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Abstract

In the realm of wireless communications, the exploration of user equipment (UE)
sensing capabilities has emerged as a complementary approach for optimizing
the performance of wireless networks. This thesis delves into the potential en-
hancements achievable by integrating UE sensing capabilities into wireless net-
works, focusing on detecting Line Of Sight (LOS) and Non Line Of Sight (NLOS)
scenarios. While traditional beamforming algorithms have played a pivotal role
in network optimization, this research aims to broaden the scope by investigat-
ing how UE sensing can complement existing techniques. By harnessing real-
time UE sensing data, encompassing channel conditions and interference levels,
adaptive adjustments in network parameters can be made to enhance through-
put, coverage, and energy efficiency. The effectiveness and use cases of incorpo-
rating LOS/NLOS detection using deep-learning models into network optimiza-
tion strategies are demonstrated through simulation-based evaluations. Notably,
the simulations provide valuable insights into the impact of UE direction move-
ment towards or away from the base station (BS), UE arrival time to the LOS re-
gion, and the size of the obstacle obstructing the communication between the BS
and UE. These findings contribute to the body of knowledge in the field and shed
light on the potential of UE sensing in optimizing wireless network performance.
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Popular Science Summary

The Fifth Generation (5G) technology heralds a significant revolution in wireless
communication, characterized by notable advancements in data rates, latency,
connectivity, and reliability. Through its ability to deliver substantially higher
data rates and ultra-low latency, 5G facilitates rapid access to large data files and
immersive multimedia experiences. The technology’s capacity for massive con-
nectivity, achieved through techniques like massive MIMO which means very
large number of antennas at the Base Station (BS) with many users, unlocks the
potential for extensive implementation of the Internet of Things (IoT). IoT refers
to devices equipped with sensors, processing capabilities, software, and other
technologies, enabling them to connect and share data with other devices and
systems via the Internet or other communication networks. Additionally, 5G’s
enhanced reliability and expanded coverage ensure consistent connectivity, even
in challenging environments. The far-reaching applications of 5G encompass var-
ious sectors, fostering innovation in areas such as smart cities, healthcare, trans-
portation, and industrial automation. This transformative technology empowers
emerging fields like autonomous vehicles, telemedicine, smart grids, and preci-
sion agriculture, reshaping industries and revolutionizing societal interactions.

Imagine a world where your smartphone not only connects you to the internet
but also helps monitor your surroundings. This vision is becoming a reality
with the advancement of 5G technology. In particular, researchers are explor-
ing the potential of integrating sensing capabilities into 5G communication net-
works. This means that the same infrastructure that enables your phone, calls,
and internet browsing, can also be used for tasks like environmental monitoring
or healthcare applications. One promising approach involves utilizing a signal
called Uplink Sounding Reference Signal (ULSRS), which is already used in 5G
networks for communication and sensing purposes. By cleverly analyzing this
signal, researchers can gather valuable information about the surrounding envi-
ronment or specific phenomena. This integration of sensing and communication
opens up exciting possibilities for a wide range of applications, making our world
smarter and more connected than ever before.
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Chapter1
Introduction

1.1 Motivation and background

The advent of Fifth Generation (5G) technology has revolutionized the wireless
communication landscape, promising ultra-high data rates, low latency, and mas-
sive connectivity. This transformative technology has, not only unlocked new
possibilities for seamless communication, but has also paved the way for inno-
vative applications that rely on the convergence of sensing and communication
capabilities.

The User Equipment (UE), encompassing a wide array of smart devices such as
smartphones, wearables, and Internet of Things (IoT) devices, has become an in-
tegral part of our daily lives in the 5G era. These UEs are equipped with advanced
sensors, including accelerometers, gyroscopes, cameras, and environmental sen-
sors, capable of capturing rich contextual information about the physical world.

The integration of sensing capabilities into UEs within the framework of 5G tech-
nology offers unprecedented opportunities for the development of integrated
sensing and communication systems. By harnessing the power of 5G networks
and leveraging the diverse sensor suite in UEs, it becomes possible to gather real-
time environmental data, enable context-aware services, and support intelligent
decision-making for both sensing and communication tasks.

However, the exploration of UE sensing capabilities for integrated sensing and
communication in the 5G context presents unique challenges. These challenges
encompass designing efficient sensing techniques that can seamlessly operate
within the 5G ecosystem, optimizing resource allocation to strike a balance be-
tween sensing accuracy and communication performance, and ensuring compat-
ibility with the stringent latency and reliability requirements of 5G applications.

Furthermore, the successful integration of sensing and communication function-
alities in UEs necessitates a comprehensive understanding of the UE’s sensing ca-
pabilities within the 5G paradigm. It requires addressing the interplay between
sensing and communication resources, investigating the impact on network per-
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2 Introduction

formance, and considering the implications for user experience and quality of
service.

Against this backdrop, our research aims to explore the UE’s sensing capabilities
within the context of 5G technology and investigate their feasibility for integrated
sensing and communication applications. By delving into this research area, we
aspire to contribute to the advancement of intelligent wireless communication
systems that harness the potential of 5G networks and UE sensors, enabling en-
hanced user experiences, novel applications, and improved overall system per-
formance.

1.2 Thesis Objectives and Aims

The purpose of this thesis is to address the challenges encountered in cellular
communication scenarios, with a specific focus on channel estimation and Line
Of Sight (LOS) detection within the context of the Orthogonal Frequency Division
Multiplexing (OFDM) in cellular networks. The aims of this research project can
be summarized as follows:

• Channel Transfer Function Calculation: The primary objective was to cal-
culate the channel transfer function using the channel impulse response
data from the Simulator. This calculation aims to extract valuable infor-
mation about the sub-channels in the OFDM-based system. However, a
significant hurdle in this step is the creation of a dataset comprising an ad-
equate number of simulations and associated labels, which will be used to
train a deep-learning model for subsequent tasks.

• Deep-Learning for LOS Detection: The second objective focuses on creat-
ing a dataset that can be used to train a deep-learning model to determine
whether a channel has a line of sight or not. This information becomes
particularly useful when there are obstructions between the UE and Base
Station (BS). The primary aim is to train the model efficiently and generate
reliable output to identify LOS and Non Line Of Sight (NLOS) scenarios
accurately.

• Deep-Learning for LOS Detection with Estimated Channels: The third ob-
jective considers estimating the channel using Uplink Sounding Reference
Signal (ULSRS) data. This estimation provides a comprehensive overview
of the uplink channel and will eventually prove useful for scheduling on
the BS. Furthermore, this information can be leveraged to assess the like-
lihood of transitioning from a LOS to NLOS scenario as the user moves.
The goal is to estimate the channel using ULSRS data, generate a suitable
dataset through simulations, and train a deep learning model. The use
cases include determining UE movement direction, wall type material, ar-
rival time to the LOS region, and the size of the blocking obstacle between
the BS and UE.
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By accomplishing these objectives, the thesis aims to contribute to the under-
standing and improvement of channel estimation techniques and LOS detection
in cellular communication scenarios.
All the experiments were performed leveraging the Simulator, an emulation tool
provided by Ericsson for analyzing the performance characteristics of the channel
behavior in a wireless communication system. The research outcomes will have
practical implications for optimizing system performance, enhancing network ef-
ficiency, and supporting the reliable transmission of data in complex wireless en-
vironments.

1.3 Thesis Outline
The thesis begins by providing a comprehensive introduction to the foundational
theoretical background, which serves to establish a solid understanding of the
subsequent research inquiry. This includes the chosen model, the Wireless World
Initiative New Radio II (WINNER II) channel model, is extensively elucidated,
encompassing an exploration of the specific scenarios under investigation. This
entails the inclusion of path-loss formulas, and parameter definitions, and high-
lights the significance of incorporating deep learning techniques in the UE’s link
state detection process using the ULSRS, thereby contributing to the achievement
of the research objectives.

Furthermore, a brief introduction of Multiple Input Multiple Output (MIMO) sys-
tems and a detailed overview of the evolutionary journey of 5G New Radio (NR)
and its primary applications. The thesis then proceeds to offer an in-depth de-
scription of pivotal components within the 5G NR physical layer, with a specific
focus on relevant elements such as the ULSRS, OFDM, and Time-division Du-
plexing (TDD).

Additionally, the thesis briefly discusses important aspects related to UE arrival
time to the LOS region, the determination of UE movement direction, the iden-
tification of wall materials, and the assessment of obstacle size obstructing the
communication between the UE and the BS. These aspects contribute to a more
comprehensive understanding of the research scope and its implications.

The subsequent section of the thesis presents the empirical findings derived from
the conducted research. The final chapter serves as a conclusive summary, encap-
sulating the key findings and offering a discussion on potential future paths for
further investigation.
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Chapter2
General Framework

This chapter serves as a comprehensive foundation for the subsequent sections
of the thesis, providing the necessary theoretical background, practical insights,
and a clear link to the research objectives.

2.1 MU-MIMO
The Multi-user Multiple Input Multiple Output (MU-MIMO) channel is a trans-
formative concept in wireless communication systems, revolutionizing data trans-
mission and reception. By employing multiple antennas at both the transmitter
and receiver and the usage of the degrees of freedom provided by the multiple
antenna elements, MU-MIMO systems offer advantages such as increased data
rates, improved link reliability, and enhanced spectral efficiency.

Figure 2.1: Antenna configuration in MU-MIMO systems

5



6 General Framework

In contrast to Single-user Multiple Input Multiple Output (SU-MIMO) where we
can only communicate with a single user at a time, using MU-MIMO we can
communicate with multiple users simultaneously which increases the network
capacity. Figure 2.1 depicts the uplink antenna configuration of a MU-MIMO
system where MT is the number of transmitter antennas per UE and MR is the
number of receiver antennas at the BS.

The narrowband response of a MIMO channel for a single user at subcarrier k is
expressed as [1]:

y[k] =
√

Es

MT
H[k] s[k] + n[k], (2.1)

where H[k] is the MIMO channel matrix of dimension MR × MT, y[k] is the re-
ceived signal vector with dimension MR × 1, s[k] is the transmit signal vector
with dimension MT × 1, n[k] is the MR × 1 is the noise vector and Es is the average
transmit symbol energy. It is important to note that the average transmit symbol
energy, Es, is reduced by the number of transmitter antennas, MT, to ensure a fair
comparison when comparing systems with different numbers of antennas.

In the context of a multi-user environment, where the channel may be estimated
using orthogonal pilots for different users, the principles of channel estimation
employed in a single-user scenario can also be extended. Equation (2.2), as high-
lighted in our thesis, captures the relationship between a UE equipped with a
single antenna (MT = 1) and a BS equipped with multiple antennas (MR). This
equation serves as a fundamental representation of an uplink transmission in the
context of multi-user communication.

y[k] =
√

Esh[k] s[k] + n[k], (2.2)

where the channel h[k] is modeled by a MR × 1 vector, y[k] is the received signal
vector with dimension MR × 1, , s[k] is the transmit signal with MT = 1 , Es is
the average transmit symbol energy and n[k] is the MR × 1 is the noise vector.
It is important to note that in Single Input Multiple Output (SIMO) systems, the
number of transmit antennas (MT) is 1, and therefore, only Es is considered as the
average transmit symbol energy.

For effective channel estimation, we employed ULSRS (p[k]) transmitted from the
UE to the BS. By substituting the variable s with p in Equation (2.2), the resulting
equation can be expressed as follows:

y[k] =
√

Esh[k] p[k] + n[k]. (2.3)

In Equation (2.3), the channel estimation is performed using the ULSRS pilot rep-
resented by the variable p[k]. The channel vector h[k], the transmit signal p[k],
and the noise vector n[k] collectively contribute to the overall equation, reflecting
the relationship between the received signal (y[k]) and the channel characteristics.
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After the transmitted signal (ULSRS) is received by the BS and its characteristics
are known, the channel estimation (h[k]) process can commence. This process
leverages the specific characteristics of the 5G NR system. Details of this proce-
dure will be outlined in the subsequent chapters. This thesis primarily centers on
detecting the link state of the UE in a system, the goal is to accurately distinguish
between two conditions: NLOS and LOS. To achieve this, it is essential to have a
function that can effectively analyze the characteristics of the channel.

f(ĥ[k]) =

{
LOS
NLOS

, (2.4)

where ĥ[k] is the estimated channel.

The methodology for identifying channel characteristics can be approached in
various manners. In this investigation, machine-learning techniques are employed
to detect the link state of one UE. Understanding the link state of UE offers several
practical applications, such as resource scheduling and beamforming strategies.
The results can be exploited for multi-UE scenarios as well, the only difference is
that there may be worse estimates of the channel due to interference from other
users and noise. Some of these applications will be thoroughly examined within
the framework of this thesis.
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Chapter3
WINNER II Channel Model

The simulations in this thesis are based on the WINNER II channel model. The
following sections provide a full overview of this channel model.

The WINNER II channel model represents a notable progression in the field of
signal propagation analysis, particularly in diverse scenarios. It builds upon the
foundation of WINNER I, offering expanded scenarios, wider frequency cover-
age, and enhanced customization of antenna characteristics. The model employs
rigorous principles of geometry and probability to understand signal behavior
over time, accounting for propagation factors and antenna interactions. By in-
corporating real measurement statistics, it enables precise analysis and valuable
insights for wireless communication research and design. Overall, the WINNER
II model serves as a valuable tool for unraveling the complexities of signal prop-
agation and optimizing wireless communication systems.

3.1 Some radio channel properties

In this section, some definitions that are very useful for understanding the chan-
nel dynamics in the context of our research project are discussed. Initially, cer-
tain properties of radio channels are explained. Large-scale fading occurs due
to interactions with objects that are significantly larger than the wavelength of
the signal. These objects obstruct the signal’s path to the receiver. On the other
hand, small-scale fading results from objects reflecting, diffracting, or refracting
the signal. This leads to multipath propagation between the transmitter and the
receiver, causing constructive and destructive interference.

3.1.1 Large Scale Parameters

• Delay Spread (DS): The difference in arrival times between a signal’s ear-
liest and latest major components. It describes the dispersion of signal en-
ergy over time caused by multipath propagation and influences the extent
of ISI in the communication system.

9



10 WINNER II Channel Model

• Angle Spread (AS): Angle spread refers to the variation in the direction or
angle of arrival of signals at a receiver in a wireless communication system.
It characterizes the spread of signal energy across different angular paths
due to scattering, reflections, and diffractions in the propagation environ-
ment.

• Shadow Fading (SF): Shadow fading occurs when the channel’s coherence
time significantly exceeds the delay constraints of the application, resulting
in relatively stable amplitude and phase variations over the operational
duration. This phenomenon typically arises when substantial obstacles,
like hills or large buildings, obstruct the primary signal path between the
transmitter and receiver. The impact of shadow fading on received power
is commonly characterized by a log-normal distribution with a standard
deviation aligned with the log-distance path loss model.

• Rician factor (K): The ratio of the power in the LOS component to the
power in the diffuse component is called as Rician factor (K). If K → 0,
the Rice distribution becomes the Rayleigh distribution.

3.1.2 Small Scale Parameters
• Path delays: Path delay, also known as propagation delay, refers to the time

it takes for a signal to travel from a transmitter to a receiver along a specific
communication path. In wireless communication systems, signals propa-
gate through the air, guided by various propagation mechanisms such as
LOS propagation, reflection, diffraction, and scattering.

• Angle of Arrival (AoA): The angle of arrival refers to the angle at which
a signal approaches a receiving antenna in relation to a specified reference
axis, such as the normal to the surface of the antenna.

• Angle of Departure (AoD): The angle of departure describes the direction
from which a radio wave is transmitted by a transmitting antenna. It rep-
resents the angle at which a transmitted signal departs the transmitting
antenna in relation to a reference axis.

• Cross Polarization coupling power Ratio (XPR): It is a metric used to as-
sess the degree of polarization discrimination in an antenna system. It de-
scribes how an antenna designed to transmit or receive a specific polar-
ization (e.g., vertical or horizontal) is influenced or sensitive to orthogonal
polarization signals.

In the next section, the WINNER II channel model and its related parameters are
discussed in detail.

3.2 WINNER II channel model
The WINNER II channel model includes 12 indoor and outdoor propagation sce-
narios, as well as the ability to simulate LOS and NLOS propagation circum-
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stances. It is also implemented in MATLAB™ and it is capable of deploying
MIMO setups.

WINNER II channel model generates the time-variant channels, however, only
one snapshot of the channel is considered in this study, assuming that the run-
times do not change with time (this occurs when neither transmitter nor interact-
ing objects move) [2]. The Channel Impulse Response (CIR) is:

h(τ) =
N−1

∑
n=0

αn · δ(τ − τn), (3.1)

where N is the number of delay clusters, and τn is the delay of the cluster n, and
αn is a vector of complex values.

A Fourier transformation of the impulse response in Equation (3.1) gives the
transfer function H( f ):

H( f ) = F{h(τ)}, (3.2)

3.2.1 Path delay (τ) calculation
Delays are drawn randomly from the delay distribution defined in [3]. The model
incorporates two distinct delay distributions that vary depending on the scenario:
exponential delay distribution and uniform delay distribution. When using the
exponential delay distribution:

τ'n = −rτστ ln(Xn), (3.3)

where rτ is the delay distribution proportionality factor, στ is delay spread, Xn ∼
Uni(0,1) and cluster index n = 1,....,N. With uniform delay distribution the delay
values τ'n are drawn uniformly from the corresponding range τ ∼ Uni(τmin, τmax).

It’s crucial to emphasize that the WINNER II channel model generates the chan-
nel impulse response, which consists of multiple normalized delay clusters. To
normalize the delays, we subtract the minimum delay from each of the delays
and then arrange them in descending order, which is expressed as:

τn = sort(τ'n − min(τ')n). (3.4)

This way, the delay of the first arriving cluster is always set to zero.

In LOS, additional scaling of delays is required to compensate for the effect of the
LOS peak added to the delay spread. The scaling constant D is Ricean K-factor
dependent and it is determined by Equation (3.5).

D = 0.7705 − 0.0433K + 00002K2 + 0.000017K3, (3.5)

where K [dB] is the Ricean K-factor defined in [3]. The scaled delays are then
given by

τLOS
n =

τn

D
, (3.6)
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3.2.2 Cluster power (P) calculation
The cluster powers are calculated assuming a single slope exponential Power De-
lay Profile (PDP). Power assignment depends on the delay distribution defined
in [3]. With exponential delay distribution, the cluster powers are determined by

P'n = exp
(
−τn

rτ − 1
rτστ

)
· 10

−Zn
10 (3.7)

and with uniform delay distribution they are determined by

P'n = exp
(
−τn

στ

)
· 10

−Zn
10 , (3.8)

where Zn ∼ N(0, σ2) is the per cluster shadowing term in [dB]. The power is then
normalized so that the total power of all clusters is equal to one, i.e.,

Pn =
P'n

∑N
n=1 P'n

(3.9)

The power of each ray within a cluster is given by Pn / M, where M is the number
of Multipath Components (MPC) per cluster.

3.2.3 AoA(ψ) & AoD (ϕ) calculation
If the composite Power Azimuth Spectrum (PAS) of all clusters is modelled as
wrapped Gaussian (see Table 4-5 [3]) the AoA are determined by applying inverse
Gaussian function with input parameters Pn and RMS angle spread σψ

ψ′
n =

2σAoA

√
− ln (Pn/max(Pn))

C
, (3.10)

where σAoA = σψ /1.4 is the Standard Deviation (SD) of arrival angles (the value
1.4 is the ratio of Gaussian SD and corresponding ”RMS spread”). Constant C is
a scaling factor related to the total number of clusters and is given in the Table
3.1:

#Clusters C
4 0.779
5 0.860
8 1.018

10 1.090
11 1.123
12 1.146
14 1.190
15 1.211
16 1.226
20 1.289

Table 3.1: Number of clusters and corresponding constant (C) Val-
ues for AoA calculation
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For AoDs (ϕn) the procedure is analogous.

3.2.4 XPR calculation
The calculation of cross polarisation power ratios (XPR) K for each ray m of each
cluster n is given in Equation (3.11).

Km,n = 10X/10, (3.11)

where m = 1, . . . , M is the ray index, X ∼ N(µ,σ2) is Gaussian distributed with µ
and σ given in [3] for XPR.

3.2.5 Path-loss
Path-loss (PL) is the reduction in signal strength that occurs as a radio wave travel
through a medium, such as air or buildings, from a transmitter to a receiver. It
is a fundamental concept in wireless communication systems and is influenced
by various factors, including distance, frequency, obstacles, and environmental
conditions. The basic PL formula which is used in WINNER II channel model
is [3],

PL = A log10(d[m]) + B + C log10

(
fc[GHz]

5.0

)
+ X, (3.12)

where A is the parameter corresponding to the path-loss exponent, d is the dis-
tance between the transmitter and the receiver in [m], B is also a parameter that
depends on the frequency and antenna height, C scales the path-loss frequency
dependence, fc is the system frequency in the frequency range of 2 to 6 GHz,
and X is an environmental specific term which is scenario dependent. The dis-
tribution of the shadow fading is log-normal, and the SD is different for each
propagation condition with respect to each scenario.



14 WINNER II Channel Model

3.3 Channel coefficient generation using WINNER II
channel model

Figure 3.1: Channel coefficient generation using WINNER II chan-
nel model

The generation of channel coefficients in this study is carried out through a three-
stage process. The initial stage involves the initialization of general parameters
specific to the WINNER II channel model. This encompasses the selection of a
scenario type, such as C1 or A1 (which will be explained later in detail), as well
as the configuration of the network layout, including the number and positions of
UEs and BSs within the Geographic Coordinate System (GCS). Moreover, antenna
parameters, such as the type of antenna array structure employed in the simula-
tion (in this case, a Uniform Linear Array (ULA) with λ/2 antenna spacing), and
array geometry are defined. To accurately model the channel, propagation con-
ditions are assigned, distinguishing between LOS and NLOS scenarios. The PL is
subsequently computed using the equations within each scenario. The LSPs have
been generated based on the equations specified in reference [3]. It is important
to note that the number of clusters may vary between 8 and 24 according to the
scenario. However, the number of MPCs remains constant at 20 in the WINNER
II channel model.

During the second stage, the SSPs are generated. Notably, in the process of gen-
erating SSPs, the LSPs are utilized as control parameters, effectively influencing
the characteristics of the small-scale fading. As the final stage of the channel co-
efficient generation process, the WINNER II channel’s impulse response is con-
structed by incorporating the specifications defined by the 3GPP. This is achieved
by leveraging the LSPs and SSPs in accordance with the prevailing WINNER II
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framework. The channel impulse response is generated using the following for-
mula:

h(t, τ) =
N

∑
n=1

hn(t, τ), (3.13)

Where N represents the number of distinct paths for each scenario, t and τ are
variables indexing the time and delay domains. Note that, as previously men-
tioned, the CIR varies depending on specific scenarios and propagation condi-
tions (as outlined in Table 3.2). Assuming time invariance throughout a trans-
mission interval, we can drop the channel dependency on t within each interval
and use Equation (3.1) to obtain a channel realization. For readers seeking a more
in-depth understanding of the intricacies involved in channel realization, we rec-
ommend referring to the work cited as [3].

The following Table 3.2 provides a concise summary of the number of clusters for
LOS and NLOS under the different scenarios considered in this thesis.

Scenario
# Clusters

LOS NLOS

C1 15 14
A1 12 16

Table 3.2: Number of clusters for different scenarios

In order to visually illustrate the key components of a MIMO channel, Figure 3.2
sourced from [3] is presented. This figure depicts the essential elements involved
in a MIMO channel, including the antenna arrays located at both ends of the
connection and the propagation paths.

Figure 3.2: The MIMO channel
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In this thesis, we studied two scenarios: A1 and C1. The following provides
detailed information on each scenario [3].

3.3.1 A1 scenario

The investigated scenario was an indoor-to-indoor configuration, involving a
communication system with a BS and a UE situated in the indoor corridors. The
experimental setup distinguished between LOS and NLOS propagation condi-
tions based on the location of the UE within the indoor environment. This place-
ment ensures coverage within the indoor spaces, particularly along the corridors
where users are expected to be present (see Figure 3.3). If the UE is in the same
corridor as the BS, it experiences LOS propagation conditions. LOS occurs when
there is a direct, unobstructed path between the BS and the UE. If the UE is posi-
tioned in a perpendicular corridor adjacent to the corridor where BS is situated,
it encounters NLOS propagation conditions. NLOS occurs when the direct line
of sight between the transmitter and receiver is obstructed by the obstacles such
as walls or partitions.

Figure 3.3: Layout for A1 scenario

In LOS conditions, signals travel directly from the BS to the UE without signifi-
cant obstruction. The PL in LOS scenarios may be lower compared to NLOS due
to the absence of obstacles in the main communication path. In NLOS condi-
tions, signals experience additional attenuation and reflection due to interactions
with obstacles such as walls or partitions. This results in an increased PL and po-
tentially degraded signal quality. This model considers factors such as distance
between the transmitter and receiver, free space path loss, and antenna charac-
teristics. In NLOS scenarios, additional losses due to walls or obstructions are
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considered. This scenario assumes that the floors within the indoor environment
are identical in structure and layout. This assumption simplifies the propagation
modeling and allows for consistent analysis across different areas of the building.
Figure 3.3 provides a full overview of the above scenario.

3.3.1.1 PL for LOS & NLOS in A1 scenario

According to the Equation (3.12), the PL calculations for LOS and NLOS propa-
gation conditions can be expressed as follows:

PLLOS = 18.7 log10(d[m]) + 46.8 + 20 log10

(
fc

5.0

)
, (3.14)

where SD of the Shadow Fading (SF) 3 dB and distance d in the range of 3 to 100
m. 18.7, 46.8, and 20 are the A, B, and C parameter values for LOS propagation.
The height of the BS (hBS) and Mobile Station (MS) (hMS) must be in the range of 1
to 2.5 m.

PLNLOS = 36.8 log10(d[m]) + 43.8 + 20 log10

(
fc

5.0

)
+ X, (3.15)

where 36.8, 43.8, and 20 are the A, B , and C parameter values for NLOS propa-
gation and X is influenced by the number of walls (nw) between the BS and the
UE as well as the type of wall material. For light walls, we have X = 5(nw -1),
considering a 5 dB loss associated with each light wall. On the other hand, for
heavy walls, we have X = 12(nw - 1), accounting for a 12 dB loss per heavy wall.
The light wall material is e.g., plasterboard, and the heavy wall material is e.g.,
brick or concrete. It is important to note that the value of nw must be greater than
zero to indicate a NLOS propagation condition and we have considered nw = 2
in this study.

3.3.2 C1 scenario
This scenario considers a suburban macro-cell environment, with the BS posi-
tioned above a rooftop and the UE is located at street level, as depicted in Figure
3.4. When the UE is located at street level without any obstructing structures,
such as buildings or vegetation, LOS propagation can be observed; otherwise,
NLOS propagation occurs. Macro-cells typically cover larger areas compared to
micro-cells and suburban environments are characterized by a mix of residential,
commercial, and open spaces. The buildings within this zone are described as
low-rise residential structures, primarily consisting of detached houses with one
or two floors. The vegetation in the area is described as growing in a restrained
or moderate way. This suggests that the plant cover is not excessively dense or
lush, but rather moderate in its growth.
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Figure 3.4: Layout for C1 scenario

3.3.2.1 PL for LOS & NLOS in C1 scenario

The PL calculations from Equation (3.12) for LOS and NLOS propagation condi-
tions, can be computed as follows:

PLLOS = 23.8 log10(d[m]) + 41.2 + 20 log10

(
fc

5.0

)
(3.16)

or

PLLOS = 40.0 log10(d[m]) + 11.65 − 16.2 log10(hBS[m])

− 16.2 log10(hMS) + 3.8 log10

(
fc

5.0

)
,

(3.17)

where fc is the carrier frequency in GHz. Equation (3.16) is utilized for calcula-
tions when 30 m < d < dBP and Equation (3.17) is applied for distances ranging
when dBP < d < 5 km where dBP is the break point distance and is computed
as follows: dBP = 4 hBS hMS fc/c. The A, B, and C parameter values are different
for LOS propagation in Equations (3.16) and (3.17) and are dependent on d. The
height of the BS (hBS) and MS (hMS) is considered as 25 m and 1.5 m and c is the
speed of light.

PLNLOS = (44.9 − 6.55 log10(hBS[m]) log10(d[m]) + 31.46 + 5.83 log10(hBS[m])

+ 23 log10

(
fc

5.0

)
,

(3.18)
where distance d is 50 m < d < 5km and the remaining parameters are defined as
in LOS propagation condition.



Chapter4
5G NR Overview

This section highlights the physical layer characteristics of NR that are crucial
for understanding the thesis work. It is worth noting that a comprehensive un-
derstanding of the uplink and downlink operations holds immense significance
in ensuring the maximum efficacy of the MATLAB™ simulation model imple-
mented in the project.

4.1 Introduction

NR, developed by 3rd Generation Partnership Project (3GPP) as the global stan-
dard for 5G networks, is a Radio Access Technology (RAT) based on OFDM.
OFDM is chosen for its robustness to time dispersion and ability to exploit both
time and frequency domains for defining channel and signal structures. NR op-
erates in two frequency ranges: Frequency range 1 (FR1) from 0.45 GHz to 6
GHz, and Frequency range 2 (FR2) from 24.25 GHz to 52.6 GHz. Unlike LTE,
where all devices support a maximum carrier bandwidth of 20 MHz, NR allows
for wider bandwidths. The transmission numerologies in NR vary based on the
Subcarrier Spacing (SCS) i.e, ∆ f , and Cyclic Prefix (CP) lengths. According to the
information provided in Table 4.1, the normal CP configuration comprises a fixed
number of 14 symbols per slot, whereas the extended CP configuration consists
of 12 symbols per slot.

µ ∆ f = 2µ · 15[kHz] Cyclic prefix
0 15 Normal
1 30 Normal
2 60 Normal, Extended
3 120 Normal
4 240 Normal

Table 4.1: 5G numerologies with different carrier spacings & CP

19
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4.2 OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme
widely used in modern telecommunication systems for transmitting digital data
over wireless, optical, and wired communication channels. It converts a high-
rate data stream into a number of low-rate data streams that are transmitted over
parallel, narrowband channels that can be easily equalized. It plays a crucial
role in 5G NR because of its high spectral efficiency, resilience to fading, resource
allocation flexibility, support for Massive MIMO, and low-complexity equaliza-
tion. Consequently, it serves as the fundamental transmission scheme for both
the downlink and uplink transmission paths in NR.

Figure 4.1: OFDM with subcarrier spacing ∆ f

Figure 4.1 shows the frequency spectrum of an OFDM signal. To ensure the sep-
aration of signals carried by different subcarriers, orthogonality is achieved by
spacing the subcarriers carefully, with a subcarrier spacing ∆ f = W/(N + 1),
where W represents the total available bandwidth, and N corresponds to the
number of subcarriers and the center frequency. Using this approach we can
analyze how different values of W, and N affect the allocation and utilization of
bandwidth resources in the wireless communication system.

4.2.1 Cyclic Prefix

The incorporation of a Cyclic Prefix(CP) in the OFDM modulation scheme en-
hances its resilience. The CP, consisting of samples appended to each OFDM
symbol, serves to mitigate Inter Symbol Interference (ISI) and ensure the accu-
racy of the Fast Fourier Transform (FFT). By converting the convolution in the
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temporal domain to a circular convolution, the CP enables simplified channel
estimation and equalization in the frequency domain, showcasing a distinct ad-
vantage of OFDM technology.

4.3 TDD
TDD is a communication technique where the transmission and reception of sig-
nals occur in different time slots within the same frequency band [4]. Many 5G
NR deployments exclusively utilize TDD due to its advantages in spectrum allo-
cation flexibility, reduced latency, channel reciprocity, and management of asym-
metric traffic loads. TDD systems often utilize uplink training and reciprocity
to obtain Channel State Information (CSI) and can be implemented in various
configurations, such as multi-cell systems or very large MIMO arrays.

4.4 NR time-domain structure
In the time domain, NR transmissions are structured into 10 ms frames, each of
which is divided into 10 equally sized subframes of 1 ms duration. A subframe
is then divided into slots consisting of 14 OFDM symbols each i.e., the duration
of a slot in milliseconds depends on the numerology (µ). The slot structure for
higher SCSs in NR is then derived by scaling this baseline structure by powers of
two (2µ).

In our research, we have employed a SCS (∆ f ) of 15 kHz, based on numerology
µ = 0. Although numerology 1 (µ = 1) was an alternative, µ = 0 was preferred to
enable coexistence and compatibility with Long Term Evolution (LTE) systems.
For µ = 0, the slot duration equals to the subframe duration, as shown in Figure
4.2, facilitating smooth integration with the existing LTE infrastructure.

Figure 4.2: 5G NR frame structure for numerology, µ = 0
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4.5 ULSRS and its significance in 5G
The use of Sounding Reference Signal (SRS) depends on the specific requirements
of the network deployment and the features supported by the devices and in-
frastructure. The reason for SRS importance in NR is due to the fact that TDD
technology is the primary mode of deployment. In TDD, both Uplink (UL) and
Downlink (DL) transmissions occur in the same frequency band, but at different
times. This means that the BS can leverage the channel estimation outcome from
SRS not only for UL processing but also for DL pre-processing, based on channel
reciprocity. This is crucial in TDD mode because the BS needs to estimate the CSI
for both UL and DL transmissions to optimize the use of the available resources.
These SRS signals serve a variety of critical purposes and are an essential compo-
nent of the network’s smooth operations [5].

• The transmission of uplink SRS by the UE enables the BS to estimate vital
channel characteristics such as frequency response and time delay spread.
This estimation is crucial for optimizing communication quality by ad-
justing transmission parameters, such as the power of each antenna ele-
ment. [6].

• Furthermore, the information derived from uplink SRS assists the BS in
dynamically scheduling transmissions and allocating resources. By priori-
tizing users with favorable channel conditions and avoiding fast fading in
the frequency domain, network performance is enhanced for all users [7].

• Moreover, uplink SRS signals help the BS distinguish between desired UE
signals and interference, thereby improving system performance and spec-
tral efficiency [8]. Adaptive strategies, guided by SRS signals, effectively
mitigate interference, enhancing communication reliability and through-
put.

• Additionally, uplink SRS signals aid the BS in CSI estimation for beam-
forming in MIMO systems. This enhances signal reception and data rates
by directing energy towards intended UEs, reducing interference, and ulti-
mately improving communication reliability and throughput [9].

4.5.1 Uplink SRS (ULSRS) frame structure
A device can be configured to send out SRS to perform uplink channel sounding.
SRS can be interpreted as the uplink counterpart to downlink CSI Reference Sig-
nals (CSI-RS) , as they both use channel sounding but in opposing transmission
directions. SRS is restricted to four antenna ports and typically covers one, two,
or four consecutive OFDM symbols, and our thesis focuses on 4 OFDM symbols
for SRS. The structural configuration of SRS is characterized by a comb-like ar-
rangement, wherein the signal is transmitted exclusively on selected subcarriers
within the frequency domain, at intervals of either two or four, delineating the
comb-2 and comb-4 patterns, respectively. The Physical Resource Blocks (PRBs)
represent the fundamental units of radio resources utilized for actual data trans-
mission and reception in the wireless system. These PRBs, which are the Resource
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Blocks(RBs), serve as the basic allocation and scheduling elements for efficient
spectrum utilization. Figure 4.3 depicts the frame structure of ULSRS with one
Resource Block (RB). The structure displays subcarriers in the frequency domain
and 14 OFDM symbols (one slot or subframe) in the time domain, utilizing the
comb-2 SRS structure. The SRS is typically restricted to four antenna ports, which
can be utilized by four separate UEs through cyclic shifts, a process of changing
the phase in the frequency domain. The SRS periodicity, set by the network de-
signer, determines the time intervals at which UEs transmit their ULSRS signals.
For the purposes of our research, we have considered an SRS periodicity of 5
milliseconds.

Figure 4.3: ULSRS frame structure with comb-2 configuration

4.5.2 Channel estimation using Uplink SRS
As mentioned in Section 4.5 about the significance of ULSRS in 5G, estimating
the channel using ULSRS from a UE is extremely important when we have fre-
quency selective wireless channel which varies over time. One way of estimating
the channel is to insert known sequences of data in the transmitted signal. NR
uses such pilot aided estimation in the frequency domain by mapping reference
symbols, like ULSRS onto the resource grid, as illustrated in Figure 4.3.

The ULSRS is transmitted from the UE to the BS through a channel via the uplink
sendframe (UL sendframe). The BS captures the uplink receiveframe (UL receive-
frame) to obtain the transmitted SRS signal for further processing. By dividing
the UL sendframe with UL receiveframe we can estimate the channel (Equation
(4.1)). However, initially, these estimates are available only for a subset of the
resource grid. Interpolation techniques are employed to extend the channel es-
timates to the entire resource grid. These techniques utilize the existing channel
estimates as reference points and interpolate the channel response across the re-
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maining grid points. By applying interpolation, a comprehensive set of channel
estimates (ĥ) is obtained, facilitating a more comprehensive characterization of
the channel across the entire resource grid.

ĥ =
UL receiveframe

UL sendframe
(4.1)

4.6 Coherence Bandwidth and Delay Spread
Here as an example, by calculating path delays using equations in Section 3.2.1,
we can estimate the coherence bandwidth (Bcoh). Bcoh was estimated by apply-
ing the equations detailed in Section 3.2.1 to calculate path delays. Bcoh represents
the frequency range in which the channel approximately exhibits frequency-flat
fading meaning that the channel response is relatively constant across that band-
width. It is determined by the delay spread of the channel, which refers to the
spread in propagation delay between the earliest and latest multi-path compo-
nents. In the context of the C1 scenario, the following Tables 4.2 and 4.3 were
generated through calculations performed using the Simulator. It is crucial to
note that, according to the reference provided in [3], each cluster for the given
scenario is characterized by a single path delay. These tables provide relevant
data for further analysis.

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Path Delay(ns) 0 0 0 5 5 10 10 15 15 25 25 25 45 45 45

Table 4.2: Clusters and corresponding normalized path delays for
C1 scenario in LOS propagation condition

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Path Delay(ns) 0 10 20 65 85 125 140 145 180 280 330 360 535 635

Table 4.3: Clusters and corresponding normalized path delays for
C1 scenario in NLOS propagation condition

From the Tables 4.2 and 4.3, Bcoh is calculated using the following formula:

Bcoh,LOS =
1

τ1 − τ15
= 22.2 MHz (4.2)

Bcoh,NLOS =
1

τ1 − τ14
= 1.57 MHz (4.3)

It is observed that in LOS propagation conditions, the Bcoh is high due to a re-
duced delay spread, simplifying signal processing and reducing the likelihood
of ISI. However, in NLOS propagation conditions with a larger delay spread, the
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Bcoh is low, posing challenges in signal detection and decoding. Understanding
this relationship is crucial for selecting suitable modulation and coding schemes,
resource allocation strategies, and channel equalization techniques to optimize
system performance. Notably, when employing OFDM, the use of subcarriers
and guard intervals effectively mitigates the impact of ISI, making it less of a
concern.



26 5G NR Overview



Chapter5
Deep Learning

In this chapter, we delve into the intricate details of the deep learning methods
and their significance in our thesis work. We explain how deep learning algo-
rithms are a subset of machine learning that enables machines to learn and per-
form complex tasks without being explicitly programmed. We also discuss con-
volutional neural networks and their applications. Additionally, we highlight the
importance of deep learning in our thesis work, and how it can help us to achieve
our research objectives.

5.1 Deep learning
Deep learning is a part of Machine Learning (ML) and is based on Artificial Neu-
ral Network (ANN) architectures, where it uses layers of interconnected nodes
called neurons that work together to process and learn from the input data. In
a fully connected Deep Neural Network (DNN), there is an input layer and one
or more hidden layers connected one after the other [10]. The output of one neu-
ron becomes the input to other neurons in the next layer of the network, and this
process continues until the final layer produces the output of the network. The
layers of the neural network transform the input data through a series of non-
linear transformations, allowing the network to learn complex representations of
the input data.

The following Figure 5.1, gives an overview of an ANN architecture. Accord-
ing to [11], one of the most significant benefits of deep learning is its ability to
automatically learn feature representation at multiple levels of abstraction.

27
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Figure 5.1: Artificial Neural Network Architecture

5.2 Flow Chart Of Deep Learning

The flow chart of deep learning, depicted in Figure 5.2, involves several impor-
tant steps. It begins with acquiring the initial data set, which is then cleaned
to remove any irrelevant or incorrect data points. The cleaned data is then trans-
formed into a format suitable for training the model. Additionally, data reduction
techniques may be applied to reduce the size or complexity of the data.

Figure 5.2: Flow Chart of Deep Learning
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After the data transformation and potential reduction, the data set is divided into
three subsets: the training set, the validation set, and the test set. In this thesis, a
training set comprising around 70% of the data is used to train the deep learning
model and adjust its parameters. A validation set, consisting of approximately
10% of the data, is employed to fine-tune the model’s hyper parameters and eval-
uate its performance during training. The remaining 20% of the data is reserved
for the test set, which serves to assess the final performance of the trained model.

5.2.1 Fundamental Concepts in Deep Learning
Two fundamental concepts in the training process are loss and epochs. Once the
data is partitioned, the deep learning model is built and trained using the training
set. The model’s parameters are adjusted iteratively to update its parameters
based on batches of training samples, referred to as epochs. The training process
is typically divided into a series of epochs. Training for multiple epochs allows
the neural network to gradually converge towards an optimal solution [12].

Loss refers to a quantitative measure of the deviation between the predicted out-
put of a neural network and the actual target output during the training phase
[13]. The model is evaluated to determine its performance against predefined cri-
teria. By optimizing the loss function, the neural network adjusts its parameters
to minimize prediction errors. The trained model is then used to make predic-
tions on the unseen test set. The model takes input from the test set and generates
output labels or values as the final results.

As stated in reference [14], the training of deep learning models is not compati-
ble with complex values. However, as will be described in the next chapter, the
channel estimates are complex values. Therefore, to address this limitation, a
pre-processing step was implemented to separate the complex values into their
constituent real and imaginary parts.

In the pursuit of identifying the optimal classification through neural networks
and ensuring its validity, the primary challenge encountered is that of overfit-
ting. This phenomenon occurs when the model’s error concerning the input data
approaches zero, indicating near-perfect performance. However, it is crucial to
acknowledge that in neural networks, overfitting can manifest when the model
exhibits low bias but high variance. Overfitting results from an excessively pre-
cise or complex model, which becomes evident when there is a minimal training
error alongside a significantly high validation error. Typically, overfitting arises
from one of the following factors:

• The existence of outliers in the input set causes the high variance of net-
work parameters.

• The use of overly complex resolution algorithms in ML can lead to overfit-
ting, where the model becomes excessively specialized to the training data,
compromising its ability to generalize to new inputs.

• When the number of data used in training is too high [15].
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5.2.2 Convolutional Neural Networks
Convolutional Neural Network (CNN) is an extended version of ANN that has
emerged as a powerful tool used in a wide range of applications, including com-
puter vision [16], speech recognition [17], identification of albuminous sequences
in bioinformatics [18] and many others. At the same time, CNNs are very de-
manding in terms of the hardware and time cost of a computing system, which
considerably restricts their practical use, e.g., in embedded systems, real-time
systems, and mobile devices [19]. CNNs are designed to automatically identify
and extract relevant features from the data through the use of convolutional lay-
ers [20]. Convolutional layers apply a set of filters to the input data, identifying
patterns and features. These features are then passed on to fully connected layers.

Within the scope of this study, the simulations were conducted employing WIN-
NER II channel models, considering a CNN architecture to estimate the function
f from Equation (2.4), to detect the UE’s link state. The inputs (a vector of samples
of the frequency response) and outputs (human-labeled) were matched to train
a model. The CNN model utilized in this study employed various layers, in-
cluding the input layer, convolutional layers, pooling layers, and fully connected
layers [21]. These layers will be briefly described in the following section, offering
a concise explanation of their respective functions and their overall importance
within the model.

5.2.2.1 CNN architecture

Figure 5.3: CNN architecture

Figure 5.3, shows the types of layers that are involved in a CNN architecture [22].
Before delving into the list of definitions, it is important to note that a feature map,
although not a layer itself, is a crucial element in CNN. It represents the output of
a convolutional layer, capturing distinctive features present in the input data or
previous feature maps. The resulting feature maps undergo flattening into one-
dimensional vectors. This transformation prepares them to be fed into a fully
connected layer for tasks such as categorization or regression.

• Input layer: It is the layer in which we give input to our model. In CNNs,
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generally, the input will be an image or a sequence of data. This layer holds
the raw input of the data and sends it to the convolutional layer.

• Convolutional layer: This layer is used to extract the features from the
input dataset. It applies a set of learnable filters, known as the kernels, to
the input data. The filters/kernels are smaller matrices, usually 2×2, 3×3,
or 5×5 -sized. It slides over the input data and computes the dot product
between the kernel weights and the corresponding input data. The output
of this layer is referred to as feature maps.

• Activation layer: By adding an activation function to the output of the
preceding layer, activation layers add non-linearity to the network. It will
apply an element-wise activation function to the output of the previous
layer. Some common activation functions are Rectified Linear Unit (ReLU),
Hyperbolic Tangent (Tanh), softmax, and Leaky ReLU, etc. In CNNs it
is typical to implement activations as ReLU functions. Because activation
functions operate element-wise, they are used the same way for the con-
volutional layers as for the linear layers. Thus, the activation layer doesn’t
change the dimensions of the data. ReLU is used as the activation function
in this study for all of the convolutional layers. For the hidden dense lay-
ers within the CNN we have used ReLU as the activation function, but for
the last dense layer, we have used softmax as the activation function. The
softmax activation function constrains the output neuron values to range
between zero and one, enabling them to represent probabilities within this
interval.

• Pooling layer: This layer downsamples the data to reduce computation
complexity. It is periodically inserted in the CNN and its main function is
to reduce the size of the data, which makes the computation fast, reduces
memory, and also prevents overfitting. Two common types of pooling lay-
ers are max pooling and average pooling, and in this study, max pooling
is considered. Max pooling performs downsampling by dividing the input
into non-overlapping rectangular regions and taking the maximum value
from each region to form a smaller output matrix.

• Dense layer: It takes the input from the previous layer and computes the
final classification or regression task.

• Output layer: The output from the fully connected layers is then fed into a
logistic activation function for classification tasks like sigmoid or softmax
which converts the output of each class into the probability score.

Typically, CNNs employ a cascade of L Convolutional Activation Pooling (CAP)
layers. Each CAP layer is composed of a convolutional operation of its input
with K convolutional Kernels, then a non-linear transformation, i.e., activation
function, and next a pooling layer, respectively [14].

5.2.2.2 Motivations of having CNNs

CNNs have consistently achieved state-of-the-art performance in various domains,
including image and signal processing. Applying CNNs to channel matrices can
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leverage this proven capability to achieve good performance in extracting sens-
ing information from the channel estimates. CNN architectures are commonly
employed, and they are particularly suitable for handling inputs organized in
grid-like structures, such as images represented as two-dimensional pixel grids.

In this study, the dataset is represented in the frequency domain, and the samples
are the frequency response of the channel with complex coefficients. As we have
already discussed in chapter 2 the matrix of the channel is two-dimensional with
the size of MR × MT, this grid-like structure is suitable for using CNN and it pro-
vides ease of implementation without transforming the samples into alternative
domains e.g., delay-angle domain [14]. CNNs build a hierarchical representation
of data, which can be particularly useful for channel matrices. Lower layers might
capture local features like small-scale fading effects, while higher layers capture
more global features like large-scale fading or overall channel gain. The non-
linear activation functions in CNNs allow them to learn complex mappings from
the input channel matrices to the desired output. CNNs have shown robustness
to noise in various applications. In the context of wireless communication, this
means better performance in real-world conditions where the channel estimates
may be noisy or distorted.

The CNN models introduced in the upcoming chapter could be enhanced in
terms of computational complexity and learning efficiency by incorporating sparse
interaction and parameter-sharing properties. Additionally, the BS, equipped
with multiple antennas, can estimate the response at various frequency samples,
allowing the channel to be represented in the delay-angle domain, an approach
not yet explored, but promising for future research.



Chapter6
Simulations and Results

In this chapter, we will examine channel models and also derive a neural network
to extract obstacle features from it, for two distinct WINNER II channel scenarios,
C1 and A1. It is important to note that in all subsequent case studies, we have
focused on a single-channel realization for the uplink, and we have also assumed
the channel to be static during the ULSRS transmission.

6.1 Dataset generation
This section outlines the procedure for deriving the frequency response from the
CIR generated by the WINNER II channel model. This will be leveraged to gener-
ate a dataset for the channels estimated at the BS under the considered scenarios.
By applying a Fourier transform to the time-domain CIR data, the transfer func-
tion of the simulated wireless channel is obtained. The purpose is that we have
to adapt to the 5G-NR system model where we can only get estimates of the nar-
rowband channels at each subcarrier.

Applying a Fourier transformation to the impulse response in Equation (3.1)
yields the frequency-domain transfer function H( f ) of the wireless channel. The
mathematical expression of H( f ) is expressed as follows:

H( f ) = F{h(τ)}, (6.1)

As 5G-NR systems employ a discrete number of narrowband subcarriers, the
channel estimates available at the BS would correspond to:

H(k) =
N−1

∑
n=0

αn e−j2πn fkτn , (6.2)

where k = 1, . . . , K is the subcarrier index, with K corresponding to the total
number of subcarriers which is considered as 201 in the C1 scenario and 1332 in
the A1 scenario.

33
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6.2 C1 scenario using WINNER II channel output
The C1 scenario is simulating a suburban area. Our objective was to analyze
the link conditions between a single UE and a BS using the WINNER II channel
model. Specifically, we aimed to determine if the link exhibited LOS or NLOS
characteristics. The ULSRS is not utilized in this part of our analysis and perfect
channel estimates are assumed, i.e., without any noise.

For the simplicity of implementation, we considered an ULA comprising 64 an-
tenna elements on the BS side, while the UE side featured a single antenna. The
BS was positioned at a height of 25 meters above the ground, whereas the UE was
situated at a height of 1.5 meters. The carrier frequency employed in our analysis
is 3.5 GHz.

6.2.1 Result Analysis of WINNER II Channel Output
In this section, we have provided some examples of C1 scenario channel outputs.
The depicted figures, namely Figures 6.1 and 6.2, provide visual representations
of the channel condition observed in the C1 scenario under the influence of LOS
propagation.

In Figure 6.1, the influence of LOS propagation becomes clearly noticeable as
we observe a consistent disparity in signal power at the BS, with the first clus-
ter consistently exhibiting superior strength compared to the subsequent clus-
ters. Figure 6.2 represents the transfer function of the LOS propagation where the
channel bandwidth has been divided into 201 subbands with 100 kHz frequency
spacing. LOS propagation exhibits minimal delay spread because the signal trav-
els directly from the transmitter to the receiver without significant reflections or
scattering. This results in a short impulse response. The frequency response of a
LOS channel is generally smooth and flat, indicating minimal frequency-selective
fading compared to NLOS scenario.
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Figure 6.1: Cluster Power For C1 Scenario - LOS

Figure 6.2: Transfer Function For C1 Scenario - LOS

Figures 6.3 and 6.4 depict the channel condition under the NLOS propagation
condition. In Figure 6.3, it is observed that neither of the clusters exhibits con-
sistently high or low power levels. This observation suggests that the channel
in NLOS condition is obstructed, meaning that there are obstacles or obstruc-
tions between the UE and the BS that prevent a clear LOS connection. These
obstructions can cause variations in the received power levels at the BS from dif-
ferent antennas and clusters, resulting in an irregular power distribution pattern.
These obstacles can include buildings, trees, or other physical structures that im-
pede the propagation of electromagnetic waves. Figure 6.4 illustrates the transfer
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function for the C1 scenario under NLOS propagation conditions, with the same
bandwidth and frequency spacing as the LOS case. It is evident that due to the
presence of obstacles between the BS and UE, the received power at the BS ex-
hibits significant fading dips across various subbands w.r.t the antennas at the
BS.

Figure 6.3: Cluster Power For C1 Scenario - NLOS

Figure 6.4: Transfer Function For C1 Scenario - NLOS
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6.2.2 Deep Learning model for C1 Scenario

To accomplish our objective, it was necessary to generate a dataset large enough
for training a deep learning model. This dataset was created by randomly as-
signing positions to the UE within the layout of the C1 scenario (1000 meters in
this study), considering both LOS and NLOS conditions. This approach ensures
the inclusion of diverse UE positions, thereby enabling the model to be trained
independently of specific UE locations. Ultimately, we obtained a dataset con-
sisting of 4000 samples of transfer functions representing the channel models for
both LOS and NLOS scenarios. With the dataset prepared, our subsequent task
involved constructing a neural network , used to generate a data-based detector
of obstacles (LOS/NLOS).
The dimensions of our dataset are 4000 samples, encompassing both real and
imaginary components, with 64 antenna elements on the receiving side and 201
frequency samples. To illustrate the adjustment of the dataset dimensions and
the tailored architecture of the model, please refer to Figure 6.5.

Figure 6.5: Layers in the Deep Learning Model for C1 Scenario

We used a cascade of 2 CAP layers. The first layer is a convolutional 2D with a
kernel size of 4×4 and an output size of 32. ReLU is used as the activation function
as mentioned within the Section 5.2.2.1. Then, a max pooling layer of size 4×4 is
used to downsample the data to reduce computation complexity. Then, feature
maps of the described layers are used as input to the next convolutional layer
with a kernel size of 5×5, and an output size of 32, followed by a max pooling
layer of size 5×5. Then, the feature maps are flattened and prepared for the dense
layers. The kernel size of the first convolutional layer is smaller than the second
convolutional layer, which might allow the model to capture low-level features
such as small-scale fading effects and local information, whereas the second con-
volutional layer with a larger kernel size tends to capture more global features,
including large-scale fading or overall channel gain. This model has two possi-
ble outputs, corresponding to the LOS and NLOS cases. Softmax is used as the
activation function of the final dense layer, to calculate the probability score.
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Figure 6.6: Deep Learning Model Summary for C1 Scenario

Figure 6.7: Learning Curves and Model Loss for C1 Scenario

The CNN model depicted in Figure 6.5 for C1 scenario, was trained with a batch
size of 10 and 20 epochs. The learning curves are shown in Figure 6.7 with a test
loss of 0.27 and test accuracy of 90%. It means the model correctly predicts the
labels for a large portion of the unseen test data and based on the test loss, which
indicates that the predictions are not only correct but also confident and close to



Simulations and Results 39

the true values.

6.3 A1 scenario using Uplink SRS
This model allows for seamless transitions between different propagation con-
ditions, notably between LOS and NLOS scenarios, within the same WINNER
II framework. Specifically, in the A1 (indoor) scenario, a transition from LOS
to NLOS can occur when the UE moves from the LOS corridor, where the BS is
situated, into a perpendicular corridor. Our study employed a configuration con-
sisting of a single antenna at the UE side and 8 antenna elements arranged in a
ULA structure at the BS side.

An analysis of this particular case indicates that such transitions can be ade-
quately represented by utilizing the A1 LOS and NLOS path loss models outlined
in Section 3.3.1.1. In the context of Figure 6.8, let’s denote the distance along the
LOS corridor (where the BS is situated) to the center of the intersection of the cor-
ridors as d1, and the distance between the UE and the center of the intersection of
the corridors as d2. The A1 LOS path loss model is deemed suitable for values of
d2 that are smaller than 3F1, where F1 corresponds to the radius of the first Fresnel
zone. The ith Fresnel ellipsoid or zone is the one that results in a phase shift of
i · π [2]. For values of d2 greater than 3F1, the A1 NLOS path loss model can be
employed. It is worth noting that, in most cases, reasonably accurate results can
also be achieved by setting the transition distance equal to half the width of the
LOS corridor.

In this section, we use ULSRS to detect and analyze changes in link status, en-
abling informed decision-making based on variations in the UE’s communica-
tion channel. The following are the use cases of UE’s link status detection and
analysis.

1. The directional movement of the UE can be characterized by its relative mo-
tion concerning the intersection point of the corridors. This encompasses
two distinct scenarios: when the UE is moving away from the intersection
point and when it is moving towards it.

2. UE’s arrival time to the threshold line where the link state transitions from
NLOS to LOS as shown in Figure 6.8. By estimating the approximate ar-
rival time of the UE at the threshold line, the BS gains the ability to proac-
tively plan scheduling and allocate resources accordingly. This facilitates
effective resource management and optimization in wireless communica-
tion systems. For this use case, we have assumed positioning capabilities
at the BS.

3. Continuing our investigation, we aim to approximately determine the size
of the obstacle that impedes the LOS, enabling effective strategies to opti-
mize wireless communication performance in obstructed environments.

In the A1 scenario, a choice can be made between two distinct wall materials,
each characterized by unique path losses classified as CR-heavy and CR-light. It
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Figure 6.8: SRS window size of 10

is important to note that the consideration of PL for the wall is applicable solely
in NLOS conditions, as there are no obstructions (i.e., walls) between the UE and
the BS in LOS conditions. The BS and the UE are positioned at heights of 2.5
meters and 1.5 meters above the ground, respectively. The corridor width is set
at 2 meters, and the carrier frequency utilized for communication is 3.5 GHz.

6.3.1 Detecting the UE Movement direction
By employing a window of 10 ULSRS transmissions we can effectively monitor
changes in the uplink channel. We can ascertain whether the UE is moving to-
wards or away from the intersection point. As illustrated in Figure 6.8, when the
UE is located in a corridor perpendicular to the one where the BS is positioned,
the link state is classified as NLOS, and the UE traverses a distance denoted as
d2. In this particular scenario, two situations can arise: the UE is moving away
from the intersection point or approaching it. Furthermore, due to the presence
of different wall materials between the BS and the UE, two distinct path loss con-
ditions emerge, referred to as CR light and CR heavy. Consequently, four distinct
outcomes can be identified, each representing a unique combination of the UE’s
movement direction and the prevailing path loss condition.

1. UE is moving towards the intersection point with heavy walls

2. UE is moving away from the intersection point with heavy walls

3. UE is moving towards the intersection point with light walls

4. UE is moving away from the intersection point with light walls

In this part of the section, two examples of four possible outcomes will be studied
in more detail.
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To determine the movement direction of the UE along d2, we need to perform
multiple ULSRS transmissions, each within the size of the SRS window. The di-
rection is then inferred from the estimated channels derived from the received
ULSRS signals from the UE.

Figure 6.9 provides an illustrative example within the context where the UE moves
towards the intersection point along the corridor denoted as d2, while heavy walls
separate the BS and the UE, and Figure 6.10 provides an example where the UE
moves away from the intersection point along the d2 corridor, while light walls
separate the BS and the UE. The SRS window size is defined as 10 ULSRS, as pre-
viously discussed. The frequency response of the channel is computed for each
subcarrier within every ULSRS, indicated by the presence of red lines demarcat-
ing each ULSRS interval. Notably, the scenario encompasses a distance (d1) of
20 meters between the BS and the intersection point, with a corridor width of 2
meters.

Figure 6.9: Channel Estimations for Received ULSRS Signals within
SRS Window at BS with heavy walls, UE is moving towards the
intersection point
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Figure 6.10: Channel Estimations for Received ULSRS Signals
within SRS Window at BS with light walls, UE is moving away
from intersection point

Figure 6.11 depicts one realization of CIR that is related to the UE at the initial
position of the movement (d2), 40 meters away from the intersection point, and
the distance between the BS and the intersection point (d1) is 20 meters. The
corridor width is 2 meters in this example and heavy walls are present between
the BS and the UE. Further details regarding the configuration of this section are
presented in Table 6.1.

Parameter Value
Corridor Width 2 m

SRS window size 10
Carrier freq 3.5GHz
Bandwidth 20MHz

Number of PRBs 111
Number of subcarriers 1332

Table 6.1: Configurations used in Figures: 6.11 and 6.12
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Figure 6.11: PDP of the channel impulse response for NLOS case

Figure 6.12: Transfer Function For A1 Scenario - NLOS

Figure 6.11 provides valuable insights into the characteristics and behavior of the
channel in the examined scenario, shedding light on the power distribution and
variations in received power for the NLOS case within the A1 scenario. Figure
6.12 shows the frequency response of the channel when the UE is at the initial
position of the movement, i.e. 40 meters away from the intersection point.
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6.3.1.1 Deep learning model for UE movement direction along d2

The input to the CNN comprises a window of ULSRS signals with a size of 10,
aiming to detect both the UE movement direction along d2 and the type of wall
between the UE and the BS. The input data is structured with dimensions of 20 by
1332 by 8. Here, the first dimension (20) represents the number of ULSRS signals
within the window size of 10 by 2, considering both the real and imaginary parts
of the signals separately. The second dimension (1332) corresponds to the number
of subcarriers (111 PRBs×12 subcarriers), and the third dimension, with a size of
8, indicates the number of antenna elements deployed at the BS side, while the
UE is equipped with a single antenna. The layers used in this model are described
in Figure 6.13.

Figure 6.13: Layers in the Deep Learning Model to detect the UE’s
movement direction and wall material

The first layer is a 2D convolutional layer with a 2×2 kernel and an output size
of 16. ReLU is used as the activation function as it is mentioned within Section
5.2.2.1. Subsequently, a max pooling layer with a size of 2×2 is applied to down-
sample the data, thereby reducing computational complexity. The feature maps
from the previous layers are then fed into the next convolutional layer, which has
a 2×2 kernel and an output size of 16. This is followed by a max pooling layer
with a 2×2 size. The convolutional layers extract the features of the input dataset,
including the channel gain, small-scale fading, and large-scale fading character-
istics of the samples within the dataset. Subsequently, the feature maps are flat-
tened and prepared for the dense layers. At the final dense layer, we have four
different outputs in this model, considering all possible classifications discussed.
The activation function used in this layer is softmax.
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Figure 6.14: Deep Learning Model Summary to detect the UE’s
movement direction and wall material

The dataset for this model contains 4000 SRS windows, and each SRS window
consists of 10 estimated frequency responses over subcarriers of the OFDM-based
system. Thus, throughout the dataset generation process, a total number of 40,000
channel realizations are generated. The dataset consists of the channel estimates
at each OFDM subcarrier and BS antenna, that are obtained from the received
ULSRS on the BS side.

Figure 6.15 depicts the case where the UE is positioned 40 meters away from the
intersection point. In this sample, only one ULSRS is transmitted from the UE to
the BS. Both cases share the same environmental conditions, with the only differ-
ence being the material of the wall, impacting the PL exclusively. As mentioned
before, the wall materials can be either heavy or light walls, and the PL calcula-
tions are dependent on the wall material and the number of walls that are situated
between the UE and the BS. In the case that there is a heavy wall in between the
BS and the UE, the signal strength is more attenuated than in the case where there
is a light wall in between the BS and the UE. So, the model will detect these differ-
ences, and it is trained to detect the signal strength change trends to distinguish
the wall material, i.e. heavy and light walls (see Section 3.3.1)

The CNN model is depicted in Figure 6.13 for UE movement direction and wall
material detection. The model was trained with a batch size of 10 and 15 epochs.
The learning curves are shown in Figure 6.16 with a test loss of 0.13 and test
accuracy of 95%.



46 Simulations and Results

(a) Estimated channel with Heavy wall be-
tween the UE and the BS

(b) Estimated channel with Light wall be-
tween the UE and the BS

Figure 6.15: Path-loss Comparison of Light and Heavy Walls

Figure 6.16: Learning Curves and Model Loss to detect the UE’s
movement direction and wall material

6.3.2 UE approximate arrival time at the threshold line

In this part, one use case of the CNN model that we discussed in Section 6.3.1.1
is explained with an example. It is assumed that the BS possesses positioning
capabilities and has access to precise UE location information. Leveraging pre-
cise knowledge of the UE’s location and the periodicity of the SRS signal, we can
estimate the approximate arrival time of the UE at the threshold line shown in
Figure 6.8 at which the link state transitions from NLOS to LOS. The speed of the
UE, in conjunction with the SRS periodicity, plays a crucial role in this regard, as
higher UE speeds necessitate shorter SRS intervals. To track the UE’s positions
more accurately, it is possible to increase the window size, e.g., employing a win-
dow of 50 ULSRS. The decision to adjust the window size depends on the specific
scenario. It is worth mentioning that, it is also not desirable to have too high SRS
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Parameter Value
SRS periodicity 5 ms

d2 at initial UE position 40 m
d2 at current UE position 15 m

Corridor width 2 m
Number of received ULSRS 2500

Table 6.2: System configurations of example 6.1

periodicity or window size since that would mean that we reduce the resources
employed for communication purposes, so we have to find a good compromise
between sensing performance and communication performance. For instance, if
the UE is situated in a high-speed train, employing shorter SRS intervals and a
larger window in the time domain could enhance the accuracy of movement di-
rection and position tracking. Initially, the BS receives the first ULSRS and buffers
it. Once the number of buffered ULSRS reaches the SRS window size, which is
10 ULSRS in this case, the BS utilizes this batch as input for the deep-learning
model. Subsequently, it awaits the arrival of the second batch. Using these re-
ceived batches, each consisting of 10 ULSRS, the BS determines the UE’s direction
along d2. If the UE is approaching the intersection point, the time of arrival at the
threshold line can be calculated. However, if the UE is moving away from the
intersection point, no further processing occurs. By leveraging the periodicity of
the SRS and the distance covered by the UE within the SRS intervals, the average
speed of the UE can be determined, utilizing the location data obtained from the
positioning features available at the BS. An instance of such positioning features
is the Positioning Reference Signal (PRS) employed in the 3GPP 5GNR specifica-
tions. However, an in-depth discussion on positioning features falls beyond the
scope of this thesis.
Given that the BS is aware of the threshold line shown in Figure 6.8 at which the
link state transitions from NLOS to LOS, it is possible to compute an estimated
arrival time for the UE at the threshold line using the following equations:

Vavg =
Xtraveled

TULSRS · NULSRS
, (6.3)

where Vavg is the UE’s average speed, Xtraveled is the distance traveled by the
UE from the initial position to the current position of the UE, TULSRS is the SRS
periodicity and NULSRS is the number of ULSRS received by the BS during the
observation time.

tLOS =
xLOS

Vavg
, (6.4)

where tLOS is the UE arrival time to the threshold line, xLOS is the UE distance to
the threshold line.

Example 6.1: Here, is an example of the arrival time to the threshold line. Assume
a network with the configurations according to Table 6.2.
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The average speed of the UE is:

Vavg =
40 − 15

5 · 10−3 · 2500
= 2 m/s. (6.5)

Assume that the average speed of the UE will be constant and that the direction
of the movement will not be changed for the rest of the path to the intersection
point. In this example, as the corridor width is 2 meters, the threshold line, i.e.,
where the distance between the UE and the intersection point, is 1 meter, which
is half of the corridor width. The arrival time of the UE to the threshold line is:

tLOS =
15-1

2
= 7 s. (6.6)

6.3.3 Size of the obstacle that has blocked the LOS

In this subsection the assumptions considered in Section 6.3.2 are valid. Assume
that the UE is situated within the LOS region and moves on a straight line per-
pendicular to the corridor where the BS is positioned. Also, the UE maintains a
constant average speed (Vavg) and the SRS periodicity (TULSRS) is assumed to be
known. It becomes viable to determine the amount of time it takes the UE to tran-
sition from LOS to NLOS and back to LOS again. Consequently, leveraging the
TULSRS, the Vavg, and the distance traveled by the UE i.e, the number of ULSRSs
which are received by the BS during the NLOS link state (NULSRS,NLOS) , it becomes
feasible to approximate the size of the obstacle (Lobstacle) shown in Equation (6.7),
responsible for temporarily disrupting the LOS path. For this purpose, we have
generated a dataset of random locations within the LOS area of the A1 scenario,
with a corridor width of 2 meters, and then trained a deep learning model that
detects the LOS and NLOS link state of the UE. It is worth noting that, in this
context, it is assumed that the distance between the UE and the obstacle is as-
sumed to be extremely close to zero, thus resulting in no diffraction of the signal,
which occurs when electromagnetic waves encounter an obstacle, causing them
to spread out or bend around it.

Lobstacle = NULSRS,NLOS · TULSRS · Vavg (6.7)

6.3.3.1 Deep learning model for LOS/NLOS detection

For this segment of the research, the aim is to build a model to detect the link state
of the UE, whether it is LOS or NLOS, and use the model for computing the size
of the obstacle that has blocked the LOS within the LOS area in the A1 scenario.
A dataset comprising 4000 samples for LOS and NLOS scenarios is employed.
Each sample encompasses the estimates of the channel across the subcarriers of
the OFDM-based system.
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Figure 6.17: Layers in the Deep Learning Model for A1 scenario to
detect the obstacle

Figure 6.18: Deep Learning Model Summary to detect obstacle

Figures 6.17 and 6.18 shows, a detailed understanding of the CNN model imple-
mentation to determine the Lobstacle. The initial layer is a 2D convolutional layer
with a 3×3 kernel and an output size of 24. ReLU is employed as the activation
function, as noted in Section 5.2.2.1. Next, a max pooling layer with a size of
2×2 is applied to downsample the data, thus reducing computational complexity.
The feature maps from the preceding layers are then directed into the subsequent
convolutional layer, which employs a 2×2 kernel and yields an output size of 16.
Subsequently, a max pooling layer with a 2×2 size is applied. The convolutional
layers extract various features from the input dataset, encompassing characteris-
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tics such as channel gain, small-scale fading, and large-scale fading of the samples
within the dataset. Following this, the feature maps are flattened and readied for
the dense layers. The possible outputs of this model are LOS and NLOS as we
discussed and the softmax activation function is used for the final dense layer to
calculate the probability of the possible classifications.

The CNN model shown in Figure 6.17 was trained using a batch size of 10 and
15 epochs. The learning curves shown in Figure 6.19 demonstrate the model’s
performance during the training process. Notably, the model achieved a test loss
of 0.24, and a test accuracy of 92%.

Figure 6.19: Learning curves and Model Loss to detect the obstacle
in LOS region

Example 6.2: Here is an example of this use case to calculate the size of the ob-
stacle that has blocked the LOS. Assume a network with the configurations ac-
cording to Table 6.3. Consider the UE is moving on a straight line in a northern
direction at a constant average speed and transmitting ULSRS signals every 5
ms as shown in Figure 6.20. It passes behind an obstacle, causing LOS to be ob-
structed, then the UE continues its journey until it clears the obstacle, and the link
status returns to LOS. By calculating the duration of time when the link status is
NLOS, it is possible to calculate the size of the obstacle. The trained model is used
to detect the LOS / NLOS condition of the UE’s link.

In this example, the number of ULSRS that are received in NLOS link state based
on the deep-learning model output which gives NULSRS,NLOS = 58. Substituting
this value along with the TULSRS and Vavg from Table 6.3 in Equation (6.7), then
the approximate size of the obstacle (Lobstacle) is:

Lobstacle = 58 · 5 · 10−3 · 2 = 58 cm. (6.8)

Notably, Equation (6.8) shows, the CNN model’s estimated obstacle size is very
close to the actual size i.e, 60cm, demonstrating high accuracy. This suggests, the
CNNs effectively captures relevant visual cues even in complex environments.



Simulations and Results 51

Parameter Value
TULSRS 5 ms

Actual size of the obstacle 60 cm
Number of received ULSRS 160

Vavg 2 m/s
d1 10 m

Table 6.3: System configurations of example 6.2

Figure 6.20: Layout of the example 6.2

Based on the findings presented in Figure 6.21, it is clear that, when there is an
obstacle between the BS and UE, the signal experiences a much greater decrease
in strength compared to the areas without any obstructions. This trivial obser-
vation can be significantly helpful for extracting interesting sensing information
from the available channel estimates, that has been showcased throughout this
work.

Figure 6.21: Frequency response of the channel of 160 received
ULSRS



52 Simulations and Results



Chapter7
Conclusions & Future work

7.1 Conclusions

This study investigates UE-BS link characteristics in A1 and C1 scenarios using
the WINNER II channel model. The focus is to extract sensing features from the
channel estimates under LOS and NLOS conditions.

In the outdoor C1 scenario, we focused on LOS and NLOS detection using the
WINNER II channel model. LOS propagation in the C1 scenario, was charac-
terized by distinct power disparities between the clusters, with the first cluster
consistently stronger than the rest. NLOS propagation in the C1 scenario exhib-
ited irregular power levels across clusters, indicating obstructed channels due to
physical obstacles. Specific path delays showed variations in received power, on
a few clusters. Power disparities among BS antennas were observed, with con-
structive and destructive interference affecting reception.

To train a deep learning model for LOS/NLOS detection in the C1 scenario, a
large dataset was generated, including diverse UE positions in both propagation
scenarios. A neural network was designed and achieved 90% accuracy in link
state detection. The study’s approach ensured an appropriate dataset, and an ef-
fective architecture, for accurate link state detection. The findings provide tools
for optimizing system performance in suburban outdoor communication envi-
ronments.

In the A1 scenario, which simulates an indoor environment, our study investi-
gated the link state transitions between LOS and NLOS propagation conditions.
The transition distance (threshold) from NLOS-to-LOS is set equal to half the
width of the LOS corridor. Channel estimations based on the pilot signals (UL-
SRS) enabled the detection and analysis of link status changes.

The choice of wall material (heavy or light) influences the NLOS path losses in
the A1 scenario. ULSRS periodicity and window size concepts are discussed, of-
fering means to regulate UE’s uplink channel measurements. The study presents
four possible outcomes based on the UE’s movement direction and prevailing
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path loss conditions in the A1 scenario. Deep learning techniques, specifically
CNNs, are employed to detect movement direction, and classify the type of wall
between the UE and the BS. The CNN model processes a window of ULSRS sig-
nals as input, achieving a 95% accuracy after training on a dataset of channel
estimations. In summary, the study provides valuable insights into the A1 sce-
nario in the WINNER II channel model, covering LOS/NLOS transitions, path
loss models, ULSRS-based detection of link status changes, and the application
of deep learning for movement direction detection, and wall material classifica-
tion.

Furthermore, we investigated the approximate arrival time of the UE to the thresh-
old line where the link state transitions from NLOS to LOS in the A1 scenario.
This allows for proactive resource allocation and scheduling based on the esti-
mated arrival time of the UE at the threshold line. The study assumes that the BS
has positioning capabilities and access to accurate UE location information. By
utilizing deep learning models to detect the UE’s movement direction and lever-
aging the periodicity of the SRS, the average speed of the UE can be determined.
Based on this information and the known threshold line, an estimated arrival
time of the UE at the threshold line can be calculated.

Finally, the study proposes a deep learning model for detecting the LOS and
NLOS link states in the A1 scenario with an obstacle in the LOS area, allowing for
the estimation of the size of the obstacle. The model achieves 92% average accu-
racy in determining the link state of the UE. In summary, it presents methodolo-
gies for determining the size of the obstacle using the output of the deep learning
model in the A1 scenario.

7.2 Future work
The thesis work we presented can be extended in many directions. Here, we list
some future work that can be done:

• The findings of the thesis can be validated and tested in real-world scenar-
ios to assess their applicability and performance. Field trials and measure-
ments can be conducted to verify the accuracy of the proposed models and
algorithms in different environments.

• The research can be extended to investigate the integration of the pro-
posed techniques with other advanced wireless communication architec-
tures. For example, the techniques could be evaluated in the context of
mmWave communications, which utilize high-frequency bands above 30
GHz to achieve extremely high data rates. Assessing the performance of
the techniques in these challenging and dynamic environments would fur-
ther validate their effectiveness and applicability.

• Investigating the robustness of the proposed models and algorithms to
changing environmental conditions, such as varying obstacle configura-
tions, different types of walls, and dynamic mobility patterns, can be a
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valuable area of research. It is important to ensure that the techniques re-
main effective and reliable in real-world scenarios with varying conditions.

• Further exploration can be done on the integration of the proposed tech-
niques with positioning systems, such as GPS or indoor positioning tech-
nologies. This can enable more accurate localization of UEs and enhance
the overall performance of the wireless communication system.

• Deep learning models that are trained within the scope of the thesis, could
be very much improved, e.g., by translating the representation of the input
data to the delay-angle domain.

• Considering the prevalent use of 30 kHz SCS in mid-band spectrum, it
would be valuable to assess the feasibility and potential benefits of adopt-
ing this SCS in the proposed techniques, facilitating smoother integration
with industry standards.
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