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Abstract

Potential Dark Matter from strongly coupled gauge theory has been studied extensively in
the past. However, in studies thus far, the combination of the phenomenological glueball
state with the Linear sigma Model has yet to be explored. We provide the basis for a theory
containing both the glueball and the sigma meson coupled to the Polyakov loop. Through
considering only the lightest meson states and assuming classical field evolution we explore
the cosmological evolution of the glueball and sigma fields. Our findings suggest that in
such a theory the sigma meson is always heavier than the glueball, but the characteristics
of the cosmological evolution of the fields is independent of the mass difference, which is
rather dependent on the parameter choice.
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Populärvetenskaplig beskrivning

Since the first experimental suggestions of presence of matter invisible to the human eye
back in the 1930s, dark matter has been a captivating question both in the science com-
munity and in popular media. In the 1970s, through investigating the rotation of stars
around the centre of the galaxy, we gained confirmation of the presence of dark matter
in not only other galaxies, but also our very own Milky Way galaxy, and set the stage
for investigating its distribution withing a galactic plane. Further, current theoretical and
experimental developments suggest that there is five times as much dark matter as there
is visible matter in the Universe, all of which possibly only interacts with visible matter
through the gravitational force. The presence of dark matter is crucial for the evolution of
the Universe, as it played an important role in early galaxy formation, and in the present
epoch is responsible not only for the rotational trajectories of stars, but also for formation
of galactic clusters.

While our understanding of dark matter and its importance in the contexts of the evolving
Universe has grown drastically over the years, we still lack a clear-cut answer to questions,
such as, what exactly it is on a fundamental level, what is its origin and why is there so
much more dark matter than visible matter? In this work we set out to explore a potential
candidate for light dark matter particles formed during the early evolution of the Universe.
One of our candidates is the hypothetical glueball state, which is formed from the strong
force mediators - gluons. The glueball forms during the confinement phase transition, which
is the same phase transition where quarks come together to form composite states, we know
as hadrons. The independent basis theory for our work has been well explored in previous
research, and we seek to combine the well-established models into one combined model.
We then investigate the cosmological evolution of our potential dark matter particles and
the associated energy density of the condensate.
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1 Introduction

The concept of dark matter (DM) has been captivating scientists ever since a ”missing
mass problem” was proposed from experimental observations of dynamics of stars in the
Milky Way by J. Kapteyn in 1922 [1]. Further notable studies suggesting the existence
of non-luminous matter in the Universe were conducted by F. Zwicky [2] in the 1930s,
who studied the Coma cluster, and by V. Rubin during 1970s [3], who investigated the
rotation curve of stars in the Milky Way. While today we understand the importance of
DM in the context of the evolving Universe, we are yet to define it on a fundamental level,
and understand its exact formation and evolution associated with its dynamics. One of
the ways of investigating DM, which has shown promising signs, has been in the strongly
coupled regime. Particularly, through the use of models which decouple from the Standard
model of particle physics in the early stages of the evolving Universe.

Recent work on DM arising from the strongly coupled gauge theory, commonly referred
to also as Yang-Mills theory, has made use of two well established models: the Linear
sigma model (LσM) and the glueball. Particularly, Refs. [4] and [5] focused on exploring
light DM in the form of a theoretical colour singlet state known as the glueball combined
with the Polyakov loop, for a generic SU(N) gauge theory. Here the glueball emerged
through an associated confinement-deconfinement phase transition. The investigation was
done over a parameter space spanned by the confinement scale and temperature ratio
between the visible and dark sectors. The region corresponding to a scenario where the
glueballs can account for the totality of DM was identified, indicating the glueball as
a good a potential candidate for cold DM. Meanwhile Ref. [6] investigated the LσM
for 3 quark flavours in low-energy Quantum Chromodynamics (QCD). Specific focus was
laid on thermal evolution of thermodynamic observables, such as, pressure, entropy and
energy density in the meson plasma. Thermal evolution of the lightest meson masses
and the dynamics surrounding the associated symmetry breaking phase transition was
also investigated. On the other hand, Ref. [7] employed the LσM in combination with
the Polyakov loop, known as the Polyakov loop improved Linear sigma model (PLσM).
Using this model they studied the first-order phase transitions and the accompanying
gravitational wave signature. However, a combination of all three of the models: the
glueball and the LσM coupled to the Polyakov loop, and the resulting consequences on
the cosmological evolution of the underlying dynamics has not yet been explored in the
literature.

We seek to investigate light DM particles arising from the strongly-coupled gauge theory
in the case of two quark flavours, the up- and the down-quark. We focus on the SU(3)
gauge group and consider the glueball and the LσM to be coupled to the Polyakov loop.
To this end, our investigation consists of two parts. Firstly, we extend the analysis carried
out in Refs. [4] and [5] with the inclusion of the LσM. We treat the glueball and the
sigma field as homogeneous classical fields evolving in the Friedmann-Lemaitre-Robertson-
Walker metric. Secondly, we introduce a starting point for effective quantum field theory
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(QFT) approach to finite temperature dynamics of the theory using of the generating
functional method. The generating functional method is particularly useful for deriving
the cosmological evolution of the thermodynamic observables describing the meson gas at
finite temperature.

The structure of this thesis work is as follows. We begin by shortly introducing the theo-
retical basis for our study in section 2. Here we provide a brief overview of the symmetry
breaking and associated phase transition concepts present when considering the glueball
and the LσM coupled to the Polyakov loop. Section 3 lays out our model in its full detail.
First we discuss the glueball, the Polyakov loop and the LσM in sections 3.1, 3.2 and 3.3
respectively from a general point of view. Then we construct the effective Lagrangian of
our theory in section 3.4. Section 4 focuses on presenting the theory necessary for inves-
tigating the cosmological evolution of our theory in the classical regime. Results of this
analysis are presented in section 5. Section 6 covers our progress in the QFT treatment,
where we aimed to derive the thermal evolution of thermodynamic observables describing
the condensate. Lastly, we present our main conclusions and outlook for potential future
studies in section 7.
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2 Theoretical Background

In this section we aim to lay the theoretical foundation for the study of DM particles arising
from strongly coupled gauge theory. We begin by briefly summarizing some of the main
aspects of Yang-Mills theory and explore the physics of chiral symmetry breaking. In the
second half of the section we discuss the physics of phase transitions.

2.1 Yang-Mills Theory

Yang-Mills (YM) theory is a non-Abelian, strongly coupled QFT, which is built upon the
mathematical structure of Lie groups. It describes interacting spin 1 fields and is the main
theory used to describe the weak and the strong forces within the Standard Model. QCD
is a specific realization of the YM theory in the context of the Lie group SU(3), while for
the Lie group U(1) the YM theory reduces to the Maxwell theory.

A key point of study in the YM theory is the action S and the Lagrangian L. In the case
of QCD, the Lagrangian may be defined as

LQCD = −1

4
GµνGµν +

Nf∑
i=1

ψ̄i(iγ
µDµ −mf )ψi, (2.1)

where Gµν is the gluon field strength tensor and the sum runs over the fermionic degrees
of freedom, Dµ = I∂µ − igAaµTa the covariant derivative with I the unit matrix, Ta the
SU(3) generators, Aµ the gauge field and g the coupling constant. The value of the
coupling constant g distinguishes between strongly coupled and weakly coupled theories.
Particularly, the limit g −→ 0 implies the weakly coupled regime, while g −→ ∞ implies
the strongly coupled limit. The dynamical properties of the fields in the YM theory are
studied by invoking the stationary-action principle, which in the Lagrangian formalism
gives rise to the well-known Euler-Lagrange equation [8]. The non-Abelian nature of the
YM theory introduces non-linear terms in the equations of motion. The presence of these
terms implies that fields in YM theory are self-interacting. The self-interactions between
the fields are responsible for giving rise to a phenomenon known as confinement. Lastly,
interactions amongst the fields in the theory are introduced due to gauge invariance.

2.2 Chiral Symmetry Breaking

Chiral symmetry and confinement are two cornerstone phenomena in the YM theory. Chi-
ral symmetry breaking is associated with the dynamics of quarks and contributes to their
physical mass. According to the Goldstones theorem, the consequence of breaking chi-
ral symmetry is production of Goldstone bosons [8]. Confinement, on the other hand, is
responsible for the formation of massive composite states of particles, and the phenomeno-
logical fact that there are no isolated quarks. If sufficient energy is input in the system to
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overcome the strong attractive force, a virtual quark-antiquark pair would be created. The
physics of such events are described by the well-know Lund model [9]. While establishing
the theoretical foundations of confinement is quite complex and beyond this paper, chiral
symmetry breaking may be presented in a more straightforward manner. In this section
we briefly introduce the theoretical formalism associated with chiral symmetry breaking
following the methodology in Ref. [8].

The summation over fermionic degrees of freedom in equation (2.1) may be decomposed
into left- and right-handed chirality parts as

Nf∑
i=1

iψ†
+iσ̄

µψ+i + iψ†
−iσ

µDµψ−i. (2.2)

As a result, the classical Lagrangian has underlying symmetry of the form

GF = U(Nf )L × U(Nf )R (2.3)

acting as U(Nf )L : ψ−i → Lijψ−j and U(Nf )R : ψ+i → Rijψ+j with L and R representing
Nf ×Nf unitary matrices.

Further decomposition in the underlying symmetry components yields that under the global
U(1)V symmetry both ψ− and ψ+ transform in the same way as ψ±,i → eiαψ±,i. After
chiral symmetry breaking the U(1)V symmetry is retained, and in the context of QCD it
is referred to as the baryon number. On the other hand, under the axial symmetry U(1)A,
the left and right-handed fermions transform with an opposite phase: ψ±,i → e±iβψ±,i. The
presence of a phase shift between the left- and the right-handed fermions is responsible for
introducing the so-called axial anomaly into the theory, commonly also referred to as the
chiral anomaly.

As a result of the above two observations the global symmetry of the quantum theory is

GF = U(1)V × SU(Nf )L × SU(Nf )R. (2.4)

The dynamics of the theory depend on the number of quark flavours Nf and the number of
quark colours Nc. For low Nf the two main phenomena describing the low-energy physics
of the model are confinement and quark condensate (chiral condensate). The quark con-
densate is the vacuum expectation value (VEV) of the composite operators ψ+j(x)ψ̄−i(x),
and in strong coupling dynamics of non-Abelian gauge theories takes the form of

⟨ψ̄−iψ+j⟩ = −τδij, (2.5)

with τ being a constant with dimension of [mass]3. The formation of quark condensate is
only possible within the strongly coupled regime because in weakly coupled theories chiral
symmetry breaking does not take place.

10



The ground state of the chiral condensate is not invariant and transforms as
⟨ ψ̄−i ψ+j ⟩ → τ (L†R)ij. This is an example of spontaneous symmetry breaking, and the
condensate remains invariant only in the case of L = R. Meaning, the spontaneous chiral
symmetry breaking may be described as

GF = U(1)V × SU(Nf )L × SU(Nf )R → U(1)V × SU(Nf )V , (2.6)

with SU(Nf )V denoting the diagonal subgroup of SU(Nf )L×SU(Nf )R. According to the
Goldstone theorem the spontaneous symmetry breaking is associated with generation of
mass-less particles known as Goldstone bosons. The number of such particles is equal to
the number of broken generators, i.e. N2

f − 1.

For the two quark flavour case Nf = 2 considered in this study, the associated Goldstone
bosons of chiral symmetry breaking are the pions. In fact, pions are pseudo-Goldstone
bosons, because they have physical mass. They acquire their mass from explicit chiral
symmetry breaking caused by bare quark masses. Per the Gell-Mann-Oaks-Renner rela-
tion [10] at zero temperature the pion mass can be expressed in terms of the uū and dd̄
condensates and the pion decay constant f 2

π as

m2
π(vac) = −(mu +md)⟨0|ūu+ d̄d|0⟩

f 2
π

, (2.7)

with the pion decay constant given as f 2
π ≈ (130 MeV)2 [11]. The pion decay constant fπ

is also related to the breaking of the chiral symmetry. As a result, one may link fπ to the
zero-temperature QCD order parameter v0 as fπ ≡ v0/kπ, with kπ ≈ 2 [6]. Therefore, the
zero-temperature pion mass may be rewritten as

m2
π(vac) = 2κ(mu +md)v

2
0, (2.8)

κ = 4k2π

(
9

8
Λg +mu +md

)−1

, (2.9)

where mu ≈ 2.16 MeV and md ≈ 4.70 MeV [11] denote the constituent quark masses,
and Λg ≈ 1.2 GeV the gluon correlation length [12]. We will make use of this notation
when defining the effective Lagrangian of our theory in section 3 and when investigating the
generating functional method for deriving relations for observable thermodynamic variables
of the condensate in section 6.

2.3 Phase transitions

Spontaneous symmetry breaking is commonly accompanied by a phase transition, where
the condensate undergoes a transition from a local minimum in the potential to a lower
energy global minimum. There are three main ways for a phase transition to occur: ther-
mal excitation, where the energy necessary to overcome the potential barrier is obtained
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from the medium, quantum tunnelling, when spontaneous tunnelling to the lower energy
state take place, and thermally assisted tunnelling, where factors from both of the afore-
mentioned possibilities contribute. A graphical representation of the three methods can
be found in Figure 1. The nature of the phase transition is characterized in the following
three ways. In a first-order phase transition a discontinuous change in one of more thermo-
dynamic observables takes place and consequently latent heat is involved. A second-order
phase transition is characterized by a continuous change in thermodynamic observable and
no latent heat is involved. The third type is commonly referred to as a smooth crossover,
where no critical behaviour may be noted. Hence, the presence of a first-order phase tran-
sition alongside the spontaneous symmetry breaking significantly impacts the dynamics of
the associated fields and consequently the observable thermodynamic quantities describing
the condensate.

In the context of an evolving Universe, thermally induced phase transition is the most
probable scenario. In this case the evolution of the two minima in the potential may be
described as follows. Initially the system resides in the lowest of the two minima (the global
minimum) at equilibrium. At the critical temperature both minima have shifted such that
they are equal. At this point, the fields may start to undergo thermally assisted transitions
to the other minimum. As the temperature keeps decreasing the original global minimum
becomes a local minimum, while the original local minimum becomes a global minimum
and through thermal excitation the system transitions to the new global minimum. This
concept may be extended to more than two minima, and new minima may also arise as
the system evolves. [13]

Our study contains two phase transitions, which are associated with chiral symmetry break-
ing and confinement. Chiral symmetry breaking and confinement phase transitions are
expected to occur at a similar energy scale [14]. The presence of a phase transition may
have a noticeable impact on the evolution of the fields in the theory as well as on ther-
modynamic observables, such as pressure, energy density and entropy. In section 5 we
consider the classical field theory perspective and focus on the thermal evolution of fields
and the energy density of the condensate. While in section 6 we utilize the QFT approach
to introduce the basis for deriving the impact of a phase transition on thermal evolution
of the thermodynamic observables.
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V(
)

Thermal excitation
Quantum tunneling
Thermally assisted tunneling

Figure 1: Representation of three ways a phase transition may occur in a medium. The
potential is represented by the blue line. Orange, green, and red lines are graphical repre-
sentations of the evolution in the potential the system undergoes during the phase transi-
tion.

3 THE EFFECTIVE LAGRANGIAN

In this section we introduce the main models and concepts considered in our approach of
investigating formation and evolution of DM particles in Yang-Mills theory. Specifically,
we introduce the glueball and outline the key concepts of the Polyakov loop and the LσM
in a general way. We then combine these three ingredients to form the effective Lagrangian
of our theory. Along the way, we explore how interactions between various parts arise, and
present the basis for simplifications employed in our study.

3.1 The glueball

In the context of evolving Universe and quark-gluon plasma, glueballs are composite par-
ticles formed as a consequence of gluons confining during the confinement-deconfinement
phase transition in a similar manner as mesons. The confining of gluons arises due to gluon
self-interaction, which is mediated by the strong force. Same as mesons, the resulting con-
fined state is a colour-singlet. Other physical properties of the glueball state are also very
similar to those of ordinary mesons as outlined in Ref. [15].

In high-energy hadron collision experiments the glueball state is phenomenologically theo-
rized as a scattering resonance state, with candidates such as the f0(1710) state. However,
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at the moment of writhing this thesis, the glueball state is only a theoretical concept with
no experimental confirmation. This is so most notably due to observational difficulties in
scattering events, where the glueball state would mix with meson states [15], [16].

From the field theory perspective one chooses to associate the glueball dynamics with a
dimension-4 field H ∝ Tr(GµνGµν), with Gµν being the QCD field strength tensor [4].
However, in the Lagrangian formalism we wish to associate the glueball with a dimension-
1 field. Hence, we canonically normalize the glueball field H in the same manner as has
been done in Ref. [4]. For this purpose, we make use of the redefinition H ∝ 2−8c−2ϕ4,
where the parameter c is expressed as

c = (Λ/mgb)
2/2

√
e, (3.1)

with mgb being the mass of the glueball in the confined phase, and Λ representing the
confinement scale. We fix the value of the glueball mass to mgb = 6Λ as per Ref. [17]. The
relation between the critical temperature Tc of confinement-deconfinement phase transition
and the confinement scale Λ will be presented in equation (3.7).

Then the Lagrangian density describing an evolving glueball field can be written according
to Ref. [4] as

Lgb =
1

2
∂µϕ∂

µϕ− V (ϕ), (3.2)

V (ϕ) =
ϕ4

28c2

(
2 ln

(
ϕ

Λ

)
− 4 ln 2− ln c

)
. (3.3)

Further on the properties of glueballs, modern developments in glueball spectroscopy and
production and decays of glueballs in hadronic reactions can be found in [16].

3.2 Polyakov loop model

It is well established in the literature that fully gauge-invariant separation of phases must
be associated with a first-order phase transition. According to the Elitzur’s theorem [18],
in such an event, breaking of a global symmetry must take place. In the case of a finite
temperature T , the global symmetry of an SU(N) gauge group is the centre symmetry ZN
[14], [19]. The centre symmetry is defined as a subset of elements within a gauge group,
that commute with all elements of the given gauge group [14]. For SU(N) gauge group
the centre symmetry is the subgroup ZN : {exp

(
2πin/(N 1̂N)

)
}, where n = 0, 1, ..., N − 1.

In QFT one often is interested in studying the effects of parallel transporting gauge invari-
ant observables around closed loops. One such temperature dependent observable is the
Polyakov loop. The Polyakov loop l is charged with respect to the aforementioned centre
ZN of the SU(N) gauge group and transforms as l → zl with z ∈ ZN [4]. The Polyakov
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loop is defined as [20]

l(x) =
1

N
Tr[L] ≡ 1

N
Tr

(
P exp

[
ig

∫ 1/T

0

A0(τ,x)dτ

])
, (3.4)

where P is the path ordering, A0 is the time component of the vector potential associated
with a particular gauge group, (τ,x) are Euclidean spacetime coordinates and g is the
SU(N) coupling [4].

The Polyakov loop enters the Lagrangian of the theory through its potential term V (l)
and via interaction terms with other constituents present in the model (see section 3.4).
In accordance with Ref. [20] the Polyakov loop potential V (l) for an SU(N) gauge group
is defined as

V (l) = T 4

(
−b2(T )

2
|l|2+b4|l|4−b3(lN + l∗N) + b6|l|6+b8|l|8

)
, (3.5)

b2(T ) = a0 + a1

(
Tc
T

)
+ a2

(
Tc
T

)2

+ a3

(
Tc
T

)3

+ a4

(
Tc
T

)4

, (3.6)

Tc =

(
1.59 +

1.22

N2

)
Λ, (3.7)

where the parameters of the potential ai and bi are determined from lattice simulations
and their numerical values can be found in Table 1 as presented in Ref. [21]. The critical
temperature Tc denotes the point of phase transition between the confined and deconfined
phases of the quark-gluon plasma. Its dependence on the gauge group and the confinement
scale Λ is also determined from lattice simulations [22], [23]. A graphical representation
of the Polyakov loop potential in equation (3.5) in both the confined T < Tc and the
deconfined T > Tc phases can be found in Figure 2. We display the potential for the
gauge groups N = 3, 4, 5 as these have the most accurate and well agreed upon results
from lattice simulations. The values used for the parameters in the plot can be found in
Table 1. We note that while the shape of the potential, especially in the deconfined phase,
is different between the gauge groups, the location of the minima in l in the potential is
approximately the same. The obtained result is in exact agreement with the one displayed
in Ref. [4].

An important property of the Polyakov loop is that its expectation value provides an or-
der parameter for the confinement phase transition in the YM theory [4], which occurs
at the energy scale Λ. This emerges through consideration of the expectation value of
the Polyakov loop at different temperatures. Notably, at temperatures below Tc, the low-
temperature limit, the expectation value of the Polyakov loop is zero, while at temperatures
above Tc, the high-temperature limit, it is non-zero. The thermal evolution of the expec-
tation value of the Polyakov loop for the gauge groups N = 3, 4, 5 can be seen in Figure 3.
Again, we note that the difference in the evolution between the gauge groups is small, and
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Figure 2: Polyakov loop potential as a function of the Polyakov loop l for SU(N) gauge
groups with N = 3, 4, 5 according to the equation (3.5). The values for parameters ai and
bi are taken from lattice simulation in Ref. [21].

the obtained result agrees with the one presented in Ref. [4]. We will use this observation
along the ones made from investigating the Polyakov loop potential in Figure 2 to limit
our investigation to only the SU(3) gauge group.

SU(3)

SU(4)

SU(5)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

T / Tc

l(
T)

Figure 3: Thermal evolution of the expectation value of the Polyakov loop for gauge groups
N = 3, 4, 5. The critical temperature Tc is defined according to equation (3.7).The values
for parameters ai and bi entering the evolution are taken from lattice simulation in Ref. [21].
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Table 1: Values of different parameters in Polyakov loop potential presented in equa-
tion (3.5) taken from lattice simulations in Ref. [21]

N 3 4 5
a0 3.72 9.51 14.3
a1 -5.73 -8.79 -14.2
a2 8.49 10.1 6.40
a3 -9.29 -12.2 1.74
a4 0.27 0.489 -10.1
b3 2.40 - -5.61
b4 4.53 -2.46 -10.5
b6 - 3.23 -

3.3 Linear sigma model

The third major ingredient in our study of DM from strongly coupled gauge theory is the
LσM, which realises the chiral symmetry breaking. Additionally, it introduces mesons in
the system and is invariant under the global chiral SU(Nf ) × SU(Nf ) symmetry [24]. In
the most general description, the LσM Lagrangian contains two Lorentz scalar fields: σ
and aa, and their associated chiral partners the Lorentz pseudo scalar fields η′ and πa. The
LσM also captures the coupling of the mesons to the temporal background gauge fields
through the covariant derivative.

The Lagrangian of the LσM containing the aforementioned fields and mesons coupling to
a spatially constant temporal background is given as

LLσM =
1

2
∂µσ∂

µσ +
1

2
∂µπa∂

µπa + VLσM, (3.8)

where VLσM is the potential of the LσM, q and q̄ represent fermion fields and T a are the
generators of the appropriate U(Nf ) group. The general form of the potential for Nf

number of quark flavours is given as

VLσM = q̄(i∂ − g(σ + iγ5T
aπa))q +

1

2
(λ′σ − λa) Tr

(
Φ†Φ

)2
+ (3.9)

Nf

2
λaTr

(
Φ†ΦΦ†Φ

)
−m2Tr

(
Φ†Φ

)
− 2α(2Nf )

Nf/2−2(detΦ† + detΦ),

Φ =
1√
2Nf

(σ + iη′)I + (aa + iπa)T
a, (3.10)

where we have introduced the matrix Φ, which is invariant under the unitary U(Nf )×U(Nf )
transformations, and λa, λ

′
σ, α and m are parameters of the model [7], [25].

The chiral symmetry is spontaneously broken via the σ field acquiring a VEV, i.e.
SU(Nf )L × SU(Nf )R × U(1)V → SU(Nf )V × U(1)V , as described in detail in section 2.2.
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Meanwhile, the determinant term proportional to the parameter α breaks the axial sym-
metry U(1)A. The corresponding VEV of the Φ matrix is then

⟨Φ⟩ = v√
2Nf

, fπ =

√
2

Nf

v, (3.11)

where fπ denotes the pion decay constant [7] and v is the temperature dependent QCD
order parameter. More on broader theoretical aspects and recent developments of, specif-
ically, two-flavour LσM can be found in Ref.[24].

One may also visualize how spontaneous chiral symmetry breaking is related to the σ
meson. Considering the LσM potential in equation (3.9) for the two quark flavour case
and only the lightest states in the theory, i.e. the σ and the π mesons, the potential may
be plotted. This is best done in the polar coordinates, where σ would represent the radial
coordinate, while πa the rotation. As presented in Ref. [26] the resulting shape is the
well-known ”Mexican hat” potential. Without explicit chiral symmetry breaking terms,
the obtained potential is symmetric around the rotational axis and has minima at a scale
Λσ, where Λ2

σ = σ2 + π2
a. However, once the σ field acquires a VEV, the chiral symmetry

is broken. This is due to the fact that the vacuum state must be invariant under parity.
Implying that ⟨σ⟩ = ±Λσ. Then, the explicit chiral symmetry breaking terms are added
in the Lagrangian by hand and would contain bare quark masses obtained from the Higgs
field. The inclusion of these terms tilts the potential. Hence, creating a global minimum
at either of ±Λσ.

3.4 Implementing the combined model

We wish to investigate the DM particles arising from the confined dark Yang-Mills theory
where all three of the aforementioned models are considered. In this section we present the
main assumptions in our investigation used to combine these models, as well as introduce
the interaction terms arising from the underlying fields. The relevant terms are Lgb+PL

for interaction between the glueballs and the Polyakov loop, LPLσM the Polyakov loop
extended LσM and Lgb + LσM for interaction between the glueball and the LσM.

One of the main assumptions which we make is choosing to limit our investigation only to
two quark flavours, the up- and the down-quarks, and to only the lightest states present
in the model. Meaning, we neglect the presence of the scalar meson a and pseudoscalar
meson η′ from equation (3.10) in the LσM. On top of this, we choose to replace the
exact Lagrangian of the LσM presented in equations (3.8) and (3.9) with a LσM-like
Lagrangian as presented in Ref. [6]. This implies replacing the potential in equation (3.9)
by a quartic Higgs-like potential. While simplifying the following analysis, this shape of
the LσM Lagrangian still captures the essential physics for this study. In this form of
the LσM the explicit chiral symmetry breaking terms are then added in form of lightest
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scalar and pseudoscalar mesons. For the two quark flavour case these are the π± and π0

mesons [6]. The resulting new Lagrangian of the LσM takes the shape of

Lσ =
1

2
∂µσ∂

µσ + 2g2v20σ
2 + g4σ4+

1

2
∂µπα∂

µπα − κg2(mu +md)σ
2παπα, (3.12)

where mu and md represent the up- and down-quark masses respectively, g is a coupling
constant and κ is a constant defined in equation (2.9) .

Further, we chose to limit our investigation to the case of N = 3 colours and impose
the reality condition on the expectation value of the Polyakov loop l, which reduces the
Polyakov loop potential in equation (3.5) to

V (l) = T 4

(
−b2(T )

2
l2 + b4l

4 − 2b3l
3

)
. (3.13)

We make this simplification based on the analysis conducted in section 3.2, where we
noted that the difference between the gauge groups N = 3, 4, 5 is small. We leave the
investigation to higher gauge groups for a potential future study.

The interaction between the Polyakov loop l and the glueball field ϕ is expressed through
a term of the form [4]:

P(l) =c1l
2,

Lgb + Pl =
ϕ4

28c2
P(l) (3.14)

where the form of P(l) is the lowest order satisfying the underlying gauge symmetries, and
c1 represents a free parameter. In Refs. [4] and [5] the value of the c1 parameter for SU(3)
gauge group was found to be c1 = 1.225 ± 0.19 at 95 % confidence level. This value was
obtained through investigating the behaviour of the glueball field VEV as a function of
temperature.

The interaction between the glueball and the LσM, specifically for the two quark flavour
ϕ-σ and ϕ-πα interaction, enters through a term of the form [27]

Lgb+LσM = −m2
0Tr

[(
ϕ

4c1/2Λe−1/4

)2

Φ†Φ

]
, (3.15)

analogous to the term describing interaction between the chiral partners in the LσM in
equation (3.9). Expanding the Φ matrix according to its definition in equation (3.10), and
neglecting states heavier than σ and πa, one obtains

Lgb+LσM = − m2
0

16 c Λ2 e−1/2
ϕ2(σ2 + παπα). (3.16)
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The nature of the parameter m0 and its connection to chiral symmetry breaking has been
heavily discussed in the literature [28, 29, 30, 31]. Particularly Ref. [28] considered a QCD-
like model and expressed the dependence of the value of the parameter as a combination
of σ meson mass, π mass and η mass alongside other parameters of the model. Since the
particular combination present in our study has yet to be explored in the literature, we
choose to treat m0 as a free parameter of the theory.

The interaction between the Polyakov loop and the LσM is described via the so-called
Polyakov loop extended LσM (PLσM) [7], [32]. The form of this term is similar to other
interaction terms in the LσM, namely

LPLσM =g2T
2l2Tr

(
Φ†Φ

)
= g2T

2l2(σ2 + παπα), (3.17)

where g2 is a free, positive parameter [33].

For ease of working with the expressions, we redefine our parameters of the theory and
associated constants in a more compact form. In further work, we make use of the following
definitions:

λσπ = κg2(mu +md), λσ = g4, λσϕ = −9 e m2
0

2 Λ2
,

µ2
σ = −2g2v20, ν =

81

2
e, τ =

ν

2
c1 (3.18)

and introduce a re-scaled version of the confinement scale Λ as Λ1 = Λ4
√
c, with c defined

in equation (3.1). As a result of the above assumptions and equations (3.12), (3.14), (3.13),
(3.16) and (3.17) the total effective Lagrangian of our theory may be expressed as

Ltot =
1

2
∂µϕ∂

µϕ+
1

2
∂µσ∂

µσ +
1

2
∂µπα∂

µπα − Vtot(T, ϕ, σ, l) (3.19)

Vtot(T, ϕ, σ, l) = µ2
σσ

2 + λσσ
4 + νϕ4 log

(
ϕ

Λ1

)
+

λσπσ
2παπα + λσϕϕ

2(σ2 + παπα) + τ l2ϕ4+ (3.20)

g2T
2l2(σ2 + παπα) + T 4

(
−b2(T )

2
l2 + b4l

4 − 2b3l
3

)
,

with the form of b2(T ) presented in equation (3.6). Further, we wish to exclude the explicit
dependence on the Polyakov loop l from our Lagrangian. To this end, we calculate the
stationary points of the Polyakov loop in the vacuum using the extrema condition

∂V (T, ϕ, σ, πα, l)

∂l
= 0, (3.21)

which yields the solutions l = 0 and

l± =
3 b3 T

2 ±
√
9 b23 T

4 + 4 b2(T ) b4 T 4 − 8 g2 b4 T 2 σ2 − 8 τ b4 ϕ4

4 b4 T 2
. (3.22)
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Investigating the stability conditions, we identify that the solution l+ represents the global
minimum, l = 0 the local minimum, while the solution l− is a maximum separating these
two minima. This observation agrees with analogous calculation performed in Ref. [5]
where the LσM was not considered. Hence, in further calculations, the explicit dependence
on the Polyakov loop l is ”integrated out” through the use of its equation of motion
l = l+ = l(T, ϕ, σ) and the potential is expressed as Vtot(T, ϕ, σ, l(T, ϕ, σ)) = Vtot(T, ϕ, σ).

4 COSMOLOGICAL EVOLUTION

In this section we introduce the theory and the basis of the methodology employed in
investigating the thermal/time evolution of DM in an evolving Universe. To this end, we
gain inspiration from the analysis carried out in Refs. [4] and [5] where the relic abundance
of DM only in the form of glueballs was considered. We extend the formalism with the
inclusion of the LσM in this section, and then present our findings in section 5.

During our analysis of the cosmological evolution of the glueball ϕ and σ fields we choose
to treat them as classical background fields. Further, we are considering a dark sector,
i.e., it does not interact with the SM. This allows us to approach the problem from a
simplified perspective and make a direct comparison with the results presented in Ref.
[4]. The obtained results could then be compared with the quantum treatment through
the use of the generating functional method outlined in section 6. As a consequence
of this assumption, we are required to remove all parts containing π dependence from
equation (3.19) as pions do not form a classical condensate. Thus, for the purposes of
investigating the cosmological evolution, the effective Lagrangian of the theory reduces to

L =
1

2
∂µϕ∂

µϕ+
1

2
∂µσ∂

µσ − V (T, ϕ, σ) (4.1)

V (T, ϕ, σ) =µσ2σ
2 + λσσ

4 + λσϕϕ
2σ2 + τϕ4l2 + νϕ4 log

(
ϕ

Λ1

)
+

T 2g2σ
2l2 + T 4

(
−b2(T )

2
l2 + b4l

4 − 2b3l
3

)
. (4.2)

As a first-order approximation, the glueball ϕ and the σ fields may be considered as ho-
mogeneous. As such, their evolution takes place in an expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe. For a general, homogeneous field ψ evolving in the
FLRW Universe the Klein-Gordon equation may be written as

ψ̈ + 3Hψ̇ + ∂ψV (T, ψ) = 0, (4.3)

where H represents the Hubble parameter and dots represent the first and second deriva-
tives with respect to cosmological time H = 1/2t respectively. Denoting the photon tem-
perature as Tγ, we may exchange cosmological time with photon temperature according to
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their relation in the radiation-domination era:

t =
1

2

√
45

4π3g∗,ρ(Tγ)

mP

T 2
γ

, (4.4)

with g∗,ρ(Tγ) representing the number of interacting degrees of freedom of the SM bath
at temperature Tγ and mP = 1.22 · 1022 MeV is the Planck mass. Assuming that the
dark sector in our investigation has no interactions with the visible SM sector, it is safe
to impose that the number of interacting degrees of freedom in our theory is less that
that of the SM. Consequently, the temperature of the dark sector is lower than the SM
thermal bath. We define the ratio between these temperatures as ξT . This in turn allows
us to relate the number of interacting degrees of freedom in the two sectors in terms of
temperatures Tγ and T as g∗,ρ(Tγ) = g∗,ρ(ξTT ), with T being the temperature of the dark
sector, entering in relations derived in the previous sections. Combining this with the
temperature dependent cosmological time definition in equation (4.4) the Klein-Gordon
equation (4.3) may be rewritten as

4π3g∗,ρ
45m2

P

ξ4TT
6 d

2ψ

dT 2
+

2π3

45m2
P

dg∗,ρ
dT

ξ4TT
6 dψ

dT
+ ∂ψV (T, ψ) = 0. (4.5)

When considering a wide range of temperatures, such as in the context of evolving Universe,
the middle term may be neglected. We do this based on the fact that the number of
interacting degrees of freedom remains approximately constant during the evolution of the
Universe [4] [5]. This approximation is strongly violated during periods of large entropy
production, such as, formation of the cosmological microwave background or period of early
large scale structure formation. However, we choose to ignore the contributions arising from
such events for the sake of retaining simplicity in our investigation. We suspect that if one
where to keep the number of interacting degrees of freedom as a varying quantity, the
difference in the obtained results would be small or even negligible. Treating g∗,ρ as a
constant enables us to reabsorb it in the definition of the visible-to-dark temperature ratio
ξT as ξ′T = g∗,ρξT .

The cosmological evolution of classical fields is analogous to that of a dampened oscillator
in a non-linear potential around its minimum. This analogy allows us to define the energy-
density ρ of the evolving field ψ as

ρ =
2π3

45m3
P

ξ′4T

(
dψ

dT

)2

+ V (T, ψ). (4.6)

As described in Refs. [34] and [4] as long as harmonic oscillator approximation remains
valid the energy-density should behave as ∼ T 3, in the case of cold dark matter (CDM).

A straightforward extension of equations (4.5) and (4.6) in the case of two evolving fields
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gives

4π3g∗,ρ
45m2

P

ξ4TT
6 d

2ϕ

dT 2
+ ∂ϕV (T, ϕ, σ) = 0, (4.7)

4π3g∗,ρ
45m2

P

ξ4TT
6 d

2σ

dT 2
+ ∂σV (T, ϕ, σ) = 0, (4.8)

ρ =
2π3

45m3
P

ξ′4T

[(
dϕ

dT

)2

+

(
dσ

dT

)2
]
+ V (T, ϕ, σ), (4.9)

where now we have two Klein-Gordon equations - equation (4.7) for the glueball field ϕ and
equation (4.8) for the σ-field. While the potential V (T, ϕ, σ) is given by equation (4.2).
Further, we introduce a dimensionless constant µ as

µ2 =
4π3ξ′4T Λ

2

45m2
P

, (4.10)

where Λ is the confinement scale discussed in section 3, not to be confused with our re-scaled
version Λ1. Following Ref. [4] we rewrite the obtained relations in terms of dimensionless
variables through the use of redefinitions:

ϕ = Λ ϕ̃, σ = Λ σ̃, V = Λ4 Ṽ , T = Λ T̃ (4.11)

Hence, the equations (4.7) - (4.9) take the following form:

µ2T̃ 6
d2ϕ̃

dT̃ 2
+ ∂ϕ̃Ṽ (T̃ , ϕ̃, σ̃) = 0, (4.12)

µ2T̃ 6
d2σ̃

dT̃ 2
+ ∂σ̃Ṽ (T̃ , ϕ̃, σ̃) = 0, (4.13)

ρ̃ =
µ2T̃ 6

2

( dϕ̃
dT̃

)2

+

(
dσ̃

dT̃

)2
+ Ṽ (T̃ , ϕ̃, σ̃), (4.14)

which we make use of in the numerical analysis in the next section.
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5 NUMERICAL RESULTS

We present the numerical results obtained for cosmological evolution of the glueball ϕ and
the σ-fields coupled to the Polyakov loop l. We first present the results obtained for the
case where both fields, coupled to the Polyakov loop, are treated separately. Then present
the combined case described by the Lagrangian in equation (4.1). We make comparisons
to the results presented in Ref. [4] where applicable.

In section 3.4 in our description of the theory we have introduced many free parameters.
After making use of the redefinition in equation (3.18), we are left with 8 free param-
eters: λσ, λσϕ, µ

2
σ, c1, g2, ν as well as the confinement scale Λ and µ entering through

equations (4.12) - (4.14). As the confinement scale Λ enters also in the aforementioned
equations, we present its values rather than those of the rescaled version Λ1. Additionally,
since we wish for the value of the VEV of the Polyakov loop l to remain positive throughout
our investigation, we may make use of this to reduce the number of free variables. Firstly,
we fix the values of c1 = 1.225 as per Ref. [4]. Secondly, we set g1 = 1.0 since the only
mention of its numerical value in the literature is that its a positive parameter [33]. We
note that the values of these parameters may be adjusted in future investigations, as they
would have impact on the total relic density of DM today as well as the masses of the σ
meson and the glueball.

To determine physically appropriate values of the remaining free parameters we calculate
the Hessian matrix in the vacuum, which is a matrix containing the second derivatives of
the potential in equation (4.2) with respect to the fields. This is done in combination with
arbitrary values of the ϕ and the σ field VEVs. This enables us to pick those values of the
parameters which relate to physically allowed, i.e. positive, masses for the glueball and the
σ meson in vacuum. The equations for the masses in terms of parameters of the theory
read:

m2
ϕ =− 2

(
− 2ϕ2ν + σ2(−2λσ + λϕσ)+√

4ϕ4ν2 + σ4(2λσ + λϕσ)2 + 4σ2ϕ2(λ2ϕσ − ν(2λσ + λϕσ))
)
,

m2
σ = 2

(
2ϕ2ν + σ2(2λσ − λϕσ)+√
4ϕ4ν2 + σ4(2λσ + λϕσ)2 + 4σ2ϕ2(λ2ϕσ − ν(2λσ + λϕσ))

)
, (5.1)

where ϕ and σ are placeholders for their respective VEVs. Our scan was performed by
letting the remaining 6 free variables take values in the range from -25 to 100. Throughout
our scan for appropriate parameter values, we noted that in all physically allowed cases the
mass of the σ meson mσ was larger than that of the glueball mϕ. This opens the possibility
that during some stage of the evolution the σ meson may decay into glueballs. This result
is in contradiction with the current phenomenological predictions, where the σ meson has
a mass of mσ ≈ 520 eV and the glueball mϕ ≈ 1.71 GeV. On top of this, independently of
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the meson mass, there exists a possibility of a cannibalistic phase. During such a phase,
the number of particles in the condensate reduces due to self-interactions, as described in
detail for the glueball evolution in Ref. [4]. We leave the exploration of these features for a
model containing both glueball and σ meson for a potential future study, and further will
assume that both the σ meson and the glueball remain stable throughout their evolution.

We first present the form of the glueball and the LσM parts of the potential in equation
(4.2) coupled with the Polyakov loop as a function of the field values in both the confined
T < Tc phase and the deconfined T > Tc phase in Figures 4a and 4b respectively. Here and
further Tc denotes the confinement-deconfinement phase transition critical temperature,
given in terms of confinement scale Λ in equation (3.7). In the case of the glueball potential
coupled to the Polyakov loop potential there is a clear distinction in the overall form of the
potential and the location of the minimum of the potential between the two phases. These
results match exactly with those presented in Ref. [4]. On the other hand, the behaviour
of the LσM potential coupled to the Polyakov loop is more subtle. While the location of
the minimum slightly shifts, the shape of the potential remains approximately the same.
Hence, we expect the thermal evolution of the two fields to be noticeably different.

T = 1.5 Tc
T = 0.5 Tc

0.10 0.15 0.20 0.25 0.30 0.35
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0.1
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(a)
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Figure 4: Evolution of the (a) glueball and (b) LσM part of the potential in equation
(4.2) coupled with the Polyakov loop l, as a function of values of the fields divided by the
confinement scale Λ. The dashed line corresponds to the deconfined phase with T = 1.5 Tc,
and the solid line to confined phase with T = 0.5 Tc. The minimum of the potential is set
to correspond to zero.

Throughout the remainder of this section, the cases we chose to present where picked
arbitrary as long as two conditions where satisfied. Firstly, the parameters represented
physically viable glueball and σ meson masses, as per discussion above. Secondly, at the
end of the evolution, the fields reside in their global minimum. The second condition was
important to identify, as for certain choices of parameter values the field may never reach
its global minimum during the evolution. Lastly, we remind the reader that the evolution
in time takes place from high temperature to low temperature as the Universe is cooling
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Figure 5: Thermal evolution of the glueball
field ϕ̃ as per Klein-Gordon equation (4.12)
with parameter values c1 = 1.225,
Λ = 1, µ = 0.05 for different, arbitrary ini-
tial conditions.
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Figure 6: Evolution after the critical tem-
perature Tc of the scenario displayed in Fig-
ure 5.
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Figure 7: Thermal evolution of the energy-density ρ̃ in the case of glueball field ϕ coupled
to the Polyakov loop l with parameter values c1 = 1.225, Λ = 1, µ = 0.05 according to
equation (4.14) for the same initial conditions as in Figure 5.

down. The relation between cosmological time t and temperature of our dark sector T is
presented in equation (4.4).

The thermal evolution of the glueball field ϕ for different, arbitrary initial conditions per
equation (4.12) can be seen in Figure 5. In agreement with the results presented in Ref. [4]
we find that different initial conditions, but the same choice of parameters c1, Λ and µ,
do not have an impact on the VEV of the ϕ field in the confined phase. It is rather
the parameter values which alter the location of the minimum in the potential. Initial
conditions do however impact the evolution in the deconfined phase and the amplitude
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Figure 8: Evolution in cosmological time (t ∝ 1/T 2) in the confined phase of the glueball
field ϕ with parameter values c1 = 1.225,Λ = 1, µ = 0.05. The displayed case is for the
same initial conditions as the blue line in Figure 5. The zero point denotes the point of
the confinement-deconfinement phase transition. (a) displays evolution down to T̃ = 0.05,
and (b) a zoomed in look at the periodic oscillations right after confinement.

of oscillations around the VEV of the field. Notably, there are two different evolutionary
paths for the glueball field ϕ in the deconfined phase, which can be seen by comparing
the blue and red lines in Figure 5. Further, as can be seen in Figures 6 and 7, larger
amplitude of oscillations around the ϕ VEV imply larger final energy density ρ of the DM.
We also present a single example of evolution in time in the confined phase in Figure 8.
To this end, we make use of the relation t ∝ 1/T 2 in equation (4.4). We find that right
after the confinement-deconfinement phase transition there are periodic oscillations with a
large amplitude, which dampen as the Universe keeps cooling down. Additionally, after a
certain point, the oscillations become non-periodic. If the calculation where to be carried
out to T −→ 0 the oscillations of the field around its VEV would halt completely. The
observed behaviour is similar for all of the displayed cases.

Similar analysis holds true for the thermal evolution of the σ field in Figure 9 and the
associated energy density in Figure 11. The difference is that the thermal evolution of the
σ field is less sensitive to the initial conditions. Independently of the initial conditions, the
σ field follows a characteristically similar evolution for any choice of initial conditions in
both the confined and the deconfined phase. On top of this, the amplitude of oscillations
in the confined phase is also less sensitive to the initial conditions in the confined phase,
as can be seen by comparing Figures 6 and 10.

Comparing Figures 5 and 9 we note that the behaviour of the two fields in the deconfined
phase is very different. While the glueball field tends to evolve to a value lower than its
VEV before the critical temperature, the σ field initiates oscillations with a large amplitude,
which dampen as the Universe cools down. On the contrary, the behaviour in the confined
phase for both fields is very similar, where both fields oscillate around their VEVs. This
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can be seen in Figures 6 and 10.

We also note that the impact of the confinement-deconfinement phase transition is more
noticeable in the evolution of the glueball field ϕ than in the evolution of the σ field. Partic-
ularly, the glueball field experiences a large increase in its value at the critical temperature,
followed by oscillations around its VEV. Meanwhile the impact of the phase transition on
the evolution of the σ field is smaller. The only notable consequence of the phase transition
is that the oscillations dampen faster. A possible reason for the displayed behaviour of the
σ field could be our simplification of treating the fields as classical and removing the quark
contributions of the LσM. Hence, not capturing explicit chiral symmetry breaking.
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Figure 9: Thermal evolution of the σ̃ field as
per Klein-Gordon equation (4.13) with pa-
rameter values µ2

σ = −17.237,
λσ = 8.177, λσϕ = 0.635, ν = 18.869,
Λ = 1.781, µ = 0.005, g2 = 1.0 for different
initial conditions.
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Figure 10: Evolution after the critical tem-
perature Tc of the scenario displayed in Fig-
ure 9.
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Figure 11: Thermal evolution of the energy-density ρ̃ in the case of σ field coupled to the
Polyakov loop l with parameter values µ2

σ = −17.237, λσ = 8.177, λσϕ = 0.635,
ν = 18.869, Λ = 1.781, µ = 0.005, g2 = 1.0 for the same initial conditions as in Figure 9.

The cosmological evolution of the simplified model described by the Lagrangian in equa-
tion (4.1) is presented in Figures 12, 13 and 14. We have investigated two scenarios, in
Figure 12 the glueball and the σ meson masses are comparable, while in Figure 13 the
mass of the σ is more than two times larger than that of the glueball. We do not find any
notable differences in the evolution of the fields or energy densities between the two cases.
Therefore, we present the evolution of energy-density in the large mass difference case in
Figure 14.

The obtained results differ from those discussed above. Firstly, the behaviour before and at
the critical temperature has slightly changed. The glueball field no longer drops in value
below its VEV before the phase transition and rather exhibits an oscillatory behaviour
around its VEV. We hypothesize that this is due to the coupling between the fields, as this
behaviour is more characteristic of the σ field evolution. Secondly, the oscillations of the
σ field in the deconfined phase are not present. This in turn, is more characteristic of the
glueball field ϕ. Thirdly, the values of the VEVs of the fields have changed. We note that
the values of the σ field VEV slightly differs between the two displayed cases. However,
this is only due to the displayed parameter choices. On the other hand, the VEV of the
glueball field ϕ remained approximately the same through out our parameter scan. This
implies that the evolution of the σ field is more sensitive to the choice of the parameters.

Comparing the evolution of the energy density for the combined model in Figure 14 with
those where the fields are treated independently in Figures 7 and 11, we make the following
observation. Right after the phase transition the evolution is still impacted due to changes
in dynamics of mostly the glueball field, while the amplitude of the oscillations is suppressed
from contributions of the σ field.
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Lastly, we would like to make a remark regarding the displayed energy-density results.
The ”tails” noticeable in the evolution of the energy density in Figures 7, 11 and 14 arise
due to numerical rounding errors and do not have any impact on the displayed physics.
According to methods presented in Ref. [4] the resulting relic density of the DM today
may be calculated by using T̃f/T̃c = 0.1. This cutoff would imply completely ignoring the
effects of these ”tails” on the resulting relic density of DM today.
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Figure 12: Thermal evolution of the glueball
ϕ combined with the LσM where both are
coupled to the Polyakov loop l as per Klein-
Gordon equations (4.12) and (4.13) with pa-
rameter values of µ2

σ = −33.338,
λσ = 13.015, λσϕ = −0.099, ν = 16.077,
g2 = 1.0, c1 = 1.225, Λ = 5.416,
µ = 0.0004 for arbitrary initial conditions.
In the displayed case the masses of the glue-
ball and σ meson are comparable. The
dashed line displays the evolution of the σ
field, and the solid line the evolution of the
glueball field ϕ.
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Figure 13: Thermal evolution of the glueball
ϕ combined with the LσM where both are
coupled to the Polyakov loop l as per Klein-
Gordon equations (4.12) and (4.13) with pa-
rameter values of µ2

σ = −0.4372,
λσ = 26.049, λσϕ = −5.787, ν = 72.635,
g2 = 1.0, c1 = 1.225, Λ = 1.937, µ = 0.001
for arbitrary initial conditions. In the dis-
played case the mass of the σ meson is much
larger than that of the glueball. The dashed
line displays the evolution of the σ field, and
the solid line the evolution of the glueball
field ϕ.
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Figure 14: Thermal evolution of the energy-density for glueball field ϕ combined with the
LσM where both are coupled to the Polyakov loop l according to equation (4.14) with
parameter values of µ2

σ = −0.4372, λσ = 26.049, λσϕ = −5.787, ν = 72.635, g2 = 1.0,
c1 = 1.225, Λ = 1.937, µ = 0.001 for the scenario displayed in Figure 13.

Using the results displayed in Figure 14 one may calculate the phase transition scale Λ0 at
which the σ mesons and the glueballs become the totality of DM. This may be carried out
using the relations presented in Ref. [4]. Namely, first one averages the last oscillations in
energy-density:

〈
ρ̃

T̃ 3

〉
=

1

0.3T̃f

∫ 1.3T̃f

T̃f

ρ̃(τ)

τ 3
dτ. (5.2)

Ref. [4] mentions that this quantity saturates to a value independent of the phase transition
scale Λ. However, it does retain dependence on the choice of other parameters of the theory.
The relic density of DM today may then be calculated by accounting for the expansion of
the Universe:

ΩDMh
2 =

Λ

ρc/h2

〈
ρ̃

T̃ 3

〉
T 3
f

(
Tγ,0
ξTTf

)3

= 0.12ξ−3
T

Λ

Λ0

, (5.3)

where ρc/h
2 = 1.05 · 104 eV cm−3 is the critical density, h = 0.674, ξT the ratio in temper-

ature between the visible and the dark sectors, and Tγ,0 = 0.235 meV is the temperature
of the visible photon bath today. Carrying out this calculating for the case presented in
Figure 14 we find that Λ0 ≈ 3.24 eV. Which is two orders of magnitude lower than the
results presented in Ref. [4] and would imply that our DM freezes out too late in the
evolution of the Universe. To obtain results which better agree with the previous studies,
we would require more data from the lattice simulations. This would allow us to fix more
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of our free parameters and perform a scan over the remainder of the free parameters, fo-
cusing on the regions which would yield Λ0 ∼ 130 eV. Once such values are obtained and
suitable range of values for the remaining free parameters are identified, a scan over the
temperature ratio between the dark and visible sectors ξT may also be performed. Such
result for only the glueball coupled to the Polyakov loop was displayed in Ref. [4]. The
importance of this result is that it allows one to identify the epoch of cosmological evo-
lution at which the freeze-out of DM takes place, and imposes further constraints on the
dark sector considered.

6 GENERATING FUNCTIONAL

The LσM by definition describes the quark condensate for the zero temperature case. How-
ever, as it is well established, the evolution of the Universe is accompanied by a gradual
decrease in temperature. Over cosmological timescales the temperature changes by several
orders of magnitude. Consequently, the thermodynamic variables describing the conden-
sate change as well. In this section, we follow closely the methods presented in Ref. [6]. It
introduces the generating functional method as a means of investigating thermal evolution
of thermodynamic observables describing a condensate containing quantum fields in cos-
mology. We apply the generating functional formalism to our extended model, however,
due to time constraints and hurdles during the project have not been able to finish the cal-
culations. Therefore, we present the obtained derivations and references to the necessary
further steps, leaving the completion of the investigation as a potential starting point of a
future study.

The main motivation for choosing the generating functional method is that it by construc-
tion accounts for quantum fluctuations. Hence, incorporating further temperature depen-
dence in our model outside of the Polyakov loop. To this end, one considers oscillations of
the fields about their VEVs as quanta. The necessary derivations are more straightforward
than in alternate methods, such as, the Cornwall-Jackiw-Tomboulist (CJT) method used
in Ref. [7].

To further reduce the complexity we assume that the glueball field ϕ may be treated as a
spatially constant background field. This is done on the phenomenological basis that the
most probable glueball state is a lot heavier than that of σ, π± and π0 mesons. While this
contradicts with the observation made in section 5, we believe that addition of explicit
chiral symmetry breaking terms and accounting for thermal effects would lead to more
phenomenologically consistent results. Considering the glueball field to be a background
field implies dropping the associated kinetic term in the effective Lagrangian describing
our theory in equation (3.19). Further, the glueball field is assumed to always be in its
minimum, i.e., there will be no perturbation associated with taking its VEV. Then we
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introduce the VEV of the σ-field as per [6]:

σ = ⟨σ⟩+ σ̃, ⟨σ⟩ = v

g
, (6.1)

and use the approximations outlined in [35] and [36]. The approximations are based on re-
summation of daisy and superdaisy diagrams, which are higher order thermal corrections
to the effective potential, and take the VEVs of σ and πα fields to be independent, in
this way incorporating the thermal corrections into the method. The implication of the
approximation is that the VEVs of the fields are equal to zero for odd-point correlation
functions and equivalent to functions of smaller order for even-point correlation functions.
For our purposes this implies the following relations

⟨σ̃3⟩ = ⟨παπβσ̃⟩ = ⟨πασ̃⟩ = 0,

⟨σ̃4⟩ = 3⟨σ̃2⟩, (6.2)

⟨παπασ̃2⟩ = ⟨παπα⟩⟨σ̃2⟩.

The equation of state v(T ) of the condensate is then obtained through the usage of the
above approximations and the equations of motion:

v(T )2 =
2g2v20 − λσπ⟨παπα⟩ − 6g4⟨σ̃2⟩ − λσϕ ϕ

2 − g2T
2l2

2g2
, (6.3)

with the Polyakov loop l = l(T, ϕ, σ) expressed in its minima according to equation (3.22),
and v0 being the zero temperature QCD order parameter. According to methods presented
in Ref. [6] we calculate the value of v0 for the two quark flavour case to be v0 ≈ 260±15 MeV.

Then inserting the tadpole solution in the calculation of the Hessian matrix in the vac-
uum one may express the equations of motion of the σ and πα mesons along side their
temperature dependent masses as:

∂µ∂
µσ̃ +m2

σσ̃ = 0, m2
σ = 8g2v2, (6.4)

∂µ∂
µπα +m2

ππα = 0, m2
π = 2κ(mu +md)M2, (6.5)

where we have introduced

M2 ≡ v2 + g2⟨σ̃2⟩. (6.6)

To establish a relationship between the effective Lagrangian and thermodynamic observ-
ables of the condensate we begin by defining the energy momentum tensor through its
usual definition

T µ
ν ≡ ∂L

∂(∂µψα)
∂νψα − δµνL, (6.7)
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with ψα representing a general field, in our case σ and πα. Applying this definition to the
Lagrangian in equation (3.19) one obtains

T µ
ν =∂νσ∂

µσ + ∂νπα∂
µπα − δµν (Ltot) . (6.8)

Then, the free energy density, also commonly known as the generating functional, of the
meson plasma is obtained via taking the VEV of the spatial trace of the energy-momentum
tensor [6]

F =
1

3
⟨T i

i ⟩. (6.9)

Employing the relations given in equations (6.1), (6.2) and expanding the parameters µ2
σ

and λσ according to their definitions in equation (3.18) one may express the generating
functional as

F =− 1

3
(⟨∇σ̃∇σ̃⟩+ ⟨∇πα∇πα⟩)−

[
1

2
⟨∂βσ̃∂βσ̃⟩+

1

2
⟨∂βπα∂βπα⟩+ 2v20(v

2 + g2⟨σ̃2⟩)−

λσπ

(
v2

g2
+ ⟨σ̃2⟩

)
⟨παπα⟩ −

(
v4 + 6g2v2⟨σ̃2⟩+ 3g4⟨σ̃2⟩2

)
−

λσϕϕ
2

((
v2

g2
+ ⟨σ̃2⟩

)
+ ⟨παπα⟩

)
− τ l2ϕ4 − νϕ4 log

(
ϕ

Λ1

)
−

T 2g2l
2

((
v2

g2
+ ⟨σ̃2⟩

)
+ ⟨παπα⟩

)
− T 4

(
b2(T )

2
l2 + b4l

4 − 2b3l
3

)]
(6.10)

Using the self-consistency relation ⟨∂µψ∂µψ⟩ = m2
ψ⟨ψ2⟩ and making use of equation (6.6)

we can simplify further to obtain

F =− 1

3
(⟨∇σ̃∇σ̃⟩+ ⟨∇πα∇πα⟩)+

v4 − m2
σ

2g2
(M2 − v2) + 6v2(M2 − v2) + 3(M2 − v2)2 − 2M2v20+

λσϕ
g2

ϕ2M2 +
g2T

2l2

g2
M2 + (λσϕϕ

2 + g2T
2l2)⟨παπα⟩+(

ν log

(
ϕ

Λ1

)
+ τ l2

)
ϕ4 − T 4

(
1

2
b2l

2 + 2b3l
3 − b4l

4

)
. (6.11)

As indicated in [6] the computation of VEVs of ⟨∇σ̃∇σ̃⟩ and ⟨∇πα∇πα⟩ produces temper-
ature dependent relations of the form

⟨∇ϕ∇ϕ⟩ = J2(T,mϕ) +
1

2

∑
p⃗

p2

ωp(ϕ)
, (6.12)
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where

Jn(T,mϕ) =
1

2π2

∫ ∞

0

p2n

ωp(ϕ)

1

ep(ϕ)/T − 1

Jn(vac)(mϕ) =
1

2

∑
p⃗

p2(n−1)

ωp(ϕ)
(6.13)

ωp(ϕ) =
√
p2 +m2

ϕ

and p denotes the momentum of the mesons in the condensate, while Jn(vac) accounts for
contributions arising from vacuum oscillations. For n = 0, 1, 2 these simplify as

J0(vac) = − 1

8π2
ln

[
e m2

ϕ

m2
ϕ(vac)

]
,

J1(vac) =
1

16π2
ln

[
m2
ϕ

m2
ϕ(vac)

]
, (6.14)

J2(vac) = − 3

64π2
ln

[
m2
ϕ√

em2
ϕ(vac)

]
,

where m2
ϕ(vac) represents the mass of the meson in vacuum at zero temperature, and e the

Euler’s Number. We also take note of the derivatives of Jn(T,mϕ) with respect to mϕ and
T , which will be useful in what follows,

∂Jn(T,mϕ)

∂mϕ

∣∣∣
T
= −(2n− 1)mϕJn−1(T,mϕ),

∂Jn(T, T )

∂T

∣∣∣
mϕ

=
(2n− 1)

T
m2
ϕJn−1(T,mϕ) +

2n

T
Jn(T,mϕ). (6.15)

Now we may rewrite the expression for the generating functional in equation (6.9) purely
in terms of variables of state (T, v,mσ,M) and the glueball field ϕ. We remind that the
Polyakov loop is expressed at its minimum l = l+ = l(T, ϕ, σ) according to equation (3.22):

F(T, v,mσ,M) =− 1

3
(J2(T,mσ) + 3J2(T,mπ))+

v4 − m2
σ

2g2
(M2 − v2) + 6v2(M2 − v2) + 3(M2 − v2)2 − 2M2v20+

λσϕ
g2

ϕ2M2 +
g2T

2l2

g2
M2 + (λσϕϕ

2 + g2T
2l2)⟨παπα⟩+(

ν log

(
ϕ

Λ1

)
+ τ l2

)
ϕ4 − T 4

(
1

2
b2l

2 + 2b3l
3 − b4l

4

)
+

m4
σ

64π2
ln

[
m2
σ√

e m2
σ(vac)

]
+

3m4
π

64π2
ln

[
m2
π√

e m2
π(vac)

]
(6.16)
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where the factor of 3 in front of J2(T,mπ) originates from 3 pion species - π± and π0. By
investigating the critical points of the generating functional F with respect to v, mσ and
M we may obtain relations amongst the three variables of state

∂F
∂v

∣∣∣
T,mσ ,M

=
v

g2
(m2

σ − 8g2v2) = 0, (6.17)

∂F
∂mσ

∣∣∣
T,v,M

= −mσ

g2

(
M2 − v2 − g2

(
J1(T,mσ) +

m2
σ

16π2
ln

[
m2
σ

m2
σ(vac)

]))
= 0, (6.18)

∂F
∂M

∣∣∣
T,v,mσ

= 4M

(
v2 − v20 −

1

4g2
(m2

σ − 8g2v2) + 3(M2 − v2) +
g2T

2l2

2g2
+
λσϕϕ

2

2g2
+

3

2
κ(mu +md)

{
J1(T,mπ) +

1

16π2
m2
π ln

[
m2
π

m2
π(vac)

]})
= 0, (6.19)

Solving the above relations respectively one obtains

mσ(T, v)
2 = 8g2v2, (6.20)

v2 = v20 − 3g2

(
J1(T,mσ) +

1

16π2
m2
σ ln

[
m2
σ

m2
σ(vac)

])
− λσϕ ϕ2

2g2
− g2T

2l2

2g2
−

3

2
κ(mu +md)

{
J1(T,mπ) +

1

16π2
m2
π ln

[
m2
π

m2
π(vac)

]}
(6.21)

M2 = v2 + g2

(
J1(T,mσ) +

1

16π2
m2
σ ln

[
m2
σ

m2
σ(vac)

])
. (6.22)

As a result, the evolution of the σ and pion masses can be expressed in terms of tempera-
ture T and the order parameter v asmσ = mσ(T, v) andmπ ∝ M = M(T, v) in accordance
with equations (6.4) and (6.5). Excluding direct dependence on the meson masses allows
the definition of the so-called non-equilibrium Landau functional

FNE(T, v) ≡ F(T, v,mσ(T, v),M(T, v)). (6.23)

Further, the temperature dependence of the order parameter v may be obtained through
direct use of equation (6.20). Making use of the obtained result in equation (6.23) one may
define the equilibrium Landau functional as

FE(T ) ≡ FNE(T, v(T )). (6.24)

The equilibrium Landau functional FE is commonly interpreted as equivalent to the free
energy of the system. This is so because the equilibrium properties of the Landau functional
are analogous to those derived from the partition function in statistical mechanics [37].
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The expression for the critical temperature Tc of the phase transition is obtained by solving
the equality:

d2FNE

dv2

∣∣∣
T=Tc

= 0. (6.25)

As shown in Ref. [6] an equivalent condition may be obtained through exclusion of the
order parameter v from the system of equations (6.17), (6.18) and (6.19) based on the
lack of explicit dependence on the order parameter v in the terms in curly brackets. Such
observation leads to relations of the form mσ(T,M)2 and M(T,mσ)

2 and motivated by
graphical investigations in Ref. [6] the condition for critical temperature Tc reads:

dm2
σ(M2)

dM2

∣∣∣
T=Tc

=

(
dM2(mσ)

dm2
σ

)−1 ∣∣∣
T=Tc

. (6.26)

We find the equality in equation (6.25) to be satisfied when the following relation holds:

8

3
v2

(
2− 24g2

[
J0(T,mσ)−

1

8π2
ln

(
e m2

σ

mσ(vac)

)]
+ (6.27)

3κ2(mu +md)
2

[
J0(T,mπ)−

1

8π2
ln

(
e m2

π

mπ(vac)

)]{
4g4
[
J0(T,mσ)−

1

8π2
ln

(
e m2

σ

mσ(vac)

)]
− 1

})

This relation has one-to-one correspondence with the numerator of equation (3.12) in
Ref. [6], when reduced to two quark flavour case. Implying that extending the calcula-
tion presented in Ref. [6] with a constant background field has no impact on the critical
temperature of the phase transition. Hence, to capture the physics of the combined model
accurately, one should drop the assumption of treating the glueball field ϕ as a background
field and consider it as a quantum field.

Recalling the relations between thermodynamic variables and free energy from statistical
mechanics [13] we may obtain the thermal evolution of pressure p(T ), entropy density σ(T ),
energy density ϵ(T ) and heat capacity cV (T ) in terms of the equilibrium Landau functional
FE(T ) as

p(T ) = −FE(T ), σ(T ) = − d

dT
FE(T ), ϵ(T ) = FE(T ) + Tσ, cV (T ) = T

dσ

dT
=

dϵ

dT
. (6.28)

Further, using the relations between the thermodynamic variables one may also obtain the
speed of sound squared

u2 =

(
dp

dϵ

)
σ

=
dp/dT

dϵ/dT
=

σ

cV
. (6.29)

37



This is where unfortunately due to time limitations of this thesis work our investigation of
extending the generating functional method presented in Ref. [6] with the glueball field ϕ
and the Polyakov loop l comes to a halt. Particularly, the derivation of the analytic forms
of the derivatives in equations of the thermodynamic observables and the analytic form of
the equilibrium Landau functional have proven to be more involved than initially expected.
This is mostly so due to the complex recursive dependence in these functions with respect
to variables of state. Naively we suspect that the equations would end up reducing to
the same form as presented in Ref. [6] due to the already made observation regarding the
critical temperature relation. Slight straightforward extension in the case of, for example,
energy-density is expected, but to fully capture the underlying physics one would need to
restart the derivations in the case where also the glueball field ϕ is considered as a quantum
field.

Confirmation of this assumption is left for potential future research. Once the analytic
expressions of the indicated relations have been obtained one almost straightforwardly
may proceed with a numerical investigation of the thermal evolution of meson masses
and thermodynamic observables. One may also use a precise definition of the critical
temperature entering the cosmological evolution, c.f. equation (3.7), which would account
for phase transition involving both chiral symmetry breaking and confinement. This would
improve the quality of the numerical results obtained in section 5. Further, one would be
able to make use of the energy-density obtained from equation (6.28), rather than working
in the dampened oscillator approximation as presented in equation (4.14). Combined with
values of free parameters from potential future lattice simulations, one would be able to
make a more accurate estimates of the relic density of DM today. Hence, most of the
necessary framework for further investigations has already been laid out in the literature.
The final goal would be to compare the obtained numerical results with already existing
literature, where similar combinations of the models have been used.
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7 CONCLUSIONS AND OUTLOOK

We have successfully combined the confining glueball field ϕ with a toy model of the LσM
coupled to the Polyakov loop l, by considering two quark flavours and focusing on the
gauge group SU(3). We have investigated the cosmological evolution of the glueball and
the σ fields as classical fields in the FRLW metric, and laid out the formalism necessary for
accounting for quantum effects in the evolution through the generating functional method.

We find that, when considering the glueball ϕ and the σ fields as classical fields in a
combined model, the cosmic evolution of the fields differs significantly compared to their
separated evolution. Our analysis reveals that the difference between the masses of the
glueball and the σ meson does not alter the evolution of the fields or the total energy
density. On top of this, in our theory, the σ meson always obtains a higher mass than
the glueball, when considering classical field evolution. This observation contradicts the
currently phenomenological mass estimates of two mesons. However, due to lack of specific
free parameter values for our theory, we have not been able to perform a thorough param-
eter space scan. A parameter space scan would allow us to propose physically justified
mass ranges for the mesons and the relic density of our DM today.

Since the combination of the glueball, the LσM and the Polyakov loop all in one model
has yet to be explored in the literature, many exciting prospects for future research are
plausible. Perhaps most notably, a direct follow-up to this thesis would be completion of
the generating functional method in section 6, which would describe the evolution of the
glueball field ϕ and the σ field as quantum fields. Of particular interest here would be more
accurately determined confinement-deconfinement critical temperature Tc, alongside ther-
mal evolution of meson masses and thermodynamic observables describing the condensate.
From the results presented in Ref. [6] we suspect that this treatment may reveal more dis-
tinct features in the behaviour of the fields as they undergo the phase transition. The QFT
approach would also enable one to test the assumption laid out in Ref. [4] where it was
noted that thermal effects on the cosmological evolution of the glueball field ϕ are small. To
this end, one may also neglect our assumption of treating the glueball field ϕ as a spatially
constant background field and consider it to be a quantum field. Since our current result
for the condition of the critical temperature Tc suggest that our approach would not differ
much from the ones already presented in the literature and may not accurately capture all
of the underlying physics. In order to incorporate quantum corrections in the evolution
one may also use alternate methods, such as, the Cornwall-Jackiw-Tomboulis method pre-
sented in the context of Polyakov loop extended LσM in Ref. [7] for investigating bubble
nucleation. Further, the Polyakov loop being a non-dynamical degree of freedom neglects
the mechanisms of bubble nucleation completely. As mentioned in Ref. [4] this could have
a significant impact on the formation of glueballs in presence of matter fields. Accounting
for this effect remains as an open question for further research.

In addition, a complete scan over the parameter space should be performed in order to
determine the corresponding phase transition scale which makes the glueballs and the σ
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mesons become the totality of DM. As briefly presented at the end of section 5 this may
be done similarly as in Ref. [4]. However, our theory currently contains 8 free parameters
on which the relic density of DM today would depend in addition to the temperature
ratio between the visible and dark sectors. Hence, more constraints on the values of
these parameters from lattice simulations are necessary. Moreover, one also may explore
the decays, where the heavier σ meson decays into the glueball. This comes alongside a
possibility for a cannibalistic phase during the evolution of either of the mesons. None of
which have been investigated in this study.

Beyond that, another direct extension to this thesis work could be exchanging the toy-
model utilized for incorporating the LσM and directly use the complete form of the LσM
presented in equation (3.8). On top of this, a generalization of the theory to an arbitrary
gauge group SU(N) and arbitrary number of quark flavours Nf may take place. This
would significantly increase the complexity of the problem by introducing a large number
of new degrees of freedom, specifically when incorporating quantum corrections.

Lastly, the study of potential DM in the strongly coupled regime is still an ongoing field
of study. Particularly, investigating other important properties this type of DM may have,
and what consequences they would imply in the context of the evolution of the Universe.
For strongly coupled DM to pose as a suitable candidate for DM in our Universe it has to
agree with already well established experimental observations and astrophysical simulation
carried out. Perhaps most notably, in the context of large structure formation in the early
Universe.
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[33] Ágnes Mócsy, Francesco Sannino, and Kimmo Tuominen. Confinement versus chiral
symmetry. Phys. Rev. Lett., 92:182302, May 2004.

[34] Dimitry Gorbunov and Valery Rubakov. Introduction to the Theory of the Early
Universe, Hot Big Bang Theory, Second Edition. World Scientific Publishing Co, Pte.
Ltd., 2017.

[35] G. W. Carter, O. Scavenius, I. N. Mishustin, and P. J. Ellis. Effective model for hot
gluodynamics. Phys. Rev. C, 61:045206, Mar 2000.

[36] E. S. Bowman. Linear Sigma Model at Finite Temperature and Chemical Potentials.
Other thesis, Uppsala universitet, 5 2010.

[37] Peter Olmsted. Lectures on Landau Theory of Phase Transitions. Department of
Physics, Georgetown University, 2015.

43


	Introduction
	Theoretical Background
	Yang-Mills Theory
	Chiral Symmetry Breaking
	Phase transitions

	THE EFFECTIVE LAGRANGIAN
	The glueball
	Polyakov loop model
	Linear sigma model
	Implementing the combined model

	COSMOLOGICAL EVOLUTION
	NUMERICAL RESULTS
	GENERATING FUNCTIONAL
	CONCLUSIONS AND OUTLOOK
	ACKNOWLEDGEMENTS

