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Abstract

Atrial fibrillation (AF) is the most prevalent arrhythmia, increasing with each
year. AF is characterized by periods of rapid and irregular beating of the
heart and increases the risk of stroke and heart failure. The disease often
originates from ectopic beats generated by the pulmonary veins, activating
the atria, creating short periods of AF. Without treatment the disease evolves,
remodels the atria, and eventually develops into a permanent condition of
AF. Treatment with pulmonary vein isolation (PVI) through ablation is com-
monly prescribed. The treatment is effective, but AF recurrence post ablation
occurs regularly. Clinical success is dependent on atrial health which can be
interpreted through the P-wave of an electrocardiogram (ECG). With the
help of this information, a more personalized treatment can be implemented,
leading to increased arrhythmia freedom. Moreover, outcome prediction on
ECG data using machine learning (ML) has proven efficient, but often uses
extensive, inefficient manual delineation of the P-waves.

Therefore this study aims to evaluate AF recurrence prediction capabilities
for two models trained on automatically extracted P-wave characteristics,
raw ECG and coronary sinus (CS) catheter electrograms, respectively. Fur-
thermore, one model is evaluated by training and testing on synthesized ECG
data. The proposed method, applied to datasets of 281 subjects in total,
automatically delineates ECG signals of adequate quality, recorded before,
during and after PVI ablation. Annotations from delineation are used in
beat classification, as well as to extract P-wave features, separately. All data
is balanced based on beats per patient and outcome label and subsets with
training and testing data are created. A Random Forest (RF) classifier is
trained on the P-wave features and a Convolutional Neural Network (CNN)
is trained on segments consisting of raw ECG and CS catheter electrograms.
In order to further evaluate the CNN, a separate, synthesized dataset, to be
used in training and testing, is created by inserting augmented P-wave char-
acteristics in the ECG signals of AF recurrent subjects. The Area under
the ROC Curve (AUC)-scores of the RF classifier and CNNs are 0.502 and
0.463. Furthermore, the AUC-score for the CNN training on synthesized
ECG data is 0.793. Conclusively, neither of the RF classifier or the CNN
can predict AF recurrence using this method and dataset. However, the re-
sult for the CNN training on synthesized ECG data illustrates the potential
of a CNN to extract information from P-wave morphology. Moreover, val-
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idation on automatic delineation on this dataset is needed to investigate the
potential of the RF classifier. Conclusively, more research is needed on ML
models trained on automatically delineated data.
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List of acronyms & abbreviations

AF, Atrial Fibrillation;

PVI, Pulmonary Vein Isolation;

SR, Sinus Rhythm;

ECG, Electrocardiogram;

AP, Action Potential;

CS, Coronary sinus;

EP, Electrophysiology;

PWD, P-wave duration;

LA, Left atrial;

ACM, Atrial cardiomyopathy;

AI, Atrificial Intelligence;

ML, Machine Learning;

CNN, Convolutional Neural Network;

4



Contents

Acknowledgements 1

Abstract 2

List of acronyms & abbreviations 4

1 Introduction 7

2 Background 9
2.1 Anatomy and Physiology of the Heart . . . . . . . . . . . . 9
2.2 The Cardiac Conduction of the Heart . . . . . . . . . . . . . 11
2.3 Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Coronary Sinus Catheter Electrograms . . . . . . . . 14
2.3.2 Automatic Delineation . . . . . . . . . . . . . . . . 15

2.4 Atrial Fibrillation . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 P-wave Morphology . . . . . . . . . . . . . . . . . 18
2.4.2 Atrial Fibrillation Recurrence Post Ablation . . . . . 19

2.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Random Forest . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Neural networks . . . . . . . . . . . . . . . . . . . 20
2.5.3 Convolutional neural networks . . . . . . . . . . . . 22
2.5.4 k-Fold Cross-Validation . . . . . . . . . . . . . . . 24

3 Method 25
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Visual assessment . . . . . . . . . . . . . . . . . . . 29
3.2.2 Beat detection & classification . . . . . . . . . . . . 31
3.2.3 P-wave feature extraction . . . . . . . . . . . . . . . 32

3.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Clinical data . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 A Synthesized Dataset . . . . . . . . . . . . . . . . 34
3.3.3 Random forest Classifier . . . . . . . . . . . . . . . 36
3.3.4 Convolutional Neural Network . . . . . . . . . . . . 36

3.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 38

5



3.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . 38
3.4.2 k-Fold Cross-Validation . . . . . . . . . . . . . . . 38

4 Results 39
4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Visual Assessment . . . . . . . . . . . . . . . . . . 39
4.1.2 Beat classification . . . . . . . . . . . . . . . . . . 39
4.1.3 Statistical Analysis of Features . . . . . . . . . . . . 41

4.2 Prediction of AF recurrence . . . . . . . . . . . . . . . . . . 42
4.3 CNN Model Evaluation . . . . . . . . . . . . . . . . . . . . 43

5 Discussion 44
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Survey of the field . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

Appendix 63

6



1 Introduction

There is a rise in cases of atrial fibrillation (AF) in the world population. In
Europe, currently, the lifetime AF prevalence for subjects at age 55 is es-
timated to 1 in 3 individuals [1]. Many resources are allocated to combat
the disease [2][3]. Treatment of AF with pulmonary vein isolation (PVI)
through ablation has long been practiced in healthcare [4][5], and it im-
proves the lives of many patients [6]. The treatment has a success rate of
32.9%, over 10 years, for patients with paroxysmal AF [7]. Despite its long
history, the topic of clinical success post PVI is less understood [8][9]. For
this reason, much of current research is devoted to exploring patient cardiac
characteristics and tailored ablation strategies [10][11].

Research shows that left atrial (LA) remodeling correlates to clinical out-
come of PVI [12][9]. Quantifying the extent of LA remodeling and defining
the presence and location of low-voltage substrates (LVS) are used in tar-
geted ablation of substrates along with PVI with clinical success [13][14].
But reliable ways of determining the extent of LA remodeling are invasive,
intra-atrial mapping [15], or uses administration of gadolinium for magnetic
resonance imaging (MRI) [16]. The LA remodeling in the form of LVS leads
to an intra-atrial conduction slowing and can be measured as an increased
LA activation time in intracardiac mapping [17]. An increased LA activa-
tion time is strongly correlated with a prolonged P-wave duration (PWD)
in electrocardiograms (ECG) [17][18][19][20]. Similarly, P-wave amplitude
indicates the extent of atrial remodeling, and thus is a predictor of AF re-
currence [21]. Previously mentioned studies manually delineate and analyse
the P-wave, which takes time and needs to be executed or reviewed by an ex-
perienced operator. Publicly available automatic ECG delineators perform
on-par with expert annotators and can therefore speed up the process [22],
however such automatic delineation has not previously been utilized in the
context of predicting AF recurrence following PVI.

Machine learning (ML) has also shown potential in identifying patients at
risk for arrhythmia recurrence post PVI ablation [23] and convolutional neu-
ral networks (CNN) are able extract information from time-series 1D ECG
signals to detect AF [24]. It is, however, unclear whether there is potential
in using a 1D CNN to analyse ECG signals and predict AF recurrence fol-
lowing PVI.
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For this study three datasets are available, containing pre-, during and post-
treatment recordings for 281 subjects that underwent PVI ablation. The
recordings contain demographic information, ECG, CS catheter electrogram
and treatment outcome.

Thus, the purpose of this study is to

• Investigate if automatic delineated P-wave characteristics can be used
to predict AF recurrence in the present datasets.

• Investigate if a CNN can be trained to predict AF recurrence from raw
ECG and CS catheter electrogram in the present datasets.

The report is divided into the following parts:

• Background: In Sec. 2.1-2.5, the reader will get the relevant back-
ground information on the subjects of anatomy and physiology of the
heart, the ECG, AF and ML.

• Method: The datasets used is presented in Sec. 3.1. The methods
of pre-processing through exclusion and inclusion criteria in visual
assessment, beat classification, and P-wave feature extraction in Sec.
3.2. The last section, Sec. 3.3, presents data preparation for ML and
how a synthesized dataset is generated, followed by implementation
of ML models. The evaluation of models is described in Sec. 3.4.

• Results: Statistical values of pre-processing, P-wave feature distri-
bution and measured model performance metrics are illustrated with
tables and graphs in Sec. 4.

• Discussion & Conclusion: Results are discussed with regard to study
limitations in methodology, in Sec. 5.1, dataset, in Sec. 5.2, and com-
pared to successful implementations in previous research. Finally, a
summary of the research field is presented in Sec. 5.3, followed by
proposed future work in Sec. 5.4.
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2 Background

2.1 Anatomy and Physiology of the Heart

The heart is a muscle situated in the center of the thoracic cavity, medially
between the lungs. This area is called the mediastinum. The heart is sep-
arated from adjecent structures by a membrane called the pericardium. On
the superior surface of the heart, the superior and inferior venae cavae, the
aorta and pulmonary trunk attach to the heart. In the heart there are four
chambers: the left and the right atria, and the left and the right ventricles.
The left and the right side of the heart can be seen as separate pumps, where
blood is pumped from the atria to the ventricles. For the right side of the
heart, de-oxygenated blood is pumped to the lungs. In the lungs, gas ex-
change occurs, oxygenating the blood. The left side of the heart receives this
oxygenated blood and pumps it to all the tissues of the body. The left and
the right side of the heart is separated by the septum, and both the atria and
the ventricles have outflow valves. Furthermore, the ventricles and outgoing
arteries are also separated by a valve. These valves ensures one-way blood
flow, opening from atria to ventricles and from ventricles to artery as the
blood pressure rises with local muscle contraction.

Starting at the right atrium, de-oxygenated blood flows in from the supe-
rior and the inferior vena cavae. The atrium contracts, pumping the blood
through the tricuspid valve into the right ventricle. As pressure decreases
with the amount of blood increasing in the ventricle, the tricuspid valve
closes. The ventricle contracts, pumping blood through the pulmonary valve
out into the pulmonary trunk, which branches into the left and the right pul-
monary artery going to the separate lungs. As blood flows through the pul-
monary artery, the artery branches multiple times, until blood reaches the
pulmonary capillaries. Here a gas exchange occurs where carbon dioxide
leaves the blood and oxygen enters. As oxygenated blood flows towards the
heart, the capillaries join together and forms the pulmonary veins. Four pul-
monary veins connects to the heart, filling the left atrium with blood. The
left atrium contracts, pumping blood through the mitral valve, into the left
ventricle. With the same mechanical feature, the mitral valve closes and the
left ventricle contracts, pumping the blood through the aortic valve into the
aorta. Blood flow through the aorta, which branches multiple times as it goes
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into the systemic arteries, branching even more as it enters the systemic cap-
illaries. Here, an exchange occurs between capillaries and cells of the body
as oxygen and nutrients exit the capillaries, to be used in the cell metabolic
process, and carbon dioxide and waste products enter the capillaries. The
de-oxygenated blood flows back towards the heart and, with capillaries join-
ing together, entering the systemic veins and finally, joining together again,
entering the major systemic veins, superior and inferior venae cavae [25].

The thickest tissue layer surrounding the chambers of the heart is the my-
ocardium. The myocardium is what contracts to pump the blood into circu-
lation. For efficient contraction, the cardiac muscles are wrapped circularly
and spirally around each chamber. Like skeletal muscle, the contraction is
driven by sarcomeres with sliding thick and thin filaments. Although, car-
diac muscle cells are unique in that each cardiac muscle cell has a centrally
located nuclei, and cells are connected through intercalated disks, thus cre-
ating a branched cellular network. Cell activation is driven by an electrical
potential across the cell membrane, caused by a difference in ion concentra-
tion inside and outside the cell membrane. Across the cell membrane there
are ion pumps and channels, allowing flow of ions across the membrane.
A certain potential gradient is the action potential (AP). This depolarization
causes sodium channels to open, further depolarizing the cell and opening
of calcium channels. The calcium channels have a long opening duration al-
lowing the cell to stay depolarized even though sodium channels are closed.
The AP starts spontaneously in specialized cardiac cells and spreads across
the muscles cells through interconnected gap junctions that allow free flow
of ions, allowing an almost simultaneous activation of cardiac muscle [26].
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2.2 The Cardiac Conduction of the Heart

In the heart, there are pacemaker cells that initiate the cardiac activation
that propagates across the heart. The sinoatrial(SA) and atrioventruclar(AV)
nodal cells are activated by a gradual rise in potential that eventually causes
the calcium channels to open, depolarizing the cells [26]. The cardiac rhythm
of a healthy heart is initiated by the SA node, located in the right atria. Al-
though the activation of the SA node is automatic, it is affected by the sym-
pathetic and parasympathetic nervous system. The purpose of the cardiac
condution system is for the AP to propagate across the heart and activate
cardiac muscle cells, this in an order that allows for the ventricles to be filled
with blood from the contraction of the atria.

From the activation of the SA node the signal spreads across the right atria
and towards the left atria and the AV node. In the right atria there are path-
ways for faster conduction to the AV node and to the left atria, called intern-
odal tracts. The tracts are separated into three: the anterior tract, the middle
tract and the posterior tract, all extending across the right atria and ending
up at the AV node. The anterior tract also splits in two, with one pathway
towards the AV node and the other into the left atria and the Bachmann’s
bundle. After atrial depolarization the signal reaches the AV node, located at
the floor of the right atria, Figure 1. Signals reaching the AV node take either
a slow or fast pathway. The slow pathway has slower conduction but a short
refractory period and the fast pathway vice versa. At fast heart rates the slow
pathway is used as the fast pathway is refractory, and in normal rhythm the
fast pathway is used. From the AV node the signal is conducted to the bundle
of His. The path to the AV node influence the time interval between atrial
and His activation, with a longer interval for use of the slow pathway. Fol-
lowing the bundle of His the signal is split into the left and the right bundle
branches, and onto the Purkinje fibers for each of the ventricles. Similarly
to the tracts of the right atria, the Purkinje fibers allow for a particular rapid
conduction. The rapid execution allows for a coordinated activation of the
ventricular myocardium [27].
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Figure 1: Conduction system of the heart. Normal AP starts from in
the SA node (1) and continues through the atria and within internodal
tracts (blue lines in right atria). AP reaches the AV node (2) and con-
tinues into the two separate purkinje fibers that branches across the

ventricles [28].
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2.3 Electrocardiogram

An electrocardiogram (ECG) measures the electrical activity of the heart.
Cardiac muscle contractions are initiated by the AP that propagates through-
out the heart and this synchronized depolarization of multiple cells is reg-
istered by the ECG. The AP propagation follows the cardiac conduction
of the heart and as the cardiac cells of the atria and ventricles depolarize
and repolarize, it creates a current flow in the heart. Two electrodes placed
on the body is able to record the shifting electric field as the current flows
through the heart. This is only possible since the body tissue is a conductive
medium [29].

The electrical field measured between two electrodes is called a lead and the
electrical signal is measured in units of mV. The standard in healthcare is a
12-lead ECG. There are six chest leads viewing the horizontal plane (V1-
V6) and six limb leads viewing the vertical plane(I, II, III, aVR, aVL and
aVF), see Figure 2. In the case of individual noise in a lead, using multiple
leads, still allows cardiac information to be attained [30].

Figure 2: Spatial orientation of a 12-lead ECG [31].

For a normal cardiac cycle, the ECG contains a P-wave, QRS-complex and
T-wave, see Figure 3. A positive amplitude in the ECG is measured when
the current propagates towards the lead, a negative amplitude is measured
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as the cells repolarize. The P-wave is a representation of the depolarization
of the atria, the QRS complex is a representation of the depolarization of
the ventricles, and the T-wave is a representation of the repolarization of the
ventricles [30].

Figure 3: An individual heart beat, viewed as an ECG recording. P-
wave, QRS-complex and T-wave are annotated [32].

2.3.1 Coronary Sinus Catheter Electrograms
The CS catheter electrogram is an intracardiac electrogram measuring car-
diac electrical activation from the CS. The CS vein origin is between the left
atrium and the left ventricle. Placing a catheter here, records both the atrial
and the ventricular contractions. The catheter electrodes are located along
the catheter, resulting in different recorded electrograms. The most proximal
electrode therefore captures larger and more sharp atrial electrograms, and
the distal electrode captures ventricular activation. In Figure 4, the pattern of
proximal-to-distal activation is shown, where the first activation is picked up
by CSp (coronary sinus proximal). Placement of the CS catheter therefore
influence the activation sequence of the electrogram [33].
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Figure 4: ECG of a single heart beat. CS catheter lead annotated prox-
imal or distal placement of catheter lead electrodes in the CS vein.

2.3.2 Automatic Delineation
The ECG carries valuable cardiac information and the interval and ampli-
tude measurements between carefully selected points in the ECG are used
in diagnosis. An increase of smart devices in the last decades make it easier
to accumulate large amounts of data [34]. Manual annotation is tedious and
requires experienced operators. Automatically analysing ECG is therefore
a resourceful way of improving diagnosis of cardiac disease. The QRS-
complex is the most prominent feature of the ECG and, with the high am-
plitude, is also the easiest to detect. QRS-detection returns valuable infor-
mation of R-peak to R-peak (RR) interval and therefore also the cardiac
rhythm. The more difficult task is to determine peaks, onset and offset of the
P-wave, QRS-complex and the T-wave, called delineation. QRS-detection
is used in the delineation, where the location of the QRS is used to cre-
ate adjacent windows of wavelet transforms. The windows are analysed to
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detect P- and T-waves. The wavelet transform reveals the composition of
frequencies, as a set of wavelets, in a signal [35]. P-wave delineation poses
a challenge as the low amplitude is highly impacted by noise and that there
is no clear rule to onset and offset of the wave [22]. Studies report, with use
of various delineation approaches, delineation results on P-wave onset with
errors(mean±SD(ms)) of −0.27± 12.2 [36], 2.00± 14.8 [22]. Delineation
error can also occurs in manual measurements, as there is an observed vari-
ability, with intraobserver, 4.0± 3.0%, and interobserver 5.0± 3.5% mean
percent error [37].
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2.4 Atrial Fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia. In Europe,
currently, the lifetime AF prevalence for subjects at age 55 is estimated at 1
in 3 individuals. AF is recognized in an abnormal heart rhythm characterised
by a rapid and irregular contraction of the atria. At an early stage of the dis-
ease, fibrillatory episodes can be short and rare, but as the disease progresses,
the occurrence and duration of the episodes increase. The symptoms can be
fatigue, chest pain and dizziness, but some patients are asymptomatic. AF
is associated with an increased risk of stroke and heart failure [1]. There are
plenty of established riskfactors for AF. Nonmodifiable risk factors are age,
sex and genetics, while hypertension, diabetes mellitus, obesity and smoking
are modifiable. These risk factors are related to inflammation, fibrosis and
other forms of structural and electrical remodeling of the atria [38].

Traditional AF classification is based on presentation, duration and sponta-
neous termination of AF episodes [39]. AF can be first diagnosed or re-
current, if AF reappears after cardioversion/intervention, regardless of its
duration or presence/severity. AF is classified as either paroxysmal, with
AF episode termination spontaneously or with intervention within 7 days of
onset, or persistent, with AF episodes sustained beyond 7 days. Persistant
AF of more than 12 months in duration is instead defined as long-standing
persistent. If no attemps are made to restore/maintain sinus rhythm and AF
is accepted by both physician and patient, the AF is classified as perma-
nent[39]. In the most recent AF guidelines, Joglar et al [40] argues that the
traditional classification "tended to emphasize AF once it was diagnosed and
focused mainly on therapeutic interventions" and proposes a new classifica-
tion based on stages. This enables AF to be regarded as a progressive disease
with different strategies at the different stages, at risk for AF looking at risk
factors, pre-AF when there are structural or electrical findings which might
predispose the disease, AF using the traditional classifications of paroxys-
mal, persistent and long-standing persistent and permanent AF defined as
the traditional classification for permanent AF.

The mechanisms maintaining AF can be reentry or ectopic firing, called
drivers. As AF is first presented in a patient it is often in paroxysmal form.
Paroxysmal AF is usually initiated by ectopic beats in the cardiac muscle
around the pulmonary veins. As the disease continues it evolves into Persis-
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tant AF. This is due to the atrial remodeling caused by AF. Atrial remodel-
ing can be structural or electrical and refers to any alteration in structure or
function that promotes arrhythmia. remodeling causes development of reen-
try substrates, promoting Persistant AF. Treatment of AF can cause reverse
remodeling, removing substrates, but if untreated these substrates can lead
to Permanent AF. [41]

Atrial fibrillation can be treated with antiarrhythmic drugs to maintain sinus
rhythm. This treatment involves side effects and difficulties keeping patients
in long term sinus rhythm. A more successful treatment is catheter ablation,
with the goal of isolating the cardiac tissue surrounding the pulmonary veins.
The ablation scars the tissue, disabling conduction of ectopic activations into
the atria. The procedure is often guided by visualizing the left atria anatomy
and electrical activity using 3-D mapping. Ablation performed on patients
with paroxysmal AF and minimal structural remodeling has a success rate
of 60-75% [42]. Standard pulmonary vein isolation (PVI) ablation is not the
only approach to remove AF, by increasing the target area for ablation, pairs
of pulmonary veins are isolated in a method called wide-area circumferential
ablation (WACA) [43]. Another approach of ablation is stepwise ablation,
targeting drivers of AF in sequence. Targets are pulmonary veins, left atrial
roof, left atrium (incorporating all anatomic regions of the chamber), mi-
tral isthmus and non-LA structures [44]. Unfortunately AF recurrence post
ablation occurs frequently, resulting in reablation for 20% to 40% of pa-
tients [45]. Reablation is not always the primary treatment for these patients
considering risks associated with ablation, cost and disease burden of the
patient. To make the right decision it is important to tailor the treatment to
the personal characteristics of the patient [46].

2.4.1 P-wave Morphology
The ECG is a noninvasive tool for diagnosing atrial health. As the atria
activates, the P-wave of the ECG visualizes the atrial conduction. The in-
terpretation of the ECG can be linked to atrial function, fibrosis and intera-
trial blockage. A decrease in conduction between the atria is the definition
of interatrial blockage, which is visualized in the ECG as a P-wave dura-
tion(PWD) > 120ms [47]. The presence of AF in a patient, remodels the
tissue of the atria, slowing conduction. This is also visualized in the ECG as
a prolonged PWD, which correlates with incidence of AF [48]. Left atrial
enlargement is proposed to impact the P-wave area, and is correlated to an
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increased risk of AF [49]. Determining the P-wave amplitude through the
calculation of P-wave area and duration in lead II, also showed correlation
between a flat-top P-wave and AF [50].

2.4.2 Atrial Fibrillation Recurrence Post Ablation
Research points to P-wave morphology when predicting risk of AF recur-
rence post ablation. Multiple studies show results of increased PWD corre-
lation with arrhythmia recurrence post ablation. A study investigating the
association of left atrial scarring in patients with paroxysmal AF found a
prolonged PWD in patients prone to AF recurrence [51]. In research on
PWD in pre-ablation SR ECG, a cut-off measure of >120ms to >150ms was
associated with AF recurrence [18]. This allows for risk and treatment eval-
uation for patients before ablation, avoiding unnecessary risk for the patient
and resources can be allocated to patients in need. A more accurate PWD
cutoff value for arrhythmia recurrence is proposed by Jadidi et al [17], by
manually measuring PWD in an amplified P-wave recorded prior to abla-
tion, a cut-off value of 150ms is determined. Results showed an increased
arrhythmia freedom for patients with PWD < 150ms (72.7% vs. 30%). A
ML approach to ablation outcome was investigated by Tang et al [52], devel-
oping a deep neural network leveraging ECG, electrogram and clinical data
for prediction and a separate CNN using ECG alone. The ECG data used
was pre-processed for the CNN to train on 5-sec segments with 12 channels
from the 12-lead ECG. Area under the ROC Curve (AUC)-scores for the
two models were 0.859 and 0.767 respectively. Jadidi et al [23] also pro-
posed a ML approach for outcome prediction through classification of left
atrial cardiomyopathy (ACM) using a neural network. Here a 12-lead ECG
was annotated by experts, allowing feature extraction of PWD and P-wave
morphology. The model performed well in classification of left ACM, which
in turn allowed an ablation outcome prediction of 46% vs. 23% for patients
with vs. without ACM.
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2.5 Machine Learning

A ML model is adapting and learning from the data that it is being pre-
sented. As the ML model explores the data, a hypothesis of a pattern in
this data is formed. When presented with new, unseen data, the model can
make assumptions based on the hypothesis. Supervised learning is when the
presented data is labelled with an answer. As the model makes an incor-
rect assumption, misaligned with the label, the model will have to change
its hypothesis [53]. The data provided to the model is split into subsets for
training and for testing. When the model is finished tuning to the pattern of
the training data, it is presented with the unseen test subset and the predic-
tions made by the model is then used to measure model performance. The
size of the dataset provided to the model has a big impact on performance.
Each data point carries individual information of a pattern and as a model is
fed more data points it therefore has a more robust tuning to the data. One
of the simplest examples of ML is linear regression, where a line is fitted to
the data points so that the distance between each data point and the line is as
short as possible. As more data points are added the line is realigned. When
there are multiple patterns in the data, or the patterns are non-linear, models
implementing more complex methods are needed.

2.5.1 Random Forest
A Random Forest (RF) uses multiple decision trees in classification. A de-
cision tree is made up of nodes which split the data points based on cutoff
values, starting at the root node and ending with subsets of data points in the
leaf nodes. A RF implements multiple decision trees in a method called bag-
ging, where multiple random samples of the data are used to train multiple
decision trees. An average prediction across all trees is then used for clas-
sification by the RF classifier [54]. The use of multiple trees decreases the
risk of overfitting and makes the model insensitive to noise. A RF has also
shown good potential in classifying ECG beats leveraging features extracted
using wavelet transform [55].

2.5.2 Neural networks
The design of the artificial neural network (ANN) is influenced by the bi-
ological neural networks in the human brain. This is a versatile and fast
machine learning method that utilizes interconnected nodes similar to those

20



in the brain. Nodes process signals through weighted connections between
themselves, with a distinct organization and interconnection pattern. The
information moves across the neural network, from the input to the output.
This is one of the simplest ANNs, called a Feedforward ANN since infor-
mation moves in one direction [56]. An example can be seen in Figure 5.

Figure 5: Feedforward ANN. Networks can contain different amounts
of hidden layers.

The network learns by adjusting the weights between its nodes. During su-
pervised training, these weights are optimized to minimize the error in pre-
dictions when compared to the provided labeled outputs. The mathematical
function employed to reduce this prediction error is known as the loss func-
tion. The network’s capability increases with the number of nodes, though
extensive amounts of nodes in a single layer may compromise its ability to
generalize to unseen data. By incorporating additional hidden layers, the
network can be extended, creating what is known as deep learning. Deeper
networks demonstrate enhanced generalization when trained on sufficiently
large datasets, when trained on smaller datasets deeper networks can perform
poorly and overfit to the data.
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2.5.3 Convolutional neural networks
A CNN can be used for image recognition and object localization. By reduc-
ing images, they are made more manageable in processing while preserving
essential features to be used in prediction. The CNN is similar to a feed-
forward network but with three dimensions: width, height and depth. When
the input is an image, the depth of the image are the features and could be
the separate colors of red, green and blue. There are three types of layers
in a CNN: convolutional, pooling, and Rectified Linear Unit (ReLU) layers.
Each layer with different operations. The convolutional layer applies filters
that propagate across the entire image. The dimensions of these filters and
the number of filters used determine the dimensions of the next hidden layer,
as shown in Figure 6. Each filter is designed to detect a specific feature
in the image, often requiring a large number of filters to identify numerous
features.

Figure 6: A convolutional operation between an input of size 32x32x3 and output of
dimension 28x28x32 when applying a 32 filters of size 5x5x3. The filter and input
must have the same depth. The output depth is determined by the number of filters

applied.

The pooling operation reduces the size of the image while preserving the es-
sential features in the image. Max pooling is a common pooling method that
takes a small grid region from each layer of the image and outputs the max-
imum value from that grid, while maintaining the same depth. The ReLU
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layer doesn’t alter the image dimensions. It uses an activation function that
sets negative values to zero. This increases processing speed, enabling the
use of deeper models and generates more accurate networks. The ReLu layer
also introduces nonlinearity to the neural network and is so commonly used
that it is often not shown in network architecture diagrams [57].

In the present study a one-dimensional (1-D) CNN is used. 1-D CNN uses
the same layers and operations, the difference is in the dimensions of the
input, output and filters, that consist of the depth and only one spatial di-
mension, instead of the two in the 2-D CNN. 1-D CNN are applied to 1-D
signals like ECG or accelerometer signals. The filters only move in the spa-
tial dimension, on all feature channels. In the case of a 12-lead ECG signal
of 1000 samples, the dimensions of the input would be 1000x12, that is 1000
samples of data for 12 channels. The filter would move in the time direction,
across samples, for each lead of the 12-leads. The convolutional filters ex-
tract temporal information from the data which is well suited for extracting
local features like frequency, amplitude and shape in signals. The CNN is
also able to detect patterns invariant to the location in the signal [58]. 1-
D CNN has proven efficient in detecting arrhythmic beats [59] as well as
detecting AF [60].
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2.5.4 k-Fold Cross-Validation
k-fold cross-validation is used to get more robust performance metrics when
validating a ML model. Given a dataset, the model will train and test on a
subset of that data. By resampling the subset for train and test, it’s possible to
generate unique subsets of testing data. k-fold cross-validation implements
this by resampling the dataset ’k’ times (see Figure 7), training and testing a
model each time. The result is an average accuracy across all models.

Figure 7: 10-fold cross-validation.
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3 Method

Cathvision software RecorderApp is used for ECG visualization. Visual Stu-
dio Code is used as code editor with the Python programming language.
Pandas and numpy are adopted for data handling, seaborn and matplotlib for
visualization, and keras and scikit-learn are adopted for machine learning.

The proposed method for investigating prediction of AF recurrence follows
the block diagram shown in Figure 8. Firstly, each patient’s ECG recording
is visually assessed to find 60s segments of adequate signal quality, as de-
scribed in Sec. 3.2.1. The segments are automatically delineated to detect
R-peaks and P-wave fiducial points as described in Secs 3.2.2 and 3.2.3. P-
wave and R-peak annotations are saved and processed in separate methods.
Exclusion and inclusion criteria are applied to R-peak annotations, generat-
ing a dataset of raw ECG and CS catheter electrogram data and labels, as
described in Sec. 3.2.2. P-wave annotations are used in feature extraction,
generating a dataset of features and labels as described in Sec. 3.2.3. Both
datasets are balanced both in regards to data per patient but also in regards to
labels, as described in 3.3.1. To further evaluate the capabilities of the CNN,
a synthesized dataset is created using the raw ECG dataset, augmenting P-
wave characteristics in the ECG for AF recurrent subjects, as described in
Sec. 3.3.2. ML models are developed as described in Secs 3.3.3 and 3.3.4.
The separate datasets are split into train and test subsets and the models are
trained and evaluated, as described in Sec. 3.4.
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Figure 8: Block diagram of the proposed method for investigating AF recurrence
predictors. In order, visual assessment (Sec. 3.2.1), automatic delineation, P-wave
and R-peak annotation (Secs 3.2.2 and 3.2.3), beat filtering (Sec. 3.2.2) and feature
extraction (Sec. 3.2.3). Generating synthesized dataset (3.3.2) and implementation
of ML (Sec. 3.3), ending with model evaluation (Sec. 3.4). BPM: Beats per minute.
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3.1 Datasets

Three datasets containing 281 subjects were used in this study. All subjects
underwent PVI treatment for AF. Details on the characteristics of the datasets
are shown in Table 1.

Dataset Characteristic
1 Age (mean, range) 61, (41-78)

Male (n,%) 38, (95%)
Time (in months) since first AF diagnosis (mean, range) 8, (2-46)
Follow-up duration (months)(mean, range) 42, (8-65)

2 Age (mean, range) 63, (25-83)
Male (n,%) 45, (78%)
Time (in months) since first AF diagnosis (mean, range) 6, (2-30)
Follow-up duration (months)(mean, range) 24, (12-54)

3 Age (mean, range) 72, (57-89)
Male (n,%) 81, (62%)
Time (in months) since first AF diagnosis (mean, range) -
Follow-up duration (months)(mean, range) 12, (12-12)

Table 1: Characteristics of the datasets included in the present study.

Dataset 1 contains 39 subjects treated at Lausanne University Hospital,
Switzerland, using a stepwise ablation method. 12-lead ECG and CS catheter
electrogram was acquired using CardioLab EP (electrophysiology) system
(GE HealthCare) [61] at a sampling frequenccy of 1000 Hz. ECG was
recorded thoughout the ablation treatment procedures; before, during and
after catheter ablation with typically 1-2 hours of data available per patient.
First follow-up occurred at different times but on average at a 42 months
follow up (SD: 16,6 months). 8 subjects maintained sinus rhythm and 31
subjects suffered arrhytmia reccurence.

Dataset 2 contains 58 subjects treated at Lausanne University Hospital,
Switzerland, using a wide area circumferential ablation method. 12-lead
ECG and CS catheter electrogram was acquired using CardioLab EP sys-
tem (GE HealthCare) [61] at a sampling frequency of 1000 Hz. ECG was
recorded thoughout the ablation treatment procedures; before, during and
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after catheter ablation with typically 1-2 hours of data available per patient.
First follow-up occurred at different times but on average at a 24 months
follow up (SD: 10.9 months). 17 subjects maintained sinus rhythm and 41
subjects suffered arrhythmia recurrence.

Dataset 3 contains 184 subjects obtained through the HRCRS (Heart Rhythm
Clinical and Research Solutions) CRO, USA. 12-lead ECG and CS catheter
electrogram was acquired using LabSystem Pro, Bard EP system [62] at a
sampling frequenccy of 1000 Hz. ECG was recorded thoughout the ablation
treatment procedures; before, during and after catheter ablation with typi-
cally 1-2 hours of data available per patient. First follow-up occurred after
12 months. 87 subjects maintained sinus rhythm and 42 subjects suffered
arrhythmia recurrence, 41 patients did not return for follow up, 14 patients
are missing labels.

3.1.1 Ethics
The data used in this study has been anonymized and shared through a con-
tract/agreement with Lausanne University Hospital and HRCRS. To protect
patients included in this study, pseudonyms are used. All patients included
has consented to their data being used in research. Studies were conducted
following ethics approval. The data used in the study was stored on a com-
pany hard-drive that only the writer had access to.
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3.2 Pre-processing

3.2.1 Visual assessment
For the present study, if obtainable, a segment of 60s was extracted from
each patient’s ECG recordings. All patients with available recordings were
included. The segments were selected as early as possible in the recording,
where patients were in sinus rhythm and there was adequate signal quality.
Recordings were probed for obvious signs of SR like stable rhythm, simi-
lar RR-intervals and indication of P-waves. Example of SR can be seen in
Figure 9 and of AF in Figure 10. The CS leads are in focus to be able to
look through each patient’s hours of ECG recordings at a reasonable pace.
CS lead’s have a clear pattern in SR, with a spike at atrial activation and flat
line in all other cases, Figure 11 shows examples of included and excluded
recordings based on CS lead’s. Examples of inadequate signal quality can
be found in Appendix. In cases of recordings with adequate signal quality
that are less than 60s, but more than 20s, recordings were included. Cases
of doubt in abnormal recordings are solved by a second assessment by more
competent colleges, working with ECG analysis within CathVision.

Figure 9: Example of adequate signal quality. Patient with clear SR. Areas marked
for A: stable rhythm, B: indication of P-waves and C: a single atrial activation per

beat.
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Figure 10: Patient with sample of AF, which can be seen in A: irregular
rhythm and B: irregular activation of the atria.

Figure 11: Catheter leads with A: no activation data, B: non-SR and C:
Premature atrial complex.

In this study, segments with paced rhythm was included as well as segments
with some premature atrial or ventricular contractions. These segments were
used if recordings did not contain any other 60s segment with clear SR.
Different cases of paced rhythm exist in recordings and will be visualized
differently in the ECG. Examples of excluded and included pacing is shown
in figure 12.
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(a) Excluded recording. (b) Paced SR.

Figure 12: Examples of recordings with pacing. (a) Excluded recording, exclu-
sion criteria is A: catheter lead pacing spike amplitude > 10mV and B: single atrial
activation per beat at the same location as pacing stimulus in catheter leads. (b)
Included recording, A: indication of P-wave and B: pacing and atrial activation not

interfering.

3.2.2 Beat detection & classification
Processing is done for every segment, separately. Firstly, the segments are
automatically annotated with indices for R-peak locations in lead I, using
the signalDelineation(sig, fs) function [22]. Each detected R-peak
is regarded as a heartbeat. Each heartbeat is cropped into P-QRS intervals
defined 250ms before and 50ms after each R-peak. The segments are then
processed in order to:

1. Exclude P-QRS intervals with T-wave overlap from the previous P-
QRS interval. The RR-intervals are calculated from R-peak annota-
tions and P-QRS intervals with adjacent RR-intervals below 500ms
(120BPM) are excluded.

2. Exclude P-QRS intervals with pacing, the P-QRS intervals with a gra-
dient above 0.15 dV

dt in any lead are excluded. An example of an ex-
cluded P-QRS interval is visualized in Figure 13. This process is re-
ferred to as gradient exclusion in the results.

3. Exclude irregular or noisy P-QRS intervals, the median P-QRS inter-
val for all non-excluded P-QRS intervals is computed using np.median()
which is then used as a P-QRS interval template. For each P-QRS in-
terval the correlation to the P-QRS interval template is computed and
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P-QRS intervals with a correlation below 0.9 are excluded. This pro-
cess is referred to as correlation exclusion in the results.

Figure 13: Example of excluded P-QRS interval. Pacing results in a
gradient, dV

dt , above 0.15.

3.2.3 P-wave feature extraction
The P-wave feature extraction constitutes a fully automatic approach to P-
wave delineation, using the wt-delineator library [63]. The 12 ECG-leads
from the segments are fed into the delineateMultiLeadECG(sig,fs) func-
tion, returning indices for Pon(lead) and Pend(lead), which represent P-wave
onset and offset. These indices are different for the different leads, and cer-
tain leads are used for certain features. Features are extracted following the
methods defined in research [64]. Code for the feature extraction can be
found in Appendix.

P-wave duration is calculated using the 6 frontal plane leads (I, II, III,
aVR, aVL, aVF). An average index value, for each P-wave, across the frontal
leads are used as the index for avg_Pon and avg_Pend . In some cases in-
dices for P-waves are missing in the separate leads, these leads are excluded
in calculations of avg_Pon and avg_Pend . P-wave duration is calculated in
Equation 1.

p_dur(beat,seg) = avg_Pend(beat,seg)−avg_Pon(beat,seg) (1)
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P-wave voltage is measured in lead I. The value is calculated by subtract-
ing the minimum voltage (see Eq. 3) from the maximum voltage (see Eq. 4)
measured between the avg_Pon and avg_Pend index, as described in Equation
2.

p_volt(beat,seg) = max_volt(beat,seg)−min_volt(beat,seg) (2)

where,
min_volt ({ f (x) : x = avg_Pon, ...,avg_Pend}) , (3)

max_volt ({ f (x) : x = avg_Pon, ...,avg_Pend}) (4)

P-wave area is calculated using the previously extracted duration and volt-
age features, as described in Equation 5:

p_area(beat,seg) = 1
2 p_dur(beat,seg)× p_volt(beat,seg) (5)

Feature Statistical Analysis is visualized using a seaborn pairplot, show-
ing relationships between features and distribution of the labels for all fea-
tures.
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3.3 Machine Learning

3.3.1 Clinical data
Data is labeled as AF recurrent if there is a recorded AF/atrial tachycar-
dia (AT)/atrial flutter (AFL) within 12 months postablation. Data is labeled
as non AF recurrent if non of the mentioned arrhythmias occur within 12
months postablation. Only patients with a 12 month follow-up are included,
therefore 29 patients are excluded. The three datasets are concatenated to
ease data-handling, beats for each patient are still kept separate. The train-
test-split is done patient-wise with a 80-20 split. Training for the RF and
CNNs, was accomplished on a single Intel(R) Iris(R) Xe Graphics GPU.

Patient balancing is done as there was an imbalance between beats per
patient in the data after beat classification. In order to combat a patient bias
in training data, every patient was sampled by 100 beats. Patients with more
than 100 beats are under-sampled and patients with less than 100 beats are
over-sampled, beats are over-sampled at random from the available usable
beats.

Balancing the dataset is done to combat bias of the majority label. Bal-
ancing was done by undersampling the majority label. To keep a wide array
of patients each patient has a number of beats removed resulting in a 50/50
split of the labels.

3.3.2 A Synthesized Dataset
In order to evaluate the ability of the CNN to extract information from P-
wave morphology, a separate dataset is created. The ECG data for subjects
labeled as ’AF recurrent’ is used for synthetization of P-wave attributes. For
each ’AF recurrent’ subject, the two first P-QRS intervals are saved. Each P-
QRS interval is analysed and the center, in between P-wave onset and offset,
is annotated manually by an operator (see Figure 14). P-waves are manipu-
lated using a Hanning window function, defined in Eq. 6. For each P-QRS
interval, a random Hanning window is generated based on two parameters,
amplitude (see Eq. 7) and width (see Eq. 8) Randomly generated Hanning
window functions can be seen in Figure 15. The Hanning window is then
multiplied to the P-QRS intervals, generating more emphasized P-waves.
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An example of the synthetization can be seen in Figure 16. To achieve a bal-
anced dataset, the same amount of P-QRS intervals for subjects labeled as
’non AF recurrent’, are added, resulting in a 50/50 split. The train-test-split
is done patient-wise using 10-fold cross-validation.

w(n) = a
(

1.5−0.5cos
(

2πn
M−1

))
0 ≤ n ≤ M−1 (6)

Where,
a ∈ [1.3,2.5] and a is randomly chosen (7)

M ∈ [100ms,160ms] and M is randomly chosen (8)

Figure 14: 12-lead, P-QRS interval annotated with red dashed line at P-wave
center.
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Figure 15: 5 Hanning window functions with randomly generated parameters
for amplitude and width.

Figure 16: P-wave synthetization using a Hanning window function.

3.3.3 Random forest Classifier
The Random Forest Classifier was setup using the sklearn library. It was im-
plemented with a max depth of 3 and fitted to the extracted P-wave features.

3.3.4 Convolutional Neural Network
A 4-layer CNN structure is used, comprised of: input, 1D convolution, pool-
ing, fully connected, and output-layer. The input shape is one dimension of
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600 samples for 17 channels. A summary of the architecture is provided in
Table 2. For the first convolutional layer, a kernel width of 300 samples, 150
ms, is used. With this width, the kernel is able to cover the P-wave, which
is the area of interest. Training parameters were set to a batch normalization
of 32 and 10 epoch.

Layer Type Filters Kernel size Activation
1 Convolution 600 x 16 1 x 300 relu
2 Max-

pooling
300 x 16 1 x 3 -

3 Convolution 300 x 64 1 x 100 relu
4 Max-

pooling
100 x 64 1 x 3 -

5 Fully-
connected

1 x 256 - relu

6 Fully-
connected

1 x 1 - sigmoid

Table 2: CNN architecture.
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3.4 Model Evaluation

3.4.1 Evaluation Metrics
The performance of the models were measured using sklearn.metric,
functions f1_score, recall_score, precision_score, roc_auc_score
and accuracy_score. Abbreviations are as follows: True Positive (TP, i.e.
’non AF recurrent’ classified as ’non AF recurrent’), False Positive (FP i.e.
’AF recurrent’ classified as ’non AF recurrent’), True Negative (TN, i.e. ’AF
recurrent’ classified as ’AF recurrent’), False Negative (FN i.e. ’non AF re-
current’ classified as ’AF recurrent’).

Recall, Precision, F1-score and Accuracy are calculated as follows:

Recall =
T P

T P+FN

Precision =
T P

T P+FP

F1 =
2∗Precision∗Recall

Precision+Recall

Accuracy =
T P+T N

T P+T N +FP+FN

The ROC AUC score is the area under the ROC curve. The ROC curve
shows possible rates of TP to FP and visualizes the classifiers performance
at these different rates.

A confusion matrix is used to display classifier performance. Each row rep-
resents the true label and each column represents the predicted label.

3.4.2 k-Fold Cross-Validation
A 10-fold cross-validation is used to validate the CNN trained on synthesized
data.
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4 Results

4.1 Pre-processing

4.1.1 Visual Assessment
The visual assessment resulted in 230 recordings deemed usable for further
analysis, out of 281 recordings. Out of the 281 recordings, 149 were an-
notated to have some kind of pacing stimulus within the segment. Usable
recordings are defined as recordings with 60s segments of sufficient quality.

Dataset Available
recordings

Usable
recordings

<60s
recordings

Dataset 1 39 32 8
Dataset 2 58 54 10
Dataset 3 184 144 0
Total 281 230 18

Table 3: Resulting recordings post visual assessment.

4.1.2 Beat classification
After beat classification there were 23 recordings excluded since all of the
P-QRS intervals were excluded based on the criteria in Sec. 3.2.2, leaving
207 recordings for further analysis. Dataset 3 had more P-QRS intervals
removed than Dataset 1 and 2, as seen in Figure 17. Rejection statistics,
Table 4, show a large number of P-QRS intervals removed due to short RR-
interval(high BPM), followed by correlation and gradient exclusion remov-
ing a small number of P-QRS intervals.
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Figure 17: P-QRS intervals retained plotted over detected R-peaks found in
recordings. Recordings where 100% of P-QRS intervals are retained follow a

line starting from the origin with a gradient of 1.

Dataset RR-interval
(%, range)

Gradient (%,
range)

Correlation
(%, range)

Dataset 1 8%, (1-67) <1%, (0-4) 4.6%, (0-20)
Dataset 2 4.4%, (1-16) <1%, (0-8) 4.6%, (0-13)
Dataset 3 46.5%,(1-179) <1%, (0-4) 3.4%, (0-20)
Total 19.6% <1% 4.2%
Table 4: Average and range of P-QRS intervals removed for each filtered record-

ing, per dataset.

Dataset P-QRS intervals retained (mean, range)
Dataset 1 63, (19-99)
Dataset 2 48, (5-75)
Dataset 3 46, (1-114)
Total 52

Table 5: Average and range of P-QRS intervals retained for each filtered record-
ing, per dataset.
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4.1.3 Statistical Analysis of Features

Figure 18: Plot of extracted P-wave features. Recurring and non-recurring AF
with features p_dur, p_volt and p_area. The diagonal plots show the distribu-
tion of the classes for the features. Non-recurring AF in blue and recurring AF

in orange.

As illustrated in Figure 18, the visualization of the features show a similar
distribution, for all features, for both classes. Some outliers can be seen for
all features and classes.
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4.2 Prediction of AF recurrence

Table 6 shows the performance metrics for two models, a RF classifier trained
on extracted P-wave features and a CNN trained on raw ECG and CS catheter
electrogram data. Figure 19 illustrates two confusion matrices with predic-
tions and true labels for the two models.

Models F1 Recall Precision AUC Accuracy
RF P-wave features 0.536 0.576 0.502 0.502 0.502
CNN Raw data 0.528 0.602 0.472 0.463 0.463

Table 6: Model Performance Metrics for AF recurrence prediction.

(a) Random Forest Classifier (b) CNN Raw Data

Figure 19: Confusion matrices for both models.
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4.3 CNN Model Evaluation

The generated synthesized dataset included 276 P-QRS intervals, 138 ’AF
recurrent’ and 138 ’non-AF recurrent’. Performance metrics, using 10-fold
cross-validation, for a CNN trained on synthesized ECG data are shown in
Table 7, with an increase in all metrics compared to previous CNN. Figure
20 illustrates the confusion matrices for the most and least accurate fold in
cross-validation, as well as the summary of predictions for all folds.

Model F1 Recall Precision AUC Accuracy
CNN Synthesized Data 0.794 0.797 0.791 0.793 0.793

Table 7: Model Performance Metrics for CNN trained on synthesized data.

(a) Prediction for the least accurate
model.

(b) Prediction for the most accurate
model.

(c) Summary of predictions from all
models in 10-fold cross-validation.

Figure 20: Confusion matrices for CNN trained on synthesized data.
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5 Discussion

In this study P-wave features, ECG and CS catheter electrogram data is ex-
tracted from the present dataset of 281 subjects, using automatic delineation.
A Random Forest (RF) classifier is trained on the extracted P-wave features
and a CNN is trained on ECG and CS catheter electrogram data to predict
12-month AF recurrence post-PVI ablation. For both the RF and CNN clas-
sifier, F1-score and accuracy are around 0.5 (see Table 6). Similarly, the
confusion matrices show a random distribution of predictions (Figure 19 a,
b). The AUC-score for both models are also around 0.5, which is similar to
tossing a coin [65]. Therefore the models have no capability of predicting
AF recurrence on this dataset. Moreover, the CNN is evaluated by creat-
ing a synthesized dataset, inserting augmented P-wave characteristics in raw
ECG-data. The model accuracy and AUC-score is 0.793 (see Table 7), il-
lustrating the CNN capability of extracting information similar to that of
P-wave morphology from an ECG. The predictions in the confusion matri-
ces, in Figure 20, show an even distribution between FP and FN, with the
worst model of the cross-validation not being able to predict AF recurrence
in the subset testdata.

There is no denying the overall potential of CNNs finding patterns in data.
CNNs used on medical images find complex pathological patterns to aid in
diagnosis [66]. Therefore, it is hypothesised that a 1-D CNN, similarly, is
capable of finding complex information in 1-D data. The complexity of the
augmented P-wave characteristics lie in that each applied Hanning window
is generated from random values of amplitude and width, and that this is
applied at the annotated P-wave center, which is different for each P-QRS
interval. Since the Hanning window is multiplied to the existing raw ECG,
the original morphology is not lost, but amplified. This amplification can
be as much as 2.5 times, which is noticeably different compared to the non-
synthesized P-QRS intervals. The method of evaluating the CNN using syn-
thesized dataset concludes that the CNN can extract valuable information
from ECG data regardless of the P-wave location, although the amplification
of the P-wave in the synthesized dataset is far beyond the small differences
in P-wave morphology used in diagnosis of atrial health [67].
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5.1 Methods

The visual assessment is difficult to evaluate as there are no labels for ade-
quate signal quality, for the recordings. The CS catheter leads (see Figure
9(C)) are good indicators of AF as it clearly records arrhythmic activation
in the atria, deemed to be of inadequate signal quality (see Figure 10(B)).
Pacing was present in 149 out of all recordings. How many of these record-
ings that were included in further processing was not recorded. The deci-
sion to include these recordings was made to allow for a larger dataset to be
used in training. The inclusion also made training data more realistic, as the
overall prevalence of pacing in recordings was high. Valuable information
of atrial health can still be obtained from paced P-wave morphology [68].
In a study, Zvuloni et al [69] perform segment extraction on 12-lead ECG
data for AF recurrence prediction. A signal quality criterion was based on
a moving signal quality index (bSQI), with 18 out of 130 recordings being
excluded because of low quality. This is done for the same purpose as for the
visual assessment and beat rejection, to extract data of good signal quality.
As mentioned, there are no labels of the recordings for this present study,
so there can be no performance comparison. A study evaluating the per-
formance of bSQI saw an accuracy of 92.5%, 95.9% sensitivity and 90.1%
specificity [70] in classifying ECG segment quality. Applying this method to
the present study would give a baseline number of ECG signal quality, while
also eliminating induced operator bias in the visual assessment, as even ex-
pert operators show variance in labelling data [71].

Similarly, the method of beat classification cannot be thoroughly evaluated
as there are no labels of signal quality for the ECG signals. Neither were
the applied criteria evaluated, proving it difficult to discard the hypothesis of
inadequate P-QRS intervals being included in training. Results of P-QRS
interval rejection in Table 4, reveal that the RR-interval criteria removes
the majority of the P-QRS interval, which could explain the low number
of P-QRS intervals removed for the following criterias as the RR-interval
criteria is applied first. The cutoff value for the RR-interval criteria is set
quite high at >120BPM. It is worth mentioning that tachycardia is defined as
>100BPM [72]. This could perhaps cause T-wave influence on the P-wave
morphology. A similar decision to the one made on inclusion of pacing was
taken with regards to the cutoff for the RR-interval, as a lower value would
remove vast amounts of data. Furthermore, the results of the gradient and
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correlation criteria, summarized in Table 4, show a low impact across the
datasets. Given the inclusion of recordings with pacing, it was hypothesized
that the gradient criteria would have a more significant impact. Further eval-
uation of these criterias is therefore necessary.

Martinez et al [22] reports, in a paper written on the performance of the wt-
delineator, a mean and standard deviation error for P-wave onset and P-wave
offset of 2± 14.8ms and 1.9± 12.8ms, which could lead to inaccurate cal-
culations of p_dur in the proposed method. wt-delineator was used for au-
tomatic delineation, annotating P_on, P_end and R-peak, delineation error
could contribute to a poor calculation of p_dur and p_volt [63]. As illus-
trated in Figure 18, the statistical analysis shows no sign of a cutoff value
in p_dur between AF recurring an non-recurring patients. Neither is there
a clear separation in the p_volt for a cutoff value at 0.16mV of that found
by Nakatani et al [21]. p_volt is also highly impacted by the accuracy of
P_on and P_end. This is also implied by the RF classifier, as it is not able to
conform to a cutoff value for the features to allow for good a classification
(see Figure 19(a)).

Balancing of the dataset based on beats per patient was implemented using
oversampling. This was applied to both the extracted P-wave features and
the ECG data. The usable beats were copied until each patient had 100 beats.
Patients with a low amount of usable beats therefore had their usable beats
over-sampled to a larger extent. There are numerous patients with a low
amount of usable beats, shown in the bottom of Figure 17. The presence
of multiples of beats could impact training of the model, creating a bias in
prediction.

5.2 Data

Figure17 and Table 4 illustrates the inhomogeneity of the datasets. This
could hint towards differences when recording ECG, use of different EP
systems, different treatments, or demographic differences between the pop-
ulations. For prediction models, development and validation with the use of
different populations legitimizes the performance of the model across pop-
ulations [73]. However, possible differences in these datasets, coupled with
the small amount of patients in each dataset, might be a factor contributing
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to the lower prediction accuracy [74]. Another study, with similar aims, used
a dataset including more than 100 000 subjects [75].

Studies by Jadidi et al [17] and Chen et al [76] use recordings before abla-
tion treatment only. In the present study, the datasets contained recordings
from pre-, post- and during ablation treatment, which could make it more
difficult for the model to fit to the data, as research has shown that P-wave
characteristics change with ablation [77].

There was an error in generating the synthesized dataset for evaluating the
CNN performance, the Hanning window applied to the signal widened the
duration, which follows research findings [17], but increased P-wave ampli-
tude which goes against the patophysiology of AF recurrence P-wave charac-
teristics [21]. However, the aim of using the synthesized dataset is to evalu-
ate if the CNN is capable of extracting information in P-wave characteristics,
therefore it does not matter if the synthetization creates patophysiologically
accurate changes. Albeit, a more patophysiologically accurate dataset would
allow for a robust evaluation of the CNN.

The scores of the CNN training on synthesized data (see Table 7) illustrate
a capability of the CNN to extract information from the synthesized ECG.
Thus, it may be be argued that the raw ECG of the dataset does not contain
distinguishable abnormalities in P-wave morphology, which would cause the
low scores of the CNN.

With all the limitations in this methodology and dataset, the limited perfor-
mance of the models can be linked to the principle of "poor quality in - poor
quality out", which recognizes that poor quality data fed into the models cre-
ates an unreliable output [78]. Furthermore, this allows us to not disqualify
the potential of the proposed models in classification of AF recurrence.

5.3 Survey of the field

A more successful attempt at developing a CNN to predict AF ablation out-
comes is the proposed method by Tang et al [52], similarly developing a
1D-CNN using ECG and iECG data, but also leveraging clinical features to
predict outcome. With a dataset including 156 patients the resulting AUC-
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score is 0.859±0.082 using ECG, iECG and clinical data, and 0.833±0.084
using only ECG and iECG. Similarly Attia et al [75] developed a 1D-CNN
classifying presence of AF with an AUC-score of 0.87. Both studies used a
time series as input for training of 5-sec and 10-sec, respectively. This al-
lows the CNN to extract features across multiple beats.

Another study investigating AF recurrence using ML is Zvuloni et al [69]. In
their study, two RF classifiers leveraged features extracted from 60-sec 12-
lead ECG segments from before and after ablation to classify AF recurrence,
resulting in AUC-scores of 0.56 for pre-ablation and 0.67 for post-ablation
data. Manually crafted features were based on heart rate variability and mor-
phology.

The RF classifier uses the feature p_dur to no apparent success. Contrary
to the present study, in research by Jadidi et al [23], similar features are ex-
tracted and used with a neural network achieving great results. The neural
network, trained on SR PWD and morphology, is able to diagnose left ACM
with an AUC-score of 0.85. Furthermore, this classification can be used
to determine rates of AF recurrence, where patients with left ACM had a
higher amount of arrhythmia recurrence. In other work by Jadidi et al [79],
95 subjects were used for classifiyng the extent of LA-LVS in patients, based
on P-wave morphology and PWD. Patients were classified into three groups
dependent on the extent of LA-LVS, with freedom from arrhythmia for the
separate groups of 77%, 53%, and 33%.

5.4 Future work

As the aforementioned studies reiterates, the P-wave morphology carries
valuable information about atrial health and rate of absence of AF post abla-
tion [17]. Moreover, a ML model, particularly the CNN approach to extract-
ing information from ECG signals, exhibit potential [52]. To fully investi-
gate the potential of the method proposed in this study, the pre-processing of
data needs further work. For a more robust and standardized signal quality,
it would be interesting to implement quality analysis using SQI instead of a
manual, visual assessment of the data. Furthermore with the need for intri-
cate delineation of the P-wave, the automatic delineation should be validated
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using expert annotations. And as always with ML in healthcare, a big and
diverse dataset should be utilized to ensure robust and accurate model perfor-
mance. With the increase of AF, the development of an automatic solution to
assert patient risk for AF recurrence post-PVI is of great importance. Hence,
more research on the subject will be needed.
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5.5 Conclusion

This work investigates the predictive capabilities of two models trained on
P-wave features and ECG and CS catheter electrogram, respectively. A pre-
processing method based on automatic delineation is proposed, eliminating
the need for extensive manual annotation of ECG data. Both models show no
sign of predicting AF recurrence on the present dataset, with AUC-scores of
0.502 and 0.463. Furthermore, through training and testing on synthesized
data, and a AUC-score of 0.793, the CNN exhibits potential in extracting in-
formation from P-wave morphology. Moreover, evaluation of the automatic
delineation is needed to rule out annotation errors affecting training data.
Future work should focus on implementing an automatic delineation cou-
pled with automatic signal quality analysis and apply the method to a larger
dataset.
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Appendix

Figure 21: Recording with noisy leads.

PWD

# Delineation using wtdelineator
ecgDelin = delineateMultiLeadECG(np_data_12lead, 2000)
# Gather the [P-wave onset and end] of frontal leads in list
# ’frontalLeads’
frontalLeads = []
for idx in range(5):

frontalLeads.append([[Pon, Pend] for
Pon, P, Pend, QRSon, R, QRSend, Ton, T, Tend

in ecgDelin[idx]])
# list of P-Waves found in each lead
n_pwaves = [len(lead) for lead in frontalLeads]
# Finding amount of P-waves found, correlating to most leads.
# Looking to get as many usable leads as possible as result
sum = 0
max_n = 0
for length in n_pwaves:
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if sum < n_pwaves.count(length):
sum = n_pwaves.count(length)
max_n = length

frontalLeads = [lead for lead in frontalLeads
if len(lead) == max_n]

P-wave Voltage

leadI = np_data[:,0]
p_voltage = [max(leadI[Pon:Pend])-min(leadI[Pon:Pend]) for

Pon, Pend in p_wave_ix]

P-wave Area

maxVoltage = [max(np_data[:,1][Pon:Pend]) for Pon, Pend
in p_wave_ix]

minVoltage = [min(np_data[:,1][Pon:Pend]) for Pon, Pend
in p_wave_ix]

p_area = [0.5*duration*voltage for duration, voltage in
zip(p_duration, maxVoltage-minVoltage)]
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