Occupant behavioral modeling: An
agent-based modeling approach to
building performance analysis

Aryan Ramezani

Master thesis in Energy-efficient and Environmental Buildings
Faculty of Engineering | Lund University




Lund University

Lund University, with eight faculties and a number of research centres and specialized institutes, is the largest
establishment for research and higher education in Scandinavia. The main part of the University is situated in
the small city of Lund which has about 112 000 inhabitants. A number of departments for research and
education are, however, located in Malmo. Lund University was founded in 1666 and has today a total staff of
6 000 employees and 47 000 students attending 280 degree programmes and 2 300 subject courses offered by
63 departments.

Master Programme in Energy-efficient and Environmental Building Design

This international programme provides knowledge, skills and competencies within the area of energy-efficient
and environmental building design in cold climates. The goal is to train highly skilled professionals, who will
significantly contribute to and influence the design, building or renovation of energy-efficient buildings,
taking into consideration the architecture and environment, the inhabitants’ behaviour and needs, their health

and comfort as well as the overall economy.

The degree project is the final part of the master programme leading to a Master of Science (120 credits) in
Energy-efficient and Environmental Buildings.

Examiner: Ricardo Bernardo (Division of Energy and Building Design)

Supervisor: Pieter de Wilde (Division of Energy and Building Design)
Co-supervisor: Niko Gentile (Division of Energy and Building Design)

Keywords: Occupant behavioral modeling, Agent-based modeling, Performance gap

Publication year: 2024



Abstract

Finite resources and increasing rate of consumption have made efficiency a key component in every energy-
consuming sector. The building industry, as a major contributor, has been the target of various initiatives and
regulations aiming to lower its impact with varying degrees of success. Measurement of this impact has not
always been easy, especially for buildings not yet built. Therefore, simulation tools have been heavily utilized
to provide predictions.

However, the results from simulations are not always in line with the measurements. The extent of this variation
is often so remarkable that it calls into question the reliability of building simulation tools and methods. A major
contributor to this discrepancy has been identified as the oversimplification of occupancy inside the buildings,
which neglects their impact on energy usage.

This study investigated this performance gap by comparing a normal energy model of a case study with a more
realistic energy model that considers occupants and their behavior through an agent-based modeling approach
while relying on real loads and set points. The normal model relied on Swedish building code and was modeled
using Honeybee in Grasshopper, while the agent-based model utilized the normal model as a base case while
changing different loads and set points to match the measured data. Furthermore, to model occupants,
Occupancy Simulator was used to create occupant profiles as an obXML file, while a survey with a
complementary code defined behavioral models for each individual; this file was then used for co-simulation
via obFMU and EnergyPlus to create the agent-based model. Additionally, a comparative analysis was
performed to investigate the impact of adopting an occupant-centric metric compared to energy use intensity to
measure the performance of the simulations. Lastly, the accuracy of the agent-based model was evaluated.

The results demonstrated a significant gap between the total energy use of the two models, with an even larger
disparity observed when using the occupant-centric metric. Furthermore, it showed that stochastic modeling of
occupant’s presence, movement, and interaction in the building had a considerable effect on energy usage.
However, relying on inaccurate set points and schedules for the highest energy-consuming system that offered
no control to the occupants was the major contributor to the performance gap. The agent-based model was
shown to perform correctly most of the time, although certain inaccuracies were identified.
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Abbreviations
Avemp
BBR
BPS
DNAS
EUI
FMI
FMU
GH
HB
HVAC
IEQ
obFMU
obXML
0Sim

U-value

Heated floor area

Boverket’s Building Regulations

Building performance simulation

Drivers, Needs, Actions, Systems

Energy Use Intensity (kWh/m2)

Functional Mockup Interface

Functional Mockup Unit

Grasshopper

Honeybee

Heating, Ventilation, and Air Conditioning
Indoor Environmental Quality

occupant behavior Functional Mockup Unit
occupant behavior Extensible Markup Language
Occupancy Simulator

Thermal transmittance (W/(m?-K))



Terminology
Accuracy

The variation between the measured and simulated value. The higher the variation, the less accurate the
simulation results are

Building Performance

In the context of this study, building performance is used to indicate the level of energy consumption in
simulations

Deterministic
Use of fixed schedules
Hawthorne effect

The behavioral changes in people due to the awareness that they are being observed
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1 Introduction

1.1 Problem motivation

Buildings form an integral part of our daily lives, providing essential spaces for dwelling, work, and leisure,
directly affecting our well-being, it has been reported that people spend on average 87 % of their time indoors
(Klepeis et al., 2001). The building sector also plays a substantial role in global energy consumption and
emissions, accounting for over 30 % in 2022 (IEA, 2024), in the United States, residential and commercial
sectors have been responsible for 36 % of the overall energy consumption (EIA, 2022) and they represented the
largest energy-consuming sector in Europe at 40 % in 2023 (Energy Performance of Buildings Directive, 2024).
Consequently, initiatives like Nearly zero-emission building (NZEB) have emerged to address this issue.

Therefore, accurate prediction of the energy consumption of the current and future building stock is essential.
However, studies have pointed to inconsistencies between the measured and expected energy usage in buildings,
often labeled the” performance gap”. In one study, the result from monitored energy consumption compared to
expected consumption varied up to 287 % in renovated German buildings built in the 1950s (Cali et al., 2016).
De Wilde (2014) has defined three reasons for the performance gap: design stage issues like inaccurate
assumptions on inputs used in simulation programs and errors in simulations, construction stage issues such as
poor assembly and craftsmanship, operational stage issues which are mainly caused by occupant behavior and
a lack of realistic presentation of their actions in the building; Yet, performance gap can also be related to
characteristics unique to each building (Menezes et al., 2012).

The International Energy Agency (IEA), Energy in the Buildings and Communities Program (EBC), Annex 53:
Total Energy Use in Buildings has identified six key elements influencing energy consumption in buildings: 1)
climate, 2) building envelop, 3) building services and energy systems, 4) building operation and maintenance,
5) indoor environmental quality (IEQ), 6) occupant activities and behavior (Yoshino et al., 2017). While energy
use in buildings is a function of human activity, not of the buildings themselves (Janda, 2011), the first five
factors have always received more attention. Occupants are also neglected in the metrics that are used in
evaluating building's performance like energy use intensity (EUI) (O’Brien et al., 2017), they are only viewed
as a homogenous energy-consuming and producing unit described by a fixed set of schedules and thresholds
(Yanetal., 2015).

This contradicts the complex nature of occupants’ behavior and their interaction with the building, which
impacts energy use and subsequently influences occupant behavior, leading to be one of the main reasons for
inaccuracies in building performance simulations (BPS) (Yan et al., 2015). For instance, Hong & Lin (2013)
have shown that different workstyles in a private office setting can significantly impact energy consumption,
resulting in potential deviations of up to 90 % (increase) or 50 % (decrease) from baseline usage.

Occupants’ needs and actions can also vary not only between individuals but also for a single person based on
shifting conditions. For example, individual preferences for desk illuminance diverged significantly in office

workers with dimmable lighting, ranging from 230 lux to 1000 lux, and in another setup 57 % of subjects sitting
near windows used no electric lights, while others added 20 lux to 450 lux (Galasiu & Veitch, 2006).

1.2 Aim and objectives

This project aims to analyze the performance gap originating from the unrealistic representation of occupants
in BPS. This is realized by developing an occupant behavior model that simulates occupants’ presence and
interaction with building systems more accurately, which is then compared with a base case model created using
standards and the current Swedish building code.

To fulfill this aim, the objectives are to:

e Review the state of the art

¢ Identify the correct methods for collecting data that would then be used for simulation



Investigate the applicability of an agent-based, discrete event and system dynamic modeling approach
in occupant behavior model simulation and use the most suitable option

Explore metrics that are more effective in performance analysis related to occupancy
Validate the predictive performance of the occupant behavioral model

Make recommendations



2 Background

2.1 Occupant behavior

An accurate prediction of the overall energy consumption in buildings relies upon a detailed understanding of
how occupant behavior impacts this consumption. Occupants can influence energy use through occupancy and
their behavior (Yoshino et al., 2017). Occupancy refers to the number of occupants and their presence or
absence. Accurate prediction of occupancy is crucial as occupants contribute to latent and sensible heat gains,
and occupancy is a prerequisite for any occupant behavior to occur.

Occupant behavior is categorized into adaptive and non-adaptive actions. Adaptive actions are those in which
occupants try to either adapt their environment to match their own preferences, such as turning on/off the heating
or cooling system, turning on/off the lights, opening or closing the windows, or try to adapt themselves to the
environment for example by changing their clothes. Non-adaptive actions are not related to environmental
adaptation but still impact energy consumption, like using electric equipment (Hong et al., 2017).

Furthermore, the behavior of occupants is stochastic, meaning it does not follow a predefined pattern and can
be described as random. It can also evolve and depend on multiple variables (O’Brien & Tahmasebi, 2023). To
be able to explain why humans behave the way they do multiple theories have been developed, three of which
are discussed in this section.

The social cognitive theory

Social Cognitive Theory (SCT), developed by Bandura (1989) offers a framework for understanding human
behavior as a product of personal, behavioral, and environmental influences, with each factor reciprocally
influencing the others. This means that we learn by observing others and our environment, while our own actions
also shape our beliefs and the world around us.

The theory of planned behavior

The theory of planned behavior (TPB) suggests that the behavior of individuals is largely determined by their
intention to perform that behavior. Intentions are shaped by their attitude, subjective norms, and their belief in
their ability to control their behavior. The likelihood of a behavior being performed has a direct correlation with
the intensity of their intention. However, even with strong intentions, they may not be able to perform that
behavior if they lack the necessary resources (Ajzen, 1991).

Drivers, Needs, Actions, Systems

The Drivers, Needs, Actions, Systems (DNAS) framework was developed to create a structured and standard
approach for documenting the impact of occupant behavior on energy consumption in buildings and enhancing
the comparability and reusability of data across different simulations. As a detailed ontology, it provides a
technical vocabulary to address critical issues, such as the oversimplification of human interactions in building
design and the misalignment between occupant behavior and building controls (Hong et al., 2015). This
framework includes four components:

Drivers

Drivers are various factors that generate a desire for change to satisfy physical, psychological or physiological
needs. This category includes five elements:

1) Building: Attributes such as orientation, building material, interior layout, etc. as driver
2) Occupant: Characteristics including age, gender, and physical mobility

3) Environment: Climate, weather, air temperature and humidity levels and solar radiation.



4) Systems: The current state of a building’s systems can determine whether an occupant would interact
with a system

5) Time: The location of the occupants and some of their habits are time-driven, for example, day of the
week would determine where an occupant would be and the time of the day could be a factor for opening
and closing windows or blinds

Needs

Needs are the physical and non-physical conditions that, when realized, result in the occupant feeling
comfortable with their environment. If these conditions are not met, discomfort arises, and if it extends beyond
the occupant’s tolerance level, they may react by adjusting their environment through different actions. The
threshold for this tolerance varies from individual to individual.

Physical needs include:

1) Thermal comfort

2) Visual comfort

3) Acoustic comfort

4) Indoor environmental health including IAQ and humidity

Non-physical needs consist of elements such as privacy or view to the outside.

Actions

Actions involve interacting with a system in order to fulfill a need. Additionally, inaction is possible, where the
occupant chooses to endure the discomfort without taking any measures.

Systems

Systems are the devices that occupants interact with to enhance their environmental comfort, which in turn
affects the building’s energy use. Examples of such systems include windows, blinds, lights, thermostats, and
electrical equipment.

2.2 Model development

2.2.1 Model selection

An effective model must balance accuracy with useability. Absolute precision is not the goal, models are
generally expected to generate sufficiently accurate predictions of occupant behavior (Yan et al., 2015). The
accuracy of prediction is not solely determined by using a fixed or a probabilistic schedule, the quality of the
inputs or assumptions that were used to create the model have been shown to have a major impact (Tahmasebi
& Mahdavi, 2017). As George Box noted, ‘All models are wrong, but some are useful.” (Box, 1976) thus the
goal should be to create a useful model. There have been many attempts at devising a framework for proper
model selection, such as:

Occupancy resolution model

Melfi et al. (2011) proposed a model in which the information regarding the occupancy would be divided into
three categories:

Table 2.1. Occupancy resolution model

Spatial resolution Occupant resolution Temporal resolution
Room Activity of each individual Seconds




Floor Identifying each person Minutes
Building Occupancy count Hours
Building block State of present or absence Days

Spatial resolution refers to the granularity in the representation of spatial data within a model. Occupant
resolution refers to the level of detail in recording and reporting information about the occupants. Temporal
resolution refers to the shortest time interval in which a sensor can detect and report changes in spatial and
occupant resolution.

Increasing the resolution by choosing a smaller unit would result in higher accuracy but at the cost of more
computing power to perform the simulation. Ultimately, the model’s objective would define the right resolution.

Fit-for-purpose

Simulations don't always benefit from the highest possible resolution, as shown by Mahdavi & Tahmasebi
(2016) where the non-probabilistic model outperformed the probabilistic one for short-term prediction of
occupant behavior. This suggests that higher accuracy requires the right resolution that would fit the purpose of
the simulation (O’Brien & Tahmasebi, 2023). As Heppenstall et al. (2012) states “At the extreme, if a model
becomes as complicated as the real world, it will be just as difficult to interpret and offer no explanatory power”.
In order to find a suitable model Gaetani et al. (2016) proposed a method that relies on consideration of elements
that could influence the choice of modeling approach, they are classified into four categories:

1) Object-related factors such as the building’s function, specification, and level of control over systems
inside the building

2) Aim of simulation such as policy making, design or renovation
3) Performance indicators such as energy consumption or peak loads
4) Phases of building life cycle such as design, construction or operation

Identifying the relevant factors provides a suitable range of modeling options, and subsequently, the simplest
approach that aligns with the specific need should be chosen.

2.2.2 Data collection
2.2.2.1 Methods

In-situ

In-situ studies monitor occupants in their natural settings, primarily using sensors integrated into building
automation systems or installed for research. These studies are advantageous for realistically replicating
occupant behavior but face challenges including privacy concerns, the invasive nature of research visits, and
potential interference with daily activities. Although they minimize the Hawthorne effect, these studies often
lack detailed contextual insights. Setup and data collection require substantial time and resources, and
maintaining sensor integrity without disturbing occupants can reduce data accuracy. Ethical issues, participant
recruitment, and informed consent are also significant considerations in conducting in-situ research (Yan &
Hong, 2018).

Laboratory

Laboratory studies involve participants interacting within constructed environments designed to closely mimic
real indoor settings, enabling detailed control over variables like layout and environmental conditions. These
settings are beneficial for studying occupant behavior and environmental impact efficiently, offering flexibility
in participant recruitment without the constraints of actual building occupancy. However, the artificial nature
and high visibility of monitoring equipment can influence participant behavior, potentially leading to skewed
results. Additionally, the cost of setting up and running these facilities is significantly higher than in-situ studies,



and the presence of unknown persons may further affect participants' behavior due to the Hawthorne effect (Yan
& Hong, 2018).

Survey

Surveys provide a unique approach to data collection by collecting self-reported data through methods like
guestionnaires and focus groups, which differ fundamentally from sensor-based in-situ and laboratory studies.
They are particularly useful for delving into the reasons behind occupant behaviors. Despite their cost-
effectiveness and ability to reach large numbers of participants, surveys can be susceptible to biases such as the
Hawthorne effect and social desirability bias. Additionally, the need for active participant engagement limits
the frequency of data collection, posing challenges for longitudinal studies.(Yan & Hong, 2018)

2.2.2.2 Technologies
Motion detectors

Motion sensors identify whether an occupant is present by detecting their movements. Key types of these sensors
include passive infrared (PIR) sensors, ultrasonic Doppler, microwave Doppler, and ultrasonic ranging sensors
(Wagner et al., 2018)

Human in the loop

The human-in-the-loop methodology involves human participation in collecting data related to occupancy and
behaviors within a space, there are several methods within this category: manual observation, internet-based
and device interactions (Wagner et al., 2018).

Manual observation entails individuals recording data directly, such as counting people in a specific area. This
technique is particularly valuable for gathering specific data that automated systems might miss, like clothing
level or contextual elements related to the physical and psychological environment.

Internet-based methods use data from social media, calendars, or surveys provided by occupants. This approach
raises privacy issues but is cost-effective because many organizations already collect this type of data.

Device interactions involve analyzing how occupants interact with devices like thermostats or light switches.
The data from these interactions can be used to create models that predict occupant behavior and presence.

2.2.3 Modeling approaches

Markov chain

A Markov chain is a stochastic process in which the probability of the transition to the next state is only
dependent on the current state and not the chain of events before it. Markov chains are used to predict the state
of occupancy, window opening, turning on/off the lights, equipment usage, and blind and thermostat adjustment
(Yan & Hong, 2018).

Discrete event

Currently, BPS programs simulate event occurrences based on discrete time changes, meaning that an event can
only happen in the predefined time-step; this approach prevents normal or emergency events from happening if
they are between these time-steps. Discrete event formalism, in this regard, equates to alternating time-steps
that correspond to the occurrence of an event. Therefore, the gaps between time advancements rely on the
moment an event occurs in the future. This approach is currently not applied in building energy simulation, but
similar results can be achieved by using very small time-steps (one minute or less) that would simulate a
continuous flow of time and thus eliminate the time-step barrier (Gunay et al., 2014).

System dynamics



System dynamics refers to the dynamic relationship of major components of a system and the patterns with
which they influence one another over time. This is an abstract method that does not consider the details of each
individual element (Andrew Ford, 1999).

Agent-based modeling

No definitive definition has been established for an agent-based model. An agent can be an individual or a group
of occupants with a set of rules and attributes assigned to them; they are able to interact with the environment
and each other, and the location of each agent can be defined separately. The key aspect defining an agent-based
model is the autonomy of each agent in their behavior within the constraints of that system. These features
enable agent-based modeling to represent the random nature of occupants realistically (Malik et al., 2022).

Level of detail (LoD) is an approach that optimizes the simulation in order to reduce unnecessary complexities
and the required computational power while reaching a level of accuracy that meets the goal of the simulation.
Malik et al. (2022) have proposed a framework for level-of-details in agent-based models which, upon reflecting
on the objective of the simulation, the desired performance metric, building classification, and special
resolution, enables the appropriate agent-based model to be identified based on ten occupant-centric features
that are divided into complicatedness and complexity categories as shown in Table 2.2.Table 2.2

Table 2.2. Level of details in agent-based models

Complicatedness (model structure) Complexity (model behavior)

Level : : : Modeling . . - . .
of Representation Heterogeneity Zoning Occupancy f li Interaction Sensing Prediction Learning Collectives
detail ormalism

LoD Average None Building Stat_lc_- _ Stat_lc_- _ No No No No No
0-0 occupant level deterministic deterministic

LoD Average None Floor Dyna_m!c-_ Dyna_m!c-_ No Yes Yes No No
0-1 occupant level deterministic deterministic

Detailed - .

LoD Group of Yes space static- static- Yes Yes Yes Yes No
0-2  occupants type probabilistic probabilistic

LoD Individual Individual Dynamic- Dynamic-

0-3 occupant es space  probabilistic probabilistic es ves es es Yes

2.2.4 Modeling tools and implementation
2.2.4.1 Energy modeling tools

Energyplus

EnergyPlus is a building energy simulation software capable of simulating HVAC, lighting and equipment
energy usage for different building geometries created through user input (EnergyPlus, 2022).

Rhinoceros
Rhinoceros (Rhino) is a 3D modeling tool frequently used by architects and other professions (Rhino, 2024).
Grasshopper

Grasshopper (GH) is a visual programming language as a component of Rhino that enables parametric modeling
in the Rhino environment (Rhino, 2024).

Honeybee

Honeybee (HB) is a software component for GH that can create and simulate energy models through EnergyPlus
(Ladybug Tools | Honeybee, 2024).



2.2.4.2 Occupancy and occupant behavioral modeling tools
Extensible Markup Language (XML)

XML is a text and file format designed to organize, maintain, and share data, ensuring a standardized encoding
system that is understandable by both humans and machines (XML, 2024).

occupant behavior Extensible Markup Language (obXML)

obXML is an XML schema describing the content and format of the data and structure of the XML file based
on the DNAS ontology. It is designed to support the development of new methods that standardize and solidify
descriptions of occupant behavior, capturing the inherent complexity and unpredictability of real-world
scenarios in simulations. Its structure is intended to be flexible, facilitating the widespread standardization of
occupant behavior modeling (Hong et al., 2015).

The DNAS framework topology is structured in the obXML schema, centering around the OccupantBehavior
main root element, which diverges into six sub-elements: Buildings, Occupants, Behavior, Seasons, TimeofDay
and Holidays. This root element is uniquely identified by an ID and version attribute. The framework allows for
specific inputs pertaining to buildings, occupants, behaviors, seasons, times of day and holidays (Hong et al.,
2015). Detailed visualizations of each of these elements are available in Appendix F.
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Figure 2.1. Structure of the obXML schema

Furthermore, 127 occupant behavior models from the past four decades were reviewed, and 52 models were
selected and represented as a library of occupant behavior models using the obXML schema (Deme et al., 2019).



V1.3.3 of the library contains 45 models. Both obXML and the library of occupant behavior models are publicly
available (ObXML, 2024).

Occupancy Simulator (OSim)

The Occupancy Simulator (OSim) is a freely accessible agent-based web application available at (Occupancy
Simulator, 2024) developed by the Lawrence Berkeley National Laboratory for simulating the movement and
presence of occupants in the building, where each occupant and each space are modeled as separate agents. In
order to streamline data entry, it allows for grouping similar occupants and spaces into categories known as
OccupantType and SpaceType. These profiles allow the simulation of occupancy at three distinct levels: the
entire building, individual spaces, and individual occupants' locations. The simulator uses occupant profiles
formatted in obXML schema to produce downloadable schedules in CSV and EnergyPlus input data file (IDF)
format, along with obXML and obCoSim XML files used for co-simulation via obFMU (Luo et al., 2017).

OSim incorporates three models. The first model, Reinhart (2004) LIGHTSWITCH-2002 is used to manage
status transitions such as arrivals and departures. The second model, based on Wang et al. (2011) homogeneous
Markov chain, addresses random movements within the building, facilitating simulations of activities like
restroom visits or movement to other offices. The third model orchestrates meetings, simulating the interactions
of multiple occupants within a designated space, typically controlled by room agents (Chen et al., 2018).

However, the simulator does not account for personal absences like sick days or the influence of environmental
conditions within spaces on occupant presence. Additionally, it does not consider the time it takes occupants to
move between spaces and is currently only capable of simulating small to large office buildings. Despite these
limitations, Osim has been demonstrated to accurately replicate the real-world occupancy patterns within office
buildings (Chen et al., 2018; Luo et al., 2017).

Anylogic

Anylogic is a Java-based proprietary modeling software that supports various simulation methods such as agent-
based, discrete event, system dynamics and a combination of all three with the possibility of visualizing the
results. It offers a free personal learning edition with limited features (AnyLogic, 2024).

NetLogo

NetLogo is a Java-based open-source multi-agent programmable modeling environment used for simulating
complex systems (NetLogo, 2024).

Matlab

MATLARB is a numerical computing environment that can be used for discrete event and agent-based modeling
using Simulink (MATLAB & Simulink, 2024).

2.2.4.3 Implementation in BPS

Direct input

This method involves fixed or dynamic schedules for various elements including occupancy and different
building systems. It lacks real-time communication between the scheduling module and BPS, preventing the
formation of a feedback loop that uses the model’s output to adjust its input. This means that the environmental
conditions created through the simulation cannot be used as input for creating new schedules that would affect
the simulation, which in turn would affect the environmental conditions, creating a cycle while the simulation
is running. Furthermore, it does not support the generation of stochastic models capable of predicting the
probability of an action being performed based on different input parameters. This approach however is
compatible with nearly all BPS programs, is the simplest to implement, and is used most often (Hong et al.,
2018).

User function or custom code



The user function or custom code method enables users to override the schedules and controls by inserting
custom scripts or functions into a building energy model’s input file, facilitating real-time communication,
energy management system in EnergyPlus and IDA Script in IDA ICE are examples of this approach. Moreover,
it supports both deterministic and stochastic OB models (Hong et al., 2018).

Co-simulation

Co-simulation is a method where two or more programs exchange outputs and inputs, forming a feedback loop
allowing for real-time communication and exchange of various types of information during simulation.

occupant behavior Functional Mockup Unit (obFMU)

The Functional Mockup Interface (FMI) is a tool-independent standardized framework designed to facilitate the
seamless integration, exchange, and co-simulation of dynamic models across different software environments.
A Functional Mock-up Unit (FMU) serves as a container that complies with the FMI specifications, stored as a
zip file with a “.fmu” extension (Blockwitz et al., 2012).

obFMU is an FMU designed for co-simulation of occupant behavior via FMI. Figure 2.2 illustrates a co-
simulation scenario between obFMU and Energyplys through Externalinterface:FunctionalMockupUnitimport
object in Energyplus. First, three categories of input data are sent to obFMU. Occupant behavior data, which is
stored in the obXML file structured according to the obXML schema adhering to the DNAS ontology, is
processed by obFMU using its obXML Parser. Information about the environment provided by Energyplus, and
lastly, co-simulation information, which is contained in a separate XML file (obCoSim.xml) detailing space
mapping between the obXML file and the building energy model. Afterward, each simulation zone is managed
by a separate instance of obFMU. Finally, obFMU generates and exports schedules to Energyplus replacing the
previous ones in order to represent the occupant action towards different building systems for that time-step.
This process is repeated for each timestep till the end of the simulation and results from EnergyPlus and each
zone in obFMU are stored separately as EnergyPlus output file formats and CSV respectively (Luo, 2016).

/ obFMU

—_— Data Model Solver
(0] t Model
obXML Parser
=
\ A Y Results
obXML Schema X

Co-Simulation interface
Based on FMI standard

DNAS Ontology
[ —

Co-Simulation Info
obCoSim.xml

Building Energy Model

IDF File
EnergyPlus
Co-Simulation Info (Simulation engine, also the Results
Externallnterface co-simulation manager)

FunctionalMockupUnitImport

Figure 2.2. Overview of the co-simulation process between cbFMU and EnergyPlus adopted from (Hong et al., 2016)
obFMU is comprised of two solvers: the movement solver and the interaction solver. The movement solver

utilizes the same movement solver engine that was developed for OSim and is used once for each co-simulation
to determine the location of each occupant at each time-step. Interaction solver on the other hand operates
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continuously, executing at every time-step for each obFMU instance to simulate how a user might interact with
a system in the specified zone. Six input variables (Zone air temperature, Zone illumination level, Zone CO-
concentration, Zone lights electric power, Outdoor air temperature, Outdoor rain indicator) are imported from
the BPS programs and seven schedules (Occupancy schedule, Lighting schedule, Plug load schedule, Window
schedule, Shade/Blind schedule, Thermostat setpoint, HVAC schedule) are exported from obFMU to the BPS
program replacing the schedules that were previously in use. This replacement allows the BPS program to
operate different systems according to the calculated behavior of the occupants at each time-step. Figure 2.3
illustrates the information exchange when co-simulation is performed using Energyplus as the co-simulation

master and the obFMU as the slave (Luo, 2016).
/ obFMU \
% Set Variables ]
/ Data Exchange \ *

\ 4 Zone air temperature N m’erform time -step calculation\
EnergyPlus Zone illumination level * Movement Solver
Zone CO2 concentration Occupancy
' Zone lights electric power * Interaction Solver
FMU External Outdoor air temperature Window
Interface \ Outdoor rain indicator Y. Shade/Blind
Lightin
K A j / Occupancy schedule \ Ph;gg lofd
Lighting schedule Thermostat
Plug load schedule K HVAC /
Window schedule
Shade/Blind schedule \ v
Thermostat setpoint

\\ HVAC schedule ﬂ \[\ Get control variables /]

Figure 2.3. Information exchange between EnergyPlus and obFMU during a co-simulation adopted from (Luo, 2016)

There are several limitations within the current integration of EnergyPlus and obFMU. Notably, updates in
EnergyPlus are delayed by one time-step in relation to obFMU iterations. In practice, this means that pre-
existing schedules are consistently overwritten during each iteration. Additionally, the system faces challenges
with managing multiple actions that occur simultaneously and sequencing occupant actions (Hong et al., 2016).

Python

By utilizing PyNetLogo, an interface that connects NetLogo to the Python environment, and PyFMI, which
links the FMI to Python, Python can serve as the simulation master in co-simulations. This setup for example
enables the integration of EnergyPlus through the FMI interface and NetLogo as the occupant modeling
software, thus facilitating co-simulation (Fathollahzadeh & Tabares-Velasco, 2020; Jaxa-Rozen & Kwakkel,
2018).

Building Control Virtual Testbed (BCVTB)
The Building Controls Virtual Test Bed (BCVTB) is a Java-based open-source software based on the Ptolemy
Il software environment which serves as middleware enabling co-simulation by linking various programs such

as EnergyPlus, Modelica, Radiance, MATLAB/Simulink, Netlogo and FMU (BCVTB, 2024; Fathollahzadeh
& Tabares-Velasco, 2020).

2.3 Outcomes of occupant behavioral modeling

Occupant behavioral models can provide a clearer understanding of how buildings and occupants interact,
leading to more accurate performance analyses and informed design decisions. This, in turn, helps reduce the
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performance gap creating a more comfortable living environment for occupants (Yan & Hong, 2018). They can
also be designed for specific purposes such as evaluating the robustness of a building towards different levels
of occupancy (Hoes et al., 2009). Also, they can be utilized for testing the energy saving potential of a
technology by analyzing how occupants would interact with them (Yan et al., 2017).

2.4 Limitations and challenges

While an occupant behavioral model can provide a better understanding of the human-building relationship,
relying on common metrics that normalize the energy use by floor area, such as EUI and (W/m?) for peak
demand intensity, excludes the impact of occupancy on the building performance. Therefore, using performance
metrics that are suitable for the goal of the simulation and more occupant oriented could be beneficial. (O’Brien
& Tahmasebi, 2023) provide several categories for occupant-centric metrics such as:

1) Resource and environmental impacts such as energy use via (kWh/ Occupant) or water use via
(kg water/person)

2) Building services such as Underlit Occupancy Hours
3) Human-Building Interaction such as Controllability of HVAC

Additionally, as physical, psychological, physiological, cultural and financial factors can influence the way an
occupant behaves, creation of an occupant model that is close to reality requires collaboration between experts
from different disciplines (Mahdavi & Tahmasebi, 2017).

Furthermore, comparison between the outcomes of different research projects is not always possible as they rely
on different sets and granularity of data with models that are specific to one type of building or a location, a
model that takes the diversity of occupants into consideration can enable this comparison however collecting
data on a large scale involving different attributes of an occupant raises privacy concerns and is not a trivial task
(Hong et al., 2017).

During the literature review, it was noted that despite major advancements in this field over the years, no set of
defined approaches and standards for modeling occupant behavior exists.
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3 Methodology

The workflow of this study is illustrated in Figure 3.1. This process involved using the output of each section
as the input for the next one. A base case model (BC) was created as the standard model, then data regarding
occupancy and occupant behavior was collected. Afterward, this data was used to create the occupant profiles,
and then these profiles, in combination with BC, were used to create the agent-based model (ABM). Finally,
the results were analyzed and reported in the next chapter.

Data collection Occupants’ profile
Base case model | Observation p | Oceupancy simulator @ Co-simulation Energy performance analysis
3D model 3 —Survey —obXML m ey Result export @ ' ,—,
Energy model @ ,’f —Sensor data E’ —Behavior selection P Occupant model (% Result analysis E: P
1 2 3 5

Figure 3.1. Workflow of the methods used in this section.

3.1 Case study

To conduct this case study, the north-east section of the second floor of the V-huset building, which is part of
Lund University in Lund, was chosen as each room was equipped with occupancy sensors, and the number of
rooms was suitable for the scope of this investigation.

Figure 3.2 . Corridor of the case study building
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Figure 3.3. Plan of the selected section of V-huset

3.2 Base case energy model

To simulate the energy demand of this section of the building, an energy model (BC) was created using HB in
GH. Wall construction properties were obtained from available drawings of similar buildings built for Lund
University in 1960s by Klas Anshelm (Academic House, 2024). Although the building was renovated in 2016,
only the exterior windows were replaced, and the walls and the roof remain untouched. Ventilation rate was set
according to the Swedish building code (Boverket, 2018). People, lighting and equipment load, schedules and
operative cooling and heating set points were set according to the Swedish building regulations for office spaces
in universities (Boverket, 2017). Additionally, a second scenario (BC+) was considered in which the occupant
density would match the real number of occupants, as described in section 3.7.

Table 3.1. Simulation inputs for BC

Energy simulation inputs Values
Exterior walls 1.20
- 2
Envelope U-value / (W/(m2K)) Roof 032
. North and east 0.59
- 2
Windows U-value / (W/(m?K)) South 185
Internal mass columns
Shading surrounding buildings
Ventilation Always on 0.35 (I/s/m?) + 7 (l/s/p)
Infiltration (ACH at 50 Pa) 3.24
HVAC type Ideal loads air system
Weather file (.epw) Lund
Heated floor area (m?2) 506
Natural ventilation Always on Within the limitations of set points
during on hours with 1 °C difference
People load (W/person) 108
Lighting load (W/m?2 Asemp) 114
Equipment load (W/m?2 Aemp) 10
Occupancy and system schedules Availability 8:00 — 17:00 working days
. Base case 20
Occupant density (m? Aswemp/person) Base case + 31
. . o On hours 21
Heating set points (°C) OFf hours 18
. . o On hours 24
Cooling set points (°C) OFf hours 28
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3.3 Agent-based model

Agent-based modeling approach was chosen as it allowed for a stochastic representation of the occupants within
the limitations of this case study originating from data availability, time constraints and availability of occupant
modeling programs capable of co-simulation with EnergyPlus.

Occupants were represented as single individuals with each room representing one zone. Each zone had
occupants and systems assigned to it, and each occupant had the ability to sense environmental variables and
make limited predictions, avoiding certain actions as a result of predefined set points. The behavior of each
occupant was defined based on DNAS ontology using obXML while their presence and absence and movement
through the building were simulated using the movement simulator of OSim in cbFMU.

3.4 Occupancy: movement and location

Each occupant was provided with a unique profile containing the arrival, departure and movement of that
individual using OSim. This information was obtained through observational studies, conducting a survey and
using data from presence sensors. The survey consisted of two parts: part one focused on occupancy, and part
two on occupant behavior.

Information gathered through the first part of the survey and observations detailed the number of individuals in
each office, whether the space was shared or private, and the daily number of visitors. It also included data on
the occupants' break schedules, the frequency of meetings they attended, the average number of meeting
participants, and the distribution of time spent in their own office, other offices, meeting rooms, utility rooms
or outdoors.

Furthermore, data on occupancy, recorded at 10-minute intervals by the PD2400 infrared presence sensor
integrated into Lindinvent TTC's supply air system in each room, was obtained from Akademiskahus for the
year 2023. This system monitored and recorded states of presence and absence. To identify the most frequent
arrival and departure hours, using Python, the data for each room was sorted to only show the first and last
presence state for each day of the year; then, the first and last states were sorted separately to list all the filtered
hours based on time of the day. These filtered lists were then analyzed using kernel density estimation (KDE)
as the recorded data did not follow a pattern. Finally, the peak of the curve was chosen as the most frequent
occurrence, which served as the mod for this data set, as shown in Figure 3.4Figure 3.4. The most frequent first
and last recorded states were chosen as the typical arrival and departure hours for the whole year, respectively
and standard deviation from this point was calculated to reveal their variation. The complete list of calculated
hours can be found in Appendix A.

251
20 1
15 1

10 1

Number of presence detected / year

0+ T T T T T T T T T T T T T T T T
04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Time / hour

Figure 3.4. Example of a KDE for the first presence state detected at each hour throughout the year for room 34
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Using this information, each occupant was modeled as a separate occupant type with its own set of movement
and occupancy information, each room was also modeled separately and the corresponding occupants were
assigned to them. Simulation period was set for one year, with 2023 Swedish holiday dates manually added.
The simulation was performed at a 5-minute time-step. The obXML and obCoSim files generated by this
simulation were then used for the next stages.

3.5 Behavior

The second part of the survey was used to find the right behavior model for the occupants, it was created based
on a framework developed by D’Oca et al. (2017) uniting concepts from SCT, the DNAS ontology, and TBP to
address the dynamics of energy-related behaviors within office settings affecting energy consumption and
indoor comfort. It concentrates on how environmental and personal factors, along with societal norms, influence
occupants' decisions to engage with building controls (D’oca et al., 2016).

This part of the survey was comprised of 5 main sections; the first section identified what the thermal, visual
and 1AQ needs of the occupants are and if these needs are satisfied. The second section assessed if occupants
were allowed to interact with different systems in the building. The third section examined the occupants'
knowledge of how to operate these systems. The fourth section analyzed occupants' intentions regarding the use
of these systems. Finally, the fifth section collected data on the frequency of interaction with various systems
inside the building. The list of survey questions can be found in Appendix B.

Answers from the survey were collected in an Excel sheet. A translation layer was developed according to the
DNAS framework; the answers for each question were broken down and numbers, DNAS tags and weights
were assigned to them. As demonstrated in the following examples from the survey where the participants were
first questioned about how satisfied they were with their visual comfort. Only the state of dissatisfaction was
considered s valid answer as a satisfied individual was unlikely to alter their condition. Afterward, the next
guestion assigned the appropriate Drivers, Needs and Systems for each answer based on the conditions of this
case study.

Question 1: On average, how would you rate the visual comfort (natural and/or artificial light levels and
distribution that would let you see easily and clearly), in your usual workspace?

1. Very dissatisfied Translation:
Ql={
2. Dissatisfied "1": {"Intensity" : "Very High" },
"2": {"Intensity" : "High" },
3. Somewhat dissatisfied "3": {"Intensity" : "Medium" },
"4": {"Intensity"” : "Low" }
4. Neither satisfied nor dissatisfied }

5. Somewhat satisfied
6. Satisfied
7. Very satisfied

Question 2: If you are not satisfied with the visual comfort in your workspace, what is the main cause for visual
discomfort? (You may choose more than one answer)

1. Too much artificial lighting Translation:
Q2={
2. Too much natural lighting "1t {
"Drivers": "RoomWorkPlaneDaylightllluminance”,
"Needs": "Visual",
"Systems™: "Lights"},
2" {
"Drivers": "RoomWorkPlaneDaylightllluminance”,
"Needs": "Visual",
"Systems": "ShadesAndBlinds"}}
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Next, a complementary code written in Python was developed to find the right behavioral model from the library
of behaviors included in obXML for each occupant, the process is demonstrated in Figure 3.5. First, the
translation layer and library of behaviors defined using DNAS were added as dictionaries and the survey answers
were loaded from the Excel file. Then, participant’s thermal, visual and IEQ needs were analyzed, and if a need
was present, the associated drivers and systems were identified and a dictionary containing the relevant drivers,
needs and systems was assigned to that participant. In the next step, the level of access to different systems,
level of knowledge about different systems and participant’s intention level towards using different systems
were assessed. Average and higher than average levels were assumed as a positive answer. Next, the usage
frequency of different systems was examined; if the usage was frequent enough (more than never, once a year
or six months) it was considered as a positive answer. Afterward, if the systems in the participant’s dictionary
had a positive access, knowledge and intent, the dictionary moved to the next stage, where it was checked
against the frequency of actions with the same systems as the one in the participant’s dictionary. The action was
added to the dictionary if the outcome was positive. At this stage, the dictionary contained the participant’s
behavior defined through the DNAS framework and it was then compared with the behaviors from the library.
Lastly, behaviors with identical identifiers were selected for the participant. This process was repeated for all
the other participants, resulting in a final Excel file that contained the ID of occupants and their assigned
behavior from the library. The behavior assignment code can be further explored in Appendix C.

Initialization Processing Output

Repeat for each user

Define

—> user’s
needs

Identify needs

1-Check b o ot pass checks  —»)
> 1-3

access

Load
translation Save list
layer Match user ‘Write user ID of users
Start > R > » 2 Check | | CreateDNAS = - flewith XML —b  withits matching. —— /NSNS
answers knowledge user profile . .
Load XML behavior library behavior matching

Eer behaviors

library
3. Check
intent

. Find matching End
| > SICheck B

frequency
needs

Figure 3.5. Workflow of the behavior assignment code

The list created using this code was used to complete the obXML file. Behaviors were added to
“/OccupantBehavior/Behaviors™ element, the IDs from these behaviors were added for each corresponding
occupant in “/OccupantBehavior/Occupants/Occupant” element and the system involved in that behavior was
also added to the corresponding room in “/OccupantBehavior/Buildings/Building/Spaces/Space™ element

Furthermore, obXML file was further refined using knowledge and observations about the type of systems in
use in this section of the building. For example, as each room was equipped with an automatic light-off switch
connected to the occupancy sensor, this system was modeled in obXML. Lastly, the XML file was verified
using the obXML schema to ensure it followed the correct structure.

3.6 Co-simulation

In order to use the occupant profiles in obXML with BC to run an energy simulation, a co-simulation was
performed. To enable this co-simulation, the IDF file created from the simulation of BC was modified using
EnergyPlus V 23.2 IDF Editor. obFMU as a Functional Mockup Unit (FMU) was imported to EnergyPlus as an
external interface with EnergyPlus as the simulation manager.
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Zone Mean Air Temperature, Daylighting Reference Point 1 Illuminance, Zone Air CO. Concentration, Zone
Lights Electricity Rate, Site Outdoor Air Drybulb Temperature and Site Rain Status were defined as output
variables and the following inputs were added in order to enable the export of these variables by EnergyPlus.

Table 3.2. Input for enabling co-simulation with obFMU in EnergyPlus

Output Variables

IDF Object

Inputs and descriptions

Daylighting Reference Point 1
Illuminance

Daylighting:Controls

Created for each zone and Daylighting
reference points for each zone were assigned to
them

Related Daylighting Reference
Point 1 llluminance schedule

Stepped Control

Auvailability Schedule Name: Off

Related Daylighting Reference
Point 1 Illuminance schedule

Schedule:Compact

Name: Off

Schedule Type Limits Name: Any Number
Field 1: Through: 12/31

Field 2: For: AllDays

Field 3: Until: 24:00

Field 4: 0

Daylighting Reference Point 1
Illuminance

Daylighting:ReferencePoint

One reference point was assigned to the center
of each work desk in each zone at the height of
0.8 m from the floor

Zone Air CO. Concentration

ZoneAirContaminantBalance

Carbon Dioxide Concentration: Yes
Outdoor Carbon Dioxide Schedule Name:
Outdoor CO:

Generic Contaminant Concentration: No

Related Zone Air CO:
Concentration schedule

Schedule:Constant

Name: Outdoor CO:
Schedule Type Limits Name: Any Number
Hourly Value: 400

Carbon Dioxide Generation Rate {m3/s-W}:

Zone Air CO: Concentration People 3.82 x 108 for each Occupant type (EN 16798-
2,2023)
Individual lights were assigned to each zone
Zone Lights Electricity Rate Lights instead of how lights were previously assigned
to space types that contained several zones
Site Rain Status RunPeriod Use Weather File Rain Indicators: Yes

Related schedule

ScheduleTypeLimits

Name: Fraction

Lower Limit Value: 0.0

Upper Limit Value: 1.0
Numeric Type: CONTINUOUS

Related schedule

ScheduleTypeLimits

Name: Any Number

To read and send these variables from the external interface to obFMU,
Externallnterface:FunctionalMockupUnitimport:From:Variable was used, with the variables separately
defined for each zone, as demonstrated in Table 3.3 for zone 2031.

Table 3.3. Input for enabling the export of output variable for zone 2031 as a sample

Output:Variable Name

Variable inputs

Zone Mean Air Temperature

Output:Variable Index Key Name: 2031
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_Temperature

Zone Lights Electricity Rate

Output:Variable Index Key Name: 2031
FMU File Name: obFMU.fmu
FMU Instance Name: obm Room 2031
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FMU Variable Name: OutdoorAir_Drybulb_Temperature

Site Outdoor Air Drybulb Temperature

Output:Variable Index Key Name: Environment
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031

FMU Variable Name: Zone_Temperature

Site Rain Status

Output:Variable Index Key Name: Environment
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031

FMU Variable Name: Outdoor_Rain_Indicator

Daylighting Reference Point 1 llluminance

Output:Variable Index Key Name: 2031
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_illum

Zone Air COz Concentration

Output:Variable Index Key Name: 2031
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone CO-

To import schedules from obFMU to the external interface,
Externallnterface:FunctionalMockupUnitImport:To:Schedule was used. Schedules for HVAC, light,
infiltration, occupancy, plug load, thermostat, shade and blind were individually defined for each zone. An

example of Zone 2031 is given in Table 3.4.

Table 3.4. Input for enabling the import of schedules for zone 2031 as a sample

Name

Schedule inputs

Zone_HVAC_SCH_Room_2031

Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_ HVAC_SCH
Initial Value : 0

Zone_light SCH_Room_2031

Schedule Type Limits Names: Fraction

FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_light SCH

Initial Value : 0

Zone_infil_SCH_Room_2031

Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_infil_SCH
Initial Value : 0

Zone_occ_SCH_Room_2031

Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name: Zone_occ_SCH
Initial Value : 1

Zone_PlugLoad SCH_Room_2031

Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name:
Zone_PlugLoad_SCH

Initial Value : 0

Zone_Thermostat SCH_Room_2031

Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name:
Zone_Thermostat_SCH

Initial Value : 21
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Schedule Type Limits Names: Fraction
FMU File Name: obFMU.fmu

FMU Instance Name: obm_Room_2031
FMU Variable Name:
Zone_ShadeAndBlind_SCH

Initial Value : 0

Zone_ShadeAndBlind_Room 2031

Afterward, the schedules for the number of occupants, lights, equipment, window opening, thermostat and
blinds were replaced accordingly. The assignment of values for people, lighting and equipment were changed
to separate zones from space types. Lighting load for each zone was set according to the type and number of
lights installed in each room and their illuminance was measured using a Hagner E4-X lux meter and used
accordingly in the *llluminance Setpoint at Reference Point {lux}’ section of DAYLIGHTING:CONTROLS
object in Energyplus. While the lights supported dimmable control, they were assumed only to turn on or off
based on observations and interviews with the occupants and their usage patterns.

Equipment load for each zone was set to 120 W/m? based on observations of the number of electrical equipment
and their usage, which fell below the average of the measured appliance use in offices (Gunay et al., 2016). The
full list of lighting and equipment load for each room is accessible in Appendix D. Thermostat schedule and
values were changed based on temperature recordings data obtained from Akademiskahus, a constant schedule
was set for the cooling and heating set points and their values were changed to 21 °C and 24 °C respectively for
the whole 24 hours of the day. HVAC inputs were not changed from the base-case model as a central control
system operated the HVAC system in the building and occupants had no control over it. Corridor lights were
set to 100 % luminance from 8:00 — 17:00 and to 20 % from 17:00 — 8:00 to accurately represent their real
operation that was controlled automatically. The blinds were implemented by adding electrochromic glazing to
the windows that required blind modeling as this option required the least amount of alternation to BC geometry
and properties. Lastly Number of Timesteps per Hour in Timestep object was set to 12. An example of inputs
for these changes for zone 2036 can be found in Table 3.5.

Table 3.5. Input for implementation of schedules for zone 2036 as a sample

Schedules IDF object Inputs

Number of People Schedule:

Zone_occ_SCH_Room_2036
Occupants People Number of People Calculation Method:

People

Number of People: 1

Schedule Name:
Zone_light SCH_Room_2036
Lighting Lights Design Level Calculation Method:
Watts/Area
Watts per Zone Floor Area {W/m?}: 3.4

Schedule Name:

Zone_PlugLoad SCH_Room_2036
Equipment ElectricEquipment Design Level Calculation Method:

Watts/Area

Watts per Zone Floor Area {W/m?}: 6.2

Opening Area Fraction Schedule Name:
Zone_infil_SCH_Room_2036

Shading Type: SwitchableGlazing

Shading Control Type: OnIfScheduleAllows
Schedule Name:
Zone_ShadeAndBlind_Room_2036

Window opening  ZoneVentilation:WindandStackOpenArea

Blinds WindowShadingControl

obCoSim.xml was updated to map the correct FMU instance name to the xml space ID, Movement calculation
was set to Yes, start and end time and dates were set similarly as the inputs in RunPeriod object of IDF file for
one year and timestep was set to 12. obXML.xml, obCoSim.xml, obFMU, BC IDF file and the weather file for
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Lund were placed in the same folder. This folder was copied 10 times and the simulation for each one was
performed separately to ensure no unintentional changes occurred to the input files by overwriting them. The
average value from these 10 runs was used as the final result for ABM.

3.7 Analyses

As this study focused on how occupants impact the energy consumption in the building, (kWh/Occupant/year)
was chosen as an occupant-centric metric to evaluate the total energy usage based on standard and measured
occupancy levels throughout the year, which was then compared to the results that relied on EUI as the
performance metric. Furthermore, to evaluate the significance of different parameters and lower the varying
variables when using (kWh/Occupant/year), two new scenarios were introduced.

The first scenario looked at the significance of occupant count by simulating a base case model (BC+) with the
same number of occupants as ABM as changing the number of occupants in ABM was not possible because it
was representing the real number of people currently occupying this space and introducing more occupants
would have resulted in creation of occupant profiles without any basis on reality unlike the ones created before.

The second scenario analyzed the parameters affecting lighting and equipment energy usage, by simulating the
agent-based model (ABM+) using the same lighting and equipment loads as BC. This simulation was performed
10 times and the average was used to measure the significance of lighting and equipment loads in a probabilistic
simulation.

Table 3.6. Specifications of different scenarios

Scenario Number of occupants Heating and cooling set lighting loads Equipment load
points and schedule

BC 24 Standard Standard lighting Standard equipment

loads loads

BC + 16 Standard Standard lighting Standard equipment
loads loads

ABM 16 Real Real lighting loads  Real equipment loads

ABM + 16 Real Standard lighting Standard equipment
loads loads

While both models had the same number of occupants as input, the stochastic generation of occupancy in the
ABM-+ meant that the overall number of occupants present during a year would still not be the same in both
models. Therefore, the total number of occupants present during the year was 32 853 and 37 441 for ABM+ and
BC+ respectively.

Finally, regression analyses were performed to determine whether occupancy can explain the outcomes of
lighting and equipment models.
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4 Results

4.1 Occupant behavioral model

Using the output of the behavior assignment code, observations regarding the current state of systems installed
in the offices and some general assumptions, light, window, blind and equipment behavioral models were
selected for this simulation, detailed in Table 4.1. The full technical specifications of the behaviors are available
in Appendix F.

Table 4.1. Selected behaviors.

Selected Behavior

Model number  System Description

1 Lights Reinhart-Voss model for determining the probability of turning on the lights based on
the current level of desk illuminance at arrival in the morning. This probability
increases as the natural light level decreases below the comfort threshold (Reinhart &
Voss, 2003)

2 Lights Gunay model for determining the probability of switching on the lights with a focus
on the immediate decision to turn on lights based on current desk illuminance levels
when entering the room in the afternoon and evening based on Reinhart 2004 model
without additional behavioral complexities (Gunay et al., 2016)

3 Lights Model for turning off the lights when no occupancy is detected

4 Windows Haldi-Robinson model for estimating the probability of opening the windows as a
function of the indoor temperature (Haldi & Robinson, 2008)

5 Windows Haldi-Robinson model for predicting window closing during the day based on indoor
and outdoor temperature (Haldi & Robinson, 2009)

6 Windows Model for opening the window if the CO- concentration is above the recommended
threshold of (1100 ppm) for offices defined by (EN 16798-2, 2023)

7 Windows Model for closing the window at the end of the workday

8 Blinds Newsham model for opening the blinds in the morning upon arrival (Newsham,
1994)

9 Blinds Model for closing the blinds at the end of the workday

10 Equipment  Model for turning on the equipment when entering the room

11 Equipment  Model for turning off the equipment when leaving the room

12 Equipment  Model for turning off the equipment when leaving the room for a short time (one
hour)

13 Equipment  Model for turning off the equipment when leaving the room for a long time (six
hours)

Table 4.2. Occupants and their assigned behavior.

Selected Behavior for each occupant

Occupant ID Model number

S1 31 Office_O1 1,2,3,10,11
S2_32_Office_O1 1,2,3,10,13
S3_33 Office_O1 1,2,3,4,5,6,7,10,11
S3_33_Office_02 1,2,3,10,11
S4_34 Office O1 1,2,3,4,5,7,10, 11
S5_35 Office_O1 1,2,3,4,5/6,7,10,12
S5_35_Office_02 1,2,3,6,7,10,12
S6_36_Office_O1 1,2,3,4,5,6,7,8,9,10, 11
S7_37_Office_O1 1,2,3,10,11

S9 39 Office_O1 1,2,3,10,13
S10_40_Office_O1 1,2,3,4,6,7,10, 12
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S11 41 Office_O1 1,2,3,10, 12

S12_42_Office_O1 1,2,3,8,9, 10, 12
S13_44_Office_O1 1,2,3,8,9,10, 12
S14_45_Office_O1 1,2,3,10, 11
S16_53_Office_O1 1,2,3,10, 12

4.2 Performance analyses

4.2.1 Total energy usage

The total annual energy use of BC simulation and the average of 10 separate runs of ABM are presented in
Figure 4.1, as illustrated, ABM consumed 20 % more energy compared to BC.
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Figure 4.1. Annual energy use of BC and ABM
Figure 4.2 shows that heating increased by 48 %, followed by mechanical ventilation with 10 %. While cooling
accounted for the lowest portion of the energy use, with only 1000 kWh rounding up to only 1 % of total energy

use, a significant reduction of 74 % was observed, bringing the energy consumption down to 260 kWh in ABM.
Lighting and Equipment also had a noticeable reduction, with 48 % and 38 %, respectively.
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Figure 4.2. Annual energy use of different categories for BC and ABM
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4.2.2 Energy balance

Figure 4.3 shows the Energy balance of the two models. Infiltration and transmission increased by 19 % and
47 %, respectively, whereas natural ventilation decreased by 58%. People load decreased by 44%, and solar
gains remained unchanged.
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Figure 4.3. Energy balance of BC and ABM

4.2.3 Monthly breakdown

Figure 4.4 represents the monthly energy use for heating and cooling. It is noticeable that heating in the ABM
had a steady trend of higher consumption with an average of 39 % increase in winter, spring and autumn and a
700 % increase compared to BC in summer. This overall increase can be attributed to the heating schedule,
which was on for 24 hours every day. Cooling, on the other hand, decreased by 76 % on average over all the
active months.
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Figure 4.4. Monthly energy usage for heating and cooling in BC and ABM
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Lighting and equipment energy use both had a noticeable decrease with an average of 48 % and 38 %,
respectively, as shown in Figure 4.5. The highest reduction for lighting and equipment load was observed during
May with 52 % and 42 %, respectively.
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Figure 4.5. Monthly energy usage for lighting and equipment in BC and ABM

Mechanical ventilation increased by 11 % on average, with the highest surge in September at 25 %. Figure 4.6.
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Figure 4.6. Monthly energy usage for mechanical ventilation in BC and ABM

4.2.4 Schedules

A comparison of the occupancy schedule for BC and ABM can be observed in Figure 4.7. Because of the
stochastic nature of ABM, its schedule is different for each day; therefore, this graph is only a sample showing
one day from the building to illustrate how the fixed office schedule of 8:00 to 17:00 differs from the stochastic
occupancy simulated using OSim.
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Figure 4.7. Sample of the occupancy schedule of one room for one week in BC and ABM

The cumulative distribution function of the number of occupants in the building throughout the year in Figure
4.8 shows the nature of the occupancy schedules in both models. It highlighted how the probability of the
presence of different numbers of occupants differed in BC compared to ABM. BC had no occupants present for
75 % of the time (off hours) while all of the occupants were present at once for the rest of the time. The flat
horizontal line showed the fixed occupant count throughout the working hours in the year. On the other hand,
the line for ABM had a more gradual increase reflecting the stochastic nature of occupants and the more even
distribution of their presence.
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Figure 4.8. Cumulative distribution function of the total occupant count for BC and ABM

Figure 4.9 represents the schedule for equipment usage in one room for a week. Equipment usage was observed
throughout the night in the ABM model, while in BC, it was tied to working hours.
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Figure 4.9. Sample of the equipment usage schedule shown through its energy consumption for one room during one
week in BC and ABM

The same pattern can be observed for equipment usage in Figure 4.10, where all the equipment in the building
in BC was used at the same time while ABM loads varied.
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Figure 4.10. Cumulative distribution function of the total equipment load for BC and ABM

Figure 4.11 represents the lighting schedule for one week in one room in BC and ABM shown through its energy

usage. As displayed, not only did lighting load vary throughout the day in ABM, but it was also less than one-
fourth of the BC.
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Figure 4.11. Sample of a lighting schedule shown through its energy consumption for one room during one week in BC
and ABM

Figure 4.12 represents the cumulative distribution function of the lighting load for the whole building. The
distribution of lighting load follows the same pattern as equipment load for the BC, while for the ABM, the
majority of the load was concentrated near 0.3 kWh and peaking at 2 kWh.
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Figure 4.12. Cumulative distribution function of the total lighting load for BC and ABM

Figure 4.13 shows the schedule for window opening in BC and ABM for a week in the whole building. The
dynamic schedule of the BC was seen to be close to the stochastic generation of window openings in ABM.
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Figure 4.13. Sample of a window opening schedule shown through the annual energy loss via natural ventilation for the
whole building during one week in BC and ABM

Figure 4.14 represents the cumulative distribution function of the annual energy loss through window opening
in BC and ABM. Once again BC was showed to have a comparable performance in terms of variety of window
opening occurances compared to ABM.

1.0+

0.8 1

0.6 1

0.4 1

Cumulative probability / [-]

0.2 1

BC
0.0 | == ABM

1 2 3 4 5 6 7
Natural ventilation (kWh)

Figure 4.14. Cumulative distribution function of the total window opening for BC and ABM

4.2.5 Operative temperature

Figure 4.15 represents the operative temperature for each individual zone in both models with each column
representing the minimum and maximum annual range for that zone.
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Figure 4.15. Annual operative temperature for each zone for BC and ABM
4.2.6 Peak loads

Figure 4.16 and Figure 4.17 represent the heating and cooling peak loads for ABM through November 27th and
July 26th as the day with the highest heating and cooling load in the year, respectively.
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Figure 4.16. Heating peak load during November 27th for ABM
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Figure 4.17. Cooling peak load during July 26" for ABM

Figure 4.18 and Figure 4.19 represent the heating and cooling peak loads for BC through November 27" and
July 26" as the day with the highest heating and cooling load in the year, respectively.
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Figure 4.18. Heating peak load during November 27th for BC
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Figure 4.19. Cooling peak load during July 26th for BC

4.3 Performance analyses using an occupant-centric metric

In order to develop a better understanding of the performance of each model with respect to their occupancy
levels, (kWh/Occupant/year) was used as the performance metric. Figure 4.20 represents the total energy use

normalized by the total number of occupants present in a year for each model. ABM had an increase of 116 %
compared to BC.
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Figure 4.20. Total energy usage for the total number of occupants during the year for BC and ABM

Figure 4.21 and Figure 4.22 show a comparison between (kWh/Occupant/year) and EUI as performance metrics.
Energy use for heating and mechanical ventilation was increased by 167 % and 98 %, respectively, while EUI
only showed an increase of 48 % and 10 %, respectively. Lighting and cooling decreased by 7 % and 53 %,
respectively, using the new metric, while they decreased by 48 % and 74 %, respectively, using EUI. However,
equipment energy use displayed a reverse trend and increased by 12 % when normalized by the total number of
occupants present in a year whereas EUI showed a 38 % decrease.
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Figure 4.21. Total energy usage for different categories normalized by the total number of occupants present during the

year for BC and ABM
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Figure 4.22. Energy use intensity for BC and ABM

4.3.1 Monthly breakdown

Figure 4.23 illustrates the monthly heating and cooling energy use in both models. Heating increased by 648 %
on average and more than doubled in ABM during the cold months of the year and was up to twenty-two times
higher in August. Cooling was reduced by 56 % on average in ABM with the highest reduction in May by 63 %.
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Figure 4.23. Monthly energy usage normalized by the total number of occupants present for heating and cooling in BC
and ABM

Figure 4.24 represents the lighting and equipment energy usage per occupant hour in both models. Lighting
energy use was reduced by 7 % on average, with the highest reduction in May at 14 %, while equipment energy
use increased by 12 %, with the highest rise in July at 18 %.

33



0.025

0020 | - - B - [ _
0.015

BC Lighting
0.010 OABM Lighting

BC Equipment

0.005 .
B ABM Equipment

Energy use / (kWh/Occupant)

0.000

January
February
March
April
May

June

July
August
September
October
November
December

Figure 4.24. Monthly energy usage normalized by the total number of occupants present for lighting and equipment in
BC and ABM

Figure 4.25 shows that mechanical ventilation energy usage for ABM increased by 99 % on average compared
to BC, with the most significant increase in September, at 125 %.
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Figure 4.25. Monthly energy usage normalized by total number of occupants present for mechanical ventilation in BC
and ABM

4.4 Comparative analyses

4.4.1 Performance analyses

Figure 4.26 compares the two main models (ABM and BC) and two additional scenarios (ABM+ and BC+) in
terms of total energy use and the percentage of energy used by each category for the corresponding model. In
total, ABM+ consumed 52 % more energy than BC+, and ABM consumed 116 % more energy than BC.
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Figure 4.26. Energy usage normalized by the total number of occupants present in one year for four scenarios

Figure 4.27 shows that energy used for heating increased by 73 % for ABM+ compared to BC+; in comparison,
there was a 167 % increase for ABM compared to BC. Cooling loads decreased by 40 % for ABM+ compared
to BC+. This reduction was 53 % for ABM compared to BC. Energy used for lighting was reduced by 17 % in
ABM-+ compared to BC+. Previously this number was 7 % for ABM compared to BC. Equipment energy use
increased by 12 % for ABM+ compared to BC+ resulting in the same amount of increase as ABM compared to
BC. Mechanical ventilation energy use increased by 55 % for ABM+ compared to BC+ while there was a 98 %
increase for ABM compared to BC.
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Figure 4.27. Comparison between energy used by the total number of occupants present in a year in different categories
between four models

Figure 4.28 shows the energy use intensity in different categories for four models

35



200
@
=
£ 150
< mBC
E
§ mBC +
>
2 5o ABM+
e
L
0
Cooling Heating Lighting Equipment Mechanical
ventilation

Figure 4.28. Energy use intensity in different categories for BC, BC+, ABM and ABM+

Figure 4.29 illustrates the difference in reported energy usage when using (kWh/Occupant/year) compared to
EUI when comparing ABM to BC and ABM+ BC+. It can be observed that the comparison between ABM+
and BC+ showed a positive difference in different categories indicating that even with relatively similar models,
energy usage reported by (kWh/Occupant/year) is higher compared to EUI.

119%
= ABM vs BC
88% = ABM+ vs BC+
0
41% S0%
21%

7% 21% 10% 14% 19%
Cooling Heating Lighting Equipment Mechanical
Ventilation

Figure 4.29. Comparison between the performance gap measured using (kWh/Occupant/year) vs EUI in different
categories between the four models

Figure 4.30 indicates that, on average, the energy used by lighting decreased by 27 % for ABM+ compared to
BC. The reduction in lighting energy use for ABM was 48 % in comparison.
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Figure 4.30. Comparison between the total energy used for lighting in 3 modeling scenarios (BC and BC+ had the same
energy use for lighting; therefore, there was no difference between them for this comparison)

Figure 4.31 shows that energy from equipment use decreased by 2 % for the ABM+ compared to BC but
increased by 2 % and 6 % in April and July, respectively, and remained the same in September and October.
However, there was a uniform reduction pattern in equipment energy use for ABM, with 38 % compared to BC.
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Figure 4.31. Comparison between the total energy used for equipment in 3 modeling scenarios (BC and BC+ had the
same energy use for equipment; therefore, there was no difference between them for this comparison)

4.4.2 Regression analysis

In order to investigate the predictability of lighting and equipment usage based on occupancy, a linear regression
analysis was performed. Figure 4.32 shows the linear regression of lighting and equipment use based on their
total energy use relative to occupant count for the whole building. Occupancy is a better predictor of equipment
use compared to lighting usage in this analysis.
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Figure 4.32. Regression analyses of equipment and lighting schedules in relation to ABM occupant count

4.4.3 Analysis of three office types
4431 Room 31

Room 31, with a 41.53 m2 area as the biggest room, only contained one occupant with an immediate equipment
turn-off behavior. Figure 4.33 represents lighting and equipment use and their correlation with occupancy count.
Occupancy was a better predictor for lighting use for this room. Occupancy in ABM was generated at a 5-minute
interval. However, the output from Energyplus reported the results on an hourly basis; therefore, an occupant
had to be present for every 12 time-steps of an hour for the occupancy to be registered for that hour, explaining
the values for the x-axis.
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Figure 4.33. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 31
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Figure 4.34 shows the cumulative distribution function of annual equipment load for room 31 in BC and ABM.
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Figure 4.34. Cumulative distribution function of the total equipment load for BC and ABM

Figure 4.35 shows the cumulative distribution function of the annual lighting load for room 31 in BC and ABM.
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Figure 4.35. Cumulative distribution function of the total lighting load for room 31 in BC and ABM
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4.4.3.2 Room 35

Room 35, while having the typical size of 20 m2, was occupied by two people who had both chosen to turn off
the equipment after one hour as their behavior. Figure 4.36 shows the equipment and lighting usage and their
correlation with occupancy. Lighting energy usage had a stronger correlation with occupancy count.
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Figure 4.36. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 35
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Figure 4.37 displays the cumulative distribution function of annual equipment use in room 35 in BC and ABM.
BC, with an occupant density of 20 m2 /person, only contained one occupant. Equipment usage in ABM reached
a higher peak load as a result of having two occupants and despite having a lower equipment load.
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Figure 4.37 Cumulative distribution function of the total equipment load for room 35 in BC and ABM
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Figure 4.38 represents the cumulative distribution function of annual lighting use in room 35 for BC and ABM.
More efficient lighting loads and a more responsive turn-off behavior for lighting loads showed a lower peak
load for the lighting while the occupancy count was higher.
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Figure 4.38. Cumulative distribution function of the total lighting load for room 35 in BC and ABM

4.4.3.3 Room 40

Only one occupant was occupying room 40 with an area of 20 m2, equipment was selected to turn off after six
hours for this room. Figure 4.39 demonstrates the equipment and lighting usage and their correlation with
occupancy. Occupancy was a strong predictor of lighting usage.
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Figure 4.39. Regression analyses of equipment and lighting schedules in relation to ABM occupant count for room 40
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Figure 4.40 shows the cumulative distribution function of the annual equipment load for room 40 in BC and
ABM.
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Figure 4.40. Cumulative distribution function of the total equipment load for room 40 in BC and ABM

Figure 4.41 shows the cumulative distribution function of annual lighting usage of room 40 in BC and ABM.
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Figure 4.41. Cumulative distribution function of the total lighting load for room 40 in BC and ABM
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5 Discussion

5.1 Modeling approach

The decision for the right modeling approach or a combination of different approaches was boiled down to the
limitations posed by occupant modeling tools. While obFMU provided the opportunity to create an agent-based
model, it relied heavily on a fixed time-step approach limiting holidays to the entire model instead of each
occupant and, therefore, lacked the capability to model random absences such as sick leaves or personal absence
periods like vacations. Therefore, a discrete event approach was not possible. Additionally, analyzing the energy
usage feedback loops of different elements inside the building was limited to EnergyPlus's outputs; thus, a
system dynamic approach was not realizable.

An agent-based model, on the other hand, allowed for more flexibility, with stochastic models chosen for the
behaviors that required one and static schedules selected for systems that were not controllable by the occupants.
Additionally, the desired resolution of each zone and person as an agent was applicable, adding to its benefits.
However, the stochastic generation of occupancy and behaviors meant that the results from different runs were
different; this difference was mostly caused by the probabilistic generation of the location for each occupant at
each run resulting in different loads. The standard deviation from the 10 runs was low in all categories
regardless. Furthermore, contrary to the popular belief that a simulation with similar outputs in each run is
reliable, in reality, a building never performs the same, yet stochastic modeling is considered uncertain.

5.2 Occupant profiles

Data from the occupancy sensor was not able to differentiate between different individuals and measure the
occupancy count in shared offices. Therefore, the same arrival and departure hours and their variation were
assigned for occupants in shared spaces. Furthermore, no occupants were considered for rooms 38 and 46, and
therefore, no occupant model was created for them due to inaccessibility to their occupants at the time of
conducting the survey and lack of useable data.

The results from the survey revealed that only lights, windows, equipment and blinds were utilized by the
occupants. The behavior for turning off the lights was modeled to replicate the real-life automatic light-off
switch connected to the occupancy sensor that would turn off the lights when no occupancy was detected.

While some participants did not choose an answer for the question in the survey regarding equipment usage, the
model for turning on the equipment was used for all the occupants as the lack of an equipment turn-on behavior
resulted in zero equipment load for the whole simulation period creating an unrealistic behavior for an office
space. Additionally, the model for immediately turning off the equipment when occupants leave the room was
only applied to the occupants who did not answer the equipment turn-off behavior questions to prevent the
equipment from being left on for the whole simulation period. Furthermore, standby or power-saving models
were not considered for the equipment turn-off model.

A thin curtain was installed for each window that allowed light to enter the room and the orientation of the office
windows towards the north meant that they were rarely used, as was observed in different visits and from the
survey answers. Therefore, to simplify the model, blind usage behavior was only applied to the occupants who
had selected the behavior and the rest of the windows had no blinds applied to them.

Window closing model at the end of the workday was implemented with the assumption that no occupant would
leave their window open when leaving the office at the end of the day. Furthermore, limitations for window
opening temperature range were set in EnergyPlus; this meant that windows could only be open according to
the heating and cooling set points in order to prevent an overlap between the heating or cooling system being
turned on when windows were open.
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5.3 The performance gap

5.3.1 Total energy use

Results from the simulation showed that there is a discrepancy between the energy usage of BC and ABM.
Energy used for heating had the most significant impact on this difference with the selection of a heating and
cooling system that was active 24 hours every single day. Consequently, increased heating load resulted in
increased infiltration and transmission due to higher temperature differences between inside and outside, leading
to higher pressure differences. Furthermore, the increase in mechanical ventilation can be attributed to the choice
of the HVAC system as it delivered heating through air. Additionally, as only a few occupants had chosen a
window opening behavior, natural ventilation also had a noticeable decrease, while BC, with a higher number
of occupants and a dynamic schedule, had more variety in the operation of windows.

The decrease in people load followed the decrease in occupancy count from 25 to 16 with a significantly less
concentrated occupancy in ABM. Furthermore, as a result of the occupant behavioral models, lower loads, and
fewer occupants, a noticeable reduction in lighting and equipment energy use was observed. As evident through
the shape of the curve of their cumulative distribution function, the usage pattern varied more in ABM.

Operative temperature for both models stayed within the intended range; however, as BC had a lower set point
for heating and a higher set point for cooling on off-hours, the range of the overall operative temperature was
larger in general while it was similar to ABM in working hours. Heating and cooling peak loads showed similar
patterns, happening during the same day and peaking at relatively similar hours; however, ABM had a smoother
heating and cooling peak load as a result of an always-on HVAC system and fewer occupants and gains from
lighting and equipment.

5.3.2 Occupant-centric metric

Relying on a performance metric tailored to the occupants' energy use revealed that a heating system not
designed to consider occupancy results in an even greater performance gap when the occupancy count is lower
in reality compared to the standards.

Stochastic generation of lighting and equipment usage was not as impactful when the new metric was used,;
however, the reversal trend of equipment usage initiated further investigations as ABM had a lower occupant
count and lower equipment loads compared to BC. This was achieved by assigning the same loads for lighting
and equipment in ABM as BC and performing a comparative analysis.

5.3.3 Comparative analyses and regression

The attempt to lower the differentiating variables in both models resulted in the total performance gap between
ABM-+ and BC+ being 52 % using (kWh/Occupant/year) while EUI reported 33 %. While the reduction from
116 % and 20 % in ABM and BC to 52 % and 33 % in ABM+ and BC+ was significant, the remaining gap
between the reported results of the new metric and EUI for the new models revealed the insensitivity of EUI to
the number of occupants.

The reduction in heating load for ABM+ compared to BC+ revealed that occupancy count was responsible for
more than half of the increase in heating load for ABM compared to BC, and the rest were attributed to the
operative schedule and set points of the HVAC system. This was in line with the findings of Mahdavi &
Tahmasebi (2016) where a realistic assumption in regards to the number of occupants and not stochastic
generation of occupancy was responsible for the accurate prediction of heating and cooling loads. Also,
increased loads for lighting and equipment resulted in more cooling and less heating in ABM+ compared to
ABM contributing to this reduction.

Equal lighting and equipment load as BC only accounted for half of the reduction previously observed in lighting
energy use, showing that the generated probabilistic model was responsible for the other half. On the other hand,
the reduction in equipment energy use in ABM proved to be highly reliant on the equipment load, indicating
more frequent utilization of the equipment in ABM, contributing to the increased energy use.
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The results from the regression analysis of the selected rooms also showed a strong correlation between the
lighting and equipment schedule and occupancy, confirming the correct operation of these behaviors as their
turn-on and turn-off actions were tied to occupancy, while the cumulative distribution function illustrated the
variety in energy used for lighting and equipment throughout the year.

5.4 Accuracy of prediction

Using (kKWh/Occupant/year) as the performance metric revealed that occupants in ABM were using the
equipment more frequently; furthermore, the comparative analysis also revealed that the overall energy use
reduction for equipment was connected to the defined loads instead of occupants’ behavior. However, the results
of the regression analyses for the equipment and lighting load for the whole building suggested a strong
correlation between equipment load and occupancy and a lower correlation for lighting. Upon further
investigation with the regression analyses of rooms, it was observed that lighting usage had a more significant
correlation to the presence of occupants. This finding was in line with the broader picture of the inner workings
of the building; as occupants had no control over the corridor lights, the dependency on occupants’ presence for
lighting usage would be less than equipment usage when investigating the whole building.

Regression analysis for room 40 showed a lower dependency of equipment usage on occupancy compared to
lighting usage. This was mainly attributed to the behavior selected for the equipment in this room which was
set to turn off the equipment after six hours of not detecting any occupants. This resulted in periods where no
occupants were present in the room while the equipment was still on, as in the next six hours, an occupant would
be detected in the time-step of the simulation. This was not far from reality as it was expected that occupants
would leave their devices on when they took a short break and left the room or had to leave the office but were
planning to return later during that day. However, regression results from room 31 with immediate equipment
turn-off behavior showed a similar operation pattern while it was expected to perform as well as lighting.

Therefore, it was noticed that setting behavior event types as leaving room for the equipment turn-off behavior
did not perform as expected. Figure 4.9 shows the schedule for equipment load in a sample week; as evident in
this schedule, there were periods after working hours when no occupancy was detected for periods longer than
six hours with the equipment left turned on. Finally, through debugging the output of obFMU, the turn-off
behavior for equipment was observed to not initiate at some time-steps. The same problem was also observed
in other behavioral models afterward. No specific pattern for this issue was found, as the same behavior worked
correctly for the majority of the time, increasing the time-step of the model and obFMU was the only option
that decreased these occurrences.
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6 Conclusion

6.1 Aim and objectives

An occupant behavioral model was developed in order to investigate the significance of the stochastic nature of
occupants in building performance. It was evident that in the case of an office space where occupants had zero
control over the system with the highest energy consumption, using the correct loads and set points had a more
meaningful impact on the overall energy use of the building than simulating the usage pattern of different
systems probabilistically. However, employing a stochastic prediction for systems that occupants were able to
interact with and had control over provided a more detailed usage pattern resulting in lower energy use. The key
conclusions from this study are:

e A literature review was performed and main elements from the field of occupant behavioral modeling
were described.

e Data collection was made possible by using data from occupancy sensors, conducting a survey and
observations during site visits.

e Agent-based modeling was found to be the most suitable approach as it allowed for a combination of
different levels of details and resolutions. Having the highest resolution reduced the errors caused by
abstraction, while the increased parameters introduced new challenges in understanding the origin of
the new results. Conversely, a major drawback of this approach was access to accurate and detailed
information needed for high-resolution modeling.

o (KWh/Occupant/year) was utilized and showed a greater performance gap in comparison to EUI.
Additionally, utilizing suitable performance metrics was able to speed up the analysis by providing new
perspectives that were only noticeable through deeper inspections and better explaining the inner
dependencies of the model.

e The accuracy of the prediction was investigated using a comparative and regression analysis and the
issues were discovered through debugging the results.

e The lack of access to a system prevents an occupant behavior model from having any impact on it, but
having the correct information about its schedule and loads would result in a more accurate model.
However, occupants may not tolerate the lack of freedom they have in their environment and try to
retain some level of control; this, in practice means that investigations about systems that they can’t
control can reveal other methods in which they try to make themselves and the space they occupy more
comfortable which creates new possibilities for occupant behavioral modeling.

e Whether an occupant behavioral model is the right approach depends on several factors, including the
overall goal of the simulation, time constraints, and limitations regarding the occupant modeling tools.
However, it is safe to assume that creating an occupant behavioral model for the system with the highest
consumption can be beneficial if the occupants can control the system or if the system is sensitive to
occupant count.

It is undeniable that using the correct inputs when creating the geometry and physical properties of an energy
model is of the utmost importance and the accuracy and complexity of current programs used for simulation are
at their highest, yet with respect to performance, the way a building is utilized is pivotal.

6.2 Future work
1) Creation of an agent-based model that is capable of modeling the interaction of occupants with each

other, behaviors observed only when occupants are present in a group and occupants who are capable
of learning from previous events and creating new decisions for similar events in the future
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2) Analyzing the performance at a larger scale, for example the entirety of V-huset building, as it contains
different sections with unique use cases

3) Streamlining the process of occupant profile creation and adjustments needed to allow co-simulation
with obFMU and EnergyPlus through custom code
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Appendix A

Table A. 1. Arrival and departure times

Zone name First or Last recorded state ~ Peak value/ (Time/h:m)  STD based on peak value/ (Time/m)
Room 31 First 08:57 122
Room 31 Last 16:46 173
Room 32 First 08:30 143
Room 32 Last 16:51 184
Room 33 First 08:28 89
Room 33 Last 15:45 138
Room 34 First 08:51 123
Room 34 Last 18:27 235
Room 35 First 08:37 116
Room 35 Last 16:12 139
Room 36 First 08:18 113
Room 36 Last 17.07 146
Room 37 First 08:13 139
Room 37 Last 16:25 176
Room 39 First 08:14 184
Room 39 Last 16:29 148
Room 40 First 08:20 172
Room 40 Last 15:38 143
Room 41 First 08:16 187
Room 41 Last 16:17 173
Room 42 First 08:25 91
Room 42 Last 15:31 110
Room 44 First 09:30 141
Room 44 Last 18:23 198
Room 45 First 08:40 144
Room 45 Last 17:13 154
Room 53 First 08:29 105
Room 53 Last 16:32 170
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Appendix B

Table B. 1. Survey Questions

Questions Answers
Occupancy

2 On average, how many meetings do you attend per day? 0-6 and more

3 If the answer to the previous question is not zero, which days of the week do  Days of the week
you typically have meetings?

4 If the answer to the first question is not zero, how many people are usually Range of numbers up to 16
in your meetings?

5  If the answer to the first question is not zero, on average, what percentage of  Less than 30 minutes, 30, 60, 90,
your meetings typically last for each of the following durations? (The total 120 minutes
percentage should equal 100 %). For example, 90 % of your meetings might
last for 60 minutes and 10 % for 120 minutes.

6  Besides yourself, do others enter or occupy your office or workspace during  Yes/No
the workday, even if they aren't directly using your equipment? This could
include managers, administrators, colleagues, etc.

7  If the answer to the previous question is "Yes": Approximately what Blank field
percentage of the workday do others spend in your office or workspace and
what is their role? (You may choose more than one answer)

8  When do you typically take your breaks (Lunch, coffee break, etc.) during Blank field
the workday? Include both the time of day you usually take them and their
duration in minutes. (You may choose more than one answer and please
specify each one separately)

9  Approximately what percentage of your workday do you spend in the Your own office, other offices,
following locations? (The total percentage should equal 100 %). For Meeting rooms, Auxiliary rooms
example, you might spend 90 % of the workday in your own office and (break rooms, storage, etc.),
10 % in outdoors.) Outdoors

10 Approximately how long do you typically spend in each of these locations Your own office, other offices,
during a single visit? Meeting rooms, Auxiliary rooms

(break rooms, storage, etc.),
Outdoors
Behavior and Interaction

11 On average, how would you rate the temperature in your usual workspace? 7 scale from cold to hot

12  If the temperature in your workspace is causing you discomfort, what is the ~ Conditional cold and hot
main cause of the discomfort? (You may choose more than one answer) temperature situations

13 On average, how would you rate the visual comfort (natural and/or artificial 7 scale
light levels and distribution that would let you see easily and clearly), in
your usual workspace?

14 If you are not satisfied with the visual comfort in your workspace, what is
the main cause for visual discomfort? (You may choose more than one
answer)

15 On average, how would you rate the indoor air quality satisfaction in your 7 scale
usual workspace?

16 If you are not satisfied with the indoor air quality in your workspace, what is  Stagnant air, Bad scents
the main cause for the discomfort? (You may choose more than one answer)

17 What's your gender? Male/Female/ No answer

18 What is your age? Range from 18 to 65+

19 What is your current employment status? Full time, Part time

20 What is your employment role? (Please specify if "other" is selected) Employee, Manager, Student,

Professor
21  What type of office do you work in? Shared office (max 6 people),

Shared office with another
person, Single office
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22

23

24

25

26

Are you able to adjust your clothing (removing/adding extra layers) based
on temperature in your workplace?

Yes/ No

How would you rate the extent to which you are allowed to interact with
control systems (windows, heating/cooling, blinds/curtains, lights) in your
working space?

Windows, Cooling/heating,
Blinds/Curtains, Lights
7 scale answer

How confident are you in your ability to use the control systems (windows,
heating/cooling, blinds/curtains, lights) in your workspace?

Windows, Cooling/heating,
Blinds/Curtains, Lights
7 scale answer

How inclined are you to use (windows, heating/cooling system,
blinds/curtains, lights) and remove/add extra layers of clothing, to make
yourself comfortable or save energy in your workspace?

Windows, Cooling/heating,
Blinds/Curtains, Lights,
Removing/adding extra layers of
clothing

7 scale answer

How many times did you perform these actions to make yourself
comfortable and/or save energy during last year?

Opening window when feeling hot

Closing window when feeling hot/cold

Opening window for airing spaces

Opening the blinds/curtains to provide natural lighting

Closing the blinds/curtains to prevent glare

Closing the blinds/curtains to prevent overheating

Turning on the heater when feeling cold (winter)

Turning off the heater when feeling too hot (winter)

Turning on the cooling/fans when feeling hot (summer)

Turning off the cooling/fans when feeling too cold (summer)
Removing/adding extra layers of clothing

Turning on the lights when it gets too dark

Turning off the lights when leaving the room

Turning on the lights when entering the room

Turning on the equipment/computer when entering the room

Turning off the equipment/computer when leaving the room for a short time
(e.g., 1 hour)

Turning off the equipment/computer when leaving the room for a long time
(e.g., 6 hours)

Never, Once a month, Once a
week, more than once a week,
Once a day, more than once a day
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Appendix C

Snippet from the Behavior assignment python code
q13 = {

1": {"Intensity" : "Very High" },

2": {"Intensity" : "High" },

"3": {"Intensity" : "Medium" },

4": {"Intensity" : "Low" }

}
ql4 = {
"1
"Drivers": "RoomWorkPlaneDaylightIlluminancée',
"Needs": "Visual",
"Systems": "Lights"
}J
"2" A
"Drivers": "RoomWorkPlaneDaylightIlluminancé',
"Needs": "Visual",
"Systems": "Lights"
}J
"3" i
"Drivers": "RoomWorkPlaneDaylightIlluminancée',
"Needs": "Visual",
"Systems": "ShadesAndBlinds"
}J
"4" A
"Drivers": "RoomWorkPlaneDaylightIlluminancé',
"Needs": "Visual",
"Systems": "ShadesAndBlinds"
}J
"5" i
"Drivers": "RoomWorkPlaneDaylightIlluminancée',
"Needs": "Visual",
"Systems": "ShadesAndBlinds"
}J
"6"
"Drivers": "RoomWorkPlaneDaylightIlluminancé',
"Needs": "Visual",
"Systems": "ShadesAndBlinds"
}
)
}

Fig C.1: translation layer for question 13 and 14 of the survey
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XML_Library = {
"1-Gunay_2015_light_on_arrival”: {
"Drivers": "RoomWorkPlaneDaylightIlluminance",
"EventType": "EnteringRoom",
"Needs": "Visual",
"Actions": "TurnOn",
"Systems": "Lights",

"Description”: "Probability of switching on the lights based on desk illuminance at arrival based on Reinhart 2004 mod
s
"2-Gunay_2015_light_on_arrival_lunch": {

"Drivers": "RoomWorkPlaneDaylightIlluminance",

"EventType": "EnteringRoom",

"Needs": "Visual",

"Actions": "TurnOn",

"Systems": "Lights",

"Description”: "Probability of swithing on the lights based on desk illumminance at arrival and after lunch based on H
s
"3-Gunay_2015_light_on_intermediate": {

"Drivers": "RoomWorkPlaneDaylightIlluminance",

"Needs": "Visual",

"Actions": "TurnOn",

"Systems": "Lights",

"Description”: "Probability of swithing on the lights based on desk illumminance during the day (5 mins timestep) base
s

"4-Gunay_2015_window_close_arrival®: {
"Drivers": ["OutdoorDryBulbTemperature", "RoomAirTemperature"],
"EventType": "EnteringRoom",
"Needs": "Thermal",
"Actions": "TurnOff",
"Systems": "Windows",

"Description”: "Predicting window closing at arrival based on Haldi Robinson
2009 model", Po
"5-Gunay_2015_window_close_cooling_room": {
"Drivers": "RoomAirTemperature",

"Needs": "Thermal",

"Actions": "TurnOff",

"Systems": "Windows",

"Description”: "Predicting window closing when indoor temp is less than 30C based on Yun Steemers 2008 model",

1

Fig C.2: Some of the models from the XML library imported as dictionaries.

df_qg13 = df.loc[df["Questions"] == "13", answer_col]
df_ql4 = df.loc[df["Questions”].isin(["14-1","14-2","14-3","14-4","14-5","14-6"]), answer_col]

need_change2 = (1.0,2.0,3.0,4.9) #range of acceptable answer for question 13
visual_need = (1.0,2.0,3.0,4.9,5.0,6.0) #range of acceptable answer for question 14

#Visual
visual_discomfort_added = False
for answer in df_gi13:
if answer in need_change2 :
answer_str = str(int(answer))
intensity = gl3[answer_str]["Intensity"]
match_found_in_df _ql14 = False

for answer in df_ql4:
if answer in visual_need:
match_found_in_df_q14 = True
answer_str = str(int(answer))
output2 = qgl4[answer_str]
need_results.append({"Visual": output2, "Systems": output2["Systems"”] ,"intensity2”: intensity})
visual_discomfort_added = True

if not match_found_in_df_q14 :
need_results.append({"Visual": "Vidual need not met, but no need specified”, "intensity2": intensity})
break
else:
need_results.append({"Visual": "Nothing", "intensity2": None})

Fig C.3: function for identifying if the participant has a visual need and if the answer is positive what the visual need is
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def intent (df, answer_col):

This function assesses user's intent to use Window, HVAC/Thermostat, Blinds, Lights

df_q25_detailed = df[df["Questions"].isin(["25-1", "25-2", "25-3", "25-4"]1)]
options = (3.0,4.0,5.0,6.0,7.8) #range of acceptable answer for question 25
intent_results = []

for _, row in df_q25_detailed.iterrows():

question_part = row["Questions"].split("-")[-1]

answer = row[answer_col]

if answer in options:
answer_str = str(int(answer))
final3 = g25[question_part]["Systems"]
Intent = g25[question_part]["Intensity"][answer_str]
intent_results.append({"Systems": final3, "Intent level": Intent})

return intent_results
Fig C.4: function for identifying participant’s intent

def second_phase(need_results, access_results, knowledge_ results, intent_results):

This function takes the needs of the user from the first function and checks if for a given need,
they have the access to, knowledge to work with and intent to use the system that corresponds to that need
and returns only those needs that pass all these three functions

part2_results = []

KAI = [access_results, knowledge_results, intent_results]

simplified kai = set()

for kai_results in [access_results, knowledge_results, intent_results]:
for entry in kai_results:
systems = entry[’'Systems']
if isinstance(systems, tuple):
simplified_kai.update(systems)
else:
simplified_kai.add(systems)

for need_dict in need_results:

systems_in_need = need_dict.get('Systems')
if systems_in_need:
if isinstance(systems_in_need, tuple):
systems_in_need_set = set(systems_in_need)
else:
systems_in_need_set = {systems_in_need}

if systems_in_need_set & simplified_kai:
part2_results.append(need_dict)
else:

for category, info in need_dict.items():
if isinstance(info, dict) and 'Systems' in info:
systems_in_info = info[ 'Systems']
if isinstance(systems_in_info, tuple):
systems_in_info_set = set(systems_in_info)
else:
systems_in_info_set = {systems_in_info}

if systems_in_info_set & simplified kai:

part2_results.append({category: info})

return part2_results

Fig C.5: function for identifying which needs of the participant passes the 3 checks



Appendix D

Table D. 1. Lighting and equipment load for each zone

Zone name Lighting loads (W/m?)  Equipment load (W/m?)
2431 7.2 2.9
2432 5.2 6.3
2433 4.8 11.6
2434 5 6
2435 5 12
2436 34 6.2
2437 4.9 5.9
2438 3.2 5.9
2439 3.3 6.1
2440 3.2 5.9
2441 34 6.2
2442 2.5 4.7
2444 3 4.3
2445 5.2 9.6
2446 5.4 10.1
2448 3.8 5
2450 4 10
2451 3.1 2
2452 2.5 7.7
2453 4.2 10
Crorridor-ext 4.8 10
Corridor 114 10
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Appendix E

Table E. 1. obCoSim properties

obXML_SpacelD

FMU_InstanceName

S1 31 Office obm_Room_2031
S2_32_Office obm_Room_2032
S3 33 Office obm_Room_2033
S4 34 Office obm_Room 2034
S5 35 Office obm_Room_2035
S6_36_Office obm_Room_2036
S7_37_Office obm_Room_2037
S8 38 Office obm_Room_2038
S9 39 Office obm_Room_2039
S10_40 Office obm_Room_2040
S11 41 Office obm_Room_2041
S12 42 Office obm_Room_2042
S13 44 Office obm_Room_2044
S14 45 Office obm_Room_2045
S15 46 Office obm_Room_2046
S16_53 Office obm_Room_2053

S17_48-Kitchen
S18_50-Meeting_room
S19 51-Printing_room
S20_52-WC
S21_Corridor-name
S22_Corridor-ext

obm_Room_2048
obm_Room_2050
obm_Room_2051
obm_Room_2052
obm_Corridor

obm_Corridor_ext

IsLeapYear No
DayofWeekForStartDay Monday
IsDebugMode No
DoMovementCalculation Yes
StartMonth 1
StartDay 1
EndMonth 12
EndDay 31
NumberofTimestepsPerHour 12




Table E.2. Full Specification of every occupant behavior based on obXML
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Table E.3. Properties of each space based on obXML

Space Space Type Systems System type Occupant

S0_Outdoor Outdoor

S1 31 Office OfficeShared Light OnOff S1 31 Office_0O1
PlugLoad OnOff

S2_ 32 Office OfficePrivate Light OnOff S2_32_ Office_0O1
PlugLoad OnOff

S3_33_Office OfficeShared Light OnOff S3 33 Office_01
Window Operable S3 33 Office_02
PlugLoad OnOff
ShadeAndBlind Operable

S4_34 Office OfficePrivate Light OnOff S4 34 Office_0O1
Window Operable
PlugLoad OnOff
ShadeAndBlind Operable

S5 35 Office OfficeShared Light OnOff S5 35 Office_0O1
Window Operable S5 35 Office_02
PlugLoad OnOff
ShadeAndBlind Operable

S6_36_Office OfficePrivate Light OnOff S6_36_Office_0O1
Window Operable
PlugLoad OnOff
ShadeAndBlind Operable

S7_37_Office OfficePrivate Light OnOff S7_37_Office_0O1
PlugLoad OnOff

S8 38 Office OfficePrivate Light OnOff
PlugLoad OnOff

S9 39 Office OfficePrivate Light OnOff S9 39 Office_0O1
PlugLoad OnOff

S10_40_Office OfficePrivate Light OnOff S10_40_Office_0O1
Window Operable
PlugLoad OnOff

S11 41 Office OfficePrivate Light OnOff S11 41 Office_0O1
PlugLoad OnOff

S12_42 Office OfficePrivate Light OnOff S12_42_Office_0O1
Window Operable
PlugLoad OnOff
ShadeAndBlind Operable

S13 44 Office OfficePrivate Light OnOff S13 44 Office_0O1
Window Operable
PlugLoad OnOff
ShadeAndBlind Operable

S14 45 Office OfficePrivate Light OnOff S14 45 Office_0O1
PlugLoad OnOff

S15 46 Office OfficePrivate Light OnOff
PlugLoad OnOff

S16 53 Office OfficePrivate Light OnOff S16_53 Office_O1
PlugLoad OnOff

S17_48-Kitchen MeetingRoom Light OnOff



PlugLoad OnOff
S18 50-Meeting_room  MeetingRoom Light OnOff
PlugLoad OnOff
S19 51-Printing_room  Other Light OnOff
PlugLoad OnOff
S20_52-WC Other Light OnOff
S21_Corridor-name Corridor Light OnOff
S22_Corridor-ext Corridor Light OnOff
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<?xml versior~"1.0"?>
<OccupantBehavior xmlns:xsi ="http://mvww.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation ="../obXML%20V1.3.3%20Release/obXML_v1.3.3.xsd"
ID ="0S001" Version ="1.3.2" >
<Buildings >
<Building ID ="Building 1" >

<Description > An office building which contains 22 spaces and 16 occupants. </Description >

<Type>Office</ Type>
<SpacesID ="All_Spaces" >
</Building >

</Buildings >

<Occupants >

<Behaviors >

<Seasons>

<TimeofDays >

<Holidays >

</OccupantBehavior >

Figure E.1: Overview of the Occupant model file in obXML

<Buildings>
<Building ID="Building 1">

<Description> An office building which contains 22 spaces and 16 occupants. </Description>

<Type>Office</Type>

<Spaces ID="AIl Spaces">
<Space ID="S0_Outdoor">
<Space ID="S1 31 Office">
<Space ID="S2 32 Office">
<Space ID="S3 33 Office">
<Space [D="S4 34 Office">
<Space [D="S5 35 Office">
<Space [D="S6_36 Office">
<Space [D="S7 37 Office">
<Space [D="S8 38 Office">
<Space [D="S9 39 Office">
<Space ID="S10 40 Office">
<Space [D="S11_ 41 Office">
<Space [D="S12 42 Office">
<Space ID="S13_44 Office">
<Space ID="S14 45 Office">
<Space ID="S15 46 Office">
<Space ID="S16 53 Office">
<Space ID="S17 48-Kitchen">
<Space ID="S18 50-Meeting room">
<Space ID="S19 51-Printing_room">
<Space ID="S20_52-W(C">
<Space ID="S21 Corridor-name">
<Space [D="S22 Corridor-ext">

</Spaces>

</Building>
</Buildings>

Figure E.2: Space section of obXML
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<Space ID="S5 35 Office">
<Type>OfficeShared</Type>

<Systems>

<Light><Type>0nOff</Type></Light>
<Window><Type>Operable</Type></Window>
<PlugLoad><Type>OnOff</Type></PlugLoad>

<Shade AndBlind><Type>Operable</Tvpe></Shade AndBlind>
</Systems>

<OccupantlD>S5_35 Office_O1</OccupantID>
<OccupantlD>S5 35 Office 02</OccupantlD>
</Space>

Figure E.3: An example of a Space in obXML

<Space ID="S18 50-Meeting room">
<Type>MeetingRoom</Type>

<Systems>
<Light>
<Type=OnOff</Type>
</Light>
<PlugLoad>
<Type=OnOff</Type>
</PluglLoad>
</Systems>

<MeetingEvent>

<SeasonType>All</SeasonType>

<DayofWeek>Weekdays</DayofWeek>

<MinNumOccupantsPerMeeting>2</MinNumOccupantsPerMeeting>

<MaxNumOccupantsPerMeeting>4</MaxNumOccupantsPerMeeting>

<MinNumberOfMeetingsPerDay>1</MinNumberOfMeetingsPerDay>

<MaxNumberOfMeetingsPerDay>4</MaxNumberOfMeetingsPerDay>

<MeetingDurationProbability>
<MeetingDuration>PT30M</MeetingDuration>
<Probability>0.35000000000000003</Probability>

</MeetingDurationProbability>

<MeetingDurationProbability>
<MeetingDuration>PT60M</MeetingDuration>
<Probability>0.45</Probability>

</MeetingDurationProbability>

<MeetingDurationProbability>
<MeetingDuration>PT90M</MeetingDuration>
<Probability>0.1</Probability>

</MeetingDurationProbability>

<MeetingDurationProbability>
<MeetingDuration>PT120M</MeetingDuration>
<Probability>0.1</Probability>

</MeetingDurationProbability>

</MeetingEvent>
</Space>

Figure E.4: An example of a meeting pace in obXML



<Occupants>
<Occupant ID="S1_3] Office OI">
<Occupant [D="S2 32 Office O1">
<Occupant ID="S3 33 Office O1">
<Occupant ID="S3 33 Office_02">
<Occupant ID="S4 34 Office O1">
<Occupant ID="S5 35 Office O1">
<Occupant ID="S5 35 Office 0O2">
<Occupant [D="S6_36 Office O1">
<Occupant ID="S7 37 Office O1">
<Occupant ID="S8 39 Office O1">
<Occupant ID="S10 40 Office O1">
<Occupant ID="S11 41 Office O1">
<Occupant ID="S12 42 Office O1">
<Occupant [D="S13 44 Office O1">
<Occupant ID="S14 45 Office O1">
<Occupant [D="S16 53 Office O1">

</Occupants>

Figure E.5: Occupant section of obXML

<Occupant ID="S5_35 Office 0O2">

<Age>35</Age>

<Gender>Male</Gender> 402 <LifeStyle>Norm</LifeStyle>
<JobType>Lecturer 35</JobType>
<MovementBehaviorlD>Lecturer 35 0</MovementBehaviorlD>

<BehaviorlD>Window_opening for airing</BehaviorlD>
<BehaviorlD>Window_closing_leaving</BehaviorlD>

<BehaviorlD>B_Light Reinhart Voss 2003 arrival</BehaviorlD>
<BehaviorID>B_Light Gunay 2015 Office</BehaviorlD>
<BehaviorID>Light off NoOcccupancy</BehaviorID>
<BehaviorlD>Equipment _on_entering</Behavior[D>

<BehaviorlD>Equipment off leaving 1</BehaviorlD>

</Occupant>

Figure E.6: An example of an occupant in obXML



<Behaviors>
<MovementBehavior ID="Student 31 0">
<MovementBehavior ID="Professor 32 0">
<MovementBehavior ID="Lecturer 33 0">
<MovementBehavior ID="Professor 33 0">
<MovementBehavior ID="Employee 34 0">
<MovementBehavior ID="Manager 35 0">
<MovementBehavior ID="Lecturer 35 0">
<MovementBehavior ID="Lecturer 36 0">
<MovementBehavior ID="Professor 37 0">
<MovementBehavior ID="Employee 39 0">
<MovementBehavior ID="Researcher 40 0">
<MovementBehavior ID="Professor 41 0">
<MovementBehavior ID="Lecturer 42 0">
<MovementBehavior ID="Manager_44 (">
<MovementBehavior ID="Researcher 45 0">
<MovementBehavior ID="Student 53 0">
<Behavior ID="B_Light Reinhart Voss 2003 arrival">
<Behavior ID="B_Light_Gunay 2015_Office">
<Behavior ID="Light off NoOcccupancy">
<Behavior ID="B_Window Haldi Robinson 2008 Office Tin">
<Behavior ID="B Window Haldi Robinson 2009 Office intermed">
<Behavior ID="Window_opening_for_airing">
<Behavior ID="Window_closing leaving">
<Behavior ID="B_Newsham 1994 Blind Office open">
<Behavior ID="BIlind_closing_leaving">
<Behavior ID="Equipment on_entering">

<Behavior ID="Equipment default leaving">
<Behavior ID="Equipment_off leaving 1">

<Behavior ID="Equipment_off leaving 6">
</Behaviors>

Figure E.7: Behavior section of obXML
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Figure E.9: Example of a MovementBehavior

<MovementBehavior ID="Lecturer_35_0">
<SeasonType>All</SeasonType>
<DayofWeek>Weekdays</DayofWeek>
<RandomMovementEvent>
<SpaceOccupancy>
<SpaceCategory>OwnOffice</SpaceCategory>
<PercentTimePresence>70.0</PercentTimePresence>
<Duration>PT360M</Duration>
</SpaceOccupancy>
<SpaceOccupancy>
<SpaceCategory>OtherOffice</SpaceCategory>
<PercentTimePresence>10.0</PercentTimePresence>
<Duration>PT20M</Duration>
</SpaceOccupancy>
<SpaceOccupancy>
<SpaceCategory>MeetingRoom</SpaceCategory>
<PercentTimePresence>10.0</Percent TimePresence>
<Duration>PT60M</Duration>
</SpaceOccupancy>
<SpaceOccupancy>
<SpaceCategory>AuxRoom</SpaceCategory >
<PercentTimePresence>0.0</PercentTimePresence>
<Duration>PTOM</Duration>
</SpaceOccupancy>
<SpaceOccupancy>
<SpaceCategory>Outdoor</SpaceCategory>
<PercentTimePresence>10.0</Percent TimePresence>
<Duration>PT60M</Duration>
</SpaceOccupancy>
</RandomMovementEvent>
<StatusTransitionEvent>
<EventType>Arrival</EventType>
<EventOccurModel>
<NormmalProbabilityModel>
<EarlyOccurTime>06:41:00</EarlyOccurTime>
<Typical OccurTime>08:37:00</TypicalOccurTime>
</Normal ProbabilityModel>
</EventOccurModel>
</StatusTransitionEvent>
<StatusTransitionEvent>
<EventType>Departure</EventType>
<EventOccurModel>
<NormalProbabilityModel>
<EarlyOccurTime>13:53:00</EarlyOccurTime>
<TypicalOccurTime>16:12:00</TypicalOccurTime>
</Normal ProbabilityModel>
</EventOccurModel>
</StatusTransitionEvent>
<StatusTransitionEvent>
<EventType>ShortTermLeaving</EventType>
<EventOccurModel>
<NormalProbabilityModel>
<EarlyOccurTime>09:25:00</EarlyOccur Time>
<Typical OccurTime>09:30:00</TypicalOccurTime>
</Normal ProbabilityModel>
</EventOccurModel>
<EventDuration>
<Normal DurationModel>
<TypicalDuration>PT30M</Typical Duration>
<MinimumDuration>PT25M</MinimumDuration>
</Normal DurationModel>
</EventDuration>
</StatusTransitionEvent>
<StatusTransitionEvent>
<EventType>ShortTermLeaving</EventType>
<EventOccurModel>
<Normal ProbabilityModel>
<EarlyOccurTime>12:20:00</EarlyOccurTime>
<Typical OccurTime>12:30:00</TypicalOccurTime>
</Normal ProbabilityModel>
</EventOccurModel>
<EventDuration>
<Normmal DurationModel >
<TypicalDuration>PT60M</Typical Duration>
<MinimunDuration>PT50M</MinimumDuration>
</NormalDurationModel>
</EventDuration>
</StatusTransitionEvent>
</MovementBehavior>
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<Behavior ID="B_Light Reinhart Voss 2003 arrival">
<Description>Probability of swithing on the lights based on desk illumminance.</Description>

<Drivers>
<Time>
<TimeofDay>Morning</TimeofDay>
<DayofWeek>All</DayofWeek>
</Time>
<Environment>
<Parameter ID="ReinhartVoss illuminance" Name="Workplane illuminance">
<Type>RoomWorkPlaneDaylightllluminance</Type>
</Parameter>
</Environment>
</Drivers>
<Actions>
<Interaction>
<Type>TurnOn</Type>
<Formula>
<Logit] DQuadratic>
<Description>p = A + C/ {1 + exp(-B*[log10(P1)-D]}</Description>
<CoefficientA>-0.00238</CoefficientA>
<CoefficientB>-3.0965</CoefficientB>
<CoefficientC>1.0157</CoefficientC>
<CoefficientD>1.8536</CoefficientD>
<Parameter | ID>ReinhartVoss_illuminance</Parameter1D>
</Logit] DQuadratic>
</Formula>
</Interaction>
</Actions>
<Systems>
<Lights>
<LightType>OnOff</LightType>
</Lights>
</Systems>
</Behavior>

Figure E.8: Example of a behavior
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<Seasons>
<Season Type="All">

<StartMonth>1</StartMonth>
<StartDay>1</StartDay>
<EndMonth>12</EndMonth>
<EndDay>31</EndDay>

</Season>

<Season Type="Spring">
<StartMonth>2</StartMonth>
<StartDay>1</StartDay>
<EndMonth>4</EndMonth>
<EndDay>30</EndDay>

</Season>

<Season Type="Summer">
<StartMonth>5</StartMonth>
<StartDay>1</StartDay>
<EndMonth>7</EndMonth>
<EndDay>31</EndDay>

</Season>

<Season Type="Fall">
<StartMonth>8</StartMonth>
2178
<StartDay>1</StartDay>
<EndMonth>10</EndMonth>
<EndDay>31</EndDay>

</Season>

<Season Type="Winter">
<StartMonth>11</StartMonth>
<StartDay>1</StartDay>
<EndMonth>1</EndMonth>
<EndDay>31</EndDay>

</Season>

</Seasons>

Figure E.9: Expanded section for Seasons
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<TimeofDays>

<TimeofDay Type="All">
<StartHour>0</StartHour>
<StartMinute>0</StartMinute>
<EndHour>24</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

<TimeofDay Type="Morning">
<StartHour>6</StartHour>
<StartMinute>0</StartMinute>
<EndHour>12</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

<TimeofDay Type="Afternoon">
<StartHour>12</StartHour>
<StartMinute>0</StartMinute>
<EndHour>18</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

<TimeofDay Type="Evening">
<StartHour>18</StartHour>
<StartMinute>0</StartMinute>
<EndHour>24</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

<TimeofDay Type="Day">
<StartHour>6</StartHour>
<StartMinute>0</StartMinute>
<EndHour>24</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

<TimeofDay Type="Night">
<StartHour>24</StartHour>
<StartMinute>0</StartMinute>
<EndHour>6</EndHour>
<EndMinute>0</EndMinute>

</TimeofDay>

</TimeofDays>

Figure E.10: Expanded section for Time Of The Day



<Holidays>

<Holiday Name="New Year's Day">
<Date>2023-01-01</Date>

</Holiday>

<Holiday Name="Epiphany">
<Date>2023-01-06</Date>

</Holiday>

<Holiday Name="Good Friday">
<Date>2023-04-07</Date>

</Holiday>

<Holiday Name="Easter Sunday">
<Date>2023-04-09</Date>

</Holiday>

<Holiday Name="Easter Monday">
<Date>2023-04-10</Date>

</Holiday>

<Holiday Name="May lst">
<Date>2023-05-01</Date>

</Holiday>

<Holiday Name="Ascension Day">
<Date>2023-05-18</Date>

</Holiday>

<Holiday Name="Whit Saturday">
<Date>2023-05-27</Date>

</Holiday>

<Holiday Name="Mother's Day">
<Date>2023-05-28</Date>

</Holiday>

<Holiday Name="National day">
<Date>2023-06-06</Date>

</Holiday>

<Holiday Name="Midsummer Day">
<Date>2023-06-24</Date>

</Holiday>

<Holiday Name="All Saints' Day">
<Date>2023-11-04</Date>

</Holiday>

<Holiday Name="Fourth Advent Sunday">
<Date>2023-12-24</Date>

</Holiday>

<Holiday Name="Christmas Day">
<Date>2023-12-25</Date>

</Holiday>

<Holiday Name="Boxing Day">
<Date>2023-12-26</Date>

</Holiday>

<Holiday Name="New Year's Eve">
<Date>2023-12-31</Date>

</Holiday>

</Holidays>

Figure E.11: Expanded section for Holidays



Appendix F

Declaration regarding the use of generative Al tools:

Statement

Answer

1)
2)

3)

4)
5)
6)
7)

I used a Generative Al tool (e.g. ChatGPT or similar) in my report
I used a GAI tool as language editor (i.e. to correct grammar mistakes, etc.)

| used GAI to retrieve information

I used GAI to get help in writing code

I used GAI for translations

I used GAI to generate graphs/images

I used GAI to help structuring my content

Yes, Google Gemini was
used.

Yes, only for correcting
grammar.

Yes, it was only used
similarly to a search engine
for identifying the common
root causes for some of the

errors encountered while
running the Python code in
the behavior section of
methodology and not for
writing the code itself

No
No
No
No
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