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Abstract 

Finite resources and increasing rate of consumption have made efficiency a key component in every energy-

consuming sector. The building industry, as a major contributor, has been the target of various initiatives and 

regulations aiming to lower its impact with varying degrees of success. Measurement of this impact has not 

always been easy, especially for buildings not yet built. Therefore, simulation tools have been heavily utilized 

to provide predictions.  

However, the results from simulations are not always in line with the measurements. The extent of this variation 

is often so remarkable that it calls into question the reliability of building simulation tools and methods. A major 

contributor to this discrepancy has been identified as the oversimplification of occupancy inside the buildings, 

which neglects their impact on energy usage.  

This study investigated this performance gap by comparing a normal energy model of a case study with a more 

realistic energy model that considers occupants and their behavior through an agent-based modeling approach 

while relying on real loads and set points. The normal model relied on Swedish building code and was modeled 

using Honeybee in Grasshopper, while the agent-based model utilized the normal model as a base case while 

changing different loads and set points to match the measured data. Furthermore, to model occupants, 

Occupancy Simulator was used to create occupant profiles as an obXML file, while a survey with a 

complementary code defined behavioral models for each individual; this file was then used for co-simulation 

via obFMU and EnergyPlus to create the agent-based model. Additionally, a comparative analysis was 

performed to investigate the impact of adopting an occupant-centric metric compared to energy use intensity to 

measure the performance of the simulations. Lastly, the accuracy of the agent-based model was evaluated. 

The results demonstrated a significant gap between the total energy use of the two models, with an even larger 

disparity observed when using the occupant-centric metric. Furthermore, it showed that stochastic modeling of 

occupant’s presence, movement, and interaction in the building had a considerable effect on energy usage. 

However, relying on inaccurate set points and schedules for the highest energy-consuming system that offered 

no control to the occupants was the major contributor to the performance gap. The agent-based model was 

shown to perform correctly most of the time, although certain inaccuracies were identified. 
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Abbreviations 

Atemp  Heated floor area 

BBR  Boverket’s Building Regulations 

BPS  Building performance simulation 

DNAS    Drivers, Needs, Actions, Systems 

EUI  Energy Use Intensity (kWh/m²) 

FMI  Functional Mockup Interface 

FMU Functional Mockup Unit 

GH Grasshopper 

HB Honeybee 

HVAC  Heating, Ventilation, and Air Conditioning 

IEQ  Indoor Environmental Quality 

obFMU occupant behavior Functional Mockup Unit 

obXML occupant behavior Extensible Markup Language 

OSim Occupancy Simulator 

U-value Thermal transmittance (W/(m²·K)) 
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Terminology  

Accuracy 

The variation between the measured and simulated value. The higher the variation, the less accurate the 

simulation results are 

Building Performance 

In the context of this study, building performance is used to indicate the level of energy consumption in 

simulations 

Deterministic 

Use of fixed schedules 

Hawthorne effect  

The behavioral changes in people due to the awareness that they are being observed 
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1 Introduction 

1.1 Problem motivation 

Buildings form an integral part of our daily lives, providing essential spaces for dwelling, work, and leisure, 

directly affecting our well-being, it has been reported that people spend on average 87 % of their time indoors 

(Klepeis et al., 2001). The building sector also plays a substantial role in global energy consumption and 

emissions, accounting for over 30 % in 2022 (IEA, 2024), in the United States, residential and commercial 

sectors have been responsible for 36 % of the overall energy consumption (EIA, 2022) and they represented the 

largest energy-consuming sector in Europe at 40 % in 2023 (Energy Performance of Buildings Directive, 2024). 

Consequently, initiatives like Nearly zero-emission building (NZEB) have emerged to address this issue. 

Therefore, accurate prediction of the energy consumption of the current and future building stock is essential. 

However, studies have pointed to inconsistencies between the measured and expected energy usage in buildings, 

often labeled the” performance gap”. In one study, the result from monitored energy consumption compared to 

expected consumption varied up to 287 % in renovated German buildings built in the 1950s (Calì et al., 2016). 

De Wilde (2014) has defined three reasons for the performance gap: design stage issues like inaccurate 

assumptions on inputs used in simulation programs and errors in simulations, construction stage issues such as 

poor assembly and craftsmanship, operational stage issues which are mainly caused by occupant behavior and 

a lack of realistic presentation of their actions in the building; Yet, performance gap can also be related to 

characteristics unique to each building (Menezes et al., 2012). 

The International Energy Agency (IEA), Energy in the Buildings and Communities Program (EBC), Annex 53: 

Total Energy Use in Buildings has identified six key elements influencing energy consumption in buildings: 1) 

climate, 2) building envelop, 3) building services and energy systems, 4) building operation and maintenance, 

5) indoor environmental quality (IEQ), 6) occupant activities and behavior (Yoshino et al., 2017). While energy 

use in buildings is a function of human activity, not of the buildings themselves (Janda, 2011), the first five 

factors have always received more attention. Occupants are also neglected in the metrics that are used in 

evaluating building's performance like energy use intensity (EUI) (O’Brien et al., 2017), they are only viewed 

as a homogenous energy-consuming and producing unit described by a fixed set of schedules and thresholds 

(Yan et al., 2015).  

This contradicts the complex nature of occupants’ behavior and their interaction with the building, which 

impacts energy use and subsequently influences occupant behavior, leading to be one of the main reasons for 

inaccuracies in building performance simulations (BPS) (Yan et al., 2015). For instance, Hong & Lin (2013) 

have shown that different workstyles in a private office setting can significantly impact energy consumption, 

resulting in potential deviations of up to 90 % (increase) or 50 % (decrease) from baseline usage. 

Occupants’ needs and actions can also vary not only between individuals but also for a single person based on 

shifting conditions. For example, individual preferences for desk illuminance diverged significantly in office 

workers with dimmable lighting, ranging from 230 lux to 1000 lux, and in another setup 57 % of subjects sitting 

near windows used no electric lights, while others added 20 lux to 450 lux (Galasiu & Veitch, 2006). 

 

1.2 Aim and objectives  

This project aims to analyze the performance gap originating from the unrealistic representation of occupants 

in BPS. This is realized by developing an occupant behavior model that simulates occupants’ presence and 

interaction with building systems more accurately, which is then compared with a base case model created using 

standards and the current Swedish building code. 

To fulfill this aim, the objectives are to: 

• Review the state of the art  

• Identify the correct methods for collecting data that would then be used for simulation 
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• Investigate the applicability of an agent-based, discrete event and system dynamic modeling approach 

in occupant behavior model simulation and use the most suitable option 

• Explore metrics that are more effective in performance analysis related to occupancy 

• Validate the predictive performance of the occupant behavioral model 

• Make recommendations 
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2 Background 

2.1 Occupant behavior 

An accurate prediction of the overall energy consumption in buildings relies upon a detailed understanding of 

how occupant behavior impacts this consumption. Occupants can influence energy use through occupancy and 

their behavior (Yoshino et al., 2017). Occupancy refers to the number of occupants and their presence or 

absence. Accurate prediction of occupancy is crucial as occupants contribute to latent and sensible heat gains, 

and occupancy is a prerequisite for any occupant behavior to occur. 

Occupant behavior is categorized into adaptive and non-adaptive actions. Adaptive actions are those in which 

occupants try to either adapt their environment to match their own preferences, such as turning on/off the heating 

or cooling system, turning on/off the lights, opening or closing the windows, or try to adapt themselves to the 

environment for example by changing their clothes. Non-adaptive actions are not related to environmental 

adaptation but still impact energy consumption, like using electric equipment (Hong et al., 2017).  

Furthermore, the behavior of occupants is stochastic, meaning it does not follow a predefined pattern and can 

be described as random. It can also evolve and depend on multiple variables (O’Brien & Tahmasebi, 2023). To 

be able to explain why humans behave the way they do multiple theories have been developed, three of which 

are discussed in this section. 

The social cognitive theory 

Social Cognitive Theory (SCT), developed by Bandura (1989) offers a framework for understanding human 

behavior as a product of personal, behavioral, and environmental influences, with each factor reciprocally 

influencing the others. This means that we learn by observing others and our environment, while our own actions 

also shape our beliefs and the world around us.  

The theory of planned behavior 

The theory of planned behavior (TPB) suggests that the behavior of individuals is largely determined by their 

intention to perform that behavior. Intentions are shaped by their attitude, subjective norms, and their belief in 

their ability to control their behavior. The likelihood of a behavior being performed has a direct correlation with 

the intensity of their intention. However, even with strong intentions, they may not be able to perform that 

behavior if they lack the necessary resources (Ajzen, 1991). 

Drivers, Needs, Actions, Systems 

The Drivers, Needs, Actions, Systems (DNAS) framework was developed to create a structured and standard 

approach for documenting the impact of occupant behavior on energy consumption in buildings and enhancing 

the comparability and reusability of data across different simulations. As a detailed ontology, it provides a 

technical vocabulary to address critical issues, such as the oversimplification of human interactions in building 

design and the misalignment between occupant behavior and building controls (Hong et al., 2015). This 

framework includes four components:  

Drivers 

Drivers are various factors that generate a desire for change to satisfy physical, psychological or physiological 

needs. This category includes five elements:  

1) Building: Attributes such as orientation, building material, interior layout, etc. as driver 

2) Occupant: Characteristics including age, gender, and physical mobility 

3) Environment: Climate, weather, air temperature and humidity levels and solar radiation.  
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4) Systems: The current state of a building’s systems can determine whether an occupant would interact 

with a system 

5) Time: The location of the occupants and some of their habits are time-driven, for example, day of the 

week would determine where an occupant would be and the time of the day could be a factor for opening 

and closing windows or blinds 

Needs  

Needs are the physical and non-physical conditions that, when realized, result in the occupant feeling 

comfortable with their environment. If these conditions are not met, discomfort arises, and if it extends beyond 

the occupant’s tolerance level, they may react by adjusting their environment through different actions. The 

threshold for this tolerance varies from individual to individual. 

Physical needs include: 

1) Thermal comfort 

2) Visual comfort  

3) Acoustic comfort 

4) Indoor environmental health including IAQ and humidity 

Non-physical needs consist of elements such as privacy or view to the outside. 

Actions  

Actions involve interacting with a system in order to fulfill a need. Additionally, inaction is possible, where the 

occupant chooses to endure the discomfort without taking any measures. 

Systems  

Systems are the devices that occupants interact with to enhance their environmental comfort, which in turn 

affects the building’s energy use. Examples of such systems include windows, blinds, lights, thermostats, and 

electrical equipment. 

2.2 Model development 

2.2.1 Model selection 

An effective model must balance accuracy with useability. Absolute precision is not the goal, models are 

generally expected to generate sufficiently accurate predictions of occupant behavior (Yan et al., 2015). The 

accuracy of prediction is not solely determined by using a fixed or a probabilistic schedule, the quality of the 

inputs or assumptions that were used to create the model have been shown to have a major impact  (Tahmasebi 

& Mahdavi, 2017). As George Box noted, ‘All models are wrong, but some are useful.’ (Box, 1976) thus the 

goal should be to create a useful model. There have been many attempts at devising a framework for proper 

model selection, such as: 

Occupancy resolution model  

Melfi et al. (2011) proposed a model in which the information regarding the occupancy would be divided into 

three categories: 

Table 2.1. Occupancy resolution model 

Spatial resolution Occupant resolution Temporal resolution 

Room Activity of each individual Seconds 



5 

 

Floor Identifying each person Minutes 

Building Occupancy count Hours 

Building block State of present or absence Days 

 

Spatial resolution refers to the granularity in the representation of spatial data within a model. Occupant 

resolution refers to the level of detail in recording and reporting information about the occupants. Temporal 

resolution refers to the shortest time interval in which a sensor can detect and report changes in spatial and 

occupant resolution.  

Increasing the resolution by choosing a smaller unit would result in higher accuracy but at the cost of more 

computing power to perform the simulation. Ultimately, the model’s objective would define the right resolution. 

Fit-for-purpose 

Simulations don't always benefit from the highest possible resolution, as shown by Mahdavi & Tahmasebi 

(2016) where the non-probabilistic model outperformed the probabilistic one for short-term prediction of 

occupant behavior. This suggests that higher accuracy requires the right resolution that would fit the purpose of 

the simulation (O’Brien & Tahmasebi, 2023). As Heppenstall et al. (2012) states “At the extreme, if a model 

becomes as complicated as the real world, it will be just as difficult to interpret and offer no explanatory power”. 

In order to find a suitable model Gaetani et al. (2016) proposed a method that relies on consideration of elements 

that could influence the choice of modeling approach, they are classified into four categories:  

1) Object-related factors such as the building’s function, specification, and level of control over systems 

inside the building 

2) Aim of simulation such as policy making, design or renovation 

3) Performance indicators such as energy consumption or peak loads 

4) Phases of building life cycle such as design, construction or operation 

Identifying the relevant factors provides a suitable range of modeling options, and subsequently, the simplest 

approach that aligns with the specific need should be chosen.  

2.2.2 Data collection  

2.2.2.1 Methods 

In-situ 

In-situ studies monitor occupants in their natural settings, primarily using sensors integrated into building 

automation systems or installed for research. These studies are advantageous for realistically replicating 

occupant behavior but face challenges including privacy concerns, the invasive nature of research visits, and 

potential interference with daily activities. Although they minimize the Hawthorne effect, these studies often 

lack detailed contextual insights. Setup and data collection require substantial time and resources, and 

maintaining sensor integrity without disturbing occupants can reduce data accuracy. Ethical issues, participant 

recruitment, and informed consent are also significant considerations in conducting in-situ research (Yan & 

Hong, 2018). 

Laboratory 

Laboratory studies involve participants interacting within constructed environments designed to closely mimic 

real indoor settings, enabling detailed control over variables like layout and environmental conditions. These 

settings are beneficial for studying occupant behavior and environmental impact efficiently, offering flexibility 

in participant recruitment without the constraints of actual building occupancy. However, the artificial nature 

and high visibility of monitoring equipment can influence participant behavior, potentially leading to skewed 

results. Additionally, the cost of setting up and running these facilities is significantly higher than in-situ studies, 
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and the presence of unknown persons may further affect participants' behavior due to the Hawthorne effect (Yan 

& Hong, 2018). 

Survey 

Surveys provide a unique approach to data collection by collecting self-reported data through methods like 

questionnaires and focus groups, which differ fundamentally from sensor-based in-situ and laboratory studies. 

They are particularly useful for delving into the reasons behind occupant behaviors. Despite their cost-

effectiveness and ability to reach large numbers of participants, surveys can be susceptible to biases such as the 

Hawthorne effect and social desirability bias. Additionally, the need for active participant engagement limits 

the frequency of data collection, posing challenges for longitudinal studies.(Yan & Hong, 2018) 

2.2.2.2 Technologies 

Motion detectors 

Motion sensors identify whether an occupant is present by detecting their movements. Key types of these sensors 

include passive infrared (PIR) sensors, ultrasonic Doppler, microwave Doppler, and ultrasonic ranging sensors 

(Wagner et al., 2018) 

Human in the loop 

The human-in-the-loop methodology involves human participation in collecting data related to occupancy and 

behaviors within a space, there are several methods within this category: manual observation, internet-based 

and device interactions (Wagner et al., 2018). 

Manual observation entails individuals recording data directly, such as counting people in a specific area. This 

technique is particularly valuable for gathering specific data that automated systems might miss, like clothing 

level or contextual elements related to the physical and psychological environment. 

Internet-based methods use data from social media, calendars, or surveys provided by occupants. This approach 

raises privacy issues but is cost-effective because many organizations already collect this type of data. 

Device interactions involve analyzing how occupants interact with devices like thermostats or light switches. 

The data from these interactions can be used to create models that predict occupant behavior and presence. 

2.2.3 Modeling approaches 

Markov chain 

A Markov chain is a stochastic process in which the probability of the transition to the next state is only 

dependent on the current state and not the chain of events before it. Markov chains are used to predict the state 

of occupancy, window opening, turning on/off the lights, equipment usage, and blind and thermostat adjustment 

(Yan & Hong, 2018). 

Discrete event 

Currently, BPS programs simulate event occurrences based on discrete time changes, meaning that an event can 

only happen in the predefined time-step; this approach prevents normal or emergency events from happening if 

they are between these time-steps. Discrete event formalism, in this regard, equates to alternating time-steps 

that correspond to the occurrence of an event. Therefore, the gaps between time advancements rely on the 

moment an event occurs in the future. This approach is currently not applied in building energy simulation, but 

similar results can be achieved by using very small time-steps (one minute or less) that would simulate a 

continuous flow of time and thus eliminate the time-step barrier (Gunay et al., 2014). 

System dynamics  
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System dynamics refers to the dynamic relationship of major components of a system and the patterns with 

which they influence one another over time. This is an abstract method that does not consider the details of each 

individual element (Andrew Ford, 1999). 

Agent-based modeling 

No definitive definition has been established for an agent-based model. An agent can be an individual or a group 

of occupants with a set of rules and attributes assigned to them; they are able to interact with the environment 

and each other, and the location of each agent can be defined separately. The key aspect defining an agent-based 

model is the autonomy of each agent in their behavior within the constraints of that system. These features 

enable agent-based modeling to represent the random nature of occupants realistically (Malik et al., 2022). 

Level of detail (LoD) is an approach that optimizes the simulation in order to reduce unnecessary complexities 

and the required computational power while reaching a level of accuracy that meets the goal of the simulation. 

Malik et al. (2022) have proposed a framework for level-of-details in agent-based models which, upon reflecting 

on the objective of the simulation, the desired performance metric, building classification, and special 

resolution, enables the appropriate agent-based model to be identified based on ten occupant-centric features 

that are divided into complicatedness and complexity categories as shown in Table 2.2.Table 2.2 

Table 2.2. Level of details in agent-based models 

Complicatedness (model structure) Complexity (model behavior) 

Level 

of 

detail 
Representation Heterogeneity Zoning Occupancy 

Modeling 

formalism 
Interaction Sensing Prediction Learning Collectives 

LoD 

O-0 

Average 

occupant 
None 

Building 

level 

Static-

deterministic 

Static-

deterministic 
No No No No No 

LoD 

O-1 

Average 

occupant 
None 

Floor 

level 

Dynamic-

deterministic 

Dynamic-

deterministic 
No Yes Yes No No 

LoD 

O-2 

Group of 

occupants 
Yes 

Detailed 

space 

type 

Static-

probabilistic 

Static-

probabilistic 
Yes Yes Yes Yes No 

LoD 

O-3 

Individual 

occupant 
Yes 

Individual 

space 

Dynamic-

probabilistic 

Dynamic-

probabilistic 
Yes Yes Yes Yes Yes 

 

2.2.4 Modeling tools and implementation 

 

2.2.4.1 Energy modeling tools 

 

Energyplus  

EnergyPlus is a building energy simulation software capable of simulating HVAC, lighting and equipment 

energy usage for different building geometries created through user input (EnergyPlus, 2022). 

Rhinoceros  

Rhinoceros (Rhino) is a 3D modeling tool frequently used by architects and other professions (Rhino, 2024). 

Grasshopper 

Grasshopper (GH) is a visual programming language as a component of Rhino that enables parametric modeling 

in the Rhino environment (Rhino, 2024). 

Honeybee 

Honeybee (HB) is a software component for GH that can create and simulate energy models through EnergyPlus 

(Ladybug Tools | Honeybee, 2024). 
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2.2.4.2 Occupancy and occupant behavioral modeling tools 

Extensible Markup Language (XML) 

XML is a text and file format designed to organize, maintain, and share data, ensuring a standardized encoding 

system that is understandable by both humans and machines (XML, 2024). 

occupant behavior Extensible Markup Language (obXML) 

obXML is an XML schema describing the content and format of the data and structure of the XML file based 

on the DNAS ontology. It is designed to support the development of new methods that standardize and solidify 

descriptions of occupant behavior, capturing the inherent complexity and unpredictability of real-world 

scenarios in simulations. Its structure is intended to be flexible, facilitating the widespread standardization of 

occupant behavior modeling (Hong et al., 2015). 

The DNAS framework topology is structured in the obXML schema, centering around the OccupantBehavior 

main root element, which diverges into six sub-elements: Buildings, Occupants, Behavior, Seasons, TimeofDay 

and Holidays. This root element is uniquely identified by an ID and version attribute. The framework allows for 

specific inputs pertaining to buildings, occupants, behaviors, seasons, times of day and holidays (Hong et al., 

2015). Detailed visualizations of each of these elements are available in Appendix F. 

 

Figure 2.1. Structure of the obXML schema  

Furthermore, 127 occupant behavior models from the past four decades were reviewed, and 52 models were 

selected and represented as a library of occupant behavior models using the obXML schema (Deme et al., 2019). 
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V1.3.3 of the library contains 45 models. Both obXML and the library of occupant behavior models are publicly 

available (ObXML, 2024). 

Occupancy Simulator (OSim) 

The Occupancy Simulator (OSim) is a freely accessible agent-based web application available at (Occupancy 

Simulator, 2024) developed by the Lawrence Berkeley National Laboratory for simulating the movement and 

presence of occupants in the building, where each occupant and each space are modeled as separate agents. In 

order to streamline data entry, it allows for grouping similar occupants and spaces into categories known as 

OccupantType and SpaceType. These profiles allow the simulation of occupancy at three distinct levels: the 

entire building, individual spaces, and individual occupants' locations. The simulator uses occupant profiles 

formatted in obXML schema to produce downloadable schedules in CSV and EnergyPlus input data file (IDF) 

format, along with obXML and obCoSim XML files used for co-simulation via obFMU (Luo et al., 2017). 

OSim incorporates three models. The first model, Reinhart (2004) LIGHTSWITCH-2002 is used to manage 

status transitions such as arrivals and departures. The second model, based on Wang et al. (2011) homogeneous 

Markov chain, addresses random movements within the building, facilitating simulations of activities like 

restroom visits or movement to other offices. The third model orchestrates meetings, simulating the interactions 

of multiple occupants within a designated space, typically controlled by room agents (Chen et al., 2018). 

However, the simulator does not account for personal absences like sick days or the influence of environmental 

conditions within spaces on occupant presence. Additionally, it does not consider the time it takes occupants to 

move between spaces and is currently only capable of simulating small to large office buildings. Despite these 

limitations, Osim has been demonstrated to accurately replicate the real-world occupancy patterns within office 

buildings (Chen et al., 2018; Luo et al., 2017). 

Anylogic  

Anylogic is a Java-based proprietary modeling software that supports various simulation methods such as agent-

based, discrete event, system dynamics and a combination of all three with the possibility of visualizing the 

results. It offers a free personal learning edition with limited features (AnyLogic, 2024). 

NetLogo 

NetLogo is a Java-based open-source multi-agent programmable modeling environment used for simulating 

complex systems (NetLogo, 2024). 

Matlab 

MATLAB is a numerical computing environment that can be used for discrete event and agent-based modeling 

using Simulink (MATLAB & Simulink, 2024). 

2.2.4.3 Implementation in BPS 

Direct input 

This method involves fixed or dynamic schedules for various elements including occupancy and different 

building systems. It lacks real-time communication between the scheduling module and BPS, preventing the 

formation of a feedback loop that uses the model’s output to adjust its input. This means that the environmental 

conditions created through the simulation cannot be used as input for creating new schedules that would affect 

the simulation, which in turn would affect the environmental conditions, creating a cycle while the simulation 

is running. Furthermore, it does not support the generation of stochastic models capable of predicting the 

probability of an action being performed based on different input parameters. This approach however is 

compatible with nearly all BPS programs, is the simplest to implement, and is used most often (Hong et al., 

2018). 

User function or custom code 
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The user function or custom code method enables users to override the schedules and controls by inserting 

custom scripts or functions into a building energy model’s input file, facilitating real-time communication, 

energy management system in EnergyPlus and IDA Script in IDA ICE are examples of this approach. Moreover, 

it supports both deterministic and stochastic OB models (Hong et al., 2018). 

Co-simulation 

Co-simulation is a method where two or more programs exchange outputs and inputs, forming a feedback loop 

allowing for real-time communication and exchange of various types of information during simulation. 

occupant behavior Functional Mockup Unit (obFMU) 

The Functional Mockup Interface (FMI) is a tool-independent standardized framework designed to facilitate the 

seamless integration, exchange, and co-simulation of dynamic models across different software environments. 

A Functional Mock-up Unit (FMU) serves as a container that complies with the FMI specifications, stored as a 

zip file with a “.fmu” extension (Blockwitz et al., 2012). 

obFMU is an FMU designed for co-simulation of occupant behavior via FMI. Figure 2.2 illustrates a co-

simulation scenario between obFMU and Energyplys through ExternalInterface:FunctionalMockupUnitImport 

object in Energyplus. First, three categories of input data are sent to obFMU. Occupant behavior data, which is 

stored in the obXML file structured according to the obXML schema adhering to the DNAS ontology, is 

processed by obFMU using its obXML Parser. Information about the environment provided by Energyplus, and 

lastly, co-simulation information, which is contained in a separate XML file (obCoSim.xml) detailing space 

mapping between the obXML file and the building energy model. Afterward, each simulation zone is managed 

by a separate instance of obFMU. Finally, obFMU generates and exports schedules to Energyplus replacing the 

previous ones in order to represent the occupant action towards different building systems for that time-step. 

This process is repeated for each timestep till the end of the simulation and results from EnergyPlus and each 

zone in obFMU are stored separately as EnergyPlus output file formats and CSV respectively (Luo, 2016). 

 

Figure 2.2. Overview of the co-simulation process between obFMU and EnergyPlus adopted from (Hong et al., 2016) 

obFMU is comprised of two solvers: the movement solver and the interaction solver. The movement solver 

utilizes the same movement solver engine that was developed for OSim and is used once for each co-simulation 

to determine the location of each occupant at each time-step. Interaction solver on the other hand operates 
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continuously, executing at every time-step for each obFMU instance to simulate how a user might interact with 

a system in the specified zone. Six input variables (Zone air temperature, Zone illumination level, Zone CO₂ 

concentration, Zone lights electric power, Outdoor air temperature, Outdoor rain indicator) are imported from 

the BPS programs and seven schedules (Occupancy schedule, Lighting schedule, Plug load schedule, Window 

schedule, Shade/Blind schedule, Thermostat setpoint, HVAC schedule) are exported from obFMU to the BPS 

program replacing the schedules that were previously in use. This replacement allows the BPS program to 

operate different systems according to the calculated behavior of the occupants at each time-step. Figure 2.3 

illustrates the information exchange when co-simulation is performed using Energyplus as the co-simulation 

master and the obFMU as the slave (Luo, 2016). 

 
 

Figure 2.3. Information exchange between EnergyPlus and obFMU during a co-simulation adopted from (Luo, 2016) 

There are several limitations within the current integration of EnergyPlus and obFMU. Notably, updates in 

EnergyPlus are delayed by one time-step in relation to obFMU iterations. In practice, this means that pre-

existing schedules are consistently overwritten during each iteration. Additionally, the system faces challenges 

with managing multiple actions that occur simultaneously and sequencing occupant actions (Hong et al., 2016). 

Python  

By utilizing PyNetLogo, an interface that connects NetLogo to the Python environment, and PyFMI, which 

links the FMI to Python, Python can serve as the simulation master in co-simulations. This setup for example 

enables the integration of EnergyPlus through the FMI interface and NetLogo as the occupant modeling 

software, thus facilitating co-simulation (Fathollahzadeh & Tabares-Velasco, 2020; Jaxa-Rozen & Kwakkel, 

2018). 

Building Control Virtual Testbed (BCVTB) 

The Building Controls Virtual Test Bed (BCVTB) is a Java-based open-source software based on the Ptolemy 

II software environment which serves as middleware enabling co-simulation by linking various programs such 

as EnergyPlus, Modelica, Radiance, MATLAB/Simulink, Netlogo and FMU (BCVTB, 2024; Fathollahzadeh 

& Tabares-Velasco, 2020). 

2.3 Outcomes of occupant behavioral modeling 

Occupant behavioral models can provide a clearer understanding of how buildings and occupants interact, 

leading to more accurate performance analyses and informed design decisions. This, in turn, helps reduce the 
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performance gap creating a more comfortable living environment for occupants (Yan & Hong, 2018). They can 

also be designed for specific purposes such as evaluating the robustness of a building towards different levels 

of occupancy (Hoes et al., 2009). Also, they can be utilized for testing the energy saving potential of a 

technology by analyzing how occupants would interact with them (Yan et al., 2017). 

 

2.4 Limitations and challenges 

While an occupant behavioral model can provide a better understanding of the human-building relationship, 

relying on common metrics that normalize the energy use by floor area, such as EUI and (W/m²) for peak 

demand intensity, excludes the impact of occupancy on the building performance. Therefore, using performance 

metrics that are suitable for the goal of the simulation and more occupant oriented could be beneficial. (O’Brien 

& Tahmasebi, 2023) provide several categories for occupant-centric metrics such as:  

1) Resource and environmental impacts such as energy use via (kWh/ Occupant) or water use via 

(kg water/person)  

2) Building services such as Underlit Occupancy Hours 

3) Human-Building Interaction such as Controllability of HVAC 

Additionally, as physical, psychological, physiological, cultural and financial factors can influence the way an 

occupant behaves, creation of an occupant model that is close to reality requires collaboration between experts 

from different disciplines (Mahdavi & Tahmasebi, 2017). 

Furthermore, comparison between the outcomes of different research projects is not always possible as they rely 

on different sets and granularity of data with models that are specific to one type of building or a location, a 

model that takes the diversity of occupants into consideration can enable this comparison however collecting 

data on a large scale involving different attributes of an occupant raises privacy concerns and is not a trivial task 

(Hong et al., 2017). 

During the literature review, it was noted that despite major advancements in this field over the years, no set of 

defined approaches and standards for modeling occupant behavior exists. 
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3 Methodology 

The workflow of this study is illustrated in Figure 3.1. This process involved using the output of each section 

as the input for the next one. A base case model (BC) was created as the standard model, then data regarding 

occupancy and occupant behavior was collected. Afterward, this data was used to create the occupant profiles, 

and then these profiles, in combination with BC, were used to create the agent-based model (ABM). Finally, 

the results were analyzed and reported in the next chapter. 

 

Figure 3.1. Workflow of the methods used in this section. 

3.1 Case study 

To conduct this case study, the north-east section of the second floor of the V-huset building, which is part of 

Lund University in Lund, was chosen as each room was equipped with occupancy sensors, and the number of 

rooms was suitable for the scope of this investigation.  

 

Figure 3.2 . Corridor of the case study building 
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Figure 3.3. Plan of the selected section of V-huset 

3.2 Base case energy model 

To simulate the energy demand of this section of the building, an energy model (BC) was created using HB in 

GH. Wall construction properties were obtained from available drawings of similar buildings built for Lund 

University in 1960s by Klas Anshelm (Academic House, 2024). Although the building was renovated in 2016, 

only the exterior windows were replaced, and the walls and the roof remain untouched. Ventilation rate was set 

according to the Swedish building code (Boverket, 2018). People, lighting and equipment load, schedules and 

operative cooling and heating set points were set according to the Swedish building regulations for office spaces 

in universities (Boverket, 2017). Additionally, a second scenario (BC+) was considered in which the occupant 

density would match the real number of occupants, as described in section 3.7. 

Table 3.1. Simulation inputs for BC  

Energy simulation inputs  Values 

Envelope U-value / (W/(m²K)) 
Exterior walls 

Roof 

1.20 

0.32 

Windows U-value / (W/(m²K)) 
North and east 

South 

0.59 

1.85 

Internal mass  columns 

Shading  surrounding buildings 

Ventilation Always on 0.35 (l/s/m²) + 7 (l/s/p) 

Infiltration (ACH at 50 Pa)  3.24 

HVAC type  Ideal loads air system 

Weather file (.epw)  Lund  

Heated floor area (m²)  506 

Natural ventilation 
Always on Within the limitations of set points 

during on hours with 1 °C difference 

People load (W/person)  108 

Lighting load (W/m² Atemp)  11.4 

Equipment load (W/m² Atemp)  10 

Occupancy and system schedules Availability 8:00 – 17:00 working days 

Occupant density (m² Atemp/person) 
Base case 

Base case + 

20 

31 

Heating set points (°C) 
On hours 

Off hours 

21 

18 

Cooling set points (°C) 
On hours 

Off hours 

24 

28 
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3.3 Agent-based model 

Agent-based modeling approach was chosen as it allowed for a stochastic representation of the occupants within 

the limitations of this case study originating from data availability, time constraints and availability of occupant 

modeling programs capable of co-simulation with EnergyPlus. 

Occupants were represented as single individuals with each room representing one zone. Each zone had 

occupants and systems assigned to it, and each occupant had the ability to sense environmental variables and 

make limited predictions, avoiding certain actions as a result of predefined set points. The behavior of each 

occupant was defined based on DNAS ontology using obXML while their presence and absence and movement 

through the building were simulated using the movement simulator of OSim in obFMU. 

3.4 Occupancy: movement and location 

Each occupant was provided with a unique profile containing the arrival, departure and movement of that 

individual using OSim. This information was obtained through observational studies, conducting a survey and 

using data from presence sensors. The survey consisted of two parts: part one focused on occupancy, and part 

two on occupant behavior.  

Information gathered through the first part of the survey and observations detailed the number of individuals in 

each office, whether the space was shared or private, and the daily number of visitors. It also included data on 

the occupants' break schedules, the frequency of meetings they attended, the average number of meeting 

participants, and the distribution of time spent in their own office, other offices, meeting rooms, utility rooms 

or outdoors. 

Furthermore, data on occupancy, recorded at 10-minute intervals by the PD2400 infrared presence sensor 

integrated into Lindinvent TTC's supply air system in each room, was obtained from Akademiskahus for the 

year 2023. This system monitored and recorded states of presence and absence. To identify the most frequent 

arrival and departure hours, using Python, the data for each room was sorted to only show the first and last 

presence state for each day of the year; then, the first and last states were sorted separately to list all the filtered 

hours based on time of the day. These filtered lists were then analyzed using kernel density estimation (KDE) 

as the recorded data did not follow a pattern. Finally, the peak of the curve was chosen as the most frequent 

occurrence, which served as the mod for this data set, as shown in Figure 3.4Figure 3.4. The most frequent first 

and last recorded states were chosen as the typical arrival and departure hours for the whole year, respectively 

and standard deviation from this point was calculated to reveal their variation. The complete list of calculated 

hours can be found in Appendix A. 

 

Figure 3.4. Example of a KDE for the first presence state detected at each hour throughout the year for room 34  
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Using this information, each occupant was modeled as a separate occupant type with its own set of movement 

and occupancy information, each room was also modeled separately and the corresponding occupants were 

assigned to them. Simulation period was set for one year, with 2023 Swedish holiday dates manually added. 

The simulation was performed at a 5-minute time-step. The obXML and obCoSim files generated by this 

simulation were then used for the next stages. 

3.5 Behavior  

The second part of the survey was used to find the right behavior model for the occupants, it was created based 

on a framework developed by D’Oca et al. (2017) uniting concepts from SCT, the DNAS ontology, and TBP to 

address the dynamics of energy-related behaviors within office settings affecting energy consumption and 

indoor comfort. It concentrates on how environmental and personal factors, along with societal norms, influence 

occupants' decisions to engage with building controls (D’oca et al., 2016). 

This part of the survey was comprised of 5 main sections; the first section identified what the thermal, visual 

and IAQ needs of the occupants are and if these needs are satisfied. The second section assessed if occupants 

were allowed to interact with different systems in the building. The third section examined the occupants' 

knowledge of how to operate these systems. The fourth section analyzed occupants' intentions regarding the use 

of these systems. Finally, the fifth section collected data on the frequency of interaction with various systems 

inside the building. The list of survey questions can be found in Appendix B. 

Answers from the survey were collected in an Excel sheet. A translation layer was developed according to the 

DNAS framework; the answers for each question were broken down and numbers, DNAS tags and weights 

were assigned to them. As demonstrated in the following examples from the survey where the participants were 

first questioned about how satisfied they were with their visual comfort. Only the state of dissatisfaction was 

considered s valid answer as a satisfied individual was unlikely to alter their condition. Afterward, the next 

question assigned the appropriate Drivers, Needs and Systems for each answer based on the conditions of this 

case study. 

Question 1: On average, how would you rate the visual comfort (natural and/or artificial light levels and 

distribution that would let you see easily and clearly), in your usual workspace? 

1. Very dissatisfied   

2. Dissatisfied 

3. Somewhat dissatisfied 

4. Neither satisfied nor dissatisfied 

5. Somewhat satisfied  

6. Satisfied  

7. Very satisfied 

Question 2: If you are not satisfied with the visual comfort in your workspace, what is the main cause for visual 

discomfort? (You may choose more than one answer)   

1. Too much artificial lighting  

2. Too much natural lighting  

     

   

 

 

 

Translation:  

Q1 =  { 

    "1": {"Intensity" : "Very High" }, 

    "2": {"Intensity" : "High" }, 

    "3": {"Intensity" : "Medium" }, 

    "4": {"Intensity" : "Low" } 

} 

Translation:  

Q2 = { 

"1" :{ 

        "Drivers": "RoomWorkPlaneDaylightIlluminance", 

        "Needs": "Visual", 

        "Systems": "Lights"}, 

"2" :{ 

        "Drivers": "RoomWorkPlaneDaylightIlluminance", 

        "Needs": "Visual", 

        "Systems": "ShadesAndBlinds"}} 
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Next, a complementary code written in Python was developed to find the right behavioral model from the library 

of behaviors included in obXML for each occupant, the process is demonstrated in Figure 3.5. First, the 

translation layer and library of behaviors defined using DNAS were added as dictionaries and the survey answers 

were loaded from the Excel file. Then, participant’s thermal, visual and IEQ needs were analyzed, and if a need 

was present, the associated drivers and systems were identified and a dictionary containing the relevant drivers, 

needs and systems was assigned to that participant. In the next step, the level of access to different systems, 

level of knowledge about different systems and participant’s intention level towards using different systems 

were assessed. Average and higher than average levels were assumed as a positive answer. Next, the usage 

frequency of different systems was examined; if the usage was frequent enough (more than never, once a year 

or six months) it was considered as a positive answer. Afterward, if the systems in the participant’s dictionary 

had a positive access, knowledge and intent, the dictionary moved to the next stage, where it was checked 

against the frequency of actions with the same systems as the one in the participant’s dictionary. The action was 

added to the dictionary if the outcome was positive. At this stage, the dictionary contained the participant’s 

behavior defined through the DNAS framework and it was then compared with the behaviors from the library. 

Lastly, behaviors with identical identifiers were selected for the participant. This process was repeated for all 

the other participants, resulting in a final Excel file that contained the ID of occupants and their assigned 

behavior from the library. The behavior assignment code can be further explored in Appendix C. 

 

 
 

Figure 3.5. Workflow of the behavior assignment code 

The list created using this code was used to complete the obXML file. Behaviors were added to 

`/OccupantBehavior/Behaviors` element, the IDs from these behaviors were added for each corresponding 

occupant in `/OccupantBehavior/Occupants/Occupant` element and the system involved in that behavior was 

also added to the corresponding room in `/OccupantBehavior/Buildings/Building/Spaces/Space` element  

Furthermore, obXML file was further refined using knowledge and observations about the type of systems in 

use in this section of the building. For example, as each room was equipped with an automatic light-off switch 

connected to the occupancy sensor, this system was modeled in obXML. Lastly, the XML file was verified 

using the obXML schema to ensure it followed the correct structure. 

3.6 Co-simulation 

In order to use the occupant profiles in obXML with BC to run an energy simulation, a co-simulation was 

performed. To enable this co-simulation, the IDF file created from the simulation of BC was modified using 

EnergyPlus V 23.2 IDF Editor. obFMU as a Functional Mockup Unit (FMU) was imported to EnergyPlus as an 

external interface with EnergyPlus as the simulation manager.  
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Zone Mean Air Temperature, Daylighting Reference Point 1 Illuminance, Zone Air CO₂ Concentration, Zone 

Lights Electricity Rate, Site Outdoor Air Drybulb Temperature and Site Rain Status were defined as output 

variables and the following inputs were added in order to enable the export of these variables by EnergyPlus. 

 

Table 3.2. Input for enabling co-simulation with obFMU in EnergyPlus 

Output Variables IDF Object Inputs and descriptions  

Daylighting Reference Point 1 

Illuminance 
Daylighting:Controls 

Created for each zone and Daylighting 

reference points for each zone were assigned to 

them 

Related Daylighting Reference 

Point 1 Illuminance schedule 
Stepped Control 

Availability Schedule Name: Off 

Related Daylighting Reference 

Point 1 Illuminance schedule 
Schedule:Compact 

Name: Off 

Schedule Type Limits Name: Any Number 

Field 1: Through: 12/31 

Field 2: For: AllDays 

Field 3: Until: 24:00 

Field 4: 0 

Daylighting Reference Point 1 

Illuminance 
Daylighting:ReferencePoint 

One reference point was assigned to the center 

of each work desk in each zone at the height of 

0.8 m from the floor  

Zone Air CO₂ Concentration ZoneAirContaminantBalance 

Carbon Dioxide Concentration: Yes 

Outdoor Carbon Dioxide Schedule Name: 

Outdoor CO₂  

Generic Contaminant Concentration: No 

Related Zone Air CO₂ 

Concentration schedule 
Schedule:Constant 

Name: Outdoor CO₂  

Schedule Type Limits Name: Any Number 

Hourly Value: 400 

Zone Air CO₂ Concentration People 

Carbon Dioxide Generation Rate {m3/s-W}: 

3.82 × 10-8 for each Occupant type (EN 16798-

2, 2023) 

Zone Lights Electricity Rate Lights 

Individual lights were assigned to each zone 

instead of how lights were previously assigned 

to space types that contained several zones 

Site Rain Status RunPeriod Use Weather File Rain Indicators: Yes 

Related schedule ScheduleTypeLimits 

Name: Fraction 

Lower Limit Value: 0.0 

Upper Limit Value: 1.0 

Numeric Type: CONTINUOUS 

Related schedule ScheduleTypeLimits Name: Any Number 

 

To read and send these variables from the external interface to obFMU, 

ExternalInterface:FunctionalMockupUnitImport:From:Variable was used, with the variables separately 

defined for each zone, as demonstrated in Table 3.3 for zone 2031. 

Table 3.3. Input for enabling the export of output variable for zone 2031 as a sample  

Output:Variable Name Variable inputs 

Zone Mean Air Temperature 

Output:Variable Index Key Name: 2031 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_Temperature 

Zone Lights Electricity Rate 

Output:Variable Index Key Name: 2031 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 
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FMU Variable Name: OutdoorAir_Drybulb_Temperature 

Site Outdoor Air Drybulb Temperature 

Output:Variable Index Key Name: Environment 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_Temperature 

Site Rain Status 

Output:Variable Index Key Name: Environment 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Outdoor_Rain_Indicator 

Daylighting Reference Point 1 Illuminance 

Output:Variable Index Key Name: 2031 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_illum 

Zone Air CO₂ Concentration 

Output:Variable Index Key Name: 2031 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_CO₂  

 

To import schedules from obFMU to the external interface, 

ExternalInterface:FunctionalMockupUnitImport:To:Schedule was used. Schedules for HVAC, light, 

infiltration, occupancy, plug load, thermostat, shade and blind were individually defined for each zone. An 

example of Zone 2031 is given in Table 3.4. 

Table 3.4. Input for enabling the import of schedules for zone 2031 as a sample  

Name Schedule inputs 

Zone_HVAC_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_HVAC_SCH 

Initial Value : 0 

Zone_light_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_light_SCH 

Initial Value : 0 

Zone_infil_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_infil_SCH 

Initial Value : 0 

Zone_occ_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: Zone_occ_SCH 

Initial Value : 1 

Zone_PlugLoad_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: 

Zone_PlugLoad_SCH 

Initial Value : 0 

Zone_Thermostat_SCH_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: 

Zone_Thermostat_SCH 

Initial Value : 21 
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Zone_ShadeAndBlind_Room_2031 

Schedule Type Limits Names: Fraction 

FMU File Name: obFMU.fmu 

FMU Instance Name: obm_Room_2031 

FMU Variable Name: 

Zone_ShadeAndBlind_SCH 

Initial Value : 0 

 

Afterward, the schedules for the number of occupants, lights, equipment, window opening, thermostat and 

blinds were replaced accordingly. The assignment of values for people, lighting and equipment were changed 

to separate zones from space types. Lighting load for each zone was set according to the type and number of 

lights installed in each room and their illuminance was measured using a Hagner E4-X lux meter and used 

accordingly in the ’Illuminance Setpoint at Reference Point {lux}’ section of DAYLIGHTING:CONTROLS 

object in Energyplus. While the lights supported dimmable control, they were assumed only to turn on or off 

based on observations and interviews with the occupants and their usage patterns. 

Equipment load for each zone was set to 120 W/m² based on observations of the number of electrical equipment 

and their usage, which fell below the average of the measured appliance use in offices (Gunay et al., 2016). The 

full list of lighting and equipment load for each room is accessible in Appendix D. Thermostat schedule and 

values were changed based on temperature recordings data obtained from Akademiskahus, a constant schedule 

was set for the cooling and heating set points and their values were changed to 21 °C and 24 °C respectively for 

the whole 24 hours of the day. HVAC inputs were not changed from the base-case model as a central control 

system operated the HVAC system in the building and occupants had no control over it. Corridor lights were 

set to 100 % luminance from 8:00 – 17:00 and to 20 % from 17:00 – 8:00 to accurately represent their real 

operation that was controlled automatically. The blinds were implemented by adding electrochromic glazing to 

the windows that required blind modeling as this option required the least amount of alternation to BC geometry 

and properties. Lastly Number of Timesteps per Hour in Timestep object was set to 12. An example of inputs 

for these changes for zone 2036 can be found in Table 3.5. 

Table 3.5. Input for implementation of schedules for zone 2036 as a sample 

Schedules IDF object Inputs 

Occupants People 

Number of People Schedule: 

Zone_occ_SCH_Room_2036 

Number of People Calculation Method: 

People 

Number of People: 1 

Lighting Lights 

Schedule Name: 

Zone_light_SCH_Room_2036 

Design Level Calculation Method: 

Watts/Area 

Watts per Zone Floor Area {W/m²}: 3.4 

Equipment ElectricEquipment 

Schedule Name: 

Zone_PlugLoad_SCH_Room_2036 

Design Level Calculation Method: 

Watts/Area 

Watts per Zone Floor Area {W/m²}: 6.2 

Window opening ZoneVentilation:WindandStackOpenArea 
Opening Area Fraction Schedule Name: 

Zone_infil_SCH_Room_2036 

Blinds WindowShadingControl 

Shading Type: SwitchableGlazing 

Shading Control Type: OnIfScheduleAllows 

Schedule Name: 

Zone_ShadeAndBlind_Room_2036 

 

obCoSim.xml was updated to map the correct FMU instance name to the xml space ID, Movement calculation 

was set to Yes, start and end time and dates were set similarly as the inputs in RunPeriod object of IDF file for 

one year and timestep was set to 12. obXML.xml, obCoSim.xml, obFMU, BC IDF file and the weather file for 
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Lund were placed in the same folder. This folder was copied 10 times and the simulation for each one was 

performed separately to ensure no unintentional changes occurred to the input files by overwriting them. The 

average value from these 10 runs was used as the final result for ABM. 

3.7 Analyses  

As this study focused on how occupants impact the energy consumption in the building, (kWh/Occupant/year) 

was chosen as an occupant-centric metric to evaluate the total energy usage based on standard and measured 

occupancy levels throughout the year, which was then compared to the results that relied on EUI as the 

performance metric. Furthermore, to evaluate the significance of different parameters and lower the varying 

variables when using (kWh/Occupant/year), two new scenarios were introduced. 

The first scenario looked at the significance of occupant count by simulating a base case model (BC+) with the 

same number of occupants as ABM as changing the number of occupants in ABM was not possible because it 

was representing the real number of people currently occupying this space and introducing more occupants 

would have resulted in creation of occupant profiles without any basis on reality unlike the ones created before.  

The second scenario analyzed the parameters affecting lighting and equipment energy usage, by simulating the 

agent-based model (ABM+) using the same lighting and equipment loads as BC. This simulation was performed 

10 times and the average was used to measure the significance of lighting and equipment loads in a probabilistic 

simulation. 

Table 3.6. Specifications of different scenarios 

Scenario Number of occupants Heating and cooling set 

points and schedule 

lighting loads Equipment load 

BC 24 Standard 
Standard lighting 

loads 

Standard equipment 

loads 

BC + 16 Standard 
Standard lighting 

loads 

Standard equipment 

loads 

ABM 16 Real Real lighting loads Real equipment loads 

ABM + 16 Real 
Standard lighting 

loads 

Standard equipment 

loads 

 

While both models had the same number of occupants as input, the stochastic generation of occupancy in the 

ABM+ meant that the overall number of occupants present during a year would still not be the same in both 

models. Therefore, the total number of occupants present during the year was 32 853 and 37 441 for ABM+ and 

BC+ respectively. 

Finally, regression analyses were performed to determine whether occupancy can explain the outcomes of 

lighting and equipment models. 
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4 Results 

4.1 Occupant behavioral model 

Using the output of the behavior assignment code, observations regarding the current state of systems installed 

in the offices and some general assumptions, light, window, blind and equipment behavioral models were 

selected for this simulation, detailed in Table 4.1. The full technical specifications of the behaviors are available 

in Appendix F. 

Table 4.1. Selected behaviors. 

Selected Behavior 

Model number System Description 

1 Lights Reinhart-Voss model for determining the probability of turning on the lights based on 

the current level of desk illuminance at arrival in the morning. This probability 

increases as the natural light level decreases below the comfort threshold (Reinhart & 

Voss, 2003) 

2 Lights Gunay model for determining the probability of switching on the lights with a focus 

on the immediate decision to turn on lights based on current desk illuminance levels 

when entering the room in the afternoon and evening based on Reinhart 2004 model 

without additional behavioral complexities (Gunay et al., 2016) 

3 Lights Model for turning off the lights when no occupancy is detected 

4 Windows Haldi-Robinson model for estimating the probability of opening the windows as a 

function of the indoor temperature (Haldi & Robinson, 2008) 

5 Windows Haldi-Robinson model for predicting window closing during the day based on indoor 

and outdoor temperature (Haldi & Robinson, 2009) 

6 Windows Model for opening the window if the CO₂ concentration is above the recommended 

threshold of (1100 ppm) for offices defined by (EN 16798-2, 2023) 

7 Windows Model for closing the window at the end of the workday 

8 Blinds Newsham model for opening the blinds in the morning upon arrival (Newsham, 

1994) 

9 Blinds Model for closing the blinds at the end of the workday 

10 Equipment Model for turning on the equipment when entering the room 

11 Equipment Model for turning off the equipment when leaving the room 

12 Equipment Model for turning off the equipment when leaving the room for a short time (one 

hour) 

13 Equipment Model for turning off the equipment when leaving the room for a long time (six 

hours) 

Table 4.2. Occupants and their assigned behavior. 

Selected Behavior for each occupant 

Occupant ID Model number 

S1_31_Office_O1 1, 2, 3, 10, 11 

S2_32_Office_O1 1, 2, 3, 10, 13 

S3_33_Office_O1 1, 2, 3, 4, 5, 6, 7, 10, 11 

S3_33_Office_O2 1, 2, 3, 10, 11 

S4_34_Office_O1 1, 2, 3, 4, 5, 7, 10, 11 

S5_35_Office_O1 1, 2, 3, 4, 5, 6, 7, 10, 12 

S5_35_Office_O2 1, 2, 3, 6, 7, 10, 12 

S6_36_Office_O1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

S7_37_Office_O1 1, 2, 3, 10, 11 

S9_39_Office_O1 1, 2, 3, 10, 13 

S10_40_Office_O1 1, 2, 3, 4, 6, 7, 10, 12 
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S11_41_Office_O1 1, 2, 3, 10, 12 

S12_42_Office_O1 1, 2, 3, 8, 9, 10, 12 

S13_44_Office_O1 1, 2, 3, 8, 9, 10, 12 

S14_45_Office_O1 1, 2, 3, 10, 11 

S16_53_Office_O1 1, 2, 3, 10, 12 

 

4.2 Performance analyses 

4.2.1 Total energy usage 

The total annual energy use of BC simulation and the average of 10 separate runs of ABM are presented in 

Figure 4.1, as illustrated, ABM consumed 20 % more energy compared to BC. 

 

Figure 4.1. Annual energy use of BC and ABM 

Figure 4.2 shows that heating increased by 48 %, followed by mechanical ventilation with 10 %. While cooling 

accounted for the lowest portion of the energy use, with only 1000 kWh rounding up to only 1 % of total energy 

use, a significant reduction of 74 % was observed, bringing the energy consumption down to 260 kWh in ABM. 

Lighting and Equipment also had a noticeable reduction, with 48 % and 38 %, respectively. 

 

Figure 4.2. Annual energy use of different categories for BC and ABM 
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4.2.2 Energy balance 

Figure 4.3 shows the Energy balance of the two models. Infiltration and transmission increased by 19 % and 

47 %, respectively, whereas natural ventilation decreased by 58%. People load decreased by 44%, and solar 

gains remained unchanged. 

 

Figure 4.3. Energy balance of BC and ABM 

4.2.3 Monthly breakdown  

Figure 4.4 represents the monthly energy use for heating and cooling. It is noticeable that heating in the ABM 

had a steady trend of higher consumption with an average of 39 % increase in winter, spring and autumn and a 

700 % increase compared to BC in summer. This overall increase can be attributed to the heating schedule, 

which was on for 24 hours every day. Cooling, on the other hand, decreased by 76 % on average over all the 

active months.  

 

Figure 4.4. Monthly energy usage for heating and cooling in BC and ABM 
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Lighting and equipment energy use both had a noticeable decrease with an average of 48 % and 38 %, 

respectively, as shown in Figure 4.5. The highest reduction for lighting and equipment load was observed during 

May with 52 % and 42 %, respectively. 

 

Figure 4.5. Monthly energy usage for lighting and equipment in BC and ABM 

Mechanical ventilation increased by 11 % on average, with the highest surge in September at 25 %. Figure 4.6.  

 
 

Figure 4.6. Monthly energy usage for mechanical ventilation in BC and ABM 
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Figure 4.7. Sample of the occupancy schedule of one room for one week in BC and ABM 

The cumulative distribution function of the number of occupants in the building throughout the year in Figure 

4.8 shows the nature of the occupancy schedules in both models. It highlighted how the probability of the 

presence of different numbers of occupants differed in BC compared to ABM. BC had no occupants present for 

75 % of the time (off hours) while all of the occupants were present at once for the rest of the time. The flat 

horizontal line showed the fixed occupant count throughout the working hours in the year. On the other hand, 

the line for ABM had a more gradual increase reflecting the stochastic nature of occupants and the more even 

distribution of their presence. 

 

 

Figure 4.8. Cumulative distribution function of the total occupant count for BC and ABM 
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throughout the night in the ABM model, while in BC, it was tied to working hours. 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

O
cc

u
p

an
t 

co
u
n
t

Time / hour

BC occupancy

schedule

ABM occupancy

schedule

  

   

              

 
 
 
 
  
  
 
  
 
  
 
  
  
  
 
  
  
  



27 

 

 

Figure 4.9. Sample of the equipment usage schedule shown through its energy consumption for one room during one 

week in BC and ABM 

The same pattern can be observed for equipment usage in Figure 4.10, where all the equipment in the building 

in BC was used at the same time while ABM loads varied. 

 

Figure 4.10. Cumulative distribution function of the total equipment load for BC and ABM 
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Figure 4.11. Sample of a lighting schedule shown through its energy consumption for one room during one week in BC 

and ABM 

Figure 4.12 represents the cumulative distribution function of the lighting load for the whole building. The 

distribution of lighting load follows the same pattern as equipment load for the BC, while for the ABM, the 

majority of the load was concentrated near 0.3 kWh and peaking at 2 kWh. 

 

Figure 4.12. Cumulative distribution function of the total lighting load for BC and ABM 
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Figure 4.13. Sample of a window opening schedule shown through the annual energy loss via natural ventilation for the 

whole building during one week in BC and ABM 

Figure 4.14 represents the cumulative distribution function of the annual energy loss through window opening 

in BC and ABM. Once again BC was showed to have a comparable performance in terms of variety of window 

opening occurances compared to ABM.  

 

 

Figure 4.14. Cumulative distribution function of the total window opening for BC and ABM  
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Figure 4.15. Annual operative temperature for each zone for BC and ABM 

4.2.6 Peak loads 

Figure 4.16 and Figure 4.17 represent the heating and cooling peak loads for ABM through November 27th and 

July 26th as the day with the highest heating and cooling load in the year, respectively. 

 

Figure 4.16. Heating peak load during November 27th for ABM 
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Figure 4.17. Cooling peak load during July 26th for ABM 

Figure 4.18 and Figure 4.19 represent the heating and cooling peak loads for BC through November 27th and 

July 26th as the day with the highest heating and cooling load in the year, respectively. 

 

Figure 4.18. Heating peak load during November 27th for BC 

 

Figure 4.19. Cooling peak load during July 26th for BC 
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0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n
er

g
y
 /

 k
W

h

Time / hour

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n
er

g
y
 /

 k
W

h

Time / hour



32 

 

 
 

Figure 4.20. Total energy usage for the total number of occupants during the year for BC and ABM 

Figure 4.21 and Figure 4.22 show a comparison between (kWh/Occupant/year) and EUI as performance metrics. 

Energy use for heating and mechanical ventilation was increased by 167 % and 98 %, respectively, while EUI 

only showed an increase of 48 % and 10 %, respectively. Lighting and cooling decreased by 7 % and 53 %, 

respectively, using the new metric, while they decreased by 48 % and 74 %, respectively, using EUI. However, 

equipment energy use displayed a reverse trend and increased by 12 % when normalized by the total number of 

occupants present in a year whereas EUI showed a 38 % decrease. 

 

 

Figure 4.21. Total energy usage for different categories normalized by the total number of occupants present during the 

year for BC and ABM 
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Figure 4.22. Energy use intensity for BC and ABM 

4.3.1 Monthly breakdown 

Figure 4.23 illustrates the monthly heating and cooling energy use in both models. Heating increased by 648 % 

on average and more than doubled in ABM during the cold months of the year and was up to twenty-two times 

higher in August. Cooling was reduced by 56 % on average in ABM with the highest reduction in May by 63 %. 

 

 

Figure 4.23. Monthly energy usage normalized by the total number of occupants present for heating and cooling in BC 

and ABM  

Figure 4.24 represents the lighting and equipment energy usage per occupant hour in both models. Lighting 

energy use was reduced by 7 % on average, with the highest reduction in May at 14 %, while equipment energy 
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Figure 4.24. Monthly energy usage normalized by the total number of occupants present for lighting and equipment in 

BC and ABM  

Figure 4.25 shows that mechanical ventilation energy usage for ABM increased by 99 % on average compared 

to BC, with the most significant increase in September, at 125 %.  

 

 

 

Figure 4.25. Monthly energy usage normalized by total number of occupants present for mechanical ventilation in BC 

and ABM  

4.4 Comparative analyses 

4.4.1 Performance analyses 

Figure 4.26 compares the two main models (ABM and BC) and two additional scenarios (ABM+ and BC+) in 

terms of total energy use and the percentage of energy used by each category for the corresponding model. In 

total, ABM+ consumed 52 % more energy than BC+, and ABM consumed 116 % more energy than BC. 
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Figure 4.26. Energy usage normalized by the total number of occupants present in one year for four scenarios 

Figure 4.27 shows that energy used for heating increased by 73 % for ABM+ compared to BC+; in comparison, 

there was a 167 % increase for ABM compared to BC. Cooling loads decreased by 40 % for ABM+ compared 

to BC+. This reduction was 53 % for ABM compared to BC. Energy used for lighting was reduced by 17 % in 

ABM+ compared to BC+. Previously this number was 7 % for ABM compared to BC. Equipment energy use 

increased by 12 % for ABM+ compared to BC+ resulting in the same amount of increase as ABM compared to 

BC. Mechanical ventilation energy use increased by 55 % for ABM+ compared to BC+ while there was a 98 % 

increase for ABM compared to BC.  

 

 

 

Figure 4.27. Comparison between energy used by the total number of occupants present in a year in different categories 

between four models 

Figure 4.28 shows the energy use intensity in different categories for four models 
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Figure 4.28. Energy use intensity in different categories for BC, BC+, ABM and ABM+ 

Figure 4.29 illustrates the difference in reported energy usage when using (kWh/Occupant/year) compared to 

EUI when comparing ABM to BC and ABM+ BC+. It can be observed that the comparison between ABM+ 

and BC+ showed a positive difference in different categories indicating that even with relatively similar models, 

energy usage reported by (kWh/Occupant/year) is higher compared to EUI. 

 

 

Figure 4.29. Comparison between the performance gap measured using (kWh/Occupant/year) vs EUI in different 

categories between the four models 

Figure 4.30 indicates that, on average, the energy used by lighting decreased by 27 % for ABM+ compared to 

BC. The reduction in lighting energy use for ABM was 48 % in comparison. 
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Figure 4.30. Comparison between the total energy used for lighting in 3 modeling scenarios (BC and BC+ had the same 

energy use for lighting; therefore, there was no difference between them for this comparison) 

Figure 4.31 shows that energy from equipment use decreased by 2 % for the ABM+ compared to BC but 

increased by 2 % and 6 % in April and July, respectively, and remained the same in September and October. 

However, there was a uniform reduction pattern in equipment energy use for ABM, with 38 % compared to BC. 

 

Figure 4.31. Comparison between the total energy used for equipment in 3 modeling scenarios (BC and BC+ had the 

same energy use for equipment; therefore, there was no difference between them for this comparison) 

4.4.2 Regression analysis 

In order to investigate the predictability of lighting and equipment usage based on occupancy, a linear regression 

analysis was performed. Figure 4.32 shows the linear regression of lighting and equipment use based on their 

total energy use relative to occupant count for the whole building. Occupancy is a better predictor of equipment 

use compared to lighting usage in this analysis. 
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Figure 4.32. Regression analyses of equipment and lighting schedules in relation to ABM occupant count 

4.4.3 Analysis of three office types  

4.4.3.1 Room 31 

Room 31, with a 41.53 m² area as the biggest room, only contained one occupant with an immediate equipment 

turn-off behavior. Figure 4.33 represents lighting and equipment use and their correlation with occupancy count. 

Occupancy was a better predictor for lighting use for this room. Occupancy in ABM was generated at a 5-minute 

interval. However, the output from Energyplus reported the results on an hourly basis; therefore, an occupant 

had to be present for every 12 time-steps of an hour for the occupancy to be registered for that hour, explaining 

the values for the x-axis. 

 

 

Figure 4.33. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 31 
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Figure 4.34 shows the cumulative distribution function of annual equipment load for room 31 in BC and ABM. 

 

Figure 4.34. Cumulative distribution function of the total equipment load for BC and ABM 

Figure 4.35 shows the cumulative distribution function of the annual lighting load for room 31 in BC and ABM. 

 

 

Figure 4.35. Cumulative distribution function of the total lighting load for room 31 in BC and ABM  
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4.4.3.2 Room 35 

Room 35, while having the typical size of 20 m², was occupied by two people who had both chosen to turn off 

the equipment after one hour as their behavior. Figure 4.36 shows the equipment and lighting usage and their 

correlation with occupancy. Lighting energy usage had a stronger correlation with occupancy count. 

 

Figure 4.36. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 35 

Figure 4.37 displays the cumulative distribution function of annual equipment use in room 35 in BC and ABM. 

BC, with an occupant density of 20 m² /person, only contained one occupant. Equipment usage in ABM reached 

a higher peak load as a result of having two occupants and despite having a lower equipment load. 

 

Figure 4.37 Cumulative distribution function of the total equipment load for room 35 in BC and ABM 
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Figure 4.38 represents the cumulative distribution function of annual lighting use in room 35 for BC and ABM. 

More efficient lighting loads and a more responsive turn-off behavior for lighting loads showed a lower peak 

load for the lighting while the occupancy count was higher. 

 

Figure 4.38. Cumulative distribution function of the total lighting load for room 35 in BC and ABM 

4.4.3.3 Room 40 

Only one occupant was occupying room 40 with an area of 20 m², equipment was selected to turn off after six 

hours for this room. Figure 4.39 demonstrates the equipment and lighting usage and their correlation with 

occupancy. Occupancy was a strong predictor of lighting usage. 

 

Figure 4.39. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 40 
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 Figure 4.40 shows the cumulative distribution function of the annual equipment load for room 40 in BC and 

ABM. 

 

Figure 4.40. Cumulative distribution function of the total equipment load for room 40 in BC and ABM 

Figure 4.41 shows the cumulative distribution function of annual lighting usage of room 40 in BC and ABM. 

 

  

Figure 4.41. Cumulative distribution function of the total lighting load for room 40 in BC and ABM 
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5 Discussion 

5.1 Modeling approach 

The decision for the right modeling approach or a combination of different approaches was boiled down to the 

limitations posed by occupant modeling tools. While obFMU provided the opportunity to create an agent-based 

model, it relied heavily on a fixed time-step approach limiting holidays to the entire model instead of each 

occupant and, therefore, lacked the capability to model random absences such as sick leaves or personal absence 

periods like vacations. Therefore, a discrete event approach was not possible. Additionally, analyzing the energy 

usage feedback loops of different elements inside the building was limited to EnergyPlus's outputs; thus, a 

system dynamic approach was not realizable.  

An agent-based model, on the other hand, allowed for more flexibility, with stochastic models chosen for the 

behaviors that required one and static schedules selected for systems that were not controllable by the occupants. 

Additionally, the desired resolution of each zone and person as an agent was applicable, adding to its benefits. 

However, the stochastic generation of occupancy and behaviors meant that the results from different runs were 

different; this difference was mostly caused by the probabilistic generation of the location for each occupant at 

each run resulting in different loads. The standard deviation from the 10 runs was low in all categories 

regardless. Furthermore, contrary to the popular belief that a simulation with similar outputs in each run is 

reliable, in reality, a building never performs the same, yet stochastic modeling is considered uncertain.  

5.2 Occupant profiles 

Data from the occupancy sensor was not able to differentiate between different individuals and measure the 

occupancy count in shared offices. Therefore, the same arrival and departure hours and their variation were 

assigned for occupants in shared spaces. Furthermore, no occupants were considered for rooms 38 and 46, and 

therefore, no occupant model was created for them due to inaccessibility to their occupants at the time of 

conducting the survey and lack of useable data.  

The results from the survey revealed that only lights, windows, equipment and blinds were utilized by the 

occupants. The behavior for turning off the lights was modeled to replicate the real-life automatic light-off 

switch connected to the occupancy sensor that would turn off the lights when no occupancy was detected. 

While some participants did not choose an answer for the question in the survey regarding equipment usage, the 

model for turning on the equipment was used for all the occupants as the lack of an equipment turn-on behavior 

resulted in zero equipment load for the whole simulation period creating an unrealistic behavior for an office 

space. Additionally, the model for immediately turning off the equipment when occupants leave the room was 

only applied to the occupants who did not answer the equipment turn-off behavior questions to prevent the 

equipment from being left on for the whole simulation period. Furthermore, standby or power-saving models 

were not considered for the equipment turn-off model. 

A thin curtain was installed for each window that allowed light to enter the room and the orientation of the office 

windows towards the north meant that they were rarely used, as was observed in different visits and from the 

survey answers. Therefore, to simplify the model, blind usage behavior was only applied to the occupants who 

had selected the behavior and the rest of the windows had no blinds applied to them. 

Window closing model at the end of the workday was implemented with the assumption that no occupant would 

leave their window open when leaving the office at the end of the day. Furthermore, limitations for window 

opening temperature range were set in EnergyPlus; this meant that windows could only be open according to 

the heating and cooling set points in order to prevent an overlap between the heating or cooling system being 

turned on when windows were open. 
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5.3 The performance gap  

5.3.1 Total energy use  

Results from the simulation showed that there is a discrepancy between the energy usage of BC and ABM. 

Energy used for heating had the most significant impact on this difference with the selection of a heating and 

cooling system that was active 24 hours every single day. Consequently, increased heating load resulted in 

increased infiltration and transmission due to higher temperature differences between inside and outside, leading 

to higher pressure differences. Furthermore, the increase in mechanical ventilation can be attributed to the choice 

of the HVAC system as it delivered heating through air. Additionally, as only a few occupants had chosen a 

window opening behavior, natural ventilation also had a noticeable decrease, while BC, with a higher number 

of occupants and a dynamic schedule, had more variety in the operation of windows. 

The decrease in people load followed the decrease in occupancy count from 25 to 16 with a significantly less 

concentrated occupancy in ABM. Furthermore, as a result of the occupant behavioral models, lower loads, and 

fewer occupants, a noticeable reduction in lighting and equipment energy use was observed. As evident through 

the shape of the curve of their cumulative distribution function, the usage pattern varied more in ABM.  

Operative temperature for both models stayed within the intended range; however, as BC had a lower set point 

for heating and a higher set point for cooling on off-hours, the range of the overall operative temperature was 

larger in general while it was similar to ABM in working hours. Heating and cooling peak loads showed similar 

patterns, happening during the same day and peaking at relatively similar hours; however, ABM had a smoother 

heating and cooling peak load as a result of an always-on HVAC system and fewer occupants and gains from 

lighting and equipment. 

5.3.2 Occupant-centric metric 

Relying on a performance metric tailored to the occupants' energy use revealed that a heating system not 

designed to consider occupancy results in an even greater performance gap when the occupancy count is lower 

in reality compared to the standards.  

Stochastic generation of lighting and equipment usage was not as impactful when the new metric was used; 

however, the reversal trend of equipment usage initiated further investigations as ABM had a lower occupant 

count and lower equipment loads compared to BC. This was achieved by assigning the same loads for lighting 

and equipment in ABM as BC and performing a comparative analysis. 

 

5.3.3 Comparative analyses and regression 

The attempt to lower the differentiating variables in both models resulted in the total performance gap between 

ABM+ and BC+ being 52 % using (kWh/Occupant/year) while EUI reported 33 %. While the reduction from 

116 % and 20 % in ABM and BC to 52 % and 33 % in ABM+ and BC+ was significant, the remaining gap 

between the reported results of the new metric and EUI for the new models revealed the insensitivity of EUI to 

the number of occupants. 

The reduction in heating load for ABM+ compared to BC+ revealed that occupancy count was responsible for 

more than half of the increase in heating load for ABM compared to BC, and the rest were attributed to the 

operative schedule and set points of the HVAC system. This was in line with the findings of Mahdavi & 

Tahmasebi (2016) where a realistic assumption in regards to the number of occupants and not stochastic 

generation of occupancy was responsible for the accurate prediction of heating and cooling loads. Also, 

increased loads for lighting and equipment resulted in more cooling and less heating in ABM+ compared to 

ABM contributing to this reduction. 

Equal lighting and equipment load as BC only accounted for half of the reduction previously observed in lighting 

energy use, showing that the generated probabilistic model was responsible for the other half. On the other hand, 

the reduction in equipment energy use in ABM proved to be highly reliant on the equipment load, indicating 

more frequent utilization of the equipment in ABM, contributing to the increased energy use. 
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The results from the regression analysis of the selected rooms also showed a strong correlation between the 

lighting and equipment schedule and occupancy, confirming the correct operation of these behaviors as their 

turn-on and turn-off actions were tied to occupancy, while the cumulative distribution function illustrated the 

variety in energy used for lighting and equipment throughout the year.  

5.4 Accuracy of prediction 

Using (kWh/Occupant/year) as the performance metric revealed that occupants in ABM were using the 

equipment more frequently; furthermore, the comparative analysis also revealed that the overall energy use 

reduction for equipment was connected to the defined loads instead of occupants’ behavior. However, the results 

of the regression analyses for the equipment and lighting load for the whole building suggested a strong 

correlation between equipment load and occupancy and a lower correlation for lighting. Upon further 

investigation with the regression analyses of rooms, it was observed that lighting usage had a more significant 

correlation to the presence of occupants. This finding was in line with the broader picture of the inner workings 

of the building; as occupants had no control over the corridor lights, the dependency on occupants’ presence for 

lighting usage would be less than equipment usage when investigating the whole building. 

Regression analysis for room 40 showed a lower dependency of equipment usage on occupancy compared to 

lighting usage. This was mainly attributed to the behavior selected for the equipment in this room which was 

set to turn off the equipment after six hours of not detecting any occupants. This resulted in periods where no 

occupants were present in the room while the equipment was still on, as in the next six hours, an occupant would 

be detected in the time-step of the simulation. This was not far from reality as it was expected that occupants 

would leave their devices on when they took a short break and left the room or had to leave the office but were 

planning to return later during that day. However, regression results from room 31 with immediate equipment 

turn-off behavior showed a similar operation pattern while it was expected to perform as well as lighting. 

Therefore, it was noticed that setting behavior event types as leaving room for the equipment turn-off behavior 

did not perform as expected. Figure 4.9 shows the schedule for equipment load in a sample week; as evident in 

this schedule, there were periods after working hours when no occupancy was detected for periods longer than 

six hours with the equipment left turned on. Finally, through debugging the output of obFMU, the turn-off 

behavior for equipment was observed to not initiate at some time-steps. The same problem was also observed 

in other behavioral models afterward. No specific pattern for this issue was found, as the same behavior worked 

correctly for the majority of the time, increasing the time-step of the model and obFMU was the only option 

that decreased these occurrences.  
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6 Conclusion 

6.1 Aim and objectives 

An occupant behavioral model was developed in order to investigate the significance of the stochastic nature of 

occupants in building performance. It was evident that in the case of an office space where occupants had zero 

control over the system with the highest energy consumption, using the correct loads and set points had a more 

meaningful impact on the overall energy use of the building than simulating the usage pattern of different 

systems probabilistically. However, employing a stochastic prediction for systems that occupants were able to 

interact with and had control over provided a more detailed usage pattern resulting in lower energy use. The key 

conclusions from this study are:  

• A literature review was performed and main elements from the field of occupant behavioral modeling 

were described. 

• Data collection was made possible by using data from occupancy sensors, conducting a survey and 

observations during site visits. 

• Agent-based modeling was found to be the most suitable approach as it allowed for a combination of 

different levels of details and resolutions. Having the highest resolution reduced the errors caused by 

abstraction, while the increased parameters introduced new challenges in understanding the origin of 

the new results. Conversely, a major drawback of this approach was access to accurate and detailed 

information needed for high-resolution modeling. 

• (kWh/Occupant/year) was utilized and showed a greater performance gap in comparison to EUI. 

Additionally, utilizing suitable performance metrics was able to speed up the analysis by providing new 

perspectives that were only noticeable through deeper inspections and better explaining the inner 

dependencies of the model. 

• The accuracy of the prediction was investigated using a comparative and regression analysis and the 

issues were discovered through debugging the results.  

• The lack of access to a system prevents an occupant behavior model from having any impact on it, but 

having the correct information about its schedule and loads would result in a more accurate model. 

However, occupants may not tolerate the lack of freedom they have in their environment and try to 

retain some level of control; this, in practice means that investigations about systems that they can’t 

control can reveal other methods in which they try to make themselves and the space they occupy more 

comfortable which creates new possibilities for occupant behavioral modeling. 

• Whether an occupant behavioral model is the right approach depends on several factors, including the 

overall goal of the simulation, time constraints, and limitations regarding the occupant modeling tools. 

However, it is safe to assume that creating an occupant behavioral model for the system with the highest 

consumption can be beneficial if the occupants can control the system or if the system is sensitive to 

occupant count. 

 

It is undeniable that using the correct inputs when creating the geometry and physical properties of an energy 

model is of the utmost importance and the accuracy and complexity of current programs used for simulation are 

at their highest, yet with respect to performance, the way a building is utilized is pivotal. 

6.2 Future work 

1) Creation of an agent-based model that is capable of modeling the interaction of occupants with each 

other, behaviors observed only when occupants are present in a group and occupants who are capable 

of learning from previous events and creating new decisions for similar events in the future 
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2) Analyzing the performance at a larger scale, for example the entirety of V-huset building, as it contains 

different sections with unique use cases 

3) Streamlining the process of occupant profile creation and adjustments needed to allow co-simulation 

with obFMU and EnergyPlus through custom code 
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Appendix A 

Table A. 1. Arrival and departure times 

Zone name First or Last recorded state Peak value/ (Time/h:m) STD based on peak value/ (Time/m) 

Room 31 First 08:57 122 

Room 31 Last 16:46 173 

Room 32 First 08:30 143 

Room 32 Last 16:51 184 

Room 33 First 08:28 89 

Room 33 Last 15:45 138 

Room 34 First 08:51 123 

Room 34 Last 18:27 235 

Room 35 First 08:37 116 

Room 35 Last 16:12 139 

Room 36 First 08:18 113 

Room 36 Last 17:07 146 

Room 37 First 08:13 139 

Room 37 Last 16:25 176 

Room 39 First 08:14 184 

Room 39 Last 16:29 148 

Room 40 First 08:20 172 

Room 40 Last 15:38 143 

Room 41 First 08:16 187 

Room 41 Last 16:17 173 

Room 42 First 08:25 91 

Room 42 Last 15:31 110 

Room 44 First 09:30 141 

Room 44 Last 18:23 198 

Room 45 First 08:40 144 

Room 45 Last 17:13 154 

Room 53 First 08:29 105 

Room 53 Last 16:32 170 
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Appendix B 

Table B. 1. Survey Questions 

 Questions Answers 

 Occupancy  

2 On average, how many meetings do you attend per day? 0-6 and more 

3 If the answer to the previous question is not zero, which days of the week do 

you typically have meetings? 

Days of the week 

4 If the answer to the first question is not zero, how many people are usually 

in your meetings? 

Range of numbers up to 16 

5 If the answer to the first question is not zero, on average, what percentage of 

your meetings typically last for each of the following durations? (The total 

percentage should equal 100 %). For example, 90 % of your meetings might 

last for 60 minutes and 10 % for 120 minutes. 

Less than 30 minutes, 30, 60, 90, 

120 minutes 

6 Besides yourself, do others enter or occupy your office or workspace during 

the workday, even if they aren't directly using your equipment? This could 

include managers, administrators, colleagues, etc. 

Yes/No 

7 If the answer to the previous question is "Yes": Approximately what 

percentage of the workday do others spend in your office or workspace and 

what is their role? (You may choose more than one answer) 

Blank field 

8 When do you typically take your breaks (Lunch, coffee break, etc.) during 

the workday? Include both the time of day you usually take them and their 

duration in minutes. (You may choose more than one answer and please 

specify each one separately) 

Blank field 

9 Approximately what percentage of your workday do you spend in the 

following locations? (The total percentage should equal 100 %). For 

example, you might spend 90 % of the workday in your own office and 

10 % in outdoors.) 

Your own office, other offices, 

Meeting rooms, Auxiliary rooms 

(break rooms, storage, etc.), 

Outdoors 

10 Approximately how long do you typically spend in each of these locations 

during a single visit? 

Your own office, other offices, 

Meeting rooms, Auxiliary rooms 

(break rooms, storage, etc.), 

Outdoors 

 Behavior and Interaction   

11 On average, how would you rate the temperature in your usual workspace? 7 scale from cold to hot 

12 If the temperature in your workspace is causing you discomfort, what is the 

main cause of the discomfort?  (You may choose more than one answer)  

Conditional cold and hot 

temperature situations 

13 On average, how would you rate the visual comfort (natural and/or artificial 

light levels and distribution that would let you see easily and clearly), in 

your usual workspace? 

7 scale  

14 If you are not satisfied with the visual comfort in your workspace, what is 

the main cause for visual discomfort? (You may choose more than one 

answer)  

 

15 On average, how would you rate the indoor air quality satisfaction in your 

usual workspace? 

7 scale 

16 If you are not satisfied with the indoor air quality in your workspace, what is 

the main cause for the discomfort? (You may choose more than one answer)  

Stagnant air, Bad scents 

17 What's your gender?  Male/Female/ No answer 

18 What is your age?  Range from 18 to 65+ 

19 What is your current employment status? Full time, Part time 

20 What is your employment role? (Please specify if "other" is selected) Employee, Manager, Student, 

Professor 

21 What type of office do you work in? Shared office (max 6 people), 

Shared office with another 

person, Single office 
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22 Are you able to adjust your clothing (removing/adding extra layers) based 

on temperature in your workplace?  

Yes/ No 

23 How would you rate the extent to which you are allowed to interact with 

control systems (windows, heating/cooling, blinds/curtains, lights) in your 

working space?  

Windows, Cooling/heating, 

Blinds/Curtains, Lights 

7 scale answer 

24 How confident are you in your ability to use the control systems (windows, 

heating/cooling, blinds/curtains, lights) in your workspace? 

Windows, Cooling/heating, 

Blinds/Curtains, Lights 

7 scale answer 

25 How inclined are you to use (windows, heating/cooling system, 

blinds/curtains, lights) and remove/add extra layers of clothing, to make 

yourself comfortable or save energy in your workspace? 

Windows, Cooling/heating, 

Blinds/Curtains, Lights, 

Removing/adding extra layers of 

clothing 

7 scale answer 

26 How many times did you perform these actions to make yourself 

comfortable and/or save energy during last year? 

Never, Once a month, Once a 

week, more than once a week, 

Once a day, more than once a day 

 Opening window when feeling hot  

 Closing window when feeling hot/cold  

 Opening window for airing spaces  

 Opening the blinds/curtains to provide natural lighting  

 Closing the blinds/curtains to prevent glare  

 Closing the blinds/curtains to prevent overheating  

 Turning on the heater when feeling cold (winter)  

 Turning off the heater when feeling too hot (winter)  

 Turning on the cooling/fans when feeling hot (summer)  

 Turning off the cooling/fans when feeling too cold (summer)  

 Removing/adding extra layers of clothing  

 Turning on the lights when it gets too dark  

 Turning off the lights when leaving the room  

 Turning on the lights when entering the room  

 Turning on the equipment/computer when entering the room  

 Turning off the equipment/computer when leaving the room for a short time 

(e.g., 1 hour) 

 

 Turning off the equipment/computer when leaving the room for a long time 

(e.g., 6 hours) 
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Appendix C 

Snippet from the Behavior assignment python code 

 

Fig C.1: translation layer for question 13 and 14 of the survey 
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Fig C.2: Some of the models from the XML library imported as dictionaries. 

 

Fig C.3: function for identifying if the participant has a visual need and if the answer is positive what the visual need is 
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Fig C.4: function for identifying participant’s intent 

 

Fig C.5: function for identifying which needs of the participant passes the 3 checks   
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Appendix D 

Table D. 1. Lighting and equipment load for each zone 

Zone name Lighting loads (W/m²) Equipment load (W/m²) 

2431 7.2 2.9 

2432 5.2 6.3 

2433 4.8 11.6 

2434 5 6 

2435 5 12 

2436 3.4 6.2 

2437 4.9 5.9 

2438 3.2 5.9 

2439 3.3 6.1 

2440 3.2 5.9 

2441 3.4 6.2 

2442 2.5 4.7 

2444 3 4.3 

2445 5.2 9.6 

2446 5.4 10.1 

2448 3.8 5 

2450 4 10 

2451 3.1 2 

2452 2.5 7.7 

2453 4.2 10 

Crorridor-ext 4.8 10 

Corridor 11.4 10 
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Appendix E 

Table E. 1. obCoSim properties 

obXML_SpaceID FMU_InstanceName 

S1_31_Office obm_Room_2031 

S2_32_Office obm_Room_2032 

S3_33_Office obm_Room_2033 

S4_34_Office obm_Room_2034 

S5_35_Office obm_Room_2035 

S6_36_Office obm_Room_2036 

S7_37_Office obm_Room_2037 

S8_38_Office obm_Room_2038 

S9_39_Office obm_Room_2039 

S10_40_Office obm_Room_2040 

S11_41_Office obm_Room_2041 

S12_42_Office obm_Room_2042 

S13_44_Office obm_Room_2044 

S14_45_Office obm_Room_2045 

S15_46_Office obm_Room_2046 

S16_53_Office obm_Room_2053 

S17_48-Kitchen obm_Room_2048 

S18_50-Meeting_room obm_Room_2050 

S19_51-Printing_room obm_Room_2051 

S20_52-WC obm_Room_2052 

S21_Corridor-name obm_Corridor 

S22_Corridor-ext obm_Corridor_ext 

 

 

 

 

 

 

 

 

 
  

IsLeapYear No 

DayofWeekForStartDay Monday 

IsDebugMode No 

DoMovementCalculation Yes 

StartMonth 1 

StartDay 1 

EndMonth 12 

EndDay 31 

NumberofTimestepsPerHour 12 
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Table E.2.  Full Specification of every occupant behavior based on obXML 
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Table E.3. Properties of each space based on obXML 

Space Space Type Systems System type Occupant 

S0_Outdoor Outdoor 
   

S1_31_Office OfficeShared Light OnOff S1_31_Office_O1 

  PlugLoad OnOff 
 

S2_32_Office OfficePrivate Light OnOff S2_32_Office_O1 

  PlugLoad OnOff 
 

S3_33_Office OfficeShared Light OnOff S3_33_Office_O1 

  Window Operable S3_33_Office_O2 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S4_34_Office OfficePrivate Light OnOff S4_34_Office_O1 

  Window Operable 
 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S5_35_Office OfficeShared Light OnOff S5_35_Office_O1 

  Window Operable S5_35_Office_O2 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S6_36_Office OfficePrivate Light OnOff S6_36_Office_O1 

  Window Operable 
 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S7_37_Office OfficePrivate Light OnOff S7_37_Office_O1 

  PlugLoad OnOff 
 

S8_38_Office OfficePrivate Light OnOff 
 

  PlugLoad OnOff 
 

S9_39_Office OfficePrivate Light OnOff S9_39_Office_O1 

  PlugLoad OnOff 
 

S10_40_Office OfficePrivate Light OnOff S10_40_Office_O1 

  Window Operable 
 

  PlugLoad OnOff 
 

S11_41_Office OfficePrivate Light OnOff S11_41_Office_O1 

  PlugLoad OnOff 
 

S12_42_Office OfficePrivate Light OnOff S12_42_Office_O1 

  Window Operable 
 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S13_44_Office OfficePrivate Light OnOff S13_44_Office_O1 

  Window Operable 
 

  PlugLoad OnOff 
 

  ShadeAndBlind Operable 
 

S14_45_Office OfficePrivate Light OnOff S14_45_Office_O1 

  PlugLoad OnOff 
 

S15_46_Office OfficePrivate Light OnOff 
 

  PlugLoad OnOff 
 

S16_53_Office OfficePrivate Light OnOff S16_53_Office_O1 

  PlugLoad OnOff 
 

S17_48-Kitchen MeetingRoom Light OnOff 
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  PlugLoad OnOff 
 

S18_50-Meeting_room MeetingRoom Light OnOff 
 

  PlugLoad OnOff 
 

S19_51-Printing_room Other Light OnOff 
 

  PlugLoad OnOff 
 

S20_52-WC Other Light OnOff 
 

S21_Corridor-name Corridor Light OnOff 
 

S22_Corridor-ext Corridor Light OnOff   
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Figure E.1: Overview of the Occupant model file in obXML 

 

Figure E.2: Space section of obXML 

  

                 

 

 

 

  

 

 

 

 

 

 

 

 

         

 

 

 

                                                            

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

 

                                           

       

            

            

                                              

              

  

  

  

                             

                     

          

       

           

         

         

         

        

        

      

         

        

  

        

           

                         

 

An office building which contains 22 spaces and 16 occupants.  
 

<Description> An office building which contains 22 spaces and 16 occupants. </Description> 
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Figure E.3: An example of a Space in obXML 

 

Figure E.4: An example of a meeting pace in obXML 
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Figure E.5: Occupant section of obXML 

 
 

Figure E.6: An example of an occupant in obXML 
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Figure E.7: Behavior section of obXML 

  

 

<Behavior ID="Blind_closing_leaving"> 
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Figure E.9: Example of a MovementBehavior 
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Figure E.8: Example of a behavior 
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Figure E.9: Expanded section for Seasons          
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Figure E.10: Expanded section for Time Of The Day          
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Figure E.11: Expanded section for Holidays 
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Appendix F 

Declaration regarding the use of generative AI tools: 

 

 Statement Answer 

1) I used a Generative AI tool (e.g. ChatGPT or similar) in my report Yes, Google Gemini was 

used. 

2) I used a GAI tool as language editor (i.e. to correct grammar mistakes, etc.) Yes, only for correcting 

grammar. 

3) I used GAI to retrieve information  Yes, it was only used 

similarly to a search engine 

for identifying the common 

root causes for some of the 

errors encountered while 

running the Python code in 

the behavior section of 

methodology and not for 

writing the code itself 

4) I used GAI to get help in writing code  No 

5) I used GAI for translations No 

6) I used GAI to generate graphs/images  No 

7) I used GAI to help structuring my content  No 
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