive Bayes (NB)

NB is one of the simplest yet efficient ML algorithms. It is based on the principles of
probability, utilizing past data to predict outcomes for new, unseen data. NB calculates the

likelihood of different outcomes (classes) for a new observation by considering each
attribute’s frequencies observed in the training data’s classes [12]. For example, NB could be

used to predict whether an individual has diabetes by analyzing various health indicators. The

model treats each feature independently, assuming no correlation between them. This

14

assumption simplifies the calculations but ignores any potential interactions between features,
which might affect the accuracy in cases where feature dependencies exist. The algorithm

operates based on Bayes’ Theorem, which in a simplified form is:

P(A∣B) = P(B∣A) ×P(A) / P(B) (2)

where:

• P(A∣B) is the probability of hypothesis A given the data B.
• P(B∣A) is the probability of the data B given that the hypothesis A is true.

• P(A) is the probability of hypothesis A being true, irrespective of the data.

• P(B) is the probability of the data, irrespective of the hypothesis.

The third article implemented 10-fold cross-validation to assess the NB model while the
NB classifier was implemented without specific mention of parameter adjustments or tuning

parameters. The primary focus was on the basic implementation and evaluation across

different metrics such as accuracy, precision, recall, and F1 score.

Also, in the second article, 5-fold cross-validation and the “var_smoothing” parameter,

set to 0.01, are used in the NB classifier. This parameter helps in smoothing the probabilities
of the features to avoid zero probabilities, thus making the model more robust against data

variations and improving classification performance.

Moreover, unlike the other articles that used cross-validation, article four utilized an 80-
20 train-test split to evaluate the NB model, although specific tuning parameters are not

detailed.

3.5 Decision Trees (DT)

DT is a popular and powerful ML technique used for both classification and regression

tasks. They are simple to understand and use, and can work with data that includes both
numbers and categories, making them useful for many kinds of tasks. A DT looks like a

flowchart where each point where a decision branches off (called a node) represents a

decision based on one piece of information or attribute. Each branch shows the possible
outcome of that decision, and each endpoint (called a leaf) represents the prediction. The

whole path from the start to the end of the tree shows the steps taken to reach that prediction

[12].

In the third article, the DT model was applied without mentioning the parameter tuning

setup, focusing only on model evaluation through a 10-fold cross-validation process.

In the second article, 5-fold cross-validation was employed to assess the performance of

the DT model, and several parameters were specifically tuned to optimize its performance,

such as:

• “min_sample_split = 0.1”, which means that a node must have at least 10% of the

training data to consider a split, preventing overly complex branches and helping in

generalization.

• criterion = “gini”, which refers to the Gini impurity measure to decide where to split

the data, trying to create groups that are as similar as possible within each group.

• Min_sample_leaf = 1 and splitter = “best”, which ensures that each leaf node has at

least one sample, and the splitter chooses the best split at each node to optimize

purity.

15

The fourth article employed an 80-20 split between training and testing data to assess the
performance of the DT model. Also, the DT in the fourth article was tuned with specific

parameters such as max_depth and criterion. Max_depth limits the depth of the tree to 10
levels, which controls overfitting by preventing the tree from growing too deep. Also, the

criterion chooses splits based on entropy, which maximizes information gain per split,

effectively reducing uncertainty with each decision, and a fixed random state for

reproducibility “random_state =42”.

3.6 K-Nearest Neighbours (KNN)

KNN is a type of classification algorithm used to predict which group a piece of data
belongs to, based on certain rules already set in the system. This method is often described as

a "lazy" approach because it does not create a model from the training data until it needs to
make a prediction [12]. It is also called a "non-parametric" method, meaning it does not

assume anything specific about the underlying pattern of the data.

 In the second and fourth articles, the KNN algorithm was used to classify data, focusing
on adjusting important settings to improve how well it works. The second article utilized a 5-

fold cross-validation and article 4 employed an 80-20 split.

In the second article, the KNN model was specifically configured with 27 neighbors,

using a brute-force search approach to compute the distances between all pairs of points. This

approach ensured precise identification of the nearest neighbors, utilizing the Manhattan

distance (p = 1) for its calculations and leaf_size=30.

The fourth article applied a more detailed parameter configuration to the KNN model,
setting n_neighbours to 3, using the kd_tree algorithm, which is efficient for large datasets,

and choosing the Euclidian metric for distance calculation.

3.7 Performance Metrics

In ML, particularly in classification tasks such as predicting diabetes, various

performance metrics are used to evaluate and compare the effectiveness of models. True

Positives (𝑇𝑃) and True Negatives (𝑇𝑁) are cases where the model correctly predicts the
positive and negative classes, respectively. Also, False Positives (𝐹𝑃) and False Negatives

(𝐹𝑁) are cases where the model incorrectly predicts the positive and negative classes,

respectively.

Accuracy is a fundamental metric that measures the ratio of correctly predicted

observations, both 𝑇𝑃 and 𝑇𝑁, to the total number of observations. The formula for accuracy

is expressed as:

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3)

Also, training accuracy refers to how well the model predicts the outcome of the data it
was trained on, while test accuracy indicates the model’s performance on new, unseen data,

providing a measure of its generalizability.

Precision focuses on the positive predictions made by the model. It calculates the ratio of

𝑇𝑃 to the total predicted positives, which include both 𝑇𝑃 and 𝐹𝑃. The precision formula is:

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4)

16

Recall, also known as sensitivity, checks how well the model can correctly find all the
positive cases. It looks at the number of 𝑇𝑃 and compares it to the total number of actual

positive cases, which include the ones it missed. The formula for the recall is:

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

F-Measure provides a single score that balances the trade-offs between precision and

recall, making it particularly useful when comparing two or more models. It is the weighted

average of precision and recall, calculated as:

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6)

Specificity is a statistical measure used to evaluate the performance of a binary

classification test. It assesses the ability of the test to correctly identify negative cases. In
other words, specificity measures the proportion of actual negatives that are correctly

identified as such by the test. This is particularly important in medical testing, where it is
crucial to identify those individuals who do not have a disease. The formula for specificity is

expressed as:

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7)

The area under the curve (AUC) is an important metric in evaluating the performance of
diagnostic tests. The AUC represents the probability that a randomly chosen positive instance

is ranked higher than a randomly chosen negative one. This metric is useful because it

provides a single number summarizing the model’s performance across all threshold settings.

 Summary of all tunning parameters of models

Table 2 provides a summary of ML approaches and validation methods used in each of

the mentioned articles.

Table 2. ML approaches and validation methods were used in the four selected articles.

Article Model Methodology/Tunning Validation method

1 SVM Uses RBF kernel 10-fold cross-validation

3 SVM Likely uses a basic linear kernel. 10-fold cross-validation

2 RF
Configured with 100 decision trees, "gini"

criterion, random state=100.
5-fold cross-validation

4 RF
10 trees, "entropy" criterion, random state set

for reproducibility.
80-20 split

4 LR
Standard Logistic Regression with L2

regularization, 'liblinear' solver.
80-20 split

3 NB
Basic implementation, possibly with default

settings.
5-fold cross-validation

17

2 NB "var_smoothing" set to 0.01. 10-fold cross-validation

4 NB
Basic implementation, possibly with default

settings.
80-20 split

2 DT

Tuned parameters: "min_sample_split = 0.1",

"criterion = ‘gini’", "min_sample_leaf = 1",

"splitter = ‘best’".

5-fold cross-validation

3 DT
with default settings. 10-fold cross-validation

4 DT
Configured with "max_depth=10",

"criterion='entropy'", random state=42.

80-20 split

2 KNN

Configured with 27 neighbors,

"algorithm='brute'", "metric='Manhattan'",

"leaf_size=30'".

10-fold cross-validation

4 KNN
Configured with 3 neighbors,

"algorithm='kd_tree'", "metric='euclidean'".

80-20 split

18

4. Results and Discussion

In this section, I compare the results of this study and the articles that contributed to
predicting diabetes using ML approaches. The models were compared based on several key

measures, including accuracy, precision, recall, F1-score, and AUC, to help us understand
how well each model performs. For the implementation, I utilized common data science tools

and libraries in Python using Google Colab, including Pandas for data manipulation, Scikit-

learn for ML model implementation, and Matplotlib for data visualization.

4.1 First article

The first article employed only one ML algorithm, which is SVM. In this study, I applied

the SVM algorithm to predict diabetes using the Pima Indians Diabetes Database. After
training the model, it was used to make predictions on the test set. I split the dataset into

training and testing sets, using 56% of the data for testing to see how well the model works. I
trained the SVM model, which uses an RBF kernel and predicts probabilities, on the

remaining 44% of the data. To make sure the model was reliable and worked well on different

types of data, I used the 10-fold cross-validation on the training data. This method helped
confirm that the model was performing consistently by testing it on several smaller sections

of the training data, which also helped avoid biases that could come from using just one split
of the data. I evaluated the effectiveness of the SVM model using a range of metrics, as

presented in Table 4. Table 3 presents a pseudocode for reproducing the approach carried out

in the first article for the early prediction of diabetes.

Table 3. Pseudocode for reproducing the approach presented in the first article, which uses SVM for

early prediction of diabetes.

1. Import the Pima Indians Diabetes Database
2. Remove zero values in important features, such as glucose levels, blood pressure, skin

thickness, insulin, and body mass index (BMI).

3. StandardScaler

4. Model = SVC (kernel = 'rbf', probability=True, random_state=42)

5. Model. fit()

6. Model. predict()

7. Print (Training_accuracy (), Test_accuracy (), Sensitivity (), Specificity ())

Table 4 presents the results of this study and the first article. I achieved 0.74 for the mean

accuracy, while the article reported an accuracy of 0.78. Achieving higher training accuracy

and specificity in this study, along with lower test accuracy and sensitivity, suggests that the

model might be overfitting the training data. These differences might also be due to changes

in the dataset used in the first article. The first article used an older version of the dataset,
which is no longer available in Kaggle. While I used a newer updated version in this study.

According to the results, I could acquire better training accuracy and specificity than the first

article.

19

Table 4. Comparison of the results of this study and the first article.

Study Model
Training

accuracy
Test accuracy Sensitivity Specificity AUC

This thesis SVM 0.89 0.74 0.49 0.87 0.80

First article SVM 0.65 0.78 0.80 0.76 _

4.2 Second article

In the second article, four ML algorithms were used: DT, RF, KNN, and NB. I trained
these algorithms separately on the Pima Indians Diabetes Database; however, this time, I

chose four specific features for DT and six specific features for RF, KNN, and NB based on
their correlation to improve the model’s accuracy. I utilized 5-fold cross-validation and made

several adjustments to the settings, as mentioned in Table 2. Then, I evaluated the model’s

performance on the testing data using a range of metrics, as presented in Table 6. Table 5
represents a pseudocode for reproducing the approach carried out in the second article for the

early prediction of diabetes.

Table 5. Pseudocode for reproducing the approach presented in the second article for the early

prediction of diabetes using ML classifiers.

1. Import the Pima Indians Diabetes Database

2. Replace zero values with the mean of the respective feature values, such as glucose levels,

blood pressure, skin thickness, insulin, and body mass index (BMI).

3. Outlier rejection

4. Feature engineering

5. StandardScaler

6. MLC = [DecisionTreeClassifier(min_samples_split=0.1, criterion='gini',

 min_samples_leaf=1, splitter='best'),

RandomForestClassifier(n_estimators=100, criterion='gini',random_state=100),

KNeighborsClassifier (n_neighbors=27, algorithm='brute', p=1, leaf_size=30),

NB (var_smoothing= 0.01)]

7. for (i=0;i<4;i++) do

 model = MLC[i]

 model.fit ();

 model.predict ();

 print(classification_report (), accuracy_score (), precision_score (),
 recall_score (), F1_score (), AUC_score())
end

Table 6 presents the results of this study and the second article concerning the AUC. The

results indicate that the classifiers from both this study and the second article had almost

similar performances with only slight differences. The second article tends to show a trend
towards slightly higher AUC values with lower variance, suggesting potentially more robust

or consistent models. Comparing the performance of different classifiers in this study and the

20

article reveals that the RF classifier performs the best. The results of the second article also

show that RF with the AUC of 0.938±0.01outperforms other algorithms.

Table 6. Comparison of the results of this study and the second article.

Study Model
Mean

accuracy
Precision Recall F1 AUC Winner

This thesis DT 0.85 0.78 0.72 0.75 0.91±0.03 Both in this

study and

the second

article, the

RF model is

the winner.

Second article DT _ _ _ _ 0.91±0.01

This thesis RF 0.86±0.02 0.80 0.73 0.76 0.927±0.01

Second article RF _ _ _ _ 0.938±0.01

This thesis KNN 0.85 0.76 0.79 0.77 0.924±0.02

Second article KNN _ _ _ _ 0.922±0.02

This thesis NB
0.808

±0.039
 0.723 0.621 0.66 0.872±0.04

Second article NB _ _ _ _ 0.879±0.02

4.3 Third article

The third article implemented three ML algorithms: DT, NB, and SVM. I used 10-fold

cross-validation to assess the performance of these models without specific mention of
parameter adjustments or tuning practices. I assessed the performance of each model using

various metrics, as shown in Table 8. Table 7 presents a pseudocode for reproducing the

approach carried out in the third article for the early prediction of diabetes.

Table 7. Pseudocode for reproducing the approach presented in the third article for the early

prediction of diabetes using ML classifiers.

1. Import the Pima Indians Diabetes Database

2. Replace zero values with the mean of the respective feature values, such as glucose levels,

blood pressure, skin thickness, insulin, and body mass index (BMI).

3. StandardScaler

4. MLC=[DecisionTreeClassifier(), SVC(), NB (var_smoothing= 0.01)]

5. for (i=0;i<3;i++) do

 model = MLC[i]

 model. fit ();

 model. predict ();

 print(classification_report (), accuracy_score (), precision_score (),
 recall_score (), F1_score (), AUC _score())
end

21

Table 8 presents the results of this study and the third article. The comparison indicates
that the DT and NB models implemented in the third article consistently show superior

performance across all metrics (Mean accuracy, Precision, Recall, F1 Score, and AUC)
compared to those in this study. The article’s findings favored the NB, achieving an accuracy

of 0.76, followed by the DT with 0.74. However, the SVM used in this study does much

better than the SVM from the third article with higher scores in all metrics except recall. My
results show the SVM performs the best among other classifiers with an accuracy of 0.76.

The difference between my results and the article is probably due to the difference in data

preprocessing, as mentioned in Section 2.

Table 8. Comparison of the results of this study and the third article.

Study Model
Mean

accuracy
Precision Recall F1 AUC

Winner

This thesis DT 0.70 0.57 0.56 0.57 0.67 In my study,

the SVM is the

winner, while

in the third

article, the NB

is the winner.

Third article DT 0.73 0.73 0.73 0.73 0.75

This thesis NB 0.75 0.65 0.60 0.62 0.81

Third article NB 0.76 0.75 0.76 0.76 0.81

This thesis SVM 0.76 0.69 0.52 0.59 0.82

Third article SVM 0.65 0.42 0.65 0.51 0.50

4.4 Fourth article

In the fourth article, five ML algorithms were used: NB, DT, LR, RF, and KNN. I trained
these algorithms on the Diabetes Health Indicator dataset and employed an 80-20 split

between training and testing data to assess the performance of these models. I also adjusted

the specific parameters of these models, as mentioned in Table 2. Then, I evaluated the
model’s performance on the testing data using a range of metrics, as presented in Table 10.

Table 9 presents a pseudocode for reproducing the approach carried out in the fourth article

for the early prediction of diabetes.

22

Table 9. Pseudocode for reproducing the approach presented in the fourth article for the early

prediction of diabetes using ML classifiers.

1. Import the Diabetes Health Indicator dataset

2. Remove duplicated rows

3. Feature engineering (select 8 features)

4. Class Imbalance: SMOTE

5. Min-max scaling

6. MLC=[DecisionTreeClassifier(max_depth=10, criterion='entropy', random_state=42),

 RandomForestClassifier(n_estimators=10,criterion='entropy',

 max_depth=None,random_state=42),

 KNeighborsClassifier (n_neighbors=3, algorithm='kd_tree',metric='euclidean'),
 NB (),

 LogisticRegression(random_state=0, solver='liblinear', and binary classification

 penalty='l2')]

7. for (i=0;i<5;i++) do

 model = MLC[i]

 model. fit ();

 model. predict ();

 print(classification_report (), accuracy_score (), precision_score (),
 recall_score (), F1_score (), AUC_score())
end

Table 10 presents the results of this study and the fourth article. In comparing the results
between this study and the fourth article, the RF classifier emerges as the top classifier in

both sets of results. In my study, RF achieved an accuracy of 0.86. Similarly, in the fourth

article, RF also outperformed the other classifiers with an accuracy of 0.82.

DT in this study shows slightly lower accuracy, precision, and F1 with a higher recall

compared to the fourth article. KNN in this study outperforms the fourth article in mean
accuracy, recall, and F1 metrics, while the fourth article demonstrates higher precision. For

the LR model, this study achieves better results than the fourth article in recall and F1
metrics, while mean accuracy is equal in this study and the fourth article. However, the fourth

article achieves a higher precision. For the NB model, this study slightly outperforms the

fourth article in mean accuracy, while precision and F1 scores are equal in this study and the

fourth article.

Table 10. Comparison of the results of this study and the fourth article.

Study Model
Mean

accuracy
Precision Recall F1 AUC Winner

This thesis DT 0.79 0.80 0.78 0.79 0.88 Both in

this study

and the

fourth

article, RF
is the

Fourth article DT 0.81 0.83 0.77 0.81 _

This thesis RF 0.86 0.88 0.85 0.86 0.93

Fourth article RF 0.82 0.83 0.80 0.82 _

23

This thesis KNN 0.81 0.78 0.84 0.81 0.86
winner.

Fourth article KNN 0.80 0.81 0.79 0.80 _

This thesis LR 0.73 0.70 0.76 0.74 0.81

Fourth article LR 0.73 0.72 0.74 0.73 _

This thesis NB 0.71 0.72 0.60 0.70 0.78

Fourth article NB 0.70 0.72 0.67 0.70 _

24

5. Conclusions

This thesis focused on reproducing results from four articles on predicting diabetes using
ML algorithms. These articles used publicly available datasets and employed algorithms

including SVM, DT, RF, NB, LR, and KNN. After analyzing these algorithms, I discovered
several important insights. In this thesis, the second article, and fourth article, the RF

algorithm consistently performed better than other ML classifiers because it can handle large

and complex data without overfitting, which is crucial in medical diagnosis. My evaluation
focusing on the reproducibility of these articles confirmed these findings. The RF algorithm

not only outperformed other models in the studies reviewed but also proved to be the most
effective in this thesis's experiments. For the fourth article, I achieved higher accuracy than

the accuracy reported in the article. This consistent outcome confirms that RF is a reliable

and effective tool for predicting diabetes, making it very useful for both research and
practical healthcare applications. However, models like SVM in the first and third articles

achieved more inconsistent results. This inconsistency may be due to changes in the data over
time and differences in how the data was prepared, compared to the methods described in the

articles. For the first article, the accuracy I achieved with the SVM model was 0.74, lower

than the 0.78 reported in the article. Conversely, for the third article, using the same SVM
model, I achieved a higher accuracy of 0.76 compared to the 0.65 reported in the article. For

the other classifiers, I achieved approximately similar accuracy to those reported in the
articles, especially for the second and fourth articles. The differences between my results and

those in previous articles may be due to updates in the Pima Indians Diabetes Database,

especially for the first article, and the specific methods I used for data preparation for the

third article.

25

References

1. Jaiswal, V., Negi, A. and Pal, T., 2021. A review on current advances in machine
learning based diabetes prediction. Primary Care Diabetes, 15(3), pp.435-443.

2. Kumari, V.A. and Chitra, R., 2013. Classification of diabetes disease using support
vector machine. International Journal of Engineering Research and

Applications, 3(2), pp.1797-1801.

3. Hasan, M.K., Alam, M.A., Das, D., Hossain, E. and Hasan, M., 2020. Diabetes
prediction using ensembling of different machine learning classifiers. IEEE Access, 8,

pp.76516-76531.
4. Sisodia, D. and Sisodia, D.S., 2018. Prediction of diabetes using classification

algorithms. Procedia computer science, 132, pp.1578-1585.

5. Chang, V., Ganatra, M.A., Hall, K., Golightly, L. and Xu, Q.A., 2022. An assessment
of machine learning models and algorithms for early prediction and diagnosis of

diabetes using health indicators. Healthcare Analytics, 2, p.100118.
6. UCI Machine Learning (latest update: 2016). Pima Indians Diabetes Database [Data

set]. Kaggle. Available at: https://www.kaggle.com/datasets/uciml/pima-indians-

diabetes-database/code (Accessed: April 1, 2024).
7. Teboul, A. (latest update: 2022). Diabetes Health Indicators Dataset [Data set].

Kaggle. Available at: https://www.kaggle.com/datasets/alexteboul/diabetes-health-
indicators-dataset (Accessed: April 1, 2024).

8. Burges, C.J., 1998. A tutorial on support vector machines for pattern

recognition. Data mining and knowledge discovery, 2(2), pp.121-167.
9. Park, J. and Sandberg, I.W., 1991. Universal approximation using radial-basis-

function networks. Neural computation, 3(2), pp.246-257.
10. Hastie, T., Tibshirani, R., Friedman, J.H. and Friedman, J.H., 2009. The elements of

statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New

York: springer.
11. Hilbe, J.M., 2009. Logistic regression models. Chapman and hall/CRC.

12. Russell, S.J. and Norvig, P., 2016. Artificial intelligence: a modern approach.

Pearson.

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/code
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/code
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

26

Appendix

Table 11. Description of the Diabetes Health Indicator dataset [5].

Number Features Description

 1 Diabetes binary 0 = no diabetes, 1 = diabetes

 2 HighBP 0 = no high BP 1 = high BP

 3 HighChol 0 = no high cholesterol 1 = high cholesterol

 4 CholCheck 0 = no 1 = yes

 5 BMI Body Mass Index

 6 Smoker Have you smoked at least 100 cigarettes in your entire life? 0 = no

1 = yes

 7 Stroke You had a stroke. 0 = no 1 = yes

 8 HeartDiseaseorAttack Coronary Heart Disease (CHD) or myocardial infarction (ML) 0 =

no 1 =yes

 9 PhysActivity physical activity in the past 30 days - not including job 0 = no 1 =

yes

 10 Fruits Consume Fruits 1 or more times per day 0 = no 1 = yes

 11 Veggies Consume Vegetables 1 or more times per day 0 = no 1 = yes

 12 HvyAlcoholConsump Heavy drinkers (adult men having more than 14 drinks per week

and adult women having more than 7 drinks per week) 0 = no 1 =

yes

 13 AnyHealthcare Have any kind of health care coverage, including health insurance,

prepaid plans such as HMO, etc. 0 = no 1 = yes

 14 NoDocbcCost Was there a time in the past 12 months when you needed to see a

doctor but could not because of cost? 0 = no 1= yes

 15 GenHlth Would you say that in general, your health is? Scale 1–5 1=

excellent 2 = very good 3 = good 4 = fair 5 = poor

 16 MentHlth Now thinking about your mental health, which includes stress,

depression, and problems with emotions, for how many days

during the past 30 days was your mental health not good? scale 1–

30 days.

 17 PhysHlth Now thinking about your physical health, which includes physical

illness and injury, for how many days during the past 30 days was

your physical health not good? scale 1–30 days

 18 DiffWalk Do you have serious difficulty walking or climbing stairs? 0 = no 1

= yes

 19 Sex 0 = female 1 = male

 20 Age 13-level age category (_AGEG5YR see codebook) 1 = 18–29 9 =

60–64 13=80 or older

 21 Education Education level (EDUCA see codebook) scale 1–6 1 = Never

attended school or only kindergarten 2 = Grades through 8

(Elementary) 3 = Grades 9 through 11 (some high school) 4 =

Grade 12 or GED (High school graduate) 5 = College 1 year to 3

27

years (Some college or technical school) 6 = College 4 years or

more (College graduate)

 22 Income Income scale (INCOME2 see codebook) scale 1–8 1 = less than

$10,000 5 = less than $35,000 8 = $75,000 or more

28

Figure 3. Representation of the correlation matrix for the Diabetes Health Indicator dataset used in
the fourth article. Eight features were selected: BMI, Age, High Blood Pressure, High Cholesterol,

General Health, Physical Health, Difficulty Walking, and Income [5].

29

Figure 4. Representation of the correlation matrix for the Pima Indians Diabetes Database dataset

used in the second article. In the second article, for ML algorithms like K-Nearest Neighbours,
Random Forest, and Naive Bayes, six features were manually selected: 'Pregnancies', 'Glucose',

'Blood Pressure', 'Skin Thickness', 'Insulin', and 'Diabetes Pedigree Function'. Additionally, for the

Decision Tree algorithm, four features were manually selected: 'Glucose', 'Insulin', 'Skin Thickness',

and 'BMI' [3].

